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Résumé

Depuis plusieurs années la robotique est vue comme une solution clef pour améliorer la qualité
de vie des personnes ayant subi une amputation. Pour créer de nouvelles prothèses intelligentes
qui peuvent être facilement intégrées à la vie quotidienne et acceptée par ces personnes, celles-ci
doivent être non-intrusives, fiables et peu coûteuses. L’électromyographie de surface fournit une
interface intuitive et non intrusive basée sur l’activité musculaire de l’utilisateur permettant
d’interagir avec des robots. Cependant, malgré des recherches approfondies dans le domaine de
la classification des signaux sEMG, les classificateurs actuels manquent toujours de fiabilité,
car ils ne sont pas robustes face au bruit à court terme (par exemple, petit déplacement
des électrodes, fatigue musculaire) ou à long terme (par exemple, changement de la masse
musculaire et des tissus adipeux) et requiert donc de recalibrer le classifieur de façon périodique.

L’objectif de mon projet de recherche est de proposer une interface myoélectrique humain-
robot basé sur des algorithmes d’apprentissage par transfert et d’adaptation de domaine afin
d’augmenter la fiabilité du système à long-terme, tout en minimisant l’intrusivité (au niveau
du temps de préparation) de ce genre de système.

L’aspect non intrusif est obtenu en utilisant un bracelet à électrode sèche possédant dix canaux.
Ce bracelet (3DC Armband) est de notre (Docteur Gabriel Gagnon-Turcotte, mes co-directeurs
et moi-même) conception et a été réalisé durant mon doctorat. À l’heure d’écrire ces lignes, le
3DC Armband est le bracelet sans fil pour l’enregistrement de signaux sEMG le plus performant
disponible. Contrairement aux dispositifs utilisant des électrodes à base de gel qui nécessitent
un rasage de l’avant-bras, un nettoyage de la zone de placement et l’application d’un gel
conducteur avant l’utilisation, le brassard du 3DC peut simplement être placé sur l’avant-bras
sans aucune préparation. Cependant, cette facilité d’utilisation entraîne une diminution de la
qualité de l’information du signal. Cette diminution provient du fait que les électrodes sèches
obtiennent un signal plus bruité que celle à base de gel. En outre, des méthodes invasives
peuvent réduire les déplacements d’électrodes lors de l’utilisation, contrairement au brassard.
Pour remédier à cette dégradation de l’information, le projet de recherche s’appuiera sur
l’apprentissage profond, et plus précisément sur les réseaux convolutionels.

Le projet de recherche a été divisé en trois phases. La première porte sur la conception d’un
classifieur permettant la reconnaissance de gestes de la main en temps réel. La deuxième porte
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sur l’implémentation d’un algorithme d’apprentissage par transfert afin de pouvoir profiter
des données provenant d’autres personnes, permettant ainsi d’améliorer la classification des
mouvements de la main pour un nouvel individu tout en diminuant le temps de préparation
nécessaire pour utiliser le système. La troisième phase consiste en l’élaboration et l’implémen-
tation des algorithmes d’adaptation de domaine et d’apprentissage faiblement supervisé afin
de créer un classifieur qui soit robuste au changement à long terme.
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Abstract

For several years, robotics has been seen as a key solution to improve the quality of life of
people living with upper-limb disabilities. To create new, smart prostheses that can easily be
integrated into everyday life, they must be non-intrusive, reliable and inexpensive. Surface
electromyography provides an intuitive interface based on a user’s muscle activity to interact
with robots. However, despite extensive research in the field of sEMG signal classification,
current classifiers still lack reliability due to their lack of robustness to short-term (e.g. small
electrode displacement, muscle fatigue) or long-term (e.g. change in muscle mass and adipose
tissue) noise. In practice, this mean that to be useful, classifier needs to be periodically
re-calibrated, a time consuming process.

The goal of my research project is to proposes a human-robot myoelectric interface based on
transfer learning and domain adaptation algorithms to increase the reliability of the system in
the long term, while at the same time reducing the intrusiveness (in terms of hardware and
preparation time) of this kind of systems.

The non-intrusive aspect is achieved from a dry-electrode armband featuring ten channels.
This armband, named the 3DC Armband is from our (Dr. Gabriel Gagnon-Turcotte, my
co-directors and myself) conception and was realized during my doctorate. At the time of
writing, the 3DC Armband offers the best performance for currently available dry-electrodes,
surface electromyographic armbands. Unlike gel-based electrodes which require intrusive skin
preparation (i.e. shaving, cleaning the skin and applying conductive gel), the 3DC Armband
can simply be placed on the forearm without any preparation. However, this ease of use results
in a decrease in the quality of information. This decrease is due to the fact that the signal
recorded by dry electrodes is inherently noisier than gel-based ones. In addition, other systems
use invasive methods (intramuscular electromyography) to capture a cleaner signal and reduce
the source of noises (e.g. electrode shift). To remedy this degradation of information resulting
from the non-intrusiveness of the armband, this research project will rely on deep learning,
and more specifically on convolutional networks.

The research project was divided into three phases. The first is the design of a classifier
allowing the recognition of hand gestures in real-time. The second is the implementation of a
transfer learning algorithm to take advantage of the data recorded across multiple users, thereby
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improving the system’s accuracy, while decreasing the time required to use the system. The
third phase is the development and implementation of a domain adaptation and self-supervised
learning to enhance the classifier’s robustness to long-term changes.
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Introduction

Intrinsic to the human experience, is being limited by our physical attributes. As such, humans
have sought to evolve their surroundings to fully leverage their body’s capabilities. However in
some cases, where surroundings have been manipulated to benefit the majority, people living
with disabilities can be adversely affected as they must navigate an environments built for
another standard. In this context, robotics and artificial intelligence offer an attractive avenue
to improve quality of life by democratizing devices which enables users to perform a wider
range of day-to-day tasks more efficiently [4]. In the case of hand amputees, this translates
into smarter and less expensive prosthetics that can be controlled seamlessly.

For hand prosthetic control, muscle activity provides an intuitive interface on which to perform
hand gesture recognition [9]. This activity can be recorded by surface electromyography
(sEMG), a non-invasive technique widely adopted both in research and clinical settings. The
sEMG signals, which are non-stationary, represent the sum of subcutaneous motor action
potentials generated through muscular contraction [9]. Despite extensive research in the field,
the currently available myoelectric prosthetics fail to perform sufficiently robust and accurate
multi-hand gesture recognition for day-to-day tasks [2, 6]. On the other hand, research papers
routinely report multi-gestures classifications accuracy above 95% accuracy. This disconnect
in reported offline accuracy versus online usability mainly stems from the four main dynamic
factors of sEMG signals [10]:

• Gesture Intensity - Users perform the same gesture with varying degree of muscle
contraction

• Limb Position - In real-life use, gestures will have to be performed in different positions
which will alter the nature of the sEMG signal due to different eccentric/concentric
contractions, gravitational forces, muscle compression, etc.

• Electrode Shift - Each time the users dons a myoelectric system, the electrodes will likely
be placed in slightly different position.

• Transient Changes in EMG - Additional factors that alter the sEMG signal over-time
(e.g. muscle fatigue, electrode impedance changes, non-stationarity of the signal).
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Labeled myoelectric signals are also extremely time-consuming to obtain and must be recorded
for each user as extensive variability exist between subjects [5] This last factor means that,
in practice, sEMG datasets used as benchmarks for offline classification rarely contain even
a single of these dynamic factors. In fact, the chasm is such that some authors reported
significant different between method in an online setting, when there was none offline (when
obtained from a dataset without the main dynamic factors) [12]. Additionally, due to the
non-stationarity of sEMG signals, even a classifier trained on a dataset containing the four main
dynamic factors will degrade over time, forcing the user to re-calibrate the system periodically.
Moreover, myoelectric prosthetic are expensive, costing between 20 000 and 100 000USD [8].

Transradial prosthesis

Most of the research in EMG pattern recognition are motivated by prosthetic control, and most
often for people with transradial amputations [10]. Transradial prosthesis refer to artificial
limbs designed to replace a missing arm below the elbow [8]. This thesis however, focuses
on a general human-computer interaction approach for both amputees and non-amputees.
Nevertheless, to be able to contextualize most of the body of works referenced throughout
this thesis, it is important to understand the capabilities and functions of prosthesis currently
available.

Roughly speaking, upper limb prosthetics can be divided into two categories based on their
functionality: passive and active prostheses [7].

Passive prosthetics can be further divided into functional and cosmetics prostheses. The
functional prosthetics’ goal is to facilitate the completion of specific activities (e.g. sports) (see
Fig 0.1).

Figure 0.1 – Example of a passive functional prosthetic. Image taken from
https://www.armdynamics.com

Cosmetics prostheses are designed to look like a natural limb (see Fig 0.2 for an example).
These prostheses are lightweight. Despite their lack of active movement, they can provide a
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user a surface to carry/stabilize object. Additionally, while they do not have active movement,
they can be equipped with multi-positional joints providing more options to the user in how to
interact with its environment. Despite their apparent limited functions, cosmetic prostheses
"tend to have a higher rate of permanent use both in adult and pediatric populations, with
less temporary disuse stemming from decreased discomfort and maintenance requirements" [3].
They also tend to cost substantially less (between 3 000 and 5 000USD) [8].

Figure 0.2 – Example of a passive cosmetic prosthetic. Image taken from
https://www.armdynamics.com

The second type of prostheses (active prostheses) are designed to be actuated by the user
without having to physically move the prosthetic’s joints. They are also divided into two
sub-categories, that is, body-powered and externally powered. Body-powered prostheses employ
a cable attached to a sound body part of the wearer. By moving this body part, or extending
the amputated limb, the cable actuates the prosthetic hand [7]. This allows the user to easily
control its prosthetic movement with the desired strength intensity. The main drawback of
such a system is the high amount of energy from the wearer required to utilize this apparatus
throughout the day [7]. Despite this, the most popular prosthetic to date remain the single
degree of freedom, body-powered split hook [1], examples of which can be seen in Fig. 0.3.

Externally powered prosthetics, as their name indicates, employ an external source of power.
Myoelectric prostheses fall within this category. Other forms include force myography [13]
and ultrasound imaging [11]. The currently commercially available myoelectric prosthetics
are extremely expensive [8] and generally feature a low amount of simultaneously recognized
gesture [7]. Weight and general comfort associated with these devices are also an issue [7].
From a signal recognition point of view, newly developed solution must integrate multiple
grasp/gesture recognition simultanously, while contending with a limited amount of computa-
tional power (as to limit the weight of the prosthetic and increase comfort) [7]. Additionally,
re-calibration requirement should be minimal as otherwise cost-benefit to the user will simply
not warrant the use of this type of prostheses.
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Figure 0.3 – Example of a body-powered split hook prosthetic. The prosthetic works by having
a rubber band holding the split hook in the closed position. A cable is then attached on the
opposite shoulder of the wearer which when pull (by rolling the shoulder or moving the arm
wearing the prosthetic forward) open the split hook. Note that this behavior can be reversed
so that the default position is open. Image from: wired.com/2012/03/ff_prosthetics/

Thesis Goal and Outline

The goal of this thesis is twofold. First, provides new tools (hardware, software and experimental
protocols) from which to study sEMG signals, as to better understand both the main dynamic
factors and the type of information that are pertinent to extract from such signals. Second,
to propose new algorithms to tackle some of the obstacles preventing multi-gestures-based
myoelectric control systems to be truly usable in practical, real-life applications.

The structure of this thesis is as follows. Chapter 1 gives an overview of machine learning and
its related concepts, which are important in understanding this thesis. Chapter 2 presents,
to the best of my knowledge, the first real-time control of a robotic arm using sEMG signal
based on a deep learning classifier. Chapter 3 proposes a solution, through transfer learning,
to reduce the amount of data required to train a deep network so that a new user can perform
sEMG-based gesture recognition. A new wireless myoelelectric recording armband which
outperforms the previously available, most popular sEMG armband is presented in Chapter 4.
An analysis of the information learn based on the raw sEMG signal within a deep network,
using handcrafted features as landmarks is given in Chapter 5. Chapter 6 presents a study
of the four main dynamic factors based on a new experimental protocol which is conducted
in virtual reality. Chapter 6 also proposes to apply an updated version of the previously
presented transfer learning algorithm over multiple recording session from the same participant
to enhance multi-day re-calibration performances. Finally, Chapter 7 proposes to tackle the
challenging problem of adapting a classifier to the over-time changes of sEMG signal when the
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user does not provide explicit re-calibration sessions. More precisely, Chapter 7 considers the
especially hard case where multiple days have elapsed since the last recording session, which
proscribes the use of algorithms that rely on small, incremental changes in the signal to adapt.
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Chapter 1

{Supervised, Transfer, Domain
Adaptation, Self-supervised} Learning

Figure 1.1 – Image taken from https://xkcd.com/1425/

The chapter aims to present the basic concepts related to machine learning which will be used
throughout this thesis. Machine learning algorithms can be thought of as a way to make a
system behave in a certain way without giving it explicit instructions to do so. Instead, data
related to the task are used to build a model from which predictions/decisions can be derived.
Put another way, given a task and no idea how to do it, get data related to said task and
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let the computer try to figure it out. The actual usefulness of the learned model is highly
dependent on the task, the machine learning algorithm and the data. The following sections
present different learning paradigms associated with machine learning. The relevance of these
paradigm is directly dependent on the type of data and task at hand. Note that this thesis is
limited to classification problems. That is, given an input, the model will output a single value
chosen within a discrete and finite set.

1.1 Supervised Learning

Supervised learning refers to a setting where the data is comprised of a set of examples
containing a certain amount of contextual information (referred to as features) and a target
(also known as label). The target represents the desired output. For instance, consider the
classification task of predicting if a table (example) is from Quebec, Norway or Denmark
(label) based on the table’s color, primary building material and linear length (features). In a
supervised learning setting one would have a dataset with multiple examples of tables described
using the three previously mentioned features and their associated country of origin. The goal
would then be to learn a model using this labeled dataset so as to be able to predict the labels
of new examples.

More formally, the classification supervised learning setting could be defined as such:

Let x
def
= (x1, ..., xM ) be a feature vector with M features, where xm ∈ R, ∀m ∈ {1, ...,M}.

Define the dataset S def
= (xn, yn)Nn=1 ∼ AN , where yn ∈ N is the label associated with xn, and

where each example (xn, yn) is sampled from an unknown distribution A . S is also referred to
as the training set. In machine learning, the examples are in theory assumed to be independent
and identically distributed (i.i.d.). However, within the context of myoelectric control, such an
assumption rarely holds in practice as the example (i.e. myoelectric signal) obtained at time
t+ 1 is highly dependent with the example obtained at time t. Note also that as this thesis
only considers classification problems, there is a k ∈ N such that ∀(x, y) ∼ A , y < k.

Note also that as this thesis only considers classification problems, (∃k ∈ N|(∀(x, y) ∼ A |k >
y)). The machine learning algorithm goal is then to learn a model ḣ : RM → N so that
ḣ(x) = y,∀(x, y) ∼ A .

1.1.1 Model Training

In practice, learning ḣ is often impossible. Instead, the goal becomes to learn an approximation
of ḣ, h : RM → N, such that h(x) ≈ y,∀(x, y) ∼ A . A model h is defined through the values
of its learnable parameters, where a learnable parameter is defined as able to affect the output
of h given a particular input. As such, h1 = h2 if and only if their learnable parameters are
identical. A machine learning algorithm thus affects the parameters of a model to obtain a
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"better" model. Consequently, a way to quantitatively qualify a "better model" is needed. This
is achieved through a loss function (l). Within the classification context, l is defined as:

l : N× N→ R≥0 (1.1)

So that l(h(x), y) = 0 when h(x) = y and l(h(x), y) > 0 otherwise. As a concrete example, the
zero-one loss returns 1 when h(x) 6= y and 0 otherwise.

Oftentimes, the goal of a machine learning algorithm is to find a model h that generalizes
well. That is, makes good predictions on examples drawn from A even if the example is not
contained within S . Given l, which characterizes how good a model is, the goal is to find the
model h which has the smallest expected loss on examples from A . Unfortunately, as A is
unknown, it is not possible to directly minimize the expected loss. Instead, the dataset S can
be used to obtain an approximation of the true expected loss. This approximation, named the
empirical risk, is defined as follows:

RS (h)
def
=

1

n

N∑
n=1

l(h(xn), yn) (1.2)

When N →∞, RS (h) converges to the true expected loss. Thus, for N sufficiently large, RS (h)

gives a good approximation of the true risk. There is a catch however. In practice, sufficiently
large depends on the task and on the complexity (i.e. number of adjustable parameters) of
model considered [5]. In fact, it is possible for a sufficiently complex h (i.e. large number
of adjustable parameters) to learn S perfectly (or almost perfectly) without h being able to
generalize well to new examples generated from A . This is referred to as overfitting. On
the other hand, underfitting arises when a model is too simple, and thus lacks the ability
to minimize in a meaningful way RS (h). Figure 1.2 shows a regression problem for different
dataset sizes and model complexity using the same machine learning algorithm. A regression
problem is similar to a classification problem, except that the output space of the model is
R as opposed to a classification problem where the output space is a finite set of elements in
N. Note that the figure shows a regression problem as, in my opinion, it offers a better visual
representation of overfitting/underfitting and the impact of model complexity.
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(A)

(B)
Figure 1.2 – Examples of a regression problem for different dataset sizes and model complexity.
(A) Examples of underfitting (left) and overfitting (right). The model in the middle, although
not perfect, shows a desirable, well fit behavior given the dataset size. (B) When the size of
the dataset increases, the more complex model which previously overfitted, now predict the
true function almost perfectly.

The main takeaway from Figure 1.2 is that in machine learning size matters. That is, bigger
datasets allow a machine learning algorithm to learn more complex h which are able to model
more complex behaviors. Consequently, the ability of solving a task might be highly dependent
in how much labeled data one can obtain.
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Regularization

An unlimited amount of training data is, unfortunately, rarely available in practice. Conse-
quently, other complementing methods are needed to address overfitting. One such way is
through the use of regularization, which imposes a penalty based on the complexity of the
model. In other words, a more complex model needs to outperform a simpler model by enough
of a margin to warrant the augmentation in complexity. This behavior is achieved through the
use of an additional term which is added to the empirical risk:

1

n

N∑
n=1

l(h(xn), yn) + λr(h) (1.3)

Where r is a real-valued function which increases with the complexity of h and λ ∈ R≥0 is a
hyperparameter which controls the importance of the regularization. In practice, the definition
of r is highly dependent on the type of model considered for a given task.

In the literature, the term regularization is often used in a more general manner than defined
previously, to refer to concepts or algorithms which directly or indirectly try to reduce overfitting.
For example, given a machine learning algorithm that generates a new h at each iteration with
increased complexity, setting a maximum allowed number of iterations would also be a form
of regularization. This type of regularization is especially prevalent within deep learning (see
Section 1.1.2).

Hyperparameters

As can be observed from Figure 1.2-(A), in this specific case, the model with four degrees
of freedom models the true function the best even if it makes more mistakes on the training
dataset than the model with 20 degrees of freedom. The number of degrees of freedom given to
the model is an example of a hyperparameter. Hyperparameters are parameters which are fixed
before the learning process begins, as their value affects the training process itself. Several
types of models have hyperparameters that directly control the complexity of the model (such
as specifying the number of degrees of freedom the model had access to in Figure 1.2).

The optimal hyperparameter values are task-specific and can have a large impact on the quality
of the learned model. In practice, they are generally evaluated by splitting the training dataset
in a training and validation set or by cross-validation. The former, which is the simplest,
defines T and V , such that T ∪V = S and T ∩V = ∅. Different hyperparameter values can
then be used to learn h on T . Then, the model/hyperparameters which obtains the lowest
empirical risk on the examples from V is selected. Cross-validation works similarly, but instead
of splitting S into two non-overlapping sets, it splits it into q non-overlapping sets (called
folds), where 2 ≤ q ≤ |S |. The machine learning algorithm is then trained q times, with the
same hyperparameters, using q − 1 folds for training and the remaining one as a validation
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set. At each new training, the previous validation fold is added to the training set and a fold
which was never used for validation is selected as the new validation set. The score associated
with the model/hyperparameters is then defined as the average score across all validation folds.
Multiples models/hyperparameters can then be compared by computing their cross-validation’s
score.

Specific strategies also need to be used to define the set of hyperparameters to choose from, as in
practice there can be an infinite amount of combinations, and unfortunately grants are limited in
time. The most popular are manual search [4], grid search [4], random search [4], evolutionary
algorithms/swarm intelligence [26] and Bayesian optimization [23]. As its name suggests,
manual search consists of manually selecting different combinations of hyperparameters. The
remaining four all need to have intervals defined for each hyperparameter value (hyperparameters
of hyperparameters if you will). With grid search, the user then define for each hyperparameters
which values to test. The grid search then tests every hyperparameters combination. The
main weakness of this approach is that it can be highly computationally prohibitive to perform
depending on the number of hyperparameters. Random search works like grid search, but
instead of testing every combination, it selects randomly a set amount of combinations to
test. As a rule of thumb, random search should be preferred over grid search [4]. Evolutionary
algorithms/swarm intelligence are a family of algorithms for global optimization which are
inspired by biological evolution/collective behavior. They can be used as a happy medium
between random search and grid search. Finally, Bayesian optimization tries to model the
hyperparameters search space. With each new combination of hyperparameters tested, the
model can be refined, which in turn can be used to propose a promising new combination of
hyperparameters. Bayesian optimization thus tries to simultanously improve its search space’s
model and find the combination of hyperparameters which yield the highest validation score.
This type of algorithm is often referred to as high-cost function optimization.

1.1.2 Deep Learning

Artificial neural networks [8] is a family of models employed in machine learning. They are
characterized by the use of neurons as the building blocks of the model. At its simplest, a
neuron is a function RM → R, which takes as input the features of a given example and
return a weighted sum of the input. An additional term, referred to as bias, can also be
added to the output. Finally, the output often goes through φ : R→ R, a non-linear function.
Mathematically, the combination of these three elements can be represented as follows:

φ

(
M∑
m=1

(wmxm) + b

)
(1.4)

Where wm are the weights of the neuron and b is the bias, all of which are learnable parameters.
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Examples of non-linearity functions commonly used are the Rectified Linear Unit (ReLU)

ReLU(z) = max(0, z) (1.5)

and the sigmoid function

sigmoid(z) =
1

1 + e−z
(1.6)

The primary role of the non-linear function is to allow the neuron to learn a non-linear model.
Additionally, it controls how much information passes through it. For simplicity sake and for
the rest of this chapter, a neuron (also called unit) will refer to the combination of the three
previously described elements as expressed in Equation 1.4.

A neural network is a model which uses multiple neurons simultanously, by stacking them into
layers and creating multiple layers one after the other. An illustration of a feedforward neural
network, the simplest form of neural network, is given in Figure 1.3. Notice how the neurons
are stacked into layers and that the layers between the input and output are referred to as
hidden layers. The complexity of a neural network model can thus be controlled by changing
the number of hidden layers and how many neurons are in each of these hidden layers. Note
that, the number of neurons, number of layers and activation functions are all hyperparameters.
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Figure 1.3 – An illustration of a feedforward neural network with two hidden layers for a
two-class classification problem. In this figure, b1 and b2 are the bias associated with the first
and second hidden layers respectively. The network will predict class 1 if ŷ1 > ŷ2 and class 2
in the second case.

Artificial neural networks are trained using an iterative process. At first, the training dataset
is randomly divided into non-overlapping subsets called batches. At the first iteration, the first
batch is fed to the network. The gradient of the loss function with respect to the network’s
weights is then computed using the backpropagation algorithm [18]. The weights are then
updated to minimize the empirical risk by using a stochastic gradient descent algorithm such as
Stochastic Gradient Descent (SGD) [3] or Adam [15]. Then a new batch is fed to the network
and the process begins anew. Once all the batches have been used, the training dataset is
again randomly divided into new batches. This iteration where new batches are generated
is referred to as an epoch, so that the third epoch means that the network has seen all the
training examples three times.

Deep learning refers to a type of neural network with "many" hidden layers. They are a
multi-level representation learning method (i.e. methods that learn an embedding from an
input to facilitate detection or classification), where each level (layer) generates a higher, more
abstract representation of the input [17]. Over the years, deep learning algorithms have become
increasingly more prominent for their unparalleled ability to automatically learn discriminant
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features from large amounts of data. As stated in Section 1.1.1, increasing the size of the
dataset allows to learn more complex h which can perform better on more complicated task
while reducing the risk of overfitting. However, in practice, learning a model h is associated
with a computational cost (both in time and in memory space). In general, this cost rapidly
increases as the size of the training dataset grows. So much so that for big datasets, a wide
range of machine learning algorithms are not usable in practice. As such, deep learning’s ability
to scale to large (huge) training datasets sets them apart from a large portion of other machine
learning algorithms.

The potential of deep networks to be universal approximators [11] makes regularization a
quasi-necessity when using them. In practice, regularization for deep networks, as stated
in Section 1.1.1, can go outside of the description provided by Equation 1.3. For example,
dropout [24] aims at reducing co-adaptation (i.e. different units having highly correlated
behavior) of neurons. Dropout achieves this by randomly "dropping" (disabling) a new set
of neurons whenever an example/batch passes through the network during training. The
percentage of neurons dropped is a hyperparameter. At test time, the complete network is
used, but the weights are re-scaled to compensate for this increase in activation activity (as
now all the neurons are active at the same time). Early stopping is another prevalent technique
to reduce over-fitting. It consists of dividing the training dataset into a training and validation
dataset (which are non-overlapping) before learning starts. Then, at each new epoch, the
learned model is tested on the validation set. When no improvement is made over a certain
amount of epochs on the validation set, the training procedure stops. The network which
achieved the best performance on the validation set is then selected. Batch Normalization is
another technique which also provides some form of regularization with the aim of maintaining
a standard distribution of hidden layer activation values throughout training [13].

Convolutional Networks

Convolutional Networks (ConvNet) are a special type of deep neural networks that were
originally conceived for image recognition [16]. Four key concepts describe ConvNet: local
connections, shared weights, pooling and having a deep architecture [17].

As can be seen from Fig. 1.4, the typical architecture of a ConvNet is structured as two main
blocks, each containing a series of stages. The first block is comprised of convolutional and
pooling layers. Each rectangle in Fig 1.4 corresponds to a Feature Map. A convolutional layer
is comprised of Units. Each Unit within a convolutional layer is connected to a local patch in
the feature map through a set of weights called a kernel or filter bank. The result of this local
weighted sum is then passed through a non-linearity function (most often ReLU). Units often
overlap each other, but never share the exact same position. All Units within a feature map
share the same filter banks, on the other hand different feature maps employ different filter
banks. The name convolutional layer comes from the fact that mathematically, the filtering
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Figure 1.4 – Image taken from [17]. The outputs (not the filters) of the layers of a typical
ConvNet applied to a Samoyed dog. Each rectangle is a feature map corresponding to output
from one of the learned features.

operation performed by a feature map is a discrete convolution. The reasoning behind these
layers revolve around two main points. First, local information in image-like structures tend to
be highly correlated which form motifs that can be detected easily. Second, local statistics of
a signal are often invariant to location. Meaning that if a motif can appear in one part of a
signal, it can appear again anywhere and as such as the different Units share the same filter
bank, they will be able to detect the same motif at different parts of the array.

While the role of convolutional layers is to detect meaningful motifs from the previous layer,
the purpose of pooling layers is to merge similar features together. As such, pooling layers
extract features that are invariant to small shifts and distortions. The reason for this is that
many natural signals are hierarchical by nature. That is, higher-level features are obtained by
a combination of lower-level ones. For example, images are a collection of edges, which form
motifs, which can then form part of an object or an abstract concept like hippopotamus. A
hierarchy can also be extracted from speech signals, where sounds aggregate into phonemes,
syllables, words and sentences. Pooling layers typically work by computing the maximum of
a local patch of Units in one feature map. Note that the function of the pooling layer can
vary (e.g. mean, median, minimum) and they can also be applied to multiple features maps
simultaneously. By having multiple layers that alternate between convolutional and pooling
layers (typically, multiple convolutional layers are utilized between each pooling layer) the
network is able to exploit this hierarchy with the first layer extracting low-level features while
the later layers extract more abstract features. The pooling layers allow the representations of
the features extracted to "vary very little when elements in the previous layer vary in position
and appearance" [17]. Another important contribution of pooling layers is that they act as a
form of dimensionality reduction, reducing the computational load of training and inference of
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the network.

The second block of a ConvNet is a conventional deep learning network with fully connected
layers. The number of fully connected layers is arbitrary and will vary depending on the task
at hand. As such, the convolutional stage can be viewed as a form of feature extraction while
the second stage is the actual classifier.

Nowadays, ConvNet are prevalent in many fields ranging from Image Recognition [19] to Board
Game AI [22, 7] while also including Speech Recognition [1], Biological Signal Recognition [6, 2]
and Natural Language Processing [20, 14] amongst many others.

1.2 Transfer Learning

In practice, the availability of a large labeled dataset on which to perform supervised learning
is highly dependent on the task at hand. A situation that arises often however is that a large
dataset exists for a task similar, but not identical, to the one that need to be solve which only
has a small amount of data. Transfer learning algorithms try to leverage this abundance of
labeled data for the first task, as to better perform on the second task.

For example, say that someone wants to detect if a picture is that of a lemur or a tarsier.
Unfortunately, such a dataset does not exist and consequently, the person starts to painstakingly
take pictures of both primates so as to train a model as described in Section 1.1. Fortuitously,
a research group has already taken, and labeled, hundred of thousands of pictures of gibbons
and orangutans. In supervised learning, this larger dataset would not be useful as it does not
represent the desired task, which is where transfer learning comes in. The task of classifying
the apes (gibbons vs orangutans) is referred to as the source task, while the task of classifying
the lemurs vs tarsiers is known as the target task.

Transfer learning can formally be defined as follows, define D def
= (X , P (x)), a domain, where

x ∈ X ⊆ RM is a feature space and P (x) is the marginal probability distribution. A task is
defined as T def

= (Y , ḣ), where Y is the target space (as a reminder, for classification Y ⊆ N
and Y finite). Define a source domain DS , its associated learning task TS and a target domain
DT and its associated learning task TT . Transfer learning goal is then to improve hT in DT by
leveraging DS and TS when DS 6= DT , or TS 6= TT .

Within deep learning, the technique known as fine-tuning [17] is arguably the most popular
and used transfer learning algorithm due to its simplicity and effectiveness. To continue the
previous example, fine-tuning consists in training a network to distinguish between the apes
(source dataset). Then starting with the model learned on the source, continue training the
network (generally allowing smaller changes in the weights between each iteration) but only
on the target. The idea is that the initial training (pre-training) will allow the network to
find a meaningful representation which simply need to be "fine-tuned" to perform well on the

17



target. In practice, the need for transfer learning arises often as labeling huge amounts of data
is generally costly (both in term of money and time). As such, the few huge datasets already
available (e.g. ImageNet [9]) are routinely used as a starting point (read pre-training) when
working on a new problem or with new data.

1.3 Unsupervised Domain Adaptation

In domain adaptation, the task between the source and target is the same, but DS 6= DT .
Additionally in the unsupervised case (the one considered in this thesis), the target dataset
is devoid of labels. The goal is then to learn hT having access to a labeled dataset from the
source and unlabeled examples from the target.

In general, within deep learning, unsupervised domain adaptation algorithms tend to define
auxiliary tasks [10, 25] or loss functions [21] to try to "guide" the network to learn a useful
representation for classification on the new domain. These auxiliary tasks are designed so
that they must be solved by including data from both domains and that true labels can be
generated with the already available information. For example, DANN [10] proposes to create
the auxiliary task of being "bad" at distinguishing between the source and target. The labels
can thus be easily generated by assigning 1 to examples from the source and 2 otherwise.
This idea is based on the hypothesis that for effective domain adaptation to be obtained, the
data representation between the two domains should be indistinguishable. An example of an
auxiliary loss function designed for unsupervised domain adaptation is VADA [21]. Building
on DANN, VADA proposes to also add a loss which penalizes the network when its decision
boundary goes through high-density clusters of the target data. The idea stems from the
cluster assumption which states that examples within the same cluster probably belong to the
same class.

1.4 Self-supervised Learning

In the previously described unsupervised domain adaptation algorithm, a classifier is trained
on the source and leverages auxiliary task(s) to learn a discriminative parametrization on
the target. These auxiliary tasks are designed to generate a feature representation that will,
hopefully, be meaningful for data classification tasks, without having access to any actual
targets’ label. In self-supervised feature learning, the data itself generates labels to perform
tasks that will, again hopefully, enhance the performance of the classifier on the "real" task.

Self-supervised learning does not necessarily consider a source and target domain and is often
applied on unlabeled data from a single domain. In general, the main idea is to use different
data modalities from which a relevant label can be automatically generated. For example,
consider a robot which has a camera (long range sensor) and a proximity sensor (low range

18



sensor) and the task of learning to detect obstacle from the camera without any labeled dataset.
Self-supervised learning would generate labels associated with the camera’s image by trying to
link an image seen at time t with the output of of the proximity sensor at time t′.

Within this thesis, self-learning is considered only within the unsupervised domain adaptation
setting. More specifically, as this thesis focuses on myoelectric control, the delay between each
prediction is one of the most important factor to consider. Hence, the amount of temporal data
which can be used within any single example is limited during real-time control. In practice,
to allow intuitive control from EMG-based real-time gesture recognition, 300ms of data per
example seems to be the upper-limit [12]. This limitation negatively affects the ability of a
model to generate accurate predictions. Additionally, as stated in the introduction, sEMG
signals are non-stationary and multiple factors (e.g. limb position, gesture intensity) affect the
signal in addition to the performed gestures. In other words, even given a labeled dataset to
train on, the model’s performance will degrade over time. The idea is then to collect unlabeled
data during gesture recognition tasks and use longer time intervals to re-label the predictions
of the classifier, as this extra temporal context should allow to improve gesture recognition in
an offline setting.
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Chapter 2

A convolutional neural network for
robotic arm guidance using sEMG
based frequency-features

2.1 Reference

Côté-Allard, Ulysse, François Nougarou, Cheikh Latyr Fall, Philippe Giguère, Clément Gosselin,
François Laviolette, and Benoit Gosselin. A convolutional neural network for robotic
arm guidance using sEMG based frequency-features. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 2464-2470. IEEE, 2016.

2.2 Context

This paper presents one of the first application of deep learning to the field of sEMG-based
gesture recognition alongside [26, 2]. More importantly, and to the best of my knowledge, this
article was the first proof-of-concept that a convolutional network could be employed to create
a real-time myoelectric control system.

From a personal perspective, this article was the first one that I produced as a direct result of
my master/doctorate research and my first experience writing a research article as a first author.
Importantly this was a formative experience in regards to working with a multi-disciplinary
team of researchers, something that I was fortunate enough to be able to do throughout my
doctorate. I also had the opportunity to present this paper at the International Conference
on Intelligent Robots and Systems, one of the two biggest robotic conference (alongside the
International Conference on Robotics and Automation).
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2.3 Résumé

Récemment, la robotique a été vue comme une solution clef afin d’améliorer la qualité de vie
des personnes amputées. Pour créer des dispositifs prosthétiques robotisés plus intelligents
destinés à être utilisés dans un contexte quotidien, il faut que ceux-ci puissent interfacer de
manière transparente et peu coûteuse avec l’utilisateur final.

Dans cet article, nous cherchons à guider un dispositif robotique en détectant les gestes de
la main en mesurant l’activité électrique des muscles capturés par l’électromyographie de
surface. De tels classificateurs de gestes sont cependant difficiles à concevoir, car ils doivent
être extrêmement robustes à la dérive du signal, à la fatigue musculaire et au petit déplacement
des électrodes sans nécessiter un réentraînement constant. Malgré des décennies de recherche
dans ce domaine, les systèmes de classification multigestes basés sur l’électromyographie ne
sont toujours pas utilisés, car ces systèmes ne parviennent souvent pas à résoudre tous ces
problèmes simultanément.

Nous proposons de tenter de résoudre ces problèmes en utilisant des réseaux convolutionels.
Dans un premier temps, nous démontrons leur viabilité pour la classification de gestes de la
main chez des personnes non-amputées à l’aide d’un bracelet myoélectrique commercial à 8
canaux utilisant des électrodes sèches et possédant un faible taux d’échantillonnage (200Hz).
Dans ce travail, nous considérons la classification de sept gestes de la main. Nous montrons par
un cas d’utilisation chez un participant non amputé, que notre approche utilisant l’apprentissage
machine permet de prédire le bon geste parmi sept 97.9% du temps sur une période de six
jours consécutifs sans réentraînement. De plus, en combinant le classificateur proposé dans
cet article avec les données d’orientation contenues dans le bracelet, nous créons un système
permettant de guider un bras robotique possédant 6 degrés de liberté avec la même vitesse
et la même précision qu’en utilisant une manette (la façon normale de contrôler ce bras). Ce
dernier résultat est obtenu en testant le système sur 18 participants non amputés.

2.4 Abstract

Recently, robotics has been seen as a key solution to improve the quality of life of amputees.
In order to create smarter robotic prosthetic devices to be used in an everyday context, one
must be able to interface them seamlessly with the end-user in an inexpensive, yet reliable
way. In this paper, we are looking at guiding a robotic device by detecting gestures through
measurement of the electrical activity of muscles captured by surface electromyography (sEMG).
Reliable sEMG-based gesture classifiers for end-users are challenging to design, as they must be
extremely robust to signal drift, muscle fatigue and small electrode displacement without the
need for constant recalibration. In spite of extensive research, sophisticated sEMG classifiers
for prostheses guidance are not yet widely used, as systems often fail to solve these issues
simultaneously. We propose to address these problems by employing Convolutional Neural
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Networks. Specifically as a first step, we demonstrate their viability to the problem of gesture
recognition for a low-cost, low-sampling rate (200Hz ) consumer-grade, 8-channel, dry electrodes
sEMG device called Myo armband (Thalmic Labs) on able-bodied subjects. To this effect, we
assessed the robustness of this machine learning oriented approach by classifying a combination
of 7 hand/wrist gestures with an accuracy of ∼97.9% in real-time, over a period of 6 consecutive
days with no recalibration. In addition, we used the classifier (in conjunction with orientation
data) to guide a 6DoF robotic arm, using the armband with the same speed and precision
as with a joystick. We also show that the classifier is able to generalize to different users by
testing it on 18 participants.

2.5 Introduction

The commoditization of robots and sensors creates new opportunities to integrate robotics into
day-to-day life. In particular, some of these developments aim at easing or aiding in common
everyday tasks. For those who depend on prostheses and assistive robots, such developments
can significantly improve their quality of life [9], [6]. In order to leverage the full potential of
robotic devices in this context, it is essential to develop novel and intuitive ways to control
them. An ideal interface would also be as intuitive and inconspicuous as possible, to provide a
seamless experience to non-expert users.

One possible way to achieve such a natural interface is through Surface electromyography
(sEMG). It is a non-invasive technique, extensively adopted in clinical and research works
related to muscular activities. sEMG signals are non-stationary, and represent the sum of
subcutaneous motor unit action potentials generated during a muscular contraction [25]. The
use of sEMG signals, combined with pattern recognition systems, has been proposed in the
literature as an effective avenue to provide a more intuitive control of devices such as prosthesis
or assistive robots [25], [12]. Studies in this topic mainly employ several sEMG electrodes
placed on specified muscles to perform forearm pattern recognition. Furthermore, when using
gel-based electrodes, the user’s skin has to be shaved and washed to obtain optimal contact
between the electrodes and the skin. This severely limits the practicability of such systems by
making the preparation step a long, delicate and complex process.

In order to be able to use sEMG signals for robotic guidance, pattern recognition must be
performed to identify a user’s gesture. The two main components of pattern recognition are
feature extraction and classification. For sEMG, features extracted from the time-domain
have been extensively studied [10], [28] (e.g. Mean Absolute Value, Zero Crossing, Willison
amplitude and Integrated EMG). However, as mentioned in [32], if temporal features are
fast and easy to implement, they are sensitive to frequent amplitude fluctuations compared
to features from the frequency-domain (e.g. Fourier Transform, Median Frequency, Mean
Frequency [17], [28]). Features in the time-frequency domain (e.g. spectrograms, wavelet
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transform, wavelet packet transform) provide a richer way to extract pattern information [11].
For classification, many methods (linear, non-linear, supervised or unsupervised) have been
employed to estimate unknown patterns from a set of features [25], [12]. The most common
methods are the linear discriminant analysis (LDA) and artificial neural networks (ANN).
Even if each classifier presents its own advantages, they remain too sensitive to electrode
displacement and positioning when used with sEMG electrodes placed on specific muscles [5].

In the case of a prosthesis, the guidance system should ideally be small, inexpensive, lightweight,
require minimal preparation and be robust to a small displacement of the electrodes while still
achieving excellent classification performance. Dry electrodes should also be preferred over
gel-based ones, as they are inherently more convenient to use. However, they are less accurate
and less robust to motion artifact, compared to gel-based ones [31].

The work presented in this paper addresses these severe limitations while still achieving state of
the art results. Our approach is based on employing convolutional neural networks (CNN) to
perform the classification of spectrograms of the sEMG signals, in order to identify a number of
gestures. One of the contributions of this work is thus the use of a CNN to classify the very noisy
sEMG data [13]. Indeed although they have been used before in speech recognition [30] and
EEG classification [7], we believe this is the first time that they are used to classify sEMG data
for gesture recognition. Importantly, the use of CNNs shifts the focus from feature engineering
to feature learning. Indeed, because of the nature of CNNs, features are automatically learned
via the convolutional layers. Those features are then transferred to fully connected layers that
associate sEMG signals to specified gestures.

Although deep networks are often seen as computationally expensive, recent development in
hardware for deep learning makes complex algorithms implementation in embedded systems a
reality [29]. Additionally, dedicated deep learning materials such as Eyeriss [8] are able to run
CNNs with up to 60 millions parameters at 35 fps using only 278 mW. Furthermore, those
very-low power systems only need to handle the inference step since training can be done on a
desktop and the weights of the parameters simply sent via bluetooth once the optimization is
completed. Finally, using network pruning, one can achieve a compression rate over 10x [16]
which significantly reduces both inference time and memory space requirement of the hardware.

Once the classifier is able to reliably identify these gestures, one can easily create a guiding
system by associating a particular robot motion primitive to a gesture. To obtain the sEMG
data in the least possible intrusive way, a Myo armband by Thalmic Labs1 can be used. This
consumer-grade device includes a 9-degree-of-freedom (DoF) Inertial Measurement Unit (IMU)
and 8 dry surface electromyogram sensors. The proposed system use both the IMU and sEMG
data for the guidance of the robotic arm.

