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ABSTRACT OF THE DISSERTATION 

CO-DESIGN OF SECURITY AWARE POWER SYSTEM DISTRIBUTION 

ARCHITECTURE AS CYBER PHYSICAL SYSTEM 

by 

Tarek Youssef 

Florida International University, 2017 

Miami, Florida 

Professor Osama A. Mohammed, Major Professor 

The modern smart grid would involve deep integration between measurement nodes, 

communication systems, artificial intelligence, power electronics and distributed 

resources. On one hand, this type of integration can dramatically improve the grid 

performance and efficiency, but on the other, it can also introduce new types of 

vulnerabilities to the grid. To obtain the best performance, while minimizing the risk of 

vulnerabilities, the physical power system must be designed as a security aware system.  

In this dissertation, an interoperability and communication framework for microgrid 

control and Cyber Physical system enhancements is designed and implemented taking 

into account cyber and physical security aspects. The proposed data-centric 

interoperability layer provides a common data bus and a resilient control network for 

seamless integration of distributed energy resources. In addition, a synchronized 

measurement network and advanced metering infrastructure were developed to provide 

real-time monitoring for active distribution networks.  

A hybrid hardware/software testbed environment was developed to represent the 

smart grid as a cyber-physical system through hardware and software in the loop 
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simulation methods. In addition it provides a flexible interface for remote integration and 

experimentation of attack scenarios. 

The work in this dissertation utilizes communication technologies to enhance the 

performance of the DC microgrids and distribution networks by extending the application 

of the GPS synchronization to the DC Networks.  GPS synchronization allows the 

operation of distributed DC-DC converters as an interleaved converters system. Along 

with the GPS synchronization, carrier extraction synchronization technique was 

developed to improve the system’s security and reliability in the case of GPS signal 

spoofing or jamming.  

To improve the integration of the microgrid with the utility system, new synchronization 

and islanding detection algorithms were developed. The developed algorithms overcome 

the problem of SCADA and PMU based islanding detection methods such as 

communication failure and frequency stability. In addition, a real-time energy 

management system with online optimization was developed to manage the energy 

resources within the microgrid. The security and privacy were also addressed in both the 

cyber and physical levels. For the physical design, two techniques were developed to 

address the physical privacy issues by changing the current and electromagnetic 

signature. For the cyber level, a security mechanism for IEC 61850 GOOSE messages 

was developed to address the security shortcomings in the standard.  
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Chapter 1 Introduction 

1.1 Introduction  

The increased penetration levels of renewables and distributed energy resources result 

in increased challenges in maintaining reliable control and operation of the grid  [1]. 

Integrating a wide variety of systems governed by different regulations and owned by 

different entities to the grid increases the level of uncertainty, not only on the demand 

side but also in terms of generation resource availability  [2]. This complicates the process 

of achieving generation/demand balance. Renewable energy sources vary by nature and 

require intelligent forecasting and prediction systems to determine how and when this 

energy can be used  [3]- [5]. Most of these distributed resources will be installed on the 

distribution network, which already in its current state lacks the proper communication 

and control network necessary to control the applicable resources  [6], [7]. Moreover, the 

large number and widespread use of these resources makes controlling them from a 

central location difficult  [8]. To overcome these problems, deep integration between 

intelligent measurement nodes, communication systems, information technology, 

artificial intelligence, power electronics and physical power system components must be 

made to manage the smart grid resources  [9]. On the one hand, this type of integration 

can dramatically improve the grid performance and efficiency, but on the other, it can 

introduce new types of vulnerability to the grid. The risk of vulnerability escalates when 

the level of integration between the physical and cyber components of the power system 

increases  [10]. 
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The security threats to the grid due to deep integration with cyber components are 

significant and widespread, taking on various forms ranging from compromising smart 

meters to attacking wide area monitoring system (WAMS) and generation control 

system  [11], [12]. The transmission system and substations represent the backbone for the 

grid. Attacking the substation automation systems could lead to severe damage and 

blackout  [13], [14]. 

Considering this type of potential issue in the original design will lead to a more 

optimum design for cyber and physical components, ensuring continuity of service and 

system resiliency under various types of events and/or attacks. The design and 

optimization of such complex systems requires coordination between the cyber and 

physical components in order to obtain the best performance while minimizing 

vulnerability risk. The challenge is not only how to design the new secure cyber-physical 

system, but the transition from current systems to the new design is another challenge. 

Most of the installed components utilize older protocols and will last for decades  [15]. It 

is necessary to consider the interoperability between current and legacy component in the 

design of the new system  [16], [17].  

For the co-design of such a complex system, first, the interaction between cyber and 

physical component needs to be identified. The power system control uses different types 

of measurements and feedback signals. The impact of compromising these types of the 

signal on the power system stability should be identified to define the level and type of 

security required for each type of signal. An integrated modeling and simulation 

framework that presents an integrated model for cyber and physical components is 
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required to study this interaction and the impact of different types of vulnerabilities on 

the system stability. 

Smart grid systems could be affected by different types of vulnerabilities from 

different sources. The first source of vulnerabilities come from lacking security measures 

and data integrity checks in old protocols, control tools, and software tools. For example, 

Most of the protocols used in WAMS and substation automation, such as IEEE C37.118, 

were designed for efficiency and don’t have any security measures  [15], [18], [19]. Even 

for new protocols that specify some security measures, such as IEC 62351 standard, the 

control and operation requirements possess some restriction on applying these measures. 

As an example,  the encryption is not supported for GOOSE messaging, which operates 

at Layer 2 to meet the performance and 4ms maximum delay restriction  [20]. The second 

source of vulnerabilities could result from miss-configured systems and components. 

Miss-configured equipment, such as default accounts, open ports, etc. can leave the back 

door open for an attacker. The last source of the vulnerability is the software and 

implementation bugs  [15]. Even if the system utilizes a strong security standard, 

encryption and authentication mechanism, undiscovered software bugs can lead to 

dangerous security threats. For example, the famous heart bleeding bug that affects a 

large percentage of secured web servers that use OpenSSL server was related to an 

implementation bug.  In this particular case, the problem was not related to the Secure 

Sockets Layer (SSL) standard or the encryption algorithm  [21]. The bug comes from the 

software implementation of OpenSSL server. The affected servers have a buffer overflow 

software bug, which allows the attacker to obtain security keys and certificates  [22]. 
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Since the vulnerability of the system could result from system protocols, 

implementation or particular hardware equipment, the integrated modeling and co-

simulation framework should be equipped with hardware in the loop (HIL) and software 

in the loop (SIL) capabilities to test the actual components and firmware related 

vulnerabilities. 

1.2 Co-simulation of smart grid as a cyber-physical system 

The concept of co-simulation has been introduced. In [23], co-simulation is described 

as the process of integrating two software packages together and providing 

synchronization among them. As an example,  [23] proposed the integration of Simulink, 

which is concerned with modeling the physical system’s dynamic behavior, with 

Omnet++, which is concerned with modeling the communication network behavior, to 

develop smart grid applications. Similarly, in  [24] a co-simulation framework was 

developed by combining OpenDSS and Omnet++ for power system and communication 

networks simulations in order to investigate wide area smart grid monitoring systems. 

The work in  [24] focused on the time synchronization between the solvers for the 

aforementioned software packages. Authors in  [25] argued that there is a large gap in the 

area of simulating cyber-physical systems, which relies on having the communications 

and control working as intended and more effort needs to be put in the co-simulation 

area. For that, they introduced an event-driven co-simulation module based on the 

OpenDSS and Network Simulator NS2. MATLAB was used for the coordination of 

events. A co-simulation platform of a low-voltage grid based on IEC 61850 was 

presented in  [26], where MATLAB’s SimPowerSystems and SimEvents toolboxes were 
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used to model the system’s physical and cyber information flow, respectively. There are 

many other similar efforts in the literature which rely only on simulation software 

modules. These systems represent an important step towards properly modeling the cyber 

and physical domains of a cyber-physical system. Nonetheless, these simulators are not 

implemented over a real communication network. Therefore, they will not be able to 

account for practical issues with high fidelity, as they are limited with the functionalities 

provided in the network simulation software, which most of the time is proprietary. For 

instance, network simulators do not work on the packet level; they usually model 

networks on the large scale and use statistical and probabilistic models to predict delays. 

Also, practical issues due to different firmware implementations cannot be realized in 

network simulators. Two Ethernet switches from different vendors might have a different 

implementation to which specific vulnerabilities can be analyzed and found. Such 

simulation environments usually have their solvers synched and do not operate in real-

time and therefore cannot be easily interfaced with actual hardware and intelligent 

electronic devices (IED).  

From another perspective, there are several works that included hardware modules in 

the loop of the simulation platforms. Here, there are two methodologies: (1) is integrating 

power equipment, such as generators, actuators, converters, etc, into the simulation 

environment to test control algorithms on real hardware, whereas (2) is network design 

and testing by integrating IEDs and other embedded devices with traffic generation 

software packages. A hardware in the loop simulation testbed for distributed microgrid 

management based on multi-agent systems was presented in  [27]. The presented system 
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is based on the Zigbee protocol and the simulation and hardware were integrated through 

an I/O conditioning board. This approach is limited to the specific application it was 

developed for and is hard to expand to include various smart grid applications. Also, 

in  [28] actual Phasor Measurement Units (PMUs) were integrated with a real-time digital 

simulator via an IEC 61850 bus to model passive islanding schemes. Although an actual 

IEC 61850 network was integrated with the simulations, this implementation is 

application specific and is hard to expand and manage the complex communication 

requirements for other smart grid applications. In a pure networking perspective,  [29] 

proposes a method for testing intelligent devices’ communications in distributed systems. 

This platform is interesting since it incorporates several protocols, such as IEC 61850, 

DNP3, IEC 61870-5, IEC 61870-6 (ICCP/Tase.2), and Modbus. However, the integration 

of these protocols is based on a proprietary Distributed Test Manager and therefore is not 

easily expandable and requires special libraries to interface with other simulation tools. 

Both modeling approaches do not provide a comprehensive framework for properly 

modeling cyber-physical systems and most importantly the interactions between them. 

Also, the second approach (2) is usually concerned with a single or a few protocol 

combinations and will require a lot of engineering and programming effort to integrate 

different applications and devices together. 

1.3 Smart Grid design challenges 

Several technical challenges need to be identified and addressed during the design of 

the smart grid architecture. These challenges are spread over a multidisciplinary area 
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including communication, control, and power system. These challenges can be classified 

as below. 

1.4 Integration of distributed energy resources (DER) 

Smart grid is characterized by large penetration of distributed and renewable energy 

resources. High penetrations of renewable energy increase the uncertainty of generation 

resource availability.  Moreover, most of these resources will be installed on the 

distribution side.  Current grid control model was designed to control a few generation 

stations from centralized control systems. Applying the existing control model for 

distributed energy resources, taking into account large geographic area and the amount 

of data needed to be transferred to control centers possesses large technical and 

economic challenges. The technical challenges are associated to design the 

communication system that covers the large geographic area and transfers huge 

amounts of raw measurements and control signals. The processing power needed to 

process this information and take the necessary action in real time is another challenge. 

Implementation of such control and communication network will be costly. 

Moreover, the centralized control model suffers from the reliability and single point 

of failure problems. Failure of a centralized server or communication channel may lead to 

severe system problems. To solve these issues, the control model should be changed from 

centralized control to decentralized control model. Instead of a centralized control center, 

which collects and process all information locally, the system will be divided into a 

number of subsystems with a local intelligent controller. The local controller will process 

the data locally and perform the necessary control action in their area. Neighbor’s area 
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controllers will be able to exchange the information to coordinate the operation in the 

local area and support the overall system stability. Only high-level data and control 

command will be needed to be transferred between intelligent controllers and control 

centers. By processing the data locally and performing local control actions, the amount 

of data transfer and communication bandwidth will be reduced. The required processing 

power on control centers will be less and the system reliability will be improved by 

avoiding a single point of failures. 

1.5 Interoperability challenge 

Integrating a wide variety of systems governed by different regulations and owned by 

different entities to the grid possesses an interoperability challenge. Several protocols and 

standard were developed for smart grid operation, such as DNP3 for process automation 

and SCADA systems, IEC61850 for substation automation, C37.118 for phasor 

measurement and OPC UA for M2M communication. In many application cases, it’s 

required to map the data from protocols to another. There is a lack of a common data bus 

or interface that can be used by the application developer to develop smart grid 

application, such as Energy management systems EMS or demand side management 

systems. 

1.6 Communication challenges 

The communication network for smart grid applications should consider the special 

requirements for real-time control. Smart grid control relies on different types of signals; 

each type of signal has a special requirement regarding the bandwidth, delay, and 

availability. The data availability means the ability to access the right data at the right 
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time. The communication infrastructure design should be coordinated with the control 

requirement. Some data are sensitive to delay, such as the protection and feedback signal 

in low inertia systems. The communication middleware is a critical component in smart 

grid control. The smart grid implementation involves data exchange between local and 

remote nodes. These nodes represent devices manufactured by different vendors and 

owned by different entities. The communication middleware provides an abstraction 

layer to simplify and manage the communication between different nodes without being 

concerned with the complexity of hardware layers or network details  [23] [24], [30]. Most 

of the old protocols use the message-centric approach. The data exchange in the message-

centric approach is based on defining a set of messages and data formats to support the 

expected data types and use scenarios. These messages are predefined and embedded in 

nodes. Using a set of predefined messages puts some limitations on the system 

expandability when expansion requires defining new data types or operation 

scenarios  [30].   

1.7 Problem statement 

The increased penetration of distributed renewable resources located on the 

distribution side requires extending the current communication infrastructure. This is 

because the distributed nature of the renewable resources force re-shaping the grid 

structure from centralized to decentralized control architecture. The decentralized 

architecture utilizes the microgrid to integrate and manage the distributed energy 

resources, loads, and provides services to improve the overall system performance. The 

distributed architecture also requires an extension of the communication network to the 
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distribution side and integration with several types of software and computational 

technology. This integration raises challenges related to security, scalability, 

interoperability, and interaction between the cyber and the physical components. 

To address these challenges, the co-design of a scalable communication and control 

framework taking into account the interoperability, the security issues, and the physical 

system requirements, is required. A new set of tools that simulate and represent the 

system as an integrated cyber-physical system to understand the complex system 

dynamics and test new ideas in a safe and practical environment is also required. 

Investigating the vulnerability and attack surface of this type of integration is also 

important in order to provide mitigation mechanisms that take into account the impact on 

the physical system operation. 

1.8 Research Objective  

The concept of the co-design of a security-aware power system is presented in this 

dissertation. The idea of the co-design of the cyber-physical system is to consider the 

mutual interaction between cyber and physical component from initial design instead of 

dealing with the design as a separate stacked layer. Detailed analysis of the physical 

system and control requirement should be taken into account during the design of the 

communication and cyber layers. On the other side, the impact of the cyber layer should 

be considered in the design of the physical and control layers. In the security aware 

system, security is an essential component in the design. Security measures must be taken 

into account in the design of the component level, as well as system level. Adding the 

security as an additional layer in the final system design could interfere with the physical 
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system operation and not be feasible in many cases. Once this co-design is achieved, the 

proposed design technique will improve the grid resiliency and security. The co-design 

process deals with the interaction between cyber and physical components. Therefore, a 

hybrid hardware and software testbed environment is developed to accurately represent 

the power system as an integrated cyber-physical system. The hybrid modeling 

environment utilizes the simulation software packages to simulate large-scale systems 

and capture macroscopic details while benefiting from high-resolution details of the 

hardware system. Moreover, the testbed environment allows testing developed idea with 

real hardware and communication network, in addition to protocol emulation and devices 

virtualization. 

The main goal of the co-design is to improve the system performance, reliability and 

reduce the vulnerability. To achieve this goal, the concept of the co-design is applied to 

the design of the microgrid synchronization, islanding detection, distributed DC-DC 

converter control, and energy management system.  In addition, security mechanisms that 

address the cyber security vulnerability in a smart grid standard and customer privacy 

issues due physical systems’ characteristics, such as system current and electromagnetic 

signatures, are developed.  

1.9 Original contribution of this dissertation  

The original contribution of this desertion is to develop techniques for co-design of 

security aware power distribution systems as a cyber-physical system. To achieve this 

goal, a detailed study of the communication requirements for the smart grid to integrate 

microgrids and distributed resources in the distribution network is performed. The 
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purpose of this study is to address the important issues for proper integration of 

microgrids, such as the real-time control requirements, the need for interoperability, 

cyber security of the communication infrastructure, and scalability issues. This study 

resulted in designing and implementing an interoperability and communication 

framework for microgrid control, taking into account its cyber and physical security. 

First, the interoperability layer provides a common data bus and a resilient 

communication and control environment for seamless integration of microgrids. Then, a 

defined data model for the controllers, sensors, and power system components introduced 

to enhance the overall system operation and communication resiliency. 

In order to improve the current distributed resources, monitoring and management in 

the distribution network, an advanced metering infrastructure (AMI) was developed and 

implemented.  This AMI includes smart meters, communication network, head-end, and 

meter data management system, and home area network gateway. The developed 

infrastructure seamlessly integrated with the developed microgrid communication and 

control framework. Moreover, a synchronized measurement network was developed and 

implemented to provide real-time monitoring, as well as situational awareness for the 

distribution network. This real-time synchronized network provides high-resolution phase 

angle measurement along with voltage and current measurements. In the developed 

network, the utilized data-centric communication middleware eliminates the need for 

using a phasor data concentrator and ensures the delivery of multicast data streams via 

the reliable real-time publisher-subscribe (RTPS) protocol. 
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To test and verify the developed algorithms and control frameworks, a hybrid 

hardware/software testbed environment was developed to represent the microgrid as a 

cyber-physical system. The developed platform is utilized to perform different types of 

simulation experiments, such as HIL as well as SIL operational control in real-time. The 

hardware in the loop platform provides the method of simulating a large power system 

network while at the same time interacting with actual hardware components. The 

integration between the proposed co-simulation framework and smart grid testbed will 

provide a flexible hybrid software/hardware environment for modeling and testing 

different smart grid operating scenarios.  Finally, the proposed framework provides a 

standard and flexible interface to integrate with other testbed facilities from different 

domains for multidisciplinary studies. This type of integration provides the scalability to 

represent large cyber-physical systems. 

The work in this dissertation utilizes communication technologies to enhance the 

performance of the distributed DC –DC converters in the microgrid and DC distribution 

network. The dissertation extends the application of the GPS synchronization to the DC 

microgrid. GPS synchronization has been widely used in PMUs for synchronized 

measurements in the AC networks; however, to the best of the author’s knowledge, it has 

never been used to enhance the power quality in DC networks. The importance of the 

proposed synchronization method is to allow the operation of distributed DC-DC 

converters’ modulators as an interleaved converters system. The interleaved operation 

reduces the ripple, and therefore, the DC-link capacitor size. In addition to that, the 
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synchronization method improves the system electromagnetic compatibility by reducing 

interferences from the harmonics. 

Along with utilizing the GPS signal for distributed DC-DC converter 

synchronization, a new technique was developed to improve the system’s security and 

reliability. This technique is proposed as a backup for the GPS synchronization in the DC 

microgrid in the case of GPS signal spoofing, jamming, or blocking. The technique is 

based on carrier extraction synchronization to maintain the synchronization of the 

converters without relying on the GPS signal. To achieve that, a real-time phase angle 

optimization technique to minimize the DC bus voltage ripple in the DC microgrid and 

DC distribution network is developed. 

To address the integration of the microgrid and distributed resources with the utility 

system, a new synchronization scheme was developed to improve the synchronization 

accuracy and maintain the stability under distorted voltage waveforms and fault 

condition. Also, an islanding detection algorithm is implemented to overcome the 

problem of SCADA and PMU islanding detection methods. To ensure continuity of 

operation in islanding and grid-connected modes, a reconfigurable controller is 

developed. 

Since the smart grid contains several dispersed microgrids, the work in this 

dissertation developed a distributed energy management system that includes online 

optimization and takes into account the privacy and security of customer data. The energy 

management system represents the application layer on the top of previously developed 

physical, communication and control layers. The developed application will collect 
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information from AMI, synchronized measurement network and control power 

electronics converters, energy storage, and distributed renewable energy source to 

optimize the energy usage based on the available renewable energy and real-time prices. 

Modern communication and signal processing techniques threaten the customer 

privacy. That is, privacy can be exposed by leaking information from the cyber and the 

physical components. From the cyber component, information can be leaked through 

attacking and/or hacking the communication infrastructure. From the physical 

component, the system’s physical characteristics can be used to extract information about 

the behavior of the customer. The cyber privacy is address by utilizing proper encryption 

and authentication techniques, whereas two techniques were developed to address the 

physical privacy issues. The first technique is to hide or change the current signature that 

can be used to identify the customer load and operation pattern. Second, the 

electromagnetic signatures, which can be utilized to identify the system remotely, are 

reduced using the developed online electromagnetic signature monitoring and reduction 

technique. 

Finally, the work in this dissertation focuses on the cybersecurity issues related to 

industrial standards for power system automation. A detailed security and vulnerability 

analyses were performed to identify weak points and attack surfaces for the IEC 61850 

standard. Based on this study, a security mechanism for IEC 61850 GOOSE messages 

was developed to address the security shortcomings in the standard. 
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1.10 Dissertation organization 

This dissertation is organized in fourteen chapters, including this chapter, which 

introduces the general contributions of this dissertation. 

Chapter 2 discusses the communication requirement for modern power system and 

addresses the scalability and interoperability problems related to message-centric 

approaches by implementing a common data bus based on the data-centric approach; and 

proposes a hybrid hardware/software infrastructure for microgrid control that seamlessly 

integrates communication, software, and physical components. The design of the data 

structure and a standard interface for the developed infrastructure are provided.  

Chapter 3 presents the development of an AMI that integrates seamlessly with the 

microgrid’s communication infrastructure presented in Chapter 2. It also discusses the 

modular architecture, hardware and software details of the developed AMI, which 

consists of smart meters, a communication interface, and home area network (HAN) 

gateway modules. These modules are built based on a custom developed firmware that 

allows real-time monitoring, real-time price exchange and interaction with customer 

systems through the HAN gateway. This real-time interaction is necessary for the 

implementation of microgrid energy management systems, demand-side management and 

distributed renewable energy resource integration.  

Chapter 4 extends the hybrid software/hardware infrastructure developed in chapter 2 

by proposing a synchronized measurement network for the distribution system. The 

proposed measurement network supports completely distributed and resilient peer/peer 

communication environment. The developed measurement unit can directly measure the 
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phase angle, frequency and the magnitude of the voltage and current fundamental 

components. The details of the developed hardware and firmware are presented.  

Chapter 5 explains the details of the developed hybrid hardware/software-based smart 

grid testbed infrastructure to represent the interaction of the cyber and physical 

component of the microgrid. The proposed testbed infrastructure provides the necessary 

hardware and software environment to perform different types of experiments, such as 

HIL, as well as SIL operational control in real-time.  It also provides an interface to 

integrate with other testbed facilities from different domains for multidisciplinary studies. 

The testbed interface enables remote experimental features to perform experiments, test 

developed algorithms, and collect data remotely. 

Chapter 6 introduces the phasor measurement and GPS synchronization to the DC 

microgrid applications. GPS synchronization has been widely used in the PMUs for 

synchronized measurements in the AC networks. To the best of the author’s knowledge, 

it has never been used to enhance power quality in DC networks. Introducing the GPS 

synchronization to the DC networks allows the operation of distributed DC-DC 

converters modulators as an interleaved converters system. The interleave operation of 

distributed DC-DC converters reduces the ripple and DC-link capacitor size. In addition, 

it improves the system electromagnetic compatibility by reducing interferences from 

harmonics.  

In Chapter 7 a new method for synchronizing PWM modulators of distributed DC-DC 

converters is presented. The proposed synchronization method utilizes a carrier extraction 

technique to extract the carrier frequency from the DC bus ripple to generate a common 
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frequency reference. This method provides a backup or alternative synchronization 

method to prevent degradation of system performance in case of GPS signal jamming, 

spoofing or blocking. In addition to the carrier extraction synchronization method, a new 

phase shift control algorithm inspired from carrier sense multiple access communication 

is developed to optimize the carriers’ phase angle.  The developed control is completely 

distributed and doesn’t require a communication channel between converters. 

Chapter 8 introduces an accurate synchronization technique for the microgrid with 

distributed energy resources based on the adaptive synchronous reference frame phase 

locked loop under unbalanced and distorted voltage condition. The developed 

synchronization algorithm is equipped with an islanding detection algorithm that 

overcomes the PMU and SCADA system islanding detection problems. In addition to 

synchronization and islanding detection methods, this chapter introduces a reconfigurable 

grid tie converter controller.  The reconfigurable controller seamlessly switches the 

converter operating mode from power control mode during grid connection to voltage 

control mode during islanding. The superior performance and unique features of the 

developed synchronization, islanding detection, and reconfigurable controller increase the 

microgrid stability and reliability.  

Chapter 9 introduces a complete scalable energy management system framework for a 

small microgrid or nano grid. The energy management system represents the application 

layer on the top of previously developed physical, communication and control layers. The 

developed application will collect information from AMI, synchronized measurement 

network and control power electronics converters, energy storage and distributed 
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renewable energy source to optimize the energy usage based on the available renewable 

energy and real-time prices. This chapter also addresses the privacy and security issue 

related to the AMI and energy management systems.  

Chapter 10 addresses the customer privacy and information leakages from customers’ 

consumption data and current signature. Using this leaked information, a monitoring 

entity can reveal private customer behavioral patterns, as well as the type of equipment 

used and or owned. To prevent or minimize the information leakage, this chapter 

introduces a technique to hide or change the current and consumption signature by 

utilizing an active power filter.  

Chapter 11 discusses the security threat results from radiated electromagnetic signatures.  

The electromagnetic signature for high-current devices can be detected and identified 

remotely. Remote identification of equipment’s electromagnetic signature raises privacy 

and security concern for some types of power systems, such as a shipboard power system. 

Detection of electromagnetic signature remotely represents a threat to military ships.  A 

new technique to minimize the radiated field from heavy current loads, such as electrical 

propulsion motor, is developed in this chapter. The developed method can be 

implemented online without a need to revise the construction of the drive or the machine. 

Chapter 12 provides an overview and vulnerability analysis for one of the most accepted 

standards for data modeling and communication in the modern power system. The IEC 

61850 is widely accepted standard in substation automation and microgrid control. The 

cyber vulnerability related to the IEC 61850 communication protocols and related 
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security standard IEC 62351, as well as the motivation to develop a new security 

algorithm for the IEC 61850, is discussed in detail in this chapter.  

Chapter 13 focuses on development and implementation of a security mechanism based 

on the sequence hopping to secure the IEC 61850 event messages. The developed 

security mechanism provides protection and intrusion detection methods to protect 

critical substation automation assets from attack while utilizing minimal processing 

resources.   

Chapter 14 provides a summary of the dissertation outcomes, the significance of this 

research as well as recommendations for future work related to its topic. 
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Chapter 2 Microgrid Cyber-Physical Infrastructure  

2.1 Communication requirements for smart grid 

The future utility grid will be characterized by tight integration between power 

electronics, sensing, protection, control, communications technologies, and DER. Most 

DER will be installed on the distribution network, which, already in its current state, 

lacks the proper communication and control network necessary to control the applicable 

resources  [31]. A communication infrastructure needs to be designed to provide a more 

efficient and flexible way to manage the energy flow keeping interoperability in 

mind  [32] [33]. On one hand, this type of integration can dramatically improve the grid 

performance and efficiency, but on the other, it can also introduce new types of 

vulnerabilities to the grid  [34], complicating the system’s analysis and the design 

process  [35]. Ensuring interoperability between different equipment, software packages, 

and protocols is challenging. Real-time operation and data exchange is another challenge.  

The communication middleware is a critical component in a smart grid control. The 

communication middleware provides an abstraction layer to simplify and manage the 

communication between different nodes without being concerned with the complexity of 

hardware layers or network details  [36], [37] [38] Moreover, the middleware should 

provide a standard application programming interface (API) to different applications and 

controllers. Using a standard API reduces the efforts needed to develop new devices and 

applications for the smart grid. Several types of communication middleware are available 

and used in different industrial and control applications  [33]. The communication 

middleware can be categorized into message- and data-centric. Traditionally, message-
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centric protocols are utilized in utility applications. However, the new data-centric 

middleware approach has more advantages over the message-centric, as it has more 

ability to be expanded. 

The work presented in this chapter addresses the scalability and interoperability 

problems related to message-centric approaches by implementing a common data bus 

based on the data-centric approach; and proposes a hybrid hardware/software 

infrastructure that seamlessly integrates communication, software, and physical 

components. The design of the data structure and a standard interface for the developed 

infrastructure are provided.  

2.2 Communication Middleware for Smart Grid Applications 

The communication middleware for smart grid applications should consider the 

special requirements for real-time control. Microgrids and low inertia generator control 

need low data latency to support fast control actions and maintain stability. The 

communication middleware should also provide a wide range of quality of service (QoS) 

profiles to meet the different needs of controllers and data types  [33], [37]. For example, 

the measurement data could be discarded in case of a delay when a new sample becomes 

available, while the circuit breaker (CB) states should be persistent to ensure its proper 

operation. Certain types of data are tolerant to delays, such as smart meters and power 

quality measurements, while other data types, such as data related to protection and fault 

detection, are sensitive to delay. The middleware should be aware of the data types and 

its requirements to provide the correct priority for each data type. Communication 

reliability is essential in real-time applications  [37]. Therefore, the middleware 
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implementation should also avoid a bottleneck and single point of failure in the 

communication network  [39]. 

The smart grid implementation involves data exchange between local and remote 

nodes. These nodes represent devices manufactured by different vendors and owned by 

different entities. The middleware should abstract the complex network details from the 

user and provide a simple communication interface without dealing with complex details 

about the network topology and nodal information, such as a location or address  [40]. 

One of the main challenges in the smart grid is the dynamic participation of different 

devices and systems, ranging from smart appliances to large systems, such as 

microgrids  [33]. The communication middleware should provide a way to handle 

dynamic participant nodes and an auto discovery features for newly joined nodes. The 

communication and power network topology should have the capability to be changed 

under catastrophic or emergency conditions. An auto discovery and dynamic 

participation feature will support the reconfiguration of a distributed control system. The 

modern grid is very susceptible for future expansions; thus, the used middleware and 

communication infrastructure should be capable of handling these new expansions. An 

expansion process should be done without the need to redesign or modify the 

implemented protocols. Furthermore, the communication middleware must provide a 

standard communication interface to ensure interoperability among different vendors and 

devices. To ensure system operation and reliability, the communication network should 

be protected by a proper encryption and authentication mechanism. The middleware 

should provide the security features embedded in the implementation to secure the data 
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exchange and prevent altering data or violating customer privacy  [41]. Since most smart 

grid controllers and IEDs use low power processors with limited memory and hardware 

resources, the middleware implementation must support a small footprint for limited 

resource devices  [33]. 

The communication middleware can be categorized into two main categories: 

message-centric and data-centric. The differences between both and selection criteria will 

be discussed in detail in the following subsection. 

2.2.1 Messages-Centric Middleware Approach 

The data exchange in the message-centric approach is based on defining a set of 

messages and data formats to support the expected data types and usage scenarios. These 

messages are predefined and embedded in node applications. In a message-centric 

approach, the unit of the information is the message; the message can contain different 

types of information. For example, the IEEE C37.118.2 synchrophasor measurement 

standard defines four different message types for PMU and phasor data concentrator 

(PDC), as below: 

 Command message 

The command message is sent to the data source (PMU/PDC) for control and 

configuration. 

 Data Frame  

The data frame is sent from a data source (PMU/PDC) to receiving nodes. 

Data frames contain phasor, frequency, analog measurements and digital data 

types.  
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 Configuration message 

Configuration message describes the data types, calibration, and meta-data for 

the data sent by PMU/PDC.  

 Header message 

The header message is a readable descriptive text information provided by the 

user and sent from the PMU or PDC. 

The message frame is depicted in Figure  2.1. All message frames consist of SYNC, 

FRAMESIZE, IDCODE, SOC, FRASEC, and DATA AND CHK fields. The two bytes 

SYNC field is used to identify the beginning of the new message, designate the frame 

type and protocol version.  The FRAMESIZE field contains the total number of bytes in 

the frame, including the CHK field. The IDCODE field is the data stream ID which 

identifies the destination for a command frame and the source for other messages. The 

time stamp is transmitted in SOC and FRACSEC fields. The SOC field, or second of the 

century, is a 32-bit integer number representing the time in seconds starting from 

midnight 01-Jan-1970. The FRACSEC field contains the fraction of second and time 

quality information. The data field could be an integer or a float data type based on the 

device configuration. All message frames end with a CHK field, which contains a cyclic 

redundancy check CRC-CCITT for data integrity.    

 

Figure  2.1. C38.118 message frame 
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The message frames shall be transmitted in their entirety as they are specified by the 

standard.  The message frame can be transmitted over RS232 or Ethernet connection. 

When frames are transmitted over stacked protocols, such as IP protocols or IEC 61850 

manufacturing messaging specification (MMS), the entire frame including SYNC and 

CRC-CCITT shall be written into and read from the application layer interface. In this 

approach, the communication infrastructure has no information about message contents 

or data types, thus the message parsing, data filtering, and integrity check are done on the 

application level. Each node is responsible for assuring the correctness of the data types it 

receives according to the configuration and tracks the state of the data of interest 

locally  [42]. Here, any mismatch can cause malfunction of the application. The data field 

types and meaning depend on the device configuration. The data frame is not enough to 

correctly interpret the data fields. The application also needs to receive the device 

configuration.   

This approach has several drawbacks. Implementing the message parsing and integrity 

checks on the application level put more responsibility on the control application 

developer, which makes the development more complex and time-consuming. Filtering 

the data of interest at the application layer causes poor network utilization, wasting 

bandwidth and adding extra processing overhead on the application’s processor. The 

communication infrastructure has no information about the content of the message frame. 

All fields have to be interpreted by the application.  The application needs to receive, 

parse and validate the whole frame, even if it’s interested only in a subset of the data 

included in the frame.   
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Using a set of predefined messages puts some limitations on the system expandability 

when expansion requires defining new data types or operating scenarios  [33]. Since the 

message handling is done at the application level, any change in the message formats or 

data types requires major changes on the application implementation. Increasing the 

complexity of the control application by using the message-centric approach can increase 

the chance of software bugs and decrease the overall system reliability. The vendor-

dependent implementation of message parsing and handling algorithms could lead to a 

wide range of different vulnerabilities, adding more complexity for system 

maintenance  [42], [43]. 

2.2.2 Data-Centric Middleware Approach 

In the Data-Centric approach, the application is developed to deal with the data types 

of interest only without any concern with the message structure or network details. The 

message is built by the communication middleware to update a change in the system 

state  [44]. The fundamental unit in the data-centric communication is the data object. The 

message structure is derived directly from the system data model. Since the message is 

created by the middleware, the communication infrastructure will be aware of the 

message contents and data types. The data-centric infrastructure does all the message 

parsing, data filtering, and integrity checks on the middleware level to ensure the delivery 

of correct data types and the system state to all nodes. 

This approach offers more capabilities over a traditional message-centric approach. 

Moving the message processing responsibility from the application to middleware not 

only simplifies the application development but also increases the system reliability by 
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reducing the number of errors that results from different implementations of message 

parsing. Implementing the data filtering on the middleware layer could result in a more 

optimum utilization of the network bandwidth  [42]. The infrastructure awareness of the 

data types makes it possible to assign different QoS profiles, priorities, and security 

levels based on the data types instead of the message types, as is the case in the message-

centric approach. 

Since the middleware is responsible for all message processing tasks and the 

applications are concerned only with the data object, adding new data types will not 

require modification of existing applications. This feature is essential for an expandable 

system, such as the continuously evolving smart grid. Figure  2.2 depicts both middleware 

approaches, where message-centric is on the left and data-centric on the right.  

