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Abstract- Voltage and frequency control is very important especially to face the migration from 

conventional to smart grid. In conventional way, voltage and frequency are regulated from the main 

power plant. However, in a smart grid system, the controller can be distributed into sub-system. A 

microgrid as a key sub-system must have independent control especially in islanded or stand-alone 

mode. This paper presents an approach named Integral-Proportional Derivative (I-PD) to control the 

three-phase voltage in a microgrid. In the simulation using MATLAB, a distributed energy resource 

unit applying voltage-source converter in order to have three-phase voltage from a DC-source is taken 

into account. Using system identification to simplify the controller design generates a linear model of 

the system. The compensated system shows a very good reference tracking capability during set point 

and load changes. It also reduces the coupling effect due to active and reactive power.    

 

Index terms: smart grid, microgrid, voltage control, distributed generator, energy control. 
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I. INTRODUCTION 

 

The energy conservation focuses on improvement energy efficiency in the users, power plant, and 

transmission/distribution. Some example works to support energy efficiency can be seen in [1-3] 

including monitoring system parameters to improve the analysis in the renewable energy [4].  

Meanwhile, the improvement of performance in the transmission/distribution now is becoming a 

challenge with the quite new grid concept named smart grid.  

In isolated or communal areas, electricity network for some decades is implemented like small 

autonomic grids. Renewable distributed generator (RDG) currently grows quite significantly in 

number and type nowadays. However, integration of RDG unit either with other RDG or main 

grid shows great challenges to guarantee the system reliability and stability. Problems in 

interconnection various RDG to supply the demand encourage many engineers and developers to 

consider smart grid concept and technology as a solution for seamless integration. Those 

problems are commonly caused by technical or economical reason [5].  

A smart grid system involves one or more microgrids as its key component(s). The microgrid is 

like a distributed resource that may have electricity generation, storage and local loads within a 

boundary managed by its controller. Two interconnection modes of microgrids are grid-

connected and islanded/stand-alone/off grid. The microgrid controller has to handle connection 

and disconnection between these modes [6-7]. The controller is a key to discover the entire 

potential of microgrids.  

Microgrids have commonly three control levels namely primary, secondary, and tertiary [5, 8]. 

The primary level has a main task to control the distributed generator (DG) units, which is also 

called distributed energy resource, in a microgrid including the conversion process of voltage and 

current to different wave form. In order to ensure the power quality of the DG units involved in 

the microgrids, the secondary control level has to deal with the improvement of the performance. 

Power exchange between microgrids and also with the main grid is arranged by tertiary control 

level.  

The control approach in this paper will focus on the voltage and frequency control on a single DG 

unit which has a DC voltage source in a microgrid by considering the dynamics in DC to three-

phase AC converter, set-point changes and load uncertainties.  Islanded microgrid control is more 

challenging compared to the grid-connected mode. In the grid-connected mode, the main grid 
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normally regulates voltage and frequency in microgrids, but at sudden power mismatches, the 

DG unit has to control them independently. The power mismatch can make a relatively high 

circulating current, therefore the DG Unit controller has to ensure accurate load sharing 

mechanism in a microgrid system. The control design by operating an inverter for DC to AC 

conversion as a master unit to regulate the voltage in a microgrid is a possible approach [9], while 

an internal oscillator controls the frequency according to the standard. Some previous approaches 

regarding the power sharing in microgrids can be seen in [10-16], energy management with 

different source types in [17-18], and also more detail reviews in [5, 19]. Moreover, to deal with 

interconnection of different layers, a hierarchical control system approach should be taken into 

account [20-21].  

The voltage control in an islanded microgrid is challenging because of load parameter 

uncertainties, unbalanced phase, and transients. Some control approaches have been proposed to 

face these challenges: sliding mode [22], µ-synthesis [23], fuzzy logic [24, 25], Fuzzy-PI [26], 

robust [27-29], robust servomechanism [30], and convex optimization [31]. Moreover, electronic 

devices as additional features of voltage regulation should be added [32].  

The mentioned approaches for voltage regulation developed mathematical models from 

parameters value of the plant such as resistance, capacitance and inductance, which may difficult 

to be estimated, unknown, or subject to variation. The control techniques should be kept as 

simple as possible to be comprehensive for the practitioners regarding how to keep the highest 

performance according to the system requirements. These aspects are important because some 

types of controller and operators might be involved once the microgrids are using some kinds of 

DG. The main goal of the controller is to achieve the best power quality. The controller has to 

guarantee the best set point tracking capability under parametric uncertainty and the satisfactory 

frequency.  