The rest of the paper goes as follow. First, Section 2.6 provides an overview of our guidance
1https://www.myo.com/
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system. The architecture of our CNN classifier is then described in Section 2.7, along with
the spectrogram features that are employed. The ability of the classifier to generalize well
to different users is showcased in Section 2.8.1. We then demonstrate the precision and the
robustness of this guidance system by performing precise and complex tasks in a speed test
in Section 2.8.2. Finally, Section 2.8.3 establishes the long term stability of the classifier and
its robustness to muscle fatigue by testing it over two periods of six consecutive days on a
healthy subject. For each period, the emplacement of the electrodes on the forearm were not
marked and no recalibration was performed after the initial training. This naturally led to
small displacements of the electrodes between each recording session, which the classifier was
not specifically trained to resist but was nonetheless robust to.

2.6 Proposed guidance system overview

The description of the robotic arm, the Myo and the gestures used in this work are given in
this Section. The classifier itself is detailed in Section 2.7.

2.6.1 Myo Armband

In 2014, the Myo armband was released at a purchase cost of 200 $. As stated previously, it
contains a 9DoF IMU and 8 dry surface electromyogram sensors. One of the main advantages of
the Myo is that it can simply be slipped on the arm to read sEMG signals with no preparation.
The sEMG data from the Myo can be visualized in [33]. The Myo armband provides a sEMG
sampling frequency (fs) of 200 Hz per channel (a fs of at least 1 kHz is normally preferred
to address sEMG signals lying within 5-450 Hz [24]). Electrode placement was dependent on
the size of the subject’s forearm due to the minimum circumference of the Myo (19.05 cm).
Additionally, no shaving of hair or skin-cleaning were performed for this study as these were
judged too constraining for a potential end-user. Note that this generates extra noise that can
nevertheless be handled by our machine learning approach.

2.6.2 JACO guidance using a Myo armband

The JACO arm by Kinova 2 is a 6DoF robotic arm that is usually manually operated using
a 7-button joystick. The coordinate system used by the robot is Euler X-Y-Z. The user can
navigate through 3 different modes to access the full motion of the robotic arm: 1) translate
(Move the arm along X-Y-Z axes), 2) rotate (Rotation of the robotic hand around the X-Y-Z
axes) and 3) grip (open-closing the hand).

The different gestures employed to generate sEMG patterns are explained in Section 2.6.3 and
replace the rotation around the X-Y axis and the grip mode. The rotation around the Z axis

2http://kinovarobotics.com/
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(corresponding to the roll motion on JACO’s hand) is not considered in this work since it was
deemed not useful in the experiments described in Section 2.8.

The translate mode is mapped to the orientation of the armband which is obtained using the
IMU included inside the Myo. The yaw corresponding to the X-axis, the pitch to the Y-axis
and the roll to the Z-axis. Furthermore, for the translate mode, the mapping is proportional
to the angle between the orientation of the forearm and a horizontal reference orientation
corresponding to a 90 degrees flexion of the elbow. Thus, the larger the angle between the
neutral configuration of the forearm and the current orientation of the Myo, the faster JACO
will move.

JACO also includes a spasm filter which is used solely for the third task in Section 2.8.1 at the
lowest possible setting. The spasm filter limits the acceleration of JACO, while not affecting
its deceleration speed. It is important to note that opening and closing the hand is not affected
by this filter.

When guiding JACO with the Myo, a system of movement priority is established. Translation
along the X and Y axes have the highest priority. If the arm of the user is within the resting
position range with respect to the pitch and yaw, then the user can perform a translation of
the robotic arm along the Z-axis by rotating his wrist (pronation and supination). Finally, if
the roll is also within its neutral range, the classifier output is used to guide the robot. This
priority list is necessary because inexperienced users, have a tendency to rotate their wrist
involuntarily when moving their arm. Furthermore the classifier has a lower priority since the
muscle activity generated by the rotation of the wrist, is not an activity the classifier is trained
to recognize and therefore the output during this movement is not reliable.

2.6.3 Description of the gestures

Since the final purpose of this experiment is to guide the robotic arm with the Myo armband,
seven different hand/wrist gestures are required. The classes are: neutral, hand open, hand
close, wrist flexion, wrist extension, radial deviation and ulnar deviation. Fig. 2.1 shows the
different gestures as well as the Myo and JACO. These gestures are chosen because they can
intuitively be mapped to the rotate and grip mode of the robotic arm. The gestures and
their corresponding action of the robotic arm, are as follows: opening and closing of the hand
to represent the opening and closing of the robotic hand, the wrist flexion and extension
correspond to moving the joystick to the left and right in the rotate mode. Finally, the radial
and ulnar deviation emulate pushing the joystick to the front and the back respectively.
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Figure 2.1 – The 7 gestures considered in this work. The Myo armband (right) is connected
through bluetooth to the laptop. The computer, after data analysis, transfer the command to
JACO (left) in real-time via a USB connection.

2.7 Classifier overview

Processing of the sEMG data signal was necessary to be able to recognize the different
hand/wrist movements of the user. In this section, the different steps performed during an
online classification are exposed. We first describe how the data is separated into time windows,
then pre-processed using consecutive fast Fourier transform (FFT) for forming one spectrogram
per channel, and finally fed to a CNN to predict the current hand/wrist movement.

2.7.1 Time-window

As stated previously, the Myo armband includes 8 sEMG channels, each sampled at 200 Hz.
For closed loop and online operation, latency is an important parameter to consider. In [19],
it was first recommended that the time-window between two predictions be equal to or less
than 300 ms, while in [14] it was found that ideally, the latency should be between 100 and
125 ms. However, in [27] it was reported that the performance of the classifier should take
priority over speed. In our system, we opted for a maximal latency of 300 ms, in order to
accumulate a sufficient number of samples with the low fs of the Myo, and thus increase
classification performance. Considering that the time to process and classify one gesture’s
sEMG-pattern window of ∼300 ms takes on average ∼15 ms on our hardware (laptop with an
NVIDIA GeForce GT 555M), we used windows of 285 ms. This corresponds to 57 data points
per channel per example. Overall, this kept the data capture and processing time below our
target latency of 300 ms.
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2.7.2 Preprocessing

Spectrograms are calculated for each sEMG channel of 57 samples using windows of 30 points
for FFT and an overlap of 21. Based on these parameters, 4 FFT will be contained in the
spectrograms. This results in a spectrogram matrix of 16 by 4, with a frequency step of 6.67 Hz.
Note that a Hamming window is used to avoid frequency leakage. The spectrograms are
calculated using Scipy implementation in Python [21]. The first row of the spectrogram array
is removed because it is out of the useful frequency range of the sEMG signal (Section 2.6.1)
The final spectrograms have a frequency range of 6.67 to 100 Hz.

2.7.3 Classification Algorithm

We tried most of the state of the art machine learning algorithms (e.g. Support vector machine,
Adaboost, Random Forest, Deep neural network). Considering that a CNN achieved by far the
best results, it was selected as the classifier for our system. Its architecture is described below.

Description

The classification algorithm consists of a two-staged CNN, implemented using the python
library Theano [4], [3]. This library allows the CNN to run on a GPU, thereby accelerating the
training and prediction. The first stage is used to differentiate between the neutral class and
the others. If the former is not detected, the algorithm proceeds to Stage 2, which differentiates
between the remaining six gestures. Justification for this separation is at the bottom of this
Description. The architecture of the CNN remains the same in both stages, except for the
output layer which contains two and six neurons respectively. The architecture of stage 2
(containing ∼3.6 millions parameters) was selected as usual in deep learning by trial and error
using previously published architecture as inspiration (mainly [23]) and is presented in Fig. 2.2.

We use ADADELTA [35] for the optimization of the CNN weights. The hyperbolic tangent
(tanh) is used as the non-linear activation function. The rectified linear Unit (ReLU) has been
considered mainly for speed reasons [22]. However ReLU was not retained because even though
each iteration experienced a slight speed boost as expected, the CNN tended to converge faster
with tanh and the accuracy in validation was similar between the two. The sigmoid function
was also considered, but performed poorly for this task compared to both tanh and ReLU.
Additionally, the proposed system uses the dropout approach [18] to prevent overfitting. For
the convolutions layers, the dropout is set at 25%. For the two fully connected layers before
merging it is at 50%. Finally, the dropout of the last two layers is set at 75%.

In the implementation of Stage 2, we first go through a rescaling step. First, considering the
eight spectrograms at time T as a 3D matrix of shape 8x15x4, we reshape it into a 480x1
vector xT . Then rescaling is performed with xiT

norm(xT ) , where x
i
T is the value in position i

of the vector xT and norm is the L2 norm. Performing the rescaling on the concatenated
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spectrograms ensures that their relative intensities are taken into account. After rescaling,
the eight spectrograms are reshaped back into their 15x4 format, feeding the two-stage CNN
with 2D images. This reshaping preserves important correlations between channels and within
spectrograms. The L2 norm achieves a trade-off between a quasi-constant power spectrum
(within a factor of L2) and putting more weight on frequencies with higher power spectrum,
an approach similar to extracting peaks in a power spectrum for time-series classification [20].
This last effect is less noticeable when using the L1 norm instead of the L2 norm. Furthermore,
we observed faster convergence rate of the CNN using the L2 norm over the L1 norm. Note
that when using a single-stage approach with the rescaling, the performances of the classifier
degrades significantly. We attribute this to the fact that the rescaling step tends to normalize
the energy level of incoming spectrograms, before they are fed to the CNN. Since discriminating
between a neutral gestures (homogeneously low energy) and the other gestures (high muscle
activity) probably relies on this energy level, this would explain the poor performance of this
rescaled, single-stage CNN approach. The two-staged CNN approach that we have adopted
sidesteps this issue completely, by performing rescaling only after a gesture has been deemed
as non-neutral.

Figure 2.2 – Stage-2 architecture. Each channel is considered independently at first, going
through parallel and identical convolutional networks for feature extraction. These networks
are then merged together through a fully connected layer (F8). The output of F8 is then use
to perform inference.

Training and validation

In the training phase, the process of collecting labeled data for the CNN required the user to
hold each gestures for 5 s. These labeled intervals are then divided into time-window of 285 ms,
as described in Section 2.7.1. To see more accurately variation within the same class, each
window overlapped the previous one by 265 ms. This process is repeated three times, yielding
15 s of data per class. We take three trials of 5 s per gesture as opposed to one trial of 15 s
to get more variation on the same gesture. Indeed, a user cannot perform exactly the same
motion with the same strength when asked to do the same gesture twice. This also follows the
recommendation made by [34] of varying strength recording for the same gesture. Validation
data is created in a fourth independent run (5 s per gestures) in an identical manner.
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2.8 Experimental Results

Experiments were conducted to evaluate the performance of the CNN classifier (described in
Section 2.7) on three main aspects that correspond to Section 2.8.1, 2.8.2 and 2.8.3 respectively.
The experiments of Section 2.8.1 assessed the ability of the classifier to generalize to different
individuals. Then, experiments in Section 2.8.2 were used to compare the task completion
time between an expert in guiding the robot with the joystick against one well-versed with
our Myo interface. Finally, the classifier’s robustness to sEMG signal drift [1], small electrode
displacement and short term muscle fatigue is evaluated in Section 2.8.3. All results reported
here were based on the zero-one loss accuracy. Meaning that a classification is considered
successful only if the predicted gesture is exactly the one being made.

2.8.1 Generalization Experiment

We tested our system on 18 (11 men and 7 women) healthy subjects aged between 23 and
29 years old. The Myo armband was placed at a single but different location on the forearm,
depending on the user. Indeed, since the armband minimum circumference is 19.05 cm and
the test subjects had a forearm circumference between 15.5 and 24.0 cm (measured 5 cm
above the wrist), it would have been difficult to obtain the same forearm sensor placement
for each subject. Therefore, we set the armband at the minimum circumference and simply
slid it up until the forearm’s circumference matched the armband’s one. The placement of the
armband was thus directly dependent on the subject’s forearm circumference. Consequently,
it is important that the performance of our approach be as independent as possible from the
placement of the electrodes.

Training of the CNN was realized as described in Section 2.7.3. The average accuracy in
validation for the participants was 100% for the first stage and 97.71% for the second stage.
The participants were then asked to perform three tasks: (1) gesture accuracy, (2) cube holding
and (3) picking an object to place it in a specified zone. Details on these tasks are presented
below.

Gesture accuracy test (Task 1)

To evaluate the accuracy of the classifier during short-term muscle fatigue, the participants
were asked to hold one of seven gestures, chosen randomly, for 10 s. No rest was given between
each gesture. The test length was 5 min, yielding 30 trial-gestures. The participants were noted
on the amount of trial-gestures that they succeeded and given a score out of 30. A gesture was
considered a success if no more than two false consecutive or no more than four non-consecutive
miss-classifications occurred during a 10 s period. Transitioning between gestures was not
considered in this task. The average success rate was 93.14% over all participants.
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Cube holding (Task 2)

For the guidance of a robotic arm, the negative impact of miss-classification highly depends on
the nature of the error. Indeed, if the user wants to close his hand and the classifier interpreted
it as a neutral state, it is easy for the user to perform the gesture again. On the contrary, if
the user wants to be in a resting position while the robotic arm is holding a glass of water and
the resulting classification is hand open, serious consequences can be envisioned. The second
task thus tested the capability of a user to hold an object in the robotic hand while making
different gestures. The setup of this task was identical to Section 2.8.1 except that the gesture
open hand was not requested and that the duration was 120 s. All participant successfully
held the cube for 120 s during this task.

Picking and placing cube (Task 3)

In the final task, the participants were asked to pick a cube with the robotic arm and put it in
a specified location. The participants were first asked to perform the task with the normal
guidance system for the robotic arm (joystick). They were timed for both picking and dropping
the cube at the specified place. They then performed the same task with the Myo as the
guidance system. For both tasks, they had 10 min of training prior to performing their task. It
is important to note that the results that follow only aim at providing an order of magnitude
for the time required to complete the task. Indeed, since the participants always started with
the joystick, this gives an unfair advantage to the Myo armband system. The task is thus
not suited to truly compare them in terms of speed, but simply to show that the classifier is
sufficiently accurate to perform similarly to the joystick. The average time to perform the task
with the joystick was: 1 min 45 s and with the Myo armband: 1 min 33 s.

Results and discussions of the three tasks

None of the participants had experience with sEMG-based classifiers or guidance of a robotic
arm and had no known physical disabilities. Table 2.1 presents the general information on the
participants as well as the results for the first two tasks. The circumference of the forearm
was measured 5 cm above the wrist. The accuracy reported in Table 2.1 is the validation
accuracy (Section 2.7.3) for the two stages of the classifier. We can immediately see from
the validation accuracy that the classifier is always able to learn to distinguish between the 7
gestures. Participants generally achieved high performance on Task 1 and all were perfect on
Task 2.

Fig. 2.3 presents the time taken by the participant to complete Task 3. It is important to note
that one of the participants did not complete the Myo portion of task 3. The reason is that
the classifier performed too poorly for the precise manipulation required from Task 3. The
participant data from the other tasks are included in the statistics (76.66% for task 1 and
120 s for Task 2).
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Table 2.1 – Participants general information and first two tasks results

Woman Man
Average STD Average STD

Age (Year) 24.29 1.67 24.55 2.27
Forearm

circumference (cm) 17.0 1.36 19.73 2.85

stage 1
validation accuracy 100.00% 0.00% 100.00% 0.00%

stage 2
validation accuracy 97.61% 1.14% 97.76% 2.93%

Task 1 93.81% 5.17% 92.72% 6.49%
Task 2 (s) 120 0.0 120 0.0

Figure 2.3 – Box plot of the time taken to complete task 3 (picking and placing the cube). The
doted line represent the mean of the distribution.

For inexperienced users, Fig. 2.3 shows that the time needed to complete task 3 with the
joystick and the Myo are on the same order of magnitude. We cannot conclude that our
guidance scheme is more intuitive because the time difference is not statistically significant
(ANOVA p-value>0.05 ). We can however conclude that our system is robust enough to reliably
guide the robotic arm in precise tasks.

2.8.2 Speed test for a complex task

We specifically designed a speed challenge to evaluate the usefulness of the classifier in an
online situation and to provide a time comparison between the joystick and the Myo. The task
consisted in picking and placing three cubes consecutively, in a similar manner as described in
Section 2.8.1. The joystick times were achieved by an expert in guidance of JACO. The expert
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had no physical disability. Similarly, the Myo times were achieved by an experienced used with
the guiding system with no physical disability. The challenge was performed three times for
each guiding scheme. The reported results are the average over three runs. Fig. 2.4 compares
each sub-task of the challenge (picking and dropping the three cubes). A video accompanying
this article shows the task being performed with the Myo. It should be noted that the first
cube grabbed and then dropped correspond exactly to task 3 as described in Section 2.8.1.

Figure 2.4 – Average time taken to complete each section of the speed challenge. Both the
Myo and the joystick performed similarly, with the total average difference being less than 4 s
in favor of the joystick.

2.8.3 Classifier stability

In order to assess the stability of the classifier, a set up similar to the one described in
Section 2.8.1 was used. The classifier was first trained on a subject at time T=0. To assess the
accuracy of the classifier, the test subject had to hold a random gesture for 10 s was repeated
for a full 5 min, without rest. The test was conducted at least twice a day for six consecutive
days. No re-training was done after T=0 and the armband was approximately at the same
location on the forearm for each experiment (no marking to guide the user).

The accuracy was calculated by comparing the predicted gesture to the one requested by the
computer. This however added errors well above the accuracy found when guiding the robot
in real-time. Indeed, the time needed to read and start reacting to new instructions from the
computer are considered errors in this setup. This is not a factor in a realistic guidance setting,
where it is the user who decides when and which gesture to use. To mitigate this, we present
two sets of results named : transition and no transition experiment. The first one does not try
to alleviate the problems previously mentioned. The second simply does not consider the first
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1.2 s after a change of gesture. The purpose of this is to remove the reaction-time, from the
moment the subject receives the cue till the action is performed. Fig. 2.5 clearly shows that
only a small performance degradation can be observed 6 days after training the classifier.

The two dotted lines of Fig 2.5 correspond to the linear regression lines. The first data point
(at 1 hour) was not considered for the regression as it appears to be an outlier that would
unjustifiably bias the results in favor of our proposed method. The poor performance of the
first measurement, compared to the others, can be explained by the fact that the subject is
still learning the decision function of the classifier. Another 6-day trial with a new classifier
was run which yielded very similar results. Due to space consideration, they are not reported
here. The experiment shows that our classifier is robust to small physical variations such as
impedance of the skin changes from day to day and electrode placement inconsistency, muscle
activity change, etc. In fact, the classifier shown in the video and the results for the Myo
presented in Section 2.8.2 were achieved using a classifier that was trained 12 days prior to the
speed challenge. Showing that the same classifier can be used extremely efficiently even several
days after training.

Figure 2.5 – Average accuracy of the first 6-day trials. The blue hexagons represent the accuracy
over the complete 5- min period at different time after the training of the classifier. The orange
stars is the accuracy over the 5- min period when omitting the first 1.2 s after each new gesture.
The blue and orange doted line come from the linear regression of the blue hexagons and
orange stars data point respectively. The fact that the accuracy is almost constant through
the 6-day period indicate that the classifier is robust to long-term use.

To assess if short-term muscle fatigue has a significant impact on the accuracy of the classifier,
we examined its accuracy in 10 s intervals for a total of 5 min. We used the data obtained
from the two 6-day trials, where a new gesture was requested every 10 s, yielding a total of 30
gestures over the 5 min period. Then the average accuracy for every 10 s gesture, over all the
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two periods of six days, was combined. This enabled a clear view of any possible degradation
in the accuracy, as time elapsed in the 5 min sequence. It is clear from Fig. 2.6 that muscle
fatigue did not degrade the performance of the classifier in any noticeable way.

Figure 2.6 – Average accuracy over 5 min for the two 6-day trials. See Fig. 2.5 for the description
of the dotted lines, blue hexagons and orange stars. The fact that the accuracy does not change
over time shows that muscle fatigue is probably not adversely affecting our classifier.

The proposed classifier is thus not only accurate enough to perform complex and precise tasks,
but is also robust to short term muscle fatigue, small displacement of electrodes and long term
use without the need for recalibration. The average accuracy over the two 6-day trial is 97.9%.

2.9 Conclusion

In this work, a Myo armband was used to guide a robotic arm. The use of the armband
offers several advantages for the intended users (inexpensive, no preparation time, easy to use).
However the efficiency of the armband comes at the cost of quantity and quality of information.
One of the major accomplishments in this paper has been to show that one can compensate
for this lack of data quality with suitable machine learning approaches. Using the specified
CNN architecture with spectrograms as input, our system was able to achieve state of the art
results and obtain precise guidance of a 6DoF robotic arm using sEMG and orientation data
that rivals the guidance with the joystick. The efficacy of the classifier was established when
facing short-term muscle fatigue and long-term use achieving on average 97.9% during the two
6-day periods. The system was also shown to generalize effortlessly to different users.

Future work will focus on three main aspects. First, optimizing the CNN architecture in term
of parameters and pruning it will allow both faster training and inference from the system. The
presented approach will thus be more easily suitable for very low-power embedded hardware.
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Secondly, the data collected from the participants of this study will be used to build a classifier
that will require significantly less training data than presently required for a new user. To
achieve this we intend to make use of training based on domain-adaptation techniques, which
recover suitable information from one task and applies it to a similar one (new user). This
can be used in a deep learning setting [15]. Finally, the classifier will be tested on upper limb
amputees.

Acknowledgment

The authors would like to thank Alexandre Campeau-Lecours for sharing his expertise on
JACO and his participation in the speed challenge.

2.10 Bibliography

[1] S. Amsuss, L.P. Paredes, N. Rudigkeit, B. Graimann, M.J. Herrmann, and D. Farina.
Long term stability of surface emg pattern classification for prosthetic control recognition.
Engineering in Medicine and Biology Society (EMBC), pages 3622–3625, 2013.

[2] Manfredo Atzori, Matteo Cognolato, and Henning Müller. Deep learning with convolutional
neural networks applied to electromyography data: A resource for the classification of
movements for prosthetic hands. Frontiers in neurorobotics, 10:9, 2016.

[3] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard,
D. Warde-Farley, and Y.Bengio. Theano: new features and speed improvements. Deep
Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2010.

[4] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian,
D. Warde-Farley, and Y.Bengio. Theano: a CPU and GPU math expression compiler.
Proceedings of the Python for Scientific Computing Conference (SciPy), 2012.

[5] A. Boschmann and M. Platzner. Towards robust hd emg pattern recognition: Reducing
electrode displacement effect using structural similarity. IEEE EMBS conf., pages 4547–
4550, 2014.

[6] Steven W Brose, Douglas J Weber, Ben A Salatin, Garret G Grindle, Hongwu Wang,
Juan J Vazquez, and Rory A Cooper. The role of assistive robotics in the lives of persons
with disability. American Journal of Physical Medicine & Rehabilitation, 89(6):509–521,
2010.

[7] H. Cecotti and A. Graeser. Convolutional neural network with embedded fourier transform
for eeg classification. 19th International Conference on Pattern Recognition, pages 1–4,
2008.

37



[8] Y. Chen, T. Krishna, J. Emer, and V. Sze. Eyeriss: An energy-efficient reconfigurable
accelerator for deep convolutional neural networks. In IEEE International Solid-State
Circuits Conference, ISSCC 2016, Digest of Technical Papers, pages 262–263, 2016.

[9] Albert M Cook and Janice Miller Polgar. Essentials of assistive technologies. Elsevier
Health Sciences, 2014.

[10] K. Englehart and B. Hudgins. A robust, real-time control scheme for multifunction
myoelectric control. IEEE Transaction on Biomedical Engineering, 50(7):848–854, 2003.

[11] K. Englehart, B. Hudgins, and P.A. Parker. A wavelet-based continuous classification
scheme for multifunction myoelectric control. IEEE Transaction on Biomedical Engineering,
48(3):302–311, 2001.

[12] C. L. Fall, P. Turgeon, A. Campeau-Lecours, V. Maheu, M. Boukadoum, S. Roy, D. Mas-
sicotte, C. Gosselin, and B. Gosselin. Intuitive wireless control of a robotic arm for people
living with an upper body disability. IEEE EMBC conf, pages 4399–4402, 2015.

[13] D. Farina, N. Jiang, H. Rehbaum, A. Holobar, B. Graimann, H. Dietl, and O.C. Aszmann.
The extraction of neural information from the surface emg for the control of upper-limb
prostheses: Emerging avenues and challenges. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 22(4):797–809, 2014.

[14] T.R. Farrell and R.F. Weir. The optimal controller delay for myoelectric prostheses. IEEE
Transaction on Neural systems and rehabilitation engineering, 15(1):111–118, 2007.

[15] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand,
and V. Lempitsky. Domain-adversarial training of neural networks. JMLR, 17:1–35, 2016.

[16] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient
neural network. In Advances in Neural Information Processing Systems, pages 1135–1143,
2015.

[17] L.J. Hargrove, K. Englehart, and B. Hudgins. A comparison of surface and intramuscular
myoelectric signal classification. IEEE Transaction on Biomedical Engineering, 54(5):847–
853, 2007.

[18] G.E. Hinton, N. Srivastava, A.Krizhevsky, I. Sutskever, and R.R. Salakhutdinov. Im-
proving neural networks by preventing co-adaptation of feature detectors. arXiv preprint,
arXiv:1207.0580, 2012.

[19] B. Hudgins, P. Parker, and R.N. Scott. A new strategy for multifunction myoelectric
control. IEEE Transaction on Biomedical Engineering, 40(1):82–94, 1993.

38



[20] N. Jamalie and C. Sammut. Majority voting: Classification by tactile sensing using surface
texture. IEEE transactions on, Robotics, 27(3):508–521, 2011.

[21] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for
Python, 2001–. [Online; accessed 2016-02-28].

[22] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–444, 2015.

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 11(86):2278–2324, 1998.

[24] C.J. De Luca, L.D. Gilmore, M. Kuznetsov, and S.H. Roy. Filtering the surface emg
signal: Movement artifact and baseline noise contamination. Journal of Biomechanics,
43(8):1573–1579, 2010.

[25] M. Oskoei and H. Hu. Myoelectric control systems – a survey. Biomedical Signal Processing
and control, 2:275–294, 2007.

[26] Ki-Hee Park and Seong-Whan Lee. Movement intention decoding based on deep learning
for multiuser myoelectric interfaces. In 2016 4th International Winter Conference on
Brain-Computer Interface (BCI), pages 1–2. IEEE, 2016.

[27] B. Peerdeman, D. Boere, H. Witteveen, R. Huis in ’t Veld, H. Hermens, S. Stramigioli,
H. Rietman, P. Veltink, and S. Misra. Myoelectric forearm prostheses: State of the art
from a user-centered perspective. Journal of Rehabilitation Research & Development,
48(6):719–738, 2011.

[28] A. Phinyomark, S. Hirunviriya, C. Limsakul, and P. Phukpattaranont. Evaluation of
emg feature extraction for hand movement recognition based on euclidean distance and
standard deviation. IEEE International Conference on Computer Telecommunications
and Information Technology, pages 856–860, 2010.

[29] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu,
Tianqi Tang, Ningyi Xu, Sen Song, et al. Going deeper with embedded fpga platform
for convolutional neural network. In ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 26–35. ACM, 2016.

[30] T. N. Sainath, A. r. Mohamed, B. Kingsbury, and B. Ramabhadran. Deep convolutional
neural networks for lvcsr. IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 8614–8618, 2013.

[31] D.F. Stegeman and B.G. Lapatki B.U. Kleine. High-density surface emg: Techniques
and applications at a motor unit level. Biocybernetics and Biomedical Engineering, 32(3),
2012.

39



[32] T. Xueyan, L. Yunhui, L. Congyi, and S. Dong. Hand motion classification using a
multi-channel surface electromyography sensor. Sensors, pages 1130–1147, 2012.

[33] C. Yang, S. Chang, P. Liang, Z. Li, and C.Y. Su. Teleoperated robot writing using emg
signals. IEEE International Conference on Information and Automation, pages 2264–2269,
2015.

[34] D. Yang, W. Yang, Q. Huang, and H. Liu. Classification of multiple finger motions during
dynamic upper limb movements. IEEE Journal of Biomedical and Health Informatics,
PP(99):1–1, 2015.

[35] M.D. Zeiler. Adadelta: An adaptative learning rate method. arXiv preprint,
arXiv:1212.5701, 2012.

40



Chapter 3

Deep learning for electromyographic
hand gesture signal classification using
transfer learning.

3.1 Reference

Ulysse Côté-Allard, Cheikh Latyr Fall, Alexandre Drouin, Alexandre Campeau-Lecours, Clé-
ment Gosselin, Kyrre Glette, François Laviolette†, and Benoit Gosselin†. "Deep learning for
electromyographic hand gesture signal classification using transfer learning." IEEE Transactions
on Neural Systems and Rehabilitation Engineering 27, no. 4 (2019): 760-771.

†These authors share senior authorship

3.2 Context

This journal paper is the extended version of a conference paper [15] published at the IEEE
Systems, Man (SMC) flagship conference. The conference article received the best paper award
from the IEEE Systems, Man, and Cybernetics conference.

During the recording of the "pre-training" dataset used in this paper, and more specifically for
the robotic arm control experiments of the SMC’s conference paper, it became clear that a
major factor affecting the system’s usability came not from the sEMG interface, but from the
orientation control algorithm of the robot. Essentially, the frame-of-reference of robotic arm is
fixed within their end-effector. Meaning that inputting the command "up" can have drastically
different effect depending on how much the robotic arm’s wrist had rotated. Consequently, with
Prof Alexandre Campeau-Lecours, Dinh-Son Vu, Dr François Routhier, Prof Benoit Gosselin
and Prof Clément Gosselin, we proposed a new adaptive orientation control algorithm which
was shown to be more intuitive (and resulting in significantly less errors and control time) than
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the current standard. This work is presented in a conference paper [1] and expanded upon
in a journal paper [2]. The algorithm was subsequently employed for any new robotic arm
control within this thesis with great success. Note that while I share first co-authorship of the
conference paper, this work was too tangential to my thesis to be included as a chapter.

[1] Vu, Dinh-Son‡, Ulysse Côté Allard‡, Clément Gosselin, François Routhier, Benoit Gosselin,
and Alexandre Campeau-Lecours. "Intuitive adaptive orientation control of assistive robots for
people living with upper limb disabilities." In 2017 International Conference on Rehabilitation
Robotics (ICORR), pp. 795-800. IEEE, 2017.

‡These authors share first authorship

[2] Campeau-Lecours, Alexandre, Ulysse Côté-Allard, Dinh-Son Vu, François Routhier, Benoit
Gosselin, and Clément Gosselin. "Intuitive Adaptive Orientation Control for Enhanced
Human–Robot Interaction." IEEE Transactions on Robotics 35, no. 2 (2018): 509-520.

3.3 Résumé

Depuis plusieurs années, les algorithmes d’apprentissage profond sont devenus quasi-omniprésents
dans le domaine de l’apprentissage machine de par leur capacité inégalée à apprendre auto-
matiquement des caractéristiques discriminantes à partir de grandes quantités de données.
Cependant, dans le domaine de la reconnaissance des gestes basée sur l’électromyographie, les
algorithmes d’apprentissage profond sont rarement utilisés puisqu’ils nécessitent d’une seule
personne de générer des quantités importantes de données pour chaque nouvelle utilisation.

L’hypothèse de cet article est que des caractéristiques générales et informatives peuvent être
apprises à partir de grandes quantités de données générées en agrégeant les signaux de plusieurs
utilisateurs. Réduisant ainsi le temps nécessaire pour chaque individu à enregistrer de nouvelles
données, tout en améliorant la reconnaissance des mouvements du système. Cet article propose
donc un nouvel algorithme d’apprentissage par transfert appliqué sur les données agrégées des
utilisateurs, pour profiter de la capacité des algorithmes d’apprentissage profond d’apprendre
des caractéristiques discriminantes à partir d’un grand ensemble de données.

Deux ensembles de données provenant respectivement de 19 et 17 participants (le premier est
utilisé pour le préentraînement) ont été enregistrés pour ce travail grâce au Myo Armband.
Un troisième jeu de données provenant de la base de données NinaPro contenant les signaux
musculaires de dix participants enregistrés avec le Myo Armband est également utilisé.

Trois réseaux d’apprentissage profond utilisant trois modalités différentes (EMG brute, spec-
trogrammes et transformation par ondelettes continues (CWT)) sont testés sur le deuxième et
troisième ensemble de données. L’algorithme d’apprentissage par transfert proposé améliore
systématiquement et de manière significative les performances des trois réseaux sur les deux
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ensembles de données. L’algorithme atteint une précision en temps différé de 98.31% pour 7
gestes sur 17 participants pour le réseau basé sur les CWT et de 68.98% pour 18 gestes sur dix
participants pour le réseau recevant les données brutes.

Finalement, une étude de cas avec huit participants suggère que la rétroaction en temps
réel permet aux utilisateurs d’adapter leur stratégie d’activation musculaire, ce qui réduit la
dégradation de la performance du système dans le temps.

3.4 Abstract

In recent years, deep learning algorithms have become increasingly more prominent for their
unparalleled ability to automatically learn discriminant features from large amounts of data.
However, within the field of electromyography-based gesture recognition, deep learning algo-
rithms are seldom employed as they require an unreasonable amount of effort from a single
person, to generate tens of thousands of examples.

This work’s hypothesis is that general, informative features can be learned from the large
amounts of data generated by aggregating the signals of multiple users, thus reducing the
recording burden while enhancing gesture recognition. Consequently, this paper proposes
applying transfer learning on aggregated data from multiple users, while leveraging the capacity
of deep learning algorithms to learn discriminant features from large datasets. Two datasets
comprised of 19 and 17 able-bodied participants respectively (the first one is employed for
pre-training) were recorded for this work, using the Myo Armband. A third Myo Armband
dataset was taken from the NinaPro database and is comprised of 10 able-bodied participants.
Three different deep learning networks employing three different modalities as input (raw
EMG, Spectrograms and Continuous Wavelet Transform (CWT)) are tested on the second
and third dataset. The proposed transfer learning scheme is shown to systematically and
significantly enhance the performance for all three networks on the two datasets, achieving
an offline accuracy of 98.31% for 7 gestures over 17 participants for the CWT-based ConvNet
and 68.98% for 18 gestures over 10 participants for the raw EMG-based ConvNet. Finally, a
use-case study employing eight able-bodied participants suggests that real-time feedback allows
users to adapt their muscle activation strategy which reduces the degradation in accuracy
normally experienced over time.

3.5 Introduction

Robotics and artificial intelligence can be leveraged to increase the autonomy of people living
with disabilities. This is accomplished, in part, by enabling users to seamlessly interact with
robots to complete their daily tasks with increased independence. In the context of hand
prosthetic control, muscle activity provides an intuitive interface on which to perform hand
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gesture recognition [54]. This activity can be recorded by surface electromyography (sEMG),
a non-invasive technique widely adopted both in research and clinical settings. The sEMG
signals, which are non-stationary, represent the sum of subcutaneous motor action potentials
generated through muscular contraction [54]. Artificial intelligence can then be leveraged as
the bridge between sEMG signals and the prosthetic behavior.

The literature on sEMG-based gesture recognition primarily focuses on feature engineering,
with the goal of characterizing sEMG signals in a discriminative way [54, 58, 60]. Recently,
researchers have proposed deep learning approaches [4, 5, 19], shifting the paradigm from
feature engineering to feature learning. Regardless of the method employed, the end-goal
remains the improvement of the classifier’s robustness. One of the main factors for accurate
predictions, especially when working with deep learning algorithms, is the amount of training
data available. Hand gesture recognition creates a peculiar context where a single user cannot
realistically be expected to generate tens of thousands of examples in a single sitting. Large
amounts of data can however be obtained by aggregating the recordings of multiple participants,
thus fostering the conditions necessary to learn a general mapping of users’ sEMG signal.
This mapping might then facilitate the hand gestures’ discrimination task with new subjects.
Consequently, deep learning offers a particularly attractive context from which to develop
a Transfer Learning (TL) algorithm to leverage inter-user data by pre-training a model on
multiple subjects before training it on a new participant.

As such, the main contribution of this work is to present a new TL scheme employing a
convolutional network (ConvNet) to leverage inter-user data within the context of sEMG-based
gesture recognition. A previous work [15] has already shown that learning simultaneously
from multiple subjects significantly enhances the ConvNet’s performance whilst reducing the
size of the required training dataset typically seen with deep learning algorithms. This paper
expands upon the aforementioned conference paper’s work, improving the TL algorithm to
reduce its computational load and improving its performance. Additionally, three new ConvNet
architectures, employing three different input modalities, specifically designed for the robust
and efficient classification of sEMG signals are presented. The raw signal, short-time Fourier
transform-based spectrogram and Continuous Wavelet Transform (CWT) are considered for the
characterization of the sEMG signals to be fed to these ConvNets. To the best of the authors’
knowledge, this is the first time that CWTs are employed as features for the classification of
sEMG-based hand gesture recognition (although they have been proposed for the analysis of
myoelectric signals [41]). Another major contribution of this article is the publication of a
new sEMG-based gesture classification dataset comprised of 36 able-bodied participants. This
dataset and the implementation of the ConvNets along with their TL augmented version are
made readily available1. Finally, this paper further expands the aforementioned conference
paper by proposing a use-case experiment on the effect of real-time feedback on the online

1https://github.com/Giguelingueling/MyoArmbandDataset
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performance of a classifier without recalibration over a period of fourteen days. Note that, due
to the stochastic nature of the algorithms presented in this paper, unless stated otherwise, all
experiments are reported as an average of 20 runs.

This paper is organized as follows. An overview of the related work in hand gesture recog-
nition through deep learning and transfer learning/domain adaptation is given in Sec. 3.6.
Sec. 3.7 presents the proposed new hand gesture recognition dataset, with data acquisition
and processing details alongside an overview of the NinaPro DB5 dataset. A presentation of
the different state-of-the-art feature sets employed in this work is given in Sec. 3.8. Sec. 3.9
thoroughly describes the proposed networks’ architectures, while Sec. 6.8 presents the TL
algorithm used to augment said architecture. Moreover, comparisons with the state-of-the-art
in gesture recognition are given in Sec. 3.11. A real-time use-case experiment on the ability of
users to counteract signal drift from sEMG signals is presented in Sec. 3.12. Finally, results
are discussed in Sec. 3.13.

3.6 Related Work

sEMG signals can vary significantly between subjects, even when precisely controlling for
electrode placement [10]. Regardless, classifiers trained from a user can be applied to new
participants achieving slightly better than random performances [10] and high accuracy (85%
over 6 gestures) when augmented with TL on never before seen subjects [68]. As such,
sophisticated techniques have been proposed to leverage inter-user information. For example,
research has been done to find a projection of the feature space that bridges the gap between
an original subject and a new user [43, 12]. Several works have also proposed leveraging a
pre-trained model removing the need to simultaneously work with data from multiple users
[73, 55, 53]. These non-deep learning TL approaches showed important performance gains
compared to their non-augmented versions. Although, some of these gains might be due to the
baseline’s poorly optimized hyperparameters [30].

Short-Time Fourier Transform (STFT) have been sparsely employed in the last decades for
the classification of sEMG data [22, 75]. A possible reason for this limited interest in STFT is
that much of the research on sEMG-based gesture recognition focuses on designing feature
ensembles [58]. Because STFT on its own generates large amounts of features and are relatively
computationally expensive, they can be challenging to integrate with other feature types.
Additionally, STFTs have also been shown to be less accurate than Wavelet Transforms [22] on
their own for the classification of sEMG data. Recently however, STFT features, in the form
of spectrograms, have been applied as input feature space for the classification of sEMG data
by leveraging ConvNets [4, 19].

CWT features have been employed for electrocardiogram analysis [1], electroencephalogra-
phy [24] and EMG signal analysis, but mainly for lower limbs [40, 38]. Wavelet-based features
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have been used in the past for sEMG-based hand gesture recognition [20]. The features
employed however, are based on the Discrete Wavelet Transform [72] and the Wavelet Packet
Transform (WPT) [22] instead of the CWT. This preference might be due to the fact that both
DWT and WPT are less computationally expensive than the CWT and are thus better suited
to be integrated into an ensemble of features. Similarly to spectrograms however, CWT offers
an attractive image-like representation to leverage ConvNets for sEMG signal classification
and can now be efficiently implemented on embedded systems (see Appendix 3.B). To the best
of the authors’ knowledge, this is the first time that CWT is utilized for sEMG-based hand
gesture recognition.

Recently, ConvNets have started to be employed for hand gesture recognition using single
array [4, 5] and matrix [27] of electrodes. Additionally, other authors applied deep learning
in conjunction with domain adaptation techniques [19] but for inter-session classification as
opposed to the inter-subject context of this paper. A thorough overview of deep learning
techniques applied to EMG classification is given in [62]. To the best of our knowledge, this
paper, which is an extension of [15], is the first time inter-user data is leveraged through TL
for training deep learning algorithms on sEMG data.

3.7 sEMG datasets

3.7.1 Myo Dataset

One of the major contributions of this article is to provide a new, publicly available, sEMG-
based hand gesture recognition dataset, referred to as the Myo Dataset. This dataset contains
two distinct sub-datasets with the first one serving as the pre-training dataset and the second as
the evaluation dataset. The former, which is comprised of 19 able-bodied participants, should be
employed to build, validate and optimize classification techniques. The latter, comprised of 17
able-bodied participants, is utilized only for the final testing. To the best of our knowledge, this
is the largest dataset published utilizing the commercially available Myo Armband (Thalmic
Labs) and it is our hope that it will become a useful tool for the sEMG-based hand gesture
classification community.

The data acquisition protocol was approved by the Comités d’Éthique de la Recherche avec des
êtres humains de l’Université Laval (approbation number: 2017-026/21-02-2016) and informed
consent was obtained from all participants.

sEMG Recording Hardware

The electromyographic activity of each subject’s forearm was recorded with the Myo Armband;
an 8-channel, dry-electrode, low-sampling rate (200Hz ), low-cost consumer-grade sEMG
armband.
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The Myo is non-intrusive, as the dry-electrodes allow users to simply slip the bracelet on
without any preparation. Comparatively, gel-based electrodes require the shaving and washing
of the skin to obtain optimal contact between the subject’s skin and electrodes. Unfortunately,
the convenience of the Myo Armband comes with limitations regarding the quality and quantity
of the sEMG signals that are collected. Indeed, dry electrodes, such as the ones employed in
the Myo, are less accurate and robust to motion artifact than gel-based ones [70]. Additionally,
while the recommended frequency range of sEMG signals is 5-500Hz [50] requiring a sampling
frequency greater or equal to 1000Hz, the Myo Armband is limited to 200Hz. This information
loss was shown to significantly impact the ability of various classifiers to differentiate between
hand gestures [59]. As such, robust and adequate classification techniques are needed to process
the collected signals accurately.

Time-Window Length

For real-time control in a closed loop, input latency is an important factor to consider. A
maximum latency of 300ms was first recommended in [36]. Even though more recent studies
suggest that the latency should optimally be kept between 100-250ms [23, 69], the performance
of the classifier should take priority over speed [23, 57]. As is the case in [15], a window size of
260ms was selected to achieve a reasonable number of samples between each prediction due to
the low frequency of the Myo.