 

(a) (b) 

Figure  2.2. Middleware approaches: (a) message-centric; and (b) data-centric adapted 
from  [54] 
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Throughout this dissertation, the proposed communication framework utilizes data 

distribution service (DDS) standard for the communication middleware. The DDS is a 

standard for data-centric communication from the Object Management Group (OMG).  

The DDS has unique features which improve the smart grid communication drastically, 

as described below: 

 DDS moves the message construction, message parsing, data filtering, and 

validation from the application to the middleware layer. Moving the message 

construction process from the application to middleware layer improves the 

system scalability and enables adding new types of data for new operation 

scenarios without the need to modify existing applications. 

 DDS utilizes real-time publisher-subscriber protocol, which enables peer-to-peer 

communication without a message broker. This communication scheme improves 

the smart grid reliability by avoiding a single point of failure. Publisher-subscriber 

and peer-to-peer communication provide a more suitable environment for 

distributed controllers. 

 DDS supports automatic discovery of newly-joined devices and their data 

structures. This feature allows dynamic participation of network nodes, which are 

important, especially for microgrids, where different nodes can join and leave the 

microgrid network, such as electric vehicles and smart devices. 

 Unlike other communication methods that apply quality of service profiles for a 

whole data stream or protocols, DDS can apply different QoS for each data type, 
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which provides a more flexible communication management and leads to a more 

predictable behavior. QoS profiles give the ability to define the allowed latency 

budget, data durability for late joining devices, and data lifespan. More 

descriptions of QoS and its synergy to the power application will be provided in 

the next section. 

2.3 Data Distribution Service Infrastructure for Smart Grid Testbed 

The communication network infrastructure for the smart grid should provide a flexible 

and scalable environment to connect different system components and exchange 

information in real-time. There are different types of communication networks. One of 

these types is client-server network communication. In this type, the communication is 

centrally managed by the server. This central management represents a single point of 

failure and a bottleneck, which could affect the reliability of the network. While in point-

to-point communication, the communication is established directly between the nodes 

without a message broker, which is hard to manage in large networks  [39]. To meet the 

hard real-time requirement and scalability of the smart grid, the DDS middleware is 

chosen for the communication network. The DDS utilizes publisher-subscriber without a 

message broker scheme which simplifies the communication between different 

nodes  [45] [46], [47]. Furthermore, the DDS is data-centric middleware, which helps to 

maintain the focus on the data model, algorithm and control development rather than 

being concerned with communication and data delivery issues  [44] [46]. The data-centric 

approach also allows assigning different QoS profiles to an individual data type instead 

of the whole stream. 
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2.3.1 System interoperability 

Highly motivated by its high reliability and unique features, the DDS found its way to 

being used in a wide variety of mission-critical applications. For example, DDS is 

implemented by the US Navy and Lockheed Martin in radar and ship management 

systems  [48]. Furthermore, DDS has been adopted in Air Traffic Control centers in some 

European countries  [49], large financial firms, automation and SCADA systems for large 

projects, including Grand Coulee dam in Washington State (USA)  [50], and automotive 

applications. The DDS is selected by the smart grid interoperability panel (SGIP) and 

Duke Energy for Open field message bus (OpenFMB) implementation to create a 

distributed, intelligent platform that supports publisher-subscriber messaging  [51]. 

The real-time publisher-subscriber wire protocol ensures the interoperability  [52], real-

time performance and automatic discovery of new services. Moreover, the publisher-

subscriber protocol is utilized by the IEC 61850 protocol and has started to gain more 

popularity in IEDs  [37]. The DDS has an advantage of covering a wide range of 

applications, ranging from non-real-time to extreme real-time application. Figure  2.3 

shows a comparison between DDS, Common Object Request Broker Architecture 

(CORBA), Real-time CORBA (RT-CORBA) Java messaging system (JMS), the Real-

Time specification for Java (RTSJ) and message parsing interface (MPI). The comparison 

is based on an analysis done by Naval Surface Warfare Center NSWC  [53]. 

The standard API for the DDS middleware provides the necessary tools to integrate 

with different simulation and analysis software with support for several programming 

languages, such as C, C++, and JAVA. The DDS also supports Java Messaging System 
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JMS, which enables integration with JAVA-based multi-agent platform, such as Java 

Agent Development Framework (JADE). Since DDS standard focus on the data model 

instead of messages, standard data model, such as IEC 61850 and   IEC 61970-301 

common information Model (CIM), can be mapped to DDS. 

 

Figure  2.3. DDS applications vs different communication standard 

Although other middleware services exist, DDS provide the most reliable 

interoperability solution compared. One popular middleware service is OPC or OLE for 

Process Control. OPC is a platform independent standard through which various kinds of 

systems exchange messages based on a client-server approach, unlike DDS, which 

follows a publish-subscribe method. It was introduced as a means to shield client 

applications from the details of the automation equipment and providing standardized 

interfaces to interact with control hardware and field devices. Applications developed on 
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an OPC middleware interact by invoking requests on UA servers, which make them 

suffer from a single point of failure (i.e. the server), as shown in figure 2.4. However, in 

DDS, applications interact asynchronously and anonymously by reading and/or writing to 

a global data space. 

Global Data Space

Publisher

Publisher

Publisher

Subscriber

Subscriber

Subscriber

Client Server
Request

Reply

OPC

DDS
 

Figure  2.4. DDS vs OPC middleware 

Also, a major drawback of OPC is that, unlike DDS, it does not support QoS 

specification and therefore lacks message prioritization which is important in microgrid 

applications. 

Based on the data-centric approach, implementing the DDS needs to define a data 

model for the system. This data model defines the structure of the data and its relation 
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amongst physical hardware objects. For experimentation and verification, a data model is 

created for a scaled power system in the smart grid testbed at Florida International 

University’s Energy Systems Research lab.  The physical hardware description of the 

scaled power system and the data model are described in the next section 

2.4 Physical Setup Description and Data Model 

In this section, the physical infrastructure for the smart grid testbed will be discussed. 

This testbed represents a hybrid AC/DC power system involving distributed architectures 

and multiple microgrids. The architecture of the network emulates a real power system 

with microgrids attached to it, utilizing commercial and special purpose power system 

components. 

 

Figure  2.5. Schematic diagram for the smart grid testbed 
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 The microgrids can be used to emulate buildings, commercial facilities or residential 

communities. The testbed system is scaled down in terms of power and operating voltage 

to enable its utilization in a laboratory environment  [54]. Figure  2.5 shows the 

architecture of the smart grid testbed implemented at Florida International University 

(FIU). 

2.4.1 Main Grid 

The main AC grid consists of four self-excited AC synchronous generators, two of 

which are rated at 13.8 KVA, while the other two are rated at 10.4 KVA. These 

generators are driven by different types of motors acting as prime movers. The generators 

are rated at three phase 208 V, 60 Hz, and 1800 RPM. Each generator is connected 

through an automatic synchronizer to its corresponding switching and measurement bus. 

The connectivity of the AC network is realized using various π-section transmission 

line/cable emulators. A total of 18 transmission line/cable emulators and 14 buses were 

used. The bus and line modules are flexible to vary system network architectures. The 

user has full control of transmission line connectivity, system frequency, and the 

generator operation modes. 

2.4.2 DC Microgrids 

Two DC microgrids, namely MG1 and MG2, were connected to the main AC grid. The 

first DC microgrid (MG1) includes a photovoltaic (PV) emulator, a wind energy 

conversion system (WECS) emulator and battery storage. The PV emulator is connected 

to the DC bus through a DC-DC converter. The WECS is cascaded by an uncontrolled 
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rectifier followed by a controlled DC-DC converter  [55]. The DC bus voltage is 380 

VDC. 

The second DC microgrid (MG2) includes a 6 kW PV and a 6 kW fuel cell (FC) 

emulators. The system includes a 12 kWh backup lead acid battery array that can support 

loads deficiencies. A 325 V DC bus is used to integrate the PV, FC, and battery energy to 

the system. Controlled DC-DC boost converters are used as power conditioning units 

between each of these sources and the DC bus. A 4 kW space vector pulse width 

modulation (SVPWM) fully controlled bi-directional AC-DC/DC-AC converter was used 

to tie each DC network to the AC grid. A power electronics converter is used to control 

active and reactive power flow between AC and DC grids. The converter is also 

responsible for voltage regulation on the DC side in grid connected mode, while in 

islanded mode, the local controller switches the voltage regulation to one of the DC-DC 

converters interfaced with the PV system. This voltage source inverter (VSI) has the 

capability of receiving reference values for active as well as reactive power and, hence, 

will play a major role in the active/reactive power compensation processes. 

2.4.2 System Data Model 

In order to build a data model for the smart grid testbed, a data structure was defined 

for each object. The structure for each object defines the object type and related data. 

Each object has a unique descriptive name and several topics defining the data related to 

this object. For example, the data structure for the generators is shown in Figure  2.6 The 

structure name represents the object name and each variable represents one of the object 

parameters that can be read or modified by the other object. Table 2. 2-1 shows a list of 
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objects and related topics. As shown in Table 2. 2-1, each row represents a system object 

and its related topics. For example, the first row depicts the generator data. G_x is the 

object type, where x is the generator ID. In the second column, the related topics are 

defined: Ia, Ib, Ic are the three-phase currents, Va, Vb, Vc are the three-phase voltages, f is 

the frequency, (P, Q) are the active and reactive power, and sync is the synchronization 

signal. In the microgrid case, the object type is MG_x and similar topics, such as the ones 

in the G-x, are defined, except the topic “mode”. This topic controls the microgrid 

operation mode in either islanded- or grid-connected operation. For the smart meter 

object SM_x, the PA, and QA topics represent the accumulated active and reactive 

energy, respectively. For the PV emulator PV_Em_x, Ir, and Temp topics represent the 

solar irradiance and temperature, respectively. Ws is the wind speed for the wind turbine 

emulator object. Figure  2.7 shows the DDS infrastructure for the smart grid testbed. The 

measurements from data acquisition (DAQ) and smart meters were collected and 

published to a global data space. The DDS DAQ and controller are implemented on an 

embedded board based on the Sitara AM35xx chip from TI, which provides a high-

performance 32-bit 1 GHz ARM processor and two slave 32-bit 200 MHz programmable 

real-time units (PRU) on-chip. The main processor is utilized to run the operating system 

and manage the communication. The PRU are utilized to handle hard real-time, fast IO 

operation, DAQ, and data pre-processing. Linux, with a real-time kernel, is chosen as the 

operating system to manage hardware resources and provide the TCP/IP stack. For DDS 

implementation, an open source library provided by real-time innovation (RTI) is used 

and compiled to work on the embedded ARM board. The DDS library provides the API 

for Java and C++.  
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Table 2. 2-1. Objects and topics list. Photovoltaic: PV 

Objec

t Type 
Topics Description 

G_x 
Ia, Ib, Ic, Va, Vb, Vc, 

f, P, Q, sync, status. 

Generator where x 

is the generator index. 

CB_x Status 
Circuit breaker (CB) 

where x is the index. 

L_x P, Q. 
Load where x is the 

load index 

Bus_x Va, Vb, Vc 
Bus where x is the 

bus index 

TL_x Ia, Ib, Ic 
Transmission line 

where x is the index. 

MG_x 
Ia, Ib, Ic, Va, Vb, Vc, 

f, P, Q, Vdc, Idc, mode. 

Microgrid where x 

in an index. 

SM_x 
Ia, Ib, Ic, Va, Vb, Vc, 

PA, QA. 

Smart meter where 

x is an index. 

PV_E

M_x 
Ir, Temp, P, V, I. 

PV emulator with 

index x. 

W_E

M_x 

Ws, Ia, Ib, Ic, Va, Vb, 

Vc, f, P, Q. 
Wind emulator x 

 



 
 

39 
 

For this application, the C++ API was chosen to achieve maximum performance and 

avoid using a virtual machine. The acquired measurements collected from analog to 

digital converters or digital inputs are published to the DDS global data space to be made 

available to all applications. The data subscriber receives the control command/references 

and digital output status and forwards it to the controllers. The protocol translator, shown 

in Figure  2.8, is developed to provide an interoperability layer between the DDS and 

generator speed controllers. These speed controllers are controlled via RS-232 or RS-485. 

Similar translators can be used for other devices, such as programmable power supplies 

or load emulators. The controllers and applications can subscribe to receive measurement 

data or publish control commands for load emulators, generation control, or CBs. As 

shown in Figure  2.7, the DDS will serve as a common data bus that connects all the 

system devices and applications. 

After defining the data model for the smart grid testbed, it is very important to define 

the QoS that will be used by the infrastructure to exchange the data. Since the DDS is a 

content-aware middleware, it allows attaching different QoS policies for each data type 

and treats each type in a different way instead of applying the same policy on the whole 

data stream. The user can create custom QoS profiles to control the data exchange for 

each application. This feature helps to achieve a predictable network behavior with a 

large number of nodes and different communication requirements  [44] [56]. The QoS 

policy defines a different set of rules that controls how the data will be sent and handled 

by the infrastructure. This set of rules is defined below: 
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G1

G_1{    double Ia,Ib,Ic;   

 double    Va,Vb,VC;

  double f,P,Q;

  Byte sync,status;        

        };

G_X{    double Ia,Ib,Ic;   

 double Va,Vb,VC;

  double f,P,Q;

  Byte sync,status;        

        };

Gx

Voltage 
Monitoring

G_1{     

 double Va,Vb,VC;

        };

Global Data Space

 

Figure  2.6. Generators data structure and pub/sub example 

 

 

Figure  2.7. DDS testbed infrastructure. 
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Figure  2.8. The developed data distribution service (DDS) data acquisition (DAQ) 
and controller block diagram 
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 Data Availability 

The data availability rule controls the availability of the data for a recently-joined 

subscriber. This rule can be set to a volatile or a non-volatile option. If the data 

availability is set to volatile, when any publisher publishes or updates any data, all current 

subscribers will receive the updated data at the instance of an update. Any subscriber, 

who joins the network after the update instance will not be able to receive the last update. 

This option is suitable for periodically changing data, such as voltage and current 

measurements, where the data are updated frequently and old data loses its importance 

after a short period of time. 

The non-volatile data option forces the DDS infrastructure to make the data available 

for a recently-joined subscriber by storing a local copy of the data. This option is 

necessary for certain types of data that represent the system state and topology (e.g., CB 

status, generator running state, etc.). This type of information is not updated frequently 

and will not lose its importance over time. Late-joined nodes must be able to get this type 

of information when they join the network at any time. The length of the old data that 

will be made available can also be controlled by the history option. Some applications 

could function better if they receive longer historical data, such as energy management 

systems (EMS) that consider the load pattern and utilize prediction algorithms. For this 

type of application, the DDS can keep longer historical data. For example, late-joined 

EMS should be able to receive the power consumption measures for the past 24 h. The 

data availability QoS can be configured by setting the durability and history fields in the 
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XML file. The durability can be set to volatile, transient or persistence. If the transient 

option is set, history data will be available for the late joining subscriber. Transient 

durability will allow the late subscribers to receive the history data as long as the data 

writer still exists in the network. If the persistence option is chosen, an external 

persistence service will be used to record the history data and deliver it to the subscriber. 

Late-joined subscribers will be able to receive history data even after disconnection of the 

data writer or after a complete system restart. This option is important to restore critical 

system status after a device failure. The code below shows the XML configuration for 

Transient durability and a history length of 24 samples. 

<durability> 

<kind>TRANSIENT_DURABILITY_QOS</kind> 

<direct_communication>true</direct_communication> 

</durability> 

<history> 

<kind>KEEP_LAST_HISTORY_QOS</kind> 

<depth>24</depth> 

</history> 

 Lifespan 

The lifespan rule defines how long old data will be valid. The infrastructure will 

remove the old non-volatile data that exceed the defined Lifespan. This QoS rule ensures 
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that the control application will not interact based on old invalid data. The XML 

configuration below is used to set the lifespan for the smart meter data to 24 hours.  

<lifespan> 

<duration> 

<sec>86400</sec> 

<nanosec>0</nanosec> 

</duration> 

</lifespan> 

 Latency Budget 

This rule allows defining the priority of the latency sensitive data, such as real-time 

measurement and protection data. The data with a low latency budget will be sent ahead 

of the data with a higher latency budget. The protection-related data are always set with 

the lowest latency budget. Smart meter measurements, price signals, and environment 

data, such as irradiance and wind speed, are set to the highest latency budget. The XML 

configuration below is used to configure the lowest possible latency for real-time 

measurement and protection data by setting the latency budget to zero. 

<latency_budget> 

<duration> 

<sec>DURATION_ZERO_SEC</sec> 
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<nanosec>DURATION_ZERO_NSEC</nanosec> 

</duration> 

</latency_budget> 

 Reliability 

The reliability QoS rule allows the operator to control how the infrastructure will deal 

with samples that were not successfully received. The reliability level can be configuring 

to reliable or best effort. If the reliable option is set, the middleware turns on the RTPS 

reliability protocol. The RTPS will attempt to repair samples that were not successfully 

received. If the reliability level is set to best effort, the middleware will not monitor or 

guarantee that the data is received by the data reader. The best effort reliability level is 

good for some application, such as data visualization, for other critical data reliable, QoS 

profile is used. The below XML code set the reliability level to reliable. 

<reliability> 

<kind>RELIABLE_RELIABILITY_QOS</kind> 

</reliability>  

 Multicast/Unicast 

In the unicast communication, the publisher sends a copy of the data for each 

subscriber node, as shown in Figure  2.9a. For example, EMS and demand-side 

management systems can subscribe to receive the price and consumption data published 

by a smart meter. In this case, two copies of the same data will be sent over the 
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network  [37]. If a smart appliance subscribes to the same data, a third copy will be sent to 

the new subscriber. The bandwidth used to send the data will increase linearly as the 

number of the nodes subscribing to the data increases. This method of communication 

could be suitable for local high-speed networks and it is simple to configure, but it is not 

the ideal method when considering transmitting data over the wide area network (WAN) 

or a low-speed communication line in the case of wide area measurements and PMU 

data. For the data requested by multiple readers, it is better to use a multicast 

communication scheme. In the multicast, the publisher sends only one copy of the data 

for the remote subscriber, as shown in Figure  2.9b. The bandwidth is independent on the 

number of subscriber nodes. Only one copy will be sent over the WAN communication 

line. At the receiving end, the router will forward a copy of the data to each subscriber. In 

order to use the multicast communication scheme for certain data, a multicast QoS policy 

has to be applied to this data. For automatic transport multicast mapping, the reader QoS 

profile is configured, as below. 

<multicast><kind>AUTOMATIC_TRANSPORT_MULTICAST_QOS</kind> 

   <value> 

   <element> 

   <receive_port>0</receive_port> 

   <receive_address></receive_address> 

   </element> 
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   </value> 

      </multicast> 

 

(a) 

Data Source

Subscriber 1

Subscriber 2

Subscriber 3

One Multicast data 
packet

Destination Subscriber 1

Destination Subscriber 2

Destination Subscriber 3

Multicast Data packet Router

 

(b) 

Figure  2.9. (a) Unicast communication; and (b) multicast communication 

RTI DDS has additional features that address the challenges of low or limited 

bandwidth and high latency networks. DDS supports transport priority which enables the 

control of priority bandwidth utilization  [57]. The RTI DDS allows the application to 

control the traffic load by limiting the maximum throughput and peak bursts  [57]. The 

DDS also gives the application full control over the real-time scheduling policy. DDS 
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supports three different types of scheduling policies: round-robin (RR), earliest deadline 

first (EDF), and highest priority first (HPF). The RR scheduling distributes the tokens 

uniformly across all non-empty destination queues. 

In EDF, scheduling the sample deadline is determined by the latency budget and the 

time it was written. The priorities are determined by the earliest deadline across all 

samples. The EDF distributes the token to destination queues in the order of their 

deadline priorities. If two samples have the same priority, the corresponding queues will 

be served in an RR fashion. In HPF, scheduling the queues is served based on the 

publication priority. If two samples have equal priorities, the queues will be served in an 

RR fashion. The EDF scheduler is selected to meet the smart grid real-time application 

needs since it can dynamically assign priorities to transmitted samples based on its 

latency budget and deadline. In this way, the scheduler will always give the highest 

priority to the sample closest to the deadline to avoid violating the latency budget. The 

critical data will gain a high priority by assigning a low latency budget. Table 2. 2-2 

shows a summary of QoS profiles for different data type based on the operation 

requirement. For device status data, such as circuit breaker status, generator availability, 

and system topology, the status must be available for all controllers and application at 

any time. To avoid retransmission of the status of the device, the lifespan is set to infinite. 

The history depth is set to keep the last status. The reliability option is configured as a 

reliable link to grantee the delivery of status to all subscribers. The latency budget is set 

to 10ms, this exceeds the highest update rate for PMU. For metering data, a lifespan of 

24h and 24 samples are selected to provide current and historical data for energy 
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management systems.  The latency budget for smart meter data is relaxed to 100ms since 

it’s not sensitive to delay.  

Table 2. 2-2. Quality of Service 
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System status and smart meter data usually are received by multiple applications, to 

reduce the bandwidth, multicast transmission is chosen for both types of data. Multicast 

also reduces the processor overhead on the publisher processor by reducing the number 

of data streams managed by the processor. 

The control signal usually targets a specific device, unicast transmission with reliable 

transmission protocol is used to transmit the control signal with latency budget 1ms, IEC 

61850 allows 3ms delay in critical events. For protection data, the latency budget is set to 

zero to give the highest priority for protection data over all other types. Reliable QoS is 

used to grantee delivery of protection data. Periodic measurement has the same QoS 

profile as control data, except unicast. Periodic measurement uses multicast to allow 

feeding the data to multiple controllers with reduced bandwidth. Data used in 

visualization is not sensitive to packet loss since human eyes have a limited ability to 

detect dropped image frame. Best effort QoS with latency budget 100ms is used for this 

type of data.  

2.5 Network Performance 

Real-time control and monitoring require predictive behavior from the communication 

network. The communication latency and maximum throughput should be known for 

different scenarios. The message size and data rates are dependent on the application and 

the data type. Measurements and control commands usually use a small message size, 

whereas data logging may use a longer message size. Other applications, such as database 

replications and data backups, will use a long message size. A performance test for the 

communication infrastructure was performed to benchmark the network performance and 
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find out the latency corresponding to different message rates and sizes. The performance 

test was executed by transmitting 10,000 messages and measuring the latency for each 

message. The test is repeated for unicast and multicast transmission with the best effort 

and reliable QoS.  By knowing the data rate and message size required by the specific 

application, the users can find out the latency budget and make sure it does not violate the 

application requirement. Figure  2.10a shows the performance results for the network with 

unicast. The horizontal axis represents the message size in bytes while the vertical axis 

represents the latency in microseconds. The test was repeated for different message rates, 

starting from 50 Msg/s to 1000 Msg/s. 

For a message size of 32 bytes, which is more common for measurements and a 

message rate of 1000 Msg/s, the average latency was 243 µs with 90% below 269 μs and 

a maximum latency of 336 µs. The performance of unicast transmission with reliable, 

QoS is shown in Figure  2.10b. The average latency with reliable protocol was 292 µs 

with 90% below 435 µs and a maximum latency of 727 µs for the same message size and 

update rate. Figure  2.11 shows the performance test for multicast communication. The 

performance of best effort is shown in Figure  2.11a. For a message size of 32 bytes with 

a message rate of 1000 Msg/s, the average latency was 270 µs, with 90% below 306 μs 

and maximum latency 385 µs. The performance of multicast and reliable quality of 

service is depicted in Figure  2.11b. The average latency was 255 μs, with maximum 

delay 534 μs. The performance results are summarized in Table 2. 2-3. 

When the DDS uses IP-multicast and a node needs to join the multicast group, the 

node first sends an internet group management protocol (IGMP) join message to the 
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multicast router. Once the node is joined to the multicast group, the multicast router sends 

an IGMP Query message at a regular interval and waits for an IGMP membership report 

to confirm the node is still connected to the multicast group. The layer-2 network switch 

with IGMP snooping enabled creates a list of ports with nodes interested in joining the 

multicast group. 

Table 2. 2-3. DDS performance for 32 bytes messages size 

Unicast/Multicast QoS Average 

latency (μs) 

Max 

latency (μs) 

90%< t 

(μs)  

Unicast Best effort 243 336 269 

Unicast Reliable 292 727 435 

Multicast Best effort 270 385 306 

Multicast Reliable 255 534 278 

 

When a multicast message is sent, the switch replicates the data to all ports in the list. 

The process of multicast and data replication may introduce slightly higher latency 

compared to unicast. However, multicast is still better than unicast for data requested by 

multiple nodes and transmitted over limited bandwidth links. Multicast can dramatically 

reduce the bandwidth required for the data transmission, as compared to the unicast 

method. The performance test shows that the implemented communication infrastructure 

has a high update rate and low latency. The obtained update rate and latency are suitable 

for smart grid real-time applications. For example, PMUs have update rates of 30–60 

Msg/s, while IEC 61850 substation automation standard has a restriction of maximum 3 
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ms delay on critical messages, such as Generic Object Oriented Substation Event 

(GOOSE), where the benchmarks show that the DDS can achieve 1000 Msg/s with a 

maximum 0.72 ms. 

 

(a) 

 

(b) 

Figure  2.10. a-Performance test for DDS unicast and best effort quality of service b- 
Performance test for DDS unicast and reliable quality of service (QoS) 
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(a) 

(b) 

Figure  2.11. a- Performance test for DDS multicast and best effort QoS. B- 
Performance test for DDS multicast and reliable QoS 

 



 
 

55 
 

2.6 Summary 

In this chapter, the need for an efficient, scalable and interoperable communication 

infrastructure for the smart grid has been discussed. To address these issues, this chapter 

proposed the use of a communication middleware service to manage the energy in the 

smart grid, keeping interoperability in mind. This is due to the fact that a communication 

middleware provides an abstraction layer to simplify and manage the communication 

between different nodes without being concerned with the complexity of hardware layers 

and network details. 

Here, message-centric and data-centric communication paradigms were analyzed. A 

comparison between both approaches showed that message-centric communications are 

not easily expandable, as required by the dynamic nature of the smart grid and suffer 

from a single point of failure. However, in data-centric communications, the fundamental 

unit is the data object. The message in this approach is created by the middleware, 

therefore, the communication infrastructure will be aware of the message contents and 

data types. 

As such, the data-centric Data Distribution Service middleware was implemented as a 

communication backbone for the smart grid test bed. The physical setup and the data 

requirement for each controller, along with explaining the different QoS profiles 

supported by the DDS, were presented in this chapter. The design of the data structure 

and a standard interface for the developed infrastructure were also provided. 

Finally, a performance test for the communication infrastructure was performed to 

benchmark the network performance and find out the latency corresponding to different 
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message rates and sizes. By knowing the data rate and message size required by the 

specific application, the users can find out the latency budget and make sure it does not 

violate the application requirement. 
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Chapter 3 Advanced metering infrastructure AMI 

3.1 Introduction 

Advanced metering infrastructure AMI enables two-way communications between 

end-customers and the utility Company. The goals from this infrastructure are to improve 

the energy management, detect power outage, enable remote load disconnection and 

reduce the operation cost by transmitting accurate real-time consumptions data to the 

utility, which can be extended down to each smart appliance.  

In the other direction, the AMI enables real-time energy pricing, which can be used 

for peak load shaving. The price information and control command can be transmitted to 

customer appliances and energy management systems EMS through the HAN Gateway. 

The customer EMS can utilize this information for managing local loads, energy 

resources and storage to reduce the consumption cost. However, the capabilities of this 

infrastructure haven’t been utilized in most cases due to: 

1- Privacy concern. 
Many customers are worried about their privacy and the information that 

can be extracted from detailed daily usages of their smart appliances. 

2-  Security Risk. 
To take advantage of the HAN and interaction with a smart meter, strong 

security rules must be applied to prevent hackers from attacking such systems 

and control the customer appliance or sent wrong information. 

3- Integration with the existing appliance. 
Most of the existing appliances lack a suitable interface to communicate 

with HAN. 
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This chapter presents the development of an AMI infrastructure that integrates 

seamlessly with the microgrid’s communication infrastructure, which was presented in 

Chapter 2. The developed AMI consists of several modules: smart meters, a 

communication interface, and HAN gateway. The developed smart meter has a high 

sampling rate for increased accuracy and is modular. That is, it supports measuring single 

and three-phase electrical quantities. Since microgrids contain their own renewable 

resources, the developed smart meter firmware has the capability to track individual sold 

and consumed power. The firmware also has the capability to calculate the root mean 

square value of voltages and currents, active and reactive power. The smart meter 

monitors the power quality by separately evaluating the harmonic components’ active 

and reactive power. The smart meter is designed to flexibly integrate with the utility and 

microgrids through different communication interfaces. It supports power line 

communication, ZigBee, and Wi-Fi. Power line communication and ZigBee can be 

utilized to integrate with the utility, whereas Wi-Fi is utilized to integrate with HAN. The 

HAN receives the data from the smart meter over an encrypted communication channel 

for securing private customer information. To provide an interoperability layer, the HAN 

gateway will share this data with the DDS global data space.  

3.2 AMI System architecture  

The AMI infrastructure is made up of a communication network, hardware and 

software components. Figure  3.1 shows an overview of the main AMI system 

components, which consists of meters, communication network, data concentrators, smart 

meter head-end and metering data management system MDMS. These system 
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components enable collection, storage, and management of detailed time-based users’ 

consumption information by the utility companies. The two-way communication network 

allows transmitting information, such as real-time price, from the utility company to the 

consumers. The details and functionality of each component are discussed in the next 

sections.   

   

Figure  3.1: Smart meter infrastructure architecture 
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3.2.1 Smart Meter 

The smart meter is a digital device installed in the customers’ premises to collect 

time-based consumption data, such as electricity, water, and gas consumption. The 

electricity smart meter consists of analog front-end, digital processors, and a 

communication interface, as shown in Figure  3.2. The analog front-end is comprised of 

voltage and current transducers, signal condition, filtering circuits, and analog to digital 

interface. The signal condition and filtering circuits isolate the noise from the measured 

signal and ensure a proper voltage level before the analog-to-digital conversion stage. 

The analog to digital convert measured analog signal to a digital stream to be processed 

by the digital processor. 

 

Figure  3.2: Smart meter block diagram 

Smart electricity meters usually utilize two different types of digital processors. The 

first processor is a dedicated digital signal processor, which is designed to perform 

certain types of calculation. This type of the DSP processor is used to calculate active and 

reactive energy, harmonic distortion and root mean square voltage and current. 
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The IEC 62053 standard limits the measurement error for class 1 meter (meters with 

maximum 40A) to 1% of full scale. 

The second processor is a general purpose processor or microcontroller. This type of 

processor is used to run the smart meter firmware that handles the communication tasks, 

user interface and store the accumulated energy consumption.   

The communication interfaces allow the smart meter to exchange the information 

with the utility or customer HAN. The most common network interfaces with the utility 

side are a radio frequency (RF), power line communication, broadband over power line 

and cellular networks. For the HAN side communication, Wi-Fi and ZigBee wireless 

network are utilized to connect with the customers’ devices and systems.   

3.2.2 Communication network 

The AMI communication network consists of HAN, Neighbors Area Network (NAN) 

and WAN. As shown in Figure  3.1. The HAN is a network owned and operated by the 

end customer.  Smart appliances, distributed energy resource controllers, energy and 

building management systems can exchange information with the smart meter through 

the HAN gateway. End-customer can grant the utility to control their appliances 

connected to the HAN network. For example, the utility can throttle pool heater or 

HVAC systems during peak hours to reduce the load demand.  Smart appliances and 

systems can control the energy demand based on the real-time pricing information. The 

NAN network aggregates the data from a group of smart meters to the data concentrator. 

Power line communication or mesh network, such as ZigBee or mesh Wi-Fi, are used to 

aggregate the data in the NANs.  
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The WAN network is used to aggregate the data from the data concentrators to the 

smart meter head-end. The WAN network utilizes power line communication, fiber 

optics, digital subscriber line or broadband wireless link as backhaul between data 

concentrators and smart meter head-end.  

3.2.3 Data concentrator  

The data concentrator is a communication node that collects data from smart meters 

in the NAN network and aggregates it to the smart meter Head-end. The data 

concentrator has two network interfaces, one to communicate with smart meters, for 

example, ZigBee interface, and one to communicate with the WAN network, such as 

fiber optics or broadband link.      

3.2.4 Smart meter Head-end 

The smart meter Head-end is a software package that provides a bridge between the 

AMI and the utility IT network. The Head-end monitors meters’ status and collects 

meters’ readings, events and sends remote connection and disconnection command to 

smart meters.  The data collected by the Head-end are stored, managed and analyzed by 

the  MDMS. 

3.3 Development of Smart Meter 

The developed smart meters are based on the STMPC1 Polyphase energy metering 

chip from STMicroelectronics. The digital processor and power line communication are 

based on the STEVAL-IPP001V2 Evaluation Kit shown in Figure  3.3. The STEVAL-

IPP001V2 provides the base hardware for the power line modem and 32-bit arm cortex 

M4 microcontroller.  A custom firmware drivers and application were developed to the 
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process the measured data, manage the communication interfaces, energy calculation and 

provide the user interface for configuration and calibration. The details of the hardware 

and software are discussed in the following sections.   

 

Figure  3.3: smart meter digital processing and communication board 
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3.3.1 Voltage and current acquisition 

The phase voltage and current are measured using a voltage divider and a current 

transformer, respectively. A current transformer with a maximum current 20A and 

current ratio 1:2000 is used to measure the phase current. The output current is converted 

to a voltage using a shunt resistor.  An RC filter is used to filter the noise and limit the 

signal bandwidth before the analog conversion stage, as shown in Figure  3.4. The analog 

front end and digital conversion are based on the STMPS2 second order sigma delta 

modulator with programmable gain amplifier and built-in accurate voltage reference. The 

STMPS2 samples the voltage and current input channels simultaneously with 2 MHz 

sampling rate per Chanel. Two sigma delta modulators convert the sampled analog 

measurement to a stream of bits. The voltage and current bit streams are multiplexed to a 

single 4 MHz bit output channel.  The STMPS has a 0.5% error over the full scale, which 

is below the standard limit. The IEC 62053 class 1 (meters with 40A max current) allows 

1% error.   

L

N

L

N

Filter

Filter
Divider

cin

cip

vip

vin

DAT

CLK

STMPS2

 

Figure  3.4: current and voltage transducers connection diagram 
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For a polyphase meter, an STMPS2 chip is used for each phase. 

3.3.2 Signal processing and power calculation 

A dedicated digital signal processor (STMPC1) is used for energy calculations. The 

STMPC has four DSP engines that process the measurements from the three phases in 

addition to neutral current. The DSP engines check the integrity of the digital streams 

produced by the analog front-end and compute the cumulative active and reactive 

energies, cumulative active and reactive fundamental energies, RMS values for voltage 

and current, and line frequency. The STMPC1 implements a tamper detection algorithm 

to detect energy theft. The tamper detection module monitors the sum of the current, 

phase sequence, active power direction, and electromagnetic interference. All computed 

energies, voltage and current measurements, and internal registers can be accessed by the 

application processor through SPI bus. Figure  3.5 shows the connection diagram for the 

STMPC1, analog front-end, and the application processor. 

 To calibrate for the error due to component tolerance and measurement error, the 

DSP engines have calibration registers that can adjust the readings by ±12.5%. 

