168 research outputs found

    Dynamic Stiffness Based Control for a MicroGrid Microsource Interface

    Get PDF

    DISCRETE TIME QUASI-SLIDING MODE-BASED CONTROL OF LCL GRID INVERTERS

    Get PDF
    Application of a discrete time (DT) sliding mode controller (SMC) in the control structure of the primary controller of a three-phase LCL grid inverter is presented. The design of the inverter side current control loop is performed using a DT linear model of the grid inverter with LCL filter at output terminals. The DT quasi-sliding mode control was used due to its robustness to external and parametric disturbances. Additionally, in order to improve disturbance compensation, a disturbance compensator is also implemented. Also, a specific anti-windup mechanism has been implemented in the structure of the controller to prevent large overshoots in the inverter response in case of random disturbances of grid voltages, or sudden changes in the commanded power. The control of the grid inverter is realized in the reference system synchronized with the voltage of the power grid. The development of the digitally realized control subsystem is presented in detail, starting from theoretical considerations, through computer simulations to experimental tests. The experimental results confirm good static and dynamic performance

    Novel Control Strategies for Parallel-Connected Inverters in AC Microgrids

    Get PDF

    Advanced Modeling, Control, and Optimization Methods in Power Hybrid Systems - 2021

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on the Energy Internet, blockchain technology and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above

    Contributions to impedance shaping control techniques for power electronic converters

    Get PDF
    El conformado de la impedancia o admitancia mediante control para convertidores electrónicos de potencia permite alcanzar entre otros objetivos: mejora de la robustez de los controles diseñados, amortiguación de la dinámica de la tensión en caso de cambios de carga, y optimización del filtro de red y del controlador en un solo paso (co-diseño). La conformación de la impedancia debe ir siempre acompañada de un buen seguimiento de referencias. Por tanto, la idea principal es diseñar controladores con una estructura sencilla que equilibren la consecución de los objetivos marcados en cada caso. Este diseño se realiza mediante técnicas modernas, cuya resolución (síntesis del controlador) requiere de herramientas de optimización. La principal ventaja de estas técnicas sobre las clásicas, es decir, las basadas en soluciones algebraicas, es su capacidad para tratar problemas de control complejos (plantas de alto orden y/o varios objetivos) de una forma considerablemente sistemática. El primer problema de control por conformación de la impedancia consiste en reducir el sobreimpulso de tensión ante cambios de carga y minimizar el tamaño de los componentes del filtro pasivo en los convertidores DC-DC. Posteriormente, se diseñan controladores de corriente y tensión para un inversor DC-AC trifásico que logren una estabilidad robusta del sistema para una amplia variedad de filtros. La condición de estabilidad robusta menos conservadora, siendo la impedancia de la red la principal fuente de incertidumbre, es el índice de pasividad. En el caso de los controladores de corriente, el impacto de los lazos superiores en la estabilidad basada en la impedancia también se analiza mediante un índice adicional: máximo valor singular. Cada uno de los índices se aplica a un rango de frecuencias determinado. Finalmente, estas condiciones se incluyen en el diseño en un solo paso del controlador de un convertidor back-to-back utilizado para operar generadores de inducción doblemente alimentados (aerogeneradores tipo 3) presentes en algunos parques eólicos. Esta solución evita los problemas de oscilación subsíncrona, derivados de las líneas de transmisión con condensadores de compensación en serie, a los que se enfrentan estos parques eólicos. Los resultados de simulación y experimentales demuestran la eficacia y versatilidad de la propuesta.Impedance or admittance shaping by control for power electronic converters allows to achieve among other objectives: robustness enhancement of the designed controls, damped voltage dynamics in case of load changes, and grid filter and controller optimization in a single step (co-design). Impedance shaping must always be accompanied by a correct reference tracking performance. Therefore, the main idea is to design controllers with a simple structure that balance the achievement of the objectives set in each case. This design is carried out using modern techniques, whose resolution (controller synthesis) requires optimization tools. The main advantage of these techniques over the classical ones, i.e. those based on algebraic solutions, is their ability to deal with complex control problems (high order plants and/or several objectives) in a considerably systematic way. The first impedance shaping control problem is to reduce voltage overshoot under load changes and minimize the size of passive filter components in DC-DC converters. Subsequently, current and voltage controllers for a three-phase DC-AC inverter are designed to achieve robust system stability for a wide variety of filters. The least conservative robust stability condition, with grid impedance being the main source of uncertainty, is the passivity index. In the case of current controllers, the impact of higher loops on impedance-based stability is also analyzed by an additional index: maximum singular value. Each of the indices is applied to a given frequency range. Finally, these conditions are included in the one-step design of the controller of a back-to-back converter used to operate doubly fed induction generators (type-3 wind turbines) present in some wind farms. This solution avoids the sub-synchronous oscillation problems, derived from transmission lines with series compensation capacitors, faced by these wind farms. Simulation and experimental results demonstrate the effectiveness and versatility of the proposa