Labeled Data Acquisition Protocol

The seven hand/wrist gestures considered in this work are depicted in Fig. 3.1. For both
sub-datasets, the labeled data was created by requiring the user to hold each gesture for five
seconds. The data recording was manually started by a researcher only once the participant
correctly held the requested gesture. Generally, five seconds was given to the user between each
gesture. This rest period was not recorded and as a result, the final dataset is balanced for all
classes. The recording of the full seven gestures for five seconds is referred to as a cycle, with
four cycles forming a round. In the case of the pre-training dataset, a single round is available
per subject. For the evaluation dataset three rounds are available with the first round utilized
for training (i.e. 140s per participant) and the last two for testing (i.e. 240s per participant).

During recording, participants were instructed to stand up and have their forearm parallel to
the floor and supported by themselves. For each of them, the armband was systematically
tightened to its maximum and slid up the user’s forearm, until the circumference of the armband
matched that of the forearm. This was done in an effort to reduce bias from the researchers,
and to emulate the wide variety of armband positions that end-users without prior knowledge
of optimal electrode placement might use (see Fig. 3.2). While the electrode placement was
not controlled for, the orientation of the armband was always such that the blue light bar on
the Myo was facing towards the hand of the subject. Note that this is the case for both left
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Figure 3.1 – The 7 hand/wrist gestures considered in the Myo Dataset.

and right handed subjects. The raw sEMG data of the Myo is what is made available with
this dataset.

Figure 3.2 – Examples of the range of armband placements on the subjects’ forearm

Signal processing must be applied to efficiently train a classifier on the data recorded by the
Myo armband. The data is first separated by applying sliding windows of 52 samples (260ms)
with an overlap of 235ms (i.e. 7x190 samples for one cycle (5s of data)). Employing windows
of 260ms allows 40ms for the pre-processing and classification process, while still staying
within the 300ms target [36]. Note that utilizing sliding windows is viewed as a form of data
augmentation in the present context (see Appendix 3.A). This is done for each gesture in each
cycle on each of the eight channels. As such, in the dataset, an example corresponds to the
eight windows associated with their respective eight channels. From there, the processing
depends on the classification techniques employed which will be detailed in Sec. 3.8 and 3.9.

3.7.2 NinaPro DB5

The NinaPro DB5 is a dataset built to benchmark sEMG-based gesture recognition algo-
rithms [63]. This dataset, which was recorded with the Myo Armband, contains data from
10 able-bodied participants performing a total of 53 different movements (including neutral)
divided into three exercise sets. The second exercise set, which contains 17 gestures + neutral
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gesture, is of particular interest, as it includes all the gestures considered so far in this work.
The 11 additional gestures which are presented in [6] include wrist pronation, wrist supination
and diverse finger extension amongst others. While this particular dataset was recorded with
two Myo Armband, only the lower armband is considered as to allow direct comparison to the
preceding dataset.

Data Acquisition and Processing

Each participant was asked to hold a gesture for five seconds followed by three seconds of
neutral gesture and to repeat this action five more times (total of six repetitions). This
procedure was repeated for all the movements contained within the dataset. The first four
repetitions serve as the training set (20s per gesture) and the last two (10s per gesture) as
the test set for each gesture. Note that the rest movement (i.e. neutral gesture) was treated
identically as the other gestures (i.e. first four repetitions for training (12s) and the next two
for testing (6s)).

All data processing (e.g. window size, window overlap) are exactly as described in the previous
sections.

3.8 Classic sEMG Classification

Traditionally, one of the most researched aspects of sEMG-based gesture recognition comes
from feature engineering (i.e. manually finding a representation for sEMG signals that allows
easy differentiation between gestures). Over the years, several efficient combinations of features
both in the time and frequency domain have been proposed [61, 21, 7, 44]. This section presents
the feature sets used in this work. See Appendix 3.C for a description of each feature.

3.8.1 Feature Sets

As this paper’s main purpose is to present a deep learning-based TL approach to the problem
of sEMG hand gesture recognition, contextualizing the performance of the proposed algorithms
within the current state-of-the-art is essential. As such, four different feature sets were taken
from the literature to serve as a comparison basis. The four feature sets will be tested on
five of the most common classifiers employed for sEMG pattern recognition: Support Vector
Machine (SVM) [7], Artificial Neural Networks (ANN) [2], Random Forest (RF) [7], K-Nearest
Neighbors (KNN) [7] and Linear Discriminant Analysis (LDA) [44]. Hyperparameters for
each classifier were selected by employing three fold cross-validation alongside random search,
testing 50 different combinations of hyperparameters for each participant’s dataset for each
classifier. The hyperparameters considered for each classifier are presented in Appendix 3.D.

As is often the case, dimensionality reduction is applied [54, 60, 45]. LDA was chosen to perform
feature projection as it is computationally inexpensive, devoid of hyperparameters and was
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shown to allow for robust classification accuracy for sEMG-based gesture recognition [44, 81].
A comparison of the accuracy obtained with and without dimensionality reduction on the Myo
Dataset is given in Appendix 3.E. This comparison shows that in the vast majority of cases,
the dimensionality reduction both reduced the computational load and enhanced the average
performances of the feature sets.

The implementation employed for all the classifiers comes from the scikit-learn (v.1.13.1)
Python package [56]. The four feature sets employed for comparison purposes are:

Time Domain Features (TD) [21]

This set of features, which is probably the most commonly employed in the literature [59],
often serves as the basis for bigger feature sets [54, 44, 63]. As such, TD is particularly well
suited to serve as a baseline comparison for new classification techniques. The four features are:
Mean Absolute Value (MAV), Zero Crossing (ZC), Slope Sign Changes (SSC) and Waveform
Length (WL).

Enhanced TD [44]

This set of features includes the TD features in combination with Skewness, Root Mean Square
(RMS), Integrated EMG (IEMG), Autoregression Coefficients (AR) (P=11) and the Hjorth
Parameters. It was shown to achieve excellent performances on a setup similar to the one
employed in this article.

Nina Pro Features [7, 63]

This set of features was selected as it was found to perform the best in the article introducing the
NinaPro dataset. The set consists of the the following features: RMS, Marginal Discrete Wavelet
Transform (mDWT) (wavelet=db7, S=3), EMG Histogram (HIST) (bins=20, threshold=3σ)
and the TD features.

SampEn Pipeline [61]

This last feature combination was selected among fifty features that were evaluated and ranked
to find the most discriminating ones. The SampEn feature was ranked first amongst all the
others. The best multi-features set found was composed of: SampEn(m=2, r=0.2σ), Cepstral
Coefficient (order=4), RMS and WL.

3.9 Deep Learning Classifiers Overview

ConvNets tend to be computationally expensive and thus ill-suited for embedded systems,
such as those required when guiding a prosthetic. However, in recent years, algorithmic
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improvements and new hardware architectures have allowed for complex networks to run on
very low power systems (see Appendix 3.B). As previously mentioned, the inherent limitations
of sEMG-based gesture recognition force the proposed ConvNets to contend with a limited
amount of data from any single individual. To address the over-fitting issue, Monte Carlo
Dropout (MC Dropout) [26], Batch Normalization (BN) [37], and early stopping are employed.

3.9.1 Batch Normalization

BN is a technique that accelerates training and provides some form of regularization with
the aims of maintaining a standard distribution of hidden layer activation values throughout
training [37]. BN accomplishes this by normalizing the mean and variance of each dimension of
a batch of examples. To achieve this, a linear transformation based on two learned parameters
is applied to each dimension. This process is done independently for each layer of the network.
Once training is completed, the whole dataset is fed through the network one last time
to compute the final normalization parameters in a layer-wise fashion. At test time, these
parameters are applied to normalize the layer activations. BN was shown to yield faster training
times whilst allowing better generalization.

3.9.2 Proposed Convolutional Network Architectures

Videos are a representation of how spatial information (images) change through time. Previous
works have combined this representation with ConvNets to address classification tasks [8, 42].
One such successful algorithm is the slow-fusion model [42] (see Fig. 3.3).

Figure 3.3 – Typical slow-fusion ConvNet architecture [42]. In this graph, the input (represented
by grey rectangles) is a video (i.e. a sequence of images). The model separates the temporal
part of the examples into disconnected parallel layers, which are then slowly fused together
throughout the network.

When calculating the spectrogram of a signal, the information is structured in a Time x Fre-
quency fashion (Time x Scale for CWT). When the signal comes from an array of electrodes,
these examples can naturally be structured as Time x Spatial x Frequency (Time x Spa-
tial x Scale for CWT). As such, the motivation for using a slow-fusion architecture based
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ConvNet in this work is due to the similarities between videos data and the proposed charac-
terization of sEMG signals, as both representations have analogous structures (i.e. Time x Spa-
tial x Spatial for videos) and can describe non-stationary information. Additionally, the
proposed architectures inspired by the slow-fusion model were by far the most successful of the
ones tried on the pre-training dataset.

ConvNet for Spectrograms

The spectrograms, which are fed to the ConvNet, were calculated with Hann windows of length
28 and an overlap of 20 yielding a matrix of 4x15. The first frequency band was removed in an
effort to reduce baseline drift and motion artifact. As the armband features eight channels,
eight such spectrograms were calculated, yielding a final matrix of 4x8x14 (Time x Channel x
Frequency).

The implementation of the spectrogram ConvNet architecture (see Fig. 3.4) was created with
Theano [3] and Lasagne [17]. As usual in deep learning, the architecture was created in a trial
and error process taking inspiration from previous architectures (primarily [4, 19, 42, 15]).
The non-linear activation functions employed are the parametric exponential linear unit
(PELU) [74] and PReLU [32]. ADAM [46] is utilized for the optimization of the ConvNet
(learning rate=0.00681292). The deactivation rate for MC Dropout is set at 0.5 and the batch
size at 128. Finally, to further reduce overfitting, early stopping is employed by randomly
removing 10% of the data from the training and using it as a validation set at the beginning of
the optimization process. Note that learning rate annealing is applied with a factor of 5 when
the validation loss stops improving. The training stops when two consecutive decays occurs
with no network performance amelioration on the validation set. All hyperparameter values
were found by a random search on the pre-training dataset.

Figure 3.4 – The proposed spectrogram ConvNet architecture to leverage spectrogram examples
employing 67 179 learnable parameters. To allow the slow fusion process, the input is first
separated equally into two parts with respect to the time axis. The two branches are then
fused together by element-wise summing the feature maps together. In this figure, Conv refer
to Convolution and F.C. to Fully Connected layers.
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ConvNet for Continuous Wavelet Transforms

The architecture for the CWT ConvNet, (Fig. 3.5), was built in a similar fashion as the
spectrogram ConvNet one. Both the Morlet and Mexican Hat wavelet were considered for
this work due to their previous application in EMG-related work [65, 66]. In the end, the
Mexican Hat wavelet was selected, as it was the best performing during cross-validation on
the pre-training dataset. The CWTs were calculated with 32 scales yielding a 32x52 matrix.
Downsampling is then applied at a factor of 0.25 employing spline interpolation of order 0
to reduce the computational load of the ConvNet during training and inference. Following
downsampling, similarly to the spectrogram, the last row of the calculated CWT was removed
as to reduce baseline drift and motion artifact. Additionally, the last column of the calculated
CWT was also removed as to provide an even number of time-columns from which to perform
the slow-fusion process. The final matrix shape is thus 12x8x7 (i.e. Time x Channel x Scale).
The MC Dropout deactivation rate, batch size, optimization algorithm, and activation functions
remained unchanged. The learning rate was set at 0.0879923 (found by cross-validation).

Figure 3.5 – The proposed CWT ConvNet architecture to leverage CWT examples using 30
219 learnable parameters. To allow the slow fusion process, the input is first separated equally
into four parts with respect to the time axis. The four branches are then slowly fused together
by element-wise summing the feature maps together. In this figure, Conv refers to Convolution
and F.C. to Fully Connected layers.

ConvNet for raw EMG

A third ConvNet architecture taking the raw EMG signal as input is also considered. This
network will help assess if employing time-frequency features lead to sufficient gains in accuracy
performance to justify the increase in computational cost. As the raw EMG represents a
completely different modality, a new type of architecture must be employed. To reduce bias
from the authors as much as possible, the architecture considered is the one presented in [83].
The raw ConvNet architecture can be seen in Fig. 3.6. This architecture was selected as
it was also designed to classify a hand gesture dataset employing the Myo Armband. The
architecture implementation (in PyTorch v.0.4.1) is exactly as described in [83] except for
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the learning rate (=1.1288378916846883e− 5) which was found by cross-validation (tested 20
uniformly distributed values between 1e− 6 to 1e− 1 on a logarithm scale) and extending the
length of the window size as to match with the rest of this manuscript. The raw ConvNet is

Figure 3.6 – The raw ConvNet architecture to leverage raw EMG signals. In this figure, Conv
refers to Convolution and F.C. to Fully Connected layers.

further enhanced by introducing a second convolutional and pooling layer as well as adding
dropout, BN, replacing RELU activation function with PReLU and using ADAM (learning
rate=0.002335721469090121) as the optimizer. The enhanced raw ConvNet ’s architecture,
which is shown in Fig. 3.7, achieves an average accuracy of 97.88% compared to 94.85% for
the raw ConvNet. Consequently, all experiments using raw emg as input will employ the raw
enhanced ConvNet.

Figure 3.7 – The enhanced raw ConvNet architecture using 549 091 learnable parameters. In
this figure, Conv refers to Convolution and F.C. to Fully Connected layers.

3.10 Transfer Learning

One of the main advantages of deep learning comes from its ability to leverage large amounts
of data for learning. As it would be too time-consuming for a single individual to record tens
of thousands of examples, this work proposes to aggregate the data of multiple individuals.
The main challenge thus becomes to find a way to leverage data from multiple users, with the
objective of achieving higher accuracy with less data. TL techniques are well suited for such a
task, allowing the ConvNets to generate more general and robust features that can be applied
to a new subject’s sEMG activity.

As the data recording was purposefully as unconstrained as possible, the armband’s orientation
from one subject to another can vary widely. As such, to allow for the use of TL, automatic
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alignment is a necessary first step. The alignment for each subject was made by identifying the
most active channel (calculated using the IEMG feature) for each gesture on the first subject.
On subsequent subjects, the channels were then circularly shifted until their activation for each
gesture matched those of the first subject as closely as possible.

3.10.1 Progressive Neural Networks

Fine-tuning is the most prevalent TL technique in deep learning [9, 78]. It consists of training
a model on a source domain (abundance of labeled data) and using the trained weights
as a starting point when presented with a new task. However, fine-tuning can suffer from
catastrophic forgetting [67], where relevant and important features learned during pre-training
are lost on the target domain (i.e. new task). Moreover, by design, fine-tuning is ill-suited
when significant differences exist between the source and the target, as it can bias the network
into poorly adapted features for the task at hand. Progressive Neural Networks (PNN) [67]
attempt to address these issues by pre-training a model on the source domain and freezing
its weights. When a new task appears, a new network, with random initialization, is created
and connected in a layer-wise fashion to the original network. This connection is done via
non-linear lateral connections (See [67] for details).

3.10.2 Adaptive Batch Normalization

In opposition to the PNN architecture, which uses a different network for the source and the
target, AdaBatch employs the same network for both tasks. The TL occurs by freezing all the
network’s weights (learned during pre-training) when training on the target, except for the
parameters associated with BN. The hypothesis behind this technique is that the label-related
information (i.e. gestures) rests in the network model weights whereas the domain-related
information (i.e. subjects) is stored in their BN statistic. In the present context, this idea can be
generalized by applying a multi-stream AdaBatch scheme [19]. Instead of employing one Source
Network per subject during pre-training, a single network is shared across all participants.
However, the BN statistics from each subject are calculated independently from one another,
allowing the ConvNet to extract more general and robust features across all participants. As
such, when training the source network, the data from all subjects are aggregated and fed
to the network together. It is important to note that each training batch is comprised solely
of examples that belong to a single participant. This allows the update of the participant’s
corresponding BN statistic.

3.10.3 Proposed Transfer Learning Architecture

The main tenet behind TL is that similar tasks can be completed in similar ways. The difficulty
in this paper’s context is then to learn a mapping between the source and target task as to
leverage information learned during pre-training. Training one network per source-task (i.e.
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per participant) for the PNN is not scalable in the present context. However, by training
a Source Network (presented in Sec. 3.9) shared across all participants of the pre-training
dataset with the multi-stream AdaBatch and adding only a second network for the target task
using the PNN architecture, the scaling problem in the current context vanishes. This second
network will hereafter be referred to as the Second Network. The architecture of the Second
Network is almost identical to the Source Network. The difference being in the activation
functions employed. The Source Network leveraged a combination of PReLU and PELU,
whereas the Second Network only employed PELU. This architecture choice was made through
trial and error and cross-validation on the pre-training dataset. Additionally, the weights of
both networks are trained and initialized independently. During pre-training, only the Source
Network is trained to represent the information of all the participants in the pre-training
dataset. The parameters of the Source Network are then frozen once pre-training is completed,
except for the BN parameters as they represent the domain-related information and thus must
retain the ability to adapt to new users.

Due to the application of the multi-stream AdaBatch scheme, the source task in the present
context is to learn the general mapping between muscle activity and gestures. One can see
the problem of learning such mapping between the target and the source task as learning a
residual of the source task. For this reason, the Source Network shares information with the
Second Network through an element-wise summation in a layer-by-layer fashion (see Fig. 3.8).
The idea behind the merging of information through element-wise summation is two-fold.
First, compared to concatenating the features maps (as in [15]) or employing non-linear lateral
connections (like in [67]), element-wise summation minimizes the computational impact of
connecting the Source Network and the Second Network together. Second, this provides a
mechanism that fosters residual learning as inspired by Residual Networks [33]. Thus, the
Second Network only needs to learn weights that express the difference between the new target
and source task. All outputs from the Source Network layers to the Second Network are
multiplied by learnable coefficients before the sum-connection. This scalar layer provides
an easy mechanism to neuter the Source Network’s influence on a layer-wise level. This is
particularly useful if the new target task is so different that for some layers the information
from the Source Network actually hinders learning. Note that a single-stream scheme (i.e. all
subjects share statistics and BN parameters are also frozen on the Source Network) was also
tried. As expected, this scheme’s performances started to rapidly worsen as the number of
source participants augmented, lending more credence to the initial AdaBatch hypothesis.

The combination of the Source Network and Second Network will hereafter be referred to as
the Target Network. An overview of the final proposed architecture is presented in Fig. 3.8.
During training of the Source Network (i.e. pre-training), MC Dropout rate is set at 35%
and when training the Target Network the rate is set at 50%. Note that different architecture
choices for the Source Network and Second Network were required to augment the performance
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of the system as a whole. This seems to indicate that the two tasks (i.e. learning a general
mapping of hand gestures and learning a specific mapping), might be different enough that
even greater differentiation through specialization of the two networks might increase the
performance further.

Figure 3.8 – The PNN-inspired architecture. This figure represents the case with the spec-
trogram ConvNet. Note that the TL behavior is the same for the Raw-based or CWT-based
ConvNet. C1,2,3 and F.C.4,5 correspond to the three stages of convolutions and two stages
of fully connected layers respectively. The Si (i=1..5) boxes represent a layer that scales its
inputs by learned coefficients. The number of learned coefficients in one layer is the number of
channels or the number of neurons for the convolutional and fully connected layers respectively.
For clarity’s sake, the slow fusion aspect is omitted from the representation although they
are present for both the spectrogram and CWT-based ConvNet). The + boxes represent the
merging through an element-wise summation of the ConvNets’ corresponding layers.

3.11 Classifier Comparison

3.11.1 Myo Dataset

All pre-trainings in this section were done on the pre-training dataset and all training (including
for the traditional machine learning algorithms) were done on the first round of the evaluation
dataset.

Comparison with Transfer Learning

Considering each participant as a separate dataset allows for the application of the one-tail
Wilcoxon signed-rank test [76] (n = 17). Table 3.1 shows a comparison of each ConvNet
with their TL augmented version. Accuracies are given for one, two, three and four cycles of
training.

Comparison with State of the art

A comparison between the proposed CWT-based ConvNet and a variety of classifiers trained
on the features sets presented in Sec. 3.8.1 is given in Table 3.2.
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Table 3.1 – Classification accuracy of the ConvNets on the Evaluation Dataset with respect to
the number of training cycles performed.

Raw Raw + TL Spectrogram Spectrogram + TL CWT CWT + TL
4 Cycles 97.08% 97.39% 97.14% 97.85% 97.95% 98.31%
STD 4.94% 4.07% 2.85% 2.45% 2.49% 2.16%

H0 (p-value) 0 (0.02187) - 0 (0.00030) - 0 (0.00647) -
3 Cycles 96.22% 96.95% 96.33% 97.40% 97.22% 97.82%
STD 6.49% 4.88% 3.49% 2.91% 3.46% 2.41%

H0 (p-value) 0 (0.00155) - 0 (0.00018) - 0 (0.00113) -
2 Cycles 94.53% 95.49% 94.19% 96.05% 95.17% 96.63%
STD 9.63% 7.26% 5.95% 6.00% 5.77% 4.54%

H0 (p-value) 0 (0.00430) - 0 (0.00015) - 0 (0.00030) -
1 Cycle 89.04% 92.46% 88.51% 93.93% 89.02% 94.69%
STD 10.63% 7.79% 8.37% 6.56% 10.24% 5.58%

H0 (p-value) 0 (0.00018) - 0 (0.00015) - 0 (0.00015) -
* The one-tail Wilcoxon signed rank test is applied to compare the ConvNet enhanced with the
proposed TL algorithm to their non-augmented counterpart. Null hypothesis is rejected when

H0 = 0 (p < 0.05).
**The STD represents the pooled standard variation in accuracy for the 20 runs over the 17

participants.

Table 3.2 – Classifiers comparison on the Evaluation Dataset with respect to the number of
training cycles performed.

TD Enhanced TD Nina Pro SampEn Pipeline CWT CWT + TL
4 Cycles 97.61% (LDA) 98.14% (LDA) 97.59% (LDA) 97.72% (LDA) 97.95% 98.31%
STD 2.63% 2.21% 2.74% 1.98% 2.49% 2.16%

Friedman Rank 3.94 2.71 4.29 3.47 3.94 2.65
H0 1 1 1 1 1 -

3 Cycles 96.33% (KNN) 97.33% (LDA) 96.76% (KNN) 96.87% (KNN) 97.22% 97.82%
STD 6.11% 3.24% 3.85% 5.06% 3.46% 2.41%

Friedman Rank 4.41 2.77 4.05 3.53 3.94 2.29
H0 0 (0.00483) 1 0 (0.02383) 1 0 (0.03080) -

2 Cycles 94.12% (KNN) 94.79% (LDA) 94.23% (KNN) 94.68% (KNN) 95.17% 96.63%
STD 9.08% 7.82% 7.49% 8.31% 5.77% 4.54%

Friedman Rank 4.41 3.24 4.41 3.29 3.65 2.00
H0 (adjusted p-value) 0 (0.00085) 1 0 (0.00085) 1 0 (0.03080) -

1 Cycle 90,77% (KNN) 91.25% (LDA) 90.21% (LDA) 91.66% (KNN) 89.02% 94.69%
STD 9.04% 9.44% 7.73% 8.74% 10.24% 5.58%

Friedman Rank 3.71 3.41 4.41 3.05 4.88 1.53
H0 (adjusted p-value) 0 (0.00208) 0 (0.00670) 0 (0.00003) 0 (0.01715) 0 (<0.00001) -

*For brevity’s sake, only the best performing classifier for each feature set in each cycle is
reported (indicated in parenthesis).

**The STD represents the pooled standard variation in accuracy for the 20 runs over the 17
participants.

***The Friedman Ranking Test followed by the Holm’s post-hoc test is performed.
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As suggested in [16], a two-step procedure is employed to compare the deep learning algorithms
with the current state-of-the-art. First, Friedman’s test ranks the algorithms amongst each
other. Then, Holm’s post-hoc test is applied (n = 17) using the best ranked method as a
comparison basis.

3.11.2 NinaPro Dataset

Comparison with Transfer Learning

Performance of the proposed ConvNet architecture alongside their TL augmented versions
are investigated on the NinaPro DB5. As no specific pre-training dataset is available for the
NinaPro DB5, the pre-training for each participant is done employing the training sets of the
remaining nine participants. Table 3.3 shows the average accuracy over the 10 participants of
the NinaPro DB5 for one to four cycles. Similarly to Sec. 3.11.1, the one-tail Wilcoxon Signed
rank test is performed for each cycle between each ConvNet and their TL augmented version.

Table 3.3 – Classification accuracy of the ConvNets on the NinaPro DB5 with respect to the
number of training cycles performed.

Raw Raw + TL Spectrogram Spectrogram + TL CWT CWT + TL
4 Repetitions 66.32% 68.98% 63.60% 65.10% 61.89% 65.57%

STD 3.94% 4.46% 3.94% 3.99% 4.12% 3.68%
H0 (p-value) 0 (0.00253) - 0 (0.00253) - 0 (0.00253) -
3 Repetitions 61.91% 65.16% 60.09% 61.70% 58.37% 62.21%

STD 3.94% 4.46% 4.03% 4.29% 4.19% 3.93%
H0 (p-value) 0 (0.00253) - 0 (0.00253) - 0 (0.00253) -
2 Repetitions 55.67% 60.12% 55.35% 57.19% 53.32% 57.53%

STD 4.38% 4.79% 4.50% 4.71% 3.72% 3.69%
H0 (p-value) 0 (0.00253) - 0 (0.00253) - 0 (0.00253) -
1 Repetitions 46.06% 49.41% 45.59% 47.39% 42.47% 48.33%

STD 6.09% 5.82% 5.58% 5.30% 7.04% 5.07%
H0 (p-value) 0 (0.00467) - 0 (0.00467) - 0 (0.00253) -
* The Wilcoxon signed rank test is applied to compare the ConvNet enhanced with the

proposed TL algorithm to their non-augmented counterpart. Null hypothesis is rejected when
H0 = 0 (p < 0.05).

**The STD represents the pooled standard variation in accuracy for the 20 runs over the 17
participants.

Comparison with State of the art

Similarly to Sec. 3.11.1, a comparison between the TL-augmented ConvNet and the traditional
classifier trained on the state-of-the-art feature set is given in Table 3.4. The accuracies are
given for one, two, three and four cycles of training. A two-step statistical test with the
Friedman test as the first step and Holm post-hoc as the second step is again employed.
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Table 3.4 – Classifiers Comparison on the NinaPro DB5 with respect to the number of
repetitions used during training.

TD Enhanced TD Nina Pro SampEn Pipeline Raw Raw + TL
4 Repetitions 59.91% (RF) 59.57% (RF) 56.72% (RF) 62.30% (RF) 66.32% 68.98%

STD 3.50% 4.43% 4.01% 3.94% 3.77% 4.09%
Friedman Rank 4.30 4.60 6.00 3.00 2.10 1.00

H0 (Adjusted p-value) 0 (0.00024) 0 (0.00007) 0 (<0.00001) 0 (0.03365) 1 -
3 Repetitions 55.73% (RF) 55.32% (RF) 52.33% (RF) 58.24% (RF) 61.91% 65.16%

STD 3.75% 4.48% 4.63% 4.22% 3.94% 4.46%
Friedman Rank 4.40 4.60 6.00 3.00 2.00 1.00

H0 (Adjusted p-value) 0 (0.00014) 0 (0.00007) 0 (<0.00001) 0 (0.03365) 1 -
2 Repetitions 50.85% (RF) 50.08% (LDA) 46.85% (LDA) 53.00% (RF) 55.65% 60.12%

STD 4.29% 4.63% 4.81% 3.85% 4.38% 4.79%
Friedman Rank 4.20 4.60 6.00 3.10 2.10 1.00

H0 (Adjusted p-value) 0 (0.00039) 0 (0.00007) 0 (<0.00001) 0 (0.02415) 1 -
1 Repetitions 40.70% (RF) 40.86% (LDA) 37.60% (LDA) 42.26% (LDA) 46.06% 49.41%

STD 5.84% 6.91% 6.67% 5.78% 6.09% 5.82%
Friedman Rank 4.30 4.30 5.80 3.50 2.00 1.10

H0 (Adjusted p-value) 0 (0.00052) 0 (0.00052) 0 (<0.00001) 0 (0.00825) 1 -

*For brevity’s sake, only the best performing classifier for each feature set is reported
(indicated in parenthesis).

**The STD represents the pooled standard variation in accuracy for the 20 runs over the 17
participants.

***The Friedman Ranking Test followed by the Holm’s post-hoc test is performed.

Out-of-Sample Gestures

A final test involving the NinaPro DB5 was conducted to evaluate the impact on the proposed
TL algorithm when the target is comprised solely of out-of-sample gestures (i.e. never-seen-
before gestures). To do so, the proposed CWT ConvNet was trained and evaluated on the
training and test set of the NinaPro DB5 as described before, but considering only the gestures
that were absent from the pre-training dataset (11 total). The CWT ConvNet was then
compared to its TL augmented version which was pre-trained on the pre-training dataset.
Fig. 3.9 presents the accuracies obtained for the classifiers with different number of repetitions
employed for training. The difference in accuracy is considered statistically significant by the
one-tail Wilcoxon Signed rank test for all cycles of training. Note that, similar, statistically
significant results were obtained for the raw-based and spectrogram-based ConvNets.

3.12 Real-Time Classification and Medium Term
Performances (case study)

This last experiment section proposes a use-case study of the online (i.e. real-time) performance
of the classifier over a period of 14 days for eight able-bodied participants. In previous literature,
it has been shown that, when no re-calibration occur, the performance of a classifier degrades
over time due to the non-stationary property of sEMG signals [48]. The main goal of this
use-case experiment is to evaluate if users are able to self-adapt and improve the way they
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Figure 3.9 – Classification accuracy of the CWT-based ConvNets on the NinaPro DB5 with
respect to the number of repetitions employed during training. The pre-training was done
using the pre-training dataset. Training and testing only considered the 11 gestures from the
NinaPro DB5 not included in the pre-training. The error bars correspond to the STD across
all ten participants.

perform gestures based on visual feedback from complex classifiers (e.g. CWT+TL), thus
reducing the expected classification degradation.

To achieve this, each participant recorded a training set as described in Sec. 3.7. Then, over
the next fourteen days, a daily session was recorded based on the participant’s availability. A
session consisted of holding a set of 30 randomly selected gestures (among the seven shown in
Fig. 3.1) for ten seconds each, resulting in five minutes of continuous sEMG data. Note that
to be more realistic, the participants began by placing the armband themselves, leading to
slight armband position variations between sessions.

The eight participants were randomly separated into two equal groups. The first group, referred
to as the Feedback group, received real-time feedback on the gesture predicted by the classifier
in the form of text displayed on a computer screen. The second group, referred to as the
Without Feedback group, did not receive classifier feedback. The classifier employed in this
experiment is the CWT+TL, as it was the best performing classifier tested on the Evaluation
Dataset. Because the transitions are computer-specified, there is a latency between a new
requested gesture and the participant’s reaction. To reduce the impact of this phenomenon, the
data from the first second after a new requested gesture is ignored from this section results. The
number of data points generated by a single participant varies between 10 and 16 depending
on the participant’s availability during the experiment period.

As it can be observed in Fig. 3.10, while the Without Feedback group did experience accuracy
degradation over the 14 days, the Feedback group was seemingly able to counteract this
degradation. Note that, the average accuracy across all participants for the first recording
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session was 95.42%.

Figure 3.10 – Average accuracy over 14 days without recalibration of the CWT+TL ConvNet
The blue circles represent data from the Feedback group whereas the orange triangles represent
data from the Without Feedback group. The translucent bands around the linear regressions
represent the confidence interval (95%) estimated by bootstrap.

Many participants reported experiencing muscular fatigue during the recording of both this
experiment and the evaluation dataset. As such, in an effort to quantify the impact of muscle
fatigue on the classifier’s performance, the average accuracy of the eight participants over the
five minute session is computed as a function of time. As can be observed from the positive
slope of the linear regression presented in Fig. 3.11, muscle fatigue, does not seem to negatively
affect the proposed ConvNet’s accuracy.

3.13 Discussion

Table 3.1 and Table 3.3 show that, in all cases the TL augmented ConvNets significantly
outperformed their non-augmented versions, regardless of the number of training cycles. As
expected, reducing the amount of training cycles systematically degraded the performances
of all tested methods (see Table 3.1, 3.2, 3.3, 3.4 and Fig. 3.9), with the non-TL ConvNets
being the most affected on the Myo Dataset. This is likely due to overfitting that stems from
the small size of the dataset. However, it is worth noting that, when using a single cycle of
training, augmenting the ConvNets with the proposed TL scheme significantly improves their
accuracies. In fact, with this addition, the accuracies of the ConvNets become the highest of
all methods on both tested datasets. Overall, the proposed TL-augmented ConvNets were
competitive with the current state-of-the-art, with the TL augmented CWT-based ConvNet
achieving a higher average accuracy than the traditional sEMG classification technique on
both datasets for all training cycles. It is also noteworthy that while the raw+TL ConvNet was
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Figure 3.11 – The average accuracy of the eight participants over all the five minute sessions
recorded to evaluate the effect of muscle fatigue on the classifier performance. During each
session of the experiment, participants were asked to hold a total of 30 random gestures for
ten seconds each. As such, a dot represents the average accuracy across all participants over
one of the ten second periods. The translucent bands around the linear regression represent
the confidence intervals (95%) estimated by bootstrap.

the worst amongst the TL augmented ConvNet on the Myo Dataset, it achieved the highest
accuracy on the NinaPro DB5. Furthermore, the TL method outperformed the non-augmented
ConvNets on the out-of-sample experiment. The difference in accuracy of the two methods was
deemed significant by the Wilcoxon Signed Rank Test (p < 0.05) for all training repetitions.
This suggests that the proposed TL algorithm enables the network to learn features that can
generalize not only across participants but also for never-seen-before gestures. As such, the
weights learned from the pre-training dataset can easily be re-used for other work that employs
the Myo Armband with different gestures.

While in this paper, the proposed source and second network were almost identical they are
performing different tasks (see Sec. 3.10.3). As such further differentiation of both networks
might lead to increased performance. At first glance, the element-wise summation between the
source and second network might seem to impose a strong constraint on the architecture of the
two networks. However, one could replace the learned scalar layers in the target network by
convolutions or fully connected layers to bridge the dimensionality gap between potentially
vastly different source and second networks.

Additionally, a difference in the average accuracy between the real-time experiment (Sec. 3.12)
and the Evaluation Dataset (Sec. 3.11.1) was observed (95.42% vs 98.31% respectively). This
is likely due to the reaction delay of the participants, but more importantly to the transition
between gestures. These transitions are not part of the training dataset, because they are
too time consuming to record as the number of possible transitions equals n2 − n where n is
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the number of gestures. Consequently, it is expected that the classifiers predictive power on
transition data is poor in these circumstances. As such, being able to accurately detect such
transitions in an unsupervised way might have a greater impact on the system’s responsiveness
than simply reducing the window size. This and the aforementioned point will be investigated
in future works.

The main limitation of this study is the absence of tests with amputees. Additionally, the issue
of electrode shifts has not been explicitly studied and the variability introduced by various
limb positions was not considered when recording the dataset. A limitation of the proposed TL
scheme is its difficulty to adapt when the new user cannot wear the same amount of electrodes
as the group used for pre-training. This is because changing the number of channels changes
the representation of the phenomena (i.e. muscle contraction) being fed to the algorithm.
The most straightforward way of addressing this would be to numerically remove the relevant
channels from the dataset used for pre-training. Then re-running the proposed TL algorithm on
an architecture adapted to the new representation fed as input. Another solution is to consider
the EMG channels in a similar way as color channels in image. This type of architecture seems,
however, to perform worse than the ones presented in this paper (see Appendix 3.F).

3.14 Conclusion

This paper presents three novel ConvNet architectures that were shown to be competitive
with current sEMG-based classifiers. Moreover, this work presents a new TL scheme that
systematically and significantly enhances the performances of the tested ConvNets. On the
newly proposed evaluation dataset, the TL augmented ConvNet achieves an average accuracy
of 98.31% over 17 participants. Furthermore, on the NinaPro DB5 dataset (18 hand/wrist
gestures), the proposed classifier achieved an average accuracy of 68.98% over 10 participants on
a single Myo Armband. This dataset showed that the proposed TL algorithm learns sufficiently
general features to significantly enhance the performance of ConvNets on out-of-sample gestures.
Showing that deep learning algorithms can be efficiently trained, within the inherent constraints
of sEMG-based hand gesture recognition, offers exciting new research avenues for this field.

Future works will focus on adapting and testing the proposed TL algorithm on upper-extremity
amputees. This will provide additional challenges due to the greater muscle variability across
amputees and the decrease in classification accuracy compared to able-bodied participants [6].
Additionally, tests for the application of the proposed TL algorithm for inter-session classification
will be conducted as to be able to leverage labeled information for long-term classification.
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3.A Data Augmentation

The idea behind data augmentation is to augment the size of the training set, with the objective
of achieving better generalization. This is generally accomplished by adding realistic noise to
the training data, which tends to induce a robustness to noise into the learned model. In many
cases, this has been shown to lead to better generalization [47, 18]. In this paper’s context, data
augmentation techniques can thus be viewed as part of the solution to reduce the overfitting
from training a ConvNet on a small dataset. When adding noise to the data, it is important
to ensure that the noise does not change the label of the examples. Hence, for image datasets,
the most common and often successful techniques have relied on affine transformations [18].

Unfortunately, for sEMG signals, most of these techniques are unsuitable and cannot be applied
directly. As such, specific data augmentation techniques must be employed. In this work,
five data augmentation techniques are tested on the pre-training dataset as they are part of
the architecture building process. Note that this comparison was made with the ConvNet
architecture presented in [15], which takes as input a set of eight spectrograms (one for each
channel of the Myo Armband).

Examples are constructed by applying non-overlapping windows of 260ms. This non-augmented
dataset is referred to as the Baseline. Consequently, an intuitive way of augmenting sEMG
data is to apply overlapping windows (i.e. temporal translation) when building the examples.
A major advantage of this technique within the context of sEMG signals - and time signals
in general - is that it does not create any synthetic examples in the dataset compared to the
affine transformation employed with images. Furthermore, with careful construction of the
dataset, no new mislabeling occurs. In this work, this technique will be referred to as Sliding
Window augmentation.

Second, the effect of muscle fatigue on the frequency response of muscles fibers [35] can be
emulated, by altering the calculated spectrogram. The idea is to reduce the median frequency
of a channel with a certain probability, by systematically redistributing part of the power of
a frequency bin to an adjacent lower frequency one and so on. This was done in order to
approximate the effect of muscle fatigue on the frequency response of muscle fibers [35]. In
this work, this technique will be referred to as Muscle Fatigue augmentation.

The third data augmentation technique employed aims at emulating electrode displacement
on the skin. This is of particular interest, as the dataset was recorded with a dry electrode
armband, for which this kind of noise is to be expected. The data augmentation technique
consists of shifting part of the power spectrum magnitude from one channel to the next.
In other words, part of the signal energy from each channel is sent to an adjacent channel
emulating electrode displacement on the skin. In this work, this approach will be referred to
as Electrode Displacement augmentation.
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For completeness, a fourth data augmentation technique which was proposed in a paper [5]
employing a ConvNet for sEMG gestures classification is also considered. The approach consists
of adding a white Gaussian noise to the signal, with a signal-to-noise ratio of 25. This technique
will be referred to as Gaussian Noise augmentation.

Finally, the application of all these data augmentation methods simultaneously is referred to
as the Aggregated Augmentation technique.

Data from these augmentation techniques will be generated from the pre-training dataset. The
data will be generated on the first two cycles, which will serve as the training set. The third
cycle will be the validation set and the test set will be the fourth cycle. All augmentation
techniques will generate double the amount of training examples compared to the baseline
dataset.

Table 3.5 reports the average test set accuracy for the 19 participants over 20 runs. In this
appendix, the one-tail Wilcoxon signed rank test with Bonferroni correction is applied to
compare the data augmentation methods with the baseline. The results of the statistical
test are summarized in Table 3.5. The only techniques that produce significantly different
results from the Baseline is the Sliding Window (improves accuracy). As such, as described in
Sec. 3.7.1 the only data augmentation technique employed in this work is the sliding windows.

Table 3.5 – Comparison of the five data augmentation techniques proposed.

Baseline Gaussian Noise Muscle Fatigue Electrode Displacement Sliding Window Aggregated Augmentation

Accuracy 95.62% 93.33% 95.75% 95.80% 96.14% 95.37%
STD 5.18% 7.12% 5.07% 4.91% 4.93% 5.27%
Rank 4 6 3 2 1 5

H0 (p-value) - 1 1 1 0 (0.00542) 1

The values reported are the average accuracies for the 19 participants over 20 runs.
The Wilcoxon signed rank test is applied to compare the training of the ConvNet with and without
one of the five data augmentation techniques. The null hypothesis is accepted when H0 = 1 and

rejected when H0 = 0 (with p = 0.05). As the Baseline is employed to perform multiple comparison,
Bonferroni correction is applied. As such, to obtain a global p-value of 0.05, a per-comparison p-value

of 0.00833 is employed.

3.B Deep Learning on Embedded Systems and real-time
classification

Within the context of sEMG-based gesture recognition, an important consideration is the
feasibility of implementing the proposed ConvNets on embedded systems. As such, important
efforts were deployed when designing the ConvNets architecture to ensure attainable imple-
mentation on currently available embedded systems. With the recent advent of deep learning,
hardware systems particularly well suited for neural networks training/inference have been
made commercially available. Graphics processing units (GPUs) such as the Nvidia Volta
GV100 from Nvidia (50 GFLOPs/s/W) [13], field programmable gate arrays (FPGAs) such as
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the Stratix 10 from Altera (80 GFLOPs/s/W) [52] and mobile system-on-chips (SoCs) such as
the Nvidia Tegra from Nvidia (100 GFLOPs/s/W) [11], are commercially available platforms
that target the need for portable, computationally efficient and low-power systems for deep
learning inference. Additionally, dedicated Application-Specific Integrated Circuits (ASICs)
have arisen from research projects capable of processing ConvNet orders of magnitudes bigger
than the ones proposed in this paper at a throughput of 35 frames/s at 278mW [14]. Pruning
and quantizing network architectures are further ways to reduce the computational cost when
performing inference with minimal impact on accuracy [31, 77].

Efficient CWT implementation employing the Mexican Hat wavelet has already been explored
for embedded platforms [64]. These implementations are able to compute the CWT of larger
input sizes than those required in this work in less than 1ms. Similarly, in [80], a robust
time-frequency distribution estimation suitable for fast and accurate spectrogram computation
is proposed. To generate a classification, the proposed CNN-Spectrogram and CNN-CWT
architectures (including the TL scheme proposed in Sec. 6.8) require approximately 14 728
000 and 2 274 000 floating point operations (FLOPs) respectively. Considering a 40ms
inference processing delay, hardware platforms of 3.5 and 0.5 GFLOPs/s/W will be suitable to
implement a 100mW embedded system for sEMG classification. As such, adopting hardware-
implementation approaches, along with state-of-the-art network compression techniques will
lead to a power-consumption lower than 100mW for the proposed architectures, suitable for
wearable applications.

