
Alma Mater Studiorum · Università di Bologna

Scuola di Scienze

Dipartimento di Fisica e Astronomia

Corso di Laurea Magistrale in Fisica

sEMG-based Hand Gesture Recognition

with Deep Learning

Relatore:

Prof. Daniel Remondini

Correlatori:

Dott. Simone Benatti
Dott. Francesco Conti
Dott. Manuele Rusci

Presentata da:

Marcello Zanghieri

Anno Accademico 2017/2018

Abstract

Hand gesture recognition based on surface electromyographic (sEMG) signals is a

promising approach for the development of Human-Machine Interfaces (HMIs) with a

natural control, such as intuitive robot interfaces or poly-articulated prostheses. How-

ever, real-world applications are limited by reliability problems due to motion artifacts,

postural and temporal variability, and sensor re-positioning.

This master thesis is the first application of deep learning on the Unibo-INAIL

dataset, the first public sEMG dataset exploring the variability between subjects, sessions

and arm postures, by collecting data over 8 sessions of each of 7 able-bodied subjects

executing 6 hand gestures in 4 arm postures. In the most recent studies, the variability

is addressed with training strategies based on training set composition, which improve

inter-posture and inter-day generalization of classical (i.e. non-deep) machine learning

classifiers, among which the RBF-kernel SVM yields the highest accuracy.

The deep architecture realized in this work is a 1d-CNN implemented in Pytorch,

inspired by a 2d-CNN reported to perform well on other public benchmark databases.

On this 1d-CNN, various training strategies based on training set composition were

implemented and tested.

Multi-session training proves to yield higher inter-session validation accuracies than

single-session training. Two-posture training proves to be the best postural training

(proving the benefit of training on more than one posture), and yields 81.2% inter-

posture test accuracy. Five-day training proves to be the best multi-day training, and

yields 75.9% inter-day test accuracy. All results are close to the baseline. Moreover, the

results of multi-day trainings highlight the phenomenon of user adaptation, indicating

that training should also prioritize recent data.

Though not better than the baseline, the achieved classification accuracies rightfully

place the 1d-CNN among the candidates for further research.

Sommario

Il riconoscimento di movimenti della mano basato su segnali elettromiografici di su-

perficie (sEMG) è un approccio promettente per lo sviluppo di interfacce uomo-macchina

(HMI) a controllo naturale, quali interfacce robot intuitive o protesi poliarticolate. Tutta-

via, le applicazioni real-world sono limitate da problemi di affidabilità dovuti ad artefatti

di movimento, variabilità posturale e temporale, e riposizionamento dei sensori.

Questa tesi magistrale è la prima applicazione dell’apprendimento profondo (deep

learning) al dataset Unibo-INAIL, il primo dataset sEMG pubblico che esplora la varia-

bilità tra soggetti, sessioni e posture del braccio, raccogliendo dati da 8 sessioni per cia-

scuno di 7 soggetti integri che eseguono 6 movimenti della mano in 4 posture del braccio.

Negli studi più recenti, la variabilità è affrontata con strategie di addestramento basa-

te sulla composizione del training set, che migliorano la generalizzazione inter-postura

e inter-giorno di classificatori basati sull’apprendimento automatico (machine learning)

classico (ossia non profondo), fra i quali la RBF-kernel SVM dà l’accuratezza più alta.

L’architettura profonda realizzata in questo lavoro è una 1d-CNN implementata in

PyTorch, ispirata a una 2d-CNN con buone prestazioni dimostrate su altri dataset pub-

blici di riferimento. Su questa 1d-CNN, si implementano e testano varie strategie di

addestramento basate sulla composizione del training set.

L’addestramento multi-sessione si dimostra produrre accuratezze di validazione inter-

sessione più alte rispetto all’addestramento mono-sessione. L’addestramento bi-postura

si dimostra la miglior strategia posturale (dimostrando il beneficio di addestrare su più di

una postura), e produce un’accuratezza di test inter-postura dell’81.2%. L’addestramen-

to su cinque giorni si dimostra la miglior strategia multi-giorno, e produce un’accuratezza

di test inter-giorno del 75.9%. Tutti i risultati sono vicini alla baseline. Inoltre, i risultati

degli addestramenti multi-giorno evidenziano il fenomeno dell’adattamento dell’utente,

indicando che l’addestramento deve privilegiare dati recenti.

Benché non migliori della baseline, le accuratezze ottenute pongono a buon diritto la

1d-CNN tra i modelli candidati per la ricerca futura.

Contents

1 Introduction 1

1.1 EMG-based HMIs and generalization issues 2

1.2 Deep Learning revolution . 3

1.3 Purpose of this master thesis . 4

1.4 Thesis structure . 4

2 Surface Electromyography and sEMG-based gesture recognition 6

2.1 Surface Electromyography . 6

2.1.1 Muscular activation potentials . 8

2.2 sEMG-based gesture recognition . 11

2.2.1 Classical Machine Learning approach 12

2.2.2 Deep Learning Revolution . 13

2.2.3 State-of-the-art on the variability factors 14

2.2.4 State-of-the-art on the Unibo-INAIL dataset 15

3 Deep Learning and Convolutional Neural Networks 17

3.1 Neural Networks and Deep Learning . 17

3.2 Training deep networks: gradient descent and back-propagation 20

3.2.1 Cross-entropy loss . 23

3.2.2 Stochastic gradient descent with mini-batches 23

3.2.3 L2 regularization . 24

3.3 Convolutional Neural Networks . 24

3.3.1 Batch-normalization . 29

3.3.2 ReLU activation function . 29

3.3.3 Dropout . 30

i

4 Materials and Methods 31

4.1 Unibo-INAIL dataset . 31

4.1.1 Unibo-INAIL collaboration and motivation for the dataset 33

4.1.2 Outline of acquisition setup and experimental protocol 33

4.1.3 Multi-source data structure . 35

4.1.4 User adaptation . 37

4.2 Pipeline and CNN architecture . 39

4.2.1 Preprocessing: windowing . 39

4.2.2 Three-way data partition . 39

4.2.3 CNN architecture implemented 40

4.2.4 Training settings . 41

4.3 Training strategies . 42

4.3.1 Single-session training strategy 42

4.3.2 Two-posture training strategy . 43

4.3.3 Multi-day training strategies . 43

5 Implementation 45

5.1 Scripts developed . 45

5.2 Usage of PyTorch platform . 46

5.2.1 torch.nn package . 47

5.2.2 torch.autograd package and torch.Tensor class 47

5.2.3 torch.optim package . 49

5.2.4 torch.CUDA package . 50

6 Results 51

6.1 Accuracy distributions and reported accuracies 51

6.2 Preliminary analyses . 52

6.2.1 Optimal length of time windows 52

6.2.2 Learning curves . 52

6.3 Single-session training strategy . 55

6.4 Two-posture training strategy . 61

6.5 Multi-day training strategy . 63

6.6 Training strategies selection and test . 66

ii

7 Conclusions and future work 67

Ringraziamenti 69

Bibliography 70

iii

Chapter 1

Introduction

Hand gesture recognition based on electromyographic (EMG) signals is an innovative

approach for the development of human-computer interaction, the vast field whose aim

is to implement human-computer interfaces (HMIs) and intuitive interaction devices.

The research in this field is motivated by the need for intelligent devices able to extract

information from data coming from sensors, operating in real time and under significant

power, size and cost constraints. The wide range of applications of HMIs with EMG-

based intuitive control includes (but is not limited to) robot interaction and industrial

robot control, game or mobile interfaces, interactions for virtual environments, sign lan-

guage recognition, rehabilitation, and control of poly-articulated prostheses [1, 2, 3, 4, 5].

The electromyographic (EMG) signal is the biopotential generated by the ionic flow

through the membrane of the muscular fibers during contraction, and is a major index

of the muscular activity. EMG data can be acquired either with invasive or non-invasive

measuring instruments. Invasive methods employ wire or needle electrodes, which pene-

trate the skin to reach the muscle of interest. On the contrary, surface electromyography

(sEMG) is a non-invasive technique that uses surface electrodes applied on the surface

of the skin [6]. In the HMI field, building gesture recognition on the analysis of sEMG

signals is one of the most promising approaches, since non-invasiveness is an essential

requirement for many types of HMIs.

An open challenge in HMI design is the development of solutions based on a robust

recognition approach. On the one hand, the implementation of devices showing high

recognition capabilities in controlled environments raised industrial interest and led to

1

the availability of commercial solutions based on the EMG-based interaction paradigm.

On the other hand, in many real-world scenarios the adoption of EMG-based HMIs

is still limited by reliability problems such as motion artifacts, postural and temporal

variability, and issues caused by sensors re-positioning at each use.

Nowadays, research efforts focus on solving issues related to postural variability ef-

fects and long-term reliability. Such research efforts are being boosted by two factors.

(1) The release of public EMG databses suitable for the analysis of variability, whose

publication eases the creation of benchmarks for the research community; the Unibo-

INAIL dataset studied in this master thesis was realized for this very purpose. (2) The

increasing recourse to the deep learning, whose deep hierarchical approach, together with

the entirely data-driven feature extraction, promises to speed up the search for effective

representations able to empower the recognition models.

1.1 EMG-based HMIs and generalization issues

The Electromyogram (EMG) is the biopotential signal resulting from muscular activity,

and is a major index thereof. It can be sensed by means of non-invasive surface electrodes,

giving rise to the surface EMG (sEMG) signal. The processing of sEMG signals is a

promising approach for the implementation of non-invasive EMG-based Human-Machine

Interfaces.

However, the current state-of-the-art has to cope with challenging issues. The sEMG

signal is severely affected by many factors, such as differences between subjects, fatigue,

user adaptation and the variability introduced from the re-positioning of electrodes at

each data collection session. These issues limit long-term use and reliability of the devices

relying on EMG analysis.

In the machine learning framework, these variability factors can be modeled with

the concept of data sources, i.e. data subsets coming from different distributions (the

concept of multi-source data is defined in Subsection 4.1.3). Identifying multiple sources

makes machine learning on EMG data a challenging task, where the ambition is to

implement classifiers capable of good inter-source generalization, e.g. in inter-posture,

inter-session or inter-subject scenarios. Up to now, the classification accuracy with Leave-

One-Subject-Out cross-validation (LOSOCV) is still much lower than that attained with

Within-Subject cross-validation (WSCV) [8].

2

1.2 Deep Learning revolution

At present, an increasingly important role in sEMG-based gesture recognition (and in

human-computer interaction in general) is being played by deep learning. Existing deep

learning architectures are mainly based on two kinds of architecture: the Convolutional

Neural Network (CNN), able to capture spatial information of the signal, and the Re-

current Neural Network, which allows to exploit the sequential nature of the data. This

master thesis is exclusively focused on the CNN architecture, because CNNs are (1) eas-

ier to train, and (2) more suitable for deployment in embedded hardware, hence making

them more attractive for this work. On the other hand, it must be noted that RNNs are

typically more accurate on time-domain data, so the choice between the two models is

not clear cut.

In the framework of sEMG-based gesture recognition based on classical machine

learning, the pipeline typically consists of data acquisition, data preprocessing, feature

extraction, feature selection, model definition and inference [6, 9]. The reason behind the

new deep learning perspective for sEMG-based gesture recognition is that it mitigates

the strong need for feature extraction, feature selection and parameter tuning, which

strongly rely on specific domain knowledge. The advantage of a deep architecture is its

ability to incorporate feature learning: a consistent part of the traditional pipeline can be

entrusted to the training of the algorithm, which has enough capacity to learn effective

feature representations on its own. This mitigates the reliance on rigid combinations of

preprocessing steps and precise sets of hopefully discriminative features.

The deep learning approach has already started to speed up the research in this field.

In particular, the CNN-based sEMG gesture recognition has been studied by Atzori et al.

in [10], achieving comparable performance with traditional methods on the Non-Invasive

Advanced Prosthetics (NinaPro) database. Another CNN architecture with adaptive

feature learning improving inter-subject generalization has been proposed by Park and

Lee in [11]. Geng et al. [12, 13] presented a new CNN architecture for instantaneous

sEMG images on three sEMG benchmark datasets. Du et al. [14] designed a semi-

supervised deep CNN which also exploits the auxiliary information of a data glove:

classification performance is improved by training the auxiliary task of regression of

glove signal.

3

1.3 Purpose of this master thesis

The purpose of this master thesis is to apply deep learning for the first time to the Unibo-

INAIL dataset, the first public dataset of surface electromyographic signals (sEMG)

exploring the impact of combined postural and temporal variabilities on myoelectric

hand gesture recognition [15]. In particular, the deep learning architecture used is a

one-dimensional Convolutional Neural Network (1d-CNN), which performs convolutions

over the time dimension.

This is a novel approach since the application of deep learning yields new knowl-

edge about the performance of machine learning on this dataset, which was previously

analysed only with algorithms belonging to classical (i.e. non-deep) machine learning,

applied only to instantaneous signal values. The CNN architecture used in this work is

an adaptation of the 2d-CNN module of the hybrid CNN-RNN architecture proposed by

Hu et al. in [9]. The evaluation of performance is made in such a way to directly com-

pare deep learning and classical machine learning on each of the intra- and inter-session

scenarios available as baseline for the various training and validation sets compositions.

At the dataset’s state-of-the-art, the variability is addressed with training strategies

that improve inter-posture and inter-session generalization of classical (i.e. non-deep)

machine learning classifiers, among which the RBF-kernel SVM yields the highest accu-

racy. The deep model implemented and tested is a CNN architecture reported to perform

well on other public benchmark databases. On this CNN, the state-of-the-art training

strategies are implemented and tested.

1.4 Thesis structure

The remainder of this master thesis is structured as follows:

◦ Chapter 2 introduces the fundamentals of surface electromyography (from muscular

activation potential to signal collection at the electrodes), compares the classical

machine learning framework and the deep learning framework of sEMG-based hand

gesture recognition, and summarizes the state of the art regarding the classification

robustness against the signal variability factors (both in general and on the Unibo-

INAIL dataset);

4

◦ Chapter 3 introduces the fundamentals of deep learning, of convolutional neural

networks and of the architectural features used in this master thesis;

◦ Chapter 4 illustrates the materials and methods of this work: the Unibo-INAIL

dataset, the adopted preprocessing and pipeline, the CNN architecture used (to-

gether with all the training settings), and the training strategies implemented and

tested;

◦ Chapter 5 describes the scripts developed and how they exploit the main packages

of the open source deep learning platform PyTorch;

◦ Chapter 6 presents the results obtained for the various training strategies;

◦ Chapter 7 exposes the conclusions and outlines the future work.