This paper presents an approach that modifies the proportional-integral-derivative (PID) control 

scheme to be integral-proportional-derivative (I-PD) for regulating three-phase voltage in an 

islanded microgrid that has one DG unit with DC source. A transformation technique, a-b-c to d-

q axis voltages and vice versa, is used to transform the three-phase voltage of the system as the 

real condition to DC-like waveform consisting d- (active) and q- (reactive) axis voltages. The d-q 

form will be used for designing the controller. Then, the control signal will be transformed back 

to a-b-c axis voltages. The mathematical model in d-q axis voltages that has multiple input and 
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multiple output (MIMO) form is generated by using a system identification technique. By using 

the estimation technique in system identification, the linear model of the microgrid system can 

easily generated and the order of the system can be reduced significantly compared to the manual 

mathematical model generation. Two linear controllers are then possible to be designed in d-q 

axis voltages.    

 

 

II. SYSTEM DESCRIPTION 

 

A high level semantic in Figure 1 represents an islanded microgrid with a DG unit that is 

discussed in this paper. In grid-connected mode, the point of common coupling (PCC) connects 

microgrid to the main grid with voltage magnitude Vabc. The exchange between the microgrid and 

the main-grid can be performed when the real and reactive power between them are zero [30]. 

Once the microgrid is off-grid, it turns the system into the islanded mode and causes a power gap 

between DG unit and the load that leads to significant frequency and voltage deviation from their 

rated values due to the lack of controller. The off-grid condition must be detected to maintain 

operation of the system uninterruptedly, while microgrid controller has to regulate independently 

voltage and frequency in the islanded mode.  

The DG unit has a DC voltage source 1,500 V. It is converted to three-phase AC voltage by using 

an inverter VSC. Output of the inverter is connected to the three-phase LCL filter to improve 

sinusoidal waveforms quality of the three-phase voltage. Then, the three-phase voltage magnitude 

steps-up through a transformer in the islanded mode and supply the loads, while in the grid-

connected mode the load will be supplied by the main grid. In this paper, the microgrid supply a  

three-phase parallel RLC load as the worst load type for common islanded detection mode 

methods [33-34]. The system load is 10 kW parallel RLC load at the beginning, and at 1.4s it is 

doubled. The controller outputs in d-q axis voltages (u1 and u2) are transformed to a-b-c axis 

voltage and connected as reference to the 2-level PWM that will produce a three-phase gate 

signal for the inverter. This signal is dynamics and applied to control Vabc magnitude in order to 

have the best tracking capability. Vabc is transformed back to d-q axis voltages as feedback signals 

to the controllers.  Table I provides parameter values of the islanded microgrid discussed in this 

paper. 
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Figure 1. High level semantic of an islanded microgrid  

 

Table 1: Islanded microgrid parameter rated values  

Components Details 

Pulse-Width Modulation 

(PWM)  

Unsynchronized Operation mode, 3 phases, 6 pulses, 2 kHz switching 

frequency 

DG Unit Source Vdc = 1500 V 

Inverter  VSC with 3 bridge arms 

Filter (LCL) R at input inductor = 0.1 Ω; L of the filter input = 0.3 µH; R at 

capacitor = 1 mΩ;  C of the filter = 9 µF; R at output inductor = 0.1 

Ω; L of the output filter = 0.3 µH 

Transformer  Three single-phase, Δ-Y connection, 110 kVA Nominal Power, 

Frequency 50 Hz, Vrms at primary side = 600 V, Vrms at secondary 

side = 13.8 kV, base power 110 KVA (three-phase) 

Basic Load  Three- phase parallel RLC load, Nominal frequency = 50 Hz, Active 

Power = 10 kW, Inductive reactive power = 5 var, Capacitive reactive 

power = 5 var 

 

Intermittent characters of DG units where the renewable source connected directly to the system 

without battery will affect the inverter and subsequently the islanded microgrid. In this paper, the 

DC source is assumed having a fixed nominal voltage, which is 1,500 V. The voltage magnitude 
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set-point changes in the islanded mode can affect stability and robustness of the system 

performances especially voltage and frequency. Two I-PD controllers regulate Vabc and phase-

locked loop (PLL) units as internal oscillators pre-determine frequency and phase of current and 

voltage of the islanded microgrid. The controller design objective is to improve and to maintain 

the quality of voltage magnitude and frequency in the islanded microgrid in order to face set-

point changes and load uncertainty. Set-point tracking performance is the indicator of the good 

performance.  