Note that currently, without optimization, it takes 21.42ms to calculate the CWT and classify
one example with the CWT-based ConvNet compared to 2.94ms and 3.70ms for the spectrogram
and raw EMG Convnet respectively. Applying the proposed TL algorithm add an additional
0.57ms, 0.90ms and 0.14ms to the computation for the CWT, spectrogram and raw EMG-based
ConvNet respectively. These timing results were obtained by averaging the pre-processing
and classifying time of the same 5309 examples across all methods. The gpu employed was a
GeForce GTX 980M.

3.C Feature Engineering

This section presents the features employed in this work. Features can be regrouped into
different types, mainly: time, frequency and time-frequency domains. Unless specified otherwise,
features are calculated by dividing the signal x into overlapping windows of length L. The kth
element of the ith window then corresponds to xi,k.
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3.C.1 Time Domain Features

Mean Absolute Value (MAV)

[21]: A feature returning the mean of a fully-rectified signal.

MAV(xi) =
1

L

L∑
k=1

|xi,k| (3.1)

Slope Sign Changes (SSC) [21]

A feature that measures the frequency at which the sign of the signal slope changes. Given
three consecutive samples xi,k−1, xi,k, xi,k+1, the value of SSC is incremented by one if:

(xi,k − xi,k−1) ∗ (xi,k − xi,k+1) ≥ ε (3.2)

Where ε ≥ 0, is employed as a threshold to reduce the impact of noise on this feature.

Zero Crossing (ZC) [21]

A feature that counts the frequency at which the signal passes through zero. A threshold
ε ≥ 0 is utilized to lessen the impact of noise. The value of this feature is incremented by one
whenever the following condition is satisfied:

(|xi,k − xi,k+1| ≥ ε) ∧ (sgn(xi,k, xi,k+1)⇔ False) (3.3)

Where sgn(a, b) returns true if a and b (two real numbers) have the same sign and false
otherwise. Note that depending on the slope of the signal and the selected ε, the zero crossing
point might not be detected.

Waveform Length (WL) [21]

A feature that offers a simple characterization of the signal’s waveform. It is calculated as
follows:

WL(xi) =
L∑
k=1

|xi,k − xi,k−1| (3.4)
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Skewness

The Skewness is the third central moment of a distribution which measures the overall
asymmetry of a distribution. It is calculated as follows:

Skewness(xi) =
1

L

L∑
k=1

(
xi,k − xi

σ

)3

(3.5)

Where σ is the standard deviation:

Root Mean Square (RMS) [58]

This feature, also known as the quadratic mean, is closely related to the standard deviation as
both are equal when the mean of the signal is zero. RMS is calculated as follows:

RMS(xi) =

√√√√ 1

L

L∑
k=1

x2i,k (3.6)

Hjorth Parameters [34]

Hjorth parameters are a set of three features originally developed for characterizing electroen-
cephalography signals and then successfully applied to sEMG signal recognition [51, 44]. Hjorth
Activity Parameter can be thought of as the surface of the power spectrum in the frequency
domain and corresponds to the variance of the signal calculated as follows:

Activity(xi) =
1

L

L∑
k=1

(xi,k − xi)2 (3.7)

Where xi is the mean of the signal for the ith window. Hjorth Mobility Parameter is a
representation of the mean frequency of the signal and is calculated as follows:

Mobility(xi) =

√
Activity(x

′
i)

Activity(xi)
(3.8)

Where x′i is the first derivative in respect to time of the signal for the ith window. Similarly,
the Hjorth Complexity Parameter, which represents the change in frequency, is calculated as
follows:

Complexity(xi) =
Mobility(x

′
i)

Mobility(xi)
(3.9)
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Integrated EMG (IEMG)

[58]: A feature returning the sum of the fully-rectified signal.

IEMG(xi) =
L∑
k=1

|xi,k| (3.10)

Autoregression Coefficient (AR)

[60] An autoregressive model tries to predict future data, based on a weighted average of the
previous data. This model characterizes each sample of the signal as a linear combination of
the previous sample with an added white noise. The number of coefficients calculated is a
trade-off between computational complexity and predictive power. The model is defined as
follows:

xi,k =
P∑
j=1

ρjxi,k−j + εt (3.11)

Where P is the model order, ρj is the jth coefficient of the model and εt is the residual white
noise.

Sample Entropy (SampEn)

[82] Entropy measures the complexity and randomness of a system. Sample Entropy is a
method which allows entropy estimation.

SampEn(xi,m, r) = − ln

(
Am(r)

Bm(r)

)
(3.12)

EMG Histogram (HIST) [79]

When a muscle is in contraction, the EMG signal deviates from its baseline. The idea behind
HIST is to quantify the frequency at which this deviation occurs for different amplitude levels.
HIST is calculated by determining a symmetric amplitude range centered around the baseline.
This range is then separated into n bins of equal length (n is a hyperparameter). The HIST is
obtained by counting how often the amplitude of the signal falls within each bin’s boundaries.

3.C.2 Frequency Domain Features

Cepstral Coefficient [39, 60]

The cepstrum of a signal is the inverse Fourier transform of the log power spectrum magnitude
of the signal. Like the AR, the coefficients of the cepstral coefficients are employed as features.
They can be directly derived from AR as follows:
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c1 = −a1 (3.13)

ci = −ai −
i−1∑
n=1

(1− n

i
)anci−n ,with 1 < i≤ P (3.14)

Marginal Discrete Wavelet Transform (mDWT) [49]

The mDWT is a feature that removes the time-information from the discrete wavelet transform
to be insensitive to wavelet time instants. The feature instead calculates the cumulative
energy of each level of the decomposition. The computation of the mDWT for each channel is
implemented as follow in [63] (See Algorithm 1).

Algorithm 1 mDWT pseudo-code
1: procedure mDWT
2: wav ← db7
3: level← 3
4: coefficients← wavDec(x, level, wav)
5: N ← length(coefficients)
6: SMax← log2(N)
7: Mxk ← []
8: for s=1,...,SMax do
9: CMax← N

2S
− 1

10: val←
∑CMax

u=0 |coefficients[u]|
11: Mxk.append(val)

return Mxk

Where x is the 1-d signal from which to calculate the mDWT and wavDec is a function
that calculates the wavelet decomposition of a vector at level n using the wavelet wav. The
coefficients are returned in a 1-d vector with the Approximation Coefficients(AC) placed first
followed by the Detail Coefficients(DC) (i.e. coefficients = [CA,CD3, CD2, CD1], where 3,
2, 1 are the level of decomposition of the DC).

Note that due to the choice of the level (3) of the wavelet decomposition in conjunction with
the length of x (52) in this paper, the mDWT will be affected by boundaries effects. This
choice was made to be as close as possible to the mDWT features calculated in [63] which
employed the same wavelet and level on a smaller x length (40).

3.C.3 Time-Frequency Domain Features

Short Term Fourier Transform based Spectrogram (Spectrogram)

The Fourier transform allows for a frequency-based analysis of the signal as opposed to a
time-based analysis. However, by its nature, this technique cannot detect if a signal is non-
stationary. As sEMG are non-stationary [45], an analysis of these signals employing the Fourier
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transform is of limited use. An intuitive technique to address this problem is the STFT, which
consists of separating the signal into smaller segments by applying a sliding window where
the Fourier transform is computed for each segment. In this context, a window is a function
utilized to reduce frequency leakage and delimits the segment’s width (i.e. zero-valued outside
of the specified segment). The spectrogram is calculated by computing the squared magnitude
of the STFT of the signal. In other words, given a signal s(t) and a window of width w, the
spectrogram is then:

spectrogram(s(t), w) = |STFT (s(t), w)|2 (3.15)

Continuous Wavelet Transform (CWT)

The Gabor limit states that a high resolution both in the frequency and time-domain cannot be
achieved [25]. Thus, for the STFT, choosing a wider window yields better frequency resolution
to the detriment of time resolution for all frequencies and vice versa.

Depending on the frequency, the relevance of the different signal’s attributes change. Low-
frequency signals have to be well resolved in the frequency band, as signals a few Hz apart
can have dramatically different origins (e.g. Theta brain waves (4 to 8Hz ) and Alpha brain
waves (8 to 13Hz ) [71]). On the other hand, for high-frequency signals, the relative difference
between a few or hundreds Hz is often irrelevant compared to its resolution in time for the
characterization of a phenomenon.

Figure 3.12 – A visual comparison between the CWT and the STFT. Note that due to its
nature, the frequency of the CWT is, in fact, a pseudo-frequency.

As illustrated in Fig. 3.12, this behavior can be obtained by employing wavelets. A wavelet
is a signal with a limited duration, varying frequency and a mean of zero [28]. The mother
wavelet is an arbitrarily defined wavelet that is utilized to generate different wavelets. The
idea behind the wavelets transform is to analyze a signal at different scales of the mother
wavelet [29]. For this, a set of wavelet functions are generated from the mother wavelet (by
applying different scaling and shifting on the time-axis). The CWT is then computed by
calculating the convolution between the input signal and the generated wavelets.
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3.D Hyperparameters selection for state of the art feature
sets.

The hyperparameters considered for each classifiers were as follow:

• SVM: Both the RBF and Linear kernel were considered. The soft margin tolerance (C)
was chosen between 10−3 to 103 on a logarithm scale with 20 values equally distributed.
Similarly the γ hyperparameter for the RBF kernel was selected between 10−5 to 102 on
a logarithm scale with 20 values equally distributed.

• ANN: The size of the hidden layers was selected between 20 to 1500 on a logarithm scale
with 20 values equally distributed. The activation functions considered were sigmoid,
tanh and relu. The learning rate was initialized between 10−4 to 100. The L2 penalty
was selected between 10−6 to 10−2 with 20 values. Finally, the solver employed is Adam
and early stopping is applied using 10% of the training data as validation.

• KNN: The number of possible neighbors considered were 1, 2, 3, 4, 5, 10, 15 and 20. The
metric distance considered was the Manhattan distance, the euclidean distance and the
Minkowski distance of the third and fourth degree.

• RF: The range of estimators considered were between 5 to 1000 using a logarithm
scale with 100 values equally distributed. The maximum number of features considered
(expressed as a ratio of the total number of features fed to the RF) were: .1, .2, .3, .4, .5,
.6, .7, .8, .9, 1. Additionally, both the square root and the log2 of the total number of
features fed to the RF were also considered.

Note that the hyperparameter ranges for each classifier were chosen using 3 fold cross-validation
on the pre-training dataset.

3.E Dimensionality Reduction on the Myo Armband Dataset
for State of the Art Feature Set

Table 3.6 shows the average accuracies obtained on the Evaluation dataset for the state-of-
the-art feature sets with and without dimensionality reduction. Note that all the results with
dimensionality reduction were obtained in a week of computation. In contrast, removing the
dimensionality reduction significantly augmented the required time to complete the experiments
to more than two and a half months of continuous run time on an AMD-Threadripper 1900X
3.8Hz 8-core CPU.
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Table 3.6 – Classification accuracy on the Evaluation dataset for the feature sets with and
without dimensionality reduction.

TD Enhanced TD Nina Pro SampEn Pipeline

With
Dimensionality

Reduction

Without
Dimensionality

Reduction

With
Dimensionality

Reduction

Without
Dimensionality

Reduction

With
Dimensionality

Reduction

Without
Dimensionality

Reduction

With
Dimensionality

Reduction

Without
Dimensionality

Reduction

4 Cycles 97.76%
(LDA)

96.74%
(KNN)

98.14%
(LDA)

96.85%
(RF)

97.58%
(LDA)

97.14%
(RF)

97.72%
(LDA)

96.72%
(KNN)

3 Cycles 96.26%
(KNN)

96.07%
(RF)

97.33%
(LDA)

95.78%
(RF)

96.54%
(KNN)

96.53%
(RF)

96.51%
(KNN)

95.90%
(KNN)

2 Cycles 94.12%
(KNN)

93.45%
(RF)

94.79%
(LDA)

93.06%
(RF)

93.82%
(KNN)

94.25%
(SVM)

94.64%
(KNN)

93.23%
(KNN)

1 Cycle 90.62%
(KNN)

89.28%
(KNN)

91.25%
(LDA)

88.63%
(SVM)

90.13%
(LDA)

90.32%
(SVM)

91.08%
(KNN)

89.27%
(KNN)

3.F Reducing the number of EMG channels on the target
dataset

If the new user cannot wear the same amount of electrodes as what was worn during pre-training
the proposed transfer learning technique cannot be employed out of the box. A possible solution
is to consider that the EMG channels are akin to the channel of an image, giving different
view of the same phenomenon. In this section, the enhanced raw ConvNet is modified to
accommodate this new representation. The 2D image (8 x 52) that was fed to the network
is now a 1D image (of length 52) with 8 channels. The architecture now only employs 1D
convolutions (with the same parameters). Furthermore, the amount of neurons in the fully
connected layer was reduced from 500 to 256. The second network is identical to the source
network.

Pre-training is done on the pre-training dataset, training on the first round of the evaluation
dataset with 4 cycles of training and the test is done on the last two rounds of the evaluation
dataset. The first, third, fifth and eighth channels are removed from every participant on the
evaluation dataset. The pre-training dataset remains unchanged.

The non-augmented ConvNet achieves an average accuracy of 61.47% over the 17 participants.
In comparison, the same network enhanced by the proposed transfer learning algorithm achieves
an average accuracy of 67.65% accuracy. This difference is judged significant by the one-tail
Wilcoxon Signed Rank Test (p-value=0.00494). While the performance of this modified
ConvNet is noticeably lower than the other classification methods viewed so far it does show
that the proposed TL algorithm can be adapted to different numbers of electrodes between the
source and the target.
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Chapter 4

A Low-Cost, Wireless, 3-D-Printed
Custom Armband for sEMG Hand
Gesture Recognition

4.1 Reference

Ulysse Côté-Allard†, Gabriel Gagnon-Turcotte†, François Laviolette, and Benoit Gosselin. "A
Low-Cost, Wireless, 3-D-Printed Custom Armband for sEMG Hand Gesture Recognition."
Sensors 19, no. 12 (2019): 2811.

†These authors contributed equally to this work.

4.2 Context

So far in this thesis, sEMG signal were obtained using the Myo Armband, the first (and only)
consumer grade myoelectric armband, which was both affordable and allowed to easily access
the recorded EMG signal. However, the company stopped selling it in 2018 (to instead sell
"smart glasses"). Meanwhile, Gabriel Gagnon-Turcotte was finishing his PhD, during which he
created a state-of-the-art biosignal acquisition system which was use on mouses’ brain. The
idea was then to collaborate to create a fully functional sEMG armband using the previously
designed biosignal acquisition system. The two main advantage of this work as it relate to this
thesis is that. 1) I was able to keep recording EMG data without relying on a piece of hardware
no one could get anymore. 2) the armband provided higher sampling rate per channel and
more channels, which improves potential classification performances.
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4.3 Résumé

Les technologies portatives peuvent être utilisées pour permettre aux humains d’effectuer
des tâches plus complexes et exigeantes de manière plus efficace. Les bracelets capables
d’électromyographie de surface (sEMG) sont des dispositifs attrayants et non intrusifs, per-
mettant de déduire l’intention humaine à l’aide d’algorithmes d’apprentissage automatique.
Cependant, les systèmes d’acquisition sEMG actuellement disponibles ont tendance à coûter
trop chers pour être utilisés par un individu, ne sont pas suffisamment portables ou encore
sacrifient la qualité du signal enregistré pour être abordables. Ce travail présente le 3DC
Armband, un bracelet myoélectrique conçu par le Laboratoire de Microsystèmes Biomédicaux
de l’Université Laval. Ce bracelet à électrode sèche sans fil de 10 canaux a une cadence
d’enregistrement de 1000 points par seconde par canaux et son coût de production est estimé à
150$USD. Il comporte également un système de mesure inertielle à 9 axes permettant d’obtenir
l’orientation de l’avant-bras de l’utilisateur. Le système proposé est comparé au Myo Armband
de Thalmic Labs, l’un des systèmes d’acquisition sEMG les plus populaire au monde. La
comparaison est effectuée en utilisant un nouvel ensemble de données hors-ligne comprenant 22
participants effectuant onze gestes de la main en portant les deux bracelets simultanément. Le
3DC Armband surpasse systématiquement et de façons significatives (p<0.05) le Myo Armband
avec trois classificateurs différents utilisant trois modalités d’entrée différentes lorsque ceux-ci
sont entraînés avec dix secondes ou plus de données d’entraînement par geste. Le code source,
le nouvel ensemble de données, le projet Altium et les modèles 3D pour construire le 3DC
Armband sont facilement accessible en téléchargement grâce à un lien GitHub.

4.4 Abstract

Wearable technology can be employed to elevate the abilities of humans to perform demanding
and complex tasks more efficiently. Armbands capable of surface electromyography (sEMG)
are attractive and noninvasive devices from which human intent can be derived by leveraging
machine learning. However, the sEMG acquisition systems currently available tend to be
prohibitively costly for personal use or sacrifice wearability or signal quality to be more
affordable. This work introduces the 3DC Armband designed by the Biomedical Microsystems
Laboratory in Laval University; a wireless, 10-channel, 1000 sps, dry-electrode, low-cost (∼150
USD) myoelectric armband that also includes a 9-axis inertial measurement unit. The proposed
system is compared with the Myo Armband by Thalmic Labs, one of the most popular sEMG
acquisition systems. The comparison is made by employing a new offline dataset featuring 22
able-bodied participants performing eleven hand/wrist gestures while wearing the two armbands
simultaneously. The 3DC Armband systematically and significantly (p < 0.05) outperforms
the Myo Armband, with three different classifiers employing three different input modalities
when using ten seconds or more of training data per gesture. This new dataset, alongside the
source code, Altium project and 3-D models are made readily available for download within a
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Github repository.

4.5 Introduction

The way people interface with machines is constantly evolving with the aim of bridging the gap
between human intention and machine action. Improved interfaces can profoundly alter the
way entertainment is consumed or even change lives by elevating the autonomy of people living
with disabilities. In certain situations, physical interfaces (e.g., touch screen and keyboard)
can be replaced with the conscious modulation of biological signals by the user.

In the context of upper-limb amputees, the signals provided by muscular activity offer an
attractive modality from which a user’s intention can be derived. Surface electromyography
(sEMG) can also be leveraged to achieve intuitive interfaces in a vast array of domains for
able-bodied participants [23, 7, 24]. sEMG signals are non-stationary and represent the sum
of subcutaneous motor action potentials generated through muscular contraction [29]. In
contrast with intramuscular EMG signals, which are recorded using needles that penetrate
the muscle, sEMG signals are recorded directly on the participant’s skin surface [23]. While
the latter has the advantage of being noninvasive, important noise is introduced when going
further away from the muscle fibers, especially when nonintrusive dry electrodes are employed
instead of their more intrusive and robust gel-based counterpart [38]. The quality of the sEMG
acquisition system is thus crucial in obtaining as clear of a signal as possible. However, current
systems tend to be expensive, often costing several thousands of dollars per channel or making
noticeable compromises on the quality of the recorded signal (see Section 4.6 for details).

As such, the main contribution of this work is to present a new 3-D-printed wireless sEMG
acquisition system based on an application-specific integrated circuit (ASIC). This armband
aims at providing state-of-the-art recording while being low cost to produce and small enough
to be easily wearable. The proposed device is referred to in this work as the 3DC Armband
and was designed by the Biomedical Microsystems Laboratory in Laval University (BML-UL).
Additionally, while comparisons of different sEMG acquisition system have been done in
the past [34], these comparisons are made across different datasets and are thus generated
from different conditions. Other works have explored the impact of sampling rate on gesture
classification accuracy [32], but they did so by downsampling the signal of an acquisition
system. While this allows for a direct comparison of the impact of the signal bandwidth on
classification performance, such comparisons do not take into account the technical limitations
associated with a higher bandwidth when building sEMG acquisition systems. To the best of
the authors’ knowledge, this is the first time that a direct comparison between two different
armbands cadenced at different sampling rates (200 vs. 1000 sps)is made on the same
dataset. Finally, an additional contribution of this work is the publication of a new dataset
recorded with both the Myo Armband and the proposed acquisition system on 22 able-bodied
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participants for eleven hand/wrist gestures. The dataset, alongside the 3-D models, Altium
project, and the source code used in this article, are made readily available to the community
(https://github.com/UlysseCoteAllard/3DC-Armband).

This paper is organized as follows. An overview of different sEMG acquisition systems is given
in Section 4.6. Section 4.7 presents the proposed 3-D-printed sEMG armband in detail. The
new dataset is detailed in Section 4.8. The methods employed for the comparison between
the Myo armband and the proposed system are detailed in Section 4.9, and the results of
this comparison are presented in Section 6.9. Finally, this work’s outcomes and possible
improvements are discussed in Section 4.11.

4.6 Overview of Surface EMG Acquisition Systems

By their nature, sEMG signals are recorded with multiple layers of material between the
electrode site and the muscle fibers generating the signal. As such, particularly robust
acquisition systems have been developed over the years to contend with the different types of
contaminants associated with such signals (e.g., power line interference, motion artifact, and
biosignal crosstalk) [17].

One such system employed for clinical research is the Ultium EMG by Noraxon systems [3]
which can record up to 32 channels simultaneously at a rate of ∼2 ksps and a baseline noise
of less than 1 µV. Each channel is fully self-contained and wireless, allowing researchers to
target multiple recording sites. Each module also integrates a 9-axis Inertial Measurement Unit
(IMU) sensor. Similar systems such as the Trigno Avanty by Delsys Systems [2] and DataLITE
sEMG by Biometrics [1] are also available. While these systems are highly accurate, they
necessitate preparation of the recording site (i.e., washing and sometimes shaving the subject’s
skin) before fixing each module to the skin, often using medical tape. This, coupled with their
high cost ranging between ∼$17,000–20,000 USD, often renders such systems impractical for
consumer-grade applications.

In 2015, the Myo Armband by Thalmic Labs [5] was released as a new consumer-grade sEMG
acquisition system. This wireless armband offering eight channels was retailed for several orders
of magnitude less than medical-grade acquisition systems ($200 USD). The armband is also
nonintrusive, requiring no preparation of the recording site of any sort. However, to attain
this, concessions were made both in terms of data quality and signal bandwidth. Most notably,
the armband is limited to a sampling rate of 200 sps with 8-bit precision and comprised of
only 8 channels. Regardless of these limitations, the Myo Armband has been widely utilized in
a wide array of research topics (e.g., robotic arm control [7], video game control [39], motor
imagery [30], and sign language recognition [6]).

More recently, the gForce-Pro from Oymotion [4] was released. The armband is sampled

86

https://github.com/UlysseCoteAllard/3DC-Armband


at 1000 sps, enabling it to leverage the full spectra of the sEMG signal [32]. However, this
sampling rate increase made the gForce-Pro six times more expensive than the Myo armband
for the same amount of channels and recording resolution.

Several sEMG acquisition systems have been presented in the literature such as in
Refs. [8, 9, 14, 42, 16]. However, these systems tend to not offer a fully developed wear-
able form factor [14] or are simply too bulky to be embedded within an armband [9, 16, 8, 42].

A technical comparison of the main sEMG acquisition systems previously mentioned alongside
the proposed 3DC Armband is given in Table 4.1. Note that, for the rest of this work, the Myo
Armband will be used for comparison with the proposed sEMG acquisition system. The system
by Thalmic Labs was selected as it is “arguably the most widely known EMG armband in
research” [32] (mentioned in more than 1250 articles on Google scholar). Additionally, its price
range is in the same order of magnitude as the one estimated for the proposed 3DC armband.

Table 4.1 – Characterization of different surface electromyography (sEMG) acquisition systems.
Values of N.A. mean that the information is not available. Note that, while the Hercules
system [14] is included for completeness, it does not possess a wearable form factor.

Delsys systems
Trigno Avanti

Biometrics
DataLITE
sEMG

Noraxon
Ultium EMG

Oymotion
gForce-Pro

Thalmic Lab
Myo Armband Hercules 3DC Armband

sEMG channels up to 16 up to 16 up to 32 (at 2000 sps)
or 16 (at 4000 sps) 8 8 8 10

sEMG ADC * 16 bits 13 bits 16 bits 8 bits 8 bits 12 bits 10 bits (ENOB *)
(data sent on 16 bits)

sEMG
Sampling rate 1960 sps 2000 sps 4000 sps 1000 sps 200 sps 1000 sps 1000 sps

Bandwidth or
Built-in Filters

20–450 Hz or
10–850 Hz 10–490 Hz 5/10/20–

500/1000/1500 Hz 20–500 Hz ∼5–100 Hz 20–500 Hz 20–500 Hz

Contact Dimensions 5 mm2 78 mm2 N.A. ∼66 mm2 100 mm2 78 mm2 50 mm2

Contact Material Silver Stainless Steel N.A. Stainless steel
silver coated Stainless Steel Gold plated

Copper
Electroless nickel

immersion gold (ENIG)

Full Scale
(Peak to Peak)

+/−11 sps or
+/−22 sps +/−6 sps +/−24 sps N.A. ∼+/−1 sps

(measured) +/−6 sps +/−3 sps

Input referred-noise
(On system bandwith) N.A. <5µV <1 µV N.A. N.A. N.A. 2.2 µV

IMU * sensors 9-axis
Acc, Gyro, Mag No

9-axis
Acc, Gyro, Mag
(if EMG set at

2000 sps or below)

9-axis
Acc, Gyro, Mag

9-axis
Acc, Gyro, Mag No 9-axis

Acc, Gyro, Mag

IMU
Sampling rate

24–470 Hz (Acc),
24–360 Hz (Gyro),

50 Hz (Mag)
- 200 Hz 50 Hz 50 Hz - 50 Hz

Transmitter BLE 4.2 WiFi 2.4 GHz BLE 4.1 BLE 4.0 Wi-Fi Enhanced
Shockburst **

Autonomy 4 to 8 h 8 h 8 h N.A. 16 h N.A. 6 h

Weight 14 g
(per channel)

17 g
(per channel)

14 g
(per channel) 80 g 93 g N.A. 62 g

Price ∼$20,000 USD
(for 16 channels)

∼$17,000 USD
(for 16 channels)

∼$20,000 USD
(for 16 channels
and free battery
replacement)

$1250 USD $200 USD N.A. ∼$150 USD ***

* ADC: Analog-to-digital converter; ENOB: effective number of bits; IMU: inertial measurement
unit; BLE: Bluetooth low energy. ** 2.4 GHz low-power custom protocol (similar to BLE*)
from Nordic Semiconductor, Norway. *** The cost of the System-on-Chip was replaced by the
cost of a comparable product: the ADS1298 from Texas Instruments, USA.
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4.7 The 3DC Armband (Prototype)

The 3DC Armband, which is depicted in Figure 4.1, features ten sEMG recording channels
cadenced at 1000 sps alongside a 9-axis Inertial Measurement Unit (IMU). The proposed
armband weighs 63 g and is assembled with a custom System-on-Chip (SoC), featuring
competitive performance for sEMG recording: input referred noise of 2.2 µVrms, resolution of
10 bits, dynamic range of 6 mVpp, and a bandwidth of 20–500 Hz. The 3DC Armband consists
of two interconnected parts. The first is the sensor printed circuit board (PCB) that includes
all the electronic components for multichannel sEMG signal conditioning and multichannel
sEMG data acquisition through a custom ASIC, IMU data acquisition, and wireless data
transmission. The second part is the armband receptacles holding the sEMG electrodes. Both
parts are interconnected using a detachable Molex connector, enabling easy electronic and
software updates outside the armband. The following subsections detail each component of the
proposed sEMG acquisition system.

Figure 4.1 – The proposed 3DC Armband. The system and the battery are held in the
receptacles identified by 1 and 10 respectively. The label on each part of the armband
corresponds to the channels’ order that are recorded for the dataset described in Section 4.8.

4.7.1 System Overview

The proposed sensor, of which the system-level concept is shown in Figure 4.2, consists of six
main building blocks:

1. A custom 0.13-µm complementary metal oxide semi-conductor (CMOS) mixed signal
(i.e., analog and numeric circuits on the same die) SoC that can record 10 sEMG channels
in parallel [19, 20].

2. An ICM-20948 low-power 9-axis IMU from InvenSense, USA. This component has a
3-axis gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer.

3. An nRF24L01+ low-power wireless transceiver from Nordic Semiconductors, Norway,
which sends the sEMG and IMU data to a base station at a 1 Mbps datarate.
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4. An MSP430F5328 low-power microcontroller unit (MCU) from Texas Instruments, USA.
This MCU is mainly used for interfacing the SoC, the IMU, and the wireless transceiver.

5. The power management unit (PMU), which includes a 1.9-V low-dropout regulator (LDO)
for powering the MCU, the wireless transceiver, and the IMU. The highest voltage in
the sEMG sensor is 1.9-V, which is optimized for low-power consumption since it is the
smallest viable voltage for powering the MCU, the IMU, and the wireless transceiver,
yielding around half the power consumption compared with a typical 3.3-V power supply.
The PMU also includes a 1.2-V LDO for powering the SoC, which is the recommend
supply voltage for the 0.13-µm technology used in the SoC. The system is powered with
a 100-mAh LiPo battery.

6. The Molex connector (# 0529910308) used for connecting with the Armband and for
programming the MCU.

Note that the SoC was originally developed for neural electrophysiological signal acquisition
and is detailed in previous publications [19, 20]. Additionally, this SoC was shown to be able
to successfully acquisition sEMG data [18].
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Figure 4.2 – System-level concept of the multichannel wireless sEMG sensor: The sensor is built
around a custom 0.13-µm SoC that includes 10× sEMG channels, each of which encompasses
a bioamplifier, a ∆Σ analog-to-digital converter (ADC), and a 4th order decimation filter.
The SoC, the nRF24L01+ low-power wireless transceiver, and the ICM-20948 9-axis IMU are
interfaced with an MSP430F5328 low-power MCU.

The complete sensor is shown in Figure 4.3a with the main building blocks identified. The sensor
has a flexible part, allowing it to fold the rigid parts on top of each other to save space
(See Figure 4.3c). When folded, the PCB occupies 1.25 cm3. Finally, the 3DC sensor
communicates with a custom-based base station consisting of (i) an nRF24L01+ low-power
wireless transceiver from Nordic Semiconductors, (ii) an ARM cortex M4 MCU from Texas
Instruments for managing the data, and (iii) an FT232RL UART-to-USB chip from FTDI,
United Kingdom, for sending the sEMG data to the computer. The following Sections 4.7.2
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and 4.7.3 give more details about the SoC, MCU firmware, and the IMU, while Section 4.7.5
presents the 3-D models that contain the armband’s electronics.
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Figure 4.3 – (a) Two-sided view of the sEMG sensor with each part identified: The printed
circuit board (PCB) has a flexible region to fold the two rigid parts on top of each other to
save space. (b) The packaged SoC which is wirebonded directly on a PCB substrate. (c) The
system folded in its final position beside a Canadian quarter coin (diameter of 23.88 mm).

4.7.2 sEMG Acquisition Interface

Each recording channel of the SoC encompasses a low-noise and low-power fully differential
bioamplifier, followed by a fully differential third-order Delta-Sigma (∆Σ) multi-stage noise
shaping (MASH) analog-to-digital converter (ADC) and an on-chip fourth-order cascaded
integrator-comb (CIC) decimation filter [19, 20]. The use of fully differential topologies
(amplifier and ADC) doubles the dynamic range of the SoC (6-dB increase) while being more
robust to external noise sources compared to a single-ended solution [15]. In this design, the
bioamplifier is a single stage AC-coupled operational transconductance amplifier (OTA) which
rejects any DC offsets generated at the electrode–skin interface. This topology also features
pseudo-resistors in the feedback path to produce a high-pass analog cutoff frequency of ∼1 Hz.

Conventional ADCs require strict analog anti-aliasing filtering. This analog filtering is commonly
performed with 2–3rd or higher order filtering, which increases the bioamplifier’s complexity,
size, and power consumption. One advantage of using a ∆Σ ADC is to relax the constraints
on the analog anti-aliasing filter. The proposed system performs an implicit fourth-order CIC
anti-aliasing digital filter before decimation. Indeed, the ∆Σ pushes the Nyquist frequency
at Fdecim ×OSR/2, where Fdecim is the sampling frequency after decimation and OSR is the
oversampling ratio; thus, less restrictive filtering between Fdecim/2 and Fdecim × OSR/2 is
required to avoid aliasing with this type of ADC.
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As it can be seen in Figure 4.4a, the oversampling of the ∆Σ pushes the Nyquist frequency far
from the bandwidth after decimation. For this application, an oversampling ratio (OSR) of
50 is employed to achieve an effective number of bits (ENOB) of 10 bits, pushing the Nyquist
frequency to 25 kHz. The analog low-pass filtering is performed implicitly by the internal analog
G-mC filter of the OTA [19, 20] inside the bioamplifier, which cuts at −3 dB at ∼7 kHz (black
curve in Figure 4.4a), leading to almost no aliasing, as there is a −12-dB attenuation at 25
kHz. The final low-pass filtering is performed by the fourth-order CIC decimation filter, which
has a −3-dB low-pass cutoff frequency of 460 Hz, which is close to the ideal cutoff frequency of
500 Hz, and with a −80-dB attenuation per decade before the signal is downsampled to 1 kHz
(blue curve in Figure 4.4a). Figure 4.4a also illustrates the Myo bandwidth for comparison.
As can be seen, only a small portion (<100 Hz) of the proposed sensor bandwidth is covered
by the Myo. The bioamplifier noise spectrum over a 500 Hz bandwidth is shown in Figure
4.4b. The total input referred noise is of 2.2 µVrms (20–500 Hz), which is smaller than the
quantifying step of the ADC (resolution of 7 µV). The SoC communicates with an external
MCU using a dedicated serial peripheral interface (SPI) bus and using a custom protocol to
extract the data from all the channels.

The custom SoC employed for sEMG acquisition is wire-bonded onto a PCB substrate using
25 µm gold bonds and protected by an EPO-TEK 301 Glob-Top that was held in place during
the curing phase using an AD1-10S dam from ChipQuick. An enlargement of the packaged
SoC is depicted in Figure 4.3b.

Frequency [Hz]

20

30

40

50

10 100 1000 100001

-3dB H-P

M
a

g
n

it
u

d
e

 [
d

B
]

-3dB L-PDigital -3dB L-P

Sampling rate 

after decimation

Oversampling 

Nyquist frequency

Analog Digital

(a) (b)

10 0 101 10 2

Frequency [Hz]

µ
V

rm
s
/s

q
rt

(H
z
)

10 -1

10 0

Input referred noise of 

2.2 µVrms (20-500 Hz)

Myo bandwidth

Myo lost 

bandwidth
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decimation filter (in blue), Myo bandwidth comparison (in orange), and (b) noise spectrum of
the bioamplifier. The input referred noise is of 2.5 µVrms over a 500-Hz bandwidth.

4.7.3 MCU Firmware

The MSP430F5328 MCU controls the SoC, the IMU, and the wireless transceiver together by
using three dedicated SPI busses. To use the least amount of hardware components as possible,
the oversampling clock signal driving the SoC ∆Σs is provided by a pulse-width modulation
(PWM) module within the MCU (set at 50% duty-cycle). The sEMG sampling is triggered by
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the PWM timer interruption when 50 clock cycles (OSR of 50, interruptions at 1 kHz) have
been issued. Then, the MCU triggers one of the direct memory access (DMA) module channels
to send commands to the SoC as to read all the 10 SoC channels one after the other. The
acquired sEMG data is pushed automatically by the DMA within a First-in, First-out (FIFO)
structure and sent to the wireless transceiver by another DMA channel when 20 or more bytes
are available (10 × 2 bytes packets). Since the DMA module performs all the work, the MCU
is idle most of the time. It is woken up at a 50-Hz frequency to get and forward the IMU data
to the transceiver.

4.7.4 Inertial Measurement Unit

An IMU is a device consisting of accelerometers and gyroscopes from which the tracking of the
device’s orientation can be derived. A tri-axis magnetometer can be added to form a hybrid
IMU, sometimes referred to as a Magnetic, Angular Rate, and Gravity (MARG) sensor [27], to
reduce the orientation accumulated error. Information from an IMU system is widely employed
in the domain of rehabilitation [22]. Additionally, for dynamic sEMG-based gesture recognition,
orientation information from IMU devices can be leveraged to obtain higher performances than
with EMG alone [21, 37, 42]. Furthermore, IMUs have been employed to increase the number
of gestures that can be detected by combining the orientation of the forearm with static hand
gestures [41, 44].

As the inclusion of an IMU device alongside sEMG channels allows a wider range of dynamic
gestures to be detected, an armband featuring both modalities can be employed for a broader
range of applications. Consequently, the ICM-20948, consisting of a low-power IMU featuring a
3-axis gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer, was incorporated within
the 3DC Armband. This IMU was selected for its small footprint (3 × 3 mm2 24-QFN package),
its low power supply capability (1.9 V supported), and its high resolution of 16 bits. This chip
communicates with the MCU using a 4-wire serial peripheral interface (SPI) bus cadenced
a 5 MHz. The MCU extracts three <x, y, z> vectors from the IMU for the accelerometer,
gyroscope, and magnetometer by reading the first user bank of the IMU. This allows the MCU
to read the data all at once (18 bytes block read). The vectors are then stored in a dedicated
packet and sent to the wireless transceiver for further ex situ processing. The orientation
data, in the form of a quaternion, is computed from the 9-axis IMU with the Madgwick’s
algorithm [27] using the x-IMU implementation (https://github.com/xioTechnologies/
Open-Source-AHRS-With-x-IMU) on the receiving computer.

4.7.5 3-D Printing Models

The armband’s microelectronics are held by three different receptacles (shown in Figure 4.5)
each fulfilling diverse functions. The system’s holder, depicted in Figure 4.5A, shows the
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system’s receptacle, which also houses the main electrode. The battery and a standard size
electrode are stored in the battery holder, which can be seen in Figure 4.5B.

Finally, the eight remaining standard electrodes are housed in eight small electrode receptacles.
The 3-D model of these receptacles is shown in Figure 4.5C. The hole in the top is there to
facilitate the assembly of the system.

The circular holes on all three receptacles serve to pass elastic cords through, that link the
different modules together and ensures that the armband can be worn by a wide variety of
persons. The rectangular holes serve to pass small elastic bands through, on which the different
electrical cables can be attached on to link the different microelectronic components together.

The overall armband price is valued at ∼$150 USD. The price was estimated using the ADS1298
from Texas Instrument as an estimation for the custom SoC and assuming the fabrication of
20 PCBs.
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Figure 4.5 – (A) The system’s receptacle: The bottom of the unit is used to receive the main
electrode, while the system is stored inside. A cover slides on to enclose the system. (B) The
battery holder: This receptacle is used to house the power source of the armband and, as such,
should be placed next to the system’s holder. Once the battery is placed, the cover can then
slide on to protect the system. A standard electrode is placed on the bottom of this holder.
(C) This holder houses a standard electrode. For the proposed 3DC Armband, eight such
receptacles are required.
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4.8 Comparison Dataset

Beyond the technical description presented in the previous section, the usefulness of the
proposed armband must be assessed with real-life data. As such, a new dataset was recorded
as to allow as close of a direct comparison as possibles between the Myo and the proposed 3DC
Armband. The dataset is comprised of 22 able-bodied participants (7F/15M, 17/5 right/left
handed) aged between 23 and 69 years old (average 34 ± 14 years old).

The data acquisition protocol was approved by the Comités d’Éthique de la Recherche avec
des êtres humains de l’Université Laval (approbation number: 2017-0256 A-1/10-09-2018), and
informed consent was obtained from all participants.

4.8.1 Data Acquisition Protocol

Before the recording started, both the Myo and the 3DC Armband were placed simultaneously
on the dominant arm of the participant. The highest armband (i.e., the one closest to the
elbow) was set to its maximum diameter and slid up until the armband’s circumference matched
the participant’s forearm circumference. For the first participant, the Myo Armband was the
one placed closest to the elbow. This process was replicated for each following participant but
alternating the armband closest to the elbow between each subject. The two possible armband
configurations alongside examples of the range of armband placements on participants’ forearm
are shown in Figure 4.6. This method of positioning was adopted as to better represent the
wide range of positions that nonexperts might use when wearing this type of hardware. The
delay between putting the armband on the participant’s forearm and the start of the experiment
was approximately three minutes on average.

The proposed dataset is made of eleven hand/wrist gestures, which are presented in Figure 4.7.
All gesture recordings were made with the participants standing up with their forearm parallel
to the floor supported by themselves. Starting from the neutral gesture, the participants
were instructed, with an auditory cue, to hold the next gesture for 5 s. The cue given to
the participants were in the following form: Gesture X, 3, 2, 1, Go. The recording of each
movement began just before the movement was started and held by the participant as to
capture the ramp-up segment of the muscle activity and always started with the neutral gesture.
The recording of the eleven gestures for 5 s each totaled 55 s of data and is referred to as a
cycle. A total of four cycles (220 s of data) were recorded with no interruption between cycles.
Then, a five min pause was observed, where the participant could relax (without removing the
armbands). After the pause, another four cycles of data were recorded. The first four cycles
of data are referred to and serves as the training dataset, while the second group of cycles is
referred to and serves as the test dataset. Note that the ramp-up period is included in the
labeled dataset for each gesture.
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Myo Armband

3DC Armband

Figure 4.6 – The two different armband configurations (left/right) employed in this work with
the 3DC being either above or below the Myo armband with respect to the participant’s wrist.
This figure also showcases the wide variety of armband positions recorded in the proposed
dataset.

Neutral

Radial Deviation Wrist Flexion Ulnar Deviation Wrist Extension Supination 

Pronation Power Grip Open Hand Chuck Grip Pinch Grip

Figure 4.7 – The eleven hand/wrist gestures employed in the proposed dataset.

4.8.2 Preprocessing

As the main use-case of the proposed armband is a real-time classification, a critical factor
to consider is the input latency. The optimal latency (taking into account both classification
performance and controller delay) was shown to be between 150–250 ms [36]. As the Myo
Armband is limited to a sampling rate of 200 sps, a window size of 250 ms was selected as
to not unduly give advantage to the proposed armband. Note that while the preprocessing is
made so that it could be implemented for real-time classification, all results presented in this
article are computed offline.

As mentioned in Section 4.7, the proposed 3DC Armband is band-pass filtered between 20–
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500 Hz. However, to produce a dataset as close as possible to the raw sEMG signal, the
high-pass filter was instead set at ∼1 Hz using the SoC bioamplifier tunable pseudo-resistor
bank. As such, the preprocessing of the dataset involves a fourth-order butterworth high-pass
filter at 20 Hz as suggested in Ref. [32] for both armbands. An example of the signals recorded
from both armbands after filtering is given in Figure 4.8.

1

Figure 4.8 – Comparison of the signals recorded with the Myo Armband and the proposed
3DC Armband. The x-axis represents time in seconds, while the y-axis is the different channels
of the armbands. The three gestures recorded in order are the chuck grip, Open Hand„ and
Pinch Grip. Note that these signals were not obtained using the Comparison Dataset recording
protocol to show a wider array of gestures in a continuous way.