5

Chapter 2

Surface Electromyography and

sEMG-based gesture recognition

Surface Electromyography is the field that studies the sensing, elaboration and uses

of the surface-electromyographic (sEMG) signal, i.e. the electrical signal generated by

contractions of skeletal muscles and sensed by non-invasive surface electrodes. For the

development of Human-Machine Interfaces (HMIs), building gesture recognition on the

analysis of sEMG signals is one of the most promising approaches, since for many appli-

cations non-invasiveness is an essential requirement.

This chapter is structured as follows:

◦ Section 2.1 introduces the fundamental concepts of surface electromyography, from

the muscular activation potentials to the signal collection at the electrodes;

◦ Section 2.2 is devoted to sEMG-based gesture recognition: it provides an overview

of the techniques and results of both the classical machine learning framework and

the deep learning framework, and summarizes the state of the art regarding the

search for classifiers that are robust against the signal variability factors, both in

the general field and on the Unibo-INAIL dataset.

2.1 Surface Electromyography

Electromyography [16, 17] is the discipline that studies the detection, analysis, and

applications of the electromyographic (EMG) signal, the electrical signal generated by

6

muscles in correspondence with contractions. In particular, surface electromyography

(sEMG) is a non-invasive technique for measuring and analysing the EMG signal of

skeletal muscles by means of surface electrodes.

The electromyographic (EMG) signal is the bio-electric potential that arises from

the current generated by the ionic flow through the membrane of the muscular fibers.

It is therefore a major index of the muscular activity. During a muscular contraction,

the depolarization of the tissue cell membrane, caused by the flow of Na+ and K+ ions,

propagates along the muscle fibers. The origin of the potential is the electrical stimulus

that starts from the central nervous system, and passes through the motor neurons (mo-

toneurons) innervating the muscular tissue, giving rise to the Action Potentials (APs).

EMG data can be acquired either with invasive or non invasive measuring instru-

ments. Invasive methods employ wire or needle electrodes, which penetrate the skin to

reach the muscle of interest. On the contrary, surface electromyography (sEMG) is a

non-invasive technique that uses surface electrodes that operate on the surface of the

skin [6]. For many of human-machine interfaces, non-invasiveness is an indispensable

requirement. In the sEMG setup, APs can be detected by means of an instrumentation

amplifier with the positive and negative terminals connected to two metal plates posi-

tioned on the skin surface: the sEMG signal results from by the superposition of all the

detected APs underlying the amplifier [15].

The EMG signal amplitude depends on the size and distance of the muscles underlying

the electrodes, and typically ranges from 10 µV to 10 mV. The EMG signal bandwidth

stays between 2 kHz. The noise sources affecting the EMG signal are many, the most

important being motion artifacts, floating ground noise and crosstalk. A major source of

interference is Power Line Intereference (PLI) [18], which is due to the capacitive coupling

between the body and the surrounding electrical devices and power grid, and is common

to most biomedical signals. Despite having nominal main frequency 50 Hz in Europe

and 60 Hz in USA, PLI is non-stationary and can present variations in frequency (up to

±2 Hz) and variations in amplitude (depending on instrumentation and environment),

both mainly originating from the AC power system. Though beyond the scope of this

master thesis, the development of filters and removal algorithms to reject PLI effectively

is an active field of research.

7

2.1.1 Muscular activation potentials

Motor units are the basic functional units of a muscle, and muscle fibers are innervated

motor units. When activated, motor units generate a Motor Unit Action Potential

(MUAP). MUAPs can be generated in sequence by repeated activations, giving rise

to MUAP Trains (MUAPTs). MUAPTs are possible as long as the muscle is able to

generate force.

A convenient elementary model of MUAPs can be built with the tools of linear

response theory [19]. In the linear response model, represented in Figure , a MUAPT

can be fully described with two mathematical entities: the sequence of instants of the n

pulses of the train {ti}i=1,··· ,n, and the MUAP linear response function h(t), accounting

for the shape of the MUAP and also called the MUAP waveform. Interpulse intervals are

defined as {∆i = ti+1 − ti}i=1,··· ,n−1, i.e. the time intervals between consecutive MUAPs.

Each impulse is a Dirac delta impulse δ(t) (using dimensionless quantities), and the

impulse train δ̄(t) is given by their sum:

δ̄(t) =
n∑

i=1

δ(t− ti). (2.1)

The expression u(t) that describes the MUAPT as a function of time is obtained applying

the kernel h on the impulse train δ̄(t):

u = h ∗ δ̄ (2.2)

which more explicitly is

u(t) = (h ∗ δ̄)(t) =

∫ +∞

−∞
δ̄(t− t′)h(t′)dt′ = (2.3)

=
n∑

i=1

h(t− ti) (2.4)

where ∗ denotes convolution.

8

Figure 2.1: Linear response model of the Motor Unit Action Potential Train (MUAPT).
Image adapted from [19].

More precisely, MUAP values depend also on the force F generated by the muscle:

u = u(t;F). The value of the EMG signal m(t;F) sensed at time t depends on the

generated force F as well, and is given by the sum of all the MUAPTs uunit(t) generated

by the probed motor units:

m(t;F) =
∑

unit∈U

uunit(t;F) (2.5)

where U is the set of the probed motor units. A comprehensive scheme following the

potential from the AP to the recorded EMG signal is shown in Figure 2.2.

In both invasive and surface electromyography, the observed MUAP waveform de-

pends on the relative position between the electrode and the active muscle fibers. This

relative position may not be constant over time. The MUAP waveform and the EMG

signal are also affected by any significant biochemical change in the muscle tissue: this

is the case of muscle fatigue, which is a known source of variability for the EMG signal.

9

Figure 2.2: Scheme of the potential from Activation Potential (AP) to the recorded EMG
signal. Image from [19].

10

2.2 sEMG-based gesture recognition

sEMG-based gesture recognition is a promising technique for the development of Human-

Machine Interfaces (HMIs). On the one hand, sEMG has the virtue of being non-

invasive, which is essential for many HMIs. On the other hand, entrusting recognition, i.e.

signal classification, to automated learning is a successful method for circumventing the

complexity of the task by removing the need of a complete physiological understanding

of the underlying motor functions.

Automated learning has produced advances with a rich variety of approaches. Whereas

the central goal of gesture recognition is signal classification, many other machine learn-

ing techniques have been successfully exploited as auxiliary tasks to assist classification

at either training or evaluation time, increasing classification accuracy. Examples of

auxiliary tasks (detailed in the following subsections) are force estimation by means of

regression, and semi-supervised and unsupervised methods for calibration.

However, classical machine learning still requires field-specific knowledge, such as

tested and established feature extracting procedures to maximize discriminative power,

recourse to the suitable signal domain (time domain, frequency domain, or time-frequency

domain), and empirical expertise about the portability of preprocessing and extraction

procedures across datasets acquired with different experimental setups.

This need for field-specific knowledge can be overcome by migrating to deep learning

algorithms, capable of autonomous feature learning, i.e. to learn good feature represen-

tations autonomously, provided sufficient data. The success of deep-learning models has

even driven the ambition of reversing the perspective: once trained a satisfactory deep

classifier, model explainability can be leveraged to shed light a posteriori on the feature

representations, or even on the physiological understanding, lacked a priori. Steps toward

demonstrating the feasibility of this approach have already been moved in the related

field of electroencephalogram (EEG)-based gesture recognition for Brain-Computer Inter-

faces (BCIs): for instance, Nurse et al. in [20, 21], have shown correspondences between

channel-time domain filters learned by the first layer of CNNs and known activation

patterns of brain regions.

11

2.2.1 Classical Machine Learning approach

Classical Machine Learning (classical ML), also referred to as traditional or conventional

machine learning, is the broad class of non-deep algorithms which includes k-Nearest

Neighbors (kNN), Support Vector Machine (SVM), Linear Discriminant Analysis (LDA),

and Random Forests (RF) (all with the related kernel methods), and Multi-Layer Percep-

tron (MLP) with one hidden layer. In the framework of sEMG-based gesture recognition

based on classical ML, the pipeline typically consists of data acquisition, data prepro-

cessing, feature extraction, feature selection, model definition, and inference [9, 6].

However, a major disadvantage of the classical ML pipeline is the strong reliance on

domain-specific knowledge, needed for feature extraction, feature selection and parameter

tuning. The reason why deep learning is appealing for sEMG-based gesture recognition

is that it loosens these requirements, replacing feature extraction with feature learning

incorporated in the algorithm training.

The general problem of finding good discriminative hand-crafted features is so hard

that the quest for better ways to capture the temporal and frequency information of

the signal has characterized decades of research. A clear overview of the typical sEMG

features identified and used can be found in [6], and can be summarized by domain as

follows:

• time domain: Root Mean Square (RMS), variance, Mean Absolute Value (MAV),

Zero Crossings (ZC), Slope Sign Changes (SSC), waveform length, histogram;

• frequency domain: Short Time Fourier Transform (STFT), cepstral coefficients;

• time-frequency domain: Marginal Discrete Wavelet Transform (MDWT).

Two significant studies on sEMG classification with traditional ML techniques were

made by Hugdings in [22] and Englehart and Hudgins [23], who studied the classification

problem of 4 hand gestures and obtained a classification accuracy higher than 90% by

working with 200 ms segments of 4 channel sEMG signals, extracting 5 time-domain

features and feeding them to MLP and LDA classifiers, robustifying the assignment by

applying a majority vote window to the predictions. Instead, Castellini et al. [53] worked

on 3 types of grasp motions and achieved a 97.1% classification accuracy using the RMS

value from 7 electrodes as the input to an SVM classifier.

12

The first successes in the classification of a large number of hand gestures were ob-

tained by Kuzborskij et al. [25], using any of the proposed features in both time- and

frequency-domain, fed to a SVM classifier with Radial Basis Function (RBF) kernel,

and reaching a 70-80% accuracy on the 52 hand gestures of the 8-channel database Non-

Invasive Advanced Prosthetics (NinaPro) presented by Atzori et al. in [26]. These results

where improved by Atzori et al. [27], by considering linear combination of features and

using a RF classifier resulting in an average accuracy of 75.32%; and further improved

by Gijsberts et al. in [28], by evaluating different kernel classifiers jointly on EMG and

acceleration signals, increasing classification accuracy by 5%.

2.2.2 Deep Learning Revolution

In recent years, sEMG-based gesture recognition has seen a progressive shift from tra-

ditional machine learning to deep learning. Deep Learning (DL) is the class of machine

learning algorithms that differ from classical ML approaches in that feature extraction

is part of the model definition, therefore obviating the need for hand-crafted features.

Existing deep learning architectures are mainly based on two kinds of architecture:

the Convolutional Neural Network (CNN), successfully deployed for image classification

due to its ability to capture spatial (but also temporal) information of the signal, and

Recurrent Neural Network, which allows to exploit the sequential nature of the data and

has had successes in speech recognition. The work of this master thesis is exclusively fo-

cused on the CNN architecture. Although deep algorithms themselves are not new, they

are the most computationally demanding, so that deep classifiers gained attention only

relatively recently, thanks to increased availability of data and powerful improvements

in computing hardware [29].

The advantage of deep architectures is their ability to incorporate feature learning:

a consistent part of the traditional pipeline can be entrusted to the training of the

algorithm, which has enough capacity to learn good feature representations on its own.

This mitigates the reliance on rigid combinations of preprocessing steps and precise sets

of hopefully discriminative features.

The first end-to-end DL architecture was proposed by Park and Lee [11], who built

a CNN-based model for the classification of six common hand movements resulting in a

better classification accuracy compared to SVM. Atzori et al. [10] proposed a simple CNN

13

architecture based on 5 blocks of convolutional and pooling layers to classify the 52 hand

gestures from the NinaPro database [26], reaching classification accuracy comparable

to those obtained with classical methods, though not higher than the best performance

achieved on the same problem using a RF classifier.

Geng et al. [12] and Wei et al. [30] improved the results across various datasets by

adding batch normalization and dropout (layer types explained in Subsections 3.3.1 and

3.3.3, respectively) to the model architecture, and by using a high-density electrode

array, thus benefiting from the setup of High Density sEMG (HD-sEMG). Building the

analysis on instantaneous EMG images [12] achieves a 89.3% accuracy on a set of 8

movements, going up to 99.0% when using majority voting over 40 ms signal windows.

In [30] it is shown that for some movements a significant role is played by a small,

group of muscles, and therefore a multi-stream CNN architecture is used that divides

the inputs into smaller images, to be separately processed by convolutional layers before

being merged with fully connected layers, reporting a increase in accuracy by 7.2% (from

77.8% to 85%).

Successful approaches also involve multi-modality data (also called sensor fusion):

Du et al. [14] exploit the auxiliary information of a data glove to add semi-supervised

auxiliary tasks (regression on glove signals) to a CNN, reporting improved classification

accuracy.

2.2.3 State-of-the-art on the variability factors

Currently, the state-of-the-art of sEMG-based gesture recognition is coping with chal-

lenging issues. The sEMG signal is severely affected by many variability factors such

as differences between subjects, fatigue, user adaptation and the variability introduced

from the re-positioning the electrodes at each session of data collection. These issues

limit long-term use and temporal reliability of the devices relying on sEMG analysis.

In the framework of machine learning, these factors of variability can be modeled with

the concept of data sources, i.e. data subsets coming from different distributions (the

concept of multi-source data is defined in Subsection 4.1.3). The Multi-source nature

of the data makes machine learning on EMG data a challenging problem, where the

ambition is to improve the inter-source generalization capability of classifiers. Examples

of this are the inter-posture, inter-session and inter-subject scenarios. Up to know, for

14

instance, the performance with Leave-One-Subject-Out cross-validation (LOSOCV) is

still much lower than that reached with Within-Subject cross-validation (WSCV) on the

main public benchmark databases [8].