 

III. UNCOMPENSATED ISLANDED MICROGRID  

 

Figure 2 presents the uncompensated real system (non-linear) model of an islanded microgrid that 

has a DG unit. The outputs of non-linear and linear model are investigated to make sure the 

mathematical model generated by system identification for block diagram of the control system 

closely represents the real system. Then, the goal is to provide a control strategy for the voltage 

and frequency regulation based on IEEE recommendation [33-34]. The nominal value of Vabc is 

13.8 kV with base power 110 KVA (three-phase). The controllers have to maintain that Vabc 

deviation maximum 10% of the nominal value and do not have swell (Vabc is 1.1 Vabc for 0.5 

cycles to one minute) and dip/sag (0.9Vabc for 0.5 cycles to one minute). Total harmonic 

distortion (THD) of voltage shall no greater than 5 %. For the transition, the maximum overshoot 

of voltage shall be less than 1.4 nominal value, the rise time less than 0.02 s, the settling time no 

greater than 1 s.   Impulsive transients should have peak between 10 – 50 % Vabc. Besides, the 

frequency deviation allowed is 0.2 Hz. 

Transformation the three-phase voltage to a stationary α-β axis coordinates and subsequently to a 

rotating d-q axis coordinates makes away to have a linear model representation. It is hard to 

design a simple linear controller without approximation if the system dynamics are nonlinear in 

the a-b-c and α-β axis voltages. In the d-q axis voltages, the dynamics are approximately linear, 

making linear controller design much easier. In Figure 2, u1 and y1 represent the d-axis voltage 

for input and output respectively, and u2 and y2 for q-axis voltage. An example of using d-q axis 

voltage concerning three-phase voltage and current signals for anti-windup compensator design is 

presented in [35]. Transforming controller output from d-q to a-b-c axis voltages for the input of 

the 2-level PWM results a gate signal to the inverter. It will then control subsequently the inverter 
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output, and Vabc and frequency. The PLL determines the frequency of the islanded microgrid 

according to the standard (i.e. 50 Hz). Initially, the system has three-phase parallel RLC load with 

10 kW active power and 13.8 kV nominal phase-to-phase voltage (Vrms). The nominal voltage 

decreases 40% at 0.7 s and returns to 13.8 kV again at 1.2 s. The RLC load will be doubled at 1.4 

s once the circuit breaker is closed. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 2.  Uncompensated real system (non-linear) model: (a) main model, (b) G1_DG_Unit 

block, (c) G2_Distribution Block  

 

In real situations, finding mathematical model of the system is difficult to be done since there is 

always lack of the technical information and the system used to involve high uncertainty and 

nonlinearity. In the controller design, the transfer functions estimation of the plant are generated 

by system identification. It conceals some details but more reliable in real condition in the 

electrical systems. Three parameters considered choosing size of numerators and denumerators of 

the transfer functions are fit percent to estimation data (FP), Akaike’s final prediction error (FPE) 

and mean square error (MSE). The best size is determined based on the FP, FPE and MSE as well 

as the stability of the open-loop transfer functions.  
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The plant model (Gp) of the islanded microgrid in Figure 2 has four transfer functions in MIMO 

structure where all them are asymptotically stable. Four transfer functions in equation show the 

mathematical model of the plant. Table 2 shows the estimation properties of the transfer 

functions. Both d-q axis coordinates affect each other because of the coupling effect through Gp12 

and Gp21. In the closed-loop system, this effect can influence the system if the error in each axis 

is big. Therefore, Gp12 and Gp21 have to be taken into account. The uncompensated system is 

asymptotically stable but lacks set point tracking capability and robustness.  
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Gp
11

(s) =
-275.3 s+1,643,000

s2 +3,597s+887,400
; Gp12(s) =

342.6 s+84,880

s2 + 273.3 s+78,900

Gp21(s) =
-345.9 s-84,530

s2 + 275.6 s+78,570
; Gp22(s) =

-326.1 s+1,778,000

s2 +3,876s+960,600

                                     (1) 

 

Table 2: Estimation properties for the transfer functions in equation (1) 

Transfer 

Function 

Estimation Properties 

FP (%) MSE FPE (Numerator, Denumerator) 

Gp11 96.94 0.003124 0.003124 (2,2) 

Gp12 95.01 0.002922 0.002922 (2,2) 

Gp21 95.07 0.002856 0.002856 (2,2) 