4.9 Comparison Methods

The dataset previously described (Section 4.8) is employed to qualitatively discriminate between
the Myo and 3DC Armband. The comparison is rendered from three different input modalities:
a baseline feature set, the raw sEMG signals, and the signals represented in the time–frequency
domain. The remaining section describes the three classification methods in detail.
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It should be noted that one of the goals of this work is to generate a comparison that is as fair
as possible between the proposed armband and the Myo Armband. As such, several choices
were made to achieve this goal, sometimes to the detriment of the classification accuracy. These
choices are explicitly detailed below.

4.9.1 Baseline Method

The baseline method employs a feature set (Hudgins’ Time-Domain Feature Set [13]) and
a classifier (Linear Discriminant Analysis [35, 23]) widely used in the literature. Both are
described in the following two subsections.

Hudgins’ Time-Domain Feature Set (H-TD)

Historically, the literature on sEMG-based gesture recognition primarily centers on feature-set
engineering as to characterize the sEMG signals in a discriminative way [29, 31].

Among all the feature sets proposed in the literature, the most commonly employed one is
probably H-TD [32]. This set is comprised of four features from the time domain and are
relatively inexpensive to compute:

• Mean Absolute Value

• Zero Crossing

• Slope Sign Changes

• Waveform Length

Detailed descriptions of these four features are given in Ref. [11]. H-TD often serves as the basis
for bigger feature sets [29, 32]. As such, it is particularly well-suited as a baseline comparison
between the Myo and the proposed armband.

Linear Discriminant Analysis

Several types of classifiers have been employed in the past for sEMG-based gesture recognition.
Some of the most commonly employed are the Support Vector Machine (SVM) [32], Artificial
Neural Networks (ANN) [29], and Linear Discriminant Analysis (LDA) [35, 23].

The latter is widely employed in the domain as it is a timely and computationally efficient
classification technique both at training and prediction time while still being able to achieve
high classification accuracies [25, 23].

While, SVM with has been shown in some work to be able to achieve higher classification
accuracies than LDA [32], it requires hyperparameter optimization, which could bias the results
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towards one specific armband. On the contrary, LDA does not require any hyperparameter
optimization and can thus be employed to compare the armbands more fairly.

4.9.2 Raw sEMG Classification

With the recent advent of deep learning, the raw sEMG signal can be employed directly for
gesture classification [11, 45], something which was considered “impractical" before [29].

The raw data is passed as an image of shape Channels X Samples (i.e., 8 × 50 for the Myo
Armband and 10× 250 for the 3DC Armband) to a ConvNet. Note that the raw signal is first
band-pass filtered as described in Section 4.8.2. The ConvNet architecture, which can be seen
in Figure 4.9, is based on the one presented in Ref. [11] as it was shown to be comparable to
the current state-of-the-art. The main difference between the two is the use of Global Average
Pooling in lieu of the fully connected layer to reduce the number of parameters.

The architecture used is the same for all armband configurations to not overly give advantage
to one over the other. Adam [26] is employed for the ConvNet’s optimization with an initial
learning rate of 0.0404709 (as used in Ref. [11]). Learning rate annealing is applied with a
factor of five and a patience of five epochs. Training is done with batch size of 512, and the
dropout rate is set at 0.5.

C1: feature maps 
32@5x5 

C3: feature maps 
64@4x4 

G4: Global 
 Average Pooling 

Output 
11 

P2: Max Pooling 
1x3 

Conv BN PReLU Dropout Conv BN PReLU Dropout 

50ms 200ms 250ms100ms 150ms0ms 

3DC Input Example 
10x250 

Softmax

Figure 4.9 – The raw ConvNet architecture employing 34,667 parameters. In this figure, Conv
refers to Convolution and BN refers to Batch Normalization. While the input represented in
this figure is that of the 3DC, the architecture remains the same for all considered systems.

4.9.3 Time-Frequency Domain Classification

As to better investigate the potential impact of the greater sampling frequency of the 3DC
Armband, the classification performance using features of the time-frequency domain is investi-
gated.

Similar to References [10, 11], the short-time Fourier transform-based spectrograms are con-
sidered for the characterization of the sEMG signals in the time-frequency domain. For both
armbands, the spectrograms are computed with Hann windows of 100 ms and an overlap of 50
ms. These hyperparameters were chosen using the training dataset and to use a similar ConvNet
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architecture for both armbands. As suggested in References [10, 11] appropriate axis swaps are
applied to yield a final image of 4× 8× 11 and 4× 10× 51 (i.e., time × channel × frequency
bins) for the Myo and 3DC Armband respectively. This example’s formatting allows the
convolutions to be performed on spatial X frequency information, while the time is considered
as different viewpoints of the same event.

The example is then fed to the ConvNet represented in Figure 7.6.3. Except for a learning rate
of 0.00681292 (as used in Ref. [11]), all hyperparameters are as described in Section 4.9.2.

C1: feature maps 
32@3x3 

C3: feature maps 
64@3x3 

Conv BN PReLU Dropout 

Conv BN PReLU Dropout 

Output 
11 

Softmax

G6: Global 
 Average Pooling 

3DC Input Example 
4x10x51 

P2: Max Pooling 
1x2 

P4: Max Pooling 
1x2 

Conv BN PReLU Dropout 

C5: feature maps 
128@3x3 

Figure 4.10 – The Spectrogram ConvNet architecture employing 95,627 parameters. In this
figure, Conv refers to Convolution and BN refers to Batch Normalization. The input represented
comes from the 3DC Armband with the channels on the x-axis and the frequency bins on the
y-axis. Due to the Myo Armband associated input size, P4 and C5 were removed from the
architecture when training on Myo’s data.

4.10 Results

All results given in this section are computed from all four cycles of the test dataset. Training
of each classifier is done with one, two, three, and four training cycles (i.e., 5, 10, 15, and 20 s
of training data per gesture respectively). Additionally, due to the stochastic nature of the
deep learning-based algorithms considered in this work, all results from each participant for
each amount of training cycles are given as an average of 20 runs.

For statistical analysis purposes, each participant is considered as a separated dataset. As sug-
gested in Ref. [12], the Wilcoxon Signed Rank test [40] (n = 22) is applied to compare between
the Myo and 3DC Armband.

The comparison between the armbands with the LDA classifier is shown in Figure 4.11, while
the confusion matrices for four cycles of training with the LDA classifier are given in Figure 4.12.
Similarly, the comparison and associated confusion matrices for the RAW and Spectrogram-
based classifiers are given in Figures 4.13,4.14, 4.15 and 4.16 respectively. The rest of the
training cycles’ confusion matrices are shown in Appendix 4.A.
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Figure 4.11 – Comparison between the Myo and the 3DC Armband employing LDA for
classification: The number of cycles corresponds to the amount of data employed for training
(one cycle equals 5 s of data per gesture). The Wilcoxon Signed Rank test is applied between
the Myo and the 3DC Armband. The null hypothesis is that the median difference between
pairs of observations (i.e., accuracy from the same participant with the Myo or the 3DC
Armband) is zero. The p-value is shown when the null hypothesis is rejected (significant level
set at p = 0.05). The black line represents the standard deviation calculated across all 22
participants.

Figure 4.12 – Confusion Matrices for the Myo and the 3DC Armband employing linear
discriminant analysis for classification and four cycles of training. A lighter color is better.
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Figure 4.13 – Comparison between the Myo and the 3DC Armband employing Raw ConvNet
for classification: The number of cycles corresponds to the amount of data employed for
training (one cycle equals 5 s of data per gesture). The Wilcoxon Signed Rank test is applied
between the Myo and the 3DC Armband. The null hypothesis is that the median difference
between pairs of observations (i.e., accuracy from the same participant with the Myo or the
3DC Armband) is zero. The p-value is shown when the null hypothesis is rejected (significant
level set at p = 0.05). The black line represents the standard deviation calculated across all 22
participants.

Figure 4.14 – Confusion Matrices for the Myo and the 3DC Armband employing the Raw
ConvNet for classification and four cycles of training. A lighter color is better.
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Figure 4.15 – Comparison between the Myo and the 3DC Armband employing the Spectrogram
ConvNet for classification: The number of cycles corresponds to the amount of data employed
for training (one cycle equals 5 s of data per gesture). The Wilcoxon Signed Rank test is
applied between the Myo and the 3DC Armband. The null hypothesis is that the median
difference between pairs of observations (i.e., accuracy from the same participant with the
Myo or the 3DC Armband) is zero. The p-value is shown when the null hypothesis is rejected
(significant level set at p = 0.05). The black line represents the standard deviation calculated
across all 22 participants.

Figure 4.16 – Confusion Matrices for the Myo and the 3DC Armband employing the Spectrogram
ConvNet for classification and four cycles of training. A lighter color is better.
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4.11 Discussion

Figures 4.11, 4.13, and 4.15 show that, in all cases, the proposed armband outperforms the
Myo Armband. This difference is judged significant for all instances involving two or more
cycles of training by the two-tailed Wilcoxon signed-rank test. As expected, augmenting the
amount of training examples systematically improves the performance of all tested classifiers
for both armbands, corroborating the results in Ref. [11].

The confusion matrices show that the hardest gestures to differentiates between for all three
classifiers and both armbands are the Chuck and Pinch Grip. This is expected considering
they only differ by the flexion of the middle finger. Additionally, the 3DC Armband tends
to outperform the Myo across all gestures. As such, one could expect that the higher spatial
dimension and frequency rate yield an advantage to the proposed armband that is not gesture-
specific.

Overall, the Raw Convnet was the best performing classifier for both armbands, achieving an
average accuracy of 89.47% and 86.41% for four cycles of training with the 3DC and Myo
Armband respectively. For comparison, LDA obtained 84.81% and 80.00% for four cycles
of training with the 3DC and Myo Armband respectively. While more sophisticated feature
engineered sets exist [29, 23], these results support previous findings showing the exciting
potential of feature learning within the context of sEMG gesture recognition [33, 11].

When comparing the performance of the Myo and 3DC Armband with a single training cycle,
the difference in accuracy is not judged statistically significant for both the LDA and Raw
ConvNet classifier. This might be due in part to the increased spatial and frequency information
provided by the 3DC Armband which naturally increases within-class variability. However,
another hypothesis could be that the warm-up period (i.e., the time between putting the
armband on the participant’s forearm and the start of the experiment) was not long enough for
the 3DC Armband [28]. Indeed, as the 3DC electrodes are half the surface area of the Myo’s, a
greater area of the skin was in contact with the Myo Armband. Thus, our hypothesis is that
the Myo requires less sweat and humidity per square centimeter between the electrode and the
skin to achieve a good ionic conduction. To verify this hypothesis, all three classifiers were
retrained with only the last cycle of training recorded for each participant. This provides the
longest warm-up period possible on the training dataset for both armbands.

For all three classifiers, the proposed sEMG acquisition system again outperforms the Myo
armband. However, this difference is judged significant by the two tailed Wilcoxon signed-rank
test only for the LDA classifier (p-value = 0.0309). This seems to suggest that while a longer
warm up period might help the 3DC Armband, it cannot, on its own, explain why the two
systems perform similarly when employing only a single cycle of training.Consequently, the
proposed warm-up period hypothesis cannot be confirmed with the available results. As such, it
might be that, when very few examples are available for training, the increase in computational
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cost is not worth augmenting the spatial and frequency sampling rate resolution. It would
be interesting to see how transfer learning algorithms developed for sEMG data affect these
results [10, 11].

Future works will focus on slightly enlarging the contact area provided by 3DC Armband while
making sure to not design overly large electrodes which would increase the noise of the signal
from crosstalk [14]. A potential added benefit of enlarging the contact area is reducing the
effect of electrode shift [43]. The relationship between warm-up time and electrode size will also
be characterized. Additionally, shielding will be incorporated between the inter-connections of
the electrodes.

4.12 Conclusions

This paper presents a new wearable sEMG acquisition system. The 3-D-printed armband
features 10 sEMG recording channels and is cadenced at 1000 sps. The whole system is
light (63 g) and incorporates a 9-axis IMU and a custom SoC. This SoC features competitive
performances for this application with an input referred noise of 2.2 µVrms, resolution of 10 bits,
dynamic range of 6 mVpp, and a bandwidth of 20–500 Hz. The armband could be conceivably
assembled for ∼$150 USD, making it more affordable and widely accessible than clinical-grade
systems currently available.

The 3DC Armband was shown to significantly outperform the most widely used consumer-grade
sEMG armband on a newly proposed dataset featuring 22 able-bodied participants performing
11 hand/wrist gestures.

Among the limitations of the proposed system is a possible longer warm up period than the
Myo Armband. The relationship between electrode size and warm-up time will be investigated
to provides a better skin-electrode interface. Shielding between the interconnections of the
electrodes of the armband will also be added.
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4.18 Abbreviations

The following abbreviations are used in this manuscript:
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ADC Analog-to-digital converter
ANN Artificial Neural Network
ASIC Application-specific integrated circuit
BML-UL Biomedical Microsystems Laboratory in Laval University
CIC Cascaded integrator-comb
CMOS Complementary metal-oxide-semiconductor
ConvNet Convolutional Network
DMA Direct memory access
ENOB Effective number of bits
H-TD Hudgins’ Time-Domain Feature Set
IMU sample per second
LDA Linear Discriminant Analysis
LDO Low-dropout regulator
MARG Magnetic, Angular Rate, and Gravity
MCU Microcontroller unit
ms miliseconds
OSR Oversampling ratio
OTA Operational transconductance amplifier
sEMG Surface Electromyography
SNR Signal to Noise Ratio
SoC System-on-chip
SPI serial peripheral interface
sps sample per second
SVM Support Vector Machine
PCB Printed circuit board
PMU Power management unit
PWM Pulse-width modulation
USD United States dollar
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4.A Confusion Matrices

4.A.1 LDA Classifier Confusion Matrices

Figure 4.17 – Confusion Matrices for the Myo and the 3DC Armband employing LDA for
classification and one cycle of training. Lighter is better.

Figure 4.18 – Confusion Matrices for the Myo and the 3DC Armband employing LDA for
classification and two cycles of training. Lighter is better.
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Figure 4.19 – Confusion Matrices for the Myo and the 3DC Armband employing LDA for
classification and three cycles of training. Lighter is better.

4.A.2 Raw ConvNet Classifier Confusion Matrices

Figure 4.20 – Confusion Matrices for the Myo and the 3DC Armband employing the Raw
ConvNet for classification and one cycle of training. Lighter is better.
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Figure 4.21 – Confusion Matrices for the Myo and the 3DC Armband employing the Raw
ConvNet for classification and two cycles of training. Lighter is better.

Figure 4.22 – Confusion Matrices for the Myo and the 3DC Armband employing the Raw
ConvNet for classification and three cycles of training. Lighter is better.
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4.A.3 Spectrogram ConvNet Classifier Confusion Matrices

Figure 4.23 – Confusion Matrices for the Myo and the 3DC Armband employing the Spectrogram
ConvNet for classification and one cycle of training. Lighter is better.

Figure 4.24 – Confusion Matrices for the Myo and the 3DC Armband employing the Spectrogram
ConvNet for classification and two cycles of training. Lighter is better.
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Figure 4.25 – Confusion Matrices for the Myo and the 3DC Armband employing the Spectrogram
ConvNet for classification and three cycles of training. Lighter is better.
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Chapter 5

Interpreting Deep Learning Features
for Myoelectric Control: A
Comparison with Handcrafted
Features

5.1 Reference
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A Comparison with Handcrafted Features." Frontiers in Bioengineering and Biotechnology, no.
8 (2020), p.158.

†These authors contributed equally to this work.
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5.2 Context

Deep learning became increasingly popular within the field of sEMG-based gesture recognition.
However, contrary to natural language processing and image recognition, no work tried to
understand what the networks are learning when trained on sEMG raw data. More importantly,
given the historic importance of handcrafted features within the field of sEMG-based gesture
recognition, it would be valuable to understand in what ways does the deep learning features
relate to the features engineered over the decades. This paper is a first attempt in understanding
furthering our understanding of deep learning within that field.
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5.3 Résumé

La recherche sur les systèmes de contrôle myoélectrique se concentre principalement sur
l’extraction de représentations discriminantes du signal électromyographique (EMG) en con-
struisant des caractéristiques à la main. Récemment, des techniques d’apprentissage profond ont
été appliquées à la tâche difficile de la reconnaissance des gestes basée sur l’EMG. L’adoption
de ces techniques son lentement en train de changer les efforts de recherche de la création par
des humains de caractéristiques intéressantes vers l’apprentissage automatique de nouvelles
caractéristiques. Cependant, de par la nature des algorithmes d’apprentissage profond, il est
difficile de comprendre quel type d’information est réellement apprise par les réseaux et de
savoir comment cette information est liée aux caractéristiques construites par l’humain. De
plus, en raison de la grande variabilité des enregistrements EMG entre les participants, les
caractéristiques apprises automatiquement ont tendance à mal se généraliser entre différents
sujets lorsque les réseaux sont entraînés avec des méthodes classiques. Par conséquent, ce
travail introduit un nouvel algorithme d’apprentissage multidomaines, nommé ADANN, qui
améliore de façons significatives (p=0.00004) la précision de la classification inter-sujets de
19.40% en moyenne par rapport à l’apprentissage standard.

À l’aide des caractéristiques apprises par ADANN, la principale contribution de ce travail
est de fournir la première analyse topologique de données de reconnaissance de gestes basée
sur l’EMG pour la caractérisation des informations encodées dans un réseau profond, en
utilisant les caractéristiques conçues par l’humain comme points de repère. Cette analyse
révèle que les caractéristiques fabriquées à la main et les caractéristiques apprises (dans les
premières couches du réseau) tentent toutes les deux de faire la distinction entre tous les
gestes, mais n’encodent pas les mêmes informations pour ce faire. En outre, l’utilisation de
techniques de visualisation de réseaux convolutionnels révèle que les caractéristiques apprises
ont tendance à ignorer le canal le plus activé durant une contraction musculaire pour produire
un geste. Cela contraste fortement avec la prévalente philosophie derrières une grande partie
des caractéristiques fabriquées à la main, puisque ces dernières sont conçues pour capturer des
informations d’amplitude du signal. Pour finir, cet article ouvre la voie à des ensembles de
fonctionnalités hybrides en montrant clairement le type d’information complémentaire encodé
dans les caractéristiques apprises et les caractéristiques fabriquées à la main.

5.4 Abstract

Existing research on myoelectric control systems primarily focuses on extracting discriminative
characteristics of the electromyographic (EMG) signal by designing handcrafted features.
Recently, however, deep learning techniques have been applied to the challenging task of
EMG-based gesture recognition. The adoption of these techniques slowly shifts the focus
from feature engineering to feature learning. Nevertheless, the black-box nature of deep
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learning makes it hard to understand the type of information learned by the network and
how it relates to handcrafted features. Additionally, due to the high variability in EMG
recordings between participants, deep features tend to generalize poorly across subjects using
standard training methods. Consequently, this work introduces a new multi-domain learning
algorithm, named ADANN (Adaptive Domain Adversarial Neural Network), which significantly
enhances (p = 0.00004) inter-subject classification accuracy by an average of 19.40% compared
to standard training.

Using ADANN-generated features, this work provides the first topological data analysis of
EMG-based gesture recognition for the characterisation of the information encoded within a
deep network, using handcrafted features as landmarks. This analysis reveals that handcrafted
features and the learned features (in the earlier layers) both try to discriminate between all
gestures, but do not encode the same information to do so. In the later layers, the learned
features are inclined to instead adopt a one-versus-all strategy for a given class. Furthermore,
by using convolutional network visualization techniques, it is revealed that learned features
actually tend to ignore the most activated channel during contraction, which is in stark contrast
with the prevalence of handcrafted features designed to capture amplitude information. Overall,
this work paves the way for hybrid feature sets by providing a clear guideline of complementary
information encoded within learned and handcrafted features.

5.5 Introduction

Surface Electromyography (sEMG) is a technique employed in a vast array of applications
from assistive technologies [71, 57] to bio-mechanical analysis [5], and more generally as a way to
interface with computers and robots [99, 83]. Traditionally, the sEMG-based gesture recognition
literature primarily focuses on feature engineering as a way to increase the information density
of the signal to improve gesture discrimination [48, 72, 58]. In the last few years, however,
researchers have started to leverage deep learning [7, 3, 63], shifting the paradigm from feature
engineering to feature learning.

Deep learning is a multi-level representation learning method (i.e. methods that learn an
embedding from an input to facilitate detection or classification), where each level generates
a higher, more abstract representation of the input [35]. Conventionally, the output layer
(i.e., classifier or regressor) only has direct access to the output of the highest representation
level [35, 4]. In contrast, several works have also fed the intermediary layers’ output directly
to the network’s head [75, 95, 38]. Arguably, the most successful approach using this design
philosophy is DenseNet [30], a type of convolutional network (ConvNet) where each layer
receives the feature maps of all preceding layers as input. Features learned by ConvNets
were also extracted to be employed in conjunction with (or replace) handcrafted features
when training conventional machine learning algorithms (e.g., support vector machine, linear
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discriminant analysis, decision tree) [65, 45, 37, 14]. Within the context of sEMG-based gesture
recognition, deep learning was shown to be competitive with the current state of the art [18]
and when combined with handcrafted features, to outperform it [14]. This last result seems to
indicate that, for sEMG signals, deep-learned features provide useful information that may
be complementary to those that have been engineered throughout the years. However, the
black box nature of these deep networks means that understanding what type of information
is encapsulated throughout the network, and how to leverage this information, is challenging.

The main contribution of this work is, therefore, to provide the first extensive analysis of
the relationship between handcrafted and learned features within the context of sEMG-based
gesture recognition. Understanding the feature space learned by the network could shed
new insights on the type of information contained in sEMG signals. In turn, this improved
understanding will allow the creation of better handcrafted features and facilitate the creation
of new hybrid feature sets using this feature learning paradigm.

An important challenge arises when working with biosignals, as extensive variability exists
between subjects [26, 9, 42, 13, 28]. Especially within the context of sEMG-based gesture
recognition [13, 28]. Consequently, features learned using traditional deep learning training
methods can be highly participant-specific, which would hinder the goal of this work of learning
a general feature representation of sEMG signals. By defining each participant as a different
domain, however, this issue can be framed as a Multi-Domain Learning problem (MDL) [96],
with the added restriction that the network’s weights should be participant-agnostic. Multiple
popular and effective MDL algorithms have been proposed over the years [43, 44, 67]. For
example, [44] proposed to use a shared network across multiples domains with one predictive
head per domain. In [96], a single head was shared across two parallel networks with one of them
receiving the example’s representation as input, while the other receives a vector representation
of the associated domain of the example. These algorithms however are ill-suited for this work’s
context as they: do not explicitly impose domain-agnostic weight learning [96], can scale poorly
with the number of domains (i.e. participants) [44], or are restricted to encode a single domain
within their learned features (and use adaptor blocks to bridge the gap between domains) [67].
Unsupervised domain-adversarial training algorithms [1, 23, 88, 76] predict an unlabeled dataset
by learning a representation on a labeled dataset that makes it hard to distinguish between
examples from either distribution. However, these algorithms are often not designed to learn
a unique representation across more than two domains simultaneously [1, 23, 88, 76], can be
destructive to the source domain representation (through iterative process) [76], and by nature
of the problem they are trying to solve, do not leverage the labels of the target domains. As
such, this work presents a new multi-domain adversarial training algorithm, named ADANN
(Adaptive Domain Adversarial Neural Network). ADANN trains a network across multiple
domains simultaneously while explicitly penalizing any domain-variant representations to study
learned features that generalize well across participants.
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In this work, the sEMG information encapsulated within the general deep learning features
learned by ADANN, is characterized using handcrafted features as landmarks in a topological
network. This network is generated via the Mapper algorithm [79], with t-Stochastic Neighbor
Embedding (t-SNE) [39], a non-linear dimensionality reduction visualization method, as the
filter function. Mapper is a Topological Data Analysis (TDA) tool that excels at determining
the shape of high dimensional data, by providing a faithful representation of it through a
topological network. This TDA tool has been applied as a solution to numerous challenging
applications across a wide array of domains; for example, uncovering the dynamic organization
of brain activity during various tasks [68] or identifying a subgroup of breast cancer with 100%
survival rate and no metastasis [46]. Mapper has also been applied to determine relationships
between feature space for physiological signal pain recognition [11], and EMG-based gesture
recognition [54]. However, to the best of the authors’ knowledge, the use of TDA to interpret
information harnessed within deep-learned features using handcrafted features as landmarks
has yet to be explored.

In this paper, convNet visualization techniques are also leveraged as a way to highlight how
the network makes class-discriminant decisions. Several works [77, 22, 98, 82] have proposed
to visualize network’s predictions by emphasizing which input-pixels have the most impact on
the network’s output, consequently, fostering a better understanding of what the network has
learned. For example, [77] used partial derivatives to compute pixel-relevance for the network
output. Another example is Guided Backpropagation [82], which modifies the computation
of the gradient to only include paths within the network that positively contribute to the
prediction of a given class. When compared with saliency maps [77], Guided Backpropagation
results in qualitative visualization improvements [73]. While these methods produce resolutions
at a pixel level, the images produced with respect to different classes are nearly identical [73].
Other types of algorithms provide highly class-discriminative visualizations, but at a lower
resolution [100, 74] and sometimes require a specific ConvNet architecture [100] to use. Within
this work, Guided Gradient-weighted Class Activation Mapping (Guided Grad-CAM) [73] is
employed as it provides pixel-wise input resolution while being class-discriminative. Another
advantage of this technique is that it can be implemented on any ConvNet-based architecture
without requiring re-training. To the best of the authors’ knowledge, this is the first time that
deep learning visualization techniques are applied to EMG signals.

5.6 Material and Methods

A flowchart of the material, methods and experiment is shown in Figure 5.1. This section
is divided as follows: first, a description of the dataset and preprocessing used in this work
is given in Section 5.6.1. Then, the handcrafted features are presented in Section 5.6.2. The
ConvNet architecture and the new multi-domain adversarial training algorithm (ADANN)
are presented in Section 5.6.3 and 5.6.3, respectively. A brief overview of Guided Grad-CAM
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is given in Section 5.6.3, while Section 5.6.3 and 5.6.3 present single feature classification
and handcrafted feature regression, respectively. Finally, the Mapper algorithm is detailed in
Section 5.6.4.

Convolutional Network
Architecture

Standard Training

ADANN Training

Handcrafted
Features

Deep 
Features

Cross-Subject
Accuracy

Comparison

Single Feature LDA 
Classification

Regression on
Handcrafted

Features

Guided Grad-CAM
Visualization

Topological Graph
With

Both Feature Types

Mapper

3DC Dataset Preprocessing

Topological Graph
Handcrafted

Features
Topological Graph

Deep Features

Figure 5.1 – Diagram of the workflow of this work. The 3DC Dataset is first preprocessed before
being used to train the network using standard training and the proposed ADANN training
procedure. The handcrafted features are directly calculated from the preprocessed dataset,
while the deep features are extracted from the ConvNet trained with ADANN. In the diagram,
the blue rectangles represent experiments and the arrows show which methods/algorithms are
required to perform them.

5.6.1 EMG Data

The dataset employed in this work is the 3DC Dataset [19], featuring 22 able-bodied participants
performing ten hand/wrist gestures + neutral (see Figure 5.2 for the list of gestures). This
dataset was recorded with the 3DC Armband; a wireless, 10-channel, dry-electrode, 3D printed
sEMG armband. The device samples data at 1000 Hz per channel, allowing the feature
extraction to take advantage of the full spectra of sEMG signals [64]. Informed consent was
obtained from all participants, as approved by Laval University’s Research Ethics Committee
[19].

The dataset was built as follows: Each participant was asked to perform and hold each gesture
for a period of five seconds starting from the neutral position to produce a cycle. Three more
cycles were recorded to serve as the training dataset. After a five minute break, four new cycles
were recorded to serve as the test dataset. Note that the validation set and hyperparameter
selection are made from the training dataset.

As this work aims to understand the type of features learned by deep network in the context
of myoelectric control systems, a critical factor to consider is the input latency. [81] showed
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Figure 5.2 – The eleven hand/wrist gestures recorded in the 3DC Dataset (image re-used
from [19])

that the optimal guidance latency was between 150 and 250 ms. As such, the data from each
participant was segmented into 151 ms frames with an overlap of 100 ms. The raw data was
then band-pass filtered between 20-495 Hz using a 4th-order Butterworth filter.

5.6.2 Handcrafted Features

Handcrafted features are characteristics extracted from windows of the EMG signal using
established mathematical equations. The purpose of these feature extraction methods is to
enhance the information density of the signal so as to improve discrimination between motion
classes [48, 58]. Across the myoelectric control literature, hundreds of handcrafted feature
extraction methods have been presented [48, 58, 61]. As such, implementing the exhaustive set
of features that has been proposed is impractical. Instead, within this study a comprehensive
subset of 79 of the most commonly used features is employed. With a comprehensive set of
features, past literature has identified five functional groups that summarize all sources of
information current handcrafted feature extraction techniques describe: signal amplitude and
power (SAP), nonlinear complexity (NLC), frequency information (FI), time-series modeling
(TSM), and unique (UNI) [54, 10]. The SAP functional group includes time-domain energy
or power features (e.g. Root Mean Squared, Mean Absolute Value). The FI functional
group generally refers to features extracted from the frequency domain, or features that
describe spectral properties (e.g. Mean Frequency, Zero Crossings). The NLC functional group
corresponds to features that describe entropy or similarity based information (e.g. Sample
Entropy, Maximum Fractal Length). The TSM functional group represents features that
attempt to reconstruct the data provided through stochastic or other algorithmic models (e.g.
Autoregressive Coefficients, Cepstral Coefficients). Finally, the UNI functional group represents
features that capture various other modalities of information, such as measures of signal quality
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or a combination of other functional groups (e.g. Signal to Motion Artefact Ratio, Time
Domain Power Spectral Descriptors).
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Ref Feature Extraction Method Name Group
[58] Amplitude of the First Burst AFB SAP
[33] Difference Absolute Mean Value DAMV SAP
[33] Difference Absolute Standard Deviation Value DASDV SAP
[97] Difference Log Detector DLD SAP
[58] Difference Temporal Moment DTM SAP
[97] Difference Variance Value DVARV SAP
[97] Difference v-Order DV SAP
[50] Integral of Electromyogram IEMG SAP
[97] Log Detector LD SAP
[2] Second-Order Moment M2 SAP
[49] Modified Mean Absolute Value 1 MMAV1 SAP
[49] Modified Mean Absolute Value 2 MMAV2 SAP
[69] Mean Absolute Value MAV SAP
[58] Maximum MAX SAP
[20] Multiple Hamming Windows MHW SAP
[20] Mean Power MNP SAP
[20] Multiple Trapezoidal Windows MTW SAP
[69] Root Mean Squared RMS SAP
[20] Spectral Moment SM SAP
[20] Sum of Squared Integral SSI SAP
[58] Temporal Moment TM SAP
[20] Total Power TTP SAP
[97] Variance VAR SAP
[97] v-Order V SAP
[58] Waveform Length WL SAP
[47, 49] Frequency Ratio FR FI
[86, 85] Median Frequency MDF FI
[86, 85] Mean Frequency MNF FI
[58] Slope Sign Change SSC FI
[97] Zero Crossings ZC FI
[62] Sample Entropy SAMPEN NLC
[62] Approximate Entropy APEN NLC
[97] Willison’s Amplitude WAMP NLC
[25] Box-Counting Fractal Dimension BC NLC
[27] Katz Fractal Dimension KATZ NLC
[6] Maximum Fractal Length MFL NLC
[50] Autoregressive Coefficients AR TSM
[50] Cepstral Coefficients CC TSM
[50] Difference Autoregressive Coefficient DAR TSM
[50] Difference Cepstral Coeffients DCC TSM
[60, 59] Detrend Fluctuation Analysis DFA TSM
[66] Power Spectrum Ratio PSR TSM
[78, 41] Signal to Noise Ratio SNR TSM
[55, 56] Critical Exponent CE UNI
[78, 41] Maximum to Minimum Drop in Power Density Ratio DPR UNI
[58] Histogram HIST UNI
[87, 89] Kurtosis KURT UNI
[58] Mean Absolute Value Slope MAVS UNI
[78, 41] Power Spectrum Deformation OHM UNI
[62] Peak Frequency PKF UNI
[84] Power Spectrum Density Fractal Dimension PSDFD UNI
[87, 89] Skewness SKEW UNI
[78, 41] Signal to Motion Artefact Ratio SMR UNI
[2] Time Domain Power Spectral Descriptors TSPSD UNI
[58] Variance of Central Frequency VCF UNI
[62] Variance Fractal Dimension VFD UNI

Table 5.1 – Handcrafted features extracted for topological landmarks sorted by functional
group.
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Table 5.1 presents the 56 handcrafted feature methods considered in this work. Note that some
methods produce multiple features (e.g. Cepstral Coefficients, Histogram), resulting in a total
of 79 features. The SAP, FI, NLC, TSM, and UNI feature groups are represented here by
25, 5, 6, 7, and 13 feature extraction methods respectively. In the TDA of the deep learned
features (see Section 5.6.4), these handcrafted features serve as landmarks for well-understood
properties of the EMG signal. In the regression model analysis (see Section 5.6.3), the flow of
information through the ConvNet is visualized by employing the handcrafted features methods
as the target of the network.

5.6.3 Convolutional Network

The following subsections present the deep learning architecture, training methods and visual-
ization techniques employed in this paper. The PyTorch [51] implementation employed in this
work is available here.

Architecture

Recent works on sEMG-based gesture recognition using deep learning have shown that ConvNets
trained with the raw sEMG signal as input were able to achieve similar classification accuracy
to the current state of the art [101, 18]. Consequently, and to reduce bias, the preprocessed
raw data (see Section 5.6.1) is passed directly as an image of shape 10 × 151 (Channel ×
Sample) to the ConvNet.

The ConvNet’s architecture, which is depicted in Figure 5.3, contains six blocks followed by a
fully connected layer for gesture-classification. The network’s topology was selected to obtain a
deep network with a limited number of learnable parameters (to avoid overfitting) with simple
layer connections to enable an easier, and thus more thorough analysis. All architecture choices
and hyperparameter selection were performed using the training set of the 3DC Dataset or
inspired by previous works ([18] and [19]). Each block encapsulates a convolutional layer [35],
followed by batch normalization (BN) [31], leaky ReLU (slope=0.1) [94] and dropout [21]
(with a drop rate set at 0.35 following [18]). The number of blocks within the network was
selected to obtain a sufficiently deep network to study how the type of learned features evolve
with respect to their layer. The depth of the network was limited by the number of examples
available for training and more complex layer connections (e.g. residual network [29], dense
network [30]) were avoided to not ambiguate the analysis performed in this work. The number
of feature maps (64) was kept uniform for each layer, allowing for easier comparisons of learned
features across the convolutional layers. The filter size was 1 × 26 so that, similarly to the
handcrafted features, the learned features are channel independent. Due to the selected filter
size, the dimensions of feature maps at the final layer is 10 × 1.
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Figure 5.3 – The ConvNet’s architecture, employing 543,629 learnable parameters. In this figure,
Bi refers to the ith feature extraction block (i∈{1,2,3,4,5,6}). Conv refers to Convolutional
layer. As shown, the feature extraction is performed after the non-linearity (leaky ReLU).

Adam [34] was employed to optimize the ConvNet with an initial learning rate of 0.0404709
and batch size of 512 (as used in [19]). The training dataset was divided into training and
validation sets using the first three cycles and last cycle, respectively. Employing this validation
set, learning rate annealing was applied with a factor of five and a patience of fifteen with
early stopping applied when two consecutive annealings occurred without achieving a better
validation loss.

For the purpose of the TDA, features maps were extracted after the non-linearity using per
feature-map channel-wise average pooling. That is, the number of feature maps remained the
same, but the feature map’s value per channel was averaged to a single scalar (as is common
with handcrafted features).

Multi-Domain Adversarial Training

To better understand what type of features are commonly learned at each layer of the network,
it is desirable that the model generalizes well across participants. This feature generality
principle also motivates the design of the handcrafted features (presented in Section 5.6.2), as
it would be impractical to create new features for each new participant. Learning a general
feature representation across participants, however, cannot be achieved by simply aggregating
the training data of all participants and then training a classifier normally. As, even when
precisely controlling for electrode placement, cross-subject accuracy using standard learning
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methods is poor ([13]). This problem is compounded by the fact that important differences
exist between subjects of the 3DC Dataset (i.e. position and rotation of the armband placed
on the left or right arm).

Learning a participant-agnostic representation can be framed as a multi-domain learning
problem [43]. In the context of sEMG-based gesture recognition, AdaBN, a domain adaptation
algorithm presented in [36], was successfully employed as a way to learn a general representation
across participants in [17, 18]. The hypothesis of AdaBN is that label-related information
(i.e. hand gestures) will be contained within the network’s weights, while the domain-related
information (i.e. participants) are stored in their BN statistics. Training is thus performed by
sharing the weights of the network across the subjects dataset while tracking the BN statistics
independently for each participant.

To inhibit the shared network’s weights from learning subject-specific representation, Domain-
Adversarial Neural Networks (DANN) training [23] is employed. DANN is designed to learn
domain-invariant features across two domains from the point of view of the desired task. The
approach used by DANN to achieve this objective consists of adding a second head (referred
to as the domain classification head) to the network presented in Section 5.6.3, which receives
the output of block B6. The goal of this second head is to learn to discriminate between the
domains. However, during backpropagation, the gradient computed from the domain loss is
multiplied by a negative constant (set to -1 in this work) as it exits the domain classification
head. This gradient reversal explicitly forces the feature distributions over the domains to be
similar. Note that the backpropagation algorithm proceeds normally for the first head (gesture
classification head). The loss function used for both heads is the cross-entropy loss. The two
losses are combined as follows: Ly + λLd, where Ly and Ld are the prediction and domain loss,
respectively (see Figure 5.4), while λ is a scalar that weights the domain loss (set to 0.1 in this
work).

Using this approach, each participant of the 3DC Dataset represents a different domain (n=22).
A direct application of DANN would thus initialize the domain classification head with 22
output neurons. This, however, could create a pitfall where the network is able to differentiate
between the domains perfectly while simply predict one of the 21 other domains to maximize
Ld. Instead, the domain classification head is initialized with only two output neurons. At each
epoch, a batch is created that contains examples from a single participant (this batch is referred
to as the source batch, and is assigned the domain label 0). A second batch, referred to as the
target batch, is also created that contains examples from one of the other participants selected
at random, and is assigned the domain label 1. As every participants data is used as the source
batch at each epoch, this ensures that the network is forced to learn a domain-independent
feature representation. ADANN’s goal is thus to force the network to be unable to accurately
associate a participant with their examples while achieving a highly discriminative gesture
representation across all participants. During training, the BN statistics are tracked individually

127



Gradient Reversal

{xs,ys}

{xt} Domain Divergence (   )

Gesture Prediction (   )

Features
Extraction

Domain head

Classification
 head

Figure 5.4 – Overview of the training steps of ADANN (identical to DANN) for one labeled
batch from the source ({xs, ys}, blue lines) and one unlabeled batch from the target ({xt},
red dashed lines). The purple dotted lines correspond to the backpropagated gradient. The
gradient reversal operation is represented by the purple diamond.

for each subject. Therefore, when learning from a source or target batch, the network uses the
BN statistics associated with the corresponding participant. Note that, by construction, the
participant associated with the source is necessarily different from the participant associated
with the target. Consequently, the network is fed the source and target batch consecutively
(i.e. not both batch simultaneously). Also note that the BN statistics are updated only in
association with the source batch to ensure equal training updates across all participants. For
a given iteration, once the source and target batch are constructed, the training step proceeds
as described for DANN (see Figure 5.4).

To assess the performance of the proposed MDL algorithm, two identical ConvNet (as described
in Section 5.6.3) were created. One of the ConvNets was trained with ADANN, whereas the
other used a standard training loop (i.e., aggregating the data from all participants), with both
using the same hyperparameters. The networks trained with both methods were then tested
on the test dataset with no participant-specific fine-tuning.

Learning Visualization

One of the main problems associated with deep learning is interpretability of how and why a
model makes a prediction given a particular input. A first step in understanding a network
prediction is through the visualization of the learned weights, feature maps and gradients
resulting from a particular input. Consequently, several sophisticated visualisation techniques
have been developed, which are aimed at facilitating a better comprehension of the hierarchical
learning that takes place within a network [77, 82, 100]. One popular such technique is
Guided Grad-CAM, which combines high resolution pixel-space gradient visualization and
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class-discriminative visualization [73]. Guided Grad-CAM is thus employed to visualize how
the ConvNet trained with ADANN makes its decisions, both on real examples from the 3DC
Dataset and on an artificially generated signals.

Given an image that was used to compute a forward pass in the network and a label y, the
output of Guided Grad-CAM is calculated from four distinct steps (note that steps two and
three are computed independently from each other using the output of step one):

1. Set all the gradients of the output neurons to zero, except for the gradient of the neuron
associated with the label y ( which is set to one) and name the gradient of the neuron of
interest yg.

2. Set all negative activations to zero. Then, perform backpropagation, but before propa-
gating the gradient at each step, set all the negative gradients to zero again. Save the
final gradients corresponding to the input image. This step corresponds to computing
the guided backpropagation [82].

3. Let Fj,i be the activation of the ith feature map of the jth layer with feature maps of
the network. Select a layer Fj of interest (in this work Fj correspond to the rectified
convolutional layer of B6). Backpropagate the signal from the output layer to Fj,i (i.e.
∂yg

∂Fj,i
). Then for each i compute the global average pooling of ∂yg

∂Fj,i
and name it wj,i.

Finally, compute: ReLU (
∑

iwj,iFj,i)

This third step corresponds to computing the Gradient-weighted Class Activation Mapping
(Grad-CAM) [74].

4. Finally, fuse the output of the two previous steps using point-wise multiplication to
obtain the output of Guided Grad-CAM [73].

Learned feature classification

Similarly to [14], the learned features were extracted to train a Linear Discriminant Analysis
(LDA) classifier to show the discriminative ability of the learned features. LDA was selected
as it was shown to provide robust classification within the context of sEMG-based gesture
recognition [12], does not require hyperparameter tuning, and creates linear boundaries within
the input feature space. LDA was trained in a cross-subject framework on the training
dataset and tested on the test dataset. For comparison purposes, LDA was also trained on
the handcrafted features described in Section 5.6.2. Note that the implementation was from
scikit-learn [52].
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Regression Model

One method of highlighting the information content encoded throughout a network is to see
how well known handcrafted features can be predicted from the network’s feature maps at
different stages. This can be achieved using an added output neuron (regression head) at the
feature extraction stage (i.e. after the non-linearity, but before the average pooling (before
the green trapezoid of Figure 5.3)) of each block. The goal of this output is to map from
the learned features to the handcrafted features of interest. As all the features considered in
Section 5.6.2 are calculated channel-wise, only the information from the first sEMG channel
(arbitrarily selected) of the feature maps will be fed to the regression head.