Some studies have already dealt with inter-subject variability, resorting to recalibra-

tion techniques or model adaptation methods often moving from the technique of batch

normalization (explained in Subsection 3.3.1). The network proposed in [31] takes as in-

put downsampled spectrograms (i.e. time-frequency representations) of sEMG segments,

and improvement is achieved by updating the network weights using the predictions

of previous sessions corrected by majority voting. In [8] it is assumed that, while the

weights of each layer of the network learn information useful for gesture discrimination,

the mean and variance of the batch normalization layers store information related to

discrimination between sessions/subjects. Moreover, a variation of batch normalization

called Adaptive Batch Normalization (AdaBN) is used in [32]: only the normalization

statistics are updated for each subject using a few unlabeled data, improving performance

with respect to a model without adaptation.

In [33] transfer learning techniques are used to exploit inter-subject data learned

by a pre-trained source network. In this architecture, for each subject a new network

is instantiated with weighted connections to the source network, and predictions for a

new subject are based both on previously learned information and subject-specific data.

Doing so achieves an accuracy of 98.3% on 7 movements.

2.2.4 State-of-the-art on the Unibo-INAIL dataset

The state-of-the-art of sEMG-based hand gesture recognition on the Unibo-INAIL dataset

is exposed by Milosevic et al. in [15]. The dataset itself represents the state of the art

with regard to databases able to explore inter-subject, temporal, and postural variability,

and is extensively described in Section 4.1.

Knowledge about the performance of classifiers on the dataset is limited to classical

machine learning classifiers, namely Support Vector Machine (SVM), Neural Network

(NN) with only one hidden layer, Random Forest (RF) and Linear Discriminant Analysis

(LDA). However, these classifiers have been used to explore a large number of data

partitions and training strategies, trying to optimize the generalization capability on

new arm postures and new days.

15

The evaluated algorithms have similar recognition performance, higher than 90%

(precise values depending on data partition and training strategy). The Radial Basis

Function (RBF)-kernel SVM is at present the one achieving the highest accuracy, both

intra-session and inter-session.

With regard to inter-session generalization, the baseline classification accuracy was

higher than 90% for intra-posture and inter-day analysis, suffering a degradation of up

to 20% when testing on data from different postures or days. This is consistent with

the inter-session accuracy decline shown for other datasets (e.g. the 27% morning-to-

afternoon decline reported for the NinaPro Database 6 by Palermo et al. [34]). The work

showed that this inter-posture and inter-day accuracy decline is mitigated by training

with combinations of data from multiple sessions. Moreover, results on temporal vari-

ability show a progressive user adaptation trend and indicate that (re)training strategies

should prioritize the availability of recent data.

However, despite the variety of strategies and the number of results, the state of the

art has two limitations. The first limitation is that, as said above, the state of the art on

this dataset is limited to classical machine learning algorithms. The second limitation

concerns data preprocessing: all the algorithms are applied on singled out, instantaneous

signal values (i.e. 4-dimensional data points whose only dimension is channel number),

so that the sequential nature of the EMG signal is not exploited at all. This master

thesis addresses both these limitations.

16

Chapter 3

Deep Learning and Convolutional

Neural Networks

Deep learning is the sub-field of machine learning which deals with deep neural networks,

i.e. neural networks having more than one hidden layer. Deep learning is currently the

fundamental approach for the development of artificial intelligence. One of the most

important deep neural network architectures is the convolutional neural network, which

is the model used in this work.

This chapter is structured as follows:

◦ Section 3.1 introduces neural networks and deep learning, contextualizing them

with respect to machine learning and artificial intelligence;

◦ Section 3.2 provides the fundamentals of deep networks training, and illustrates

some specific techniques and settings used in this work;

◦ Section 3.3 introduces convolutional neural networks, explaining the essential layer

types (i.e. convolutional and fully connected) and also introducing the other par-

ticular layers used in this work.

3.1 Neural Networks and Deep Learning

Deep learning (DL) is the branch of Machine Learning (ML) which is nowadays the base

of the research and applications of Artificial Intelligence (AI) [35], and in the last decade

17

has produced vast advances in many fields such as speech recognition [36] and image

recognition [37], cancer detection [38], self-driving vehicles [39], and playing complex

games [40]. In some applications, DL models already exceed human performance.

The superior performance of DL models resides in the ability to incorporate au-

tomated data-driven feature extraction selection, i.e. the ability to extract high-level

features from raw data by using statistical learning on large datasets. This approach

produces effective representations of the inputs space, based on powerful discriminative

features, in a different way from the earlier approaches based on non-deep ML, which

are built on hand-crafted features or rules designed by expert researchers.

It is important to contextualize clearly the relationship DL has with AI and ML, as

illustrated in Figure 3.1. With respect to the broad domain of AI, ML can be considered a

vast sub-domain. Inside ML, is the area referred to as brain-inspired computation, whose

interest is the developing of programs or algorithms whose basic functionality is inspired

by natural brains and aims to emulate some aspects of how we currently understand the

brain works [41]. Brain-inspired computing is divided into to main branches: spiking

computing and DL. Spiking computing, which is beyond the scope of this work, takes

inspiration from the fact that communication between neurons happens via spike-like

pulses, with information not simply coded in spike’s amplitude, but also in the timing of

the spikes. In contrast, the branch of brain-inspired computing relevant here is Neural

Networks (NNs), which are a well-known ML algorithm.

Figure 3.1: Deep Learning contextualized with respect to Artificial Intelligence and Machine
Learning. Image from [41].

Neural networks are inspired by the fact that the signal processing performed by a

18

neuron can be modeled as a weighted sum of the input activations, followed by a non-

linear function with threshold and bias, which generates the neuron’s output signal [42]

as illustrated in Figure 3.2. By analogy, neural networks are built assembling units (also

referred to as neurons) which apply a non-linear function to the weighted sum of the

input values they receive.

Figure 3.2: Model of the computations performed by a brain neuron: xi are the input
activations, wi are the weights of the weighted sum, f(·) is the non-linear function, and b is the

bias term. Image from [42].

Neural Networks, like the computations they execute, are structured as layers of units,

and an example scheme is shown in Figure 3.3. The neurons belonging to the input layer

receive the raw input values, and propagate them to the neurons of the middle layer,

called the hidden layer. The weighted sums computed by one or more hidden layers

ultimately reach the output layer, whose units compute the final output of the network.

Taking the brain-inspired terminology further, the neuron outputs are referred to as

activations, and the weights are sometimes called synapses. In addition to the network

structure, Figure 3.3 also shows the computations made at each layer, which follow the

formula

yj = f

(
3∑

i=1

Wijxi + b

)
= (3.1)

= f (Wx + bj) , (3.2)

where x are the input activations, W are the weights, bj are the bias terms, yj are the

output activations, and f(·) is the non-linear activation function.

19

Figure 3.3: Scheme of a simple neural network’s structure and terminology. Left: neurons and
synapses. Right: weighted sum computation for each layer (bias term b omitted for simplicity).

Image from [41].

Deep learning is the field of Neural Networks which focuses on Deep Neural Networks

(DNNs), which are networks having more than one hidden layer, or, equivalently, more

than three layers in total (typically, from five to more than a thousand [41]). DNNs have

the ability to learn high-level features with more complexity and abstraction than shallow

(i.e. non-deep) neural networks. For instance, in image processing, pixels of an image

are fed to the first layer of a DNN, whose outputs can be interpreted as representing the

presence of low-level features in the image, such as lines and edges. Subsequent layers

progressively combine these features, eventually yielding a measure associated to the

presence of higher level features (e.g. edges are combined into shapes, then into sets of

shapes). As final output, the network produces an estimate of the probability that the

highest-level features comprise a particular object or scene. This paradigm is referred

to as deep feature hierarchy, and is what gives the DNNs the ability to obtain superior

performance.

3.2 Training deep networks: gradient descent and

back-propagation

In a DNN, like in machine learning algorithms in general, there is a basic program

that does not change while learning to a desired task. For DNNs, the basic program

is the structure of the functions implemented by the layers, and learning consists in

20

determining the value of the network’s weights and biases, through an optimization

called training. Once trained, the network can execute its task by computing the output

using the optimized weights and biases. Running the trained networks to evaluate inputs

is referred to as inference.

The training scenario relevant in this work is the supervised training for a classi-

fication task. In classification tasks, trained DNNs receive input data (e.g. the pixels

of an image) and return vector of scores, one for each class. The highest-score class

is the one the network estimates as most probable. The main goal of DNN training is

to optimize the weights and the bias values so as to maximize the score of the correct

class and minimize the scores of the incorrect classes. In supervised learning, the correct

class of the data the network is trained on is known. The dissimilarity between the ideal

correct scores and the scores computed by the DNN (based on its current weights and

biases) is called the loss L, which is the objective function of the training, i.e. function

to minimize.

A widely used algorithm for weight optimization is a hill-climbing iterative opti-

mization procedure called gradient descent. In gradient descent, at each iteration t the

weights wij is updated by subtracting a multiple of the gradient of L with respect to the

weights. Element-wise:

w
(t+1)
ij = w

(t)
ij − α

∂L

∂wij

(3.3)

where the multiplication factor α is called learning rate. Iterating reduces L.

In contrast with weights and biases, which are referred to as model parameters since

they are the arguments of the objective function to minimize, the learning rate α is not

involved in differentiation and hence is a training hyper-parameter, i.e. a constant that

regulates the optimization without being affected by training. As the hyper-parameters

describing the structure or training of any machine learning model, α can be tuned to

the optimal value through cross-validation (which can be computationally expensive)

or through a shorter preliminary analysis (as done in this work), with a further speed-

up commonly yielded by following heuristics instead of grid search. The optimal α is

typically small (some orders of magnitude below unity), but the its order of magnitude is

strongly dependent on data, task, and model architecture. Hence the search must cover

different orders of magnitude.

21

Finer techniques for tuning the learning rate are scheduling and recourse to per-

parameter learning rates. (1) With scheduling, α is reduced over the iterations, typically

with a stepwise or exponential decay, in order to adapt the tuning to different moments

of the gradient descent. (2) On the other hand, introducing per-parameter learning rates

allows to perform a customized tuning on different parameters or groups of parameters.

Both techniques come at the cost of an increased number of combination to explore.

An efficient procedure for computing the partial derivatives of the loss is back-

propagation, which derives from the chain rule of calculus and operates by passing values

backwards through the network to compute how the loss is affected by each weight. Com-

putation using back-propagation, illustrated in Figure 3.4, requires some steps used also

for inference. To back-propagate through each layer, one has to: (1) compute the gradi-

ent of L relative to the weights from the layer inputs (i.e., the forward activations) and

the gradient of L relative to the layer outputs; (2) compute the gradient of L relative

to the layer inputs from the layer weights and the gradients of L relative to the layer

outputs. It is worth to note that back-propagation requires intermediate activations

to be preserved for the backward computation, so that training has increased storage

requirements compared to inference.

Figure 3.4: Example of back-propagation through a neural network: (1) (left) computation
of the gradient of the loss relative to the layer inputs; (2) (right) computation of the gradient

of the loss relative to the weights. Image from [41].

Another popular training method, orthogonal to the techniques exposed so on, is fine-

tuning. In fine tuning, the weights of a trained network are available, and are used as a

22

starting point for the iterative optimization. This practice results in faster training than

using random initialization. Moreover, the scenario in which the weights are adjusted

for a new dataset is the sub-field of machine learning defined transfer learning.

More specific training settings and techniques used in this work are explained in the

next subsections.

3.2.1 Cross-entropy loss

When training neural networks, a convenient choice for the objective function (adopted

also in this work) is the cross-entropy function. Originating in the field of probability

theory and information theory, the main virtue of cross-entropy is that it leverages the

soft assignments produced by the network, interpreting them as probabilities. Given a

multiclass classification task on C classes, the loss for the observation xi is computed by

summing the losses due to each soft assignment ŷic with respect to the true label yic (i.e.

the one-hot encoding):

loss(xi) = −
C∑
c=1

yic log ŷic, (3.4)

with arbitrary choice for the base; e.g., taking the logarithm in base 2 yields a result in

bits, whereas choosing base e yields a result in nats. The overall loss L is then computed

by averaging over all the items to classify. When working with an unbalanced dataset,

it can be useful to weight the elements by class when taking the average.

3.2.2 Stochastic gradient descent with mini-batches

Stochastic Gradient Descent (SGD) is a variation of gradient descent which helps avoiding

local minima during training. This technique does so introducing randomness in the

optimization process by randomly partitioning the training set, referred to as the batch,

into B equal-sized subsets called mini-batches. Then, gradient descent is performed using

a single mini-batch per iteration, cycling over all the mini-batches. The sequence of B

iterations that processes all the mini-batches exactly once is referred to as an epoch.

Thus, during an epoch, all the data contribute to the optimization to the same amount.

At the end of each epoch, the split into mini-batches is re-randomized, in order to prevent

23

systematic bias generated by a particular order of comparison of the data.

It is important to note that the avoidance of local minima provided by SGD comes at

the cost of introducing a new training hyper-parameter, the batch size b (or, equivalently,

the number of batches B).

Since some sources reserve the name SGD for the extreme case b = 1, in the remainder

of this work the term SGD with mini-batches will be used to avoid confusion.

3.2.3 L2 regularization

The technique of L2 regularization takes its name from the L2-norm and is a method to

counter overfitting. It consists in adding to the loss a multiple of the squared L2-norm of

the vector of all the parameters, and using the new formula Lreg as objective function.

In formulas, for a deep neural network:

Lreg = L0 + LL2 = (3.5)

= L0 + λL2

Nlayers∑
l=2

nl−1∑
i=1

nl∑
j=1

|w(l)
ij |2, (3.6)

where L0 is the non-regularized loss, LL2 is the regularization term, Nlayers is the number

of layers, nl is the number of neurons in layer l, and w
(l)
ij is the weight connecting neuron

i of layer l − 1 to neuron j of layer l. The factor λL2 is the training hyper-parameter

regulating the amount of regularization enforced. Too low λL2 has no effect, and too high

λL2 incurs underfitting. The optimal value can be determined via preliminary analysis

or cross-validation, covering different orders of magnitude.

3.3 Convolutional Neural Networks

Deep networks have a vast variety of architectures and sizes, continuously evolving to

increase performance. Convolutional neural networks are a successful class of architec-

tures, which can be introduced only after surveying the strategies used to progressively

reduce the storage and computation required by layers: sparsity, structured sparsity,

weight sharing, and convolution.