Calibration values can be stored temporarily in shadow registers or permanently in one-

time programming (OTP) memory. The DSP engine can read the calibration value from 

the OTP or temporary memory by setting the RD signal. If the RD signal is set, the 

configuration bits will be loaded from shadow registers otherwise, if RD is cleared, the 

configuration bits will be loaded from the OTP memory. This allows testing the 

configuration before permanent writing to the devices’ OTP memory.  However, this 

allows the software to load different calibration values to the shadow registers and switch 
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the configuration from OTP to shadow registers. During our test, we were able to connect 

a small circuit between the application processor and the STMPC1. This circuit simply 

loads the wrong calibration value to the shadow registers and switches the RD signal to 

load the configuration from the shadow registers. The circuit transparently passes the 

reading commands and data between the application processor and the STMPC1. By 

modifying the shadow registers, the power consumption can be reduced by 12.5%. To 

avoid this type of vulnerability, the DSP engines should allow disabling the shadow 

register permanently after writing configuration bits to the OTP memory. Moreover, an 

authentication mechanism is required between the application processor and the DSP 

engines.    

 

Figure  3.5: Energy computing DSP engine connection diagram 
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3.3.3 Communication Modules 

Three types of communication modules are used in the developed smart meters. The 

first module is a power line communication interface. The power line communication is 

based on the ST7580 narrow-band power line networking chip designed to work in 

CENELEC A and B band. The ST580 provides a data rate up to 28.8 Kbps with PSK 

modulation. The application processor communicates with the power line networking 

chip using the universal asynchronous receiver/transmitter (UART) port. The data link 

layer implemented in the ST580 provides error detection of corrupted frames in addition 

to encryption and authentication based on the 128 bit AES encryption algorithm. The 

block diagram for the ST580 and connection with the application processor is shown in 

Figure  3.6. 
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Figure  3.6: Power line modem block diagram 
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The second communication module is the XBee S2C ZigBee module. The S2C 

module supports peer-to-peer or wireless mesh network configuration.  Mesh network 

allows the smart meters to relay the messages from remote meters to the data 

concentrator. The ZigBee module can be used as an alternative to power line network to 

communicate with the utility or the customer gateway. Communication over ZigBee 

wireless network is encrypted using AES 128 bit encryption. 

The third communication module is a Wi-Fi module. The Wi-Fi module is 

interchangeable with the ZigBee module. If both Wi-Fi and ZigBee modules are required, 

the Wi-Fi module can be connected to the isolated RS-232 port using an RS-232/TTL 

adapter.  

3.3.4 Smart meter firmware 

Custom firmware is developed to operate the smart meter. The firmware code is 

developed using C language and compiled using a C cross compiler for ARM cortex M4. 

The firmware is divided into three different layers, as shown in Figure  3.7.  The low-level 

layer implements the hardware driver and low-level functions, such as basic input/output 

and hardware peripheral initialization. The low-level drivers include the STMPC1 driver, 

communication modules drivers, and serial console driver.  The middle layer implements 

data extraction functions, communication protocols and data structures, calibration and 

configuration functions. The top layer represents the application layer, which performs 

energy accumulation, energy price exchange, controls smart appliances and remote 

disconnection.  
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Figure  3.7: Smart meter firmware architecture 

3.3.4.1 Developed firmware functions  

DSP engine and communication modules are connected to the application processor 

through either Serial Peripheral Interface (SPI) bus or UART. Low-level drivers provide 

the basic function to initialize, read or write data to the SPI and UART modules. The 

initialization functions allow setting the data rate and data length (number of bits). Basic 

input/output functions allow sending, receiving and validating single data word.  

The STMPC1 driver calls low-level SPI input/output functions to access the STMP1 

internal registers. The STMPC_Init() function initializes the connection with the 

STMPC1 chip, configures voltage and current transducers types and loads the calibration 

data to the shadow registers. 

The STMPC1’s data registers are organized in seven different groups [58]. Each group 

consists of four 32 bits data records, as shown in Figure  3.8. Each record contains 4 bits 

data parity and 28 bits data fields. The data records are described as below: 



 
 

70 
 

 Group 0 data records: this group consists of four data records DAP, DRP, 

DFP, and PRD. The DAP and DRP records contain the three-phase active and 

reactive energy produced by harmonic and fundamental components. In 

addition to the energy records, DAP and DRP contain 12 status bits. The DFP 

record contains the three-phase energy produced by the fundamental 

component. The PRD record contains the time period measured for one cycle 

and DC component.  

 Group 1 data records: this group consists of DMR, DMS, DMT and DMN 

data records. The DMR, DMS, and DMT contain the instantaneous 

measurement of the three-phase voltages and currents. The DMN data record 

contains the sum of the three phase voltages and current.  

 Group 2 data records: this group consists of DER, DES, DET and DEN data 

records. The DER, DES, and DET contain calculated RMS values of the 

three-phase voltage and currents, while DEN contains the RMS value of the 

neutral current. 

 Group 3 data records: this group consists of DAR, DAS, DAT and CF0 

records. The DAR, DAS and DAT records contain the active energy for 

phases R, S, and T, respectively. The CF0 record contains configuration bits. 

 Group 4 data records:  this group is similar to Group3 except that DRR, 

DRS and DRT records contain the reactive energy of phases R, S and T, 

respectively. The CF1 record contains configuration bits.  

 Group 5 data records:  this group consists of DFR, DFS, DFT and CF 2 

records. The DFR, DFS and DFT records contain the fundamental active 
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energy for phases R, S, and T,  respectively. The CF2 record contains 

configuration bits. 

 Group 6 data records: this group consists of ACR, ACS, ACT and CF3 data 

records. The ACR, ACS and ACT records contain the accumulated Ah for 

phases R, S and T, respectively. The CF3 record contains configuration bits.  

To simplify reading and interpreting the data records, the developed driver provides a 

simple function to read the data records. The Read_Register() function reads the contents 

of the seven data records and stores the content in a data structure. The data records 

contain digital counts that represent measured voltages, currents, and energies. These 

digital counts can be interpreted to voltage, current and energy values based on the 

system design parameters, such as the current transformer ratio, programmable amplifier 

gain, and configuration bits.  The developed driver provides a set of functions to extract 

and interpret the records digital counts to real values for voltage, current, and energy.  

The data extraction functions are described as below: 

  “PQ_3phase_Extraction()”: this function processes the data record and 

returns the sum of the three phase energy, reactive energy, and fundamental 

energy accumulated in the data records. The data records must be read 

frequently to avoid data loss due to registers overrun.   

  “IRMS_Extraction()”: this function returns the RMS values for the three-

phase currents. 

  “VRMS_Extraction()”: this function returns the RMS values for the three-

phase voltages. 
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 “P_RST_Extraction()”: this function returns the individual accumulated 

energy for phase R, S, and T, respectively.  

 “Q_RST_Extraction()”: this function returns the individual accumulated 

reactive energy for phase R, S, and T, respectively. 

 “Total_energy()”: this function returns the total consumed, supplied and net 

energy. The developed smart meter can accumulate the load change with a 

minimum load equal to 7.2mw/h. 

 “Total_reactive_energy()”: this function returns the total reactive energy.  

 “Total_fundmental_energy()”: this function returns the total consumed, 

supplied and net fundamental energy.  

 “R_energy()”: this function returns the consumed, supplied and net energy for 

phase R.  

 “S_energy()”: this function returns the consumed, supplied and net energy for 

phase S.  

 “T_energy()”: this function returns the consumed, supplied and net energy for 

phase T.  

Higher level functions are developed to format the data frames, transmit the 

data over communication links and respond to Head-end requests. A serial 

console is developed to print debugging and status messages. The operator can 

use the serial console interface to change the meter and communication 

parameters, such as encryption keys, communication speed, and calibration 

data. 
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Figure  3.8: STMPC1 data record 
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3.3.5 Development of data concentrator and smart meter Head-end   

To collect and manage the data from multiple smart meters, smart meter Head-end 

software is developed based on the NI LabView graphical programming environment 

(see Figure  3.9). Each smart meter sends a data frame that contains energy, voltage, and 

current data. The message frame contains a unique identification code for each meter. 

The head-end software publishes collected data to a DDS domain dedicated to smart 

meter data. The published data object contains all consumption and measured data, in 

addition to the meter ID. The smart meter GDS domain is monitored by a database 

service that stores all published data object to a database. The head-end software can send 

a price signal and control command to the smart meter. 

 

Figure  3.9: smart meter head-end interface 
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3.3.6 Development of HAN Gateway 

To exchange information with the HAN, a gateway is developed using the 

BeagleBone single board Computer (SBC). The SBC runs an embedded Linux operation 

system and the HAN gateway software. The gateway software is developed using C 

programming language. The software periodically polls the consumption and price 

information from the smart meter using a WiFi communication link and publishes this 

information to the microgrid domain. The published information is accessible by the 

microgrid applications and devices, such as the energy management system. Separate 

smart meters domains and data flow are shown in Figure  3.10.  

 

Figure  3.10: Data flow between customer and utility domains 
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3.4 Summary  

In this chapter, an AMI infrastructure is developed and integrated with the smart grid 

testbed. The developed AMI has a flexible communication interfaces that allow 

connections with ZigBee, WiFi, and powerline communication networks. Unlike the 

commercially available meters with proprietary software, development of custom 

firmware and application allows modification, implementations and testing new 

algorithms and ideas.  The developed AMI is seamlessly integrated with the developed 

communication infrastructure. 
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Chapter 4 Synchronized measurement network  

4.1 Introduction  

Electric power systems are undergoing profound and radical changes triggered by 

the advent of new technologies not only in generation and storage, but also in power 

electronics, sensing, control, computing, and communications.  Specifically, they are 

evolving toward more flexible Microgrids infrastructures. Modern grids encounter high 

penetration of renewable energy and distributed resources. Most of these will be installed 

on the distribution networks. Current distributions networks are designed as radial 

networks for unidirectional power flow. With passive customers (i.e. customer only 

consumes power), the designer only considers the maximum limits, such as maximum 

loads and short circuit current, rather than real-time sensing the operating conditions  [59].  

With the high penetration of renewable energies, energy storage, and plug-in electric 

vehicles, it's necessary to continuously monitor the magnitude and phase angle of the 

voltages and current to control the power flow, damp power oscillation and maintain 

distributed sources synchronization. Direct measurements of the voltage and phase angle 

can be achieved by utilizing phasor measurement units and GPS time reference. Phasor 

measurement units are usually deployed in transmission networks. The phase difference 

in the distribution network is much smaller compared to the phase difference in 

transmission systems. Phase measurement in the distribution network requires higher 

resolution measurements units. Micro-Synchrophasor is developed with a higher 

resolution for distribution network installation  [60]. In this chapter, a development of 

low-cost high-angle resolution synchronized measurement unit will be introduced. The 
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proposed measurement unit utilizes the DDS communication middleware to support 

completely distributed and resilient peer/peer communication environment. The 

measurement unit can directly measure the phase angle, frequency and the magnitude of 

the voltage and current fundamental components.    

4.2 Synchrophasor measurements   

Synchrophasor units provide time-stamped measurements with high accuracy time 

reference in order to compare different measurements from different sites or locations. 

Time-stamped measurements make it possible to directly measure the phase angles 

between bus bars or feeders voltages. The block diagram of the synchrophasor 

measurement unit is depicted in Figure  4.1. First, the analog measurements are filtered 

using low pass filter before the analog to digital conversion. An antialiasing filter with a 

bandwidth equal to half of the sampling frequency is used to limit the signal bandwidth 

and prevent aliasing.  A global positioning system (GPS) receiver provides a common 

time reference for the system. The GPS time reference has low frequency, typically 1 Hz. 

A higher rate clock is produced from the GPS 1 Hz reference using Phase Locked Loop 

(PLL). This clock drives the ADC sampling rate and synchronizes the microprocessor 

instruction execution. In addition to the 1Hz time reference, the GPS provides the current 

universal time (UTC) using serial or IRIG protocols. The digital processor time stamps 

the collected samples with the GPS time and calculates the phase angle relative to the 

cosine function at the nominal system frequency synchronized to the UTC clock. Time-

stamped data are transmitted using the network interface to the phasor data concentrator 

PDC. The PDC collects the data from multiple phasor measurements units, correlates the 
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data by the time tag and retransmit it to the higher level application or supper PDC, 

which collect the data from multiple PDC.  Phasor data are exchanged using IEEE 

C37.118.2 or IEC 61850-90-5. The IEC 61850-90-5 standard uses a UDP multicast to 

deliver the phasor data to the subscriber.  

 

Figure  4.1: Phasor measurement unit general block diagram 

The developed measurement unit consists of three different Modules, analog module, 

digital module, and a communication module. The construction and operation details of 

the three modules are described in the next sections.  

4.3 Analog interface module  

The analog interface module consists of six analog filters and six analog comparators. 

The analog filters are an identical low-pass filter that limits the bandwidth of the 

measured voltage and current signals, see Figure  4.2. Since we are interested in the 

fundamental component phase angle only, the low pass filter is designed to pass the 

frequency from 10 to 140 Hz. This bandwidth is suitable for both 50Hz and 60Hz system. 

The frequency response of the low-pass filters is shown in Figure  4.3. As depicted from 

the figure, the filter has a unity gain in the passband region. The filter attenuates the third 
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and fifth harmonics order with 40db and 70db, respectively.  The filtered signals are 

connected to six analog comparators (see Figure  4.4: Analog comparators). The analog 

comparator converts the sinusoidal waveform to a square waveform. The leading edge of 

the square wave is synced with the positive zero crossing of the sinusoidal signal. To 

minimize the phase error between the sinusoidal signal and generated square wave, an 

ultrafast 4.5 Nanosecond analog comparator is used. High slew rate makes it possible to 

generate a sharp edge square wave with neglected phase delay relative to the sinusoidal 

signal. The slew rate for the analog comparator will produce maximum phase error equal 

to 9.72e-05 degree. 

4.4 Digital processing modules 

The digital processing board consists of ARM cortex M4 32 bit microcontroller, 

phase measurement circuits, GPS receiver and Phase locked loop. The block diagram for 

the digital processing board is shown in  

Figure  4.5. The phase locked loop is adjusted to generate 60Hz output frequency for 

the 60Hz supply system and 50Hz output for 50 Hz supply system. The phase locked 

loop output is synchronized with the GPS 1 Hz time reference output. The phase angles 

between the comparators’ square wave outputs and the phase locked loop output 

represent the relative phase angles between measured signals and GPS clock. To measure 

these phase angles, a XOR gate is used. The XOR gate inputs are connected to the phase 

locked loop clock output and the square wave from the comparator. The output pulse 

duration shown in Figure  4.6 represents the phase angle. As depicted from the figure, 
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when GPS and the input signal has the same phase  shift, the duty cycle of the output is 

0%, while the output duty cycle is 100% in case of 180-degree phase shift.  

 

Figure  4.2: analog filter schematic diagram 
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Figure  4.3: analog filter frequency response. 

 

Figure  4.4: Analog comparators 
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Figure  4.5: Digital processing board block diagram 

The XOR output pulse duration accurately represents the phase angle magnitude; 

however, it doesn’t contain information regarding the angle direction. For example, 

positive and negative 90-degree phase angle will produce the same pulse width output. 

To detect the angle direction, another circuit is implemented. The direction detection 

circuit consists of edge triggered D-type flip. The GPS clock reference is connected to the  
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Figure  4.6: Phase comparison with the GPS reference (a) zero degree phase shift, (b) 180 
phase shift, (c) 90-degree phase shift 
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flip-flop clock input while the signal square wave is connected to the D input. If the 

square signal lags the GPS reference, the GPS clock will always latch zero output while 

the output will be high if the square signal leads the GPS reference.  Figure  4.7 shows the 

timing diagram for the lead/lag phase detection circuit. The filtered analog signals, phase 

angle magnitude signals, and phase direction signals are connected to the ARM cortex 

microcontroller running at the 168MHz clock. The microcontroller converts the voltage 

and current to a digital form using the built-in analog to digital converter with 12-bit 

resolution and 10k sample/s. After converting the measured signal to digital form, the 

microcontroller calculates the voltage and current root mean square values. To read the 

phase magnitude, a pulse width captured module is used to measure the pulse width and 

convert it to a digital count. The built-in capture module consists of a 16 bit counter and 

programmable clock source. The programmable counter can be configured to count the 

number of the pulse between rising edge, trailing edge and both. To measure the pulse 

width that represents the phase angle, the modules are configured to count the pulses 

from the programmable clock sources between rising and trailing edge instances. The 

clock source is programmed to divide the processor 168MHz clock by 32 to produce 5.25 

MHz clock. 

With 16 bit counter resolution and 5.25 MHz clock, the pulse capture module can 

measures an angle from zero to 269.63 degree with 0.0041degree resolution. The 

microcontroller firmware adds a fixed phase angle to compensate for the phase angle 

results from the low-pass filter.  In addition to pulse width measurement, the pulse 
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capture module can measure the frequency of the input signal. One capture module is 

configured to measure the frequency of phase A voltage signal to represent the system 

frequency. After calculating the phase angle, root mean square voltages and currents, and 

system frequency, the microcontroller firmware transmit calculated data with the time 

stamp to the communication module over the high-speed serial interface.   

 

Figure  4.7: Phase detection timing diagram, (a) lag signal, (b) lead signal 



 
 

87 
 

4.5 Communication Module  

The communication module is based on a SBC with Ethernet, and USB interface. The 

SBC runs embedded Linux with real-time extension. The embedded Linux provides the 

necessary hardware drivers for the Ethernet, Wi-Fi and serial interface in addition to the 

networking TCP/IP stack. The SBC runs a custom-developed software application that 

collects the measurement from the digital processing board and publishes it to the 

network using a publisher/subscriber communication scheme. 

The developed software utilizes the DDS library from RTI to implement the 

publisher/ subscriber communication. To minimize the bandwidth required to exchange 

the information, the software uses UDP multicast messages to deliver the synchronized 

measurement like the IEC 61850-90-5. The DDS library supports two different quality of 

service for the message delivery over the UDP packets, best efforts, and reliable 

communication. In the reliable communication, the RTPS protocol ensures the delivery 

of the UDP packets to all subscribers. In addition to the UDP multicast, TCP 

communication is also supported. TCP communication is necessary when passing the 

data packets over a network that blocks UDP packets, such as communication over 

internet and cloud communication. In addition, the software supports push oriented and 

pull-oriented operating modes.  

The published data objects are stamped with a current time stamp at the publisher 

side. Another time stamp is added at the subscriber side when the data is received. The 

middleware can be configured to arrange received data objects based on the transmission 

or received time stamp.  To eliminate the need for data concentrator to arrange the data 
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object in the correct timing order, the middleware is configured to arrange the data 

packets based on the transmission time stamp. The test setup and transmitted data are 

shown in Figure  4.8. In the test setup, the digital processing board was able to measure 

the frequency with 0.004Hz accuracy and the phase angle with error 0.01 degree.  

 

Figure  4.8: Synchronized measurement test setup 
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4.6 Summary      

In this chapter, a low-cost development and implementation of high-resolution 

synchronized measurement units for distribution network are presented. The developed 

unit utilizes a publisher-subscriber peer-to-peer communication scheme to construct 

synchronized measurement networks. All measurement units are synchronized and 

measure the phase angle relative to the GPS time reference. The DDS eliminates the need 

for the phasor data concentrator and provides a reliable communication network.  
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Chapter 5 Smart Grid Modeling and Simulation 

5.1 Introduction 

The challenge of maintaining reliable control and operation of the grid with a number 

of subsystems increases the level of uncertainty, not only on the demand side but also in 

terms of generation availability. These subsystems integrate a wide variety of resources 

that are governed by different regulations and owned by different entities. Deep 

integration between intelligent measurement nodes, communication systems, IT 

technology, artificial intelligence, power electronics and physical power system 

components is needed to manage the modern smart grid resources. The dynamic behavior 

of such a complex system is dependent on a wide range of factors distributed between 

cyber and physical components. Understanding the dynamic behavior and expected 

performance of such complex cyber-physical systems (CPS) is challenging. 

To study the complete system behavior, a new set of tools for modeling and analysis 

of the complex cyber-physical system is required. The currently available simulation 

tools, emulation tools, and test beds focus only on the physical or the cyber part. The 

expected capabilities of simulation and physical testbeds differ significantly. Simulation 

is typically used to evaluate the overall system performance in order to obtain the big 

picture. Physical test-beds, on the other hand, offer the important capability of being able 

to operate a real system that produces detailed responses. Physical test-beds provide the 

real operation of the micro-grids, which can be used to evaluate the actual behaviors and 

impacts of embedded systems, software and physical component on power system 

operation and stability. Because of resource limitations, however, physical testbeds 
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cannot represent all elements of the entire large-scale cyber-physical system. Conversely, 

simulation offers greater flexibility and scalability, but cannot provide the operational 

realism. A hybrid hardware/software-based smart grid testbed infrastructure  [36] is 

required to represent the interaction of the cyber and physical components to understand 

the system dynamics and evaluate new designs  [35]. 

The testbed should provide the necessary hardware and software environments to 

perform different types of experiments, such as HIL, as well as SIL operational control in 

real-time. Real-time embedded systems have different dynamic behaviors based on 

processor speed, communication channels, memories and embedded firmware. The 

modern power system network heavily depends on real-time embedded systems. 

Components such as PMUS, Protection Relays etc. are examples of critical real-time 

systems that exist in the modern grid. Hardware in the loop simulation platform is 

required to evaluate the effect of actual behaviors of these embedded systems in power 

systems operation and stability. The hardware in the loop platform provides the method 

of simulating large power system network while at the same time interacting with actual 

hardware components. Since these hardware components communicate using different 

protocols, providing a communication interface with interoperability with simulation 

platforms is challenging. The integration between the proposed co-simulation framework 

and smart grid testbed will provide a flexible hybrid software/hardware environment for 

modeling and testing different smart grid operating scenarios.  

Since The CPS is a multidisciplinary system, the testbed should provide a standard 

and flexible interface to integrate with other testbed facilities from different domains for 
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multidisciplinary studies. This type of integration provides the scalability to represent 

large cyber-physical systems  [61] and enable cooperation between researchers from 

multidisciplinary fields for a better understanding of different domain interactions. 

Several smart grid and CPS testbeds have been developed to represent the cyber-

physical interaction in the smart grid. However, none of them provide the tools and 

interface to integrate several testing platforms into a scalable system that can also be 

expanded to accommodate new types of services, components, and operation 

scenarios  [62]- [64]. 

The proposed testbed infrastructure not only allows for integration with other 

testbeds, but also enables remote experimental features to perform experiments, test 

developed algorithms, and collect data remotely. Figure  5.1 shows the block diagram for 

the proposed hybrid smart grid testbed. The testbed consists of three different layers.  

The first layer is the physical layer, which represents a scaled model for smart power 

systems, including generators, transmission lines, circuit breakers, PMU, loads emulators, 

embedded controllers, and remote terminal units (RTU) for supervisory control and data 

acquisition (SCADA). 

The second layer is the communication layer. The DDS serves as backbone and 

interoperability layer between all components is the testbed. DDS shares all information, 

measurements, and control command through a unified global data space (GDS) using a 

publisher-subscriber communication scheme. Data from different devices and protocols 

are translated and shared through the developing DDS gateway. 
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The top layer is the software layer. In this layer, three different types of software 

modeling and simulation, data visualization, and protocol emulation are integrated with 

the testbed. The modeling and simulation software is used to model, test, and verify a 

new control algorithm using HIL technology. After testing the modeled controller, actual 

implementation code can be verified with real hardware using the SIL simulation 

technique. The simulation environment can be used to model and simulate large-scale 

power systems. The simulation model can exchange the information with actual devices, 

such as PMUs and protection relays, through the communication and interoperability 

layer. A toolbox is developed to integrate the MATLAB/SIMULINK modeling and 

simulation software package with smart grid testbed. The developed toolbox is described 

in the next section.  

Data visualization runs a well-designed interface on a user front-end machine for 

experiment specification, configuration, visualization, control, and analysis. It allows the 

user to easily specify the experiments, visualize the system configurations, change the 

model parameters, inspect or modify the system state for the experiments, and allows for 

on-line monitoring and steering of the experiments. A graphical user interface and online 

monitoring are developed using LABVIEW. The LABVIEW interface shown in 

Figure  5.2 allows online monitoring for all measurements and override control command 

from controllers. The user can also visualize all data of interest in real time using 

MATLAB graphs and SIMULINK scopes. 

Modern smart grid utilizes different types of protocols; the protocol emulation is used 

to integrate several protocols with the testbed, communicate with real devices or 
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investigate the security and vulnerability in a safe environment. To investigate the 

security and vulnerability, virtual IEDs are created on a virtual or embedded platform. 

Virtual IEDs can communicate with real IEDs using protocol emulation and simulation 

software using the DDS backbone. Protocol emulation will be described in section 5.3. 

 

Figure  5.1: Hybrid Smart Grid Testbed Block Diagram 
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Figure  5.2: Testbed LabVIEW Interface 
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5.2 Hybrid simulation toolbox 

Based on a defined data structure for the testbed objects, a Simulink toolbox was 

developed to provide an interface between Matlab/Simulink and testbed hardware. The 

toolbox utilizes the DDS middleware and MATLAB support package to integrate 

MATLAB, DDS, and physical hardware. This toolbox allows users to perform an 

experiment, control testbed hardware in real-time and collect data through an Ethernet 

network. A routing service can be used to allow remote access and experimentation 

through a high-speed virtual private network (VPN) connection. The main blocks for the 

main objects of the testbed are defined as the following: 

5.2.1 Domain Creator block 

The domain creator block shown in Figure  5.3 creates and initiates the domain for the 

DDS where all the publishers and subscribers share the data in a global data space. Each 

domain has a unique integer ID number. Simulation objects must join the same domain to 

communicate to each other. A simulation model can be a part of multiple domains by 

using multiple domain creators with multiple IDs, as shown in Figure  5.4. The user needs 

to set the domain ID in the block parameter. The domain creator block has two output 

ports: Sub port and Pub port.  The Sub port should be connected to any simulation object 

that needs to read data from the GDS. Pub port should be connected to any simulation 

object that needs to write data to the GDS. Domain can be used to isolate different tests 

running in the testbed at the same time or group multiple objects which belong to the 

same system such as two different microgrids. If the domain already exists with the same 

ID the domain creator participates to the existing domain. 
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Figure  5.3: Domain Creator. 
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Figure  5.4: Multiple Domain Creators with Multiple IDs 
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5.2.2 Generator control Block 

A control Block was defined for the generators, as shown in Figure  5.5. The generator 

Block publishes the control command, speed/torque reference, start/stop control and 

synchronization command to the GDS. The actual measurement of the generator current, 

voltage, active and reactive power, and frequency are returned to the simulation by 

subscribing to measurement topics in the GDS. The user can set the QoS profile for an 

individual topic in the generator block, as shown in Figure  5.6. Each generator block 

contains two inputs for the publisher and subscriber configuration. These two inputs 

should be connected to the corresponding outputs of the domain creator block. Two types 

of generator blocks are defined based on the control mode, either speed control for a 

slack generator or power control for other generators in the system. 

  

 

Figure  5.5: Generator Control Block 
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Figure  5.6: Generator Control Block Parameters 

The physical generation stations receive the control command through an RS-485 

serial interface.  In order to pass the data topics from Ethernet-based network to RS-485 

serial communication network, an interface board shown in Figure  5.7 is designed. 
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Figure  5.7: Serial Interface Board 
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The interface board has four programmable serial ports, USB, and a power line 

communication (PLC) modem port. Each individual serial port can be programmed to 

work as RS-485, RS-422 or RS-232. Three serial ports can be accessed directly from a 

computer or an embedded host using a USB communication device class driver (CDC). 

The fourth serial port can be configured as a PLC port or regular serial, as shown in 

Figure  5.8.   

 

Figure  5.8: Interface Board Block Diagram 
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In the case of PLC port configuration, the built-in microcontroller performs the hard-

real-time tasks for power line communication in addition to controlling serial ports 

modes. The Microcontroller Firmware can be updated over USB communication. The 

same interface board can be used to pass the data from PMU C37.118 serial protocol to 

the DDS global data space. 

A. Circuit Breaker 

The block controlling the CB is shown in Figure  5.9. This block receives the CB 

control signal and controls the actual CB. The user can set the QoS for the control signal, 

as shown in Generator’s control block. 

 

Figure  5.9: Circuit Breaker Block Diagram 

B. Load 

Four different programmable loads are controlled by the load control block in 

Figure  5.10. Load controllers can control active and reactive power for each load to 

represent load patterns. The control block must be connected to Domain creator Pub port. 
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Figure  5.10: Load Control Block 

C. Busbar 

The Busbar block is shown in Figure  5.11 monitors the three phase voltage for the 

Busbar of interest.  The user can choose the Busbar number and assign the QoS profile 

for the measurement data.  

 

Figure  5.11: Busbar Block 
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D. Transmission Line 

The transmission line block depicted in Figure  5.12 is used to monitor the 

transmission line current.  The block has one input port for subscriber connection and 

three output ports for three phase current output. The user can choose the transmission 

line and QoS profile from Block parameter. 

 

Figure  5.12: Transmission Line Block 

E. Microgrid 

An inverter based hybrid microgrid can be controlled from the simulation 

environment using the developed toolbox. The hybrid microgrid showed in Figure  5.13 

consists of PV emulator and wind turbine emulator connected to a common DC bus. The 

energy is transferred from the DC side to AC side or vice versa through a bidirectional 

power electronics converter.  The microgrid can work in two different modes, grid-

connected, and islanding mode. In grid-connected mode, the converter is controlled to 

regulate the current injected to the utility. The microgrid controller receives a reference 

for active and reactive power and regulates the current to inject the required energy 

amount to the main grid. In islanding mode, the microgrid controller regulates the output 

voltage of the power electronics converter to maintain constant AC voltage at the load 
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terminal. The microgrid is represented in the Toolbox by the control block shown in 

Figure  5.14. The control block has several inputs to control the microgrid’s operation 

mode, voltage, power and reactive power references.  Furthermore, it reads all the AC 

and DC voltage and current measurements from the hardware. The microgrid control 

algorithm is running by the real-time embedded controller dSPACE DS11013. The data 

are exchanged between the host computer and the controller using the developed serial 

interface board. 
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Figure  5.13: Hybrid Microgrid Block Diagram 
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Figure  5.14: Microgrid Control Block 

F. Smart Meter 

The smart meter block is shown in Figure  5.15. This block receives the total 

accumulated active and reactive power consumption from the physical smart meter over 

the last hour, as well as power consumption every minute. In addition, it receives the 

RMS values for voltages and currents. 
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Figure  5.15: Smart Meter Block 
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G. Energy Storage 

The physical energy storage is controlled through the block shown in Figure  5.16. This 

block receives the voltage and current measurements and the calculated State of Charge 

(SoC) from the energy storage controller. In addition, it sends a current reference to 

control the charging and discharging of the energy storage array. Some types of energy 

storage, such as lithium-ion, are temperature sensitive. Thus, this block is flexible for 

additions, as other parameters can be added depending on the energy storage type. 

 

Figure  5.16: Energy Storage Control Block 

H. Database Service 

A real-time subscriber service can be configured to monitor the data from the GDS 

and store it in a database server for later analysis, as well as publish stored data from the 

database server. This data can represent a real load, solar irradiance, or a wind speed 

pattern. The publisher-subscriber configuration defines the data rate, object, topic name, 

and data tables. The integration with the database server simplifies the data logging 

during experiments and utilizes historically collected data for testing new algorithms. 
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Each block in the toolbox allows defining a QoS profile individually for each topic. The 

settings for QoS profiles are defined in an XML file. Preset QoS profiles were created to 

provide the necessary QoS settings for each type of data. The QoS profile for CB signals 

is configured to provide the minimum possible latency with a durability option set to 

store and deliver the data to a late or newly created subscriber. This setting ensures the 

delivery of a CB control signal and correct initializations when joining the network, even 

if the subscriber created it after transmitting the control command. For measurement 

signals, each sample is time-stamped two times. The first time is stamped by the sender at 

the transmission instant and then stamped at the receiver at the receiving instant. To 

ensure synchronization and a correct order of samples, the QoS profile for measurement 

signals were set to deliver the data ordered by the sender timestamp. 

The implementation of the HIL is depicted in Figure  5.17. It can be seen that the 

control algorithm is simulated in the Matlab/Simulink environment. The control 

command is transmitted to the real hardware using the developed interface toolbox over 

the network using the DDS middleware and specified QoS. Real-time feedback from the 

physical measurement points is transmitted back to the Simulink model. The generator 

block in the HIL model replaces the regular Simulink simulation model for a 

synchronous machine with the actual machine. This capability makes it possible to 

consider the real behavior and dynamics of the physical system in control design. In 

addition, the HIL model represents the system as an integrated CPS by taking into 

account the effect of the communication network behavior. The impact of different 

communication topologies and QoS profiles on the performance of the system can be 

investigated. 
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Figure  5.17: HIL implementation using DDS and the developed interface library 

To simplify the initialization and startup of the testbed, an automated startup and 

initialization procedure was developed using a state machine. These startup and 

automation controllers abstract the procedure of initializing the testbed physical 

components by performing all the necessary steps to run the testbed. The startup 

controllers set up the system frequency, startup and synchronize the generators, configure 

the network topology, and connect the different loads. The shutdown procedure ensures a 

correct shutdown sequence to prevent component damage. The user can utilize this 

controller as it is or use it as a base template to build his own controller. The hierarchy of 

the automatic controller is shown in Figure  5.18, where it can be seen that the control is 

divided into two levels. The low level consists mainly of three state machine controllers. 

The state machine for the first controller is shown in Figure  5.19, which is responsible for 
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starting up and shutting down the slack generator. In the startup state, the controller sets 

the speed of the generator at the required value depending on the required operating 

frequency. Then, it changes the status of the generator to the “on” state. When the output 

voltage and frequency reach the nominal values, the controller generates a ready signal to 

indicate that the slack generator is ready. While the slack generator is in a shutdown state, 

the controller sends a turn-off signal to the generator and resets the generator ready signal 

to zero. Figure  5.20 shows a connection example of the slack generator and state machine 

controller. 

 

Figure  5.18: The hierarchy of the developed automatic controller for the smart grid 
testbed 

 

Figure  5.19: Slack generator control 
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Figure  5.20: Slack generator control connection 

The state machine for the second controller shown in Figure  5.22 is responsible for 

the startup/shutting down of the power controlled generators in the system. In the startup 

state, the first step is to send a start signal to the generator, then start the synchronization 

process shown in Figure  5.21. After the synchronization process has completed, the 

controller closes the generator CB to connect the generator to the testbed. After that, it 

generates a ready signal to indicate the successful completeness of the starting-up 

process. In the shutting down state, the controller opens the generator CB and sends a 

shutdown signal to the generator. Figure  5.23 shows a connection example of the PQ 

generator and a state machine controller. 

 

Figure  5.21: Synchronization Controller 
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Figure  5.22: Power controlled generator control 

 

Figure  5.23: PQ generator controller connection. 

The high-level controller is responsible for coordinating the operation of the low-

level generator startup controllers and configuring the testbed network topology by 

connecting necessary transmission lines, busbars, and loads. As shown in Figure  5.24, the 

main controller consists of two main states: namely, startup and shutdown. In the startup 
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state, the controller calls the generator startup algorithms in the required order and 

monitors the generator status. Then, it connects the CBs to configure the testbed topology 

and connect the loads. Once all the generators are running and the topology configuration 

is done, it generates a ready signal for the entire testbed. This signal can be used to enable 

starting up a certain experimentation procedure. In the shutdown state, the controller 

shuts down the generators in the correct order by shutting down the power controlled 

generators one-by-one while disconnecting any connected loads to avoid overloading the 

remaining generators. Finally, after shutting down all the power controlled generators, the 

slack generator is disconnected and all circuit statuses are reset to an open state. 