The training procedure to implement this is as follows: first, pre-train the network using
ADANN (presented in Section 5.6.3). Second, freeze all the weights of the network, except
for the weights associated with the regression head of the block of interest. The Mean Square
Error (MSE) is then employed as the loss function with the target being the value of the
handcrafted feature of interest from the first sEMG channel. Due to the stochastic nature
of the algorithm, the training was performed 20 times for each participant and the results
were given as the average MSE computed on the test dataset across of all participants. Note
that the targets derived from multi-output feature extraction methods (e.g. Autoregressive
Coefficients) corresponded to the first principal component returned by Principal Component
Analysis (PCA) (where singular value decomposition was performed on the training and test
set for the training and test phase, respectively).

5.6.4 Topological Data Analysis - Mapper

Conventional TDA methods such as Isomap [8] produce a low dimensional embedding by
retaining geodesic distances between neighboring points. However, they often have limited
topological stability [16] and lack the ability to produce a simplicial complex (a ball-and-stick
simplification of the shape of the dataset) with size smaller than the original dataset [80].
The Mapper algorithm [80] is a TDA method that creates interpretable simplifications of
high-dimensional data sets that remain true to the shape of the data set. Mapper can thus
produce a stable representation of the topological shape of the dataset at a specified resolution,
where the shape of the network has been simplified during a partial clustering stage. Further,
the shape of the dataset is defined such that it is coordinate, deformation, and compression
invariant. Consequently, this TDA algorithm can be employed to better understand how
handcrafted and deep-learned features relate to one-another. In this work, Mapper is employed
on three scenarios; (A), (B) and (C). In scenario (A), the algorithm only uses the handcrafted
features as a way to validate the hyperparameters selected by cross-referencing the results with
previous EMG works using Mapper [54, 10]. For scenario (B), only the learned features are
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used to determine if features within the same block extract similar or dissimilar sources of
information (i.e. the degree at which the features within the same block are dispersed across
the topological network). Finally, in scenario (C), Mapper is applied to the combination of
learned and handcrafted features to better understand their relationship and to provide new
avenues of research for sEMG-based gesture recognition.

Sections 5.6.4 through 5.6.4, below, provide additional details about the approach, mathematical
basis and implementation of Mapper in this work. Readers who are familiar with, or prefer to
avoid these details, may jump directly to Section 6.9.

Mapper Algorithm

The construction of the topological network created using the Mapper algorithm can be seen
as a five stage pipeline:

1. prepare: organize the data set to produce a point cloud of features in high dimensional
space.

2. lens: filter the high dimensional data into a lower dimensional representation using a
lens.

3. resolution: divide the filtration into a set of regions.

4. partial clustering : for each region, cluster the contents in the original high dimensional
space.

5. combine: combine the region isolated clusters into a single topological network using
common points across regions [24].

Mathematical definition of Mapper

A mathematical definition of the Mapper algorithm for feature extraction using a multi-channel
recording device is as follows:

Let x def
= (~x1, ..., ~xC) be a series of samples for each C channels, where ~xc ∈ RS ,∀c ∈ {1, ..., C}

and S is the length of a consecutive series of data. Define X def
= {xn}Nn=1 a set of N examples.

Let also Φ
def
= {φm}Mm=1 be a set of M feature-generating functions of the form φm : RS → R.

Given xn,c the c th element of xn ∈ X , the resulting feature fmn,c ∈ R is obtained by applying

φm such that fmn,c
def
= φm(xn,c). Consequently, the vector ~fm ∈ RN×C is obtained such that

~fm
def
= (fm1,1, f

m
1,2, ..., f

m
1,C , f

m
2,1, f

m
2,2, ..., f

m
2,C , ..., f

m
N,C).

The first step of the Mapper algorithm is to consider F def
= {~fm}Mm=1, the transformed data

points from X . Then define ψ : RN×C → RZ , with 0 < Z � N × C and consider the set
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Z def
= {ψ(~f)|~f ∈ F }. This dimensionality reduction (N × C → Z) is employed to reduce

the computational cost of the rest of the Mapper algorithm and can be considered as a
hyperparameter of the Mapper algorithm.

In the second step of the algorithm, define σ : RZ → RW , with 0 < W � Z and consider the
set W def

= {σ(~z)|~z ∈ Z}. In the literature [79], the function σ is called filter function and W is
the image or lens.

Third, let C be the smallest hypercube of RW which covers W entirely. As X is a finite set,
each dimension of C is a finite interval. Let k ∈ N∗, be a hyperparameter that subdivides C
evenly into kW smaller hypercubes. Note that the side lengths of these smaller hypercubes are
H = 1

k× the length size of C. Denotes V the set of all vertices of these smaller hypercubes.
Next, fix D > H as another hyperparameter. For each ~v ∈ V , consider the hypercube c~v of
length D centered on ~v. A visualization of step 3 is given in Figure 5.5.

v

D

H

(A) (B) (C)

Figure 5.5 – An example of step 3 of the Mapper algorithm with W = 2. The purple dots
represent the elements of W . In (A), the red square corresponds to C. In (B), C is subdivided
using k2 squares of length H (with k = 2 in this case). The orange diamonds, in both (B) and
(C), represent the elements of V . Finally, the square c~v of length D is shown on the upper left
corner of (C), overlapping other squares centered on other elements of V (dotted lines).

Fourth, define Z~v
def
= {~z ∈ Z|σ(~z) ∈ c~v}, the set of all elements of Z that is projected in the

hypercube c~v. Let ξ be a clustering algorithm and ξ(Z~v) be the resulting set of clusters. Define
B as the set that consist of all so obtained clusters for all Z~v.

Fifth, compute the topological graph G using each element of B as a vertex and create an edge
between vertices Gi and Gj (i, j ∈ {1, ..., |B |}, i 6= j) if Gi ∩Gj 6= ∅.
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Mapper implementation within this work

In this work, as described in Section 5.6.1 the dataset was recorded using the 3DC Armband
which offers 10 channel-recording (C=10) and an example is comprised of 151 data-points
(S=151) for each channel. The number of considered features in scenarios (A), (B) and (C),
are 79, 384, and 465, respectively. Note that multi-output feature extraction techniques (e.g.
AR, HIST), consider each component of that vector as a separate feature. Each element
of F is obtained by computing the result of a feature from Section 5.6.2 (corresponding to
φm() in the mathematical definition given previously) over each channel of each example of
the Training Dataset. The dataset undergoes the first dimensionality reduction (Ψ()) using
PCA [93], where the number of principal components used corresponds to 99% of the total
variance. For scenarios (A), (B) and (C), 99% of the variance resulted in 44, 77, and 119
components, respectively, extracted from 971,860 channel-wise examples.

A second dimensionality reduction is then performed (σ()), referred to as the filter function,
with the goal of representing meaningful characteristics of the relationship between features [80].
Within this study, t-Stochastic Neighborhood Embedding (t-SNE) [40] is used to encapsulate
important local structure between features. The two-dimensional (2D) t-SNE lens was con-
structed with a perplexity of 30, as this configuration resulted in the most stable visualization
over many repetitions (tested on scenario (A)). Using t-SNE as part of the Mapper algorithm
instead of on its own leverages its ability to represent local structure while avoiding the use of
a low-dimensional manifold to encapsulate global structure. Instead, the global structure is
predominantly incorporated into the topological network produced by Mapper during the fifth
stage.

The 2D lens was then segmented into a set of overlapped bins (the hypercubes centered on
the elements of V ), called the cover. A stable topological network was obtained when each
dimension was divided into 5 regions, forming a grid of 25 cubes that were overlapped by 65%.
The number of regions correspond to the topological network’s resolution, while the overlap
has an influence on the amount of connection formed between nodes [80].

Data points in each region are then clustered in isolation to provide insight into the local
structure of the feature space (the elements of Z~v correspond to the data-point of a specific
region). For each region, Ward’s hierarchical clustering (ξ) was applied to construct a dendogram
that grouped similar features together according to a reduction in cluster variance [91].

Finally, the dendograms produced using neighboring regions are combined to form the topo-
logical network (G) using the features that lie in the overlapped area to construct the edges
between the nodes.

The implementation of the Mapper algorithm was facilitated by a combination of the KeplerMap-
per [90] and the DyNeuSR (Dynamical Neuroimaging Spatiotemporal Representations) [24]
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Python modules. An extended coverage of processing pipelines for time-series TDA is given in
[53].

5.7 Results

5.7.1 Handcrafted features

Figure 5.6 shows the topological network produced using only the handcrafted features. The
Kullback-Leibler divergence of the t-SNE embedding of the handcrafted features plateaued
at 0.50, indicating that the perplexity and number of iterations used was appropriate for the
dataset. The topological network consisted of 125 nodes and 524 edges.

The color of the nodes within the network indicates the percentage of members that belong to
the feature group of interest ((A):SAP, (B): NLC), (C): FI, (D): TSM, and (E): UNI). The
presence of an edge symbolizes common features present in the connected nodes, which can be
used at a global scale to verify that functional groups (similar information) cluster together.
Due to the topological nature of the graph, information similarity between nodes is measured
using the number of edges that separate two nodes and not the length of the edges. Detailed
interpretation of the TDA networks are given in the discussion.

5.7.2 Deep Features

The average cross-subject accuracy on the test set when using the proposed ADANN framework
was 84.43% ± 0.05%. Using a Wilcoxon signed-rank test [92] with n = 22, and considering
each participant as a separate dataset, this was found to significantly outperform (p < 0.0001)
the average accuracy of 65.03%± 0.08% obtained when training the ConvNet conventionally.
Furthermore, based on Cohen’s d, this difference in accuracy was considered to be huge [70].
The accuracy obtained per participant for each training method is given in Figure 5.7A, and
the confusion matrices calculated on the gestures are shown in Figure 5.7B.

Figure 5.8A provides visualizations of the ConvNet trained with ADANN using Guided Grad-
CAM for several examples from the 3DC Dataset, These visualizations highlight what the
network considers "important" (i.e., which part of the signals had the most impact in predicting
a given class) for the prediction of a particular gesture.
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Figure 5.6 – Topological network generated exclusively for the handcrafted features, where
nodes are colored to indicate percent composition of: (a) signal amplitude and power features
(SAP), (b) nonlinear complexity (NLC), (c) frequency information features (FI), (d) time
series modeling features (TSM), and (e) unique features (UNI). Dashed boxes highlight dense
groupings of the specified functional group in each of the networks.
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(B)

(A)

Figure 5.7 – Classification results of deep learning architectures. A) Per-participant test set
accuracy comparison when training the network with and without ADANN, B) Confusion
matrices on the test set for cross-subject training with and without ADANN.
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(B)

(A)

Figure 5.8 – Output of Guided Grad-CAM when asked to highlight specific gestures in an
example. For all graphs, the y-axis of each channel are scaled to the same range of value
(indicated on the first channel of each graph). Warmer colors indicate a higher ’importance’
of a feature in the input space for the requested gesture. The coloring use a logarithmic
scale. For visualization purposes, only features that are within three order of magnitudes to
the most contributing feature are colored. (A) The examples shown are real examples and
correspond to the same gestures that Guided Grad-CAM is asked to highlight. (B) A single
example, generated using Gaussian noise of mean 0 and standard deviation 450, is shown three
times. While the visualization algorithm does highlight features in the input space (when the
requested gesture is not truly present in the input), the magnitude of these contributions is
substantially smaller (half or less) than when the requested gesture is present in the input.
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Instead of using Guided Grad-CAM to visualize how the network arrived at a decision for a
known gesture, Figure 5.8B presents the results of the visualization algorithm when the network
is told to find a gesture that is not present in the input. This is akin to using a picture of a cat
as an input to the network and displaying the parts of the image that most resemble a giraffe.
In Figure 5.8B, the input was randomly generated from a Gaussian distribution of mean 0
and standard deviation of 450 (chosen to have the same scale as the EMG signals of the 3DC
Dataset). For six of the eleven gestures (Radial Deviation, Wrist Extension, Supination, Open
Hand, Chuck Grip and Pinch Grip) the network correctly identifies no relevant areas pertaining
to these classes. While the network does highlight features in the input space associated with
the other gestures, the magnitude of these contributions was substantially smaller (half or less)
than when the requested gesture was actually present in the input signal.

The topological network produced using only the learned features is given in Figure 5.9. The
color of the nodes within the network indicates the percentage of members that belong to
the feature group of interests ((A): B1, (B): B2, (C): B3, (D): B4, (E): B5, and (F): B6).
Interpretation of the TDA network follows the rational stated in Section 5.7.1. The Kullback-
Leibler divergence of the t-SNE embedding of the handcrafted features plateaued at 0.37, again
indicating that the perplexity and number of iterations used was appropriate for the dataset.
The topological network consisted of 115 nodes and 672 edges.
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Figure 5.9 – Topological network generated for exclusively the learned features, where nodes
are colored to indicate percent composition of: (A) Block 1’s features, (B) Block 2’s features,
(C) Block 3’s features, (D) Block 4’s features, (E) Block 5’s features, and (F) Block 6’s features.
Dashed boxes highlight dense groupings of the specified block features in each of the networks.
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5.7.3 Hybrid Features

The topological network produced using both handcrafted and learned features is shown in
Figure 5.10. The Kullback-Leibler divergence of the t-SNE embedding of all features plateaued
at 0.53, again indicating that the perplexity and number of iterations used was appropriate for
the dataset. The topological network consisted of 115 nodes and 770 edges. From this network,
only a subset of nodes were occupied by both handcrafted and learned features. Those nodes
were indicated in Figure 5.10.

The color of the nodes within the network indicates the percentage of members that belong to
the feature group of interests (learned features). Information similarity was shown through a
zoomed-in region of the network, where learned and handcrafted features clustered together.
The feature members of the numbered nodes were listed in Table 5.2. Interpretation of the
TDA network follows the rational stated in Section 5.7.1.
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Figure 5.10 – Topological network generated for all features, where nodes were colored to
indicate percent composition of learned features. The dashed boxes highlight dense grouping
of handcrafted features with their associated type.
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# Summary Members

1 TSM+LeF5 AR2 AR4 DAR2 DAR4 CC1 CC4 DCC1

DCC3 SNR 8xLeF1 1xLeF2 4xLeF4 10xLeF5 13xLe5

2 TSM+UNI+LeF6 APEN AR2 AR4 DAR2 DAR4 CC1 CC4 DCC1 DCC3 DCC4 CE DFA DPR HIST123

SKEW MAVS OHM PSDFD PSR SMR SNR VCF VFD 1xLeF1 3xLeF2 3xLeF5 21xLeF6

3 TSM+UNI+LeF6 APEN AR2 AR4 DAR2 DAR4 CC1 CC4 DCC1 DCC3 DCC4 CE DFA DPR HIST12

SKEW MAVS OHM PSDFD PSR SMR SNR VCF VFD 1xLeF1 1xLeF2 1xLeF5 27xLeF6

4 UNI+LeF6 APEN DCC4 CE DFA DPR HIST123

SKEW MAVS OHM PSDFD PSR SMR VCF VFD 2xLeF2 2xLeF5 21xLeF6

2 TSM+UNI+LeF6 APEN CC1 CC4 DCC4 CE DFA DPR HIST123

SKEW MAVS OHM PSDFD PSR SMR SNR VCF VFD 37xLeF6

6 TSM+UNI+LeF6 CC1 CC4 DCC4 CE DPR HIST123 SKEW MAVS PSDFD SMR

SNR VCF VFD 5xLeF2 5xLeF4 1xLeF5 37xLeF6

7 UNI+LeF6 DCC4 CE DPR HIST123 SKEW MAVS

PSDFD SMR VCF VFD 2xLeF2 15xLeF6

8 UNI+LeF6 DCC4 CE DPR HIST123 SKEW MAVS PSDFD SMR

VCF VFD 5xLeF2 5xLeF4 1xLeF5 37xLeF6

9 UNI+LeF6 APEN DCC4 CE DFA DPR HIST2 SKEW MAVS

OHM PSDFD PSR SMR VCF VFD 15xLeF2 36xLeF6

10 All Handcrafted+LeF6 APEN CC14 DCC4 CE DFA DPR HIST123 KURT SKEW M2 MAVS MAX MHW23

MTW123 MNP TTP OHM PSDFD PSR SM SMR SNR SSI TM DTM VAR DVARV VCF VFD 11xLeF6

11 NLC+LeF6 APEN SAMPEN BC

KATZ 1xLeF6

Table 5.2 – Members of nodes labeled in Figure 5.6. LeFX refers to a Learned Feature from
block X.

Table 5.3 shows the average accuracy (grouped by block for the learned features and by group
for the handcrafted features) obtained when training an LDA on each feature and when using
all features within a category (i.e. within a block or within a group of handcrafted feature).
Note that for the learned features, PCA is applied to the feature map and the first component is
employed to represent a given learned feature. Figure 5.11 shows examples of confusion matrices
computed from the LDA classifications of singular features (both handcrafted and learned).
Figure 5.11, also shows some confusion matrices obtained from the LDA’s classification result
when using all features within a category.
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Single Feature All Features
Average Accuracy STD Accuracy

SAP 26.80% 7.0% 41.61%
FI 19.95% 2.87% 34.80%
NLC 22.32% 7.15% 31.49%
TSM 22.24% 3.33% 37.18%
UNI 15.32% 5.11% 48.37%
Block 1 28.49% 3.84% 74.59%
Block 2 28.28% 4.66% 78.26%
Block 3 28.90% 5.06% 79.19%
Block 4 29.21% 5.15% 78.77%
Block 5 28.18% 5.48% 79.23%
Block 6 26.62% 6.19% 81.38%

Table 5.3 – Accuracy obtained on the test set using the handcrafted features and the learned
features from their respective block. The Single Feature accuracies are given as the average
accuracy over all the features of their respective block/category.

Block 1

Block 5

Block 6

All features

WL MDF MFL

Single Feature

AR1 OHMUNI

Figure 5.11 – Confusion matrices using the handcrafted features and the learned features from
the first, penultimate and last block as input and a LDA as the classifier. The first column,
denoted as All features, shows the confusion matrices when using all 64 learned features of
Block 1, 5 and 6 respectively (from top to bottom) and the set of UNI handcrafted features.
The next five columns, denoted as Single Feature, show the confusions matrices for handcrafted
feature examplars and from the same network’s blocks but when training the LDA on a single
feature. The subset of learned features was selected as representative of the typical confusion
matrices found at each block. The examplars of the handcrafted features were selected from
each handcrafted features’ category (in order: SAP, FI, NLC, TSM and UNI).
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Figure 5.12 shows the average mean square error computed when regressing from the ConvNet’s
learned features (see Section 5.6.3) to fifteen handcrafted features (three per Functional Group).
Note that the mean squared error is obtained by computing the regression using only the
output of the block of interest.

SAP

FI

TSM

NLC

UNIQUE

Figure 5.12 – Mean squared error of the regressions from learned features to handcrafted
features, with respect to the number of blocks employed for the regression. The features are
grouped with their respective functional groups.

143



5.8 Discussion

5.8.1 Handcrafted Features

The result of the Mapper algorithm applied to handcrafted features (see Figure 5.6) showed
that the handcrafted features agglomerated mostly with their respective groups, and that the
topological graph is Y-shaped. This shows that the hyperparameters selected in this work are
consistent with those found in previous EMG literature [53, 10].

5.8.2 ADANN and Deep Learning Visualization

Figure 5.7B shows that training the network with ADANN outperforms the standard training
method in cross-subject classification. One advantage of ADANN in the context of this work is
that the weights of the network have strong incentives to be subject-agnostic. As such, the
learned features extracted from the network can be thought of as general features (and to a
certain extent subject-independent) for the task of sEMG-based hand gesture recognition.

Applying Guided Grad-CAM, as in 5.8, shows that the network mostly focuses on different
channels for the detection of antagonist gestures. This suggests that the ConvNet was able to
extract spatial features despite having access only to one dimensional convolutional kernels.
Furthermore, it is notable that for all the examples given in Figure 5.8A, the most active channel
was not the primary channel used for the gesture prediction. In fact, for the vast majority of
gestures, the channel with the highest amplitude did not contribute in a meaningful way to
the network’s prediction. This observation held true while looking at several other examples
from the 3DC Dataset. This might indicate that the common practice of placing the recording
channel directly on the most prominent muscle for a given gesture within the context of gesture
recognition may not be optimal. One could thus use the type of information provided by
algorithms such as Guided Grad-CAM as another way of performing channel selection (instead
of simply using classification accuracy). The absence of importance on amplitude characteristics
is in contrast to conventional practices of handcrafted feature engineering - where the feature
set typically relies heavily on amplitude characteristics. This perhaps explains the growing
interest in handcrafted feature extraction techniques that do not capture amplitude information,
such as TDPSD, that have been demonstrated to outperform conventional amplitude-reliant
features in terms of accuracy and robustness to confounding factors [32].

When applying Guided Grad-CAM on a noise input (one where the target gesture is not
present, as seen in Figure 5.8B), the reported activation level is substantially lower, and in
some cases nonexistent. When the standard deviation of the Gaussian noise was increased by
33%, the network did not find any features resembling any gesture. This is most likely due
to the fact that increasing the spread of the noise leads to a potentially greater gap in value
between two adjacent data-points (reduced smoothness) fostering the condition for a more
unrealistic signal. One could thus imagine training a generative adversarial network with the
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discriminative function based on the activation level calculated by Guided Grad-CAM, and
modulating the difficulty by augmenting the signal’s amplitude. This could facilitate training
a network to not only be able to generate realistic, synthetic EMG signal, but also have the
signal resemble actual gestures.

In contrast to the topological networks based on handcrafted features, those based on the
learned features appear as a long flair with a loop. From Figure 5.9a, the learned features
from block 1 are concentrated in the left segment of the flare, and the lower segment of the
loop. From Figure 5.9b, the learned features from block 2 were located slightly more central
to the network than the block 1 features. Additionally, a small subset of block 2 features
appeared at the right segment of the flare, indicating a second distinct source of information
was being harnessed. From Figure 5.9c, d, and e, the features of block 3, 4, and 5 relocate their
concentration of features to converge in the center of the network. Finally from Figure 5.9f, the
concentration of all block 6 features lies in the center of the network. Thus, it can be seen that
learned features from the same block tend to cluster together and remain close in the map to
adjacent blocks in the network. The only exception to this is from the first block to the second,
where substantially different features were generated by the latter. This suggests that the first
layer may serve almost as a preprocessing layer which conditions the signal for the other layers.

5.8.3 Hybrid Features Visualization

The topological network generated from using both the handcrafted and learned features
(see Figure 5.10) followed two orthogonal axes with the handcrafted features on one and the
learned features on the other. The middle of the graph (where the two axis intercept) is where
any nodes containing both handcrafted and learned features are found. The vast majority of
these nodes are populated by features from block 6 and the NLC, TSM and UNI functional
groupings. No nodes in the graph contained both handcrafted features and features from
block 3, suggesting that block 3 extracted features not captured by current feature designs.
Conversely, no learned features shared a node with features from the FI family, suggesting that
these features may not have been extracted by the network.

While this topological network informs the type of information encoded within each individual
feature, it is important to note that information can still be present but encoded in a more
complex way within the weights of the deep network. This information flow can be visualized
from the regression graphs of Figure 5.12. Features from the SAP family are more easily
predicted within the early blocks whereas features from the TSM and NLC family require the
latter blocks of the network to achieve the best predictions. Interestingly, while features from
the FI family did not share any nodes learned features, one can see that the deep network is able
to better extract this type of information within the intermediary blocks. This indicates (from
Figure 5.10, 5.12) that, while frequency information is not explicitly used by the ConvNet,
this type of information is nonetheless indirectly used to compute the features from the latter
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blocks. An example of a feature for which the ConvNet was unable to leverage its topology is
the HIST (see Figure 5.12).

5.8.4 Understanding deep features predictions

The topological network of Figure 5.10 showed that the type of information encoded within the
lower blocks of the ConvNet tended to be highly dissimilar to what the handcrafted features
encoded. Interestingly, however, Figure 5.11 shows that the role fulfilled by these features is
similar. That is, both the handcrafted and learned features (from the lower blocks) try to
encode general properties that can distinguish between all classes. The confusion matrices
obtained from training an LDA on a single feature highlight this behavior (see Figure 5.11
for some examples) as both the handcrafted features and the learned features (before the last
block) are able to distinguish between gestures relatively equally. In contrast, the features
extracted from the last block (and to a lesser extent from the penultimate block) have been
optimized to be a gesture detector instead of a feature detector. A clear visual of this behavior
is illustrated in Figure 5.11, where the main line highlighted in the confusion matrices from
block 6 was a single column (corresponding to the prediction of a single gesture), instead of the
typical diagonal. In other words, during training, the neurons of the final block are encoded
to have maximum activation when a particular class was provided in the input window and
minimum activation when other classes were provided; effectively creating a one-versus-all
(OVA) classifier. This behavior is consistent with the feature visualization literature found in
image classification and natural language processing, where semantic dictionaries or saliency
maps have depicted neuron representations becoming more abstract at later layers [77, 35]. This
also explains why the features from the last block obtained the worst average accuracy when
taken individually while achieving the highest accuracy as a group (see Table 5.3). That is, as
each feature map of the last layer tries to detect a particular gesture, its activation for the other
gestures should be minimal, making the distinction between the other gestures significantly
harder. The final decision layer of the network can then be thought of as a weighted average
of these OVA classifiers to maximize the performance of the learned feature maps. Note that
in Table 5.3, the lower accuracies obtained from the handcrafted features as a group were
expected as each feature within the same family provides similar type of information, even
more so than the learned features of the network (as seen in Figure 5.6, 5.9, 5.10). Overall,
the best performing handcrafted feature set as a group was the features from the UNI family
despite the fact that they were the worst on average when alone. This is most likely due to the
fact that by definitions, features within this family are more heterogeneous.
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5.9 Conclusion

This paper presents the first in-depth analysis of features learned using deep learning for
EMG-based hand gesture recognition. The type of information encoded within learned features
and their relationship to handcrafted features were characterized employing a mixture of
topological data analysis (Mapper), network interpretability visualization (Guided Grad-CAM),
machine learning (feature classification prediction) and by visualizing the information flow
using feature regression. As a secondary, but significant contribution, this work presented
ADANN, a novel multi-domain training algorithm particularly suited for EMG-based gesture
recognition shown to significantly outperform traditional training on cross-subject classification
accuracy.

This manuscript paves the way for hybrid classifiers that contain both learned and handcrafted
features. An ideal application for the findings of this work would rely on a mix of handcrafted
features and learned features taken from all four extremities of the hybrid topological network,
and at the center to provide complementary, and general features to the classifier. A network
could then be trained to augment its sensitivity to similar classes. For example, to alleviate
ambiguity between pinch grip and chuck grip, a learned feature that encodes the one-versus-all
information of pinch grip could be included into the original feature set or into an otherwise
handcrafted only feature set. Alternatively, handcrafted feature extraction stages may be
installed within the deep learning architecture by means of neuroevolution of augmenting
topologies [15], a genetic algorithm that optimizes the weights and connections of deep learning
architectures.

The main limitation of this study was the use of a single architecture to generate the learned
features. Though this architecture was chosen to be representative of current practices
in myoelectric control and be extensible to other applications, the current work did study
the impact of varying the number of blocks and the composition of these block on the
different experiments. Additionally, although the set of handcrafted features was selected to be
comprehensive over the sources of information available from the EMG signal, explicit time-
frequency features such as those based on spectrograms and wavelet were not included in the
current work, as they were ill-adapted to the framework employed in this study. Furthermore,
an analysis including a larger amount of gestures should also be conducted. Importantly, these
results are presented for a single 1D electrode array, and may not be representative of larger 2D
arrays such as those used in high density EMG applications.Similarly, explicit spatio-temporal
features, such as coherence between electrodes, were not explored, and the convolutional kernels
were restricted to 1D (although as seen in Figure 5.8A the network was still able to learn spatial
information to a certain extent). Omitting these type of complex features was a design choice
as this work represents a first step in understanding and characterizing learned features within
the context of EMG signal. As such, using this manuscript as a basis, future works should
study the impact of diverse architectures on the type of learned features and will incorporate
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spatio-temporal features (both handcrafted and from 2D convolutional kernels). Additionally,
formal feature set generation and hybrid classifiers should be investigated using the tools
presented in this work.
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Chapter 6

Virtual Reality to Study the Gap
Between Offline and Real-Time
EMG-based Gesture Recognition

6.1 Reference

Ulysse Côté-Allard, Gabriel Gagnon-Turcotte, Angkoon Phinyomark, Kyrre Glette, Erik
Scheme ‡, François Laviolette ‡ and Benoit Gosselin ‡. "Virtual Reality to Study the Gap
Between Offline and Real-Time EMG-based Gesture Recognition" arXiv preprint (2019).

‡These authors share senior authorship

6.2 Context

This article prepare the ground to test unsupervised domain adaptation algorithms for self-
calibration. Using the 3DC armband which was presented in the previous article, this paper
proposes a multi-day experiment within a virtual reality interface. The VR interface allow to
easily integrate the four main dynamic factors of sEMG gesture recognition and provide visual
feedbacks to the participant on three of these dynamic factors. This article thus proposes to
first look at the impact of these dynamic factors tries to quantify the difficulty of the task.
The next article will then try to adapt the classifier without using labeled data.

6.3 Résumé

Dans la littérature sur la reconnaissance de gestes basée sur l’EMG de surface, il existe un
gouffre entre la précision d’un classificateur obtenue hors-ligne et ses performances dans une
situation en temps réel. Cet écart provient principalement des quatre principaux facteurs
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dynamiques de la reconnaissance gestuelle basée sur l’EMG de surface: l’intensité des gestes,
la position du bras, le déplacement d’électrode et les changements transitoires du signal. Ces
facteurs sont malheureusement difficiles à inclure dans un ensemble de données hors ligne, car
chacun d’eux augmente de façon exponentielle le nombre de segments à enregistrer. De plus,
les expériences en ligne ont tendance à être effectuées à l’aide de robot coûteux comme un bras
robotisé, ou sur un écran d’ordinateur 2D, ce qui limite le nombre de degrés de liberté qui
peuvent être contrôlés intuitivement. Par conséquent, cet article propose un environnement
en réalité virtuelle (VR) et un protocole expérimental à partir duquel les quatre principaux
facteurs dynamiques peuvent être facilement étudiés. 20 personnes ont participé à cette étude
en prenant part à trois ou quatre séances sur une période comprise entre 14 et 21 jours.
L’environnement VR associé au Leap Motion permet de suivre la position de l’avant-bras du
participant de manière continue, ce qui donne une nouvelle façon de voir l’impact de la position
du bras sur la classification des gestes basée sur l’EMG de surface.

6.4 Abstract

Within sEMG-based gesture recognition, a chasm exists in the literature between offline
accuracy and real-time usability of a classifier. This gap mainly stems from the four main
dynamic factors in sEMG-based gesture recognition: gesture intensity, limb position, electrode
shift and transient changes in the signal. These factors are hard to include within an offline
dataset as each of them exponentially augment the number of segments to be recorded. On the
other hand, online datasets are biased towards the sEMG-based algorithms providing feedback
to the participants, limiting the usability of such datasets as benchmarks. This paper proposes
a virtual reality (VR) environment and a real-time experimental protocol from which the four
main dynamic factors can more easily be studied. During the online experiment, the gesture
recognition feedback is provided through the leap motion camera, enabling the proposed dataset
to be re-used to compare future sEMG-based algorithms. 20 able-bodied persons took part in
this study, completing three to four sessions over a period spanning between 14 and 21 days.
Finally, TADANN, a new transfer learning-based algorithm, is proposed for long term gesture
classification and significantly (p < 0.05) outperforms fine-tuning a network.

6.5 Introduction

Muscle activity as a control interface has been extensively applied to a wide range of domains
from assistive robotics [17] to serious gaming for rehabilitation [38] and artistic performances [40].
This activity can be recorded non-invasively through surface electromyography (sEMG), a
widely adopted technique both in research and clinical settings [17, 25]. Intuitive interfaces
can then be created by applying machine learning on the sEMG signal to perform gesture
recognition [28].
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Despite decades of research in the field [26] however, an important gap still exists between
offline classifiers’ performance and real-time applications [28]. This disconnect mainly stems
from the four main dynamic factors of sEMG signals [35]: Gesture intensity, limb position,
electrode shift and the transient nature of EMG signal. Myoelectric signals are also time-
consuming to obtain and must be recorded for each user, as extensive variability exists between
subjects [7]. This last factor means that, in practice, sEMG datasets used as benchmarks for
offline classification rarely contain even a single of these dynamic factors. On the other hand,
online myoelectric control naturally provides feedback to the participant. In turn, this feedback
biases the recorded online dataset towards the algorithm used for control, as the participants
will learn to adapt its behavior to improve the system’s usability [33, 32, 10]. Consequently,
obtaining a fair comparison of EMG-based gesture recognition algorithms is problematic. Thus
recording a new online dataset is often needed to test a new algorithm fairly. Recording such a
dataset however, is not only time-consuming, but can also require expensive hardware (e.g.
prosthetic arm, robotic arms) [3]. A common alternative of using these costly equipment is
through computer simulation (e.g. Fitts’ law test [4]) running on a 2D computer screen. These
type of simulation however, limits the number of degrees of freedom that can be intuitively
controlled. In contrast, virtual reality (VR) offers an attractive and affordable environment for
sEMG-based real-time 3D control simulations [31, 2, 6].

As such, this work’s main contribution is to have created a virtual reality environment from
which an online dataset, featuring 20 participants, recorded specifically to contain the four main
dynamic factors is made publicly available. An important innovation of this dataset is that the
real-time, gesture recognition feedback is provided solely by a leap motion camera [18]. In other
words, the proposed online dataset is not biased towards a particular sEMG-based gesture
recognition algorithm and can thus be re-used as a benchmark to compare new algorithms. The
VR environment in conjunction with the leap motion tracks the participant’s limb orientation
in 3D, allowing for more precise understanding of the effect of limb position. The recording
sessions, which where "gamified" to better engage the participants, features between three to
four recording sessions (equally distant) per participant, spawning a period of 14 to 21 days.

This work proposes an analysis of the effect of the four main dynamic factors on a deep
learning classifier. The feature learning paradigm offered by deep learning allows the classifier
to directly receive the raw sEMG data as input and achieve classification results comparable
with the state of the art [10, 45], something considered "impractical" before [25]. This type
of input can be viewed as a sequence of one dimensional images. While ConvNets have
been developed to encode spatial information, recurrent neural network-based architectures
(RNN) have been particularly successful in classifying sequences of information [22]. Hybrid
architectures combining these two types of network are particularly well suited when working
with sequences of spatial information[13, 16]. In particular, such hybrids have successfully
applied to sEMG-based gesture recognition [19]. Compare to the hybrid ConvNet-RNN,
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Temporal Convolutional Networks (TCN) [23, 24] are a purely convolutional approach to the
problem of sequence classification which are parallelizable, less complex to train and have
low memory requirement. within the context of real-time sEMG-based gesture recognition,
especially if applied to prosthetic control, these computational advantages are particularly
important. Additionally, TCNs have been shown to outperform RNN-based architectures in a
variety of domains and benchmarks using sequential data [5]. Consequently, this work proposes
leveraging a TCN-based architecture to perform gesture recognition.

Another contribution of this work is a new transfer learning algorithm for long-term recalibration,
named TADANN, combining the transfer learning algorithm presented in [9, 10] and the multi-
domain learning algorithm presented in [8].

This paper is divided as follows. The VR experimental protocol and environment is first
presented in Section 6.6. Section 6.7 then presents the deep learning classifiers and transfer
learning method used in this work. Finally, the results and the associated discussion are covered
in Section 6.9 and 7.10 respectively. A flowchart of the material, methods and experiments
presented in this work is shown in Figure 6.1.

Long Term 
3DC Dataset

Preprocessing

Training Session

Evaluation Session

Preprocessing

Temporal 
Convolutional Network

Architecture
No Recalibration

Recalibration

Over-Time
Classification

Limb Position

Longterm
Classification

Accuracy

Real-time Accuracy
in respect to

Limb Position

Real-time Longterm
Classification

Accuracy

Real-time Accuracy 
in respect to

 Gesture Intensity

Gesture Intensity

Transfer Learning

Over-Time
Classification

Figure 6.1 – Diagram of the workflow of this work. The two type of recording session from
the Long Term 3DC Dataset are first preprocessed. Then, a Temporal Convolutional Network
is used with different training schemes. The data from both the evaluation and training
session are used in various comparisons/experiments based on the different learning scheme.
In the diagram, the blue rectangles represent experiments, while the arrows show which
methods/algorithms are required to perform them.

6.6 Long-term sEMG Dataset

This work provides a new, publicly available (https://github.com/UlysseCoteAllard/LongTermEMG),
multimodal dataset to study the four main dynamic factors in sEMG-based hand gesture
recognition. The dataset, referred as the Long-term 3DC dataset, features 20 able-bodied
participant (5F/15M) aged between 18 and 34 years old (average 26 ± 4 years old) performing
the eleven hand/wrist gestures depicted in Figure 7.1. For each participant, the experiment was
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recorded in virtual reality over three sessions spanning 14 days (see Section 6.6.3 for details).
In addition to this minimum requirement, six of them completed a fourth session, so that the
experiment spanned 21 days. Note that originally, 22 persons took part in this study, however,
two of them (both male) had to drop out before completing three sessions, due to external
circumstances. Consequently, the incomplete data of these two individuals are not included in
the results and analysis of this work.

Neutral

Radial Deviation Wrist Flexion Ulnar Deviation Wrist Extension Supination 

Pronation Power Grip Open Hand Chuck Grip Pinch Grip

Figure 6.2 – The eleven hand/wrist gestures recorded in the Long-term 3DC dataset (image
re-used from [11])

The data acquisition protocol was approved by the Comités d’Éthique de la Recherche avec
des êtres humains de l’Université Laval (approbation number: 2017-026 A2-R2/26-06-2019).
Informed consent was obtained from all participants.

6.6.1 sEMG Recording Hardware

The electromyographic activity of each participant’s forearm was recorded with the 3DC
Armband [11]; a wireless, 10-channel, dry-electrode, 3D printed sEMG armband. The device,
which is shown in Figure 6.3, samples data at 1000 Hz per channel, allowing to take advantage
of the full spectra of sEMG signals [29]. In addition to the sEMG acquisition interface, the
armband also features a 9-axis Magnetic, Angular Rate, and Gravity (MARG) sensor cadenced
at 50 Hz. The dataset features the data of both the sEMG and MARG sensors at 1000 and 50
Hz respectively for each session of every participant.

6.6.2 Stereo-Camera Recording Hardware

During the experiment, in addition to the 3DC Armband, the Leap Motion camera [18] mounted
on a VR headset was also used for data recording. The Leap Motion (https://www.leapmotion.com/)
is a consumer-grade sensor using infrared emitters and two infrared cameras [42] to track
a subject’s forearm, wrist, hand and fingers in 3D. In addition to the software-generated
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Figure 6.3 – The 3DC Armband used in this work records electromyographic and orientation
(9-axis Magnetic, Angular rate and gravity sensor) data. The wireless, dry-electrode armband
features 10 channels, each cadenced at 1 kHz.

representation of the hand, the Long-term 3DC dataset also contains the raw output of the
stereo-camera recorded at ∼10 Hz.

6.6.3 Experimental Protocol in Virtual Reality

Each recording session is divided in two parts: the Training Session and the Evaluation Session,
both of which are conducted in VR. Figure 6.4 helps visualizes the general interface of the
software while this video (https://youtu.be/BnDwcw8ol6U) shows the experiment in action.
Note that, for every training session, two evaluation sessions were also performed. All three
sessions were recorded within a timespan of an hour.

Before any recording started, the 3DC Armband was placed on the dominant arm of the
participant. The armband was slid up until its circumference matched that of the participant’s
forearm. A picture was then taken to serve as reference for the armband placement. In
subsequent sessions, the participant placed the armband on their forearm themselves, aided
only with the reference picture. Hence, electrode displacement between sessions is expected.

Training Session

The training session’s main purpose was to generate labeled data, while familiarizing the
participants with the VR setup. To do so, the participants were asked to put on and adjust the
VR headset to maximize comfort and minimize blurriness. The VR platform employed in this
work is the Vive headset (https://www.vive.com/us/). After a period of adjustment of a few
minutes the recording started. All in all, the delay between a participant putting the armband
on their forearm and the start of the recording was approximately five minutes on average.

The VR environment showed the participant the gesture to perform using an animation of a 3D
arm performing the gesture. All gesture recordings were made with the participants standing
up with their forearm parallel to the floor unsupported. Starting from the neutral gesture,
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Figure 6.4 – The VR environment during the evaluation session. The scenery (trees, horizon)
helps orient the participants. The requested gesture is written on the participant’s head-up
display and shown as an animation (the blue hand model). The ring indicates the desired
hand’s position while its color (and the color of the blue hand) indicates the requested gesture’s
intensity. The yellow hand represents the participant’s virtual prosthetic hand and changes
color based on the intensity at which the participant is performing the gesture. The score
augments if the participant is performing the correct gesture. Bonus points are given if the
participant is performing the gesture at the right position and intensity. Note that the software’s
screenshot only shows the right eye’s view and thus does not reflect the depth information seen
by the participant.

they were instructed, with an auditory cure, to hold the depicted gesture for five seconds. The
cue given to the participants were in the following form: "Gesture X, 3, 2, 1, Go". The data
recording began just before the movement was started by the participant as to capture the
ramp-up segment of the muscle activity and always started with the neutral gesture. The
recording of the eleven gestures for five seconds each was referred to as a cycle. A total of four
cycles (220s of data) were recorded with no interruption between cycles (unless requested by
the participant). When recording the second cycle, the participants were asked to perform
each gesture (except the neutral gesture) with maximum intensity. This second cycle serves
as a baseline for the maximum intensity of each gesture on a given day, on top of providing
labeled data. For the other three cycles, a "normal" level of intensity was requested from the
participants (43.43%±23.02% of their perceived maximum intensity on average).

Evaluation Session

The evaluation session main purpose was to generate data containing the four main dynamic
factors within an online setting. The sessions took the form of a "game", where the participants
were randomly requested to hold a gesture at a given intensity and position in 3D. Figure 6.4
provides an overview of the evaluation session.

The evaluation session always took place after a training session within the VR environment,
without removing the armband between the two session. The participants were first asked to
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stand with their arm stretched forward to calibrate the user’s maximum reach. Then, the user
was requested to bend their elbow 90 degrees, with their forearm parallel to the floor (this
was the starting position). Once the participant is ready, the researcher starts the experiment
which displays a countdown to the participant in the game. When the game starts, a random
gesture is requested through text on the participant’s head-up display. Additionally, a floating
ring appears at a random position within reach of the participant, with a maximum angle of
±45 and ±70 degrees in pitch and yaw respectively. The floating ring’s color (blue, yellow and
red) tells the participant at what level of intensity to perform the requested gesture. Three
levels of intensity were used: (1) less than 25%, (2) between 25 to 45% and (3) above 45% of
the participant’s maximal intensity as determined from the participant’s first training session.
A new gesture, position and intensity are randomly requested every five seconds with a total of
42 gestures asked during an evaluation session (210 seconds).