    Co-design of Security Aware Power System Distribution Architecture as Cyber Physical System

    Get PDF
    The modern smart grid would involve deep integration between measurement nodes, communication systems, artificial intelligence, power electronics and distributed resources. On one hand, this type of integration can dramatically improve the grid performance and efficiency, but on the other, it can also introduce new types of vulnerabilities to the grid. To obtain the best performance, while minimizing the risk of vulnerabilities, the physical power system must be designed as a security aware system. In this dissertation, an interoperability and communication framework for microgrid control and Cyber Physical system enhancements is designed and implemented taking into account cyber and physical security aspects. The proposed data-centric interoperability layer provides a common data bus and a resilient control network for seamless integration of distributed energy resources. In addition, a synchronized measurement network and advanced metering infrastructure were developed to provide real-time monitoring for active distribution networks. A hybrid hardware/software testbed environment was developed to represent the smart grid as a cyber-physical system through hardware and software in the loop simulation methods. In addition it provides a flexible interface for remote integration and experimentation of attack scenarios. The work in this dissertation utilizes communication technologies to enhance the performance of the DC microgrids and distribution networks by extending the application of the GPS synchronization to the DC Networks. GPS synchronization allows the operation of distributed DC-DC converters as an interleaved converters system. Along with the GPS synchronization, carrier extraction synchronization technique was developed to improve the system’s security and reliability in the case of GPS signal spoofing or jamming. To improve the integration of the microgrid with the utility system, new synchronization and islanding detection algorithms were developed. The developed algorithms overcome the problem of SCADA and PMU based islanding detection methods such as communication failure and frequency stability. In addition, a real-time energy management system with online optimization was developed to manage the energy resources within the microgrid. The security and privacy were also addressed in both the cyber and physical levels. For the physical design, two techniques were developed to address the physical privacy issues by changing the current and electromagnetic signature. For the cyber level, a security mechanism for IEC 61850 GOOSE messages was developed to address the security shortcomings in the standard

    Distributed Control Strategies for Microgrids: An Overview

    Get PDF
    There is an increasing interest and research effort focused on the analysis, design and implementation of distributed control systems for AC, DC and hybrid AC/DC microgrids. It is claimed that distributed controllers have several advantages over centralised control schemes, e.g., improved reliability, flexibility, controllability, black start operation, robustness to failure in the communication links, etc. In this work, an overview of the state-of-the-art of distributed cooperative control systems for isolated microgrids is presented. Protocols for cooperative control such as linear consensus, heterogeneous consensus and finite-time consensus are discussed and reviewed in this paper. Distributed cooperative algorithms for primary and secondary control systems, including (among others issues) virtual impedance, synthetic inertia, droop-free control, stability analysis, imbalance sharing, total harmonic distortion regulation, are also reviewed and discussed in this survey. Tertiary control systems, e.g., for economic dispatch of electric energy, based on cooperative control approaches, are also addressed in this work. This review also highlights existing issues, research challenges and future trends in distributed cooperative control of microgrids and their future applications