 

Figure  5.24: Main automation and startup controller 
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5.3 Protocol Emulation 

A software layer running in a virtual environment or an embedded host is used to 

emulate standard communications protocols utilized in power system operation. The 

emulation layer allows interaction between the simulation environment and commercial 

IEDs, such as protection relays and PMUs. The interaction between simulation and actual 

IEDs is necessary for testing new algorithms and the performance of actual devices with 

different firmware versions in a safe environment. The emulation layer consists of a 

number of virtual IEDs that communicate with real IEDs with emulated protocols and 

maps all data to the DDS global data space. Figure  5.25 show the block diagram for 

emulating IEC 61850. The emulation process is done through three layers, the first layer 

is the real IEC 61850 devices connected to an Ethernet-based network. 

 

Figure  5.25: Block Diagram for IEC 61850 
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The second layer is the virtual IEC61850 devices running in a virtual environment 

and connected to the same Ethernet network.  Virtual IEDs represent a bridge between 

the IEC61850 network and DDS global data space by receiving different types of 

messages and mapping them to DDS data topics and vice versa. The third layer is the 

DDS backbone in which all data topics are shared with the simulation environment and 

system monitoring.   

To create a virtual IED, the data model for the device should be defined, then 

emulation code for the IEC 61850 and DDS publisher/subscriber functions is generated, 

as shown in Figure  5.26.   

 

Figure  5.26: IEC 61850 and DDS publisher/subscriber functions 
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The data model can be generated from IED Capability Description (ICD) file. The 

ICD file is supplied by the manufacturer or can be generated using the automatic 

discovery feature. Once the device data model is obtained, it can be mapped to DDS data 

topics and generate a pub/sub C code. Pub/sub code is generated using automatic code 

generation supported by the RTI DDS library. The IEC61850 emulation code is created 

based on the libiec61850 open source library. Libiec61850 provides open source 

implementation for different types of IEC-61850 messages, such as MMS, Generic 

GOOSE and Sampled Measured Values (SMV). The API of libIEC61850 gives the user 

full control to modify message data field while preventing modification of other fields, 

such as timestamp, Sequence number, and status number. In regular cases, the user 

doesn’t need to modify those fields. The timestamp and sequence number fields are 

automatically generated by the Library based on current system time and previous 

message sequence number.  For testing vulnerability analysis, the user needs to have full 

access to modify and override any message field value. The library is modified to allow 

this type of modification.  The modified library will be utilized for protocol vulnerability 

analysis and implementation of a security solution for GOOSE message in the next 

chapters.   

After generating IEC61850 emulation code and DDS pub/sub code, both codes are 

merged and compiled to an executable application. The final virtual IED code is 

compiled using the GNU C compiler and is run under a LINUX OS. 
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5.4 Remote connection and Micro Grid Intercommunication 

The developed testbed toolbox can be used to access the testbed resources and 

perform experiment remotely. A remote user can test a new algorithm, collect data and 

exchange information between different systems located at the testbed and remote 

location. Figure  5.27 shows the complete configuration for the testbed with remote 

connection capability. To connect to the testbed, a VPN connection is established over a 

WAN or the internet. Once the connection is established, the remote user can use the 

developed toolbox to interact with the testbed resources through the DDS global data 

space. 
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Figure  5.27: complete configuration for the testbed with remote connection capability 
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To control the data flow between testbed and remote sites and ensure system security, 

four different domains are created, as shown in  

Figure  5.28. The data exchange between the different domains is controlled by a 

routing service, data filtering, and the Resource Management and Protection (RMP) 

module. 

 

Figure  5.28: Testbed remote access domains 

Domain (0) is the GDS domain for the testbed. All the data and control commands 

generated by testbed equipment are available in this domain. External data from the other 

domain can be passed to Domain (0) only through the RMP module. The RMP module 

performs two functions. First, it ensures the remote user only has access to allowed 

resources. The testbed operator can select which resources are allowed to be accessed 

remotely. Second, the RMP checks all incoming signals against predefined physical rules 

to prevent system damage due to a wrong control signal from the remote user. For 

example, if the testbed operator allows a remote user to control certain generators, 

connecting non-synchronized generators by mistake to an energized bus could damage 

the generators. To prevent this damage the RMP will not pass the control signal to close 

the generator circuit breaker unless the synchronization status is true.  In order to perform 

RMP functions, an intermediate domain is created, Domain (1), as shown in Figure  5.29. 
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All data coming from the routing service is published first to the intermediate domain. 

The intermediate domain is a memory shared domain used to exchange information 

between the routing service and the RMP located on the same machine. Only applications 

physically located on the same machine can access the memory shared domain. RMP 

checks all received data against permission and-and physical rules. When the permission 

and physical rules are matched, the RMP enables the publisher and subscriber to the 

testbed domain (Domain 0). 

 

Figure  5.29 Routing service intermediate domain 

The routing service is used to route the DDS TCP and UDP communication between 

two different domains over WAN using only TCP communication. Only data with a 

remote subscriber are routed over the WAN connection. The routing service allows 

applying data filtering for data transmitted over WAN. A remote user may be interested 

in the certain type of data when it matches a certain condition. An example is a protection 

system interested in current measurements when the current magnitude is greater than 

certain limits.  If the data filter is applied, the current subscriber will not receive any data 

until the current magnitude reaches the defined threshold. The remote site routing service 

exchanges the data between WAN domain, Domain (2), and remote site domain, Domain 
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(3). Unicast and multicast communication can be used in Domain (0), Domain (1), and 

Domain (3). Domain (2) is a unicast domain only. The remote VPN connection is 

protected by a password. Transport Layer Security (TLS) can also be used to encrypt the 

data over WAN. The firewall allows only TCP communication over specified ports used 

by the routing service. All other ports are blocked. 

5.5 Experimental Results 

The functionality of the developed communication infrastructure, controllers, and the 

remote interface toolbox was verified experimentally on the smart grid testbed. For the 

testbed layout, please refer to Figure  2.5. In order to show the capabilities of the 

developed framework, three experiments were carried out with different operation 

scenarios and scales. The first case shows the synchronization process for multiple 

generators in detail. The second case depicts the load sharing amongst four generators, 

while the third one shows how the developed framework is used for topology 

reconfiguration. 

5.5.1 Case 1: Generator Synchronization 

In this experiment, the capability of implementing a closed-loop high-speed controller 

using the proposed framework is shown. The synchronization process requires a high 

sampling rate for frequency and phase angle estimation and low latency feedback. The 

sequence of automatic system operation starts by starting generator 1 (slack), as shown in 

Figure  5.24. During this step, a starting signal is sent to the prime mover along with the 

frequency reference value. The generators’ prime movers are controlled using the RS-485 

protocol. The protocol translator, shown in Figure  2.8, is used to provide interoperability 
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between the DDS network and serial protocols. When the slack generator frequency 

reaches 60 Hz, the automation controller connects transmission lines TL 1-2 and TL 1-8 

and then connects load 1. In this scenario, load 1 is set at 600 W. Then, generator 2 is 

started and synchronized to the slack generator. 

The results of the carried out experiments are depicted in Figure  5.30 and  

Figure  5.31. Figure  5.30a shows the generator 1 frequency at time 4 s when the 

startup signal is sent to generator 1. The frequency ramps up until a frequency of 60 Hz is 

reached. The frequency measured before the generator startup is noise because of the lack 

of a generator output voltage. At time 9 s, generator 1 is connected and the voltage is 

stabilized around 115 V, as shown in Figure  5.30d. The load is connected at time 16s, as 

shown in Figure  5.30e. Figure  5.30b shows the generator 2 startup at time 34 s. It is 

worth mentioning that the generator 2 frequency was shown as 60 Hz even before the 

generator startup due to leakage across the solid state switches. This leads to reading a 

frequency of generator 1 when generator 2 is not connected. Figure  5.30c shows the 

phase angle difference between generator 1 and 2 voltages. Frequency fluctuations can be 

seen before the synchronization, but these fluctuations go to zero as soon as the process 

completes.  

Figure  5.31 shows a zoom in on time frame 130–250 s to further illustrate the 

synchronization process. It is clear that the framework successfully performs an accurate 

synchronization and frequency stabilization in real-time. Figure  5.30e shows that the 

slack generator fed all the load while, after synchronization, the load is shared between 

the two generators. 
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Figure  5.30: Experimental results, voltage, frequency and synchronization switch 
status (a) Generator 1 frequency; (b) Generator 2 frequency; (c) Generators Voltage; and 
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Figure  5.31: Synchronization Process 

5.5.2 Case 2: Load Sharing 

This case shows the scalability of the developed framework, since four generators, six 

transmission lines, and two loads are involved. The main focus of this case is to configure 

the required network topology and control power flow to share the load amongst different 

sources automatically. The experiment starts by starting generator 1 and connecting it to 

the load bus through TL 1-8 and to the generator 2 bus through TL 1-2. After that, 
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connected to the network through transmission lines (TL 2-5). Similarly, generators 3 and 

4 are started and synchronized. Then, TL 5-6 and TL 1-6 are connected. The entire 

startup process is handled by the developed startup and automation controller. During the 

experiment, loads 2 and 4 were disconnected. Generators 2 and 3 were working in the 

power control mode with a reference power of 300W. Generator 4 was synchronized and 

running under no load to represent a spinning reserve. Load 3 was fixed to a value of 300 

W while load 1 was varying to emulate a certain load pattern. The control command to 

the loads was sent over a wireless link. The maximum output power of generator 1 was 

set to 700 W. 

The results of the carried-out test are shown in Figure 18, where the total demand 

(load 1 + load 3) is shown in Figure  5.32a. The output of the four generators (1–4) is 

shown in Figure  5.32b–e, respectively. When the total demand changes from 900 W to 

1200 W at time equal 65 s, the slack generator output changes from 300 W to 600 W, 

while the rest of the load is supplied by generators 2 and 3. At time 115 s, the load 

increased to 1500 W and consequently, the slack generator output is increased to 900 W, 

which exceeds the preset maximum limit. The controller commands generator 4 to inject 

power to reduce the slack generator power below the limit. At time 215 s, the load 

demand decreased to 900 W. In this case, due to low demand, generator 4 returns to 

reserve mode. An intentional outage of generator 3 is created at time 293 s, where the 

slack generator output is increased to compensate for the lost generation power. 

However, the slack generator output is still below the critical limit, hence the controller 

did not initiate a power injection from generator 4. For this scenario, it can be seen that 
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the developed framework was able to efficiently exchange data from multiple sources and 

controllers in real-time to maintain a power balance between load and generation. 

 

Figure  5.32: Case 2, load sharing. Power of (a) load; (b) generator 1; (c) generator 2; 
(d) generator 3; and (e) generator 4 
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5.5.3 Case 3: Topology Reconfiguration 

This experiment shows the capability of dynamic reconfiguration of the physical 

network topology. For this purpose, the radial power transmission network consists of 

generators 1 and 2, transmission lines TL 1-2, TL 2-5, TL 4-5, TL 5-6, and TL 6-7 and 

loads 3 and 4 (refer to Figure 1 for the network topology). During high demand, the 

network topology will be reconfigured to a ring by connecting TL 1-6 to improve the 

voltage profile. During this experiment, load 3 is used as a constant load of 300 W, while 

load 4 is emulating a variable load pattern from 500 W to 1700 W with a minimum 

allowed voltage of 114 V, as shown in Figure  5.33b. Generator 3 is set to inject 300 W 

during the operation. 

After starting and synchronizing generators 1 and 2, the transmission network is 

configured to feed loads 3 and 4, as described above. A variable load pattern is applied by 

controlling load 4 while monitoring the load voltage. When the load reaches 1700 W at 

time 92 s, the load voltage drops to 113 V. Violating the allowed voltage limit triggers a 

topology reconfiguration from radial to ring by connecting transmission line TL 1-6 at 

time 104 s. This reconfiguration improves the load voltage profile from 113 V to 115 V, 

as shown in Figure  5.33c. 

The control software for all experiments was completely modeled using 

Matlab/Simulink. The developed interface toolbox established the communication 

between the Matlab model and the real hardware components by utilizing the DDS 

middleware. The entire model is converted to C code and run in real-time. During the 

operation, the model received measured data at a message rate of 100 Msg/s. The  
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Figure  5.33: Case 3, topology reconfiguration. (a) Output power of generators 1 and 
2; (b) load 4 power; and (c) load 4 voltage 
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grid testbed hardware components provides a hybrid hardware-software environment for 

prototyping and testing developed control and real hardware devices. Fully-automated 

operation without human intervention was reached using the developed infrastructure. It 

is worth mentioning that the system is scalable. i.e., it can be expanded to larger systems 

with a higher number of units and distributed control models run on distributed network 

resources. Furthermore, the implemented testbed infrastructure allows remote users to 

connect and perform experiments. 

5.6 Summary 

In this chapter, the design and implementation of a scalable HIL infrastructure for a 

smart grid testbed are presented. The developed infrastructure provides the capability of 

integrating different types of systems and components inside the testbed and connecting 

several testbeds to study the behavior of complex CPS. The proposed system is based on 

the DDS standard to provide the low latency communication required for smart grid 

applications. The used publisher-subscriber scheme provides reliable and flexible 

communication while eliminating the bottlenecks and a single point of failure. The data 

structure for the system signals and a Matlab toolbox were developed to allow integration 

with modeling software, remote monitoring, and control through a computer network. 

The performance of the developed infrastructure was tested and validated experimentally. 

The security aspect is addressed by encrypting remote communication using TLS and 

checks all remote command against physical rules before passing it to testbed devices. 
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Chapter 6 GPS Based Synchronization Scheme for Distributed DC-DC 

Converters for Micro Grid application 

6.1 Introduction 

The new trend in the future in the smart grid network is developing toward 

Distributed Generations and microgrid. In the microgrid architecture, the energy 

resources are located close to energy consumers and large units are substituted by smaller 

ones  [65], [66]. The integration of the distributed generation, energy Storage Systems, and 

consumers’ loads through the Point of Common Coupling (PCC) is called a microgrid. A 

microgrid can be configured into DC and AC microgrid based on the power electronics 

interface circuits that will be used  [67]. Recently, there has been a great interest in 

utilizing the DC microgrids to integrate distributed resources such as solar panels and 

energy storage.  Since solar panels and energy storage such as batteries and fuel cells 

generate DC current, DC microgrid provides a flexible and efficient way to integrate 

these types of resources. Moreover, full converter variable speed wind turbine generation 

systems usually have an intermediate DC link in the conversion system.    

In the DC microgrids, a DC-DC boost converter is a key element to interface 

distributed generation to the microgrid’s DC bus. Various DC-DC boost converters 

topologies have been studied in  [68]- [73]. DC microgrids, along with their DC-DC boost 

converters, still faces numerous challenges such as ripple contents of the DC bus voltage 

and current  [74]. Indeed, voltage and current ripple are among the various phenomena 

that contribute to a reduction in lifespan of power sources and energy storage devices 

interfaced to the DC bus  [75], [76].  
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To overcome this problem, multi-phase interleaved boost converters are used to 

reduce current and voltage ripple without increasing the switching frequency  [77]. The 

Pulse Width Modulation (PWM) signals of this converter should be generated based on 

multiple carriers with the same frequency and a different phase shift to reduce the DC-

DC converter output voltage ripple. The interleaving technique can be applied to 

multiphases in a single DC-DC converter or to multiple converters connected in parallel 

to reduce the voltage ripple and increase efficiency. 

The generation and synchronization of the PWM carriers for multiphase converters 

are quite easy since all the PWM modulators are driven from the same controller and 

hence the same oscillator.  However, in distributed resources interfaced with DC-DC 

converters, each converter has its own controller and hence its own oscillator, which 

makes the PWM signals synchronization for multiple DC-DC converters a big challenge.   

The challenge is related to the frequency drift of each DG’s oscillator due to 

temperature and component tolerance. This drift will create a continuous change in the 

phase shift angle between PWM carriers of each DC-DC converter  [78], [79].  

To ensure the most accurate synchronization, it should be taken into account clock 

drift and oscillator’s start latency using hardware-assisted software over software only 

synchronization. IEEE 1588 time synchronization protocol delivers sub-microsecond 

synchronization accuracy with hardware assisted  [80]. This method can provide very 

accurate and stable clock signal for all DC-DC converters. However, it assumes that all 

controllers are connected to a communication network and requires special hardware 

assisted network switches. Hardware-assisted time synchronization adds extra costs to the 
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control network, which could be inadequate for small systems. For large distributed 

system, connecting all controllers to the synchronization network may be infeasible  [81]. 

To solve this problem, a common time reference should be defined and used to adjust the 

oscillators’ frequency. In this chapter, a GPS-based synchronization method is proposed 

to generate a common time reference to synchronize distributed PWM modulators. 

Although GPS synchronization has been widely used in the PMUs for synchronized 

measurements in the AC networks, to the best of the author’s knowledge, it has never 

been used to enhance power quality in DC networks. The proposed method does not need 

special communication networks between distributed converters for the synchronization 

process. This synchronization allows the operation of distributed DC-DC converters 

modulators as interleaved converters system. The interleave operation reduces the ripple 

and DC-link capacitor size. In addition, it improves the system electromagnetic 

compatibility by reducing interferences from the ripple.  

6.2 DCMG SYSTEM DESCRIPTION  

The schematic diagram of DC microgrid and control hierarchy is depicted in 

Figure  6.1. The microgrid under consideration has three conventional DC-DC boost 

converters connected in parallel to interface three different energy sources to the common 

DC bus. One converter will be considered as the master converter and will work in 

voltage control mode. The main role of this converter is to regulate the DC bus voltage. 

The other two converters will work in current control mode. Each DC-DC power 

converter should receive PWM signals from its corresponding local controllers in order to 

control power flow.  
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In this work, the local control of each converter should have two types of 

algorithms. The first algorithm, voltage, and current control algorithm is responsible for 

controlling the duty cycle of its converter based on the reference power values, which are 

sent by the energy management system EMS. The EMS should deliver these values 

taking into account certain criteria, such the energy cost. The detailed operation of the 

EMS will be discussed in chapter 9.   

The second algorithm is the synchronization and carrier generation algorithm. This 

algorithm will generate a carrier synchronized with the GPS time reference. The phase 

angle for the generated carrier will be controllable through adjusted offset input.  

 

Figure  6.1: Distributed DC-DC converters connected to common DC bus 
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6.3 DC Microgrid voltage and current control. 

Three DC voltage control sources are chosen to emulate the distributed generation in 

the DC microgrid. These sources are interfaced to the DC bus through a distributed DC-

DC boost converter as shown in Figure  6.1. The DC-DC converters parameters are 

mentioned in Table  6-1. It is assumed that all converters will be controlled 

simultaneously.  

Table  6-1: DC-DC boost converters parameters 

Parameters Value
Inductance 750µ

Inductor resistance 20 
Capacitance (C) 312 

Capacitor 0.575 
DC Bus voltage 50V 

DC source 1 25V 
DC source 2 22V 
DC source 3 20V 

Load resistance  4Ω 
Switching 2 kHz 

The local control of each converter is implemented to control the converter’s duty 

ratio and its PWM carriers. To control the duty cycle of the master DC-DC converter, the 

voltage and current controllers based on an advanced lead-lag controller (ALLC) are 

employed during transient and steady-state conditions as shown in shown in Figure  6.2.  

 

Figure  6.2: ALLC voltage and current control scheme 
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The current controller based on ALLC is employed for the current controlled 

converters as shown in Figure  6.3 [82] [83]. 

 

Figure  6.3: ALLC current control scheme 

The ALLC controllers are designed based on the Small Signal Model (SSM) using 

frequency response techniques where	ܥ௩ሺݏሻ is the voltage compensator and ܥ௜ሺݏሻ	is the 

current compensator that assures cancellation of the static error and high bandwidth. d is 

the duty cycle ratio that will be compared with PWM carriers to generate the required 

PWM signal. ܪ௜ሺݏሻ,  are the current and voltage transfer functions of the	ሻݏ௩ሺܪ

conventional DC/DC boost converters, which shown in equations (6.1) and (6.2).  

ሻݏ௩ሺܪ ൌ
௏೚	ൣ௡	ோ೚ሺଵି௠஽ሻమି௠	ோ೗൧

				ሺଵି஽ሻ	ሾ௡	ோ೚ሺଵି௠஽ሻమାఙ	ோ೗ሿ			
	
ቀଵା	௦ ఠ೥ೡభൗ ቁቀଵି	௦ ఠ೥ೡమൗ ቁ

൬ ೞమ

ഘబమ
ାమ഍ೞ
ഘబ

ାଵ൰
                  (6.1) 

ሻݏ௜ሺܪ ൌ
௏೚	ሺ௠ାఙሻ

ఙ	ோ೗ା௡	ோ೚ሺଵି௠஽ሻమ
					

ቀଵା	௦ ఠ೥೔ൗ ቁ

൬ ೞమ

ഘబమ
ାమ഍ೞ
ഘబ

ାଵ൰
													                                  (6.2) 

The double pole frequency ω଴ depends on the   input voltage ( ௜ܸ௡) and the nominal 

output voltage ( ௢ܸ) as well as inductance (ܮ) and output capacitance (ܥ). It is also 

important to note that ω଴	depends on the load resistance (ܴ௢), the internal resistance of 

the inductor (ܴ௟) and the internal resistance of the capacitor (ܴ௖), which shown in 

equation (6.3) 
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߱௭௜ ൌ 	
ଵ

஼ቀ	ோ೎ା
഑	ೃ೚	
೘శ഑

ቁ
		߱௭௩ଵ ൌ

ଵ

஼		ோ೎
		߱௭௩ଶ ൌ 	

௡	ோ೚ሺଵି௠஽ሻమି௠	ோ೗
௠	௅

                 (6.3) 

The system damped ratio ߦ	for both transfer functions is given by equation (6.4). 

ߦ ൌ 	
ఙ	௅ା஼	ሾఙ	ோ೗	ሺோ೚ାோ೎ሻା௡	ோ೎	ோ೚ሺଵି௠஽ሻమሿ	

ଶ		ඥఙ	௅	஼		ሺோ೚ାோ೎ሻሾఙ	ோ೗ା	௡	ோ೚ሺଵି௠஽ሻమሿ	
                                       (6.4) 

Where ܦ is the nominal duty ratio, ݊ is the number of phases, and ݉		is the number of 

parallel switches per each phase which their values are equal to one for the conventional 

boost converters shown in Figure  6.2.  

6.4 Synchronization and carrier generation algorithm 

The GPS is a navigation system that consists of 24 satellite positioned in six orbital 

planes  [84]. Each satellite has an onboard atomic clock that provides a precise time 

reference. The GPS satellites broadcast a microwave signal that received by the GPS 

receiver on the earth surface.  The GPS receiver processes the signal from three or more 

satellites and computes the position and current time with high accuracy.  The receiver 

output the calculated time in the form of a serial stream or one pulse per second (1PPS). 

The one pulse per second output is derived from the satellite atomic clock and has the 

accuracy to few tens of nanoseconds. A synchronized signal with higher frequency for 

carrier generation can be generated from the 1 Hz GPS clock reference using frequency 

multiplier. The standard frequency multiplier consists of phase locked loop PLL and a 

frequency divider in the loop as shown in Figure  6.4. 
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Figure  6.4: Frequency multiplier using PLL 

The 1 Hz frequency reference is compared with the voltage controlled oscillator 

(VCO) frequency output after dividing by the N counter using phase detector. The phase 

detector output is filtered and then used to control the VCO output frequency. The phase 

detector filtered output will accelerate or decelerate the VCO based on the phase between 

the reference signal and the counter output. When the counter output has the same 

frequency and looked with the reference signal, the phase detector output will hold the 

voltage that produces this frequency. The phase angle between the output signal and the 

reference signal can range from 0 to 90 degree based on the phase detector type. 

Generating high-frequency clock from very low-frequency reference (1 Hz in the case of 

GPS reference) requires high division factor in the loop. For example, generating 100,000 

KHz requires 1/100,000 divider in the loop. The high dividing factor introduces a long 

delay, which makes it difficult to stabilize the PLL frequency output.   

A digital PLL (DPLL) is used to multiply the 1 Hz frequency reference and overcome 

the stabilization problem.  The proposed DPLL is shown in Figure  6.5. 

A positive-edge-triggered phase comparator is used to compare the 1PPS signal with 

the signal generated from the VCO divided by the digital counter. The phase comparator 
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output pulse width represents the phase between the GPS reference signal and the VCO 

output frequency. The pulse width is converted to a stream of high-frequency pulses by 

gating a high-speed oscillator output with AND gate. This pulses stream is converted to 

digital counts by a digital counter. An edge detector generates a pulse that latches the 

digital count in a data latches each cycle.  The latch output is converted to analog voltage 

and connected to the VCO frequency control input. The analog voltage level will change 

depending on the phase angle between VCO and GPS reference signal. The VCO is 

designed to generate the required output frequency at voltage level equivalent to 180-

degree phase angle. Since the counter output is inverted, the signal output will be in 

phase with the GPS reference. A fail-safe logic constantly monitors the counter output to 

determine the lock status of the PLL. If the PLL fails to lock with due to the absence of 

the reference signal, the fail-safe logic switches the VCO control to a stable frequency 

reference.    

 

Figure  6.5: Digital phase locked loop DPLL 
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To test the performance of the proposed frequency multiplier based on the DPLL, a 

simulation model is built using Matlab/SIMULINK simulation software.  The block 

diagram for the simulation model is shown in Figure  6.6.  

 

Figure  6.6: DPLL SIMULINK Simulation Block Diagram 

The performance of the proposed DPLL is depicted in Figure  6.7. At the beginning of 

the simulation, the frequency divider output frequency was lower than GPS reference and 

has a large phase difference, as shown in Figure  6.7-b.  Due to the existence of the large 

phase shift, the VCO voltage increases and leads to the higher output frequency, as 
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shown in Figure  6.7-c. As a result of increasing the VCO frequency, the phase shift starts 

to decrease between generated signal and the GPS reference signal. After 5 cycles, the 

generated signal is locked with the GPS reference signal and has the same frequency and 

phase angle, as shown in Figure  6.7- a and Figure  6.7-b.  Figure  6.7-c shows the 100Khz 

frequency generated by the VCO. This high-frequency output will be used as a 

synchronized clock for the carrier generation module.  

 

Figure  6.7: Propose DPLL simulation performance 
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6.5 PWM carrier generation 

In this stage, a synchronized saw-tooth carrier will be generated. The carrier 

generation module will receive three inputs, carrier clock, 1PPS from the GPS and 

adjustable offset. A digital counter will be incremented at the positive edge of the 

carrier clock. When the counter reaches the peak value, reset logic will reset the counter 

to zero to generate the saw-tooth signal. To ensure the saw-tooth signal is synchronized 

with the edge of the 1PPS GPS reference, the counter’s initial value will be set at the 

positive edge of the 1PPS signal.  The generated saw-tooth signal phase is adjusted 

through the offset input. Each time the user adjusts the phase angle the difference 

between current offset and previous offset is calculated and added to the counter. To 

maintain a fixed phase angle the offset value is loaded as an initial value at the positive 

edge of the 1PPS signal. A simulation model is built using Matlab/SIMULINK to test 

the carrier generation module.  

 

Figure  6.8: Synchronized PWM carrier generation 
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Figure  6.9: Phase adjustment simulation model 

 

Figure  6.10: carrier phase adjustment performance 
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The simulation model for the carrier generation is shown in Figure  6.9. Two carrier 

modules were simulated. The phase offset for the first module is set to zero to maintain 

zero phase angles with respect to the GPS signal. The second carrier’s phase angle is 

incremented from zero to 180 degree. The simulation results are shown in Figure  6.10. 

The phase offset for carrier module 2 is shown in Figure  6.10-a. Figure  6.10-b shows the 

phase angle for both carrier modules.  The simulation starts with zero phase angle 

between the two carriers. At time equal to 0.005 sec, the phase offset increment gradually 

from zero to 180 degree. As depicted from Figure  6.10-b, the second carrier phase angle 

follows the phase offset input and shifted with respect to carrier 1. When the phase offset 

is set back to zero, the two carriers are locked in phase. The phase offset between carriers 

can be controlled manually or through automatic search algorithm to optimize the DC bus 

voltage ripple. The automatic adjustment of the phase offset will be discussed in detail in 

the next chapter. 

6.6 Simulation results 

A simulation model for three parallel converters connected to a common DC bus built 

based on MATLAB/SIMULINK® to test and validate the robustness of the proposed 

GPS-based synchronization methods. The converters connection topology and parameters 

are shown in Figure  6.1 and Table  6-1. One of the converters controllers is designed to 

operate in voltage control mode, while two controllers are designed as a current controller 

as discussed earlier. The load current is shared equally between the three converters. To 

evaluate the performance of the synchronization algorithm and its impact on the DC bus 

voltage ripple, first, the simulation is started with zero phase offset between the three 
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converters carriers. After a short period, the second converter’s carrier phase is adjusted 

to 120 degrees with respect to the reference signal. Then, the third converter carrier phase 

is adjusted to 240 degree. The simulation results are shown in Figure  6.11. At time equal 

to 1 sec, the angle for the second converter carrier is set to 120 degrees, as result of 

changing the phase angle, the DC bus ripple is reduced from 1.72 V RMS to 1.063 V 

RMS. At time equal to 2 sec, the angle for the third converter carrier is set to 240 

degrees, the voltage ripple is reduced significantly from 1.063V to 0.15 V RMS.  

 

Figure  6.11: Multiple converters synchronization performances (a) DC bus voltage, (b) 
ripple RMS, (d) carrier 1 phase angle, (e) carrier 2 phase angle 
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6.7 Hardware verification and experimental result 

In order to implement the GPS synchronized carrier generation for distributed DC-DC 

converters in real-time, an experimental test bench has been designed. In this 

implementation, a GPS time reference module based on Venus838LPx_T GPS receiver 

shown in Figure 6.12 is used.  

Error! Reference source not found. GPS timing Module 

The Venus838LPx_T is a single chip GPS receiver that can generate 1 PPS reference 

time signal with 6 ns accuracy. The GPS can generate a time reference with one satellite 

in view. Moreover, the module has a built-in programmable PLL that produces variable 

frequency output ranging from 1 to 10 MHz, in this setup, the PLL is programmed to 

produce 100 KHz clock frequency. The output frequency is controlled using the control 

panel shown in Error! Reference source not found.. The phase angle between the 1PPS 

time reference and programmed PLL output is shown in Figure 6.14. As depicted from 

the, figure the module produces a high-frequency clock locked with the GPS 1PPS.  

 

Figure  6.12: the GPS software control panel 
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Figure  6.13: 1PPS and high-frequency output signal 

The PLL output and the 1PPS are connected to an ARM Cortex M4 Microcontroller. 

The ARM microcontroller is used to implement the functions of the carrier generation 

and PWM. This control layer performs fast computation for the proposed algorithms and 

hard-real-time input/output function to control the DC-DC converters semiconductor 

switches. The high-speed PLL output is connected to the microcontroller interrupt input. 

The interrupt subroutine is executed 100K times/ s. Each interrupt call, the subroutine 

reads the offset angle, samples the 1PPS input and increments the counter to generate the 

saw-tooth carrier. Each saw-tooth cycle, the Microcontroller compares the carrier with 

the reference received from the dSpace 1004 to generate the PWM output. The 

STM32f407vgt6 32 Bit ARM cortex M4 processor running at 160MHz was used for the 

embedded implementation of the proposed algorithm.  
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Figure  6.14: Hardware setup for the GPS carrier synchronization 

The embedded firmware is generated from Simulink model and compiled using GNU 

C cross-compiler for ARM. The voltage and current control loops are implemented in a 

dSpace 1104 embedded controller.  The duty cycle reference is transferred from the dSpace to the 

ARM processor as an analog reference. 

 The power circuit consists of three converters connected to 4 Ohm load and 40 V 

common DC bus. The controllers for the three converters are adjusted to equally share 

the load current. 

 Figure  6.15 shows the DC bus voltage ripple before and after carrier phase angle 

adjustment, respectively. At time equal to zero, all carriers were synchronized with zero 

phase angle and the ripple was at the maximum value. At time equal 3. 5 s, the second 

converter carrier phase is adjusted to 120 phase angle with respect to the first converter. 
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At time equal to 4.8 s, the third converter carrier phase is adjusted to 240 degrees. As 

depicted from Figure  6.15, the phase adjustment reduces the ripple magnitude from 4 V to 

1.6 V with adjusted carrier phase angle. 

 

Figure  6.15: DC bus voltage with adjustable carrier phase angles 

6.8 Summary 

In this chapter, a synchronization method based on the GPS common time reference 

for PWM carriers of DC-DC is proposed. The GPS synchronization is well known in the 

AC network; however, the proposed technique extends the application of GPS 

synchronization to DC microgrid. The proposed method does not need special 
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communication networks between distributed converters or hardware assisted network 

switches such as IEEE 1548 precision time Protocol. The proposed synchronization and 

carrier generation algorithm allows the operation of distributed DC-DC converters 

modulators as one interleaved converter. The interleaved operation of the multiple 

converters improves the power quality without increasing the size of passive element 

filters or the switching frequency. The simulation results and experimental verification 

show the success of the proposed synchronization method in minimizing the DC bus 

voltage ripple. 
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Chapter 7 Carrier Extraction Based Synchronization Scheme for Distributed 

DC-DC converters 

7.1 Introduction 

GPS provide an excellent time reference for synchronization and phasor 

measurement, however, GPS signal is prone to jamming, spoofing and blocking. 

Sensitive systems should have a backup or alternative synchronization method to prevent 

degradation of system performance.  In this chapter, a new method for synchronizing 

PWM modulators of distributed DC-DC converters is presented. The proposed 

synchronization method utilizes the ripple on the DC bus as a common frequency 

reference. In this scheme, one converter will be chosen to regulate the carrier frequency 

of the DC bus. The other converters in the system will extract the carrier frequency 

components from the DC ripple and synchronize their local oscillators with the master 

carrier. To adjust the carrier phase angle for each converter to an optimum value, a new 

Phase Shift Control Algorithm (PSCA) is developed.  The PSCA is inspired from carrier 

sense multiple access communication (CSMA) media access control protocol. The PSCA 

is completely distributed and doesn’t require a communication channel between 

converters  

7.2 Carrier frequency and angle extraction  

Power electronics converters use pulse width modulation PWM to control output 

voltage or current. The modulated output voltage is composed of the average DC value 

and voltage ripple. The AC voltage ripple consists of dominant frequency components 

equal to the carrier frequency used by the PWM modulator and multiple harmonics. 
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Figure  7.1 shows the harmonics contents of the DC-DC boost converter output voltage at 

different carrier frequencies. As depicted from the figure, the dominant frequency content 

is always equal to the carrier frequency, with 8% and 4% relative to DC magnitude at 

switching frequency equal 2 KHz and 4 KHz, respectively.  If one converter is selected to 

operate as a DC bus master and regulate the carrier frequency, this frequency component 

can be extracted and utilized as a common frequency reference for other converters 

connected to the same DC bus.   

 

(a) 

 

(b) 

Figure  7.1: Harmonics content of DC-DC boost converter output. (a) 2 KHz 
switching frequency, (b) 4 KHz switching frequency 
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To extract the carrier frequency from DC bus voltage ripple, each converter controller 

will run the extraction algorithm shown in Figure  7.2. The algorithm uses a band pass 

filter (BPF) to isolate the ripple component associated with the carrier frequency from the 

measured DC voltage. The BPF will be tuned to pass only carrier frequency and reject all 

other harmonics. This is necessary to reject any harmonics produced by nonlinear loads. 

The filter output will have the same master converter switching frequency and fixed 

phase angle with respect to the master carrier. The upper and lower bands of the BPF are 

defined based on the allowed switching frequency range. The output of the BPF will be 

considered as the DC bus’s carrier frequency reference (ݏݑܤ௖௥). 