During the experiment and using the leap motion, a virtual prosthetic arm is mapped to the
participant’s arm, which matches its position and pitch/yaw angles. The participant is thus
able to intuitively know where their arm is in the VR environment and how to best reach the
floating ring. However, the virtual prosthetic does not match the participant’s hand/wrist
movements nor its forearm’s roll angle. Instead, the leap motion’s data is leveraged to predict
the subject’s current gesture using a convNet (see Section 6.7.1 for details). The hand of the
virtual prosthetic then moves to perform the predicted gesture (including supination/pronation
with the roll angle) based on the data recorded during the training session, providing direct
feedback to the participant. Note that the sEMG data has no influence on the gesture’s
prediction as to not bias the dataset toward a particular EMG classification algorithm. The
virtual prosthetic also changes color (blue, yellow, red) based on the currently detected gesture
intensity from the armband. Finally, a score is shown to the participant in real-time during
the experiment. The score augments when the detected gesture matches the requested gesture.
Bonus points are given when the participant correctly matches the requested gesture’s intensity
and is performing the gesture at the right position.

6.6.4 Data Pre-processing

This work aims at studying the effect of the four main dynamic factors in myoelectric control
systems. Consequently, the input latency is a critical factor to consider. As the optimal
guidance latency was found to be between 150 and 250 ms [39], within this work, the data
from each participant is segmented into 150 ms frames with an overlap of 100 ms. The raw
data is then band-pass filtered between 20-495 Hz using a fourth-order butterworth filter.

6.6.5 Experiments with the Long-term 3DC Dataset

The training sessions will be employed to compare the algorithms described in this work in an
offline setting. When using the training sessions for comparison, the classifiers will be trained
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on the first and third cycle and tested on the fourth cycle. The second cycle, comprised of
the maximal intensity gestures recording, is omitted as to only take into account electrode
shift/non-stationarity of the signal and to allow an easier comparison with the literature.

The evaluation session is employed to study the impact of the four main dynamic factors on
EMG-based gesture recognition. Classifiers will be trained on cycle 1, 3 and 4 of the training
sessions and tested on the two evaluation sessions.

6.6.6 3DC Dataset

A second dataset, referred to as the 3DC Dataset and featuring 22 able-bodied participants,
is used for architecture building, hyperparameters selection and pre-training. This dataset,
presented in [11], features the same eleven gestures and is also recorded with the 3DC Armband.
Its recording protocol closely matches the training session description (Section 6.6.3), with
the difference being that two such sessions were recorded for each participant (one single day
recording). This dataset was preprocessed as described in Section 7.6.1. Note that when
recording the 3DC Dataset, participants were wearing both the Myo and 3DC Armband,
however in this work, only the data from the 3DC Armband is employed.

6.7 Deep Learning Classifiers

The following section presents the deep learning architectures employed in this work for the clas-
sification of both EMG data and images from the leap motion camera. The PyTorch [27] imple-
mentation of the networks are readily available here (https://github.com/UlysseCoteAllard/LongTermEMG).

6.7.1 Leap Motion Convolutional Network

For real-time myoelectric control, visual feedback helps the participant to produce more
consistent and discriminative signals [30, 10]. Such feedback is also natural to have as the
participant should, in most case, be able to see the effect of its control. To avoid biasing the
proposed dataset toward a particular EMG-based classification algorithm, the gesture-feedback
was provided using solely the leap motion.

Image classification is arguably the domain in which ConvNet-based architecture had the
greatest impact due, in part, to the vast amount of labeled data available [22]. However, within
this work and as to provide consistent feedback, training data was limited to the first training
session of each participant. Consequently, the network had to be trained with a low amount of
data (around 200 examples per gestures). Additionally, while the training session was recorded
with a constant point of view of the participant’s hand, the evaluation session generated, by
design, widely different point of view that the network had to contend with during inference.
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The variable point-of-view problem was addressed using the capability of the leap motion
camera to generate a 3D model in the virtual environment of the participant’s hand. Three
virtual depth-cameras were then placed around the arm’s 3D representation from three different
and fixed point-of-view to capture images of the 3D model (see Figure 6.5 (A) for an example).
The three images were then merged together by having each image encoded within one channel
of a three-channel color image (see Figure 6.5 (B) for examples). Finally, pixel intensity was
inverted (so that a high value corresponds to a part of the hand being close to the camera)
before being fed to the ConvNet. Note that one of the main reasons to uses images as input
instead of 3D point clouds is to reduce the computational requirement during both training
and inference.

(A)

(B)
Figure 6.5 – (A) The depth images (darker pixel are closer) of the three virtual cameras taken
at the same moment. The gesture captured is Wrist Flexion. Note that, regardless of the
participant’s movement, the three cameras are always placed so that they have the same
point-of-view in relation to the forearm. (B) Examples of images fed to the ConvNet. The
represented gestures from left to right: Wrist Flexion, Open Hand, Radial Deviation.

To address the data sparsity problem, the transfer learning algorithm described in [9, 10] was
employed using the data from the 3DC Dataset for pre-training.

The leap motion ConvNet’s architecture is based on EfficientNet-B0 [41] and presented in
Table 6.1.

6.7.2 EMG-based Temporal Convolutional Network

TCNs generally differ in two aspects from standard ConvNets. First, TCNs leverage stacked
layers of dilated convolutions to achieve large receptive fields with a few layers. Dilated
convolutions (also known as convolution à trous or convolution with holes) is a convolutional
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Table 6.1 – Leap motion ConvNet’s architecture

Level
n Layer Type Input Dimension

Height x Width #Channels # Layers
Source Network

# Layers
Target Network

1 Conv3x3 225× 225 33 1 1
2 ConvBlock3x3 113× 113 16 2 1
3 ConvBlock5x5 57× 57 24 2 1
4 ConvBlock3x3 29× 29 32 2 1
5 ConvBlock5x5 15× 15 48 2 1
6 ConvBlock5x5 8× 8 64 2 1

7
Conv1x1 &
Pooling &

FC
4× 4 64 1 1

Each row describes a level n of the ConvNet. The pooling layer is a global average pooling
layer (giving one value per channel), while "FC" refers to a fully connected layer.

layer where the kernel is applied over a longer range by skipping input values by a constant
amount [23]. Typically, the dilatation coefficient (d) is defined as d = 2i where i is the ith
layer from the input (starting with i=0). The second difference is that TCNs are built with
dilated causal convolutions where the causal part means that the output at time t is convolved
only with elements from outputs from time t or earlier. In practice, such a behavior is achieved
(in the 1D case with PyTorch) by padding the left side (assuming time flows from left to right)
of the vector to be convolved by (k − 1) ∗ d, where k is the kernel’s size. This also ensures a
constant output size throughout the layers.

The proposed TCN, receives the sEMG data with shape Channel × Time (10 × 150). The
architecture is based on [8, 5]. The PyTorch implementation is derived from [5].

The TCN’s architecture (see Figure 6.6), contains three blocks followed by a global average
pooling layer before the output layer. Each block encapsulate a dilated causal convolutional
layer [23] followed by batch normalization [20], leaky ReLU [43] and dropout [14].

Adam [21] is employed for the TCN’s optimization with an initial learning rate of 0.0404709
and batch size of 512. 10% of the training data is held out as a validation set which is used
for early stopping (with a ten epochs threshold) and learning rate annealing (factor of five
and a patience of five). Note that all architecture choices and hyperparameters selection were
performed using the 3DC Dataset or previous works.

6.7.3 Calibration Training Methods

This work considers three calibration methods for long-term classification of sEMG signals: No
Calibration, Re-Calibration and Delayed Calibration. In the first case, the network is trained
solely from the data of the first session. In the Re-Calibration case, the model is re-trained
at each new session with the new labeled data. To leverage previous data, fine-tuning [44] is
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Figure 6.6 – The ConvNet’s architecture employing 104 788 learnable parameters. In this
figure, Bi refers to the ith block (i ∈ {0, 1, 2}). Conv refers to a convolutional layer while
Chomp removes the padding after the convolution.

applied. That is, during re-calibration, the weights of the network are first initialized with the
weights found from the previous session. Note that the proposed transfer learning (Section 6.8)
will also use the Re-Calibration setting. Delayed Calibration is similar to Re-Calibration, but
the network is re-calibrated on the previous session instead of the newest one. The purpose of
Delayed Calibration is to see how the classifier’s degradation evolves when there is a similar
amount of days since each previous calibration.

6.8 Transfer Learning

Over multiple re-calibration sessions, large amount of labeled data is recorded. However,
standard training methods are limited to the data from the most recent session as they cannot
take into account the signal drift between each recording. Transfer learning algorithms on the
other hand can be developed to account for such signal disparity. Consequently, this work
proposes to combine the Adaptive Domain Adversarial Neural Network (ADANN) training
presented in [8] and the transfer learning algorithm presented in [10] for inter-session gesture
recognition. This new algorithm is referred to as Transferable Adaptive Domain Adversarial
Neural Network (TADANN). For simplicity’s sake, the ensemble of calibration sessions prior to
the most recent one are referred to as the pre-calibration sessions whereas the most recent one
is referred to as the calibration session.

The proposed algorithm contains a pre-training and a training step. During pre-training, each
session within the pre-calibration sessions is considered as a separate labeled domain dataset.
At each epoch, pre-training is performed by sharing the weights of a network across all the
domains (i.e. pre-calibration sessions), while the Batch-Normalization (BN) statistics are learn
independently for each session [8]. The idea behind ADANN is then to extract a general feature
representation from this multi-domain setting. To do so, a domain classification head (with
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two neurons) is added to the network. At each epoch, a batch is created containing examples
from a single, randomly selected, session at a time (referred to as the source batch). A second
batch (the target batch) is then created from a, also randomly, selected session (different than
the one used to create the source batch). The examples from the source batch are assigned the
domain-label 0, while the domain-label 1 is assigned to the examples from the target batch.
Then, a gradient reversal layer [15] is used right after the domain-head during backpropagation
to force the network to learn a session-independent feature representation. Note that the BN
statistics used by the network correspond to the session from which the source or target batch
originate, but that they are updated only with the source batch. Similarly, the classification
head is used to back-propagate the loss only with the source batch.

After pre-training is completed, the learned weights are frozen, except for the BN parameters
which allow the network to adapt to a new session. Then, a second network is initialized (in
this work, the second network is identical to the pre-trained network) and connected with
an element-wise summation operation in a layer-by-layer fashion to the pre-trained network
(see [10] for details). Additionally, all outputs from the pre-trained network are multiplied by a
learnable coefficient (clamped between 0 and 2) before the summation as to provide an easy
mechanism to neuter or increase the influence of the pre-trained network at a layer-wise level.

6.9 Results

6.9.1 Training Sessions: Over-time classification accuracy

Figure 6.7 shows the average accuracy over-time across all participants for the three calibration
methods and with TADANN (which uses the Re-Calibration method).

Based on Cohen’s d, the effect size of using Re-Calibration vs No-Calibration varies between
large to very large [34] (0.95 and 1.32 for session two and three respectively). Overall,
TADANN was the best performing method, achieving an average accuracy of 84.44%±19.15%
and 89.04%±6.49% compared to 79.96%±18.40% and 80.49%±21.58% for session two and
three respectively. Using the Wilcoxon signed rank test [12] shows that TADANN significantly
outperforms Re-Calibration (adjusted p-value = 0.0004 and = 0.002 for session two and three
respectively). The effect size was small (0.40) and medium (0.54) using Cohen’s d on session
two and three respectively. Note that statistical tests were not performed for session four due
to the sample size (n=6).

6.9.2 Evaluation Session

Figure 6.8 shows the scores obtained for all participants on the evaluation sessions in respect
to TADANN’s accuracy from the corresponding session. The Pearson r correlation coefficient
between the score and accuracy is 0.52. The average scored obtained during the first recording
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Figure 6.7 – Average accuracy over-time calculated on the last cycle of the training sessions.
The values given on the x-axis represent the average time (in days) elapsed between the current
session and the first session across all participants.

session was 5634±1521 which increased to 6615±1661 on session three, showing that the
participants improved.
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Figure 6.8 – Score obtained by each participant at each evaluation session in respect to
TADANN’s accuracy on the evaluation sessions. The translucent bar around the regression
represents the standard deviation.
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Over-time classification accuracy

Figure 6.9 shows the average accuracy over-time on the evaluation sessions across all participants
for the three calibration methods and with TADANN (which uses the Re-Calibration method).
Re-Calibration again outperforms No-Calibration and the effect was small (0.31 and 0.45)
according to cohen’s d for session two and three respectively. TADANN again significantly
outperformed the Re-Calibration (adjusted p-value = 0.003 and = 0.0005) and the effect size
was 0.11 and 0.19 for session two and three respectively.
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Figure 6.9 – Average accuracy over-time calculated on the evaluation sessions. The values
given on the x-axis represent the average time (in days) elapsed between the current session
and the first session across all participants.

limb orientation

The impact of limb’s position on the Re-Calibrated ConvNet’s accuracy is shown in Figure 6.10.
Accuracies were computed on the online dataset across all sessions and all participants. The
first 1.5s after a new gesture was requested were removed from the data used to generate
Figure 6.10, as to reduce the impact of gesture’s transition.

Gesture intensity

Figure 6.11 shows the impact of gesture’s intensity on the Re-Calibration classifier’s accuracy.
Accuracies were computed on the online dataset across all sessions and all participants (excluding
the neutral gesture). The first 1.5s after a new gesture was requested were again removed from
the data used to generate Figure 6.11.
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Figure 6.11 – Average accuracy obtained from the re-calibrated ConvNet in respect to the
percentage of the maximum activation when performing the gestures over all evaluation sessions
across all participants. Note that the data from the gesture transition period where ignored
when computing the accuracy (by removing one second of data whenever a new gesture was
requested).
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6.10 Discussion

This paper leverages the leap motion for gesture recognition, to avoid biasing the real-time
dataset toward a particular sEMG-based algorithm. Figure 6.8 shows that the score obtained
from a session correlates with the accuracy obtained from the same session. Note that the three
lowest scores come from sessions where the leap motion lost tracking of the hand particularly
often. Comparing the Delayed Calibration with the No Calibration from Figure 6.7 and 6.9
shows that participant where able to learn to produce more consistent gestures across sessions
(from a sEMG-based classifier perspective). Thus, feedback provided by the leap motion seems
to act as a good proxy, while also removing the bias normally present in online datasets.
Qualitatively, the participants enjoyed the experiment gamification as almost all of them were
trying to beat their own high-score and to claim to the top of the leader-board. Additionally,
several participants requested to do "one more try" to try to achieve a high-score (only allowed
after their last session). As such, virtual reality can provide an entertaining environment from
which to perform complex 3D tasks [31, 2, 6] at an affordable cost when compared to using
robotic arms or myoelectric prosthesis.

Inter-day classification was shown to have a significant impact both offline and online. With
standard classification algorithms, the need for periodic re-calibration is thus apparent. The
proposed TADANN algorithm was shown to consistently achieve higher accuracy than simple
fine-tuning re-calibration. In this particular dataset, on a per-subject basis, TADANN routinely
outperformed fine-tuning by more than 5%, whereas for the opposite 1% or less was the
most common. The difference between the two also grew as TADANN could pre-train on
more sessions. Thus future work will consider even more sessions per participant to evaluate
TADANN.

Figure 6.10 shows that gestures which were performed while the participant’s arm was externally
rotated were the hardest in general for the classifier to correctly predict. This is likely due to
the fact that the origin of the brachioradialis muscle (which is under the area of recording) is
the lateral supracondylar ridge of the humerus. It is possible, therefore, that as the humerus
becomes more externally rotated that it changes the geometry of the brachioradialis, affecting
the observed signals. In addition, the arm may tend to supinate slightly for higher levels of
external humeral rotation, which is known to create worse limb position effect than the overall
arm position. In contrast, when the participant’s arm was internally rotated, no such drastic
drop in performance was noted. As shown in [36], training a classifier by including multiple
limb-positions can improve inter-position performances. Consequently, it might be beneficial
for future studies to focus on including externally rotated forearm positions within the training
dataset. Note however, that while the participants were instructed to limit as most as possible
any torso rotation, they were not restrained and consequently such rotation are likely present
within the dataset. This might explain the decrease→increase→decrease in accuracy observed
for the external rotation. Participants accepted an external rotation up to when they felt
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uncomfortable and then rotated their torso. This also explains the lower number of examples
with an external yaw and a downward pitch as such combinations tend to be uncomfortable
(the software considered all angle combination with equal probability).

The impact of gesture’s intensity obtained within this study corroborate past findings in the
literature [36]. The classifier is relatively unaffected by different levels of gesture intensity
between 17 and 50%. Additionally, at lower intensity, the main error factor comes from
classifying the neutral gesture. However it has been shown that rejection-based classifiers
can improve classifier’s usability [37]. The problematic intensities are thus all above 50% of
maximal gesture intensity.

The main limitation of this study is the relatively important gap between sessions. While such
a scenario is realistic (e.g. for consumer grade armband used to play video games or make
a presentation) it does not allow to smoothly see the change in signals within day. As such,
future works will expend upon the current dataset to include more frequent evaluation sessions
for each participant (and multiple within the same day).

6.11 Conclusion

This paper presented a new VR experimental protocol for sEMG-based gesture recognition
leveraging the leap motion camera as to not bias the online dataset. Quantitatively and
qualitatively, the participants were shown to improve over time and were motivated in taking
part in the experiment. Overall, TADANN was shown to significantly outperform fine-tuning.
The VR environment in conjunction with the leap motion allowed to quantify the impact of
limb position with, to the best of the authors knowledge, the highest resolution yet.

Future work will use self-calibrating algorithms based on domain adversarial training [1] to
hopefully reduce the impact of transient change in sEMG signals.
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Chapter 7

Unsupervised Domain Adversarial
Self-Calibration for
Electromyographic-based Gesture
Recognition

7.1 Reference
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Scheme ‡, François Laviolette ‡ and Benoit Gosselin ‡. "Unsupervised Domain Adversarial
Self-Calibration for Electromyographic-based Gesture Recognition" arXiv preprint (2019).

‡These authors share senior authorship

7.2 Context

This article is a natural progression from the paper presenting the four main dynamic factors
within a VR environment. In that last paper, a clear degradation between each recording session
was observed. This degradation required the participant to perform periodic recalibration
to maintain classifier’s performances. Consequently, this article proposes to try to address
this issue by using unlabeled data from new session to automatically adapt the classifier and
hopefully enhance classification accuracies between sessions.

7.3 Résumé

Cet article présente un nouvel algorithme d’apprentissage profond adaptatif, nommé SCADANN,
pour la reconnaissance de gestes à long terme basé sur l’EMG de surface. SCADANN est
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comparé à trois algorithmes d’adaptation par domaine contradictoire qui sont l’état de l’art.
Les algorithmes sont évalués sur la tâche particulièrement difficile de s’adapter au signal EMG
lorsque plusieurs jours se sont écoulés entre chaque adaptation. Globalement, SCADANN
améliore systématiquement les performances du classificateur sans adaptation et se classe
premier parmi les algorithmes testés dans presque tous les cas.

7.4 Abstract

Surface electromyography (sEMG) provides an intuitive and non-invasive interface from which
to control machines. However, preserving the myoelectric control system’s performance over
multiple days is challenging, due to the transient nature of the signals obtained with this
recording technique. In practice, if the system is to remain usable, a time-consuming and
periodic recalibration is necessary. In the case where the sEMG interface is employed every
few days, the user might need to do this recalibration before every use. Thus, severely limiting
the practicality of such a control method.

Consequently, this paper proposes tackling the especially challenging task of unsupervised adap-
tation of sEMG signals when multiple days have elapsed between each recording by introducing
Self-Calibrating Asynchronous Domain Adversarial Neural Network (SCADANN). SCADANN
is compared with two state-of-the-art self-calibrating algorithms developed specifically for
deep learning within the context of EMG-based gesture recognition and three state-of-the-art
domain adversarial algorithms. The comparison is made both on offline and a dynamic datasets
(20 participants per dataset), using two different deep network architectures with two different
input modalities (temporal spatial descriptors and spectrograms). Overall, SCADANN is shown
to substantially and systematically improves classifier’s performances over no recalibration and
obtains the highest average accuracy for all tested cases across all methods.

7.5 Introduction

Robots have become increasingly prominent in the lives of human beings. As a result, the way
in which people interact with machines is constantly evolving towards better synergies between
human intention and machine action. The ease of transcribing intention into commands is
highly dependent on the type of interface and its implementations [11]. Within this context,
muscle activity offers an attractive and intuitive way to perform gesture recognition as a
guidance method [4, 39]. Such activity can be recorded from surface electromyography (sEMG),
a non-invasive technique widely adopted both for prosthetic control and in research as a way
to seamlessly interact with machines [50, 55]. Artificial intelligence can then be leveraged as
the bridge between these biological signals and a robot input guidance.

Current state-of-the-art algorithms in gesture recognition routinely achieve accuracies above
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95% for the classification of offline, within-day datasets [15, 24]. However, many practical
issues still need to be solved before implementing these type of algorithms into functional
applications [50, 28]. Electrode shift and the transient nature of the sEMG signals are among
the main obstacles to a robust and widespread implementation of real-time sEMG-based gesture
recognition [50]. In practice, this means that users of current myoelectric systems need to
perform periodic recalibration of their device so as to retain their usability. To address the
issue of real-time myoelectric control, researchers have proposed rejection-based methods where
a gesture is predicted only when a sufficient level of certainty is achieved [52, 2]. While these
types of methods have been shown to increase online usability, they do not directly address the
inherent decline in performance of the classifier over time. One way to address this challenge is
to leverage transfer learning algorithms to periodically recalibrate the system with less data
than normally required [49, 17]. While these types of methods reduce the burden on the user,
they still require said user to periodically record labeled data.

This work focuses on the problem of across-day sEMG-based gesture recognition both within
an offline and dynamic setting. In particular, this work considers the situation where several
days are elapsed between each recording session. Such a setting naturally arises when sEMG-
based gesture recognition is used for video games, artistic performances or, simply, to control
non-essential devices [58, 55, 5]. In contrast to within-day or even day-to-day adaptation,
this work’s setting is especially challenging as the change in the signal between two sessions
is expected to be substantially greater and no intermediary data is available to bridge this
gap. The goal is then for the classifier to be able to adapt over-time using the unlabeled data
obtained from the myoelectric system. Such a problem can be framed within an unsupervised
domain adaptation setting [1] where there exists an initial labeled dataset on which to train,
but the classifier then has to adapt to unlabeled data from a different, but similar distribution.
Huang et al. [30] proposes to use this setting to update a support vector machine by replacing
old examples forming the support vectors with new unlabeled examples which are close to the
old ones (and assigning the same label as the example that is replaced). Other authors [27]
propose instead to periodically retrain an LDA by updating the training dataset itself. The
idea is to replace old examples with new, near (i.e. small distance within the feature space)
ones. Such methods, however, are inherently restricted to single-day use as they rely on
smooth and small signal drift to update the classifier. Additionally, these types of methods
do not leverage the potentially large quantity of unlabeled data generated. In contrast, deep
learning algorithms are well suited to scale to large amounts of data and were shown to be
more robust to between-day signal drift than LDA, especially as the amount of training data
increases [63]. Within the field of image recognition, deep learning-based unsupervised domain
adaptation has been extensively studied. A popular approach to this problem is domain
adversarial training popularized by DANN [1, 23]. The idea behind DANN is to learn a feature
representation which favors class separability of the labeled dataset, while simultaneously
hindering domain separability (i.e. differentiation between the labeled and unlabeled examples).
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See Section 7.7 for details. Building on DANN, the VADA (for Virtual Adversarial Domain
Adaptation) algorithm [53] proposes to also minimize the cluster assumption violations on
the unlabeled dataset [62] (i.e. decision boundary should avoid area of high data density).
Another state-of-the-art algorithm, but this time for non-conservative unsupervised domain
adaptation (i.e. the final model might not be good at classifying the original data), is DIRT-T
(for Decision-boundary Iterative Refinement Training with a Teacher), which starting from
the output of VADA, removes the labeled data and iteratively tries to continue minimizing
the cluster assumption. A detailed explanation of DANN, VADA and DIRT-T is given in
Section 7.7. These three state-of-the-art domain adversarial algorithms achieve a two-digit
accuracy increase on several difficult image recognition benchmarks [53] compared to the
non-adapted deep network. This work thus proposes to test these algorithms on the challenging
problem of multiple-day sEMG-based gesture recognition both within an offline and dynamic
setting.

An additional difficulty of the setting considered in this work is that real-time myoelectric
control imposes strict limitations in relation to the amount of temporal data which can be
accumulated before each new prediction. The window’s length requirement has a direct
negative impact on the performance of classifiers [54, 2]. This is most likely due to the fact that
temporally neighboring segments most likely belong to the same class [6, 61]. In other words,
provided that predictions can be deferred, it should be possible to generate a classification
algorithm with improved accuracy (compared to the real-time classifier) by looking at a wider
temporal context of the data [2]. Consequently, one potential way of coping with electrode
shift and the non-stationary nature of EMG signals for gesture recognition is for the classifier
to self-calibrate using pseudo-labels generated from this improved classification scheme. The
most natural way of performing this relabeling is using a majority vote around each classifier’s
prediction. Xiaolong et al. [61] have shown that such a recalibration strategy significantly
improves intra-day accuracy on an offline dataset for both amputees and able-bodied subjects
(tested on the NinaPro DB2 and DB3 datasets [7]). However for real-time control, such a
majority vote strategy will increase latency, as transitions between gestures inevitably take
longer to be detected. Additionally, as the domain divergence over multiple days is expected
to be substantially greater than within a single day, ignoring this gap before generating
the pseudo-labels might negatively impact the self-recalibrated classifier. Finally, trying to
re-label every segment, even when there is no clear gesture detected by the classifier, will
necessarily introduce undesirable noise in the pseudo-labels. To address these issues, the main
contribution of this paper is the introduction of SCADANN (for Self-Calibrating Asynchronous
Domain Adversarial Neural Network), a deep learning-based algorithm, which leverages domain
adversarial training and the unique properties of real-time myoelectric control for inter-day
self-recalibration.

This paper is organized as follows. An overview of the datasets and the deep network architecture
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employed in this work is provided in Section 7.6. Section 7.7 presents the domain adaptation
algorithm considered in this work, while Section 7.8 thoroughly describes SCADANN alongside
the two most popular sEMG-based unsupervised adaptation algorithms. Finally, these three
algorithms are compared alongside DANN, VADA and DIRT-T with the non-adaptive network
in Section 7.9 and their associated discussions are shown in Section 7.10.

7.6 Datasets and Network’s Architecture

This work employs the 3DC Dataset [16] for architecture building and hyperparameter opti-
mization and the Long-term 3DC Dataset [17] for training and testing the different algorithms
considered. Both datasets were recorded using the 3DC Armband [16]; a wireless, 10-channel,
dry-electrode, 3D printed sEMG armband. The device samples data at 1000 Hz per channel,
allowing to take advantage of the full spectra of sEMG signals [46].

As stated in [16, 17], the data acquisition protocol of the 3DC Dataset and Long-term 3DC
Dataset were approved by the Comités d’Éthique de la Recherche avec des êtres humains de
l’Université Laval (approval number: 2017-0256 A-1/10-09-2018 and 2017-026 A2-R2/26-06-
2019 respectively), and informed consent was obtained from all participants.

7.6.1 Long-term 3DC Dataset

The Long-term 3DC Dataset features 20 able-bodied participants (5F/15M) aged between 18
and 34 years old (average 26±4 years old) performing eleven gestures (shown in Figure 7.1).
Each participant performed three recording sessions over a period of fourteen days (in seven-day
increments). Each recording session is divided into a Training Recording and two Evaluation
Recordings. For each new session, the participants were the ones placing the armband on
their forearm at the beginning of each session (introducing small electrode shift between each
session).

The Long-term 3DC Dataset was recorded within a virtual reality environment in conjunction
with the leap motion camera. The usefulness of the VR environment was three fold. First,
it allowed to more intuitively communicate requested gesture intensity and position to the
participant. Second, it allowed to replace the arm of the participant with a virtual prosthetic,
which provided direct and intuitive feedback (gesture held, intensity and position) to the
participant. Third, it allowed the gamification of the experimental protocol, which greatly
facilitated both recruitment and participant retention. During recording, the leap motion, in
conjunction with an image-based convolutional network, served as the real-time controller and
as a way to provide feedback without biasing the dataset to a particular EMG-based classifier.

The dataset is thoroughly described alongside a detailed explanation of the VR system and the
contributions of the leap motion camera in [17]. A brief overview of the dataset is provided in
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the following subsections. A video showing the recording protocol in action is also available at
the following link: https://www.youtube.com/watch?v=BnDwcw8ol6U.

Neutral

Radial Deviation Wrist Flexion Ulnar Deviation Wrist Extension Supination

Pronation Power Grip Open Hand Chuck Grip Pinch Grip

Reduced Gesture Dataset
2042.0000000000018

2042.0000000000018

Figure 7.1 – The eleven hand/wrist gestures recorded in the Long-term 3DC dataset and
the 3DC Dataset. The gestures included within the Reduced Long-term 3DC Dataset are
encompassed within the green line (7 gestures totals).

Training Recording

During the Training Recording, each participant was standing and held their forearm, unsup-
ported, parallel to the floor, with their hand relaxed (neutral position). Starting from this
neutral position, each participant was asked to perform and hold each gesture for a period of
five seconds. This was referred to as a cycle. Two more such cycles were recorded. In this work,
the first two cycles are used for training, while the last one is used for testing (unless specified
otherwise). Note that in the original dataset, four cycles are recorded for each participant,
with the second one recording the participant performing each gesture with maximal intensity.
This second cycle was removed for this work to reduce confounding factors. In other words,
cycle two and three in this work correspond to cycle three and four in the original dataset.

In addition to the eleven gestures considered in the Long-term 3DC Dataset, a reduced dataset
from the original Long-term Dataset containing seven gestures is also employed. This Reduced
Long-term 3DC Dataset is considered as it could more realistically be implemented on a
real-world system given the current state of the art of EMG-based hand gesture recognition.
The following gestures are selected to form the reduced dataset: neutral, open hand, power grip,
radial/ulnar deviation and wrist flexion/extension. They were selected as they were shown to
be sufficient in conjunction with orientation data to control a 6 degree-of-freedom robotic arm
in real-time [5].
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Evaluation Recording

During the Evaluation Recordings, the participants were asked to perform a specific gesture at
a specific intensity (low, medium and high intensity based on their corresponding maximal
gesture intensity) and at a random position (a point within reach of the participant’s extended
arm at a maximum angle of ±45 and ±70 degrees in pitch and yaw respectively). A new gesture,
intensity and position were randomly asked every five seconds. Each Evaluation Recording
lasted three and a half minutes and two such recordings were performed by each participant
for each recording session (total of six Evaluation Recordings per participant). The Evaluation
Recordings provide a dynamic dataset which includes the transitions between the different
gestures and the four main dynamic factors [50] (i.e. contraction intensity, inter-day recording,
electrode shifts and limb position) in sEMG-based gesture recognition. Note that while the
participants received visual feedback within the VR environment in relation to the held gesture,
limb position and gesture intensity, the performed gestures were classified using the leap motion
camera [29] in order to avoid bias in the dataset towards a particular EMG-based classifier.
In other words, the controller used by the participants during the Evaluation Recordings is
distinct and independent from the sEMG-based gesture recognition algorithms considered in
this manuscript, which is the main difference between the dynamic dataset considered and a
real-time dataset. In this work, the first evaluation recording of a given session was employed
as the unlabeled training dataset for the algorithms presented in Section 7.7 and 7.8, while the
second evaluation recording was used for testing.

Data Pre-processing

This work aims at studying unsupervised recalibration of myoelectric control systems. Con-
sequently, the input latency is a critical factor to consider. The optimal guidance latency
was found to be between 150 and 250 ms [54]. As such, the data from each participant is
segmented into 150 ms frames with an overlap of 100 ms. Each segment thus contains 10× 150

(channel × time) data points. The segmented data is then band-pass filtered between 20-495
Hz using a fourth-order butterworth filter.

Given a segment, the spectrogram for each sEMG channel are then computed using a 48 points
Hann window with an overlap of 14 yielding a matrix of 4 × 25 (time × frequency). The
first frequency band is then removed in an effort to reduce baseline drift and motion artifacts.
Finally, following [14], the time and channel axis are swapped such that an example is of
the shape 4× 10× 24 (time× channel × frequency). Spectrograms were selected as inputs
for the ConvNet presented in Section 7.6.3, as they have been shown to obtain competitive
performance on a wide variety of datasets [15, 61, 16] and in the control of a robotic arm
in real-time [5]. In addition, they are relatively inexpensive to compute and allow for faster
training of a ConvNet when compared to the raw sEMG signal due to the relatively low
dimensionality of the obtained input images from the spectrograms.
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7.6.2 3DC Dataset

The 3DC Dataset features 22 able-bodied participants and is employed for architecture building
and hyperparameter selection. This dataset, presented in [16], includes the same eleven gestures
as the Long-term 3DC Dataset. Its recording protocol closely matches the Training Recording
description (Section 7.6.1), with the difference being that two such recordings were recorded
for each participant (within the same day). This dataset was preprocessed as described in
Section 7.6.1.

7.6.3 Convolutional Network’s Architecture

A small and simple ConvNet’s architecture inspired from [13] and presented in Figure 7.2
was selected to reduce potential confounding factors. The ConvNet’s architecture contains
four blocks followed by a global average pooling and two heads. The first head is used to
predict the gesture held by the participant. The second head is only activated when employing
domain adversarial algorithms (see Section 7.7 and 7.8 for details). Each block encapsulates a
convolutional layer [36], followed by batch normalization [31], leaky ReLU [60] and dropout
(set to p=0.5) [22].

Spectrograms Input Example
4x10x24

Leaky ReLU
slope=0.1

Bi, i∈{0,1,2,3}
Conv

{16,32,64,128}
@{4x7, 3x7, 3x7, 3x6}

Batch Norm Dropout
p=0.5

Gesture Output
11

Softmax

Global Average
 Pooling

64
32x5x12 64x5x6 128x3x1

16x7x18

B0 B1 B2 B3

Softmax
Domain Output

2

Figure 7.2 – The ConvNet’s architecture employing 206 548 learnable parameters. In this
figure, Bi refers to the ith block (i ∈ {0, 1, 2, 3}). Conv refers to a convolutional layer. When
working with the reduced dataset, the number of output neurons from the gesture-head are
reduced to seven.

ADAM [34] is employed for the ConvNet’s optimization with batch size of 512. The learning
rate (lr=0.001316) was selected with the 3DC Dataset by random search [8] using a uniform
random distribution on a logarithm scale between 10−5 and 101 and 100 candidates (each
candidate was evaluated 5 times). Early stopping, with a patience of 10 epochs, is also applied
by using 10% of the training dataset as a validation set. Additionally, learning rate annealing,
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with a factor of five and a patience of five, was also used. Within this paper, this classifier will
be refered to as Spectrogram ConvNet.

Note that the ConvNet’s architecture implementation, written with PyTorch [41], is made
readily available here (https://github.com/UlysseCoteAllard/LongTermEMG).

7.6.4 Temporal Spatial Descriptors Deep Network

Due to the ubiquity of handcrafted feature sets within the field of EMG-based gesture recogni-
tion, a deep network taking Temporal Spatial Descriptors (TSD) as input is also considered.
TSD is a handcrafted feature set proposed by Khushaba et al. [33] which achieved state-of-the-
art results in EMG-based gesture classification. A short overview of this feature set is given in
Appendix 7.A and the interested reader is encouraged to consult [33] for a detailed description.
Note that before computing the gesture, the data is preprocessed as described in Section 7.6.1
(without the spectrogram part).

The deep network architecture was again selected to be as simple as possible and is comprised
of 3 fully connected layers each 200 neurons wide. Each layer also applies batch normalization,
leaky ReLU (slope 0.1) as the activation function and dropout (p=0.5). The training procedure
is the same as for the Spectrogram ConvNet. ADAM is also employed with a learning rate of
0.002515 (found by cross-validation on the 3DC Dataset using the same hyperparameter as
the Spectrogram ConvNet). The PyTorch implementation of the Deep Network, which will be
referred to as TSD DNN for the remainder of this paper, is also made readily available here
(https://github.com/UlysseCoteAllard/LongTermEMG).

7.6.5 Calibration Methods

This work considers three types of calibration for long-term classification of sEMG signals:
No Calibration, Recalibration and Unsupervised Calibration. In the first case, the network
is trained solely from the data of the first session. In the Recalibration case, the model is
re-trained at each new session with the new labeled data. Unsupervised Calibration is similar to
Recalibration, but the dataset used for recalibration is unlabeled. Section 7.7 and 7.8 presents
the unsupervised calibration algorithms considered in this work.

7.7 Unsupervised Domain Adaptation

Domain adaptation is an area in machine learning which aims at learning a discriminative
predictor from two datasets (source and target datasets) coming from two different, but related,
distributions [23] (referred to as Ds and Dt). In the unsupervised case, one of the datasets is
labeled (and comes from Ds), while the second is unlabeled (and comes from Dt).
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Within the context of myoelectric control systems, labeled data is obtained through a user’s
conscious calibration session. However, due to the transient nature of sEMG signals [50, 37],
classification performance tends to degrade over time. This naturally creates a burden for
the user who needs to periodically recalibrate the system to maintain its usability [37, 19].
During normal usage, however, unlabeled data is constantly generated. Consequently, the
unsupervised domain adaptation setting naturally arises by defining the source dataset as the
labeled data of the calibration session and the target dataset as the unlabeled data generated
by the user during control.

The PyTorch implementation of the domain adversarial algorithms is mainly based on [40].

7.7.1 Domain-Adversarial Training of Neural Networks

The Domain-Adversarial Neural Network (DANN) algorithm proposes to predict on the target
dataset by learning a representation from the source dataset that makes it hard to distinguish
examples from either distribution [1, 23]. To achieve this objective, DANN adds a second head
(which may be comprised of one or more layers) to the network. This head, referred to as the
domain classification head, receives the features from the last feature extraction layer of the
network (in this work case; from the global average pooling layer). The goal of this second
head is to learn to discriminate between the two domains (source and target). However, during
backpropagation, the gradient computed from the domain loss is multiplied by a negative
constant (-1 in this work). This gradient reversal explicitly forces the feature distribution of
the domains to be similar. The backpropagation algorithm proceeds normally for the original
head (classification head). The two losses are combined as follows: Ly(θ;Ds) +λdLd(θ;Ds,Dt),
where θ is the classifier’s parametrization, Ly and Ld are the prediction and domain loss
respectively. λd is a scalar that weights the domain loss (set to 0.1 in this work).

7.7.2 Decision-boundary Iterative Refinement Training with a Teacher

Decision-boundary Iterative Refinement Training with a Teacher (DIRT-T) is a two-step
domain-adversarial training algorithm which achieves state-of-the-art results on a variety of
domain adaptation benchmarks [53].

First step

During the first step, referred to as VADA (for Virtual Adversarial Domain Adaptation) [53]),
training is done using DANN as described previously (i.e. using a second head to discriminate
between domains). However, with VADA, the network is also penalized when it violates the
cluster assumption on the target. This assumption states that data belonging to the same
cluster in the feature space share the same class. Consequently, decision boundaries should
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avoid crossing dense regions. As shown in [26], this behavior can be achieved by minimizing
the conditional entropy with respect to the target distribution:

Lc(θ;Dt) = Ex∼Dt

[
hθ(x)T ln(hθ(x))

]
(7.1)

Where θ is the parametrization of a classifier h.

In practice, Lc must be estimated from the available data. However, as noted by [26], such
an approximation breaks if the classifier h is not locally-Lipschitz (i.e. an arbitrary small
change in the classifier’s input produces an arbitrarily large change in the classifier’s output).
To remedy this, VADA proposes to explicitly incorporate the locally-Lipschitz constraint
during training via Virtual Adversarial Training (VAT) [38]. VAT generates new "virtual"
examples at each training batch by applying small perturbation to the original data. The
average maximal Kullback-Leibler divergence (DKL) [35] is then minimized between the real
and virtual examples to enforce the locally-Lipschitz constraint. In other words, VAT adds the
following function to minimize during training:

Lv(θ;D) = Ex∼D
[

max
||r||≤ε

DKL(hθ(x)||hθ(x+ r))

]
(7.2)

As VAT can be seen as a form of regularization, it is also applied for the source data. In
summary, the combined loss function to minimize during VADA training is:

min
θ
Ly(θ;Ds) + λdLd(θ;Ds,Dt) + λvsLv(θ;Ds)+

λvtLv(θ;Dt) + λcLc(θ;Dt)
(7.3)

Where the importance of each additional loss function is weighted with a hyperparameter (λd,
λvs, λvt, λc) . A diagram of VADA is provided in Figure 7.3.

Second Step

During the second step, the signal from the source is removed. The idea is then to find a
new parametrization that further minimizes the target cluster assumption violation while
remaining close to the classifier found during the first step. This process can then be repeated
by updating the original classifier with the classifier’s parametrization found at each iteration.
The combined loss function to minimize during the nth iteration thus becomes:

min
θn

βE
[
DKL(hθn−1(x)||hθn(x))

]
+

λvtLv(θ;Dt) + λcLc(θ;Dt)
(7.4)
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Cross-Entropy + VAT
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Domain head

Classification
 head

Figure 7.3 – The VADA algorithm which simultaneously tries to reduce the divergence between
the labeled source ({xs, ys}) and unlabeled target ({xt}) dataset while also penalizing violation
of the cluster assumption on the target dataset.

Where β is a hyperparameter which weighs the importance of remaining close to hθn−1 . In
practice, the optimization problem of Eq. 7.4 can be approximately solved with a finite number
of stochastic gradient descent steps [53]. Following [53], the hyperparameters values are set to
λd = 10−2, λvs = 1, λvt = 10−2, λc = 10−2, β = 10−2.

Note that, both DANN and VADA were conservative domain adaptation algorithms (i.e. the
training algorithms try to generate a classifier that is able to discriminate between classes from
both the source and target simultaneously). In contrast, DIRT-T is non-conservative as it
ignores the source’s signal during training. In the case where the gap between the source and
the target is important, this type of non-conservative algorithm is expected to perform better
than its conservative counterparts [53].

7.7.3 Unsupervised Adaptation - Hyperparameters Selection

One challenge in applying unsupervised domain adaptation algorithms is the selection of the
hyperparameters associated with the loss functions weights. This is due to the absence of labeled
data on the target dataset, which in practice prohibits performing standard hyperparameter
selection. One possible solution is to perform the adaptation without explicitly minimizing
the distance between the source and target, so that this distance can be used as a measure
of adaptation performance [56]. However, such a solution precludes algorithms like the ones
considered in this work and so the question of how to best perform hyperparameters selection
remains a difficult and open question.