Deep networks can be entirely composed of fully-connected (FC) layers, shown in

24

Figure 3.5, and in this case they are defined Multi-Layer Perceptrons (MLP). In a FC

layer, all outputs units are connected to all inputs units, so that all output activations are

computed with a weighted sum of all input activations. Although the FC configuration

requires significant computation and storage, in many situations it is possible to zero

some weights (thus removing the relative connections) without impacting performance.

The resulting layer, also shown in Figure 3.5, is called sparsely connected layer.

Opposed to generic sparsity, structured sparsity is the configuration in which each

output is only a function of a fixed-size window of inputs. Even further efficiency is

gained when the computation of every output employs the same set of weights. This

configuration is known as weight sharing, and strongly reduces the storage requirements

for weights. A particular case of weight sharing arises when the computation is structured

as a convolution, as shown in Figure 3.6: the weighted sum for each output activation is

computed using only a narrow neighborhood of input activations (by zeroing the weights

outside the neighborhood), and every output shares the same set of weights (i.e., the

filter is space invariant). This gives rise to convolutional (CONV) layers, which are the

characteristic building block of convolutional neural networks.

Figure 3.5: Fully conncted layer versus sparsely connecetd layer. Image from [41].

25

Figure 3.6: 2d convolution in traditional image processing. Image from [41].

Convolutional Neural Networks (CNNs) are a successful deep network architecture,

composed of multiple CONV layers, as shown in Figure 3.7. In CNNs, each layer gener-

ates a progressively higher-level representation of the input data, referred to as feature

map (fmap), extracting the essential information for the network’s task. Modern CNNs

have attained superior performance by implementing a very deep hierarchy of layers.

CNN are widely used in a variety of applications including image understanding [37],

speech recognition [43], robotics [44] and game play [40]. In this work, CNNs are applied

to the task of classifying time windows of a 4-channel signal.

CNNs fall into the category of feed-forward networks. In a feed-forward network, all

computations are executed as a sequence of operations taking place from one layer to

the next one. A feed-forward network has therefore no memory, and the output for a

given input is always identical irrespective of the history of the inputs fed previously.

Figure 3.7: A convolutional neural network. Image from [41].

26

Each CONV layer is mainly constituted by high-dimensional convolutions, as shown

in Figure 3.8. In this computation, the input activations of a layer have the structure

of a set of 2d input feature maps (ifmaps), each referred to as a channel. Each channel

is convolved with a distinct 2d filter from the stack of filters, one for each channel. The

stack of 2d filters being a 3d structure, it is sometimes collectively called a 3d filter.

The results of the convolutions at each point are summed across channels, and a 1d bias

is optionally [45] added to the results. The result of this computation are the output

activations constituting one channel of the output feature map (ofmap). Additional

output channels can be created by applying additional 3d filters on the same input.

With the notation for shape parameters defined in Table 3.1, the computation exe-

cuted by a CONV layer is described by the formula

O[z][u][x][y] = B[u] +
C−1∑
k=0

S−1∑
i=0

R−1∑
j=0

I[z][k][Ux+ i][Uy + j] ∗W[u][k][i][j], (3.7)

with

0 ≤ z < N, 0 ≤ u < M, 0 ≤ x < F, 0 ≤ y < E, (3.8)

E =
H −R + U

U
, F =

W − S + U

U
, (3.9)

where O, I, W and B are the matrices of ofmaps, ifmaps, filters and biases, respectively,

U is a fixed stride size, and ∗ denotes discrete convolution. A graphical representation

of this computation is shown in Figure 4.2 (where biases are omitted for simplicity).

To align the CNN terminology with the general DNN terminology, is it worth re-

marking that

• filters are composed of weights (corresponding to synapses in nature);

• input and output feature maps (ifmaps, ofmaps) are composed of activations of

inputs and output neurons.

27

Figure 3.8: High-dimensional convolutions in CNNs. Image from [41].

Shape parameter Meaning

N batch-size of 3d maps

M number of 3d filters / number of batch channels

C number of ifmap/filter channels

H/W ifmap plane heigth/width

R/S filter plane heigth/width (= H or W in FC)

E/F ofmap plane heigth/width (= 1 in FC)

Table 3.1: Shape parameters of a CONV/FC layer.

In the CNN used in this work, the CONV layers are CONV-1d layers, i.e. layers

performing a 1-dimensional convolution. Though less common, CONV-1d layers follow

the same principles as CONV-2d layers, but work with inputs having 1 dimension (plus

channel number). The choice to use CONV-1d layers was made in order to act on the

time dimension of the signal, while using the 4 sEMG channels as CNN input channels.

In addition to CONV layers and FC layers, the CNN implemented in this work con-

tains other elements, namely the rectified linear unit, batch normalization and dropout,

28

whose mechanisms are explained in the following two subsections. These three kinds of

intervention on activations are sometimes conceptualized as layers.

3.3.1 Batch-normalization

Controlling the input distribution across layers can speed up training and improve accu-

racy. Accordingly, the distribution of a layer’s input activations (described by its mean µ

and standard deviation σ) can be standardized to zero mean and unit standard deviation.

Batch Normalization (BN) [46] is the technique in which the standardized activations

are further scaled and shifted, undergoing the transformation

y =
x− µ√
σ2 + ε

γ + β, (3.10)

where the parameters γ and β are learned from training, and ε is a small constant used to

avoid numerical problems. Batch normalization is mostly applied between the CONV or

FC layer and the non-linear activation function, and is usually turned off after training.

3.3.2 ReLU activation function

Non-linear activation functions are typically applied after each CONV or FC layer. The

most common functions used to introduce non-linearity into a DNN are shown in Figure

3.9. Historically, the sigmoid and the hyperbolic tangent are the most conventional,

while the Rectified Linear Unit (ReLU) has become common in the last years due to

its simplicity and its ability to make training faster [47]. The leaky ReLU, parametric

ReLU, and exponential LU are variations of the ReLU explored for increased accuracy.

ReLU is mostly applied after the CONV or FC layer or after batch normalization (if

present).

29

Figure 3.9: The most common non-linear activation functions. Image from [48].

3.3.3 Dropout

Dropout is a technique to improve accuracy by reducing overfitting [49, 50]. It works

by randomly dropping units (and their connections) from the network during training.

This prevents the phenomenon of units co-adaptation, forcing each neuron to learn a

feature helpful for computing the correct output. In particular, the random dropout of

the units of the interested layer during training is regulated by the drop probability p,

for which a common value is p = 0.5. On every forward pass, each unit is zeroed out

independently and randomly, drawing from the Bernoulli distribution parameterized by

p. Moreover, the outputs are multiplied by 1
1−p . Dropout is active only during training:

during inference, the dropout layer is disabled (or, equivalently, the drop probability p

is set to 0). Dropout is mostly applied immediately before the CONV or FC layer.

30

Chapter 4

Materials and Methods

This chapter explains all the materials and methods used in this master thesis. It is

structured as follows:

◦ Section 4.1 exhaustively describes the Unibo-INAIL dataset;

◦ Section 4.2 details the implemented machine learning pipeline, preprocessing, CNN

architecture and training settings;

◦ Section 4.3 defines the concept, essential in this work, of training strategy based

on training set composition, and illustrates the training strategies used.

4.1 Unibo-INAIL dataset

The work of this master thesis is entirely focused on the Unibo-INAIL dataset. The

Unibo-INAIL dataset is a surface electromyography (sEMG) dataset realized to explore

the impact of arm posture and temporal variability (either alone or combined) on sEMG-

based hand gesture recognition. The dataset was presented by Milosevic et al. in [15], and

was built on the preliminary analysis carried out by Benatti et al. in [51]. This master

thesis evaluates the performance of Convolutional Neural Networks (CNNs) trained on

the dataset with all the training strategies described in [15], where the performance of

classical machine learning algorithms is reported.

The data were acquired from 7 able-bodied (i.e. non-amputee) subjects performing

6 discrete hand gestures in 4 arm postures, repeated for 8 days, thus probing a total

31

of 224 different data sources, each identified by three discrete indexes (subject, day and

arm posture) and containing 6 classes, i.e. five hand gestures plus the rest position. This

acquisition protocol, in addition to investigating the signal patterns associated to the

6 classes, allows to characterize the following sources of variability affecting signal and

patterns:

• inter-posture variability: for each subject individually, keeping sensors on, different

arm postures and wrist orientations cause variability in signal and patterns, due

to differences in muscle activity and muscle position (since sensors are only fixed

with respect to the skin);

• inter-day variability: for each subject individually, temporal variability of signal

and patterns are mainly due to two factors:

– sensor placement: from day to day, the sensors are removed and repositioned,

causing differences in signal and patterns, due to the change of the relative

position of the electrodes with respect to the muscles;

– user adaptation: user adaptation (explained in Subsection 4.1.4) is the tran-

sient observed when the inter-day differences in gesture execution decrease

over time, due to the fact that new users adapt to the repetitive exercise

during the first days;

• inter-subject variability: signal and patterns are influenced by the anatomical vari-

ability between subjects (even if all able-bodied).

For the research on sEMG-based hand gesture recognition for reliable Human-Machine

Interfaces (HMIs), the Unibo-INAIL dataset is a valuable ground for two reasons. The

first reason is that the acquisition setup is based on commercial sensors, chosen so as to

make the setup is easily repeatable and thus suitable for integrated HMI controllers [52].

The second reason is that the Unibo-INAIL dataset is the first public sEMG dataset to

date to include both arm-postural and session variability, providing a realistic scenario

for evaluating classification algorithms and training approaches.

32

4.1.1 Unibo-INAIL collaboration and motivation for the dataset

The Unibo-INAIL dataset is the results of a research project funded by the Istituto

Nazionale per l’Assicurazione contro gli Infortuni sul Lavoro (INAIL), in which the Uni-

versity of Bologna (Unibo) was designated for assessing the feasibility of real-time control

of poly-articulated hand prostheses by means of pattern recognition algorithms imple-

mented on a microcontroller. The project was inspired by a previous study by Castellini

et al. [53] on intuitive prosthesis control, which demonstrated that SVMs can recognize

different muscle activation patterns with high precision. In particular, the SVMs classify

gestures up to a precision of 95% and approximate the forces with an error of as little as

7% of the signal range, sample-by-sample at 25 Hz.

The first part of the project aimed to assess how accurate the recognition can be on

diverse data produced in different conditions (i.e. intra-session scenario), and to verify

whether the system was stable on different sessions (i.e. inter-session generalization).

Although in prosthetics sensor (re)positioning is less relevant, since sensors are fixed to

the prosthesis and thus much less mobile, this variability factor was included, planning

future developments.

The second branch of the project involved the validation of the algorithms in real-

time control scenario. The controller was implemented on a microcontroller, in a system

in which the real-time, fresh data were acquired with the same embedded setup used

for the first part of the project, in order to reproduce the previous system. The algo-

rithm implementation was also made identical by using the open source machine learning

library LIBSVM, which is implemented for both Matlab and C [54].

This master thesis continues the first part of the project, aiming to expand the

results obtained for classical machine learning algorithms (SVM, shallow NN, RF and

LDA) applied on instantaneous 4-channel signal values. This work extends the analysis

to deep CNNs applied on 150 ms time windows of the 4-channel signal.

4.1.2 Outline of acquisition setup and experimental protocol

The acquisition setup, shown in Figure 4.1, was designed to be reliable and repeatable,

with characteristics typical of prosthetic applications. However, since all the data are

collected from able-bodied (i.e. non-amputee) subjects, the dataset is useful for any HMI

application.

33

The acquisition setup is based on the Ottobock 13E200 pre-amplified single-ended

sEMG electrode (Figure 4.2a), which is a commercial sensor. It amplifies and integrates

the raw EMG signal to reach an output span of 0− 3.3V. The sensors have bandwidth

spanning 90 − 450Hz and integrate an analog notch filter to remove the noise due to

Power Line Interference (PLI), i.e. the capacitive coupling between the subject and the

surrounding electrical devices and power grid (detailed in Section 2.1). The output analog

signals were acquired with a custom embedded board based on a microcontroller equipped

with an internal 16-bit ADC. The digitalized signals were streamed via Bluetooth to a

laptop, for storage and off-line data analysis.

The subjects involved were able-bodied (i.e. non amputee) males, 29.5 ± 12.2 years.

During the acquisition the subjects worn an elastic armband with 4 Ottobock sensors

placed on the forearm muscles involved in the selected movements (i.e. extensor carpi

ulnaris, extensor communis digitorum, flexor carpi radialis and flexor carpi ulnaris) as

shown in Figure 4.2b. Sensors were placed on the proximal third at 30 mm respectively

on the left and on the right side of two axial lines ideally traced on the forearm. Each

acquisition consisted in 10 repetitions of each hand gesture, with 3 second contractions

interleaved by 3 seconds of muscular relaxation to be later labeled as rest gesture. After

each acquisition, gesture segmentation was performed with a combination of manual

inspection and an adaptive threshold to separate contractions from rest.

Figure 4.1: Acquisition setup of the Unibo-INAIL dataset. Image from [15].

34

(a) Ottobock sensor used to produce the
Unibo-INAIL dataset. Image from [51].

(b) Forearm muscle cross-section and sensors
placement. Image from [15].

Figure 4.2

4.1.3 Multi-source data structure

The fundamental property of the Unibo-INAIL dataset is that it contains 224 different

data sources, since the data were collected for all the combinations obtained from 7

seven subjects, 8 days and 4 arm postures. Each subject-day-arm posture combination

contains all hand gestures (i.e. the classes), each one repeated 10 times. The dataset can

thus be regarded as a collection of 224 autonomous sub-datasets, for which the pattern

to learn in order to assign signals to hand gestures is subjected to inter-subject, inter-day

and inter-posture variability.

In machine learning, data having this structure are defined multi-source data. For the

Unibo-INAIL dataset, each combination identified by a 3-ple subject-day-arm posture

combination is a source:

source = (u, d, p) with


u = 1, · · · , 7

d = 1, · · · , 8

p = 1, · · · , 4

(4.1)

totalling 224 sources. Each source can be regarded as a smaller, complete dataset con-

taining 10 repetitions of all the 6 gestures.