Gp22 96.94 0.003112 0.003112 (2,2) 

 

 

 

IV.  CONTROLLER DESIGN 

 

In the controller design, the open-loop characteristics of the system have been examined. Load 

uncertainties might perturb the voltage and frequency. The total load allowed in the system 

should be less than the base power (i.e. 110 KVA). In the simulation, the first load connected to 

the system is 10 kW and another 10 kW added at 1.4 s. The coupling effects through Gp12 and 
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Gp21 should be decreased to minimize the errors. Figure 3 shows a comparison of responses 

between real system (non-linear) and linear model using a unit-step input as set point for d-axis 

voltage and a zero signal for q-axis voltage. The uncompensated system obviously lacks set point 

tracking capability with large steady state error and overshoot.  

 

 

(a) 

 

(b) 

 Figure 3.  Uncompensated system responses: (a) linear model, (b) non-linear model 

 

a. Control System Requirements 

The controller design is an effort to fulfill the system requirements. It has to make sure that 

controller can be designed and analyzed by using linear time invariant (LTI) system tools and 

methods. The requirements mentioned in section III regarding the power quality are then 

transformed into pu (per unit) dimension. The pu value represents the dimensionless ratio of the 

original quantity to its base value. The control design requirements are as follows: 

 d-axis voltage reference (r1) is firstly set 1 pu and then 0.6 pu at 0.7 s and return to 1 pu at 

1.2 s,  

 q-axis voltage reference (rq) is always zero, 

 Rise time < 0.2 s, settling time < 1 s, and maximum overshoot < 0.2 pu. 

 Impulsive transient peak < 0.5 pu. 

 In steady state, voltage deviation is 0.1 pu and THD of each phase of a-b-c coordinate less 

than 5 %. 

 The closed-loop systems are asymptotically stable, 

 The system should capable of maintaining the frequency with only 0.2 Hz deviation 

allowed, 
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 The controller is desired to be robust for the range of RLC load parameters. 

 1 pu voltage equals to 13.8 KV 

 1 pu power equals to base power 110 KVA 

b. Proposed Controller Design 

I-PD controller is a modification of PID control scheme [36]. In I-PD scheme, derivative and 

proportional action are put directly to the feedback path. It is purposed to prevent large control 

signals that can cause saturation. The I-PD controller is a single input single output (SISO) 

method applied in the presented islanded microgrid to control the d-q axis voltages. The system 

has a 2 x 2 (MIMO) structure, but two I-PD controllers are tuned on a SISO manner, since the 

coupling effect between d- and q- axis is relatively small. 

 

The tune method for the I-PD parameters has applied first rule of Ziegler-Nichols since the open-

loop system response revealed S-shape curve. The delay time (L) and time constant from the 

delay to settling time (T) have been used to calculate the constant of proportional gain (Kp), 

integral time (Ti) and derivative time (Td). Similar S-shape of both d-q axis voltages at the 

uncompensated system is the reason of L and T having same values.  Two I-PD controllers set 

L=0.003 and T=0.0067. The control parameters are as follows, 

 

K
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p2
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Equation (3) presents the closed-loop (compensated) model of the islanded microgrid, while 

Figure 4 shows its representation in non-linear model in MATLAB software environment.  The I-

PD control scheme has a quite similar structure with ideal PID, but it has filter (F) at the 

reference (R). The compensated system applies I-PD controllers to improve the tracking 

capability. The coupling effects of Gp12 to output y1 and Gp21 to output y2 have been taken into 

account in the model. By reducing the errors to zero, their effects decrease to zero as well.  

 

 

 

Figure 4. Compensated non-linear system model in MATLAB software environment 

 

c. Simulation-based Analysis of the compensated System 

Figure 5 shows unit-step responses of the compensated system at the transition by comparing I-

PD and PID control scheme either in the linear (LTI) or non-linear model.  Meanwhile, Figure 6 

depicts the system response with dynamic set point. Both figures confirm that I-PD controller is 

superior compared to PID. System compensated with I-PD controller shows a very good set-point 

tracking capability and robustness of the system. The PID gives more oscillation in the system 

response than I-PD. In the real system (non-linear) model, the I-PD controller can reduce the 

peak of the transient according to standard. 

 

 

 

 

945



S. D. Panjaitan, R. Kurnianto, B.W. Sanjaya, M. C. Turner, I-PD CONTROL DESIGN AND ANALYSIS IN AN 

ISLANDED MICROGRID SYSTEM 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 

Figure 5. Unit-step transient responses of the compensated system: (a) I-PD Control in linear 

model, (b) PID control in linear model, (c) I-PD control in non-linear model, (d) PID control in 

non-linear model.  