In their work introducing VADA and DIRT-T [53], Shu et al. observed that extensive
hyperparameter tuning was not necessary to achieve state-of-the-art performance on the
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datasets they were using. Consequently, following this recommendation, the hyperparameters
associated with the unsupervised domain adversarial algorithms described in this section used
the defaults weights recommended in their respective paper.

7.8 Unsupervised Self-Calibration

Within an unsupervised domain adaptation setting, the classifier’s performance is limited by
the unavailability of labeled data from the target domain. However, real-time EMG-based
gesture recognition offers a particular situation from which pseudo-labels can be generated
from the recorded data by looking at the prediction’s context. These pseudo-labels can then
be used as a way for the classifier to perform self-recalibration. Zhai et al. [61] proposed
to leverage this context by relabeling the network’s predictions. Let P (i, j) be the softmax
value of the network’s output for the jth gesture (associated with the jth output neuron) of
the ith example of a sequence. The heuristic considers an array composed of the t segments
surrounding example i (included). For each j, the median softmax value over this array is
computed:

P̃ (i, j) = median(P (i− t, j), P (i− t+ 1, j), ...,

P (i, j), ..., P (i+ t, j))
(7.5)

The pseudo-label of i then becomes the gesture j associated with the maximal P̃ (i, j). The
median of the softmax’s outputs is used instead of the prediction’s mean to reduce the impact
of outliers [61]. This self-calibrating heuristic will be referred to as MV (for Multiple Votes)
from now on. As it was the best performing setting, the All-Session recalibration setting (i.e.
using all available unlabeled data across sessions) [61] is employed for MV. The hyperparameter
t was set to 1 second, as recommended in [61].

This work proposes to improve on MV with a new self-calibrating algorithm, named SCADANN,
which can be divided into three steps:

1. Apply DANN to the network using the labeled and newly acquired unlabeled data.

2. Using the adapted network, perform the relabeling scheme described in Section 7.8.1.

3. Starting from the adapted network, train the network with the pseudo-labeled data and
labeled data while continuing to apply DANN to minimize domain divergence.

The first step aims at reducing the domain divergence between the labeled recording session
and the unlabeled recording to improve classification performance of the network.
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The second step uses the pseudo-labeling heuristic described in Section 7.8.1. In addition
to using the prediction’s context to enhance the relabeling process, the proposed heuristic
introduces two improvements compared to [61]:

First, the heuristic tries to detect transition from one gesture to another. Then, already
relabeled predictions falling within the transition period are vetted and possibly relabeled to
better reflect when the actual transition occurred. This improvement aims at addressing two
problems. First, the added latency introduced by majority-voting pseudo-labeling is removed.
Second, this relabeling can provide the training algorithm with gesture transition examples.
This is of particular interest as labeled transition examples are simply too time consuming to
produce, especially considering the current need for periodic recalibration (g gestures create
g × (g − 1) transitions to record). Introducing pseudo-labeled transition examples within the
target dataset, could allow the network to detect transitions more rapidly and thus reduce the
system latency. In turn, due to this latency’s reduction, window’s length could be increases to
improve the overall system’s performance.

The second improvement, introduces the notion of stability to the network’s predictions. Using
this notion, the heuristic removes examples that are more likely to be relabeled falsely from the
pseudo-labeled dataset. This second improvement is essential for a realistic implementation
of self-calibrating algorithms, as otherwise the pseudo-labeled dataset would rapidly be filled
with an important quantity of noise. This would result in a rapidly degenerating network as
self-calibration is performed iteratively.

The third step re-calibrates the network using the labeled and pseudo-labeled dataset in
conjunction. DANN is again employed to try to obtain a similar feature representation between
the source and target datasets. The source dataset contains the labeled dataset alongside all the
pseudo-labeled data from prior sessions, while the target dataset contains the pseudo-labeled
data from the current session. The difference with SCADANN’s first step is that the network’s
weights are also optimized in relation to the cross-entropy loss calculated from the newly
generated pseudo-labels. If only the pseudo-labeled dataset was employed for recalibration,
the network performance would rapidly degrade from being trained only with noisy labels
and possibly without certain gestures (i.e. nothing ensure that the pseudo-labeled dataset
is balanced or even contains all the gestures). Early stopping is performed using part of the
newly generated pseudo-labels.

7.8.1 Proposed Pseudo-labels Generating Heuristic

For concision’s sake, the pseudo-code for the proposed relabeling heuristic is presented in
Appendix 7.B-Algorithm 2. Note also that a python implementation of SCADANN (alongside
the pseudo-labeling heuristic) is available in the previously mentioned online repository.

The main idea behind the heuristic is that if the new prediction is different than the previous
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one, the state goes from stable to unstable. During the stable state, the prediction of the
considered segment is added to the pseudo-label array. During the unstable state, all the
network’s output (after the softmax layer) are instead accumulated in a second array. When
this second array contains enough segments (hyperparameter sets to 1.5s), the class associated
with the output neuron with the highest median value is defined as the new possible stable class.
The new possible stable class is confirmed if the median percentage of this class (compared with
the other classes) is above a certain threshold (85% and 65% for the seven and eleven gestures
dataset respectively (selected using the 3DC dataset)). If this threshold is not achieved, the
oldest element in the second array is removed and replaced with the next element. Note that
the computation of the new possible stable class using the median is identical to MV.

When the new possible class is confirmed, the heuristic first verify if it was in the unstable state
for too long (2s in this work). If it was, all the predictions accumulated during the unstable
state are removed. Otherwise, if the new stable state class is different than before it means
that a gesture’s transition probably occurred. Consequently, the heuristic goes back in time
before the instability began (maximum of 0.5s in this work) and looks at the derivative of the
entropy calculated from the network’s softmax output to determine when the network started
to be affected by the gesture’s transition. All the segments from this instability period (and
adding the relevant segments from the look-back step) are then relabeled as the new stable
state class found. If instead the new stable state class is identical to the previous one, only
the segments from the instability period are relabeled. The heuristic then returns to its stable
state.

7.8.2 SCADANN - Hyperparameters Selection

On the surface, SCADANN introduces several hyperparameters whose selection, within an
unsupervised domain adaptation paradigm, is not straightforward. The majority of the
introduced hyperparameters, however, have a meaningful interpretation within the context
of EMG-based gesture recognition. In other words, reasonable values can be assigned to
them without performing detailed data-driven hyperparameter selection. In addition, because
these newly introduced hyperparameters are solely related to the pseudo-labeling aspect of
the work, a labeled dataset (in this work case the 3DC Dataset) can be leveraged to perform
hyperparameter selection.

7.8.3 Adaptive Batch Normalization

For the sake of completeness, in addition to the five previously mentioned adaptation algorithms,
this work also considers Adaptive Batch Normalization (AdaBN) [20, 19]. AdaBN is an
unsupervised domain adaptation algorithm which was successfully applied to EMG-based
gesture recognition in [19]. The hypothesis behind AdaBN is that the label-related information
(the difference between gestures) can be encapsulated within the weights of the network, while
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the domain-related information (the difference between sessions) are contained within the batch
normalization (BN) statistics. In practice, this means that the adaptation is done by feeding
the unlabeled examples from the target dataset to the network to update the BN statistics.
Note that within this work’s setting, as only one session is contained within the source dataset
and inter-user classification is not considered, the multi-stream aspect proposed in [19] cannot
be applied.

7.9 Experiments and results

As suggested in [18], a two-step statistical procedure is used whenever multiple algorithms
are compared against each other. First, Friedman’s test ranks the algorithms amongst each
other. Then, Holm’s post-hoc test is applied (n = 20) using the No Calibration setting as a
comparison basis. Additionally, Cohen’s dz [12] is employed to determine the effect size of using
one of the self-supervised algorithm over the No Calibration setting. To better contextualize
the performance of the basic ConvNet used in this work, a comparison between the ConvNet
and 6 widely used features ensembles within the field of sEMG-based gesture recognition is
performed. For the sake of concision, this comparison is given in Appendix 7.A.

7.9.1 Training Recording

In this subsection, all training were performed using the first and second cycles of the relevant
Training Recording, while the third cycle was employed for testing. All 20 participants
completed three Training Recordings and only the labels from the first Training Recording are
used (the data from the other Training Recordings are used without labels for the unsupervised
recalibrations algorithms when relevant). The time-gap between each Training Recording was
around seven days (14-day gap between session 1 and 3). Note that for the first session, all
algorithms are equivalent to the No Calibration scheme and consequently perform the same.

Offline Seven Gestures Reduced Dataset

Table 7.1 shows a comparison of the No Calibration setting alongside the three DA algorithms,
AdaBN, MV and SCADANN for both the Spectrogram ConvNet and the TSD DNN.

Offline Eleven Gestures Dataset

Table 7.2 compares the No Calibration setting with the three DA algorithms, AdaBN, MV and
SCADANN for both networks. Figure 7.4 shows a histogram of the accuracy obtained by the
TSD DNN for the No Calibration, SCADANN and the Recalibration methods.
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Table 7.1 – Offline accuracy for seven gestures

Spectrogram ConvNet
No Cal DANN VADA Dirt-T AdaBN MV SCADANN

Session 0
STD

93.58%
4.58%

N\A
N\A

N\A
N\A

N\A
N\A

N\A
N\A

N\A
N\A

N\A
N\A

Session 1
STD

Friedman Rank
H0

Cohen’s Dz

71.10%
22.90%
4.85
N\A
N\A

72.76%
26.00%
4.73
1

0.19

73.35%
25.48%
4.25
1

0.24

74.28%
24.42%
3.70
1

0.36

72.61%
25.95%
5.23
1

0.16

74.45%
24.03%
2.78

0 (0.01193)
0.62

75.50%
25.41%
2.48

0 (0.00305)
0.52

Session 2
STD

Friedman Rank
H0

Cohen’s Dz

68.75%
22.58%
5.60
N\A
N\A

74.49%
22.73%
4.40
1

0.73

75.55%
22.76%
4.03
1

0.77

75.52%
23.55%
3.40

0 (0.00512)
0.70

76.02%
23.10%
2.95

0 (0.00063)
0.79

70.01%
24.82%
4.68
1

0.22

77.22%
22.50%
2.95

0 (0.00063)
0.92

TSD DNN
No Cal DANN VADA Dirt-T AdaBN MV SCADANN

Session 0
STD

96.39%
3.20%

N\A
N\A

N\A
N\A

N\A
N\A

N\A
N\A

N\A
N\A

N\A
N\A

Session 1
STD

Friedman Rank
H0

Cohen’s Dz

78.14%
18.49%
5.45
N\A
N\A

83.15%
15.47%
4.03
1

0.90

80.90%
15.46%
4.95
1

0.37

80.94%
14.06%
4.68
1

0.22

84.37%
14.64%
3.00

0 (0.00168)
0.88

83.01%
19.43%
3.48

0 (0.01536)
0.86

84.91%
16.09%
2.43

0 (0.00006)
0.84

Session 2
STD

Friedman Rank
H0

Cohen’s Dz

79.78%
19.06%
5.20
N\A
N\A

84.73%
19.38%
3.93
1

0.55

84.50%
17.37%
4.20
1

0.52

82.16%
17.68%
5.18
1

0.28

85.91%
19.06%
3.23

0 (0.01919)
0.61

81.47%
19.23%
4.15
1

0.48

88.20%
17.55%
2.13

0 (0.00004)
0.81

7.9.2 Evaluation Recording

Eleven Gestures - Dynamic Dataset, offline adaptation

Table 7.3 compares the No Calibration setting with the three DA algorithms, AdaBN, MV and
SCADANN for both networks on the second Evaluation Recording of each session, when the
labeled and unlabeled data leveraged for training comes from the Training Recordings (as in
Section 7.9.1).

Eleven Gestures - Adaptation on the Dynamic Dataset

Table 7.4 presents the comparison between the No Calibration setting and using the first
Evaluation Recording of each experiment’s session as the unlabeled dataset for the three DA
algorithms, AdaBN, MV and SCADANN.

A histogram of the dynamic dataset’s accuracy of the No Calibration, Recalibrated, SCADANN
and Recalibrated SCADANN methods, trained on the TSD DNN, using the first Evalua-
tion Recording of each experimental session as unlabeled data is shown in Figure 7.5. The
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Table 7.2 – Offline accuracy for eleven gestures

Spectrogram ConvNet
No Cal DANN VADA Dirt-T AdaBN MV SCADANN

Session 0
STD

84.19%
9.12%

N\A
N\A

N\A
N\A

N\A
N\A

N\A
N\A

N\A
N\A

N\A
N\A

Session 1
STD

Friedman Rank
H0

Cohen’s Dz

58.29%
25.33%
5.50
N\A
N\A

62.27%
24.86%
3.85

0 (0.04626)
0.63

62.45%
25.00%
3.83

0 (0.04626)
0.63

62.35%
24.99%
3.78

0 (0.04626)
0.57

61.83%
25.42%
4.05

0 (0.04626)
0.49

60.75%
26.38%
3.55

0 (0.02155)
0.93

63.00%
24.84%
3.45

0 (0.01615)
0.71

Session 2
STD

Friedman Rank
H0

Cohen’s Dz

56.69%
23.04%
5.43
N\A
N\A

62.08%
22.84%
3.95
1

0.75

62.40%
22.77%
3.65

0 (0.04684)
0.77

62.43%
22.69%
3.68

0 (0.04684)
0.75

62.49%
22.98%
3.80
1

0.78

58.27%
23.26%
4.45
1

0.53

63.43%
23.03%
3.05

0 (0.00305)
0.68

TSD DNN
No Cal DANN VADA Dirt-T AdaBN MV SCADANN

Session 0
STD

89.95%
8.37%

N\A
N\A

N\A
N\A

N\A
N\A

N\A
N\A

N\A
N\A

N\A
N\A

Session 1
STD

Friedman Rank
H0

Cohen’s Dz

66.16%
22.66%
5.65
N\A
N\A

72.44%
20.58%
3.83

0 (0.02265)
0.76

69.25%
19.51%
4.75
1

0.36

69.14%
16.64%
4.88
1

0.26

73.63%
19.79%
3.18

0 (0.00146)
0.87

71.34%
23.41%
3.33

0 (0.00266)
0.92

75.40%
20.06%
2.40

0 (0.00001)
1.10

Session 2
STD

Friedman Rank
H0

Cohen’s Dz

66.84%
20.53%
6.15
N\A
N\A

74.30%
20.57%
4.13

0 (0.00607)
0.82

73.61%
18.65%
3.75

0 (0.00177)
0.71

73.71%
17.26%
3.95

0 (0.00384)
0.63

74.99%
21.97%
2.98

0 (0.00002)
0.80

69.94%
20.19%
4.70

0 (0.03379)
1.02

77.65%
19.52%
2.35

0 (<0.00001)
1.12

Recalibration SCADANN scheme systematically and significantly (p<0.05) outperforms the
Recalibration scheme for all three sessions for both networks, using the Wilcoxon signed
rank-test [59, 18], as can be seen from Table 7.5.

7.10 Discussion

The task of performing adaptation when multiple days have elapsed is especially challenging.
As a comparison, on the within-day adaptation task presented in [61], MV was able to enhance
classification accuracy by 10% on average compared to the No Calibration scheme. Within
this work however, the greatest improvement achieved by MV was 3.35% for the Spectrogram
ConvNet and 5.18% for the TSD DNN. Overall, the best improvement in this paper was 8.47%
and 10.81% both achieved by SCADANN with the Spectrogram ConvNet and TSD DNN
respectively. All three tested domain adversarial algorithms were also able to consistently
improve the network’s accuracy compared to the No Calibration scheme (the only exception
being VADA and Dirt-T for the TSD DNN in Table 7.3). When used to adapt to dynamic
unsupervised data, some were even able to achieve a higher overall ranking than SCADANN
using the Spectrogram ConvNet. Note however, that the improvements they seem to allow
is overall lower than when they are applied on image-based dataset such as MNIST and
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Figure 7.4 – Offline accuracy using the TSD DNN for the eleven gestures in respect to time.
The values on the x-axis represent the average number of days elapsed across participants since
the first session.
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Figure 7.5 – TSD DNN dynamic dataset’s accuracy for eleven gestures in respect to time.
Training is performed offline with the first Training Recording session. Adaptation takes place
on the first Evaluation Recording of the corresponding tested session, while the test set comes
from the second Evaluation Recording of the same tested session. The values on the x-axis
represent the average number of days elapsed across participants since the first session.
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Table 7.3 – Dynamic dataset’s accuracy for eleven gestures using Training Recordings as
unlabeled data

Spectrogram ConvNet
No Cal DANN VADA Dirt-T AdaBN MV SCADANN

Session 0
STD

47.81%
10.94%

N\A
N\A

N\A
N\A

N\A
N\A

N\A
N\A

N\A
N\A

N\A
N\A

Session 1
STD

Friedman Rank
H0

Cohen’s Dz

38.39%
16.65%
4.80
N\A
N\A

39.64%
17.37%
3.78
1

0.45

39.52%
17.66%
4.10
1

0.32

39.07%
17.56%
4.70
1

0.16

38.99
17.16%
4.33
1

0.17

39.70%
17.75%
3.30
1

0.54

40.80%
17.77%
3.00
1

0.63
Session 2
STD

Friedman Rank
H0

Cohen’s Dz

38.54%
14.65%
5.50
N\A
N\A

39.87%
15.32%
4.20
1

0.33

40.07%
15.81%
3.60

0 (0.02166)
0.35

39.59%
15.43%
4.45
1

0.25

39.53%
15.59%
4.30
1

0.22

40.98%
15.18%
3.35

0 (0.00824)
0.84

42.26%
16.34%
2.60

0 (0.00013)
0.65

TSD DNN
No Cal DANN VADA Dirt-T AdaBN MV SCADANN

Session 0
STD

53.08%
11.48%

N\A
N\A

N\A
N\A

N\A
N\A

N\A
N\A

N\A
N\A

N\A
N\A

Session 1
STD

Friedman Rank
H0

Cohen’s Dz

46.09%
14.70%
4.50
N\A
N\A

48.07%
14.59%
3.00
1

0.55

43.92%
13.45%
5.40
1

-0.37

42.75%
12.65%
5.80
1

-0.49

47.11%
14.11%
3.75
1

0.21

48.36%
14.30%
2.85
1

1.08

49.09%
14.68%
2.70
1

0.67
Session 2
STD

Friedman Rank
H0

Cohen’s Dz

46.01%
15.72%
4.90
N\A
N\A

48.50%
15.80%
3.85
1

0.50

45.69%
14.21%
4.80
1

-0.05

45.48%
13.26%
5.00
1

-0.08

48.35%
16.17%
3.73
1

0.42

48.17%
17.06%
3.78
1

0.60

50.90%
16.64%
1.95

0 (0.00009)
0.91

CIFAR [53]. Deep domain adversarial algorithms thus seems to be a promising avenue to
explore further, by developing adversarial algorithms specifically for the field of sEMG-based
gesture recognition. SCADANN could then easily be augmented by these new algorithms to
improve performance further.

In Table 7.4, it can be seen that the performances of MV dropped substantially compared
to the other experiments conducted within this paper. A possible explanation is that this
was the first time that MV had to adapt using the Dynamic Dataset data. In other words,
instead of adapting to a well defined series of examples grouped by gesture, MV had to contend
with a continuous data stream including gesture transitions. In contrast, SCADANN actually
performed generally better in Table 7.4 than in Table 7.3, which is encouraging as Table 7.4
showcased a more realistic setting for unsupervised recalibration.

It is also important to note that both the general performance and the type of error that the
classifier makes can greatly affect the self-calibrating algorithms. While SCADANN partially

199



Table 7.4 – Dynamic dataset’s accuracy for eleven gestures using the first Evaluation Recording
as unlabeled data

Spectrogram ConvNet

No Cal DANN VADA Dirt-T AdaBN MV SCADANN

Session 0
STD

Friedman Rank
H0

Cohen’s Dz

47.81%
10.94%
4.75
N\A
N\A

49.37%
11.24%
3.80
1

0.64

49.36%
11.04%
3.78
1

0.60

49.48%
11.21%
3.38
1

0.53

47.33%
10.45%
4.95
1

-0.11

47.68%
11.27%
4.80
1

-0.07

49.89%
11.25%
2.55

0 (0.00490)
0.73

Session 1
STD

Friedman Rank
H0

Cohen’s Dz

38.39%
16.65%
5.15
N\A
N\A

40.92%
18.51%
3.10

0 (0.02643)
0.56

40.73%
18.55%
3.63
1

0.53

40.66%
18.38%
3.85
1

0.49

40.36%
17.77%
4.25
1

0.41

38.60%
17.13%
4.83
1

0.13

41.07%
19.11%
3.20

0 (0.02643)
0.52

Session 2
STD

Friedman Rank
H0

Cohen’s Dz

38.54%
14.65%
5.10
N\A
N\A

40.78%
16.05%
2.78

0 (0.00063)
0.50

40.82%
16.05%
3.28

0 (0.00266)
0.48

41.01%
16.29%
2.95

0 (0.00063)
0.51

38.15%
15.36%
5.60
1

-0.07

40.02%
15.42%
4.10
1

0.79

41.41%
16.45%
3.50

0 (0.00633)
0.48

TSD DNN

No Cal DANN VADA Dirt-T AdaBN MV SCADANN

Session 0
STD

Friedman Rank
H0

Cohen’s Dz

53.08%
11.48%
4.10
N\A
N\A

55.29%
12.09%
2.60
1

0.71

50.42%
10.67%
5.80
1

-0.81

53.59%
11.51%
4.00
1

0.13

49.98%
10.90%
5.50
1

-0.60

53.67%
11.51%
3.70
1

0.30

55.69%
12.37%
2.30
1

0.67

Session 1
STD

Friedman Rank
H0

Cohen’s Dz

46.09%
14.70%
5.50
N\A
N\A

50.65%
14.55%
2.30

0 (0.00001)
1.35

46.10%
13.66%
5.55
1

<0.01

49.30%
13.81%
3.50

0 (0.01366)
0.73

48.12%
14.14%
4.60
1

0.36

47.34%
16.16%
4.40
1

0.46

51.41%
15.46%
2.15

0 (0.00001)
1.17

Session 2
STD

Friedman Rank
H0

Cohen’s Dz

46.01%
15.72%
5.40
N\A
N\A

50.91%
15.88%
2.65

0 (0.00028)
0.98

48.33%
14.12%
4.20
1

0.46

50.27%
14.60%
3.15

0 (0.00396)
0.84

44.22%
14.58%
5.90
1

-0.28

46.90%
16.31%
4.50
1

0.37

52.01%
17.17%
2.20

0 (0.00002)
1.32

address the first consideration (by ignoring data that are more likely to be misclassified), the
second consideration is harder to address. That is, when the classifier is not only wrong, but is
confident in its error and that error spans over a large amount of time, the pseudo-labeling
heuristic cannot hope to re-label the segments correctly or even identify this segment of data as
problematic. In an effort to address this issue, future works could explore the use of a hybrid
IMU/EMG system, as they have been shown to improve gesture recognition accuracy [25, 32].
The use of accelerometer data within the field is generally linked with mechanomyogram
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Table 7.5 – Accuracy for the Recalibration and Recalibration SCADANN with eleven gestures
on the dynamic dataset using the first Evaluation Recording as unlabeled data

Spectrogram ConvNet TSD DNN

Recalibration SCADANN Recalibration Recalibration SCADANN Recalibration

Session 0
STD
H0

Cohen’s Dz

47.81%
10.94%

0 (0.00642)
N\A

49.89%
11.25%

0 (0.00642)
0.73

53.08%
11.48%

0 (0.01000)
N\A

55.69%
12.37%

0 (0.01000)
0.67

Session 1
STD
H0

Cohen’s Dz

49.54%
11.28%

0 (0.00455)
N\A

53.02%
11.18%

0 (0.00455)
0.88

53.51%
11.98%

0 (0.00014)
N\A

58.34%
11.82%

0 (0.00014)
1.25

Session 2
STD
H0

Cohen’s Dz

52.18%
10.66%

0 (0.00059)
N\A

55.19%
10.15%

0 (0.00059)
1.11

57.18%
11.12%

0 (0.00012)
N\A

60.81%
10.10%

0 (0.00012)
0.75

*Wilcoxon signed rank test. Null hypothesis rejected when H0=0 (p<0.05).

(MMG), which is strongly associated with EMG signals. Recent works [10] however, have
shown that, within a human-computer interaction context, accelerometer data can also help
recognize different gestures with high accuracy using the positional variance of the different
gestures, which is uncharacteristic of MMG. The fusion of these two different modalities could
reduce the likelihood of concurrent errors, enabling SCADANN’s relabeling heuristic to generate
the pseudo-labels more accurately. Note that, using EMG signals alone, SCADANN’s relabeling
heuristic substantially enhanced the pseudo-labels accuracy compared to the one used with
MV. As an example, consider the supervised Recalibrating classifier (with the Spectrogram
ConvNet) trained on all the training cycles of the relevant Training Recording and tested on
the Evaluation Recording. This classifier achieves an average accuracy of 49.84% over 544 263
examples. In comparison, the MV relabeling heuristic achieves 54.28% accuracy over the same
number of examples, while the SCADANN relabeling heuristic obtains 61.89% and keeps 478
958 examples using the 65% threshold. When using a threshold of 85%, the accuracy reaches
68.21% and retains 372 567 examples. SCADANN’s improved relabeling accuracy compared to
MV is in part due to the look-back feature of the heuristic (when de-activated, SCADANN’s
relabeling accuracy drops to 65.23% for the 85% threshold) and its ability to remove highly
uncertain sub-sequences of predictions.

The results presented in Table 7.5 are of particular interest as they show that SCADANN
actually consistently and significantly improves the classifier’s performance over the recalibration
scheme. In other words, SCADANN enhance classifier’s performance without increasing the
training time for the participant. In addition, as SCADANN does not impact the classifier’s
inference time, SCADANN seems to be an overall net benefit for the classifier’s usability.
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7.10.1 Limitations of the study

One major limitation of this work is that the participants were not reacting to the different
classifiers being tested (instead using the leap-motion based controller) while performing the
task from the Evaluation Recording. This limitation is the only difference between the Dynamic
dataset and an online dataset. It is important to note that the participants generally became
better at performing the requested task over time (see [17] and Table 7.5). The extent to
which this improvement can be attributed to the user’s adaptation to the leap-motion based
controller and how much should be attributed to the participants learning how to complete
the task better remains unclear. What is known is that the user’s adaptation to the controller
substantially affects the real-time control performance of the system [15, 48]. If and how much
this adaptation changes in relation to the controller use, however, remains an open question
to the best of the authors’ knowledge. Furthermore, this user adaptation would substantially
alter the optimal rate of unsupervised calibration and the acceptable extent of said calibration.
These new parameters might be better explored within a reinforcement learning [57] framework.

As a direct consequence of not having the adaptation algorithms tested in real-time, another
limitation of this work is that the adaptation algorithms were not evaluated using online
metrics (e.g. throughput, completion rate, overshoot) [51]. To do so would require recording
a separate long-term dataset, as extensive as the one used in this work, for each compared
technique so that the different adaptive classifier could be used by the participants in real-time.
The difficulty of comparing different adaptation algorithms using online metrics was, in fact,
the motivation behind the use of the Long-term 3DC Dataset [17] which allows for recording
closer to an online setting (compared to offline datasets) without biasing the dataset to a
particular EMG-based gesture classification algorithms. Thus, allowing comparison between
multiple techniques on a single dataset.

7.11 Conclusion

This paper presents SCADANN, a self-calibrating domain adversarial algorithm for myoelectric
control systems. Overall, SCADANN was shown to improve the network’s performance
compared to the No Calibration setting in all the tested cases and the difference was significant
across all experiments except for one single session. In addition, this work tested three widely
used, state-of-the-art, unsupervised domain adversarial algorithms on the challenging task of
EMG-based self-calibration. These three algorithms were also found to consistently improve the
classifier’s performance compared to the No Calibration setting. MV [61] and AdaBatch [19],
two self-calibrating algorithms designed for EMG-based gesture recognition, were also compared
to the three DA algorithms and SCADANN. Overall, SCADANN was shown to consistently
obtain the best average accuracy amongst the six unsupervised adaptation methods considered
in this work both using offline and dynamic datasets. Given the results shown in this paper
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and considering that SCADANN has no computational overhead at prediction time, using it
to adapt to never-before-seen data is a net benefit both for long-term use but also right after
recalibration (as shown in Figure 7.5).

Future works will focus on implementing SCADANN to update in real-time while in use by
participants. The interaction between human and machine adaptation and its impact on
self-adaptive algorithms like SCADANN will be investigated by leveraging a reinforcement
learning framework.
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7.A ConvNet’s comparison with Handcrafted feature sets

To better interpret the contributions of this manuscript, it is important to contextualize the
ConvNet’s classification performances with respect to the state of the art in sEMG-based
gesture recognition.
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The comparison considers the simple ConvNet employed throughout this work with six high
performing feature sets presented in the following subsections. The python implementation of
the different feature sets are available on this work’s repository:
(https://github.com/UlysseCoteAllard/LongTermEMG) and a detailed description of most of
the features are given in [15]. Note that the hyperparameters associated with these feature
sets employed the ones recommended in their respective original paper.

7.A.1 Hudgin’s features [21]

Hudgin’s features are a set of four features all in the time-domain comprised of: Mean Absolute
Value, Zero Crossing, Slope Sign Changes and Waveform Length. As all the features are in
the time-domain, this feature set is often referred to (and will be in this work) as TD. TD is
arguably the most commonly employed feature set [28] and serves as a baseline when comparing
different handcrafted feature sets.

7.A.2 NinaPro feature set [7, 47]

The NinaPro feature set has been successfully employed on the diverse NinaPro datasets and
consist of the concatenation of the TD features alongside Histogram and marginal Discrete
Wavelet Transform.

7.A.3 SampEn pipeline [45]

The SampEn pipeline consists of Sample Entropy, Cepstral Coefficients, Root Mean Square
and Waveform Length. This feature set was found to be the best combination of features
amongst the 50 considered in the original work (brute-force search).

7.A.4 LSF9 [44, 9]

LSF9 is a newly proposed feature set which was originally developed specifically for low
sampling rate recording devices (200Hz ). Nevertheless, this feature set also offers exceptional
performance on higher sampling rate datasets. LSF9 consists of: L-scale, Maximum Fractal
Length, Mean Value of the Square Root, Willison Amplitude, Zero Crossing, Root Mean Square,
Integrated Absolute Value, Difference Absolute Standard Deviation Value and Variance.

7.A.5 TDPSD [3, 43]

TDPSD proposes to consider the EMG signal alongside their nonlinear cepstral representation.
Then, one vector per representation is created by computing the: Root squared zero, second
and fourth moments as well as Sparseness, Irregularity Factor and the Waveform Length Ratio.
The final vector used for classification is obtained from the cosine similarity of the two previous

209

https://github.com/UlysseCoteAllard/LongTermEMG
https://github.com/UlysseCoteAllard/LongTermEMG


Table 7.6 – Comparison between the ConvNet employed in this work and Handcrafted feature
sets

ConvNet TD NinaPro SampEn
Pipeline LSF9 TDPSD TSD

7 Gestures
STD

Friedman Rank
H0

93.13%
6.44%
3.50
N\A

89.18%
8.34%
5.86

0 (<0.00001)

89.48%
7.87%
5.61

0 (<0.00001)

91.03%
7.48%
4.42

0 (0.04023)

94.45%
5.89%
2.51

0 (0.03578)

92.67%
6.26%
3.98
1

95.01%
5.47%
2.13

0 (0.00196)
11 Gestures

STD
Friedman Rank

H0

85.42%
9.69%
4.07
N\A

81.11%
9.97%
5.70

0 (0.00017)

81.32%
9.80%
5.52

0 (0.00095)

83.57%
9.71%
4.41
1

87.94%
9.26%
2.69

0 (0.0.00147)

84.86%
9.61%
4.01
1

91.03%
8.73%
1.61

0 (<0.00001)

vectors. The interested reader is encouraged to consult [3] for a detailed description of this
feature set.

7.A.6 TSD [33]

TSD represents the evolution of TDPSD. The idea of leveraging the cosine similarity between
two vectors of the same features computed from different representation of the signal remain.
However, the features have been updated and now consist of: the Root squared zero, second
and fourth moments as well as the Sparseness, Irregularity Factor, Coefficient of Variation and
the Teager-Kaiser energy operator. Most importantly, this feature set not only considers the
similarities between the signal of a particular channel and its nonlinear transformation but also
considers these similarities across channels. The interested reader is encouraged to consult [33]
for a detailed description of this feature set.

7.A.7 Dataset and Classifier

A standard Linear Discriminant Analysis [28] is selected for classification as it is widely
employed in the field and is a computationally and time efficient classification technique both
at training and prediction time, while still achieving high classification accuracy [28, 15, 45].

The Long-term 3DC Dataset is employed for comparison. For each Training Recording of each
participant (20 participants × 3 sessions). The first two cycles are employed for training, while
the last cycle is reserved for testing (total of 60 train/test per method). The comparison is done
for both the seven and eleven gestures considered in this work. The ConvNet’s architecture
and hyperparameters are exactly as described in Section 7.6.3. The LDA implementation is
from scikit-learn [42] with its defaults parameters.

7.A.8 Comparison of results

Table 7.6 presents the comparison between the ConvNet and the six feature sets.
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When testing on the Evaluation Recording, the ConvNet obtained an average accuracy of
49.84%±10.93%, while TD obtained 48.90%±10.80%, TDPSD obtained 50.55%±10.89% and
TSD obtained 56.50%±11.27%. The comparison shows that despite the simplicity of the
ConvNet used in this work, it performs almost identically to TDPSD on average and similarly
to the five other feature sets considered.

7.B Pseudo-labeling Heuristic
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Algorithm 2 Pseudo-labeling Heuristic
1: procedure GeneratePseudoLabels(unstable_len, threshold_stable, max_len_unstable,

max_look_back, threshold_derivative)
2: pseudo_labels ← empty array
3: arr_preds ← network’s predictions
4: arr_net_out ← network’s softmax output
5: begin_arr ← The unstable_len first elements of arr_net_out
6: stable ← TRUE arr_unstable_output gets empty array
7: current_class ← The label associated with the output neuron with the highest median

value in begin_arr
8: for i from 0..arr_preds length do
9: if current_class different than arr_preds[i] AND stable TRUE then
10: stable ←FALSE
11: first_index_unstable ← i
12: arr_unstable_output ← empty array
13: if stable is FALSE then
14: APPEND arr_net_out to arr_unstable_output
15: if length of arr_unstable_output is greater than unstable_len then
16: REMOVE the oldest element of arr_unstable_output
17: if length of arr_unstable_output is greater or equal to unstable_len then
18: arr_median ← The median value in arr_unstable_output for each gesture
19: arr_percentage_medians ← arr_median / the sum of arr_median
20: gesture_found ← The label associated with the gesture with the highest

median percentage from arr_percentage_medians
21: if arr_percentage_medians[gesture_found] greater than threshold_stable

then
22: stable ← TRUE
23: if current_class is gesture_found AND The time within instability is

less than max_len_unstable then
24: Add the predictions which occurred during the unstable time to

pseudo_labels with the gesture_found
25: else if current_class is different than gesture_found AND The time

within instability is less than max_len_unstable then
26: index_start_change ← GetIndexStartChange(arr_net_out,

first_index_unstable, max_look_back)
27: Add the predictions which occurred during the unstable time to

pseudo_labels with the gesture_found label
28: Re-label the predictions from pseudo_labels starting at in-

dex_start_change with the gesture_found label
29: current_class ← gesture_found
30: arr_unstable_output ← empty array
31: else
32: Add current prediction to pseudo_labels with the current_class label

return pseudo_labels
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Algorithm 3 Find index start of transition heuristic
1: procedure GetIndexStartChange(arr_net_out, first_index_unstable,

max_look_back, threshold_derivative)
2: data_uncertain ← Populate the array with the elements from arr_net_out starting

from the first_index_unstable-max_look_back index to the first_index_unstable index
3: discrete_entropy_derivative← Calculate the entropy for each element of data_uncertain

and then create an array with their derivatives.
4: index_transition_start ← 0
5: for i from 0..data_uncertain length do
6: if discrete_entropy_derivative[i] greater than threshold_derivative then
7: index_transition_start ← i
8: Get out of the loop

return first_index_unstable + index_transition_start
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Conclusion

The goal of this thesis was eloquently summarized by one of the participants of an early
experiment: "It’s like I’m a Jedi and I can control the [robotic] arm with the force!". Within
this thesis, research relating directly to myoelectric control progressed from a single-user-single-
day setting using deep learning, to a new transfer learning algorithm to leverage multi-user
aggregated signals and finally to propose a new domain adversarial self-calibration algorithm
for long-term classification. During research on these topic, the need for a new sEMG armband
arose, as the only real consumer grade armband available ceased production. This thesis also
proposed the first topological analysis of deep features within the context of sEMG-based
gesture recognition as to better understand what type of information was encoded within
the network. One last contribution, specifically stemming from this thesis, is the virtual
reality environment which enabled us to study the four main dynamic factors affecting real-
time classification in depth. In particular, and in conjunction with the leap motion, the VR
experiment allowed us to track the participant limb’s position precisely and in 3D, showing the
extent of the classifier’s deterioration from external forearm rotation for the first time.

Thesis by article, of which this document is an example, seems to be somewhat controversial
within certain groups in academia. This view is held to such extent that some researchers do
not believe that this type of thesis can rise to the level of quality as can be displayed by a
traditional one. While I do not adhere to this idea (as demonstrated by the existence of this
thesis), it is important to acknowledge the differences between traditional thesis and thesis
by articles; namely the link between the chapters and the inherent restrictions imposed when
writing scientific papers. The articles included within this thesis were written to be coherent
within themselves which by default generates information-overlap between the different articles.
At the same time, conference venues and journals are aimed at a specific readership, which
mean that the type and depth of the information conveyed within the paper has to cater to that
particular group. Requirements in relation to the maximum number of pages for an article also
has a large impact on how the article is articulated. Therefore, the degree of detail given for
different aspects of a scientific paper is indubitably tainted by these important considerations.
Finally, the structure of this type of thesis makes it hard to have a meta-chapter discussion of
the role and impact of the different contributions within the field of interest. The conclusion
section, however, offers an opportunity to address this last concern.
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8.3 Discussion

At the time of writing these lines, the field of sEMG-based gesture recognition is operating in
two different realities. On the surface, offline classification shows exceptional performances
with near perfect accuracies over a wide range of recognized gestures simultaneously. More
importantly, these performances can be obtained using a wide variety of features (both learned
or handcrafted) and a wide variety of classifiers. Thus, it is my opinion that when the four
main dynamic factors (i.e. gesture intensity, limb position, electrode shift and transient changes
in the signal) are omitted, the problem of classifying sEMG signals is more or less solved. As
such, the research priority should be oriented towards long term, real-time gesture classification
in activity-based evaluation. This however is an unattainable standard in research due to
the vast increase in time and resources required for that type of experiment compared to
offline recording. The main reason for this resource difference stems from the fact that each
new method would require a completely new dataset to be recorded. In other words, any
comparison between different methods requires one new dataset per tested method (using the
tested method as the controller to interface with the participant). This also means that these
datasets are "burned" once the performance evaluation has been calculated and thus they
cannot be re-used by the research community to test new methods. This problem was the
main motivation behind the "Virtual Reality to Study the Gap Between Offline and Real-Time
EMG-based Gesture Recognition". That is, to propose a type of dataset in-between offline and
online, where the four main dynamic factors are included and the users are interacting with
a controller not driven by EMG-based signals. This dynamic dataset can then be re-used by
the research community as a benchmark to compare multiple methods (similarly to an offline
dataset), but with data that will be closer to an online dataset than what can be offered with
an offline dataset.

8.4 Scientific Contributions Overview

During the completion of my graduate studies, I made several contributions through the
publication of peer-reviewed scientific papers, some of which were not included in this thesis
as they were only tangential to the main objective of my Ph.D. research. Therefore, I would
like to take the opportunity offered by this conclusion to give a brief overview of the other
contributions which were not included within the main text corpus of this document. It is of
course important to note that none of these contributions I made alone, and that without the
co-authors who worked on the papers mentioned within this section, these contributions would
not have been possible.

My first foray into research was to explore how genetic algorithms could be used as a way to
optimize Question-Answering Systems by automatically selecting which module to use and in
which order. This research cumulated in my first conference paper published in Flairs [1].
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The following year, while I was working on controlling a robotic arm using sEMG data [2], the
non-intuitiveness associated with the orientation control of the robot’s end-effector became
painfully obvious. In fact, most of the errors that the participants made while controlling
the robotic arm, came not from the misclassification of the sEMG-based controller, but the
highly unintuitive behaviors of the robotic arm’s end-effector. As it turned out, at the time
and to the best of my current knowledge, there was no intuitive alternative. This problematic
led to the publication of a new intuitive adaptive orientation control for robotic arms aimed
specifically for people living with upper limb disabilities. This algorithm was published at
the International Conference on Rehabilitation Robotics [8]. The work was later substantially
extended through a vast new number of validation experiments into a journal paper published
in IEEE Transactions on robotics [3]. Note that, I was a first co-author in the conference paper
and second author in the journal paper.

In parallel to the work with this adaptive orientation algorithm and the EMG gesture recogni-
tion research for my Ph.D., I also worked on recognizing the mood (e.g. Happy, Sad, Disgust)
expressed by professional dancers during an improvised performance from sEMG and orien-
tation (through inertial measurement units) data. A first use case study with a professional
dancer was published in IEEE International Symposium on Robot and Human Interactive
Communication [6]. This use-case study was then extended to include 27 professional dancers
interacting in real-time (one at a time) with a robotic swarm to create an improvised, artistic
performance between a human and machines, through the use of this mood classification
algorithm. This work was published in ACM Transactions on Human-Robot Interaction [7].
Note that, while I was the first author in the conference paper, I was the second author in the
journal paper.

Finally, I also want to highlight the fact that the work that lead to the journal paper Deep
Learning for Electromyographic Hand Gesture Signal Classification Using Transfer Learning [5]
presented in this thesis, first started as a conference paper. While the journal paper improved
upon the transfer learning algorithm and provided vastly more experimental results, it is
notable that the original conference paper [4] published in IEEE International Conference on
Systems, Man, and Cybernetics won the best paper award of the conference.

8.5 Future works

The next step in my work in relation to this thesis is to implement SCADANN in real-time to see
the effect of real-time adaptation on a classifier’s usability. Furthermore, as was briefly touched
on in the "Unsupervised Domain Adversarial Self-Calibration for Electromyographic-based
Gesture Recognition" paper, the restriction in term of data accumulation within a window is in
part due to the absence of gesture transitions available within the training dataset. Self-learning
classifiers used in real-time would thus be exposed to multiple examples of gesture transitions

216



which can than be added to a re-calibration set, allowing the classifier to recognize a change
in the current gesture more rapidly. In effect, this would allow for the use of wider window
size without compromising the responsivity of the system. Future work will thus focus on
implementing this self-learning classifier as to improve classification performance while also
trying to lower the overall latency of the system.
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