NOTE. In this work, the term multi-source data is used according to the meaning it

35

has in statistical learning [7], where it refers to data-subsets having different but similar

distributions. The intended meaning is not data coming from different types of sensors

or modalities.

The subject-index u refers to the 7 subjects involved. Each one underwent data

collection over 8 days: this is the day-index d of the data sources. Arm posture p is the

third index, and the four collected arm postures are:

P1. proximal: the only one with the arm not fully extended, and the most common in

EMG-based hand gesture recognition literature;

P2. distal;

P3. distal with the palm oriented down: the different wrist orientation aims to introduce

additional difference compared to P2 and P4;

P4. distal with the arm lifted up by 45◦.

These arm postures are displayed in Figure 4.3.

To constitute the classes of the dataset, five common hand gestures used in daily

life were chosen: power grip, two-fingers pinch grip, three-fingers pinch grip, pointing

index and open hand. Rest position, recorded when muscles were relaxed between two

subsequent movement repetitions, was also included as a class, totalling 6 classes:

G0: rest position: including this class means addressing also the task of gesture detec-

tion, in addition to gesture recognition;

G1: power grip;

G2: two-fingers pinch grip;

G3: three-fingers pinch grip;

G4: pointing index;

G5: open hand.

The five hand gestures G1, · · · , G5 are shown in Figure 4.2, together with examples of

4-channel sEMG signal patterns of the gestures and the rest position G0.

NOTE. It is of crucial importance, when handling the Unibo-INAIL dataset, not to

mistake arm posture and hand gesture, since they are partitions acting at two different

levels: the arm posture is the position of the arm in which all hand gestures (plus rest

36

position) were executed. Each combination of subject, day and arm posture contains 10

repetitions of all the five hand gestures plus rest, and can thus be regarded as a complete

sub-dataset containing all the 6 classes.

Figure 4.3: Arm postures of the Unibo-INAIL datase. P1: proximal; P2: distal; P3: distal
with the palm oriented down; P4: distal with the arm lifted up by 45◦. Image from [51].

4.1.4 User adaptation

User adaptation is the source of temporal variability which consists in a transient ob-

served in the first days of many benchmarks datasets for sEMG-based hand gesture

recognition [55, 56, 57]. The phenomenon consists in the fact that the inter-day differ-

ences in gesture execution decrease over time, due to the tendency of users to adapt to

the repetitive exercise during the first days.

In literature, these inter-day differences are detected and measured by analysing how

classification accuracy deteriorates when passing from intra-day validation to inter-day

validation. With this method, classical machine leaning algorithms have already been

able to highlight user adaptation also on the Unibo-INAIL dataset [15], which means

that user the adaptation transient is not masked by the temporal variability caused by

day-to-day sensor repositioning, which affects the signal on both the earlier and later

days.

37

Figure 4.4: Amplified sEMG signal patterns of the hand gestures constituting the classes of
the Unibo-INAIL dataset. G0: rest position; G1: power grip; G2: two-fingers pinch grip; G3:

three-fingers pinch grip; G4: pointing index; G5: open hand. Image adapted from [51].

38

4.2 Pipeline and CNN architecture

4.2.1 Preprocessing: windowing

Data preprocessing consisted in an overlapping windowing scheme: the electromyogram

signals were decomposed into segments of duration 150 ms, with a 75% overlap between

consecutive ones. Since the dataset was acquired with 4 electrodes and sampling rate

500 Hz, for approximately 15 min/session, this windowing produced a sample size of the

order of M ∼ 25.000 windows/session, each with dimensions 75 samples × 4 channels.

Each window was given the label of the hand gesture of its central sample.

The choice of duration 150 ms and overlap 75% was made with a preliminary analysis

exposed in Subsection 6.2.1, showing that duration 150 ms yields a higher classification

accuracy than 50 ms and 100 ms.

Window duration and overlap are parameters strictly related to the engineering prob-

lem met in HMI development: real-time classification robustness, especially during tran-

sients. Longer windows allow to reduce the impact of transients, but the window length

must be shorter than 300ms [22] to satisfy real-time usage constraints. 150 ms is a

favourable but realistic compromise. With regard to overlap, 75% is a good compromise

to produce an adequate sample size (M ∼ 25.000 windows/session) without exceeding

in redundancy.

4.2.2 Three-way data partition

Each of the 224 sessions (i.e. combinations of subject, day and arm posture) of the

dataset was subjected to a three-way data partition.

Random 10% holdout. First, a random 10% of the signal windows were held out

as test set. Reproduction of identical holdout at each execution was ensured by setting

NumPy’s pseudorandom seed to a fixed value. No stratification with respect to class was

enforced. This test set was used in the very last step of the pipeline, to compute on new

data:

• the inter-posture test accuracy of the best postural training strategy;

• the inter-day test accuracy of the best multi-day training strategy.

39

2-fold partition with gesture integrity. After holdout, a 2-fold partition was

applied on the remaining data (again, separately for each data session), to create two

sets acting in turn as training set and validation set, in a 2-fold cross-validation scheme.

The two folds were created starting from a 10-fold linear split, then putting the odd

intervals into Fold 1 and the even intervals into Fold 2. This partition was chosen

because it is the one yielding the best classification accuracy in [15], where it is called

Training 50%D (D meaning decimal). The motivation of this scheme is shuffling the 10

gesture repetitions while approximately preserving the integrity of each repetition.

4.2.3 CNN architecture implemented

The architecture of the CNN implemented is an adaptation of the CNN module of the

attention-based hybrid CNN-RNN architecture proposed by Hu et al. in [9] for sEMG-

based gesture recognition on five public benchmark databases (not including the Unibo-

INAIL dataset). More in detail, the hybrid architecture is a very large sequential model

which stacks multiple parallel 2d-CNNs (identically trained), an LSTM, and an attention

module. This model was chosen as a starting point due to its good performance (better

than the state-of-the-art at publication) and to its modular structure, which is inspiring

for exploring variations.

In this work, the 2d-CNN module from [9] was taken and converted to a 1d-CNN.

Conversion from 2d to 1d was needed to act on the time windows produced in the

preprocessing step (Section 4.2.1), having dimensions 75 samples × 4 channels. For a

CNN, this format corresponds to 1d images 75× 1 possessing 4 channels (or “colors”).

The resulting CNN architecture is shown in Figure 4.5 and has 9 layers, listed in

Table 4.1. The first two layers are 1d-convolutional layers with 64 kernels of size 3. They

are followed by two locally-connected layers with 64 kernels of size 1, employed to extract

features of the sEMG signal that are temporally circumscribed (i.e. “local” in time). For

all these layers, batch normalization is applied to reduce internal covariate shift. The

fifth, sixth and seventh layers are all fully-connected layers with batch normalization.

Moreover, dropout with probability p = 0.5 is applied to the first two fully-connected

layers to provide regularization. The fully connected layers are followed by a 6-way fully-

connected layer (6 being the number of classes, i.e. the five hand gestures plus the rest

position) and a softmax classifier. Except for the latter, all layers have ReLU activation

40

function.

Figure 4.5: Diagram of the 1d-CNN implemented. Image adapted from [9] and [52].

Layer Name Details

1 Conv1 Convolutional 1d, 64 kernels, kernel size 3
2 Conv2 Convolutional 1d, 64 kernels, kernel size 3

3 LC1 Locally connected, 64 kernels
4 LC2 Locally connected, 64 kernels

5 FC1 Fully connected, 512 units
6 FC2 Fully connected, 512 units
7 FC3 Fully connected, 128 units

8 6-Way FC Fully connected, 6 units
9 SoftMax Softmax function

Table 4.1: Layers of the 1d-CNN implemented.

4.2.4 Training settings

The optimal parameters regulating CNN training were found via preliminary analyses,

observing the network’s behaviour when trained with various settings. In particular,

the optimal learning rate, number of epochs and scheduling were chosen through the

preliminary analysis exposed in Subsection 6.2.2. The optimal settings, used for all the

trainings in the pipeline, are the following:

41

• random initialization of weights and biases: PyTorch default;

• loss function: cross-entropy loss, implemented by the PyTorch command criterion

= torch.nn.CrossEntropyLoss(), which stacks log-softmax (nn.LogSoftmax())

and negative log-likelihood loss (nn.NLLLoss());

• optimization algorithm: Stochastic Gradient Descent (SGD) with the number of

mini-batches kept fixed at B = 50 for all trainings (thus with mini-batch size

varying proportionally to training set size); mini-batches are re-randomized at each

epoch;

• learning rate: lr = 0.001;

• early stopping: 20 epochs;

• scheduling: learning rate is divided by 10 after epoch 19;

• regularization: L2 regularization setting PyTorch parameter weight decay = 0.1,

which corresponds to λL2 = 0.05.

4.3 Training strategies

The very aim of this work is to assess the ability of the implemented CNN model to

generalize to data coming from arm postures or days not seen in training. In particular,

the focus is on evaluating whether training on more postures or more days benefits the

CNN’s generalization ability. This is done by implementing the same training strategies

studied by Milosevic et al. in [15], i.e. single-session, two-posture, two-day, and five-day

training. The positive results of Milosevic et al. (limited to classical machine learning

classifiers applied to instantaneous 4-channel signal values) play the role of baseline.

4.3.1 Single-session training strategy

The simplest training strategy implemented is the single-session training strategy: for

each session, i.e. a combination of user, day, and arm posture, 2 CNNs are trained (one

for each fold), using only data taken from that session. Classification accuracy is then

evaluated via intra-session validation and inter-session validation:

• in intra-session validation, the trained CNN is evaluated on the data of the fold

not used for training;

42

• in inter-session validation, the trained CNN is evaluated the data of a different

session, to measure the CNN’s ability to generalize; for the single-session training

strategy, the inter-session validations computed are the inter-posture validation (all

combinations), and inter-day validations on days D2 to D8 after training on day

D1.

4.3.2 Two-posture training strategy

The training strategy developed to address postural variability is two-posture training:

for each subject, day, and arm posture pair, 2 CNNs are trained (one for each fold),

using only data taken from those two sessions (i.e. that subject, that day and those

two postures). The posture pair considered are P1+P2, P1+P3, and P1+P4, where the

choice of always including P1 is motivated by the fact that P1 is the only posture with

the arm not fully extended, thus the most dissimilar from the other ones. Classification

accuracy is then measured via intra-postures validation and inter-posture validation:

• in intra-postures validation, the trained CNN is evaluated on the fold not used for

training (the plural intra-postures is because each fold now contains data from two

arm postures);

• in inter-posture validation, the model is evaluated on the data of a different posture,

to measure the model’s ability to generalize between postures.

4.3.3 Multi-day training strategies

The training strategies proposed to address temporal variability is multi-day training:

for each subject, day combination, and arm posture, 2 CNNs are trained (one for each

fold), using only data from that subject, those days and that posture. In particular,

multi-day trainings are two-day trainings, which use D1+D2, D1+D5, and D4+D5, and

five-day training, which use D1 to D5. These combinations were chosen in order to repeat

the setup which produced the baseline results. Classification accuracy is then measured

via intra-day validation and inter-days validation:

• in intra-days validation, the trained CNN is evaluated on the fold not used for

training (the plural intra-postures is because each fold now contains data from two

or five days);

43

• in inter-day validation, the model is evaluated on the data of days D6 to D8 (absent

in all multi-day training combinations), to measure the model’s ability to generalize

to different days.

44

Chapter 5

Implementation

The pipeline and the CNN described in the previous chapter were implemented in Python

scripts whose heart, dealing with CNN definition, training and evaluation, relies on the

open source library PyTorch.

This chapter is structured as follows:

◦ Section 5.1 illustrates in general the scripts developed for the different training

strategies;

◦ Section 5.2 explains more in detail the main PyTorch packages and how they were

used.

5.1 Scripts developed

Although the Unibo-INAIL dataset is publicly available with a series of Matlab scripts

to help analyses, these were not exploited. Only one was partially used: the script

script training single sessions.m, devoted to training all the classical machine

learning tested in [15] with single-session data, corresponding to the first training strat-

egy (i.e. data from one subject, one day and one arm posture; details in Section 4.3).

This script was translated into Python and the following advances were implemented:

• data partition (detailed in Section 4.2) was rewritten from scratch as the function

load preprocess and split(), to make it more compact, to add holdout and to

make the K-fold partition easily costumizable by simply setting a parameter K;

45

• windowing preprocessing (see Section 4.2.1) was added as the function windowing()

(called inside the previous one, immediately before doing data partition), since the

previous implementations only addressed the classifications of 4-channel instanta-

neous signal values;

• in the core block, devoted to instantiation, training and validation, the four classical

algorithms were replaced by the CNN, implemented with the library PyTorch.

The structure of for loops cycling on subjects, days and arm postures was approximately

preserved.

This revised script was in turn used as a template to implement the two-posture,

two-day and five-day training strategies (see Section 4.3), each one in a separate script,

totalling four scripts:

• CNN on UniboINAIL.py, for single-session trainings;

• biposture.py, for two-posture trainings;

• biday.py, for two-day trainings;

• fiveday.py, for five-day trainings.

Execution times on a single GPU were approximately 8 h for CNN on UniboINAIL.py and

biposture.py, and approximately 5 h for biday.py and fiveday.py.

5.2 Usage of PyTorch platform

The CNN instantiation, training and validation were implemented using the Python

library PyTorch, an open source deep learning platform for Python, based on Torch,

that is widely used in deep learning applications. This work has taken advantage of both

PyTorch’s high-level features: tensor computation on variables of class torch.Tensor

(partially analogous to NumPy arrays, but more powerful), and the possibility of GPU

computation.

In this master thesis, the CNNs were implemented in compliance with the standard

structure of PyTorch scripts for CNNs, and the main PyTorch packages exploited are

torch.nn, for neural networks instantiation and usage, torch.autograd, for automatic

differentiation, torch.optim, for optimization, and torch.cuda for GPU computation.

The following subsections explain these packages and the way they were used.

46

5.2.1 torch.nn package

torch.nn is the package that helps defining the complex neural networks for which

operations on torch.Tensors with raw autograd alone are too low-level. In particular,

torch.nn.Module is the base class for all neural network modules, and user-defined

models must subclass this class. If desired, modules (submodules) can be nested inside

other Modules, creating a tree structure.