 

 

IV.  PERFORMANCE ANALYSIS: A CASE STUDY 

 

A case study is undertaken to investigate the performance of the compensated system based on 

the IEEE recommendation [33-34]. At the beginning, the voltage set point is 1 pu, then decreases 

to 0.6 pu at 0.7s. It will return to 1 pu at 1.2 s. The set point drop may happen when there is a 

large starting current in short duration. In most cases, starting of motors can cause adverse effects 

to any locally connected load, even they are electrically remote from the point of motor starting 

[37]. At time of starting, the voltage induced in the induction motor rotor is maximum because 

slip will be maximum, where since the rotor impedance is low, the rotor current is excessive large 
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[37]. Due to transformer action this large rotor current is reflected in the stator [38]. This results 

in large starting current, nearly 6 to 8 times [37], or 5 to 6 times [39-40] the full-load current in 

the stator. This large current does not harm the motor due to short duration. However, this large 

starting current will produce large drop in line-voltage [37]. The more motor as a load, the larger 

voltage drop in the line-voltage would be. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 6. Responses of the compensated system with dynamic set-point: (a) I-PD Control in 

linear model, (b) PID control in linear model, (c) I-PD control in non-linear model, (d) PID 

control in non-linear model.  

 

Furthermore, in the present system, the load is doubled at 1.4s. Figure 7 shows the responses 

related to the case study for the whole duration of simulation time (i.e. 2 s) in a-b-c axis 

coordinates for Vabc (with the magnitude reference according to the case, r1), Iabc, Pload, and Qload. 

When the load doubled, the voltage can be regulated while the current increases about 100%. 

Pload and Qload show similar responses. Further detail in transition, voltage set-point drop, and 

voltage set-point return to 1 pu and load doubled can be seen respectively in Figure 8-10. In the 
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transition (Figure 8), settling time is about 0.02 s, which fulfills the requirement. Rise time and 

maximum overshoot also meet the requirements 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 7. Electrical signal responses of the system I-PD control with set-point and load changes: 

(a) Three-phase voltage (Vabc), (b) Three-phase current (Iabc), (c) Active Power (P), and Reactive 

Power (Q) 

 

An impulse transient peak at 1.4 s is about a 0.4 pu for d-axis voltage and 0.02 for q-axis voltage, 

or 0.307 for d-q axis, which meets the standard (< 0.5 pu). Beside the voltage deviation is close to 

zero, frequency of Vabc is always 50 Hz since it is set internally using PLL. The THD values for 

three-phase voltage in steady state condition are 0.5665%, 0.3564% and 0.3530% that fulfill the 

standard (< 5%). The compensated system shows a very good performance even in the real  

system model simulation. In the simulation, the system reveals no long duration rms variations of 

interruption, under-voltage, over-voltage, and also sag and swell even at the load parameter 

changes. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 8. Electrical signal transition time responses of the system with I-PD control: (a) Three-

phase voltage (Vabc), (b) Three-phase current (Iabc), (c) Active Power (P), and Reactive Power (Q) 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 9. Electrical signal transition time responses of the system with I-PD control at set-point 

changes: (a) Three-phase voltage (Vabc), (b) Three-phase current (Iabc), (c) Active Power (P), and 

Reactive Power (Q) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 10. Electrical signal transition time responses of the system with I-PD control at load 

increase double: (a) Three-phase voltage (Vabc), (b) Three-phase current (Iabc), (c) Active Power 

(P), and Reactive Power (Q) 

 

 

IV.  CONCLUSIONS 

 

This paper has elucidated a dynamic model and a controller design to regulate the voltage and 

frequency in an islanded microgrid with a DG unit. The dynamic model is represented as a linear 

model based on transfer functions of the DG unit and the load in d-q axis voltages generated by 

an estimation technique. I-PD controllers as modification of PID control scheme are proposed to 

control the d-q axis voltages connected to a gate signal of the interface inverter of the DG unit. 

The performance of the proposed controllers is evaluated based on the IEEE standard through the 

simulation studies in MATLAB. The compensated system responses show a very good set point 

tracking capability, robustly maintain the voltage magnitude and frequency, and involve system 

dynamics. The next work addresses energy management between DG units and microgrids by 

developing the scheduling and distributed control technique in [41]. 
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