For algorithm verifications, the DC bus voltage for boost converter with 2 KHz 

switching frequency shown in Figure  7.3 (a) is fed into the BPF. The BPF isolated the 

AC carrier component of the signal, as shown in Figure  7.3 (b). Next, the AC carrier was 

fed into a PLL algorithm which, in its turn, accurately estimated the AC carrier’s 

frequency, shown in Figure  7.3 (c), and phase angle, shown in Figure  7.3 (d). Then, a 

peak detector estimates the magnitude of the DC voltage ripple, which is shown in 

Figure  7.3 €. Finally, we notice a fixed phase angle difference between the AC carrier 

and the master carrier shown in Figure  7.3 (f). This is because of the delay imposed by 

the filter. This phase shift will not impact the final synchronization or optimization 

process since it is fixed and the search algorithm will adjust the final phase angle. 

 For fail-safe operation, the PLL internal oscillator is designed to operate in the 

allowed switching frequency band only; if slave converters lost the synchronization 

signal, the PLL oscillator will continue to produce switching frequency within the 
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allowed band. Since the carrier frequency has the highest magnitude of the DC bus 

voltage ripple, a peak detector is used to detect the magnitude of the BPF output each 

switching cycle. The output of the peak detector is averaged to suppress measurement 

noise and used as an indicator for the DC bus’s ripple magnitudeݏݑܤ௖௥௠௔௚.  

 

Figure  7.2: DC bus carrier frequency and magnitude extraction algorithm block 
diagram 
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Figure  7.3: Phase locked loop and peak detector output. (a) DC bus voltage, (b) 
bandpass filter output, (c) estimated frequency, (d) carrier phase angle, (e) master carrier 

7.3 PWM carrier generation 

In this step, each converter controller will run a local software oscillator. The 

software oscillator will receive ݏݑܤ௖௥௙and ݎ݁݅ݎݎܽܥ_ݏݑܤƟ  from local PLL to generate its 

local carrier (ݔݒ݊݋ܥ௖௥) as shown in Figure  7.4. The carrier generator integrates the 
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estimated frequency and generates a saw tooth with 2π peak value. The phase angle of the 

saw tooth signal is adjusted to match the angle of the master carrier. This step is essential 

in order to keep ݔݒ݊݋ܥ௖௥ synchronized to the DC bus’s carrier frequency. Then the saw 

tooth signal is converted to a carrier signal with a triangle shape.   The phase angle of 

each local oscillator carrier ݎ݁݅ݎݎܽܥ_݈ܽܿ݋ܮƟwill have the same angel as the 

 can be added to control the desired phase shift. The	Ɵ. An offset angle Ɵ୶ݎ݁݅ݎݎܽܥ_ݏݑܤ

phase angle offset will be controlled by the search algorithm. As a result, all slave 

converters PWM carriers will have a frequency value equal to ݏݑܤ௖௥௙ and the phase 

angle equal toݎ݁݅ݎݎܽܥ_ݏݑܤƟ.  

 

Figure  7.4: PWM carrier generation block diagram 



 
 

154 
 

 

Figure  7.5: synchronized carrier generation. (a) Master carrier, (b) master carrier 
phase angle, (c) converter’s 2 carrier, (d) converter’s 3 carrier  

Figure  7.5 shows the generated synchronized carriers. Master carrier and extracted 

phase angle are shown in Figure  7.5 (a) and (b) generated synchronized carriers for two 

different converters are shown in Figure  7.5(c) and (d). As depicted in Figure  7.5, the 

proposed algorithm succeeds to generate synchronized carrier with fixed phase angle 

with respect to the master carrier. The fixed phase shift can be compensated by adding 

phase offset to cancel the filter delay.  
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7.4 Phase angle control algorithm  

Each converter will have a local controller that consists of carrier extraction and 

synchronization module, PSCA module, pulse width modulator, voltage and current 

controller, as shown in  

Figure  7.6. Following the synchronization process, the PSCA will work to minimize 

DC bus ripple magnitude by adjusting the phase offset for each converter carrier.  

 

Figure  7.6: Multiple converters with carrier extraction and PSCA block diagram 

The PSCA operation is inspired from CSMA MAC protocol. All converters 

connected to the DC bus will use PSCA to control the local oscillator phase angle except 

the master converter. The PSCA should increment the phase angle while monitoring the 

ripple magnitude until reaching the optimal phase angle that produces a minimum ripple. 
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Since multiple converters will be connected to the same DC bus and search for the 

optimal angle, it is possible for two or more converter to change their phase angle at the 

same time. Changing the angle for more than one carrier simultaneously could disturb the 

PSCA.  

To avoid disturbing the PSCA by changing the phase angle of multiple carriers 

simultaneously, the PSCA utilize the same technique used by CSMA.  CSMA detects 

whether another transmission is in progress by detecting the presence of a carrier. If a 

carrier is present, the transmitter waits for a random time before trying to initiate 

transmission again. In the same manner, PSCA monitors the carrier magnitude before 

initiating phase control algorithm. If a change in the carrier magnitude is detected, the 

PSCA will set a flag to indicate detection of another converter and wait a random time 

before trying to modify the phase angle, as shown in Figure  7.7. To avoid the impact of 

noise and load change on the carrier magnitude, the PSCA will ignore magnitude changes 

less than a predefined threshold. If there is no activity detected, PSCA will start searching 

for the optimum angle using the perturb and observe technique. The PSCA will increment 

the phase angle by a small step and observe the effect on the ripple magnitude if the 

ripple is reduced the PSCA will continue incrementing the phase angle until the ripple 

starts to increase again. Perturb and observation algorithm will oscillate around the 

optimum phase angle. To stop oscillation, the PSCA monitors the oscillation in the phase 

angle and terminates the perturb and observe algorithm when oscillation is detected. The 

PSCA will allow the perturbation in one direction only to prevent oscillation in the 

harmonic vectors. Here, the perturb and observe algorithm can be stuck in a local 
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minimum phase angle and fails to reach the global optimum angle. Figure  7.8 shows all 

possible combinations of phase angles for three converters. The first converter is a master 

carrier and two synchronized converters. The phase angle of converter two and three 

shown in Figure  7.8 (a) and (b), respectively, are incremented by a 30-degree step with a 

different sample time to cover all the search space. The change in the ripple magnitude is 

shown in Figure  7.8 (c). 

  

Figure  7.7: Search algorithm state machine 
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As depicted from Figure  7.8 to avoid stuck at the local minimum value, the initial 

perturbation should greater than or equal   
గ

ଶ
 then increment with small step. PSCA will 

adjust the increment step to 
గ

ଶ
 when the new flag is set and then change it to a regular 

increment step.  

  

Figure  7.8: Perturb and observation search space 

7.5 Simulation results  

A model for three parallel converters, synchronization algorithm, and PSCA is built 

based on MATLAB/SIMULINK® to test and validate the robustness of the proposed 
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methods. The converters connection topology and parameters are shown in Figure  6.1 and 

Table  6-1in the previous chapter.  All voltage and current controllers are identical to the 

controllers used with the GPS synchronization algorithm. 

Two cases were simulated to validate the proposed methods under different 

operation conditions. The first case is for equal sharing load. In this case, 4 Ohm load 

was fed equally from the three converters with DC bus regulated at 40V and load current 

10 A. However, in the second case, the master converter supplies 50% of the load 

demands while the two slave converters supply 25% of the load demands each.   

7.5.1 Case one result  

The simulation result for case 1 is shown in Figure  7.9. Figure  7.9-a, b, c, and d show 

the DC bus voltage, the ripple magnitude, converter 2 phase offset, and converter 3 phase 

offset, respectively. Initially, until around the first second, all converters start with a zero 

phase angle for the carriers. At t = 1.1 sec, the PSCA for converter 2 starts to search for 

the optimum phase angle and reaches 180 degrees. At this point, the PSCA detects a 

phase oscillation and terminates the search. During this period, the PSCA for converter 3 

is sensing an amplitude change in the voltage ripple and thus remains idle. After the DC 

voltage ripple amplitude reaches its constant state, the PSCA for converter 3 starts to 

search for the optimal phase angle at t = 2 seconds.  The PSCA for converter three stops 

its search when the perturb and observation algorithm reverses the perturbing direction to 

prevent oscillation in the harmonic vector and reaches phase angle equal to 30 degrees. 

Similarly, during the second period, the PSCA for converter 2 remains idle till the 

magnitude of the DC voltage ripple stabilizes again. After a random time period, the 
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PSCA for converter 2 repeats the same steps and stops at a 240 degrees phase shift, 

whereas the PSCA for converter 3 stops at 120 degrees. During the entire process, the 

PSCA are commanded to terminate the search algorithm when the DC voltage ripple falls 

below 0.5 V. In this simulation, the DC voltage ripple reached a minimum of 0.47 V. 

Figure  7.10-a, b, c, and d shows the phase angle between carriers during the search 

periods. 

 

Figure  7.9: Case1 simulation results for Equal load sharing. (a) DC bus voltage ripple, 
(b) Ripple Magnitude, (c) Phase offset1, (d) Phase offset 2 

0 1 2 3 4 5 6 7
30

35

40

45

50

D
C

 b
us

 V
ol

ta
ge

 (
V

)

(a)

0 1 2 3 4 5 6 7
0

1

2

3

R
ip

pl
e 

M
ag

ni
tu

de
 (

V
)

(b)

0 1 2 3 4 5 6 7
0

100

200

300

P
ha

se
 o

ff
se

t 
1 

(d
eg

re
e)

(c)

0 1 2 3 4 5 6 7
0

100

200

300

P
ha

se
 o

ff
se

t 
2 

(d
eg

re
e)

(d)     
Time (s)

Phase oscillation

Phase oscillation
Reverse direction



 
 

161 
 

 

Figure  7.10: carriers phase angle for case one. (a) Carriers at t=0 s, (b) Carriers at 
t=2.5 s, (c) Carriers at t=3.5 s, (d) Carriers at t=5.5s 
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(a) 

 

(b) 

Figure  7.11: harmonics analysis for case 1. (a) Harmonics magnitude before PSCA, 
(b) Harmonics magnitude after PSCA 
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Harmonic analyses were performed for the DC voltage before and after applying 

the PSCA algorithm and the results are shown in Figure  7.11-a and b, respectively. As can 

be appreciated from the figure, the ripple component with the same frequency as the 

switching frequency (2000 Hz) was reduced significantly from 6.07% to 0.47%. The 

ripple for the 4000 Hz and 6000 Hz decreased in their turn from 0.29% to 0.01% and 

from 0.71% to 0.67%, respectively. 

7.5.2 Case two: none equal Load sharing. 

The simulation result for case 2 is shown in Figure  7.12. Figure  7.12 (a), (b), (c), and (d) 

show the DC bus voltage, the ripple magnitude, converter 2 phase offset, and converter 3 

phase offset, respectively. Initially, until around the first half second, all converters start 

with a zero phase angle for the carriers. At t = 0.6 sec, the PSCA for converter 2 starts to 

search for the optimum phase angle and reaches 180 degrees. At this point, the PSCA 

detects a phase oscillation and terminates the search. During this period, the PSCA for 

converter 3 is sensing an amplitude change in the voltage ripple and thus remains idle. 

After the DC voltage ripple amplitude reaches its constant state, the PSCA for converter 

3 starts to search for the optimal phase angle at t = 1.5 seconds.  The PSCA for converter 

2 stops at a 240 degrees phase shift. During the entire process, the PSCA are commanded 

to terminate the search algorithm when the DC voltage ripple falls below 0.5 V. In this 

simulation, the DC voltage ripple reached a minimum of 0.36 V. Figure  7.13 (a), (b), (c), 

and (d) shows the phase angle between carriers during the search period. Harmonic 

analyses were performed for the DC voltage before and after applying the PSCA 

algorithm and the results are shown in Figure  7.14 (a) and (b), respectively. 
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Figure  7.12: Case2 simulation results. None Equal load sharing. (a) DC bus Voltage, 
(b) Ripple Magnitude, (c) Phase offset 1, (d) Phase offset 2 
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Figure  7.13: carriers phase angle for case two. (a) Carriers at t=0.5 s, (b) Carriers at 
t=1.5 s, (c) Carriers at t=2.5 s 
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     (a) 

 

(b) 

Figure  7.14: harmonic analysis for case 2.  (a) Harmonics magnitude before PSCA, 
(b) Harmonics magnitude after PSCA 

As can be appreciated from the figure, the ripple component with the same 

frequency as the switching frequency (2000 Hz) was reduced significantly from 6.33% to 

0.36%. The ripple for the 4000 Hz and 6000 Hz decreased in their turn from 0.31% to 

0.14% and from 0.73% to 0.14%, respectively. 
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7.6 Hardware verification and experimental result  

In order to implement the proposed algorithm in real-time, an experimental test bench, 

shown in Figure  7.15, has been designed. In this implementation, the ARM Cortex M4 

Microcontroller is used to implement the functions of the carrier extraction, PSCA, and 

PWM. This control layer performs fast computation for the proposed algorithms and 

hard-real-time input/output function to control the DC-DC converters’ semiconductor 

switches. The DSP extension for the ARM Cortex M4 assists in the fast computation of 

the control output. The built-in dedicated analog to digital converters with direct memory 

access makes it possible to acquire analog feedback signals with a fast sampling rate 

(100K sample /s).  The STM32f407vgt6 32 Bit ARM cortex M4 processor running at 

160MHz was used for the embedded implementation of the proposed algorithm.  

 

Figure  7.15: Hardware setup for carrier extraction and PSCA verification  

To reduce the processing overhead and reach the sampling time of 1e-5 second, the 

PLL was replaced by frequency and phase estimator shown in Figure  7.16. The estimator 

calculates the frequency from the measured period between two zero crossing instances. 
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A digital integrator is used to calculate the phase angle from the frequency value. The 

digital oscillator is synchronized with the positive zero crossing signal to ensure that the 

calculated phase angle is synchronized with the carrier phase angle.  The embedded 

firmware is generated from the Simulink model and compiled using the GNU C cross-

compiler for ARM.  

 

Figure  7.16: Low processing overhead frequency and phase estimator 

The voltage and current control loops are implemented in dSpace 1104 embedded 

controller.  The duty cycle reference is transferred from dSpace to the ARM processor as an 

analog reference. The embedded code in the ARM processor compares received duty cycle with 

the internal carrier and generates PWM digital output to drive the DC-DC boost converter. The 

power circuits for the three converters have the same parameter and topology used in chapter 7 

experiment. The three converters are connected to the 4 Ohm load and 40 V common DC bus. 

The controllers for the three converters are adjusted to equally share the load current. 

Figure  7.17 and Figure  7.18 show the DC bus voltage during PSCA search and finale 

carrier phase angle, respectively. As depicted from figure 17, the proposed algorithm 

reduces the ripple magnitude from 3 V to 0.75 V with optimized carrier phase angle.   
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Figure  7.17: DC bus voltage with PSCA. 

 

Figure  7.18: Three converter carriers after PSCA 
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7.7 Summary 

In this chapter, a new synchronization and PSCA for PWM carriers of DC-DC 

converters based on carrier extraction is proposed. The advantage of this synchronization 

method is that it does not require a GPS time reference. Therefore, it eliminates the risk 

of GPS spoofing attacks. Simulation results on a multiple converter system showed the 

success of the proposed synchronization method in minimizing the DC bus voltage ripple 

to below 0.5 V. Finally, experimental results showed the excellent performance of the 

proposed method. 
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Chapter 8 Microgrid Inverter Based Synchronization and Islanding Detection 

8.1 Introduction 

The increased adoption of new energy sources and distributed generation (DG) is 

contributing to the continuous evolution of grid interconnection requirements towards a 

better control of generated power and enhanced contribution of distributed power 

generation systems to the overall power system stability. There is a great requirement for 

the ability of DG units to stay connected during short grid disturbances. In addition, this 

is needed to provide active/reactive power control at the point of common coupling [85]. 

Most renewable DG systems are connected to the grid through power electronics 

converters. The synchronization mechanism used to synchronize the power converter to 

the AC grid play a vital role in the performance of such systems during faults and 

transient conditions  [85],  [86]. The ability to stay connected under unbalanced or fault 

conditions and the sensitivity to voltage sag, voltage dip and harmonics are dependent on 

the synchronization mechanism [85].  

The classical synchronization technique using zero crossing detection or charge pump 

phase locked loop (CP-PLL) fails under distorted voltage conditions  [85], Synchronous 

Reference Frame phase locked loop (SFR-PLL) with low bandwidth shows good 

performance under distorted voltage conditions but it has slow response during transient 

and is sensitive to frequency fluctuation and unbalanced voltage  [87].  

For unbalanced condition, some PLL uses an all-pass filter (APF) to detect and isolate 

the negative sequence  [88]. Most PLL techniques fail to provide stable frequency after 
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losing the grid frequency reference due to a grid disconnection. Maintaining stable 

frequency after a grid disconnection is very important for microgrid to continue its 

operation in islanding mode and feed the local AC loads. Implementation of islanding 

detection is imperative for the microgrid. Failure to detect islanding condition could 

cause safety hazards to the utility workers and equipment damage. Several techniques 

were introduced to detect islanding condition using active, passive and remote detection 

methods  [89]. Passive islanding methods monitor voltage, the active and reactive power 

to detect an islanding condition. Passive detection fails when local load and energy 

produced by the microgrid are balanced.  Active methods inject small signals, such as 

high frequency or negative sequence components, into the line and detect signal 

changes  [89]. The active detection method provides a robust islanding detection solution 

but it uses complex algorithms for current injection and detection of changes. The 

Remote detection method solution relies on communication signals, such as power line 

carriers PLC communication, remote disconnect signals, and SCADA systems in addition 

to PMU- based islanding detection [90]. The remote detection method is prone to 

communication failure problems. Losses of PLC carrier or communication with the 

SCADA system could lead to false islanding detection and disconnection of the 

microgrid.   

In this chapter, an accurate synchronization technique based on adaptive SRF-PLL 

(ASRF-PLL) under unbalanced and distorted voltage condition is introduced moreover 

the proposed ASRF-PLL is able to detect islanding condition and switch to stable 

frequency during standalone operation and automatic resynchronization with the grid 
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when it became available. The islanding detection signal from ASRF-PLL can be used to 

reconfigure the grid tie converter control to work in voltage control mode during 

standalone operation or power control mode during grid connection. The proposed 

ASRF-PLL is completely software based, which can be implemented in digital processors 

which eliminate the errors caused by component drift in hardware based solutions. The 

superior performance and unique features of the proposed PLL increase the Microgrid 

stability and reliability. A reconfigurable controller for the grid-connected converter was 

also introduced to work in conjunction with the PLL to ensure proper operation in 

islanding mode. 

8.2 Conventional SRF-PLL 

The SRF-PLL concept is based on aligning the output frequency of the controlled 

oscillator with the d axis in the dq frame by forcing the q component to be zero using a PI 

controller. Refer to Figure  8.1, which shows the basic structure of the SRF-PLL. 

 

 

Figure  8.1: Conventional SRF-PLL 

The three-phase voltages Vୟ,	Vୠ,Vୡ,are transferred to synchronous reference frame using 

Park’s transform and estimated phase angle	θ   equation (8.1).     
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Now, the PI controller forces the v୯ component to become zero to align the PLL output 

with the d axis. When the PLL output becomes in phase with the supply voltage, the PI 

output will be equal to the angular frequency ω and θ  can be obtained by integrating the 

PI output. Assuming clean and balanced voltage, a DC component only will exist in the 

dq axis; the PI controller will force this DC value to become Zero in the q axis. In the 

case of the unbalanced voltage, an AC component with a frequency equal to twice the 

supply frequency will exist in the dq axis. This AC component will cause oscillation in 

the estimated frequency and phase angle. This error in estimating phase angle can lead to 

injecting a harmonic current to the supply system and power oscillation. Harmonic 

voltage also causes an AC component in the dq axis with orders equal (n-1), where n is 

the harmonics order in the abc frame. Figure  8.2 shows the effects of unbalanced voltage 

on the stability of SRF-PLL. Unbalanced voltage due to external fault could lead to large 

oscillation in the SRF-PLL output frequency. The frequency oscillation could force the 

protection system to disconnect the microgrid from the utility. Disconnecting microgrids 

during faults will increase the stress on the utility due to losses of DG resources. The 

impact of harmonic on the SRF frequency estimation is shown in Figure  8.3. The 

presence of the fifth harmonic with 5% magnitude causes an oscillation in the SRF_PLL 

frequency output.  
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Figure  8.2: SRF-PLL Phase angle and estimated frequency under unbalanced voltage 
condition.  (a) Three phase voltage. (b) Phase angle. (c) Estimated frequency 
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Figure  8.3: SRF-PLL Phase angle and estimated frequency under distorted voltage 
condition. (a) Three phase voltage. (b) Phase angle. (c) Estimated frequency 
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8.3 Adaptive SRF-PLL 

To improve the performance of the conventional SRF-PLL, the AC component associated 

with the harmonic and unbalanced condition must be rejected. To reject the AC 

component in the dq synchronous frame, a traditional low-pass filter with cut-off 

frequency < 2ω  is used. A high order filter is also required to obtain high attenuation for 

the AC components. This type of filter will lead to a poor transient response. The 

proposed technique uses an adaptive moving average filter to reject the AC components 

resulting from harmonics and unbalanced voltage without affecting the transient 

performance of the PLL. 

 

Figure  8.4: Moving average filter frequency response 
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Moving average filter is a type of finite impulse response filter (FIR), which creates a 

series of averages of sampled signals over a defined window. If the moving average filter 

runs with a window size of 1/120 sec, it will be able to reject the signal with 120 Hz and 

its integral  [91]. Since the AC components in the dq frame are always even and always 

integral of 120Hz in a 60Hz supply system and are also an integral of 100Hz in a 50Hz 

supply system, then the moving average filter will be able to reject all ripples resulting 

from harmonics and unbalanced voltage. Figure  8.4 and Figure  8.5 shows a frequency 

response comparison between the moving average filter with average window equal 

1/120 sec and second-order Butterworth low-pass filter with cutoff frequency 12Hz. 

 

Figure  8.5: Butterworth low pass filter frequency response 
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Both moving average filter with 1/120 sec window and Butterworth low-pass filter 

with cutoff frequency of 12Hz have attenuation equal to 40dB at 120 Hz. The 

Butterworth filter has a phase margin equal to -135 degree at 20Hz and -164 deg at 60 

Hz. However, the moving average filter has -45 degree at 20Hz and -90 deg at 60Hz. 

Also, the Butterworth low-pass attenuates all the frequency components with a frequency 

greater than 120 Hz, which slow down the PLL response, while the moving average filter 

attenuates only the component with a frequency equal to multiple of 120Hz.  

In the weak grid that has multiple small generations with low inertia, the frequency 

might deviate from the nominal value. In this case, the performance of PLL with moving 

average filter tuned at fixed window will degrade due to change in the operating 

frequency. If the moving average filter has an adaptive window size that changed 

automatically according to the supply frequency, the filter will have the same attenuation 

for the AC component at the new operating points. The PLL will then be able to follow 

the frequency drift without any degraded performance. Figure  8.6 shows the SIMULINK 

model for proposed PLL with adaptive window size. The window size will always be 

equal to 
ଵ

ଶ∗௙
 , where f is the estimated supply frequency to ensure the attenuation of all 

AC component results from unbalanced and harmonics voltage 

The performance of the ASRF-PLL is depicted in Figure  8.7 and Figure  8.8. The proposed 

method greatly improved frequency and phase estimation under distorted and unbalanced 

voltage condition. The moving average filter damps the frequency oscillation and 

improves phase detection accuracy. 
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Figure  8.6 Proposed ASRF-PLL with an adaptive moving average filter simulation model 
  

In Figure  8.7 an unbalanced voltage condition occurs at a time equal to 0.06 sec. The 

ASRF-PLL output frequency slightly fluctuated and restored back to 60 Hz in less than a 

quarter cycle. The estimated frequency is fixed at 60 Hz with no oscillation. The Same 

performance is obtained with distorted voltage condition. In Figure  8.8, at time equal 0.06 

sec, 5% fifth harmonic is injected to the phase voltage. The ASRF-PLL succeeds to reject 

the harmonic frequency and produce stable frequency and phase angle references. It’s 

worth to noting that the conventional SRF has 120 Hz overshoot during startup while the 

proposed method has 85 Hz overshoot.  



 
 

181 
 

 

Figure  8.7: ASRF-PLL Phase angle and estimated frequency under unbalanced 
voltage condition.  (a) Three phase voltage. (b) Phase angle. (c) Estimated frequency 

0 0.05 0.1 0.15
-300

-200

-100

0

100

200

300

V
ab

c 
(V

)

(a)

 

 

0 0.05 0.1 0.15
0

1

2

3

4

5

6

7

P
ha

se
 a

ng
el

 (
ra

d)

(b)

0 0.05 0.1 0.15

40

60

80

100

120

F
re

qu
en

cy
 (

H
z)

(c)     
Time (s)

Va
Vb
Vc



 
 

182 
 

 

Figure  8.8: ASRF-PLL Phase angle and estimated frequency under distorted voltage 
condition. (a) Three phase voltage. (b) Phase angle. (c) Estimated frequency 
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8.4  Islanding detection and standalone operation 

Most PLL techniques fail to maintain the frequency stability after sudden grid 

disconnection and introduce large frequency drift in the absence of the grid frequency 

reference in the Microgrid applications. It is necessary to maintain the frequency stability 

in islanding mode to prevent interruption of service and continue to feed the local loads 

with available power from the local distributed generation. To achieve this goal, a small 

error is introduced to the PLL center frequency. This error will be compensated by the PI 

controller in the presence of the grid frequency reference. In absence of grid frequency 

reference, the error will be accumulated and cause frequency drift in the PLL output. An 

islanding detection algorithm is implemented inside the PLL to detect the frequency drift 

in the PLL output after grid disconnection. The trip signal from the detection algorithm is 

used to trigger three important functions in the microgrid control system. First, the trip 

signal triggers the PLL to switch to internal frequency reference to maintain fixed and 

stable frequency. The second function of the trip signal is triggering the grid converter 

control to change the control mode from power control mode to voltage control mode. 

The last function of the trip signal is to trip the circuit breaker between the microgrid and 

the main grid. A reset signal from a voltage detector can be used to reset the PLL to 

switch back from internal reference and resynchronize with the grid when the main grid 

becomes available. Figure  8.9 shows the SIMULINK model for the proposed islanding 

detection algorithm. If the frequency drift becomes greater than the defined threshold for 

the defined time period the detection algorithm will trigger the trip signal. Figure  8.10 

shows the proposed ASRF-PLL complete with adaptive moving average filter and 

islanding detection.  
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Figure  8.9: SIMULINK model for islanding detection algorithm. 

 

Figure  8.10: SIMULINK model for proposed ASRF-PLL with islanding detection 
algorithm and internal frequency reference 

8.5 Microgrid control reconfiguration 

Most distributed generation units in the microgrid are usually connected to the main 

grid using power electronics converters. In normal mode, the converters’ controls are 

working in power control mode to control the power flow between the microgrid and the 

main grid. The voltage at the point of common coupling is regulated by the main grid. If 
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the grid is disconnected and the converter continues to work in power control mode, the 

voltage at the converter terminals will become unregulated. Feeding constant power after 

grid disconnection could lead to over voltage in the case when injected power exceeds the 

local load's demands. This situation can cause severe conditions to the Microgrid and 

interrupt the microgrid service. To improve the microgrid reliability and maintain 

continues service, the converter control must be automatically reconfigured for voltage 

control mode when islanding is detected, to regulate the voltage and continue feeding the 

local load. The reconfiguration process is triggered by the trip signal from islanding 

detection algorithm. Figure  8.11 shows the block diagram for the proposed 

reconfigurable converter control algorithm. 

 

Figure  8.11: Reconfigurable converter control 

The proposed controller consists of two sub-controllers. The first controller is power 

controller, which is implemented in the dq frame to control the active power. The power 
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reference is subtracted from the measured power and the error signal is fed to a PI 

controller to generate the reference current Iୢ in the dq frame. The Iୢ is transferred to the 

abc frame and fed to a hysteresis current controller to control the injected current to the 

grid. The second controller consists of regular sample PWM controller to control the 

voltage terminal. The trip signal from the islanding detection algorithm selects which 

controller will be in service according to the main grid status. To evaluate the 

performance of the proposed synchronization mechanism and converter controller a 

simulation model for the microgrid consists of a fuel cell emulator, three phase inverter, 

wind turbine emulator and local AC loads, as shown in Figure  8.12. The microgrid model 

was tested under various grid conditions with proposed ASRF-PLL and reconfigurable 

controller techniques and with the conventional SRF-PLL synchronization technique for 

comparison. 

 

Figure  8.12: Microgrid Block diagram 
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8.6 Simulation results 

The simulation results for the microgrid control with conventional SRF-PLL are 

shown in Figure  8.13. It is clear that the SRF-PLL produce large frequency oscillation in 

presence of voltage harmonics. This frequency oscillation increases significantly in the 

presence of unbalanced voltage at time equal 0.15 second. Moreover, the SRF-PLL 

completely fails to maintain constant frequency after the grid disconnection at time equal 

0.2 seconds. Figure  8.14 shows the simulation results for the proposed ASRF-PLL 

technique. The simulation results show that the proposed PLL has excellent performance 

under distorted and unbalanced voltage; it also maintains a constant frequency and 

accurate phase angle detection under various conditions. This leads to reduction of the 

current total harmonics distortion from 7.04% with SRF-PLL to 3.22% with the proposed 

ASRF-PLL. On the other hand, the islanding detection mechanism detects the grid 

disconnection. The PLL automatically switched to an internal reference, maintaining 

constant output frequency. The inverter controller successfully changed to voltage control 

mode and regulates the output voltage. 
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Figure  8.13: Microgrid performance with conventional SRF-PLL. (a) three phase 
voltage. (b) Estimated phase angle. (c) Estimated frequency. (d) Grid status 
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Figure  8.14: Microgrid performance with ASRF-PLL. (a) three phase voltage. (b) 
Estimated phase angle. (c) Estimated frequency. (d) Grid status 
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8.7 Experimental results 

The proposed ASRF-PLL and reconfigurable inverter controller were implemented 

using real-time digital controller dSPACE 1103. The experimental test bed shown in 

Figure  8.15 consists of a 6 kW fuel cell emulator, wind turbine emulator, three phase 

inverter and an AC grid consisting of four generators.  

The experimental result for the SRF-PLL is shown in Figure  8.16. The SRF-PLL has 

large phase error in presence of voltage distortion and the output frequency is oscillating 

around 60Hz.  Figure  8.17 shows the frequency response for the proposed ASRF-PLL. 

The results show that the proposed ASRF-PLL performance is excellent under distorted 

voltage conditions. The phase angle tracking is accurate and the estimated frequency is 

stable. The islanding detection performance and control reconfiguration are depicted in 

Figure  8.18. An islanding situation occurs at a time equal to 0.5 Sec. The islanding 

detection algorithm detects the frequency drift and switches to internal frequency 

reference. The trip signal initiates control reconfiguration from power control to voltage 

control mode, which results in stable voltage and frequency.   

 

Figure  8.15: Microgrid test bed. 
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Figure  8.16: Conventional SRF-PLL experimental results. (a) phase voltage, (b) 
Phase angle, (c) frequency 
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Figure  8.17: Proposed ASRF-PLL experimental results 
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Figure  8.18: ASRF-PLL islanding detection 
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8.8 Summary  

In this chapter, an improved adaptive synchronous reference frame phase locked loop 

ASRF-PLL with islanding detection is introduced. The proposed technique shows an 

excellent performance under unbalanced and distorted voltage conditions. In the 

islanding mode, the detection algorithm succeeds to detect grid disconnection and switch 

to internal frequency reference. A reconfigurable inverter control is also proposed to 

maintain stable operation in the grid connection and stand-alone operation modes. The 

proposed method ensures islanding detection and stable operation of the microgrid when 

remote islanding detection and SCADA system fails.    Both simulation and experimental 

results prove that the proposed techniques improved the microgrid’s performance and 

stability, and reduce the chance of microgrid service interruption. 
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Chapter 9 Microgrid Energy Management System 

9.1 Introduction 

The smart grid is seen as a power system with real-time communication and control 

capabilities between the consumer and the utility. This modern power system model 

allows facilities to adopt new technologies and consumers to perceive new services. 

Utilizing communication technologies, the smart grid topology allows optimization of 

energy usage based on several factors including environmental, price preferences, and 

system technical issues. Therefore, the smart grid will be integrated with a smart 

infrastructure such as smart meters and intelligent controllable devices with advanced 

two-way communication channels. The latter will facilitate the adoption of distributed 

EMS  [92], [93]. The concept behind energy management is to utilize this two-way 

communication technology in order to achieve more resilient and sustainable power grids 

by properly adjusting the power flow from and to the main grid based on present and 

forecasted pricing, generations, and load information. This is to meet certain operational 

objectives such as cost minimization  [93], [94]. The EMS enables energy consumers to 

change their consumption patterns by providing them with incentives in a strategy 

referred to as real-time pricing where utilities vary the energy price in accordance to real-

time generation cost  [95]. Consumers’ bills are thus reduced while achieving flat demand 

peaks  [96].  

There have been significant efforts in recent literature on EMS dealing with different 

points of view and utilizing different modeling and implementation techniques. In the 

energy trade decision-making processes, most developed EMS models rely on data from 
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current and forecasted observations. One of the main contributions of this work is the 

utilization of history, present, and forecasted future data to design an EMS with fine-

tuned energy trade decisions.  That is, the developed EMS controller makes its decision 

based on current and forecasted observations, while its parameters are being adapted and 

optimized by running exploration simulation scenarios based on highly correlated short-

term history data. The work presented in this chapter develops a complete EMS 

framework for small microgrids or nanogrids, which is practical and scalable. The EMS 

represents the application layer on the top of previously developed physical, 

communication and control layers. The EMS application will collect information from 

AMI, sensor network and control power electronics converters, energy storage and 

distributed renewable energy source to optimize the energy usage and reduce the cost.    

As the expertise and manpower present in large utility systems is not always available 

for operating small microgrids, the communication requirements for EMS in small 

microgrids are more stringent. Such EMS must be designed for ease of installation, 

support, and maintenance. This requires a robust, resilient, and distributed 

communication infrastructure with failover mechanisms. Therefore, the DDS 

infrastructure is utilized as the communication backbone for all involved entities in the 

developed EMS as shown in Figure  9.1. Some of the recent work in the literature 

proposed the utilization of IEC 61850 as the communication framework for EMS for 

interoperability purposes. However, such implementation utilizes MMS protocol for 

high-level control applications, GOOSE protocol for event triggered signals, SMV 

protocol for sensor measurements. The drawback of this is that MMS messages are based 
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on client-server communications making the EMS not fully distributed. The GOOSE and 

SMV messages, on the other hand, are non-routable and have a lot of security issues 

because they are unencrypted broadcast messages. More details on IEC 61850 security 

will be discussed in chapter xx. It is noteworthy to mention that the DDS middleware is 

expandable and provides a standard API, which allows its integration with different 

systems. This allows mapping standard data models such as IEC 61850 into DDS. 

The developed EMS was tested on load consumption data for residential areas and 

solar energy patterns in Miami, Florida, USA for the year 2014  [97] applied on emulated 

microgrids models on hybrid hardware/software simulation environment. The developed 

control modules were built in SIMULINK simulation environment, converted into a C 

code and were run in real time. To account for practical networking issues, software 

modules were integrated with a DDS communication middleware to exchange the data 

over a real Ethernet network  [98]. Additionally, an appropriate QoS profile was set for 

each application as will be explained later. The hybrid modeling environment allows 

accurate emulation of the proposed EMS as an integrated cyber-physical system. Real-

time pricing and time-of-use price schemes were adopted in different case studies for 

months in winter and summer seasons. The results showed that the developed EMS was 

successful in providing significant savings in the microgrids power consumption cost 

and, in some cases, achieved profit. 