While reporting the code written to define the CNN architecture would be excessive,

it is worth to show how instantiating the defined architecture is straightforward. It is

done via two commands:

net = Net()

criterion = torch.nn.CrossEntropyLoss()

The first line instantiates the CNN net. The second line instantiates the loss function,

termed criterion in PyTorch terminology. The class torch.nn.CrossEntropy imple-

ments a cross-entropy loss function which stacks a log-softmax operation (torch.nn.LogSoftmax())

and negative log-likelihood loss (torch.nn.NLLLoss()).

5.2.2 torch.autograd package and torch.Tensor class

torch.autograd is the package that implements automatic differentiation: gradients

with respect to the parameters are automatically calculated directly at the forward pass

(by recording the executed operations into computational graphs and re-executing them

backward), thus reducing both development and execution time. The classes and func-

tions provided implement automatic differentiation of arbitrary scalar-valued functions,

with the only requirement that the variables with respect to which gradients are com-

puted be torch.Tensor objects.

torch.Tensor is the base class of the autograd package. torch.Tensors are multi-

dimensional arrays (similar to NumPy array), which support automatic differentiation.

Every torch.Tensor variable possesses a requires grad flag, which allows to enable

or disable gradient computation with respect to that variable. So, typically, data are

torch.Tensors with requires grad=False, and model parameters are torch.Tensors

with requires grad=True. Disabling gradients is also useful for freezing parts of a

model, e.g. when fine-tuning other model parts.

47

The operations performed on tensors having requires grad set to True are tracked.

After finishing computations, gradients can be computed automatically by calling backward()

on the result, i.e. the variable whose value was computed with the function to differen-

tiate. The gradient with respect each torch.Tensor is then accumulated in its .grad

attribute1.

Formally, autograd is a reverse automatic differentiation system. As manipulations

on data are executed, autograd produces a graph recording the operations that originate

the result. This yields a directed acyclic graph having input tensors as leaves and output

tensors as roots. Gradients are computed automatically by chain rule, by tracing the

computational graph from roots to leaves (thus executing back-propagation).

Inside autograd, computational graphs are represented as graphs of torch.Function

objects. During the forward pass, autograd simultaneously creates the graph represent-

ing the function that computes the gradient. Then, in the backward pass the graph is

evaluated to compute the gradients. A valuable property is that the graph is re-built from

scratch at every iteration, which allows to use arbitrary Python control flow statements,

that can originate different graph structures at every iteration. This is the define-by-run

framework, in which there is no need to encode all possible paths before launching the

training, also described with the sentence “What you run is what you differentiate”.

The torch.autograd mechanics were exploited to compute the gradient of the train-

ing loss, computed as a cross-entropy. After initializing the model and the cross-entropy

objective function by net = Net() and criterion = torch.nn.CrossEntropyLoss()

(as explained in the previous subsection), the values of the loss and loss gradient were

computed at each iteration as follows:

loss = criterion(net(XTrain[batch idxs]), YTrain[batch idxs])

loss.backward()

1Formally, differentiation computes gradients of functions with respect to arguments (here,
torch.Tensor parameters). Sometimes, in machine learning and deep learning, the abuse of language
is made of speaking of derivatives of the parameters. The justification is that differentiation almost
always acts on the training objective function. However, in autograd, speaking of gradients of the
tensors is correct in the sense that gradient values are stored in each tensor’s .grad attribute.

48

5.2.3 torch.optim package

The package torch.optim implements the most common iterative optimization algo-

rithms. It is used instantiating and handling an Optimizer object (or more than one),

which keeps track of the current state of optimization and, when its step() method is

called, updates the parameters based on the gradients previously computed.

The optimization algorithm used in this work is Stochastic Gradient Descent (SGD)

with mini-batches (re-randomized at each epoch), implemented via the command

optimizer = torch.optim.SGD(net.parameters(), lr=0.001, weight decay=0.1)

where SGD() is the torch.optim function which instantiates SGD optimizers (without

requiring to declare mini-batch size), net.parameters() are intuitively the parameters

of the CNN model net, lr is the learning rate, and weight decay corresponds to 2 · λL2

determining the amount of L2 regularization.

For each mini-batch, optimization steps are executed by calling the step() method

of the optimizer, immediately after computing the gradients on the mini-batch via

backward():

loss = criterion(net(XTrain), YTrain)

loss.backward()

optimizer.step()

This performs one update of the parameters, based on the gradients.

To implement scheduling, torch.optim.lr scheduler was used, which provides

methods for non-dynamic scheduling, i.e. learning rate adjustment based solely on epoch

number, without adaptive validation measurements. The scheduling chosen after pre-

liminary analysis (results in Subsection 6.2.2), i.e. division of the learning rate by 10 at

epoch 19, was implemented via the command:

scheduler = torch.optim.lr scheduler.StepLR(optimizer,

step size=19, gamma=0.1)

where optimizer is the optimizer (in this case, a torch.optim.SGD object) whose learn-

ing rate is being scheduled, and step size and gamma are the period and the multiplica-

tive factor of the learning rate decay, respectively. Then, scheduling is applied simply by

calling scheduler.step() at each epoch.

49

5.2.4 torch.CUDA package

In addition to supporting automatic differentiation, a further advantage of torch.Tensors

over NumPy arrays is that they can be cast to a GPU to improve computational perfor-

mance.

This can be made using the package torch.cuda. It keeps track of the currently

selected GPU, and all allocated CUDA tensors are created by default on that device.

A torch.cuda.device context manager allows to change the selected device. However,

once a torch.Tensor is allocated, operations can be performed on it irrespective of

the selected device, and the results are automatically placed on the same device as

the torch.Tensor. A torch.Tensor’s device can be accessed via the Tensor.device

property.

The GPU computation is enabled by adding

device = torch.device(’cuda:0’ if torch.cuda.is available() else ’cpu’)

at the beginning of the script, to set device to ’cuda:0’ if a GPU device is available. A

torch.device is an object representing the device on which a torch.Tensor is or will

be allocated, and is constructed so as to contain the device type (’cpu’ or ’cuda’) and

an optional device ordinal for the device type.

The changes to cast model and data (and thus computations) to the GPU are few and

straightforward, and are made via the command .to(device). The CNN instantiation

net = Net() becomes

net = Net().to(device)

and the evaluation and loss computation loss = criterion(net(XTrain), YTrain)

becomes

loss = criterion(net(XTrain[batch idxs, :, :].to(device)),

YTrain[batch idxs].to(device))

50

Chapter 6

Results

6.1 Accuracy distributions and reported accuracies

Due to the highly multi-source nature of the Unibo-INAIL dataset, the CNNs trained

with each training strategy (single-session, two-postures, two- and five-day) return a

distribution of classification accuracies, over the 7 subjects, 8 days and 4 arm postures.

This allows to investigate the variability of performance over the dataset. On this basis,

in this Chapter all accuracies are reported with:

• average accuracy µ (also called mean for simplicity), computed over the sessions

of interest for each case;

• accuracy standard deviation σ, which quantifies the performance variability over

the data sources;

• standard error on the mean accuracy SE = σ/
√
N , used to estimate the uncertainty

on the average accuracy.

In particular, the SE does not describe the broadness of the accuracy distribution, but

is an estimate of the fluctuations affecting the average accuracy. The 224 sessions (times

2 folds) of the Unibo-INAIL dataset allow to divide by a large
√
N (varying according

to the training strategy studied). Thus the 224 sessions are not only a computational

burden, but also allow to report average accuracies with a SE of the order of ∼ 0.1%.

In this chapter, the reported accuracies are compared with the baseline achieved by

the best classical machine learning classifier reported in [15]. However, for the baseline

51

accuracies the values of σ or SE are not reported, not allowing for a complete statistical

comparison.

6.2 Preliminary analyses

6.2.1 Optimal length of time windows

The first preliminary analysis was made to optimize the window length to be used in

preprocessing, consisting in an overlapping windowing scheme as detailed in Subsec-

tion 4.2.1. Since window length must be shorter than 300ms to satisfy real-time usage

constraints, the values explored were 50 ms, 100 ms and 150 ms.

In this analysis, the performance of interest is the accuracy obtained on 2-fold cross-

validation on single-session data (i.e. single user, single day, single arm posture), after

training on data from the same session (i.e. using the two folds alternately for training

and intra-session validation). The results are reported in Table 6.1. With a (94.4±0.2)%

accuracy, duration 150 ms proved to be the best one and was adopted the preprocessing.

Since the dataset was acquired with 4 electrodes and sampling rate 500 Hz, for

approximately 15 min/session, this windowing produced a sample size of the order of

M ∼ 25.000 windows/session, each with dimensions 75 samples× 4 channels. Moreover,

with regard to overlap, 75% was chosen as a good compromise to produce an adequate

sample size (M ∼ 25.000 windows/session) without exceeding in redundancy.

Window length
Intra-session val. accuracy

µ± SE σ

50 ms (93.6± 0.2)% 3.7%

100 ms (94.0± 0.2)% 3.6%

150 ms (94.4± 0.2)% 3.5%

Table 6.1: Intra-session validation accuracies yielded by the time-windows durations explored.

6.2.2 Learning curves

The second preliminary analysis was performed to optimize the learning rate and the

scheduling thereof. This exploration was carried on with the same single-session scheme

52

used to optimize the window length described in Subsection 6.2.1.

The optimal learning rate was searched by looking at single intra-session validation

learning curves, like the one shown in Figure 6.1 (obtained for subject 1, day 1, arm

posture 1, training on fold 1 and validation on fold 2). Using SGD with the training set

split into 50 mini-batches (re-randomized at each epoch), the optimal learning rate was

found to be lr = 0.001, which yielded the best compromise between a reasonably fast

convergence and a sufficiently low final loss. This optimal value was adopted for all the

trainings.

Average learning curves were used to diagnose overfitting, as shown in Figure 6.2:

the validation loss reaches a minimum between epochs 15 and 20, than increases again,

indicating overfitting. A simple scheduling tactic, consisting in dividing the learning rate

by 10 at epoch 20, allowed to improve the minimum of the validation loss, as shown in

Figure 6.3. Since this scheduling does not remove the overfitting trend, but only makes it

slower, the final choice was to exploit the sudden minimum: the final scheduling chosen

consists in dividing the learning rate by 10 at epoch 19, then applying early stopping at

epoch 20. This scheduling was used in all the trainings.

NOTE. After this preliminary analysis, validation cross-entropy losses were abandoned

in favour of classification accuracies. This was motivated by the ease of interpretation

and informal comparison with baseline accuracies.

5 10 15 20 25 30 35 40
Epoch (dimensionless natural)

0.0

0.1

0.2

0.3

0.4

0.5

Cr
os
s-
en

tro
py

 lo
ss
 (n

at
s)

Example of single learning curves
Training
Intra-session validation

Figure 6.1: Single learning curves, obtained for subject 1, day 1, arm posture 1, training on
fold 1 with learning rate lr = 0.001, validation on fold 2.

53

0 5 10 15 20 25 30 35 40
Epoch (dimensionless natural)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Cr
os

s-
en

tro
py

 lo
ss
 (n

at
s)

Average learning curves

Training average
Training std
Training SE

Intra-session validation average
Intra-session validation std
Intra-session validation SE

0 5 10 15 20 25 30 35 40
Epoch (dimensionless natural)

0.16

0.18

0.20

0.22

0.24

Cr
os

s-
en

tro
py

 lo
ss
 (n

at
s)

Average learning curves

Training average
Training std
Training SE

Intra-session validation average
Intra-session validation std
Intra-session validation SE

Figure 6.2: Average learning curves obtained with learning rate lr = 0.001, no scheduling.
Averages, σ’s and SEs taken on all subjects, all days, all arm postures, both folds. The left and
right panels show the same learning curves, visualized with y range [0, 0.4], and [0.15, 0.25],

respectively.

0 5 10 15 20 25 30 35 40
Epoch (dimensionless natural)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Cr
os

s-
en

tro
py

 lo
ss
 (n

at
s)

Average learning curves

Training average
Training std
Training SE

Intra-session validation average
Intra-session validation std
Intra-session validation SE

0 5 10 15 20 25 30 35 40
Epoch (dimensionless natural)

0.16

0.18

0.20

0.22

0.24

Cr
os

s-
en

tro
py

 lo
ss
 (n

at
s)

Average learning curves

Training average
Training std
Training SE

Intra-session validation average
Intra-session validation std
Intra-session validation SE

Figure 6.3: Average learning curves obtained with learning rate lr = 0.001, divided by 10 at
epoch 20. Averages, σ’s and SEs taken on all subjects, all days, all arm postures, both folds.

54

6.3 Single-session training strategy

The basic training strategy explored is the single-session training strategy: for each

session, i.e. a combination of user, day, and arm posture, 2 CNNs are trained (one for

each fold), using only data from that session. Performance is then measured via intra-

session validation and inter-session validation:

• in intra-session validation, the trained CNN is evaluated on the fold not used for

training;

• in inter-session validation, the model is evaluated on the data of a different session,

to assess the model’s ability to generalize; for the single-session training strategy,

the inter-session validations computed are the inter-posture validation (all combi-

nations), and inter-day validations on days D2 to D8 after training on day D1.

With regard to intra-session validation, the overall accuracy is (µ ± SE) = (94.5 ±
0.2)%, with σ = 3.5%. This performance is very similar to the baseline value of 94%

achieved with a RBF-SVM, which is not consistent within the SE, but a complete sta-

tistical comparison is not possible because the baseline σ is not available.

Looking at accuracy distributions computed by subject, by day and by arm posture,

some interesting findings emerge. Accuracy distributions by subject are reported in

Figure 6.4 and in Table 6.2; accuracy distributions by day are reported in Figure 6.5 and

in Table 6.3; and accuracy distributions by arm posture are reported in Figure 6.6 and

in Table 6.4.

The accuracy distributions (visualized as µ±σ) of the 8 days and of the 4 arm postures

always overlap within the standard deviations. The situation is different for the accuracy

distributions for the 8 subjects: the means present larger variations, and Subject 3 has a

mean so lower than the others that its accuracy distribution is not consistent within the

standard deviation with the distributions of Subjects 4, 5, and 7. Subject 3’s accuracy

distribution is also the one presenting the highest standard deviation. Operatively, this

indicates that, on average, within Subject 3’s sessions hand gesture recognition is a

harder task. It is worth to remark that the inter-session setup does not authorize to

attribute lower accuracy to larger inter-day or inter-postural variability.