    Control of voltage source converters for distributed generation in microgrids

    Get PDF
    Microgrids are the near future candidate to reduce the dependence on the carbon-based generation, towards a more environmentally friendly and sustainable energy paradigm. The popularization of the use of renewable energy sources has fostered the development of better technologies for microgrids, particularly power electronics and storage systems. Following the improvements in microgrid technologies achieved in the last decade, a new challenge is being faced: the control and management of microgrids for its operation in islanded mode, in addition to its large scale integration into the current electrical power system. The unregulated introduction of distributed generation based on renewable energy sources into the power system could cause as many problems as it would solve. The unpredictability of the generated power would introduce large disturbances into the electric system, making it difficult to control, and eventually resulting in an unstable system. To overcome these issues, the paradigm of microgrids has been proposed: a small power system, able to operate islanded from the main grid, which will permit the large scale introduction of renewable energy sources interfaced with power electronic converters together with energy storage systems into the distribution grids. Microgrids¿ ability to allow their users to operate islanded from the utility grid, brings the potential to offer a high quality of service. It is in the islanded operation mode, particularly in microgrids with a high proportion of renewable based generation, where the major technical challenges are found. This thesis focuses in three of the main challenges of islanded and weak electrical grids: the power converter control of electrical storage systems, its decentralized control design, and also the improvement of power quality in grids disturbed by renewable generation. These topics are addressed from a control point of view, that is, to tackle the electrical problems, modelling them and proposing advanced control strategies to improve performance of microgrids. Energy storage system are a vital element to permit the islanded operation of microgrids, either in the long or short term. New control strategies are proposed in this thesis for the improvement of the converters¿ performance. In addition to the control of the converter, the management and control of different energy storage systems for microgrids are also studied. In particular, supercapacitors and batteries have been considered for the short and long term operation, respectively. Then, the control of islanded microgrids is addressed. Typical controls for islanded microgrids are analysed and new tools for designing stable controllers are proposed. Also, methodologies to analytically obtain the operating point (power flow) of droop controlled grids are studied and proposed. The high penetration of renewable energy sources in weak low-voltage grids results in undesirable electrical disturbances. This problematic in power quality is tackled and innovative solutions to mitigate it are proposed. In particular, a novel power smoothing scheme with simultaneous state of charge regulation of the ESS and power filtering. The new power smoothing scheme, along with the proposed control strategies for storage systems have been experimentally validated in a laboratory test bench, using a supercapacitor bank and a high power lithium-ion battery available at IREC's facilities.Les microxarxes són les candidates en un futur a curt termini, a substituir la generació basada en el carbó, de cara a assolir un sistema energètic més respectuós amb el medi ambient i més sostenible. La popularització de l'ús d'energies renovables ha fomentat la millora de les tecnologies per a microxarxes, en particular els sistemes d'emmagatzematge i l'electronica de potència. Desprès de les millores en tecnologies de microxarxes aconseguides durant l'última dècada, hi ha un nou repte al qual fer front: el control i gestió de microxarxes per la seva operació aïllada, a més de la integració a gran escala dins del sistema elèctric actual. La introducció descontrolada de fonts de generació distribuides en el sistema elèctric pot causar tants problemes com els que podria sol·lucionar. La incertesa en la producció elèctrica pot introduir grans pertorbacions al sistema elèctric, fent-lo difícil de controlar, i fins i tot el pot arribar a inestabilitzar. Per tal de fer front a aquestes dificultats, es proposa el paradigma de microxarxa: un petit sistema elèctric capaç d'operar de forma aïlla de la xarxa de distribució elèctrica, el qual hauria de permetre la integració a gran escala d'energies renovables a través de l'electrònica de potència, juntament amb sistemes d'emmagatzematge d'energia, dins de les xarxes de distribució. Les microxarxes permeten als seus usuaris a funcionar aillats de la xarxa elèctrica, donant la possibilitat d'oferir una alta qualitat de servei. És en el mode de funcionament aïllat, particularment en microxarxes amb una altra proporció de generació basada en renovables, on es troben la major part de reptes tecnològics. Aquesta tesi es centra en tres d'aquests reptes de les xarxes aillades i dèbils: el disseny del control per a convertidors de potència per a sistemes d'emmagatzematge elèctric, el control descentralitzat de les microxarxes i també la millora en la qualitat de subministre elèctric en xarxes afectades per generació renovable. Aquestes temes es tracten des d'el punt de vista de la teoria de control de sistemes, aixó significa, abordar el problema elèctric, modelar-lo, i proposar estrategies de control avançades per millorar el funcionament de les microxarxes. Els sistemes d'emmagatzematge són un element vital per permetre l'operació aïllada de les microxarxes, tant a llarg com a curt termini. En aquesta tesi es proposen noves estratègies de control per millorar el funcionament dels convertidors d'electrònica de potència. A més del control del convertidor, també s'estudia la gestió i control de diferents sistemes d'emmagatzematge d'energia per a microxarxes. En particular, supercondensador i bateries s'han considerat per l'operació a curt i llarg termini respectivament. Seguidament, s'enfila el control de microxarxes aïllades. S'analitzen els controls típics per a microxarxes i es proposen noves eines de disseny que permeten garantitzar l'estabilitat. A més a més, metodologies per a obtenir el punt d'operació (el flux de potènica) per a xarxes amb control tipus "droop" també s'estudien i proposen. L'alta penetració de fonts d'energia renovables en xarxes de baixa tensió i febles resulta en pertorbacions elèctriques indesitjables. Aquesta problematica en la qualitat de subministrament s'aborda i es proposen solucions inovadores per mitigar els efectes negatius. En particular, s'ha proposat un nou sistema de suavitzat de potència que regula simltaneament l'estat de càrrega del sistema d'emmagatzematge i filtra la potencia fluctuant. El nou esquema de suavitzat de potència, juntament amb les estrategies proposades per als sistemes d'emmagatzematge elèctric s'han validat experimentalment en un banc de laboratori, emprant superconsadors i una bateria d'alta potència, disponibles a les instal·lacions de l'IREC
    corecore