9.2 Real-time communication infrastructure for microgrid control 

Microgrid distributed control requires data exchange between different components 

and applications for efficient energy management and economic operation. 
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Figure  9.1: Proposed DDS Network and Microgrid Logical Control Hierarchy 

For instance, during its decision-making process, an energy management control 

system requires information exchange with smart meters, energy forecasting systems, 

energy storage, and other entities to decide on an appropriate energy transaction. Also, a 

demand side management application needs to exchange information pertaining load 

priorities and price information to send appropriate control commands to smart loads. 

Embedded controllers for power electronics converters, which manage the direction and 

amount of power flow, need to receive real-time control commands and send feedback 

signals to the control system as well. Moreover, the balancing between loads and 

generation in small microgrids with variable renewable energy sources and/or low inertia 

generators relies on fast communication and data exchange to maintain the overall system 



 
 

199 
 

stability. Each of the aforementioned applications and components has different 

communication requirements and require different security levels. The data and events 

were exchanged among different EMS modules using the developed DDS network 

utilizing peer-peer communication scheme. Figure  9.1 shows the proposed DDS network 

structure and the logical relations between various publishers and subscribers. In this 

chapter, the communication requirements for each type of application and component 

was analyzed to determine the updating data rate and quality of service required for each 

one. Redundancy paths and failover mechanisms to ensure operation continuity under 

communication failure or cyber-attack incidents were also studied.  

9.3 Intelligent microgrid control 

The intelligent control of the microgrid relies on seamless integration between 

multiple modules, such as load forecaster, energy management controller, renewable 

energy controller, energy storage and AMI. These modules will be discussed in detail in 

the following sections. 

9.3.1 Energy management system  

The system under study in this work is composed of an electric power utility and a 

scalable set of N microgrids as shown in Figure  9.2. Each microgrid has its own 

renewable energy generation resources, energy storage devices, and local loads. At all 

times, it is assumed that the microgrids are operating in grid-connected mode via a 

bidirectional grid-tied inverter. Two scenarios arise here: the first is when the microgrid 

has excess energy and needs to sell power to the utility, and the second is when the 

microgrid has deficient energy and needs to buy power from the utility. As can be seen in 
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Figure  9.2, the migration between the two modes of operation is decided upon by the 

control signal, Direction of Power Flow, coming into the grid-tied inverter. Moreover, not 

only does the controller decide on the direction of the power flow, but also it decides on 

the percentage of the power to be sold to or bought from the grid. That is, in the excess 

energy case, and after covering the microgrid’s local load, the controller outputs a power 

reference signal, which dictates what percentage of excess energy is to be stored in local 

energy storage devices and what percentage is to be sold to the utility. Contrary to this, in 

the energy deficiency case, the controller checks how much power is needed to cover the 

local load and purchases that amount from the utility. The controller presented is based 

on a set of fuzzy logic rules and takes its decision based on several input parameters 

which will be detailed in the section  9.3.3. 
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Figure  9.2: Overall System Topology 
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9.3.2 Advanced Metering Infrastructure and Energy Pricing Mechanism  

Advanced Metering Infrastructure allows bi-directional information exchange 

between smart meters and utility control centers. Smart meters send consumption 

information usually on an hourly basis and receive price information and control 

commands from the smart meter head-end. The main target of an AMI implementation is 

to allow demand side management and cost management  [99]. To achieve this goal the 

AMI standard allows exchanging information between smart meters and customer 

devices and systems through the customer gateway. The smart meter sends small data 

packets for basic power consumption information  [99]. The transmission rate of the 

formal could be defined per minute or per hour depending on the application need. 

Usually, the sensitivity of smart meter information exchange to communication delays 

inside a microgrid control network is relatively low; however smart meter data requires a 

high level of availability. Some applications utilizing smart meter data such as load and 

price forecasting depends on current and previous data to be persistent. Data persistence 

can affect the performance of such applications, especially in the case of losing and 

restoring communication. From a cyber-security point of view, smart meter data needs a 

high level of confidentiality to ensure customer privacy and data authentication to prevent 

replay and false data injection attacks. To secure the smart meter data on the GDS, DDS 

persistence and encryption features can be used to protect the data confidentiality and 

maintain last transmitted samples for newly joined devices.  

Two pricing mechanisms were adopted in our case studies. The first is a real-time 

pricing scheme, whereas the second is a time-of-use (TOU) pricing scheme. For real-time 

pricing, the energy management system will receive hourly pricing via AMI. 
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Figure  9.3: Real-Time Pricing Algorithm 

 

The utility company will change the energy price based on forecasted load and 

generation status. The utility controller takes generators statuses and total forecasted load 

as inputs and outputs the current and next hour energy price (CP and NHP respectively). 

The price of electricity is decided upon on hourly basis by a state flow control logic 

shown in Figure  9.3 and is divided into two categories: Low (10 cents/Kwh) and High 

(14 cents/Kwh). Here, a gateway is utilized to exchange pricing information between the 

energy management system and the smart meters. This gateway receives the real-time 

pricing from smart meters over a ZigBee wireless link and publishes it using 

publisher/subscriber protocol. The published price is available on the Global Data Space 

(GDS) for all interested applications such as the EMS and forecasting modules shown in 

Figure  9.1. Since the price signal has a low update rate, a persistence QoS feature has 

been enabled for it. This QoS ensures delivery of the last price to newly joined devices 

without periodically retransmitting the data. To prevent fake data injection attack on the 

price signal, which impacts the customer consumption cost, Price signal can be 

authenticated with the digital signature algorithm.  For the time-of-use pricing scheme, a 
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predefined price schedule is set for on-peak and off-peak energy consumption hours. The 

adopted profile is that set by Florida Power and Light Company (FPL) with two sets of 

prices. One for on-peak hours with a positive rate of 9.154 c/Kwh and another for off-

peak hours with a negative price rate of -4.072 c/Kwh  [100]. For this pricing scheme, no 

communication is required since the pricing profile is predefined for a long period of 

time. 

9.3.3 EMS Fuzzy Logic Controller 

The microgrid controller is a fuzzy controller based on the Sugeno-like model. The 

controller takes the batteries state-of-charge (SOC), current price (CP), next hour price 

(NHP),  available energy (AE) and  forecasted local load demand (FLD) as inputs and 

produces the microgrid’s reference power ( ௥ܲ௘௙ ) as output as shown in equation (9.1). 

௥ܲ௘௙ ൌ ݂ሺܱܵܥ, ,ܲܪܰ,ܲܥ ,ܦܮܨ  ሻ                                             (9.1)ܧܣ

By this method, the fuzzy logic controller decision is based on current and future 

observations of the microgrid state. The decision of the fuzzy controller is based on a rule 

surface composed of a set of 90 logic rules. Each of the five inputs (SOC, CP, NHP, AE, 

and FLD) are passed through trapezoidal membership functions spanning the complete 

range of their corresponding inputs. The firing strength of each rule is then evaluated and 

a crisp value of the output is calculated using the weighted average defuzzification 

method. 

The controller output is used to control the direction and amount of power flow 

through the grid-tied inverter. Therefore, the charge control signal for the energy storage 

devices, CC, is defined in equation (9.2) as: 
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ܥܥ ൌ ܧܣ െ	 ௥ܲ௘௙                                                         (9.2) 

This means that the battery will be charging either from the renewable energy sources 

in the case of ܧܣ ൐ 	 ௥ܲ௘௙ or from the utility when ௥ܲ௘௙ ൏ 0 indicating a reverse power 

flow from the AC side to the DC side on the grid-tied inverter. The SOC of the energy 

storage devices depends on the total amount of energy transferred to the storage devices 

minus the losses due to devices’ efficiency as in equations (9.3) and (9.4). 

ሻݐሺܥܱܵ ൌ ௐಶೄሺ௧ሻ

ாௌ஼
	ൈ 100	                                                     (9.3) 

ாܹௌሺݐሻ ൌ 	 ாܹௌሺݐ െ 1ሻ ൅  ሻɳ                                            (9.4)ݐ∆ሺܥܥ	

Where ாܹௌ is the total energy stored is, ܥܵܧ is energy storage capacity, and ɳ is the 

energy storage efficiency. The net power sold to or purchased from the utility is 

expressed in equation (9.5) as:  

௨ܲ௧௜௟௜௧௬ ൌ ܦܮܮ െ	 ௥ܲ௘௙                                                       (9.5) 

Where a positive ௨ܲ௧௜௟௜௧௬ indicates purchasing energy from the utility, while a 

negative ௨ܲ௧௜௟௜௧௬ indicates selling energy back to the utility. The energy transaction logic 

is shown in Figure  9.4. 

9.3.4 Forecasting 

A feed forward neural network trained using the Levenberg – Marquardt back 

propagation algorithm was used in order to forecast the hourly load demand and the 

anticipated power generated from the renewable energy sources in the microgrid. In most 

applications, neural networks are trained offline using bulk data sets to obtain a fixed set 
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of weights and biases, which are used afterward over the entire forecasting horizon. This 

strategy will be fine if applied to a simple problem or if the forecasting is done over a 

small-time scale. 

However, in the case of individual load demands for small microgrids, especially in 

the era of information security, a large amount of customer data for training could put 

customers’ privacy at risk if disclosed. For that, this work used an adaptive training 

technique entailing online update of the neural network’s weights and biases over short 

time periods. The neural network receives information about current load demand, 

previous hour load, weekday, day number, time and the day type (Normal day or holiday) 

and forecasts the next hour’s demand. In the adopted online training technique, the load 

of each next hour is compared with its forecasted value and the error is back propagated 

to fine tune the weights and biases as mentioned earlier. The load forecasting module 

receives data from the GDS shown in Figure  9.1. Since the forecasting algorithm  

depends on current and previous data samples, communication loss could impact the 

forecasting performance drastically. The DDS QoS could minimize the impact of 

communication loss on the forecasting algorithm by keeping N history samples. These 

samples will be delivered instantly to the corresponding subscribers upon communication 

restoration. Figure  9.5, shows the performance of the forecasting module upon losing 

samples 12 and 13. In Error! Reference source not found. (a), a historical length (N = 

2) is defined, whereas in Error! Reference source not found. (a) and (b) this QoS 

feature was not activated. As can be appreciated from the figure, the forecasting module 

was immediately able to catch up after the communication was restored, while in case of 
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Error! Reference source not found.(b), it took the forecasting module 2 samples to 

catch up. 
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Figure  9.4: Energy Transactions Logic 

 

Figure  9.5: Performance of neural network (a) with persistence QoS (b) without 
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9.4 Real Time Online Optimization of Controller Parameters 

As discussed earlier, the purpose of the energy management system is shifting peak 

loads of individual microgrids from high energy price periods to lower energy price 

periods. In order to ensure minimal expenditure and maximal profit for the microgrid, an 

online parameter optimization scheme based on Particle swarm optimization (PSO) for 

the fuzzy logic controller parameters was developed.  

The optimization process proposed in this work is periodic with a period of 1 day. 

That is, at the beginning of each day, the collected data are fed into the optimizer and the 

optimization process is initiated to come up with new optimized controller parameters for 

that day. Figure  9.6 shows the chronological order of the optimization process. It can be 

seen that the optimization process requires some time to finish and this depends on the 

adopted processor’s speed. In this study, the maximum optimization time recorded was 

23 mins on an Intel core i7 processor (3.50 GHz). This time could be further reduced by 

implementing parallel processing utilizing multiple processor cores simultaneously. It is 

worth noting that the optimization process in this work falls into the category of 

exploration simulation. That is, during the second day, while the system is up and 

running, the optimization process is being executed in the background on a simulated 

microgrid model to explore the performance of the new optimized parameters. Once the 

process is finalized, the controller’s parameters are updated online without any 

disturbance to the overall system operation. Consider the three-day period shown in 

Figure  9.6. During the past 24 hrs, measurement units in the microgrid are continuously 
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collecting data about available energy, local load demand, current price, next hour price, 

and state-of-charge of the microgrid’s energy storage devices. 

Day (N‐1)

Update controller 
parameters

Day (N) Day (N+1)

Moving 24 hr window
Optimization 

Time

 

Figure  9.6: Optimization Process 

1

Output

Input
A D

B C

LB UB

LB UB

LB UB

LB UB

LB UB

LB

UBLB

LB LBUB UB  

Figure  9.7: Constrained Search Space for Trapezoidal Membership Functions 

All collected data for the past 24 hrs window are stored in a temporary database. At 

the end of the first day, the optimization process initiates. First, a search space is 
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randomly generated by defining a population of varying combinations of membership 

functions. The population generation process is bounded by a vector of lower bounds 

(LB) and upper bounds (UB) for each of the vertices of the membership functions. The 

Proper definition of the lower and upper bounds is critical for the success of the 

optimization process Figure  9.7, shows the search space for a given trapezoidal 

membership function. In order to ensure proper operation of the fuzzy controller, the 

condition that A < B < C < D must be met. Also, assume that red membership function 

corresponds to a low SOC and the green membership function corresponds to a high 

SOC. It is important, thus, that the green membership function remains to the right of the 

red one. All these conditions have been taken into account in the setting of the lower 

bounds and the upper bounds vectors. The objective function to be minimized is shown in 

equation (9.6). 

݉݅݊	൫∑ ௨ܲ௧௜௟௜௧௬ሺ݄ሻ ൈ ଶସ	ሺ݄ሻݐݏ݋ܥ
௛ୀଵ ൯                                            (9.6) 

In a unique exploration simulation approach for fitness function evaluation, a 

software model of the physical microgrid with its controller was developed and used to 

simulate the response of the microgrid to the various particles in the swarm and evaluate 

the profits and expenditures. In all situations, the optimization process is bound by the 

constraints of checking that the microgrid is covering its base load and that the energy 

storage devices are maintained at a proper state of charge that does not deteriorate them. 

For example, lead-acid battery life could be extended significantly if its SOC does not 

fall below 40%  [101]. The optimization process is repeated until the combination of 

membership functions that results in better utilization of the microgrids energy storage to 
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shift peak loads to low price periods is achieved. Once the optimum membership 

functions are obtained and verified in the background simulation, the real time controller 

is updated with the new functions. Repeated optimization process allows the system to 

adapt to change on the customer behavior and price pattern.   

The microgrids, EMS algorithm, energy storage, renewable energy and load 

controllers are developed on SIMULINK MATLAB and converted to a C code to run in 

real time. Instead of having all the modules exchange data internally within the 

MATLAB environment, the developed modules are integrated with a DDS 

communication middleware to exchange the data over a real Ethernet network. This 

approach was adopted in order to account for networking issues such as packet drop, 

latency, and QoS. An appropriate QoS profile was set for each application as explained 

earlier. The merging of real network, hardware and simulation software creates a hybrid 

modeling environment that allows accurate emulation of the proposed EMS as an 

integrated cyber-physical system. Finally, a software module representing a smart meter 

head end collects all consumption measurements, feeds the data to the utility pricing 

module, and publishes back the real-time energy prices.  

9.5 Security and failover 

It is important to highlight several features in regards to the security of the proposed 

energy management framework. First, as explained earlier, the proposed EMS is 

composed of several distributed nodes each serving its purpose. For that, a redundancy 

scheme has been introduced for each distributed controller. This is achieved by the 

failover mechanism provided by DDS. Figure  9.8, shows a primary controller (A) and a 
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redundant controller (B) both having the same feedback and issuing the same control 

command. However, the owner strength of the primary controller’s command is higher. 

Controller B comes in game when controller A fails. 

 

Figure  9.8: Failover Mechanism 

Second, along with flattening peak loads, the EMS will ensure the privacy of the 

customer’s data by camouflaging his load demand profile. This is feasible by the 

utilization of renewable resources along with energy storage devices. This is emphasized 

in the results in the next section where the shape of the utility power curve is a 

camouflage of the actual customer load demand curve. Therefore, the customer’s 

behavior is secured and cannot be inferred even if such curves were disclosed. 

Finally, all communication are encrypted and all joining nodes are authenticated 

using DDS Secure. 

9.6 Results and Discussion 

In this section the results of applying the proposed Energy Management System with 

and without online optimization on the collected load and solar irradiance measurements 

from Miami, Florida, USA in winter and summer seasons. The month of January has 

been selected to represent the winter season, whereas the month of August was selected 
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to represent the summer season. Additionally, each case was repeated with two pricing 

profiles as explained before. The first is a real-time pricing scheme, while the other is a 

TOU scheme with values collected from FPL Company. 

9.6.1 EMS performance with real-time pricing scheme  

Figure  9.9 and Figure  9.10 show the result of applying the proposed energy 

management algorithm with real-time pricing scheme, first without using optimized 

parameters and second with using the daily optimized parameters in the winter season. 

Looking at the zoomed parts in Figure  9.9, the original load profile had peaks during high 

energy prices periods. The proposed EMS fuzzy controller without optimization was 

successful in reducing these peak values by managing the consumption from energy 

storage and renewable resources. In the winter season, the peak load at time t = 6.8 days, 

which corresponds to a high price period, was reduced from 3600 W to 2571.3 W. 

Figure  9.10 emphasizes the importance of the proposed online optimization technique by 

further reducing the amount of consumed power during high prices to 0 W. This because 

the optimized EMS has better utilization of the energy storage devices in the microgrid. 

Looking at the SOC profile, one notices that the SOC with optimization ranges between 

60-100%, whereas with optimization it ranges between 40-100%.  These results are also 

asserted in the summer season as shown in Figure  9.11and Figure  9.12 where the peak 

load at t = 7 days dropped from 3600 W to 2628.3 W without optimization and further 

reduced to 0 W with optimization. Similarly, the SOC with optimization ranges between 

60-100%, whereas with optimization it ranges between 40-100%.  
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9.6.2 EMS performance with TOU pricing scheme  

Figure  9.13 and Figure  9.14 show the result of applying the proposed energy 

management algorithm with TOU pricing scheme, first without using optimized 

parameters and second with using the daily optimized parameters in winter season 

Looking at the zoomed part in the Figure  9.13, during the on-peak period starting from t 

= 6.75 days to 6.917 days in winter season, the peak consumption was reduced from 2506 

W to 1790 W. Here, the customer was still purchasing power from the grid. However, 

with the optimization algorithm, during this period, the consumer was selling 716.1 W to 

the utility as shown in Figure  9.14. Again, this is due to an optimum decision of charging 

and discharging time of energy storage. Figure  9.15 and Figure  9.16 show that during the 

summer season with TOU pricing scheme, the original EMS controller parameters 

performed so well that the optimization scheme showed negligible improvements on the 

overall performance. 

Table  9-1 reflects the overall monthly cost of the proposed system for all case studies. 

For real-time pricing, the overall savings with optimization in the winter and summer 

seasons was 14.86% and 18.56%, respectively. For the TOU pricing scheme, the total 

savings were 107.5% and 915.30% for winter and summer seasons, respectively. 

Percentages higher than 100% means that the customer is making a profit. 

Table  9-1: Total Savings 

Pricing Season Total Cost Without 
EMS 

Total Cost with 
EMS 

Total Cost with 
Optimized EMS 

RTP Winter $ 145.74 $ 134.76 $ 124.08 
Summer $ 90.81 $ 84.12 $ 73.95 

TOU Winter $ 55.77 $ 17.16 $ -4.2 
Summer $ 2.94 $ -23.94 $ -23.97 
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Figure  9.9: Winter Real-time Pricing without Optimized Parameters 
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Figure  9.10: Winter Real-time Pricing with Optimized Parameters 
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Figure  9.11: Summer Real-time Pricing without Optimized Parameters 
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Figure  9.12: Summer Real-time Pricing with Optimized Parameter 
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Figure  9.13: Winter TOU Pricing without Optimized Parameters 
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Figure  9.14: Winter TOU Pricing with Optimized Parameters 
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Figure  9.15: Summer TOU Pricing without Optimized Parameters 
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Figure  9.16: Summer TOU Pricing with Optimized Parameters 
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9.7 Summary 

In this chapter, an energy management system for microgrids with an online 

optimization module accounting for history, current, and future system observations was 

developed and tested. The communication requirement for each module of the developed 

EMS (smart meters, load forecasting, controller, etc.) was studied and the required QoS 

profiles were defined accordingly. The DDS middleware was selected as the 

communication backbone for the proposed framework for its robust failover mechanisms 

and a rich set of QoS profiles. A hybrid exploration simulation framework, which 

exchanges data over a real Ethernet network, was developed to study the sensitivity of the 

system to networking issues, such as transmission delays, data availability, and reliability 

among other factors. The EMS was exposed to actual residential energy consumption and 

irradiance data from Miami, Florida and proved its effectiveness in reducing consumers’ 

bills and achieving flat peak load profiles. 
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Chapter 10 Load Signature and Customer Privacy 

10.1 Introduction 

The advanced metering infrastructure (AMI)  and other communication technologies 

will improve the operation of the smart grid. However, this will introduce privacy 

concerns to customers [102]- [106]. The AMI collects accurate load consumption data 

from users in a timely manner. This data could reveal some private information about the 

customer behavior to an observing entity. For instance, by observing the load 

consumption for a certain period, one could infer and interpret the patterns in a 

customer’s behavior. The energy management system discussed earlier could mitigate 

this by modifying the load consumption patterns through utilization of energy storage and 

local energy sources. However, the camouflage in the load pattern provided by the energy 

management system will not hide all the information that can be used to predict the 

customer’s behavior. For instance, most modern appliances and industrial loads are 

interfaced with power electronic switching devices. The power electronic interface of 

these devices creates a voltage and current harmonic signature for each load. These 

signatures will remain in the load current even after implementing the energy 

management system. Non-intrusive Load Monitoring (NILM) techniques can track the 

operation of individual devices by analyzing voltage and current waveforms for these 

signatures [103].  

The NILM is categorized based on the sampling frequency to low and high sampling 

devices. The low-frequency type samples the power consumption at 1 Hz or lower 

frequency then maps the changes in the  ΔP-ΔQ Plane to extract the power 
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signature[103][104]. The high sampling NILM type samples the voltage and current at a 

relatively high sampling rate to capture the harmonic contents of the load current then the 

captured data was analyzed to identify the harmonic signature for each appliance. An 

artificial intelligent technique such, as artificial neural network, can be used to extract the 

harmonic signature  [105].   

Using the devices’ harmonic signature, NILM can construct a database[106] that 

includes different types of loads and devices operating at the customer’s end. Specific 

operation periods of each load type can therefore be deduced, revealing private customer 

behavioral patterns as well as the type of equipment used and or owned. For residential 

customers, one could infer from this data the time in which the customer was in his/her 

home and operates exactly which appliance (e.g. TV, washing machine …). For industrial 

facilities, NILM can lead to information leakage about specific types of machines used in 

production and their operation time. A deep analysis of this information could lead to 

predicting the production capacity of this company and type of product manufactured. 

This is critical information in current competitive markets. Finally, NILM is quite a huge 

concern for military bases located in foreign lands and connected to their utilities. NILM 

could leak private information about the activities of these military bases and equipment 

owned by them. As such, compensating for harmonics and reactive power is not only 

important for the power quality enhancement, but also for ensuring customer privacy. 

Changing harmonics and power signature can improve the customer’s privacy and 

prevent NILM techniques from revealing private information from consumption 

measurement. Different approaches were developed to compensate for reactive power 
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and reduce harmonics  [107]- [113]. Changing the harmonic signature for multiple 

appliances requires online analysis for the current and automatic compensation for 

harmonics. In this chapter, the shunt Active Power Filter (APF) control algorithm will be 

proposed to change the load signature and improve the power quality for a group of 

connected loads. Moreover, the proposed APF control algorithm can inject a fake 

signature to disturb NILM.  

 

Figure  10.1: shunt active power filter block diagram 

APF can be connected in shunt or series. Shunt APF provides the capability to 

compensate for harmonics and reactive power simultaneously  [114]. Moreover, the 



 
 

226 
 

proposed active power filter can also compensate for unbalanced loads. Compensation for 

unbalanced load current makes it difficult for NILM to distinguish between single-phase 

and three-phase loads. The APF controller analyzes the load current in real-time to 

extract a reference current that represents the harmonics and reactive current components 

and injects an opposite current to cancel unwanted components from the source current, 

as shown in Figure  10.1.  

The performance of the active filter is mainly dependent on the accuracy of the used 

method to extract undesired harmonic component and the current controller that inject the 

current with opposite the direction to cancel the unwanted component. The Synchronous 

Reference Frame (SRF) method was used to extract the undesired current in three-phase 

balanced systems, but it fails with an unbalanced system.  While instantaneous power 

theory is usually used in the three-phase four-wire unbalanced systems, the disadvantage 

of instantaneous power theory is that it requires measuring the voltage and current for the 

three phases and requires more computations, which are reflected in the costs of 

implementation. The harmonic extraction methods and current controller will be 

discussed in detail in the next sections 

10.2 Harmonic and reactive current extraction  

The first stage in the APF control is the generation of a reference current that represents 

harmonics and reactive current contents. Calculating the reference current is either based 

on frequency or time domain. The frequency domain compensation is based on Fourier 

analysis of the distorted signal to extract the harmonics, which leads to high computation 

burden and slow response. The time domain compensations are based on the 
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instantaneous derivation of the compensating signals from the distorted ones. Most of the 

time domain compensation techniques are based on the synchronous reference frame and 

instantaneous power theory. 

10.2.1 Synchronous Reference Frame Current Reference Generation Method 

The synchronous reference frame compensation method uses the Park’s transform to 

represent the distorted signal in the d-q plane, as depicted in equation (10.1). With this 

transformation, the fundamental component will be represented by a DC value in the d-q 

plane. The harmonic component will be represented by an AC component with a 

frequency of 120 Hz and/or other multiples of 60 Hz. The active power, in this case, 

corresponds to the component of the current in the d-axis, while the reactive power 

corresponds to the other component. The harmonic compensation current can be 

extracted from the d-axis current using a high-pass filter as shown in Figure  10.2. In the 

case of a three-phase unbalanced system, when applying Park’s transform, an AC 

component appears in the d-q plane with a frequency of 120 Hz in 60 Hz networks due to 

unbalancing. This AC component is equal to the AC component produced by the third 

harmonics [115] which leads to injection of 3rd harmonic to the grid. 
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Figure  10.2: Block diagram of synchronous reference frame reference generation 

method 

10.2.2 Instantaneous Power Theory reference generation method.   

To overcome third harmonic injection due to the unbalanced condition, the harmonic 

component can be extracted using the instantaneous power theory proposed by 

Akagi  [116], [117]. This method is based on Clark’s transformation of the three-phase 

voltages and currents from the ABC coordinates to the αβ0 coordinates. The AC and DC 

components of the power can be obtained from the instantaneous values using high-pass 

and low-pass filters, respectively, as depicted in Figure  10.3. The instantaneous power 

theory can be applied to three-phase four-wire balanced and unbalanced systems. It can 

also be applied to a system with voltage harmonics  [118]Error! Reference source not 
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found.. However, there are some disadvantages of the instantaneous power theory 

technique; they involve complex hardware implementation due to the requirement of 

measuring voltages and line currents, and extra calculations to transform voltage and 

current to αβ0 coordinates.  

 

Figure  10.3: Block diagram of Instantaneous Power Theory reference generation 

method 

10.2.3 Proposed current Reference Generator 

In the proposed method, the harmonic current was extracted from the measured load 

current through the use of a modified synchronous-reference frame-based method. The 

synchronous reference frame method requires measuring the three-phase load currents 

only rather than the three-phase currents and voltages in the instantaneous power theory-

based method. The disadvantage of the synchronous reference frame-based method is that 

it is only suitable for a three-phase balanced system. Accordingly, some modification will 

be presented herein to make it suitable for three-phase, four wires, balanced and 

unbalanced systems. Figure  10.4 shows the block diagram of the modified synchronous 
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reference current generator. The direct current id is being calculated from the three-phase 

current using Park’s transformation.  

 

Figure  10.4: A block diagram of the reference current generator 

The calculated id contains a DC component that represents the fundamental active 

component current, while the AC component represents the harmonic components. The 

AC component frequency will be 120 Hz in an AC 60 Hz network and 100Hz in an AC 

50 Hz network. To obtain the DC component, id passes through a low-pass filter with a 

cutoff frequency of 75 Hz. The output of the low pass filter will represent the 

fundamental active current component. The filtered id will be used to obtain the 

sinusoidal fundamental component existing in the load current by using inverse Park’s 

transform. iq and i0 will be set to zero since we need to obtain the active fundamental 

component only. Consequently, the calculated sinusoidal component is subtracted from 

the load current. The obtained component is a reference current that represents all 

harmonics and reactive components existing in the load current. By this method, we can 

manage to overcome the problem of the AC component that exists in the id current due to 

the unbalanced load, since calculations in this scheme depend on calculating the 
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fundamental component existing in the load current. Hence, it is being subtracted from 

the load current to obtain the distorted component instead of calculating it directly. To 

calculate the Park’s transform, the supply phase angle must be known. A PLL was used 

to track the supply voltage phase angle in order to calculate sin(θ) and cos(θ)  [119]. In 

some cases, a frequency drift of the fundamental component can occur. The adopted 

ASRF-PLL has the capability to accurately track the frequency and compensate for this 

drift.  

10.2.4 Active power filter current controller.  

After extracting the harmonic and generating reference current for the unwanted 

component, the next stage is to inject this component with opposite direction to the 

supply system. Three-phase voltage source converter with self-supported DC bus will be 

used as a power amplifier to inject the harmonic current, as shown in Figure 10.5  To 

operate the voltage source converter in current control mode, a hysteresis current 

controller was used to regulate the injected current.  

Hysteresis control provides good harmonic suppression. However, as a disadvantage of 

such a technique, its switching frequency is not fixed. The power losses in 

semiconductors increase with increasing the switching frequency, therefore, it is very 

important to limit the switching frequency in high-power applications to minimize the 

power losses and increase the efficiency [120].  

To overcome the variable switching frequency problem, a modified version of the 

hysteresis current controller was developed and adopted. In the regular hysteresis 

controller, the error function is centered in a fixed pre-set hysteresis band. When the error 
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exceeds the upper or lower hysteresis limits, the hysteresis controller makes an 

appropriate switching decision to control the error within the pre-defined band. To limit 

the maximum switching frequency, another limiting stage was added to the controller. 

 

 

Figure  10.5: Voltage source inverter with self-supported DC bus 

This limiting stage consists of an edge triggered flip-flop and a controlled oscillator. 

Figure  10.6 shows a block diagram of the developed hysteresis controller. When the 

switching frequency exceeds the maximum limit, the flip-flops and oscillator override the 

controller command and limit the output frequency; this will lead to increasing the 

hysteresis band in accordance with limited switching frequency. As shown in Fig. 6, i* is 

the reference current calculated by the reference current generator and iinv is the actual 

current injected by the voltage source inverter. The fmax signal fed from an oscillator with 
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a frequency that equals the desired maximum switching frequency.  

 

Figure  10.6: A block diagram of the developed hysteresis controller 
10.3 Case studies   

To investigate the efficiency and ability of the proposed control technique to change 

the load signature, APF was tested with four different operation cases. The first test case 

involves dynamic inductive load to test the ability to hide the reactive power signature 

with sudden load change. The second test case involves unbalanced load to demonstrate 

the ability to hide the signature of a single-phase load connected to three-phase networks. 

The third test case shows the change in the harmonic signature for the nonlinear load. The 
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fourth test case demonstrates the ability of the APF to inject harmonic that emulates 

nonlinear load signature. The control of the APF filter was deployed using a dSPACE-

1104 embedded controller. The power circuit for the APF was implemented using a 

three-phase power electronics converter, shown in Figure  10.7. The converter was 

connected to the grid through 24mH inductors. The hysteresis current controller was 

limited to 20 KHz switching frequency.  

 

Figure  10.7: APF hardware setup 

10.3.1    Case Study one: Three phase dynamic inductive load. 

In this case, three-phase load consumes 900W active power and 300VAR reactive 

power is connected to the three-phase supply. The APF was connected in parallel with 

the load to compensate for reactive current, as shown in Figure  10.8. At time equal to 0.1, 

sec the load changes to 1200W and 300VAR. The APF smooths the sharp change in the 

supply current results from sudden load change, as shown in Figure  10.9. Sharp changes 

are necessary for NILM meters to detect the start and stop instances of appliances. 

Smoothing these edges reduce the ability of NILM to detect the starting of new devices. 

To hide the reactive power signature, the APF succeeds to maintain unity power factor 
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during steady state and load transient. Figure  10.10 shows the phase angle between the 

supply voltage, the load current and supply current. The load current has a phase delay 

with respect to the supply voltage while the supply current maintains a zero phase angle 

during the test period.  

 

Figure  10.8: Three phase dynamic load with shunt APF connection diagram 

10.3.2 Case Study two: Three phase unbalanced inductive load. 

To demonstrate the APF compensation for the unbalanced current, the three-phase 

unbalanced load was connected parallel to the APF. The balanced load draws 300W from 

phase a, and 420W from phase b and c. All phases are loaded with 100VAR reactive 

power. Figure  10.11 -a and 11-b shows the supply voltage and unbalanced load current, 

respectively.  As depicted from figure 11-c,  the APF distributes the consumed energy 

between the three phases and the supply current becomes balanced. Also, the APF 

maintains a zero-phase angle between the supply voltage and current, as depicted in 

Figure  10.12. 
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10.3.3 Case Study three: Three phase nonlinear load with harmonic current. 

In this case, the APF will be connected in parallel with the group of loads. The loads 

consist of three-phase inductive load and unbalanced load demonstrated in the previous 

case. Additional three-phase rectifier with RL load is connected in parallel. It is known 

that due to the uncontrolled operation of the diodes, the uncontrolled rectifier injects 

harmonics to the system. Figure  10.13 (a), (b), and c show the supply voltage, load 

current and supply current, respectively. The load current shown in figure 13 (b) has 5th 

and 7th harmonic with 6.51% and 4.46%, respectively.  As depicted from figure 13 (c), 

the proposed APF control algorithm succeeds to compensate for the unbalance and 

harmonic current. The supply current has 5th and 7th harmonic with 1.27% for both 

harmonic components. Another merit of the proposed technique is the compensation for 

reactive power, as shown in Figure  10.14. As depicted from figure 14 (b) and 14 (c), the 

proposed algorithm compensates for the reactive power and maintains a zero-phase angle 

for the supply current.  

10.3.4 Case Study four: Emulating a nonlinear load current signature. 

In addition to removing load current signature, APF can emulate harmonic and reactive 

power signature for a nonlinear load. By emulation load signature, the APF can deceive 

the NILM to detect non-existing loads. In this case, a three-phase load with 900W and 

300VAr was connected to the three-phase supply. The shunt active power filter was used 

to emulate the harmonic signature for a three-phase rectifier feeding RL load. The APF 

current reference generator was programmed to inject 5th and 7th harmonic. The supply 

voltage, load current and supply current are shown in Figure  10.15 (a), 15 (b) and 15 (c), 
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respectively. As depicted from Figure  10.15 (b), the load current was pure sinusoidal with 

no harmonic content. The supply current shown in Figure  10.15 (c) has 5th and 7th 

harmonic orders with 6.85% and 4.17%, respectively. The injected harmonics current 

mimic the signature of the uncontrolled rectifier used in the previous case.   It is worth to 

note that, the harmonic injected by the APF to emulate a load signature should not exceed 

the limits specified by the standard.    