With regard to inter-session validation, Figure 6.7 and Table 6.7 show the inter-

posture validation accuracies and compare them with the intra-posture case; all perfor-

55

mances are reported by training posture. The overall inter-posture validation accuracy

is 80.6%, corresponding to a 13.9% accuracy drop compared to the intra-posture (i.e.

intra-session) scenario. This accuracy drop quantifies the amount of overfitting the single-

session training produces with respect to the task of generalizing to different postures.

The overall inter-posture accuracy is similar to the baseline value of 79%, but, again, a

statistical comparison is not possible because the baseline σ or SE are not available.

56

S1 S2 S3 S4 S5 S6 S7
Subject

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Cl
as

sif
ica

tio
n
ac

cu
ra
cy

 (%
)

Single-session training: intra-session
validation accuracy by subject

Figure 6.4: Single-session training: intra-session validation accuracies by subject. Error bars
stand for ±σ

Subject
Intra-session val. accuracy

µ± SE σ

1 (94.2± 0.3)% 2.5%

2 (94.8± 0.2)% 1.9%

3 (89.0± 0.5)% 4.3%

4 (96.4± 0.2)% 1.7%

5 (96.8± 0.2)% 1.6%

6 (94.1± 0.3)% 2.6%

7 (96.2± 0.2)% 1.7%

Table 6.2: Single-session training: intra-session validation accuracies by subject.

57

D1 D2 D3 D4 D5 D6 D7 D8
Day

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Cl
as

sif
ica

tio
n
ac

cu
ra
cy

 (%
)

Single-session training: intra-session
validation accuracy by day

Figure 6.5: Single-session training: intra-session validation accuracies by day. Error bars
stand for ±σ

Day
Intra-session val. accuracy

µ± SE σ

1 (94.8± 0.4)% 2.8%

2 (95.2± 0.3)% 2.1%

3 (94.5± 0.4)% 3.4%

4 (94.2± 0.4)% 3.4%

5 (95.4± 0.4)% 2.9%

6 (93.3± 0.6)% 4.4%

7 (93.9± 0.6)% 4.4%

8 (94.8± 0.4)% 3.5%

Table 6.3: Single-session training: intra-session validation accuracies by day.

58

P1 P2 P3 P4
Arm posture

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Cl
as
sif
ica

tio
n
ac
cu
ra
cy
 (%

)
Single-session training: intra-session
validation accuracy by arm posture

Figure 6.6: Single-session training: intra-session validation accuracies by arm posture. Error
bars stand for ±σ

Arm posture
Intra-session val. accuracy

µ± SE σ

1 (95.1± 0.3)% 3.3%

2 (94.2± 0.3)% 3.2%

3 (94.5± 0.3)% 3.7%

4 (94.2± 0.4)% 3.8%

Table 6.4: Single-session training: intra-session validation accuracies by arm posture.

59

Figure 6.7: Single-session training: intra-posture and inter-posture validation accuracies, and
accuracy drops, by training posture. Error bars stand for ±σ

Train posture
Intra-posture accuracy Inter-posture accuracy Accuracy drop

µ± SE σ µ± SE σ µ± SE σ

1 (95.1± 0.3)% 3.3% (78.6± 0.4)% 7.3% (16.5± 0.4)% 6.5%

2 (94.2± 0.3)% 3.2% (81.6± 0.4)% 7.3% (12.6± 0.3)% 6.3%

3 (94.5± 0.3)% 3.7% (80.5± 0.5)% 8.9% (14.0± 0.4)% 7.0%

4 (94.2± 0.4)% 3.8% (81.8± 0.4)% 6.8% (12.4± 0.4)% 6.6%

Table 6.5: Single-session training: intra-posture and inter-posture validation accuracies.

60

6.4 Two-posture training strategy

The training strategy implemented to address postural variability is two-posture training:

for each subject, day, and arm posture pair, 2 CNNs are trained (one for each fold), using

only data from those two sessions (i.e. that subject, that day and those two postures).

Posture pair considered are P1+P2, P1+P3, and P1+P4, where the choice of always

including P1 is motivated by the fact that P1 is the only posture with the arm not fully

extended, thus the most dissimilar from the other ones. Performance is then measured

via intra-postures validation and inter-posture validation:

• in intra-postures validation, the trained CNN is evaluated on the fold not used for

training;

• in inter-posture validation, the model is evaluated on the data of a different posture,

to measure the model’s ability to generalize between postures.

All the results, divided by training posture pair, are shown in Figure 6.8 and in Table

6.6.

With regard to intra-postures validation, the overall accuracy is (µ± SE) = (94.3±
0.2)%, with σ = 3.5%, which differs only by 0.2% from the intra-posture validation

accuracy obtained with single-session (thus single-posture) training (which is (µ±SE) =

(94.5± 0.2)%). This difference is comparable to the SEs of the two compared averages,

thus not statistically significant. Moreover, the intra-postures validation accuracy yielded

by two-posture training is higher than the corresponding baseline value of 90% (standard

deviation or SE not available). This indicates that in intra-posture validation the 1d-

CNN performs better than the RBF-SVM.

The interpretation of these results is that the 1d-CNN, thanks to its higher capacity

compared to SVM, is able to learn the hand gesture patterns coming from two arm

postures with the same accuracy as it learns the patterns from a single posture. However,

this success is marginal since the real aim is to improve inter-posture accuracy.

With regard to inter-posture validation, the overall inter-posture validation accuracy

is 82.0%, corresponding to a 12.3% accuracy drop compared to the intra-postures case.

The corresponding baseline value is 83%, which is higher but does not allow for a sta-

tistical comparison since it is available without standard deviation or SE. This result is

better by 1.4% compared to the inter-posture validation accuracies achieved with single-

61

session training. The accuracy drop quantifies the amount of overfitting produced by

training on P1+Pi, with respect to the task of generalizing to non-training postures.

This amount of overfitting is slightly smaller compared to one given by the single-session

(this single-posture) training, which was 13.9%.

Thus, two-posture training improves the inter-posture generalization of the CNN.

The fact that the intra-posture performance is not impacted, means that an amount of

overfitting is removed without adding significant bias. This can be attributed to the

1d-CNN’s capacity, which enables it to learn more diverse distributions (i.e. patterns

from two postures instead that one) while preserving classification accuracy.

Figure 6.8: Two-posture training: intra-postures and inter-posture validation accuracies, and
accuracy drops, by training posture pair. Error bars stand for ±σ

Train postures
Intra-postures accuracy Inter-posture accuracy Accuracy drop

µ± SE σ µ± SE σ µ± SE σ

P1+P2 (94.2± 0.2)% 3.2% (82.4± 0.4)% 7.3% (11.8± 0.4)% 6.4%

P1+P3 (94.5± 0.2)% 3.7% (81.0± 0.5)% 7.9% (13.5± 0.5)% 7.1%

P1+P4 (94.2± 0.3)% 3.8% (82.6± 0.5)% 7.0% (11.6± 0.4)% 6.7%

Table 6.6: Two-posture training: intra-postures and inter-posture validation accuracies.

62

6.5 Multi-day training strategy

The training strategy proposed to address temporal variability is multi-day training: for

each subject, day combination, and arm posture, 2 CNNs are trained (one for each fold),

using only data from that subject, those days and that posture. In particular, multi-day

trainings are two-day trainings, which use D1+D2, D1+D5, and D4+D5, and five-day

training, which use D1 to D5 (these combinations were chosen in order to repeat the

setup which produced the baseline results). Performance is then assessed via intra-days

validation and inter-day validation:

• in intra-days validation, the trained CNN is evaluated on the fold not used for

training;

• in inter-day validation, the model is evaluated on the data of days D6 to D8 (absent

in all multi-day training combinations), to measure the model’s ability to generalize

to different days.

All the results, divided by training posture pair, are shown in Figures 6.9 and 6.10 and in

Table 6.7, which also include a comparison with single-day (thus single-session) training

on D1 alone.

With regard to inter-day validation of the training strategy based on D1 alone, the

(66.9 ± 1.1)% accuracy means a 27.9% drop in accuracy compared to the intra-day

validation, which yields (94.8±0.3)% accuracy. This proves that the inter-day variability

is a larger effect than inter postural variability, whose impact was quantified as a 13.9%

accuracy drop (inter-posture validation of the single-session training strategy).

Improvement compared to single-day training is evident for all the multi-day training

strategies implemented. The D1-to-D5 training strategy yields the best inter-day valida-

tion accuracy, (µ± SE) = (76.4± 1.2)% with σ = 9.0%. The five-day training strategy

proves to be the best one also in the baseline results based on classical machine learning

algorithms. The corresponding baseline value is 77%, which is consistent with the CNN

result within the SE, allowing to say that the performance is statistically equivalent.

The second best strategy is D4+D5 strategy, achieving (µ ± SE) = (74.4 ± 1.2)%

with σ = 9.2%. The statistical difference between the two was checked via a paired

samples Wilcoxon test, which is the non-parametric equivalent of the paired samples

t-test, chosen for its robustness with respect to sample distributions. The test yielded

63

pWilcoxon = 4.0 · 10−4, which means that the five-day training strategy is statistically

significantly better (in validation) then the other ones.

Moreover, a trend can be noted which can be identified as user adaptation (explained

in Subsection 4.1.4): the training strategies based on later days yield higher classifica-

tion accuracy. This can be interpreted as the fact that inter-day differences in gesture

execution decrease over time, as a consequence of the tendency of users to adapt to the

repetitive exercise. This indicates again that training strategies prioritizing the recent

data yield better performances.

1 2 3 4 5 6 7 8
Validation day (ordinal variable)

50

60

70

80

90

100

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

 (%
)

Multi-day training: intra- and inter-days validation accuracies.
Means and Stds by validation day

Trained on D1
Trained on D1+D2
Trained on D1+D5

Trained on D4+D5
Trained on D1+D2+D3+D4+D5

Figure 6.9: Multi-day training strategies compared to training on D1 alone: intra-day(s)
accuracies and inter-day accuracies. Dots indicate average accuracies, and dashed lines indicate

standard deviations.

64

1 2 3 4 5 6 7 8
Validation day (ordinal variable)

50

60

70

80

90

100

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

 (%
)

Multi-day training: intra- and inter-days validation accuracies.
Means and SEs by validation day

Trained on D1
Trained on D1+D2
Trained on D1+D5

Trained on D4+D5
Trained on D1+D2+D3+D4+D5

Figure 6.10: Multi-day training strategies compared to training on D1 alone: intra-day(s)
accuracies and inter-day accuracies. Dots indicate average accuracies, and dashed lines indicate

SEs.

Train days
Intra-days val. accuracy Inter-day val. accuracy on D6 to D8

µ± SE σ µ± SE σ

D1 (94.8± 0.3)% 2.3% (66.9± 1.1)% 8.0%

D1+D2 (94.7± 0.3)% 2.1% (71.5± 1.0)% 7.3%

D1+D5 (94.2± 0.3)% 2.3% (73.3± 1.2)% 8.9%

D4+D5 (93.9± 0.4)% 3.3% (74.4± 1.2)% 9.2%

D1 to D5 (92.3± 0.4)% 2.9% (76.4± 1.2)% 9.0%

Table 6.7: Multi-day training strategies compared to training on D1 alone: intra-day(s)
accuracies and inter-day accuracies.

65

6.6 Training strategies selection and test

On the basis of the inter-session validation results, two-posture training was selected as

the best strategy for postural generalization, and five-day training was selected as the

best strategy for temporal generalization. This indicates that training strategies should

prioritize data from more than one posture and from recent days. This outcome is the

same as in the baseline results obtained with classical machine learning algorithms. After

retraining, i.e. repeating the CNNs training using both folds, these two strategies were

tested on the 10% of data previously held out as test set (holdout details in Subsection

4.2.2).

The two-posture training strategy yielded inter-posture test accuracy (µ ± SE) =

(81.2 ± 0.4)% with σ = 7.3%,. The five-day training strategy yielded inter-day (on D6

to D8) test accuracy (µ± SE) = (75.9± 0.7)% with σ = 8.6%

Test baseline values are not available, since the test step is not present in the pipeline

which produced the baseline results. As reference, it is possible to consider the cor-

responding validation accuracies, which are 83% for the inter-posture validation of the

two-posture training and 77% for the inter-day validation of the five-day training (both

provided without σ or SE). These results are similar to the test accuracies, but the limit

of this comparison is that the baseline values, being the validation accuracies of the win-

ner model (i.e. the RBF-SVM), are upward biased. However, the available values are

sufficient to conclude that the final CNN performance is comparable with the baseline.

66

Chapter 7

Conclusions and future work

This master thesis is the first application of deep learning on the Unibo-INAIL dataset,

the first public sEMG dataset exploring the variability between subjects, sessions and arm

postures, by collecting data over 8 sessions of each of 7 able-bodied subjects executing 6

hand gestures in 4 arm postures. With the open-source deep learning platform PyTorch,

it was possible to implement and test a 1d-CNN architecture trained with most recent

strategies based on training set composition.

The single-session training strategy achieves 94.5% intra-session validation accuracy,

but deteriorates to 80.6% in inter-posture validation and to 66.9% (for day 1) in inter-day

validation. This proves that inter-day variability has a larger impact than inter-posture

variability. A possible reason is that, on each day, the data of the 4 arm postures were

collected without repositioning the sensors.

Multi-posture and multi-day training strategies yield higher inter-session validation

accuracies. Two-posture training proves to be the best postural training strategy, indi-

cating that the training strategies should prioritize data from more than one posture,

and yields 81.2% inter-posture test accuracy. Five-day training proves to be the best

multi-day training strategy, and yields 75.9% inter-day test accuracy. All the results are

close to the baseline, provided by the accuracy of a RBF-SVM.

Moreover, the results of multi-day trainings allow to highlight user adaptation, the

phenomenon which causes the inter-day differences in gesture execution to decrease over

time, due to the tendency of users to adapt to the repetitive exercise during the first

days. The detection of user adaptation indicates that the training strategies should also

67

prioritize recent data.

Though not better than the baseline, the achieved classification accuracies rightfully

place the 1d-CNN among the candidates for further research.