 

Figure  10.9: APF performance with the three-phase dynamic load. (a) Supply voltage, 
(b) Load current, (c) Supply current 
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Figure  10.10: Dynamic load and supply current phase angle. (a) Supply voltage, (b) 
Load current, (c) Supply current 
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Figure  10.11: APF performance with three phase unbalanced load. (a) Supply voltage, 
(b) Load current, (c) Supply current 
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Figure  10.12: Unbalanced load and supply current phase angle. (a) Supply voltage, 
(b) Load current, (c) Supply current 
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Figure  10.13: APF performance with three phase non-linear load. (a) Supply voltage, 
(b) Load current, (c) Supply current 
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Figure  10.14: nonlinear load and supply current phase angle. (a) Supply voltage, (b) 
Load current, (c) Supply current 
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Figure  10.15: Load signature emulation. (a) Supply voltage, (b) Load current, (c) 
Supply current 
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10.4 Summary 

In this chapter, a synchronous reference frame-based controller was modified to be 

adequate to operate with balanced and unbalanced loads. This controller was used to 

control APF to compensate for current signature and different power quality issues for 

both balanced and unbalanced non-linear loads. Also, a modified version of the hysteresis 

controller was presented to overcome the problem of variable switching frequency and to 

appropriately control the switching frequency. The proposed control algorithm was 

experimentally tested to verify the effectiveness of the system. Different loading 

conditions were tested to verify the effectiveness of the system. The loading conditions 

were selected to represent different types of load signature. The test results show that the 

controller deals automatically and successfully change the load current signature, which 

improves the customer privacy by deceiving NILM. The proposed controller requires less 

computation compared to instantaneous power theory and regular synchronous reference 

frame methods. Combining the proposed active power filter control with energy the 

management system improves the customer privacy, in addition to reducing the energy 

cost and improves the power quality.  
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Chapter 11 Electromagnetic Signatures 

11.1 Introduction 

Modern control and design technologies dictate the use of power electronics in 

various stages of the power system. The electrical systems are becoming increasingly 

complex, as they are composed of microprocessor circuits, communication circuits, 

snubber circuits, sensors, among other components. Power electronics interfaces produce 

voltage and current harmonics; these harmonics radiate a stray electromagnetic field 

around controlled equipment. A Radiated field can cause electromagnetic interference 

problems to nearby devices. Moreover, the electromagnetic signature for controlled 

devices can be detected and identified remotely. Remote identification of equipment’s 

electromagnetic signature raises privacy and security concern for some types of power 

systems, such as shipboard power system. Shipboard power system represents a 

microgrid with multiple generators, distribution network, and heavy loads. Detection of 

electromagnetic signature remotely represents a threat to military ships. The stray field 

can activate naval mines and reveal location information. Several sources contribute to 

the ship electromagnetic signature, such as structural ferromagnetic material, cathodic 

protection and stray field from onboard equipment. The stray electromagnetic field is 

radiated from heavy current equipment, such as electric propulsion system drive and 

generators. The stray field can radiate through the ship hull into the surrounding 

environment and water, which can be detected at a distance. Shielding techniques are 

used to reduce the electromagnetic signature. By reducing the harmonic component that 

generates the stray field, especially from motor drives, the shield size can be reduced. 
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Many valuable strategies are proposed to reduce the harmonics content, ranging from 

modifying the rotor design  [121] to torque reduction  [122], revising the control algorithm 

of the converter  [123],  [124], and multilevel converters among others. Some researchers 

utilized artificial intelligence techniques, such as genetic algorithms, fuzzy logic and 

others in optimizing the performance of multilevel converters, such as in  [125],  [126], 

and  [127]. In  [125], the genetic algorithm optimization was applied to the multilevel 

inverter to determine optimum switching angle for cascaded multilevel converters. The 

intention was decreasing higher order harmonic while maintaining the fundamental 

harmonic. The process of calculating the optimized switching angle is offline. In  [127], 

the authors utilize a hybrid real-coded genetic algorithm for finding the optimal solution 

to the nonlinear equation system with fast and guaranteed convergence. Different 

operating points for both five- and seven-level converters, including single- and three-

phase patterns, were studied. However, the modulation index range does not change 

significantly and remains within a region between 0.7 and 1 p.u. In addition to the 

numerical techniques, the modulation strategies were also developed to decrease the 

higher-order harmonics of the converter. For example, in  [128], the combined switching 

strategy for the matrix converter was proposed, in which some of the harmonics of the 

input and output currents and the output voltage near the fundamental can be eliminated. 

A new active harmonic suppression technique was recently introduced to the line 

frequency method aimed at eliminating the higher-order of harmonics by creating the 

opposite of the harmonics to cancel them  [129],  [130]. However, the disadvantage is in 

using a high switching frequency to eliminate higher-order harmonics. Other methods 

have also been reported, including one where the harmonic elimination is combined with 
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a programmed method  [131], and where multilevel pulse width modulation (PWM) 

defined by the well-known multicarrier phase-shifted PWM was proposed in  [132] 

and  [133]. The modulation index in this algorithm states the distribution of the switching 

angles, and then the problem of PWM harmonic elimination is applied to a particular 

operating point aiming to obtain the optimum position of these switching transitions that 

offer elimination to a selected order of harmonics. A generalized formulation for multi-

level PWM converters with the nonequal dc source was also reported in  [134]. 

All of these studies in addition to many others have merit because they improve the 

output voltage waveform. However, some of the modifications need to be implemented 

offline and some others would be applicable in a specific range of modulation index or 

with a specific switching technique. All of these methods were successful in reducing the 

harmonic distortion; however, some need a sensor installed inside the drive, while others 

need a revision for the machine or even require the machine to be dismantled, which is 

costly. Moreover, utilizing the drive’s current in the feedback loop and generating the 

error signal would not be helpful when an unbalanced voltage occurs in the system. The 

unbalanced voltage causes the frequency response of the current to have inter-harmonics, 

which are not easily recognizable from the specific inter-harmonics of the control 

algorithms  [135],  [136]. 

The frequency response of the stray electromagnetic fields demonstrates the main 

harmonics orders and inter-harmonics. These inter-harmonics and disruptive harmonics 

decrease the power quality and cause derating of the drives. Moreover, the 

electromagnetic interference (EMI) of the drive would infect other adjacent components. 
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By monitoring these fields and utilizing them in designing the controller, the 

electromagnetic signature that results from the stray field could be reduced and the 

overall efficiency will be improved. In this chapter, a method to reduce stray field 

generated by a certain harmonic component is proposed.  The idea is to use the radiated 

electromagnetic field as feedback input for the drive controller to inject negative 

components that cancel unwanted a stray field. The proposed method can be 

implemented online without a need to revise the construction of the drive. Unlike the 

passive filters method that reduces the radiated field from the distribution network only, 

the proposed method reduces the radiated field from the electric machine itself. 

11.2 Harmonic Reductions of Electric Drives  

 There are several basic methods for reducing harmonic voltage and current distortion 

from nonlinear distribution loads, such as adjustable frequency drives. Prior to discussing 

the proposed method, the previous and existing methods are reviewed. 

11.2.1 Hardware Solutions (Filters): 

 The adjustable frequency drive can be connected to the motor without any additional 

elements to control the speed. The advantage of this is low cost, ease of packaging, 

selling and applying; however, the disadvantage is a high level of harmonic current and 

voltage distortion. Many filter-based components, such as reactors, dc chokes, harmonic 

shunt filters, and broadband filters, were utilized. The advantage of some of these 

methods is low cost, providing increased input protection for the drive, flexibility in the 

range of impedance and being able to provide a moderate reduction in voltage and current 

harmonics  [137]. The disadvantage of some of these methods is the requirement to be 
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mounted separately, as well as they may not be able to reduce the harmonic level below 

the IEEE 519 guidelines. Moreover, the 12 and 18 pulse converters were also utilized, 

which show a great reduction of harmonics of up to 85%. However, the impedance 

matching of phase-shifted sources is critical to the performance and the transformer often 

requires separate mounting.  A filter based solution can reduce the stray field emitted 

from the distribution network connected to a high current drive system by preventing the 

high harmonic order from propagating to the network. However, the filter will not 

improve the radiated stray field from the machine. High harmonic orders and inter-

harmonic will exist in the machine stray field even with the filter installed.  

11.2.2 PWM Modifications: 

 In addition to the hardware solution, several PWM methods have been developed in 

order to reduce the harmonic content by controlling the drive without adding additional 

components. Selective harmonic elimination solves the transcendental equations 

characterizing harmonics, so that appropriate switching angles are computed for the 

elimination of specific harmonics at the output  [138],  [139]. These methods can provide a 

lower harmonic content, but the solution of these equations requires huge computation 

time; hence, online implementation is difficult. Switching angles are calculated 

offline  [127],  [140], or the equations are linearized before they are solved  [141],  [142], or 

an approximate solution is sought where the topology permits it  [143]. Other strategies 

embrace modification of the carrier signal  [144],  [145] or the reference sine wave  [146]. 

All of them are open-loop control schemes that assume an absolutely constant dc supply 

(i.e., all the harmonics produced into the grid by an inductive supply area unit are 
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ignored) and disregard the prevailing harmonic content of the grid voltage or the 

distortion caused by the load. In simple terms, they try to scale back the harmonics 

created by the PWM itself instead of improving the emitted stray field.  

The proposed method is actually based on the modification of PWM methods through 

observing the magnetic stray field of the machine, not the converter. However, the 

converter would affect the stray fields of the machine. The behavior of the stray magnetic 

field of the drive is explained in the following section. 

11.3 Harmonic Behaviors of Stray Fields 

The stray field waveform may be characterized by a series of sinusoidal components 

at harmonic frequencies and sinusoidal components between the main orders of 

harmonics. In this section, the harmonic and inter-harmonic of the field that strayed from 

a drive connected to the electric motor are studied. The schematic of the proposed 

converter connected to the machine is shown in Figure  11.1. The common feature of such 

a double energy conversion system is that it contains an AC–DC rectifier and a DC–AC 

inverter. 

 

Figure  11.1: Schematic of the test setup (PWM VSI drive) 
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The rectifier and inverter are coupled through a dc-link filter. If the reactor or the 

capacitor has an infinite value, there will be no ripples on the dc side, and consequently, 

the ideal rectifier will only generate the characteristic harmonics (fh−R) 

fh−R = (kn ± 1)f                                                        (11.1) 

where k is the pulse number of the rectifier, n is an integer, and f is the power frequency. 

However, the reactor or the capacitor values are finite in practice and the ripples at the dc 

side are inevitable. As a consequence of not having a flat DC-link current, its AC side 

will be modulated by the dc ripple and the inter-harmonics could be produced. For 

example, for a six-pulse rectifier, based on equation (11.1), its characteristic frequencies 

are the 1st, 5th, 7th, 11th, 13th, and so on, in terms of harmonic orders. However, if the 

dc side has a ripple of, for example, 165 Hz, the ac-side current will be modulated as (1st, 

5th, 7th, 11th, 13th . . . ) ±165 Hz. These are inter-harmonic components. 

Contrasting current source converters, voltage source converters needed more 

complex formulas to determine the dc ripple generated by the inverter [2]. In the case of 

the sinusoidal PWM modulation technique (SPWM), the harmonic frequencies generated 

by the inverter are evaluated as follows: 

fripple(mf , i, j) = |mf i ± j| · foutput                                       (11.2) 

where mf is the modulation ratio with i and j as the integers depending on the modulation 

ratio. The foutput is the output frequency. The dependence of mf is related to the 

switching strategy adopted. When mf is not triple and odd, by having even or odd i, the j 
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would be even or odd, respectively. On the other hand, while mf is triple and odd, by 

having even or odd i, the j would be even triple or odd triple, respectively. However, if mf 

is even, j can be even or odd, and triple for triplemf  [147]. Note that the frequencies 

generated by inverters revealed in equation (11.2) will modulate with the rectifier’s 

characteristic harmonic of equation (11.1) and subsequently the supply-side frequencies 

will be generated 

fss = fh−R ± fripple                                                (3) 

The supply-side frequencies fss are actually the interharmonics of the power 

frequency as long as fripple is not synchronous with f. As discussed, the harmonics and 

inter-harmonics appear in the frequency response of the radiated magnetic fields.  

11.4 Control and Optimization Procedure 

The electromagnetic reduction strategy is based on the harmonics and inter-harmonics 

of the converter connected to the machine since the main harmonic contents are 

originating from the converter switching and affecting the performance of the machine. 

Based on the discussion in previouse section, the control algorithm is designed and 

discussed here in this section. The structure of the proposed controller is composed of 

three blocks: a) sensor and conditioner; b) spectrum computation; and c) main control. 

These blocks are shown in Figure  11.2. 
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Figure  11.2: The procedure of the controller 

a)  Sensor and Conditioner Block 

The magnetic fields of the drive are measured using the magnetic coil antenna. (The 

details of the antenna and other components are mentioned in the next section.) The 

measured signal first buffered and amplified using a low noise amplifier. The amplified 

signal is then passed through a low-pass filter (LPF) before the analog to digital 

conversion stage. 

b)  Spectrum Computation Block 

The spectrum calculation is based on the heterodyne receiver. Heterodyning is a radio 

signal processing technique in which new frequencies are created by combining or 

mixing two frequencies [147]. Heterodyning is useful for frequency shifting signals into a 

new frequency range and is also involved in the processes of modulation and 

demodulation. The two frequencies are combined in a nonlinear signal processing device, 
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such as a vacuum tube, transistor, or diode, usually called a mixer. The most important 

and widely used application of the heterodyne technique is in the superheterodyne 

receiver. In this circuit, the incoming radio frequency signal from the antenna is mixed 

with a signal from a local oscillator and converted by the heterodyne technique to a fixed 

frequency signal called the intermediate frequency (IF). The resulting IF signal is filtered 

by a narrow band LPF to isolate the desired frequency spectrum. The output magnetic 

fields spectrum would be transmitted to the main controller. This receiver is composed of 

three basic components: 1) variable sinusoidal wave generator, which is programmed 

through a direct digital synthesizer (DS); 2) LPF; and 3) a multiplier, as shown in 

Figure  11.2. 

1) Variable Sinusoidal Wave Generator: In this system, the heterodyne receiver 

multiplies the amplified signals with two quadrature sinusoidal signals generated by a 

direct digital synthesizer (DS), which generates a variable frequency sinusoidal signal. 

The DS is a type of frequency synthesizer used for creating arbitrary waveforms from a 

single, fixed-frequency reference clock. The heterodyne receiver was implemented 

digitally inside the microprocessor. The DS was implemented using a digital oscillator 

for increasing the oscillator stability and simplifying the frequency control. The modified 

coupled form of the oscillator shown in Figure  11.3 is used to produce a high purity 

sinusoidal wave while using low processor resources  [148]. Only two multiplies and two 

summation operations need to be performed for each sample output. The oscillator 

frequency can be changed dynamically by changing ε, where ε = ω/π. The oscillator 

outputs x[n], y[n] represent two near quadrature sinusoidal signals, being off by one-half 
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sample. The quadrature sinusoidal outputs are digitally multiplied by captured signals 

from the antenna after amplification. 

 

Figure  11.3: Digital oscillator scheme 

2) LPF and Multiplier: A narrow-band low-pass FIR filter was used to isolate the 

spectrum magnitude, as shown in Figure  11.4. The phase angle of the signal can be 

obtained with respect to the oscillator angle by calculating tan−1 (Xs [n]/Ys [n]). 

Different harmonic orders were captured by sweeping the oscillator frequency. Also, the 

harmonic order and magnitude were captured and stored in a matrix to be used by the 

harmonic suppression block. The implementation for the spectrum computation was done 

under the control of a 32-bit reduced instruction set computing (RISC) processor. RISC is 

a CPU design strategy based on the insight that simplified (as opposed to complex) 

instructions can provide higher performance if this simplicity enables much faster 

execution of each instruction  [149]. ARM (Advanced RISC Machines) cortex M4 

processor with 210 DMIPS (dhrystone million instructions per second) and DSP 

extension was chosen for the implementation. Fast instruction execution, hardware 

multiplier, and DSP instruction make it possible to run the spectrum analysis and 

harmonic compensation algorithm, the 12 bit analog to digital with speed up to 2.4 MSPS 
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(Mega Samples Per Second) and direct memory access allow capturing signals with a 

high accuracy and sampling rate. The harmonic search and compensation algorithm were 

built using a finite-state machine, which simplifies task management without using a real-

time operating system and reducing the execution overhead. 

 

Figure  11.4: Spectrum analysis procedure 

c)  Main Control Block 

A fast serial communication link was used to transfer the spectrum from ARM cortex 

M4 processor to dSpace 1104 embedded controller. The dSpace embedded controller is 

used to implement the real-time control of the power electronics converter and the 

Harmonics Suppression Controller (HSC). After transmitting the magnetic field spectrum 

to the main controller, the measured fields would be categorized into the main and sub-

harmonics. Each harmonic would be compared with the desired predefined harmonic 

magnitude and the error signal is passed to the harmonics suppression controller HSC.  

The main function of the HSC is to generate modulated signals that will cancel the 

unwanted harmonic spectrum by finding the correct magnitude and phase angle for each 

frequency. These modulated signals are then added to the sinusoidal modulated signal 

used in a PWM controller. This technique has an advantage over the classical method of 
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decreasing unwanted harmonics by increasing the frequency ratio. Increasing the 

frequency ratio can reduce the main harmonics results from switching activity on the 

inverter only, whereas the proposed technique can reduce the main and inter-harmonic 

results from the inverter and the machine itself. Moreover, the harmonic suppression 

process is selective and does not affect the average switching frequency. The online 

feedback for the HSC makes the system adaptive to different environments and machine 

conditions. Furthermore, the operator can select to suppress specific harmonics that cause 

interference with other systems. The details of methodology, as well as the modulation 

algorithms, are described in the next section. 

11.5 Harmonic Suppression, Discussion, and Results 

The procedure of suppression is implemented in two well-known switching 

algorithms, SPWM) and SVPWM techniques with comprehensive comparison. The 

summary of the aforementioned switching algorithms and the optimization in their design 

is explained in the following section  [150]– [152]. 

11.5.1 Sinusoidal PWM 

The sinusoidal PWM is a type of “carrier-based” PWM. Carrier-based PWM uses 

predefined modulation signals to determine the output voltages. In sinusoidal PWM, the 

modulation signal is sinusoidal with the peak of the modulating signal always less than 

the peak of the carrier signal. The details of this well-known method are illustrated 

in  [150]. There are two significant drawbacks with sinusoidal PWM. First, the converter 

with this modulation generates a less line-line output voltage with the same amplitude of 

the line supply. The other disadvantage, which is more related to the electromagnetic 
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signature, is the short pulses. If the output is to be truly sinusoidal PWM, it is important 

to include very small pulses when the peak modulation signal is close to the peak carrier 

voltage. These small pulses can contribute significantly to inverter losses, while not 

significantly affecting the output voltage. In addition, small pulses may be impractical 

due to the time required to switch one device off and another device on  [151]. Hence, 

they create high-order harmonics. However, these harmonics may not be seen in the 

output voltage or current; they generate low- and high-order harmonics of the stray 

field  [147]. The harmonic orders of magnetic stray fields of an induction machine drive 

connected to the converter and controlled through SPWM are shown in Figure  11.5.  

 

Figure  11.5: Magnetic field intensity (H) of the induction motor connected to the drive 
using the SPWM technique 
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In order to decrease the harmonic orders shown in Figure  11.5, two methods are 

implemented in this paper: manual and automatic techniques. Both methods were applied 

in real-time operation. The setup and the details of the components are reflected in Table 

1 and Figure  11.6. 

 Table  11-1: Details of the Components in the Testbed Setup 

Component Characteristics 

 

Multifunctional converter 

 

Six IGBT switches, I:80 A, VCES: 1200V. 

 

Induction motor 

 

7.5 HP, 208 V, 1765 r/min, PF: 0.82, 60 

Hz, EEF: 89.5% 

 

Digital controller 

 

dS1104 R&D Controller Board and 

Connector Panel 

 

RISC processor 

 

STM32F407, 168 MHz, CPU, 192 KB 

SRAM 

 

 

 

EMI receiver/spectrum analyzer* 

Coverage between 1 Hz and 3 GHz, 

absolute amplitude accuracy: +/- 0.5 dB to 

3 GHz, displayed average noise level: 

- 142 dB.m/Hz at 26.5 GHz 

- 155 dB.m/Hz at 2 GHz and 

- 150 dB.m/Hz at 10 kHz 

 

Magnetic coil antenna 

Coverage between 20 Hz and 500 kHz, 36 

turns of 7-41 Litz wire shielded with 10 Ω 

resistance and 340 µH inductance. 

*Measurement components are MIL-STD 461F standard compliant. 
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Figure  11.6: (a) Setup inside the enclosure (the converter and the motor) and (b) 
control and monitoring setup. Note that the antenna is located 12 in away from the center 

of the machine (∼3 inch from the cage) 

11.5.2 SPWM Harmonics Manual Suppression 

 In the manual technique, the proportional amplitude of the most harmful harmonics is 

injected into the control block to decrease the overall amplitude. The amplitude and phase 

offset of the harmonic suppression block is set initially in Simulink and connected to the 

dSpace 1104 digital controller interface, which can be controlled in real time. The 

switching algorithm would be modified accordingly and the signal was transferred 
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through the dSpace to the converter. In order to suppress the noises of the signal 

processing components and all other elements, the machine and inverter were located 

inside an enclosure, which was isolated electromagnetically, as shown in Figure  11.6. 

The procedure of signal processing used in the test was mentioned in the previous 

section. The block diagram of the control block for the manual suppression is shown in 

Figure  11.7. The control of frequency is used for setting the desired harmonic to be 

suppressed. Moreover, the amplitude and the phase offset can be adjusted for setting the 

harmonics to have the most appropriate suppression. Three critical harmonics of the 

machine, including 2nd, 4th, and 5th harmonics, were selected to be suppressed 

manually. Therefore, the frequency of the suppression was set based on their harmonic 

order and the amplitude and phase offset was adjusted in real-time in the control desk 

interface. The even harmonics and main odd harmonics (5th, 7th, 11th, . . . ) are selected 

as the harmful harmonics, which are originated due to the presence of a power electronics 

component in the drive. Figure  11.8 shows that by adjusting the HSC to suppress the 

second harmonic, the second harmonic of the stray field of the machine decreases from 

−15 to −25 dB·μA/m. The block was designed to decrease the second harmonic, but 

some other higher harmonics, such as eleventh and thirteenth, which are harmful 

harmonics, are also reduced. The amplitude of the block for suppressing the second 

harmonic was set to 3 and the phase angle was set to 0.7 rad. The total harmonic 

distortion (THD) up to the 10th harmonic order for the cases without HSC and with HSC 

is 0.63% and 0.37%, respectively. Accordingly, the study on the fourth harmonic and 

fifth harmonic of the motor are also demonstrated in Figure  11.9 and Figure  11.10, 

respectively. Similar to the second harmonic case, the HSC also performed substantially 
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for the fourth and fifth harmonics. Note that the changing of the amplitude and phase 

angle of the suppression block is real time. 

 

Figure  11.7: Block diagram of the sinusoidal PWM with harmonic compensation block 

 

Figure  11.8: Magnetic stray field intensity (H) of induction motor using SPWM with and 
without HSC for second harmonic suppression 

The manual method is appropriate for reducing the level of harmonics to a specific 

level. The THD for the cases without HSC and with HSC is 0.6% and 0.31%, 

respectively, for Figure  11.9, and 0.63% and 0.25%, respectively, for Figure  11.10. 
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Figure  11.9: Magnetic stray field intensity (H) of induction motor using SPWM with and 
without HSC for fourth harmonic suppression 

 

Figure  11.10: Magnetic stray field intensity (H) of induction motor using SPWM with 
and without HSC for fifth harmonic suppression 

11.5.3 SPWM Harmonic Automatic Suppression 

 In the automatic suppression, the harmonic contents of the drive are being captured 

by the antenna and sent to the processor through ADC. Based on the procedure of the 
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signal processing, shown in Figure  11.2 and Figure  11.6, the existing harmonic content 

was compared with the actual one and subsequently the appropriate switching signals to 

the switches to reduce the level of the proposed harmonic(s). The difference of this 

controller shown in Figure  11.11 as compared to the manual one (see Figure  11.7) is 

replacing the manual control of the amplitude and the phase shift of the harmonic 

compensation block by the tracking algorithm. The HSC in Figure  11.11 is based on a 

tracking algorithm. The tracking algorithm is performed using a state machine with three 

states, as shown in Figure  11.12. The Init state is for initialization of the amplitude of the 

respective harmonics to be canceled. The next state is the Phase_tracking, where 

depending on the spectrum error, the phase increases or decreases. The spectrum error is 

defined as follows: 

Error (t) = Spectrum (t) − Spectrum (t − 1)                               (4) 

where Spectrum (t) is the average of 20 samples of spectrum and Spectrum (t – 1) is 

the previous average of the same spectrum. The rules for the phase tracking are as 

follows: if Error is positive, the phase increases and if Error is negative, the phase 

decreases. Once the phase tracking algorithm has reached the minimum spectrum at the 

harmonic frequency in analysis defined as a threshold, then next state is 

Amplitude_tracking. The Amplitude_tracking state follows a similar rule as Phase 

tracking algorithm. If the error is positive, the amplitude increases and if the error is 

negative, the amplitude decreases. Finally, the suppression was implemented in real time 

and the result was obtained (see Figure  11.13). Comparing this figure with the manual 

test in Figure  11.9, the suppression was about 50% more. Moreover, some other even 
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harmonic orders, such as sixth, were reduced. The optimum amplitude that the system 

showed was 18 V and the phase angle was 0.85 rad. The THDs for the cases without 

HSC and with HSC for Figure  11.13 are 0.51% and 0.44%, respectively. 

 

Figure  11.11: Automatic harmonic suppression block diagram 

 

Figure  11.12: State machine tracking algorithm 
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Figure  11.13: Magnetic stray field intensity (H) of induction motor using SPWM with 
and without HSC for fourth harmonic suppression in automatic mode 

 

11.5.4 SVPWM 

As one of most promising modulation technologies in three phase systems, SVPWM 

for a three-level converter has an advantage over sinusoidal PWM in voltage utility. The 

SVPWM output voltage is 15% higher than that of sinusoidal PWM [35]. Therefore, this 

method, as one of the main modulation technologies, was also used in this research for 

both manual and automatic suppressions.  

11.5.5 SVPWM Harmonic Manual Suppression 

The manual suppression procedure is similar to the SPWM case, except the changes 

in the modulation method, which is shown in  

Figure  11.14. The fourth and fifth harmonic orders of the motor at 240 and 300 Hz, 

similar to the previous case, are selected to be suppressed. The magnetic stray field of the 
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induction motor at the same distance in these two cases is shown in Figure  11.15 and 

Figure  11.16. As Figure  11.15 and Figure  11.16 illustrate, there is good suppression at the 

intended harmonic orders, more than 10 dB·μA/m. Furthermore, the other higher 

harmonic orders are also suppressed. The amplitude of the HSC block for the fourth and 

fifth harmonic suppression was 19 and 16.9Vand the phase offset was 0.12 and 0.411 rad, 

respectively. The THDs for the cases without HSC and with HSC are 2.02% and 1.55%, 

respectively, for Figure  11.15, and 2.02% and 0.16%, respectively, for Figure  11.16. In 

addition to the singular harmonic suppression, multiple harmonic suppression can also be 

implemented by adding a multiple harmonic suppression (HSC) block. For instance, the 

suppression of simultaneous fourth and fifth harmonic orders was also implemented. The 

result is demonstrated in Figure  11.17. 

Both intended harmonic orders are suppressed considerably. Moreover, many other 

harmonic orders in the neighborhood are also suppressed. In this case, there are two 

amplitudes and two phase offsets. The amplitude and phase shift of the HSC block for the 

fourth harmonic suppression was 19 and –0.12 rad and for the fifth harmonic suppression 

was 4 V and 0.08 rad. The THDs for the cases without HSC and with HSC for 

Figure  11.17 are 2.01% and 0.73%, respectively. Note that since the computation would 

increase by adding HSC blocks, the processor would stop working or delay in the answer 

if the number of blocks went over 2 by using the mentioned processor. 

11.5.6 SVPM harmonic Automatic Suppression 

The procedure of the automatic suppression in SVPWM is the same as the SPWM 

case. The harmonic compensation block of  
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Figure  11.14 was modified as it was modified in the SPWM case in Figure  11.11. The 

amplitude and the phase angle obtained from the real-time test were 17.5 V and 0.1 rad. 

The THDs for the cases without HSC and with HSC for Figure  11.18 are 2.01% and 

0.9%, respectively. Comparing Figure  11.18 with Figure  11.15, the fourth harmonic was 

decreased to about –30 dB·μA/m, which was about 10 dB·μA/m better than the manual 

case. 

 

Figure  11.14: Block diagram of the SVPWM with harmonic compensation block 

 

Figure  11.15: Magnetic stray field intensity (H) of induction motor using SVPWM with 
and without HSC for fourth harmonic suppression 
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Figure  11.16: Magnetic stray field intensity (H) of induction motor using SVPWM with 
and without HSC for fifth harmonic suppression 

 

Figure  11.17: Magnetic stray field intensity (H) of induction motor using SVPWM with 
and without HSC for simultaneous fourth and fifth harmonic suppression 
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Figure  11.18: Magnetic stray field intensity (H) of induction motor using SVPWM with 
and without HSC for fourth harmonic suppression in automatic mode 

11.6 Summary  

Improving the design scheme of the switching algorithm of power electronics 

converter and motor drive to reduce the stray field for selected harmonic component was 

implemented. A modification was implemented using the magnetic field of the machine 

as the input to the control system. The sinusoidal and SVPWM were implemented and 

the harmonic suppression block was added to them. The suppression was implemented 

for several critical harmonic orders in two manual and automatic modes. Both modes 

were real time. The results show that the ripples and THD are decreased in all cases; 

consequently, the noise is decreased and the efficiency is increased. The results show that 

the control using the automatic mode had better suppression in the targeted harmonics 

because of changing the phase angle and amplitude in a higher range and resolution in 

comparison with the manual mode. The method can be used for both steady state and 
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transient condition; however, very fast response microcontrollers and controllers are 

needed for the transient cases. 

The advantage of this technique is that there is no need for any sensor inside the 

machine or any revision for the machine. Furthermore, there is no need that the 

modification in design is implemented and it can also be applicable in any range of 

modulation indices or with any switching technique. The proposed HSC can reduce the 

radiated field from multiple frequency components, which reduce the electromagnetic 

signature and improve critical system security. 
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Chapter 12 IEC 61850 Security Analysis 

12.1 Introduction 

Substations are an essential part of the transmission and distribution system. 

Substation controls the power flow between transmission and distribution networks. In 

the smart grid, substations will play a vital role in interconnecting distributed generation 

located on the distribution side with the transmission network and end customers. In 

addition, substations are a key component in monitoring and aggregating power from 

microgrids.  

For decades, substation automation and control were dependent on a low-speed 

serial communication between substation digital devices, while the connections with 

instrumentation and circuit breakers were made using an analog connection over copper 

wires. These types of control and automation networks have several drawbacks, first 

complex wiring makes it time-consuming and costly to install, commission and 

maintenance. Second, in absence of interoperability standard, vendors implemented 

property or standard communication protocols designed for other domains, such as a 

Local Operating network (LON), MODBUS, PROFIBUS, FIELDBUS and DNP. Data 

exchange between non-compatible protocols is made through complex protocol 

translators.  This complexity in installation, data exchange, and maintenance arise the 

need for data modeling and a communication standard.  

The IEC 61850 is a substation automation standard developed by the International 

Electrotechnical Commission (IEC) technical committee Number 57 (TC57) Working 

Group 10 (WG10) and IEEE  [153]. The IEC 61850 is developed to ensure the 
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interoperability between IEDs manufactured by different Vendors, simplify installation 

and maintenance of the substation automation system.  

The IEC 61850 replaces the copper wiring and analog connection in the substation 

automation systems by an Ethernet-based network. An ethernet-based communication 

network provides higher speed and bandwidth, which allows a faster response. Moreover, 

it allows free allocation of the functions. Figure 12.1 and 12.2 show a comparison 

between the wiring and configuration of the substation automation system with the serial 

data bus and IEC 61850 standard. In Figure 11.1, IEDs are connected to the Current 

Transformers (CTs), Voltage transformers (VTs) and switchgear using copper cables. 

Voltage and current measurements are transmitted as analog signals. IEDs and Human 

Machine interface exchange information over the low-speed serial bus (station Bus), such 

as PROFIBUS. Figure 12.2 shows the substation automation architecture with IEC 

61850. Analog measurements from CTs, VTs, and switchgear signals are connected to 

the process Bus through merging units. Merging units convert analog measurements to 

digital data and transmit them over the high-speed Ethernet network (Process Bus). Data 

shared over the process bus can be shared with all IEDs connected to the bus. IEDs are 

communicated together and with HMI over Ethernet-based station Bus Sharing 

instrumentation data, such as voltage and current measurement over Ethernet network 

simplify the installation, reduce the wiring and allow free allocation of the functions 

without the need to modify the wiring. 

Figure 12.3 shows the direct connection of instrumentation devices (CTs, VTs) to 

IEDs. In this connection scheme, the analog signal is hardwired to the IED. The IED 
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convert the analog signal to digital form using embedded analog to digital, then the 

digital data is used to perform the assigned IED function. 

Relocation of the IED function requires changing of a hardwired connection. Figure 12.4 

shows the connection of instrumentation devices to the process bus through merging unit. 

The analog signal is connected to the merging unit, which converts it to digital form and 

transmits it to the IEDs through Ethernet-based network process bus.  IEDs receive 

digitized data through the Ethernet connection. Relocation of functions from IED to 

another doesn’t require wiring modification.  

 

 

Figure  12.1: Substation automation using serial data 
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Figure  12.2: IEC 61850 substation automation. 

 

Figure  12.3: Direct connection of instrumentation devices without process Bus 
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Figure  12.4:  Connection of instrumentation devices with merging units and process 
Bus 

12.2 IEC 61850 Overview    

IEC 61850 defines a data model for the substation automation device to ensure data 

consistent across different IEDs from different vendors. The IEC 61850 Hierarchical data 

model start with the physical device. The Physical Device (PD) is a hardware device that 

connects to the network and has computation and hardware resources to run the firmware. 

Each PD contains one or more Logical Device (LD). The LD device consists of one or 

more Logical Nodes. The logical node is the smallest part of a function that exchanges 

data. A logical node is a data object that consists of data elements and service (Methods) 

related to power system function. IEC 61850 provide Abstract Communication Service 

Interface (ACSI) that allows the creation of data object and service independent from 

underlying communication protocols  [153], as shown in Figure 12.5.  IEC 61850-5 maps 
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the abstracted data model to three different protocols, Manufacturing Message 

Specification (MMS), Generic Object Oriented Substation Event (GOOSE) and Sampled 

Measured Values (SMV), as shown in Figure 12.6. The MMS is ISO 9506 standard 

developed originally by the International Organization for Standardization (ISO) 

Technical Committee 184 (TC184) for industrial automation.  MMS utilizes a client-

server communication scheme to provide one to one connection. The MMS messages use 

IP address to route the message over layer three of the OSI model.  MMS protocol is used 

mainly for communication between IEDs. GOOSE messages are used for fast transfer of 

substation events such, as tripping signal  [153].  

 

Figure  12.5: IEC 61850 data model 
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Since GOOSE message is used in a critical time event, a 4 ms restriction is applied 

for transmission. To ensure fast transmission, the data is sent over layer 2 of the OSI 

model. GOOSE messages are transmitted over separate VLAN with priority tag to ensure 

appropriate transmission priority. SMV messages are used to transfer voltage and current 

measurement from merging units to IEDs. Similar to GOOSE messages, SMV messages 

are transmitted over layer 2 with multicast MAC address.  

 

Figure  12.6: IEC 6180 ACSI protocol mapping 

In addition to mapping data model to different protocols, IEC60850-6-1 defines the 

Substation Configuration Language (SCL). The SCL is based on the Extensible Markup 

Language (XML). The SCL uses three main files, the System Specification Description 

file (SSD), IED Capability description file (ICD) and Configured IED Description file 

(CID). Other types of files are used by SCL, such as Substation Configuration 
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Description file (SCD).   The SCD file consists of s SSD file and ICD files  [153]. 

Figure  12.7 shows the design and configuration process using SCL. 