Future work will continue this research line investigating whether the fact that the

deep 1d-CNN does not outperform the baseline is preprocessing-dependent or is due to

an accuracy limit inherent to the Unibo-INAIL dataset. The question will be addressed

using deep learning models relying on different data pre-processing, the first candidate

being time-frequency domain analysed with 2d-CNNs.

68

Ringraziamenti

Al termine di questo lavoro, desidero rivolgere dei ringraziamenti.

Ringrazio il Prof. Daniel Remondini per la proficua supervisione durante il lavoro

di tesi, e per l’incoraggiamento che mi ha fornito. Ringrazio il Dott. Simone Benatti,

il Dott. Francesco Conti e il Dott. Manuele Rusci per la guida costante nel corso del

lavoro di ricerca, e per il prezioso supporto che mi hanno dato. Ringrazio queste persone

anche per i commenti, sempre dettagliati e tempestivi, elargiti nel corso della redazione

dell’elaborato di tesi. Ringrazio infine il Prof. Luca Benini per avermi permesso di

svolgere il lavoro di tesi magistrale presso il laboratorio MICREL (Unibo) da lui diretto.

69

Bibliography

[1] M. Cheok, Z. Omar, and M. Jaward, A review of hand gesture and sign language

recognition techniques. International Journal of Machine Learning and Cybernetics,

2017.

[2] D. Farina, N. Jiang, H. Rehbaum, A. Holobar, B. Graimann, H. Dietl, and O.C.

Aszmann, The extraction of neural information from the surface emg for the control

of upper-limb prostheses: emerging avenues and challenges. IEEE Transactions on

Neural Systems and Rehabilitation Engineering, 22(4):797–809, 2014.

[3] R. Meattini, S. Benatti, U. Scarcia, D. De Gregorio, L. Benini, and C. Melchiorri,

An sEMG-based human-robot interface for robotic hands using machine learning

and synergies. In IEEE Transactions on Components, Packaging and Manufacturing

Technology, 2018.

[4] T. S. Saponas, D. S. Tan, D. Morris, J. Turner, and J. A. Landay, Making muscle-

computer interfaces more practical. In SIGCHI Conference on Human Factors in

Computing Systems, pages 851–854, 2010.

[5] M. Hakonen, H. Piitulainen, and A. Visala, Current state of digital signal processing

in myoelectric interfaces and related applications. Biomedical Signal Processing and

Control, 18:334–359, 2015.

[6] P. Tsinganos, B. Cornelis, J. Cornelis, B. Jansen, and A. Skodras, Deep Learning

in EMG-based Gesture Recognition. In 5th International Conference of Physiological

Computing Systems (PhyCS), 2018.

[7] K. Crammer, M. Kearns, J. Wortman, Learning from Multiple Sources. Journal of

Machine Learning Research 9:1757-1774, 2008.

70

[8] Y. Du, W. Jin, W. Wei, Y. Hu, and W. Geng, Surface EMG-Based Inter-Session

Gesture Recognition Enhanced by Deep Domain Adaptation. Sensors, 17(3) 2017.

[9] Y. Hu, Y. Wong, W. Wei, Y. Du, M. Kankanhalli, and W. Geng, A novel attention-

based hybrid CNN-RNN architecture for sEMG-based gesture recognition. PLoS

ONE 13(10), 2018.

[10] M. Atzori, M. Cognolato, and H. Müller, Deep learning with convolutional neu-

ral networks applied to electromyography data: a resource for the classification of

movements for prosthetic hands. Frontiers in neurorobotics, 10:9, 2016.

[11] K.H. Park and S.W. Lee, Movement intention decoding based on deep learning

for multiuser myoelectric interfaces. In International Winter Conference on Brain-

Computer Interface, pages 1–2, 2016.

[12] W. Geng, Y. Du, W. Jin, W. Wei, Y. Hu, and J. Li, Gesture recognition by instan-

taneous surface EMG images. Scientific Reports, 6:36571, 2016.

[13] Y. Du, W. Jin, W. Wei, Y. Hu, and W. Geng, Surface EMG-based inter-session

gesture recognition enhanced by deep domain adaptation. Sensors, 17(3), 2017.

[14] Y. Du, Y. Wong, W. Jin, W. Wei, Y. Hu, M. Kankanhalli, et al., Semi-supervised

Learning for Surface EMGbased Gesture Recognition. In International Joint Confer-

ence on Artificial Intelligence, pages 1624–1630, 2017.

[15] B. Milosevic, E. Farella, and S. Benatti, Exploring Arm Posture and Temporal Vari-

ability in Myoelectric Hand Gesture Recognition. In Proceedings of the IEEE RAS

and EMBS International Conference on Biomedical Robotics and Biomechatronics,

IEEE Computer Society, pages 1032-1037, 2018.

[16] C. De Luca, Electromyography. Encyclopedia of Medical Devices and Instrumenta-

tion, pages 98-109, 2006.

[17] L.G. Tassinary, J.T. Caccioppo, and E. Vanman, The Skelemotor System: Surface

Electromyography, pages 267-299.

71

[18] M. Tomasini, S. Benatti, B. Milosevic, E. Farella, and L. Benini, Power line in-

terference removal for high-quality continuous biosignal monitoring with low-power

wearable devices. IEEE Sensors Journal, 16(10):3887–3895, 2016.

[19] R.M. Rangayyan, Biomedical Signal Analysis (IEEE Press series in biomedical en-

gineering), 2015. Wiley.

[20] E.S. Nurse, P.J. Karoly, D.B. Grayden, and D.R. Freestone, A generalizable brain-

computer interface (bci) using machine learning for feature discovery. PLoS ONE,

10(6):e0131328, 2015.

[21] E. Nurse, B.S. Mashford, A.J. Yepes, I. Kiral-Kornek, S. Harrer, and D.R. Free-

stone, Decoding EEG and LFP signals using deep learning: heading TrueNorth. In

Proceedings of the ACM International Conference on Computing Frontiers, pages

259-266, 2016.

[22] B. Hudgins, P. Parker, and R. Scott, A new strategy for multifunction myoelectric

control. IEEE Transactions on Biomedical Engineering, 40(1):82–94, 1993.

[23] K. Englehart and B. Hudgins, B., A robust, real-time control scheme for mul-

tifunction myoelectric control. IEEE Transactions on Biomedical Engineering,

50(7):848–854, 2003.

[24] C. Castellini, A. Fiorilla, and G. Sandini, Multisubject/daily-life activity EMG-

based control of mechanical hands. Journal of neuroengineering and rehabilitation,

6:41, 2009.

[25] I. Kuzborskij, A. Gijsberts, and B. Caputo, On the challenge of classifying 52 hand

movements from surface electromyography. In 2012 Annual International Conference

of the IEEE Engineering in Medicine and Biology Society, pages 4931–4937, 2012.

IEEE.

[26] M. Atzori, A. Gijsberts, I. Kuzborskij, S. Elsig, A. Hager, O. Deriaz, C. Castellini,

H. Müller, and B. Caputo, Characterization of a benchmark database for myoelectric

movement classification. IEEE Transactions on Neural Systems and Rehabilitation

Engineering, 23(1):73–83, 2015.

72

[27] M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A. Hager, S. Elsig, G. Giatsidis, F.

Bassetto, and H. Müller, Electromyography data for non-invasive naturally-controlled

robotic hand prostheses. Scientific Data, 1(140053), 2014.

[28] A. Gijsberts, M. Atzori, C. Castellini, H. Müller, and B. Caputo, Movement error

rate for evaluation of Machine Learning methods for sEMG-based hand movement

classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering,

22(4):735–744, 2014.

[29] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 2016. MIT Press, Cam-

bridge, MA.

[30] W. Wei, Y. Wong, Y. Du, Y. Hu, M. Kankanhalli, and W. Geng, A multi-

stream Convolutional Neural Network for sEMG-based gesture recognition in muscle-

computer interface. In Pattern Recognition Letters, 2017.

[31] X. Zhai, B. Jelfs, R. Chan, and C. Tin, Selfrecalibrating surface EMG pattern recog-

nition for neuroprosthesis control based on Convolutional Neural Network. Frontiers

in Neuroscience, 11:379–390, 2017.

[32] Y. Li, N. Wang, J. Shi, J. Liu, J., and X. Hou, Revisiting Batch Normalization for

practical domain adaptation. ArXiv e-prints, 2016.

[33] U. Côté-Allard, C.L. Fall, A. Drouin, A. Campeau-Lecours, C. Gosselin, K. Glette,

F. Laviolette, and B. Gosselin, Deep Learning for electromyographic hand gesture

signal classification by leveraging transfer learning. arXiv:1801.07756, 2018.

[34] F. Palermo, M. Cognolato, A. Gijsberts, H. Müller, B. Caputo, and M. Atzori,

Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG

data. In Rehabilitation Robotics (ICORR), pages. 1154–1159, 2017.

[35] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning. Nature, 521(7553):436–444,

2015.

[36] L. Deng, J. Li, J.T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig, X. He,

J. Williams et al., Recent advances in deep learning for speech research at Microsoft.

In ICASSP, 2013.

73

[37] A. Krizhevsky, I. Sutskever, and G.E. Hinton, ImageNet Classification with Deep

Convolutional Neural Networks. In NIPS, 2012.

[38] A. Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, H.M. Blau, and S. Thrun,

Dermatologist-level classification of skin cancer with deep neural networks. Nature,

542(7639):115–118, 2017.

[39] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, Deepdriving: Learning affordance for

direct perception in autonomous driving. In ICCV, 2015.

[40] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J.

Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,

J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T.

Graepel, and D. Hassabis, Mastering the game of Go with deep neural networks and

tree search. Nature, 529(7587):484–489, 2016.

[41] V. Sze, Y.H. Chen, T.J. Yang, and J. S. Emer, Efficient Processing of Deep Neural

Networks: A Tutorial and Survey. Proceedings of the IEEE, 105(12):2295-2329, 2017.

[42] F.F. Li, A. Karpathy, and J. Johnson, Stanford CS class CS231n: Convolutional

Neural Networks for Visual Recognition, 2018. http://cs231n.stanford.edu/. (Ac-

cessed on 28/02/2019).

[43] T. N. Sainath, A.R. Mohamed, B. Kingsbury, and B. Ramabhadran, Deep convolu-

tional neural networks for LVCSR. In ICASSP, 2013.

[44] S. Levine, C. Finn, T. Darrell, and P. Abbeel, End-to-end training of deep visuo-

motor policies. Journal of Machine Learning Research, 17(39):1–40, 2016.

[45] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition.

In CVPR, 2016.

[46] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training

by reducing internal covariate shift. In ICML, 2015.

[47] V. Nair and G. E. Hinton, Rectified Linear Units Improve Restricted Boltzmann

Machines. In ICML, 2010.

74

http://cs231n.stanford.edu/

[48] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,

and T. Darrell, Caffe: Convolutional architecture for fast feature embedding. In ACM

International Conference on Multimedia, 2014.

[49] G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-

nov, Improving neural networks by preventing co-adaptation of feature detectors.

arXiv:1207.0580, 2012

[50] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

Dropout: A simple way to prevent Neural Networks from overfitting. Journal of

Machine Learning Research, 15:1929–1958, 2014.

[51] S. Benatti, E. Farella, E. Gruppioni, and L. Benini, Analysis of robust implemen-

tation of an emg pattern recognition based control. In BIOSIGNALS, pages 45–54,

2014.

[52] S. Benatti, E. Farella, E. Gruppioni, and L. Benini, A prosthetic hand body area

controller based on efficient pattern recognition control strategies. Sensors, 2017.

[53] C. Castellini, E. Gruppioni, A. Davalli, G. Sandini, Fine detection of grasp force

and posture by amputees via surface electromyography, Journal of Physiology Paris,

103:255–262, 2009. Elsevier.

[54] LIBSVM – A Library for Support Vector Machines. https://www.csie.ntu.edu.

tw/~cjlin/libsvm/. (Accessed on 26/02/2019).

[55] P. Kaufmann, K. Englehart, and M. Platzner, Fluctuating emg signals: Investigat-

ing long-term effects of pattern matching algorithms. In EMBC, 2010.

[56] S. Amsuss, L. Paredes, R. Zihlschlacht, N. Rudigkeit, B. Graimann, M.J. Herrmann,

and D. Farina, Long term stability of surface emg pattern classification for prosthetic

control. In EMBC, pages 3622–3625, 2013.

[57] J. He, D. Zhang, N. Jiang, X. Sheng, D. Farina, and X. Zhu, User adaptation in

long-term, open-loop myoelectric training: implications for emg pattern recognition

in prosthesis control. Journal of neural engineering, 12(4):046005, 2015.

75

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

	Introduction
	EMG-based HMIs and generalization issues
	Deep Learning revolution
	Purpose of this master thesis
	Thesis structure

	Surface Electromyography and sEMG-based gesture recognition
	Surface Electromyography
	Muscular activation potentials

	sEMG-based gesture recognition
	Classical Machine Learning approach
	Deep Learning Revolution
	State-of-the-art on the variability factors
	State-of-the-art on the Unibo-INAIL dataset

	Deep Learning and Convolutional Neural Networks
	Neural Networks and Deep Learning
	Training deep networks: gradient descent and back-propagation
	Cross-entropy loss
	Stochastic gradient descent with mini-batches
	L2 regularization

	Convolutional Neural Networks
	Batch-normalization
	ReLU activation function
	Dropout

	Materials and Methods
	Unibo-INAIL dataset
	Unibo-INAIL collaboration and motivation for the dataset
	Outline of acquisition setup and experimental protocol
	Multi-source data structure
	User adaptation

	Pipeline and CNN architecture
	Preprocessing: windowing
	Three-way data partition
	CNN architecture implemented
	Training settings

	Training strategies
	Single-session training strategy
	Two-posture training strategy
	Multi-day training strategies

	Implementation
	Scripts developed
	Usage of PyTorch platform
	torch.nn package
	torch.autograd package and torch.Tensor class
	torch.optim package
	torch.CUDA package

	Results
	Accuracy distributions and reported accuracies
	Preliminary analyses
	Optimal length of time windows
	Learning curves

	Single-session training strategy
	Two-posture training strategy
	Multi-day training strategy
	Training strategies selection and test

	Conclusions and future work
	Ringraziamenti
	Bibliography