  

Figure  12.7: substation automation system designs and configurations process based 
on SCL 
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First, The SSD file is generated by the design tool. The SSD file defines the single 

line diagram for the substation, logical nodes and complete system specification. Based 

on the data from SSD and ICD, the system configuration tool defines the IEDs’ logical 

nodes and the data flow and generates the SCD file. The SCD file contains a full 

description of the entire system. The SCD file is used by the device configuration tool to 

generate and load CID configuration files to individual IEDs.     

12.3 IEC 61850 security   

Evolving substation automation systems from legacy analog and serial interfaces to 

Ethernet-based network increases the risk of a cyber-attack. The attack surface ranges 

from inside person that infect the network with malware to supply chain, where the 

devices can be infected with suspicious software during manufacturing and 

installation  [154].  The IEC 61850 doesn’t specify any security measures to secure the 

IEDs and substation communication network. The security measures for the MMS, 

GOOSE and SMV messages are specified in IEC 62351 standard. The cyber threats, IEC 

security measures, and shortcoming are discussed in next sections. 

12.4 MMS vulnerabilities 

MMS messages are vulnerable to different types of known IP protocol attacks, such as 

address resolution protocol (ARP) cache poisoning attack, denial of service, a man in the 

middle attack and network flooding attack  [155]. In the ARP poisoning cache attack 

depicted in Figure  12.8, the attacker uses spoofed ARP messages to deceive the victim 

and accept an invalid MAC (media access controller) address mapping and store it in 
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ARP cache. The invalid MAC mapping replaces the legitimate MAC with attacker MAC 

address. 

IED

Server

MAC  aa:aa:aa:aa:aa:aa

IP 192.168.0.1MAC  bb:bb:bb:bb:bb:bb

IP 192.168.0.2

MAC  xx:xx:xx:xx:xx:xx
IP 192.168.0.3

IP 
forwarding

ARP Cache Poisoning 
Mechanism

Ethernet Connection

Network Traffic

 

Figure  12.8: ARP Cache Poisoning Mechanism 

Once the attacker replaces the legitimate MAC with his address, the network switch will 

redirect all IP packets to the attacker machine. The attacker can perform a man in the 

middle attack by modifying received packets and forward them to the victim machine. If 

the attacker didn’t forward the received packet to the victim machine, it will cause a 

denial of service. Denial of service attack aims to prevent the device from providing the 

assigned service or exchanging the data with other devices. As mentioned earlier, such 

attack can be performed using ARP poisoning or by overloading the device with too 

many requests. Sending many requests to the network device could overload the 

processor and memory resource and could lead to stopping the service  [155]. In the 

network flooding attack, the attacker sends a high rate of packets for network devices or 



 
 

282 
 

to a non-existing IP address, which consumes the network bandwidth and increases the 

communication delay. 

12.5 GOOSE Message analysis and vulnerabilities. 

GOOSE and SMV messages are sent directly to multicast MAC address on layer 2. 

Since the layer 2 message doesn’t use The IP protocol for message routing, it’s not prone 

to ARP poisoning attack. However, the attacker can still perform some types of attack 

based on the message anatomy and transmission method. Figure 12.9 shows the structure 

of the GOOSE message.  

Destination MAC Address Source MAC Address Priority Tagging/VLAN ID

Ethertype
(88B8)

APPID Length

Reserved 1

Tag Length gocbRef Tag Length timeAllowedtoLive

Tag Length datSet Tag Length goID

Tag Length t Tag Length stNum

Tag Length sqNum Tag Length test

Tag Length confRev Tag Length ndsCom

Tag Length numDatSetEntries Tag Length allData

Tag Length Data 1 (Boolean) Tag Length Data 2 (Float)

Tag Length Data N

Tag Length goosePDUReserved 2

 

Figure  12.9: Structure of a GOOSE Datagram 
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 ALL GOOSE messages start with the destination’s MAC address, followed by 

source MAC address, Priority Tagging/VLAN ID, Ethernet type, APP ID, Length and 

two reserved fields. These fields are described as the following:  

 Destination MAC address: GOOSE messages use multicast MAC address as 

the destination address. The GOOSE multicast address must start with 01-0C-

CD-01-xx-xx. The first three octets are (01-0C-CD) reserved for IEC 61850 

protocol. The fourth octet is set to (01) for GOOSE messages.  

 Source MAC address: this field contains the MAC address for the publisher 

IED. 

  Priority Tagging/VLAN ID: GOOSE messages contain IEEE 802.1Q VLAN 

ID. The IEEE 802.1Q standard supports virtual LANs on an Ethernet network. 

The IEEE 802.1Q VLAN ID consists of Tag Protocol Identifier (TPID) and 

Tag control Identifier (TID). The TID is divided to Priority code point (PCP), 

1-bit Drop eligible indicator (DEI). This indicator specifies if the message can 

be dropped in the case of congestion and 12-bit VLAN identifier field. 

 Ether type: all GOOSE messages have a unique ether type field equal to 88B8. 

 APPID: this field is used by the subscriber IEDs to identify the messages they 

are subscribing to. 

 Length field: The Length field represents the length of the datagram minus 

eight bytes. 

 Two reserved fields: these fields are reserved by the standard for future use. 
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A GOOSE message also has an IEEE 802.1Q VLAN ID, a unique Ethernet type, and 

an APPID field which subscribing IEDs use to identify the messages they are subscribing 

to. The Length field represents the length of the datagram minus eight bytes; the length 

field is followed by two reserved fields, which the standard leaves for future use.  

The goose PDU is composed of twelve subfields, which are described as the 

following  [156]: 

• gocbRef: GOOSE control block reference 

• timeAllowedtoLive: The time a receiver waits before receiving a re-transmitted 

message 

• datSet: Name of the dataset. 

• goID: ID of publishing IED. 

• t: Timestamp indicating a new GOOSE event. 

• stNum: Counter that increments with every GOOSE event. 

• sqNum: Counter that increments with every repeated GOOSE message. 

• test: Specifies if a message is intended for testing or not. 

• confRev: Number of times the data set has changed. 

• ndsCom: Needs commissioning field. 

• numDataEntires: Number of data elements in allData. 
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• allData: Actual data being sent (bool, integer, float, etc.). 

Since the publisher IED uses a multicast address to publish the GOOSE message, 

there is no way to ensure the message is received by all subscribers. To overcome this 

problem, the IEC 61850 implemented adaptive transmission time for GOOSE messages 

depicted in Figure 12.10. When an event occurs, the IED increments the stNum Counter 

and sends a GOOSE message as soon as possible. To increase the possibility of 

delivering the message to all subscribers, the Publisher retransmits the Message with the 

incremental time period. The publishers increment the sqNum with each transmitter. The 

timeAllowedtoLive field contains the time period before next retransmission.  

 

 

Figure  12.10: Adaptive GOOSE transmission time 

GOOSE messages are prone to spoofing, replay, poisoning, and flooding attacks  [157]. 

In the spoofing attack, the attacker uses a spoofed MAC address to multicast a fake 

GOOSE message with a manipulated data field. The attacker can get access to the 

GOOSE virtual LAN by VLAN hopping attack. After gaining access to the VLAN, the 

attacker monitors the network to capture a goose message and decode the message to 
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identify the data field and stNum. Then the attacker constructs and transmits the fake 

message with incremented stNum, as shown in Figure  12.11.  

Subscriber

Msg,stNum(1),data(true)

Publisher

Msg,stNum(1),data(true)

Msg,stNum(2),data(false)

Msg,stNum(2),data(flalse)

Attacker

Monitor Network for 
GOOSE Messages

Alter the Boolean Values 
from true to false or vice 

versa 

Decode GOOSE Message

Attacker

Encode the message 

Inject the message with 
Spoofed MAC address

 

Figure  12.11: Spoofed GOOSE message attack 

The spoofing attack can cause serious damage to the substation. For example, the 

attacker can change a Boolean field to trip or close a circuit breaker and energize the 

wrong circuit. A replay attack is similar to the spoofing attack except that, instead of 

constructing the fake message, the attacker records previous events and replays it later 

with a spoofed MAC address. To prevent a replay attack, the subscriber should discard 

any message with a stNum less than or equal to the previous message until a rollover 
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occurs, as specified by IEC 62351 standard. However implementing stNum checks lead to 

another type of serious attack, which is GOOSE poisoning attack.    

In GOOSE poisoning attack, the attacker sends a message with a high stNum 

number. If the stNum check is implemented the subscriber will discard all legitimate 

messages with a lower stNum number  [158]. GOOSE poisoning attack has the same 

impact as denial of service attack but is more dangerous. Regular denial of service attack 

depends on sending a huge number of messages to overload the receiver. GOOSE 

poisoning attack can cause the same impact with transmitting a single packet, which 

makes it harder to discover. Since the SMV messages use Layer two Multicasts as 

GOOSE messages, it is also prone spoofing, and reply attack. 

12.6 IEC 62351 Security Standard 

As mentioned earlier, the IEC 61850 doesn't specify any security roles for the 

substation automation network. The IEC 62351 is the standard that provides security to a 

number of TC57 protocols, including IEC 61850. It was developed by TC57, the same 

technical committee that developed IEC 61850, WG15 in 2007. Its objectives were to 

prevent eavesdropping and spoofing attacks, detect intrusions, and authenticate data 

transfers through digital signatures. The IEC 62351 standard is divided into 11 parts that 

cover security for different protocols. Parts 3, 4 and 6 are the parts related to the IEC 

61850 security. IEC 62351-3 defines the security for profiles including TCP/IP. IEC 

62351-4 defines the security rules for MMS, while IEC 62351-6 focuses on GOOSE 

message security. IEC 62351-3 requires TLS for all TCP/IP-based communications. This 

is done in order to protect against eavesdropping, spoofing, replay attacks and some 
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modification attacks  [159], but it fails against denial of service attacks  [160]. This section 

also requires node and message authentication through the use of digital signatures  [161]. 

IEC 62351-4 requires TLS and authentication specifically for MMS. MMS traffic is done 

on the application and transport level. Security on the application level is done using peer 

authentication which is accomplished by carrying authentication information in the 

ACSE AARQ. It also includes AARE PDUs Authentication is made up of an X.509 

encoded certificate, time stamp, and digitally signed time value. Security on the transport 

level refers to TLS and specifies the minimal mandatory and recommended cipher suites 

to be used, TLS_DH_DSS_WITH_AES_256_SHA and 

LS_DH_RSA_WITH_AES_128_SHA [162]. IEC 62351-4 allows usage of secure and 

non-secure profiles. This feature allows operation in systems that are not fully upgraded 

to new security measures. To cover the communication security of IEC 61850’s peer-to-

peer profiles (GOOSE), IEC 62351-6 was created. The digital signatures and encryption 

methods provided for other types of messaging require a lot of time to be generated and 

verified. Therefore, section 4 states that “for applications using GOOSE and IEC 61850-

9-2 and requiring 4 ms response times, multicast configurations and low CPU overhead, 

encryption is not recommended”  [154]. The only required security measure for GOOSE 

messages is message authentication. The message authentication is defined by extending 

the GOOSE Protocol Data Unit (PDUs) with an authentication value. This authentication 

value is calculated by signing an SHA256 hash using RSA. Certificate exchange is not 

done with these messages. All X.509 encoded certificates must be pre-installed on the 

receiving nodes  [162]. However, a study performed in  [163] showcased that applying 

asymmetrical encryption to multicast GOOSE and SMV messages while meeting the 4ms 
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time constraint imposed by IEC 61850-9-2 is practically unfeasible with current IED 

processor technologies, even if implemented on high-end, expensive hardware. This left 

IEC 62351-6 with little industry acceptance. This leaves GOOSE messages with no 

encryption and no authentication. Given all the efforts by IEC 62351, the lack of data 

encryption paves the way for attackers. 

12.7 Implementation vulnerability  

System vulnerabilities can result from standard shortcoming, misconfiguration and 

different vendors’ implementation for the standard.  Vendors’ implementation could have 

software bugs or drift from the original standard. Two different implementations of the 

IEC 61850 were tested and analyzed to identify possible vulnerability and drift from the 

original standard. The first platform is the LIBIEC61850 open source library. 

LIBIEC61850 is a C library that provides MMS, GOOSE and SMV implementation, 

which utilized in a different commercial product. The platform is a commercial IEC 

61850 protection relay available at the Smart Grid test bed at Florida International 

University. Three tests were performed to verify the proper implementation of GOOSE 

messages’ stNum, Timestamp, and source MAC address fields processing 

algorithm  [156].  

In the stNum processing test, GOOSE messages are transmitted to both devices with 

different stNum values. First, a message with stNum equal to 2 is transmitted, then 

followed by a message with lower stNum, as shown in Figure  12.12. Each message has a 

Boolean field which trips a digital output. Changing the digital output state indicates that 

the IEDs process the message, while fixed output indicate the message is discarded.  In 
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this test, the LIBIEC61850 discarded the message with lower stNum as specified by the 

standard while the commercial relay processes the message and triggers the digital 

output.   

 

Figure  12.12: Goose messages with two different stNum 

In the time stamp processing test, a GOOSE message with an old timestamp (three 

days) is transmitted to both platforms, as shown in Figure 12.13.  In this test, both 

platforms process the message and change the digital output state.  It is noteworthy to 

point out that, IEC 61850 recommends checking for a message’s time stamp only if it 

recognizes a stNum different than that of the previous message. The experiments 

revealed that when sending new messages with three-day-old time stamps exceeding the 
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2-min skew, they were processed as long as they had status numbers equal to or higher 

than the previous message. In the source MAC address processing test, a message with 

invalid Source MAC address is sent to both platforms under test. Both platforms 

processed the message with the invalid source address. 

 

Figure  12.13: Outdated GOOSE message content 

This test actually exploits a vulnerability in the GOOSE messaging protocol itself 

rather than its implementation in commercial devices. In the GOOSE protocol, 

subscribing IEDs use the APPID field to subscribe to the desired GOOSE messages. 

Since the subscribing IEDs, in this case, do not check for the source MAC address, they 

will process any message with their defined APPID, regardless of its origin. 

Table  12-1 summarizes the results of the performed tests on both the commercial 

IEDs and libiec61850. 
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Table  12-1: Compliance Test Results. 

Test Commercial IED LIBIEC61850 Standard 

specification 

Lower stNum processing Y N Discard 

Outdated time stamp processing Y Y Discard 

Invalid  MAC address Y Y Not specified 

 

12.8 Summary  

In this chapter, a security analysis and investigation of the IEC 61850 substation 

automation protocol and IEC 62351 security protocol is presented. While The IEC 61850 

migrate the substation automation system toward high-speed Ethernet network and 

provide the necessary data modeling and interoperability standard, it doesn’t specify any 

security measures to protect the IEC 61850 protocols. The IEC 62351 specifies the 

security measures for the MMS, GOOSE and SMV protocols, but the analysis shows that  

IEC 62351 is not the ultimate solution for cyber invasions on substations. IEC 62351 fails 

to protect GOOSE and SMV messages from the cyber-attacks. IEC 62351-6 proposes the 

use of digital signatures through the RSA algorithm to ensure the integrity of multicast 

GOOSE and SMV messages, which is not feasible due to time constraint and hardware 

limitation. The experimental testing shows that vendors’ implementation could introduce 

some vulnerability, such as improper processing of stNum and time stamp fields. This 

improper implementation allows replay attacks, while the proper implementation 

according to the standard enables the GOOSE poisoning attack. A security algorithm to 



 
 

293 
 

secure GOOSE and SMV layer 2 messages, and discard fake messages, while meeting 

the 4ms delay time constraint, is required. 
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Chapter 13 Sequence Hopping Security Mechanism For Energy Systems  

13.1 Introduction 

Modern power system automation and the smart grid rely on communication for 

various reasons, including critical infrastructure protection and power routing. 

Communication between substation IED devices is integral for substations to keep up 

with their real-time operations. IEDs perform several protective and control functions in a 

substation automation system, such as data and file transfer. Unfortunately, whenever 

data are transferred, there is an opportunity for the data to be intercepted or corrupted. In 

addition, data can be sent from or intercepted by malicious and unauthorized sources, 

potentially causing catastrophic consequences. The industry has established data security 

protocols in an attempt to avoid the intrusion of malicious and unauthorized sources. 

However, these protocols often require intensive processing power for which existing, 

and even some modern IEDs, are not equipped to handle, as discussed in the previous 

chapter. Adding to the problem, some of the critical data sent between IEDs needs to be 

transmitted quickly, limiting the amount of encryption/decryption time and further 

increasing the processing requirements of IEDs. This combination of IEDs lack of 

processing power and the need for critical information to be relayed quickly has resulted 

in critical data being transmitted unprotected, leaving an opening for unauthorized and 

potentially malicious users to cause harm to the system. In this chapter, a security 

mechanism based on the sequence hopping number will be developed to secure the IEC 

61850 GOOSE messages. The developed mechanism uses minimal processing resources 

and secures the GOOSE messages without violating the 4 ms time delay restriction.  
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13.2 GOOSE messages vulnerabilities and attack surface  

GOOSE messaging protocol was developed for applications that require a fast and 

reliable information exchange with strict time constraints within the boundaries of a 

substation. However, recently, IEC 61850 has been extended to cover applications that 

require inter-substation communication such as tele-protection which utilizes GOOSE 

messages over WAN. Therefore, the criticality of the GOOSE messaging protocol is 

inherited from the applications it is implemented in. GOOSE messages should be handled 

with care because any misconfiguration might lead to devastating consequences, ranging 

from system instabilities to complete blackouts.  

The IEC 62351-6 devises an algorithm for proper processing of GOOSE messages in 

order to mitigate some cyber-attacks such as replay attacks. From the publishing IED 

side, each GOOSE message has a status and sequence number field (stNum and sqNum, 

respectively). When a substation event occurs, for example, an overcurrent is sensed, the 

publishing IED instantly transmits a message with an incremented stNum field. The 

message is then repeated with variable increasing time delay until the maximum defined 

period is reached. The sqNum counter increments with every repeated message until the 

maximum number count (2^32-1) is reached; the point at which the sqNum counter rolls 

over. IEC 62351-6 states that a subscriber IED, which detects a new message with a new 

stNum, must discard any message having a stNum less than that or equal to the previous 

message and which time allowed to live hasn’t timed out yet, unless a rollover of the 

stNum counter occurs. If none of the conditions above are true, the subscribing IEDs 

process the messages. 
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The processing of state numbers set by IEC 62351 to counter replay attacks makes the 

system prone to Denial of Service and GOOSE poisoning attacks. Since GOOSE 

messages travel the network unencrypted, an attacker can monitor the network and 

deduce the current state number. The attacker can then send a message with a very high-

status number, as discussed in the previous chapter. All the subscribing IEDs will then 

discard messages from authenticated IED because they will have a lesser status number 

than that published by the attacker. Also, the standard’s solution for data integrity using 

RSA digital signatures will not meet the 4ms time constraint imposed on GOOSE 

messages given the low processing power of current IED processors. Recent studies also 

show that digital signatures fail to meet the 4ms time constraint on more advanced 

processors  [162]. 

The IEC 61850 uses a multicast MAC address to transmit the GOOSE message over 

Layer 2; therefore the attacker can’t use ARP poisoning attack to redirect the message to 

an intermediary device or block the message delivery. The only way to manipulate a 

message is by resending a modified copy of the message.  

The attack surface for the GOOSE messages can be summarized in the three different 

methods as below:  

 Sending a fake message with incremented stNum. 

 Retransmitting old message after manipulating data field (spoofing attack).  

 Sending a fake message with very high stNum (GOOSE poisoning attack). 

 The security mechanism should provide a way to prevents these types of 

attack and validate the message content without violating the 4ms restriction.  
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13.3 Sequence hopping security mechanism  

A keen analysis of the GOOSE messages’ vulnerabilities reveals that the 

vulnerabilities result from two main sources. The first factor is sequential nature of the 

stNum field; incremented stNUM field allows the attacker to easily construct and 

transmit a fake or manipulated GOOSE message with the correct stNum. The subscriber 

will process the message as long as it contains a new stNum field. The second factor is 

the lack of the source verification mechanism. IEC 61850 implements a 

publisher/subscriber communication scheme to deliver the GOOSE message, which is 

called connectionless communication. In this communication scheme, the subscriber 

subscribes to the message by the APPID only. The IEC 61850 doesn’t provide a method 

to verify the data source. The attacker can send a GOOSE message with spoofed or 

completely different MAC address and the subscriber will receive and process the 

message as long as it contains the correct APPID and stNum fields.  The proposed 

sequence hopping mechanism solves the vulnerabilities issues resulting from these 

factors. The sequence hopping security mechanism is inspired by the frequency hopping 

technique which was developed for securing military communications. In the frequency 

hopping communication, the transmitter transmits the data by rapidly changing the 

channel frequency among different channels’ frequency with a pseudo-random pattern 

know to both the transmitter and receiver. The frequency hopping systems implement 

synchronization algorithms to synchronize the transmitters and the receivers’ pseudo-

random pattern. In the sequence hopping security mechanism, we are proposing the 

addition of a new field to the GOOSE message called the HseqNum or the “hopping 

sequence number” and incremental counter. Each of the publishing and receiving IEDs 
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will have synchronized pseudo-random generators (PRNG) fed with the same seed by a 

secure mechanism explained in the next section. Therefore, synchronized generation of 

the same random number will occur inside the publisher and the subscriber. The 

subscriber will only accept messages possessing a matching HseqNum as that generated 

by its PRNG. Any message with a repeated or unmatched HseqNum will be discarded. In 

order to send a fake or manipulate a message, the attacker needs to know the next correct 

HseqNum. Since the HseqNum is random and unique for each message, the attacker will 

not be able to predict the next valid HseqNum. The proposed security mechanism is 

composed of A Message Sequence Synchronization and Monitoring Server (MSSMS) 

and synchronization clients, shown in Figure  13.1.  
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Figure  13.1: Sequence hopping security mechanism block diagram 
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The description and operation of the MSSMS and synchronization clients are 

discussed in details in the next sections.    

13.3.1 Message sequence synchronization and monitoring server (MSSMS) 

The MSSMS is the core component in the sequence hopping security mechanism. 

The MSSMS will be responsible for synchronizing all PRNG in publisher and subscriber 

IEDs. The MSSMS will use an encrypted connection for synchronization and exchange 

of the initial seeds with all nodes through SSL connection. Although the messages are 

unencrypted, the mathematical complexity of the PRNG is extremely hard to reverse 

without a long sequence of numbers. The MSSMS server will generate new seeds before 

enough numbers were generated for discovering the currently utilized seed by correlation. 

In addition to the synchronization task, The MSSMS will perform a monitoring task to 

detect possible attacks and intrusion as described below.  

Data manipulation detection: The MSSMS server monitors published GOOSE 

messages stNum, sqNum and data fields. If the SMMS detects messages with new 

sqNum but has a modified data field, it will generate an alarm signal. 

Fake message attack detection: To detect any attempt to send fake messages from a 

machine inside the network, the MSSMS will have a list of MAC addresses and their 

association APPID.  The MSSMS will keep track of the association of APPIDs with the 

source MAC address of the message in order to prevent sending fake GOOSE messages 

from unauthenticated devices. 
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Detect attack on the sequence hopping mechanism: For early detection of any attempt 

to attack the sequence hopping mechanism, the MSSMS server will monitor the 

HseqNum field in published messages. If a repeated or out of order HseqNum is detected, 

the MSSMS server will generate an alarm.  

Physical and operation rules check. MSSMS will have a defined set of rules that 

represents physical and operation restrictions. The server will check the GOOSE message 

content and generate an alarm signal if the GOOSE content violates one or more of the 

predefined rules. The message content will be validated by pre-defined policies related to 

the substation operation scenarios. For example, if a power circuit is disconnected for 

maintenance, the MSSMS server will consider any message with content intended to 

energize this circuit as an invalid message and will eventually send an alarm signal. 

The MSSMS server utilizes a multithreading to handle multiple simultaneous 

connections. The server is developed using C programming language and run under 

Ubuntu Linux. 

13.3.2 PRNG synchronization process   

To secure the GOOSE messages, the following steps, shown in Figure  13.1 and 

detailed below, will be performed: 

1- The MSSMS server will generate a sequence of random seeds. 

2- Upon joining the network, a publisher IED will initiate an encrypted 

communication channel with the MSSMS server. This encrypted channel will be used to 

exchange the random seed with the publisher. 
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3- The publisher IED will use the randomly generated seed to generate a new 

sequence hopping number and attach it to each transmitted message. The flowchart of the 

publisher synchronization process is shown in Figure  13.2.  

4- The MSSMS will synchronize all the subscriber IED devices with the same 

random pattern as well. 

5- The subscriber will expect that the unique hopping sequence number for each 

received message will match with its internal synchronized sequence. 

6- Any message with invalid or repeated sequence number will be discarded. The 

flowchart for the steps 4, 5 and 6 is shown in Figure  13.3.   

7- The MSSMS server will synchronize the devices periodically with a new pattern 

to avoid discovering the random pattern. 

8- After the synchronization process, the MSSMS server will monitor the messages 

published by IEDs for possible attacks. 

9- The MSSMS will monitor the messages’ publishing rate, check their sequence 

hopping field for repeated or invalid patterns and check the message content against pre-

defined operation rules. 

13.3.3 SSL encryption  

The communication between the MSSMS server, publisher IEDs, and subscriber 

IEDs are secured using secure socket layer communication. The OpenSSL library is used 

to implement the SSL communication. To generate a digital certificate for the publisher 
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and subscriber, a certificate authority (CA) is created for the energy systems research lab 

(ESRL CA). The ESRL CA issues and signs the certificates for the publishers and 

subscribers IEDs. The ESRL CA root certificate is used to verify the IEDs’ certificates. 

Figure  13.4 and Figure  13.5 show the CA certificate and signed IEDs certificate, 

respectively.  

 

 

Figure  13.2: Publisher synchronization flowchart 
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Figure  13.3: Subscriber synchronization flowchart 

In standard  internet application, the client verifies the server identity by receiving 

and validating its certificate using the CA certificate.  This single-side validation is not 

enough in this application. For complete security, the client needs to validate the server 

identity before synchronizing the random sequence and the server must validate the client 

identity before revealing the seed 
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Figure  13.4: Root certificate 

 

Figure  13.5: Client and server certificates 
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.  

13.4 Experimental validation  

The proposed sequence hopping security mechanism is implemented and verified 

experimentally. Two different types of implementation were tested. The first 

implementation assumes that the security mechanism will be embedded in the device’s 

firmware or applied as a software upgrade for the IEDs. The second type of 

implementation adds the security feature to legacy devices as a bump in the wire solution.  

In the embedded solution, two IEDs were developed to implement IEC 61850 

GOOSE communication with an added security feature. The developed IEDs firmware is 

based on the open source libiec61850 and OpenSSL libraries. The IEDs’ firmware run at 

ARM based single-board computer with 700 MHz clock. The benchmarking of the 

algorithm shows that the generation of the random sequence adds less than 0.015 ms 

delay. The total end-to-end delay including construction, transmission, receiving, 

decoding and validating the GOOSE message is 250 μs. To measure the end-to-end 

delay, a function generator is connected to the publisher digital input, as shown in 

Figure  13.6. The publisher IED is programmed to send a GOOSE message with the 

Boolean field when it detects a transition in the digital input. The subscriber IED receives 

the GOOSE message and changes the digital output status according to the value of the 

Boolean field after validating the message.  The function generator and the subscriber 

output are captured using a digital oscilloscope to calculate the end-to-end delay time. 
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Figure  13.6: embedded sequence hopping security solution test setup. 

 

Figure  13.7: End-to-end delay time for the embedded sequence hopping 
implementation. 
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In the bump in the wire solution, the sequence hopping security mechanism is 

implemented on two single-board computer, injection and verification boards, as shown 

in Figure  13.8. Each board has two Ethernet network interfaces. The first board (injection 

board) is connected directly to the publisher IED. The injection board synchronizes the 

random number generator with the MSSMS server, receives the original GOOSE 

message from the subscriber, inserts the HseqNum field and retransmits the message to 

the network. 

 

Figure  13.8: Bump in the wire sequence hopping security mechanism implementation 
setup. 

Figure  13.9 shows the client and server outputs during the identity verification. Both 

MSSMS server and clients exchange the certificates, validate and print out the verified 

identity.  The detailed SSL handshaking and communication is captured using Wireshark 

sniffing software and shown in Figure  13.10. The MSSMS server has the 192.168.5.53 IP 



 
 

308 
 

while the injection board has the 192.168.5.47 IP. As depicted from the figure, the 

MSSMS server and client use SSL V3.0 with AES 256 encryption. Both server and 

clients exchange certificates. After the handshaking, they established an encrypted 

communication channel.    

 

Figure  13.9: MSSMS server and client outputs during SSL initialization. 



 
 

309 
 

 

Figure  13.10: SSL handshaking 

The original GOOSE message published by the legacy IED is shown in Figure  13.11. 

As depicted from the figure, the original GOOSE message has stNum equal to 50 and two 

true Boolean fields. The injection board inserts the HseqNum field with a value equal to 

158971337, as shown in Figure  13.12. The injection board maintains the same time 

stamp, stNum, and sqNum as the original message. The total end-to-end delay is 

measured by calculating the time delay between the events (digital input status change) 

and the subscriber digital output status change. The input and output signals are captured 

using a digital oscilloscope, as shown in Figure  13.13. As depicted from the figure, the 

maximum end-to-end delay is 1 ms.   
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Figure  13.11: Original GOOSE message 
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Figure  13.12: GOOSE message with HseqNum field 
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Figure  13.13: Bump in the wire solution end-to-end delay 

A GOOSE poisoning and data manipulation attack were performed to test the 

implemented algorithm. The Sequence hopping algorithm succeeds to discard fake and 

repeated messages.  

13.5 Summary  

In this chapter, a security mechanism that addresses the shortcomings in the 

IEC61850 and IEC 62351 is developed and implemented. The security algorithm protects 

the IEC 61850 Layer 2 GOSSE messages by preventing message manipulations and 

GOOSE poisoning attacks by utilizing random sequence hopping number validation. The 

sequence hopping message validation technique requires minimum processor resources 

and time. This allows securing the GOOSE message while meeting the 4 ms time 
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restriction.  The end-to-end time delay for the implemented security algorithm is 250 μs 

for embedded implementation and 1ms for a bump in the wire implementation. The 

implemented MSSMS server utilizes an SSL encryption channel to synchronize the 

GOOSE publishers and subscriber. The encryption process doesn’t impact the GOOSE 

message delay since it is used during PRNG synchronization only. In addition, the 

MSSMS implement algorithm validates the message content with physical rules and 

policies.  
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Chapter 14   Conclusions and Recommendation for Future Work 

14.1 Conclusions 

The co-design of the smart grid as a complex cyber-physical system is demonstrated 

in this dissertation through the design of a cyber-physical infrastructure for the microgrid.  

The message-centric and data-centric communication paradigms were analyzed. A 

comparison between both approaches showed that message-centric communications are 

not easily expandable, as required by the dynamic nature of the smart grid. A common 

data bus was implemented based on the data-centric communication approach to provide 

an efficient, scalable and interoperable communication infrastructure for the microgrid. 

The data models, along with the necessary QoS profiles for different types of the control 

signal, are defined. The developed infrastructure was implemented and tested in the smart 

grid testbed.  

An AMI with flexible communication interfaces that allow connections with ZigBee, 

wifi, and powerline communication networks was developed and integrated with the 

smart grid testbed. The developed AMI allows modification, implementations and testing 

new algorithms and ideas for seamless integration with the developed communication 

infrastructure. Along with the AMI, a high-resolution synchronized measurement 

network for the distribution network was developed. The reliability and resiliency of this 

network are improved by utilizing the publisher-subscriber peer-to-peer communication 

scheme, which eliminates the message broker and single point of failure. This was 

facilitated by the use of the DDS backbone with proper QoS profile that eliminates the 

need for phasor data concentrators. 
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For accurate testing and emulation of the developed smart grid infrastructure, a test 

bed consisting of a set of modeling and simulation tools representing a scalable HIL 

infrastructure for a smart grid testbed was developed. The developed infrastructure 

provides the capability of integrating different types of systems and components inside 

the testbed and connecting several testbeds to study the behavior of the complex cyber-

physical system. A Matlab toolbox was developed to allow integration with modeling 

software, remote monitoring, and control through a computer network. TLS encryption is 

used to address security aspect, as well as implementing a routine that checks all remote 

command against physical rules before passing it to testbed devices.  

To improve the microgrid performance by integrating modern communication 

technology, a synchronization method based on the GPS common time reference for 

PWM carriers of DC-DC converters is proposed. The proposed technique extends the 

application of GPS synchronization to the DC microgrid to allow the operation of 

distributed DC-DC converters modulators as one interleaved converter. The interleave 

operation of the multiple converters improves the power quality without increasing the 

size of passive element filters or the switching frequency. 

Since the GPS signal is prone to jamming, spoofing and blocking, sensitive systems 

should have a backup or alternative synchronization method to prevent degradation of 

system performance. Therefore, a synchronization and PSCA for PWM carriers of DC-

DC converters based on carrier extraction was implemented as a backup converter 

synchronization algorithm. 
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The main goal of distributed microgrid architecture is to allow efficient integration of 

renewable resources and to ensure continuity of service to the end user. One of the main 

factors to maintain stable operation of the microgrid is the synchronization algorithm 

with utility. For that, an improved adaptive synchronous reference frame phase locked 

loop ASRF-PLL with islanding detection was developed. This technique shows an 

excellent performance under unbalanced and distorted voltage conditions. Additionally, 

to maintain continuous service without interruption in case of islanding, a reconfigurable 

inverter control was developed to maintain stable operation in the grid connection and 

stand-alone operation modes of the microgrid. The proposed method ensures islanding 

detection and stable operation of microgrid when remote islanding detection and the 

SCADA system fails. 

After developing the communication and physical infrastructure for the microgrid, an 

application layer representing the energy management system is developed. The 

application layer utilizes the previously discussed communication infrastructure, AMI, 

and measurement network to efficiently control the microgrids. The developed energy 

management system has an online optimization module accounting for history, current, 

and future system observations. Artificial intelligence techniques were utilized to forecast 

future data related to customer behavior and energy availability. The online optimization 

adapt the controller's parameters according to change in the customer behavior and 

energy availability. A hybrid exploration simulation framework was developed to test the 

efficiency of the optimized parameters before applying them to the real system. 
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The system security and customer privacy are addressed in the design in both cyber 

and physical layers. The physical design takes into account the failure of the 

communication signal, as in the case of the redundant DC-DC converters synchronization 

and islanding detection. The customer privacy is also addressed in the physical design by 

implementing a synchronous reference frame-based active power filter controller to 

compensate for current signature, in addition to different power quality issues for both 

balanced and unbalanced non-linear loads. The developed controller automatically 

changes the load current signature, which improves the customer privacy by deceiving 

NILM. 

To address the security and privacy concern that arises from remote identification of 

electromagnetic signature for certain types of power systems, such as shipboard power 

system, an HSC was developed to reduce the radiated stray field from heavy current 

power system components, such as propulsion motors. The developed controller operates 

online and doesn’t need any modification on the physical system design.  

Security issues were also addressed on the cyber level. A security analysis and 

investigation of the IEC 61850 substation automation protocol and IEC 62351 security 

standard was performed. This study revealed several security shortcomings in the 

standard. A sequence hopping security mechanism was developed to address revealed 

shortcoming in the IEC 61850 and IEC 62351 standards. The developed algorithm 

protects the GOOSE message from message manipulation and GOOSE poisoning attacks. 

to provide the protection for new and legacy devices, the security mechanism is 
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implemented as embedded and bump in the wire solution. Both solutions meet the time 4 

ms time restriction by introducing time delay 250 μs and 1ms, respectively.  

14.2 Recommendations for Future Works 

The co-design idea covered in this dissertation address the challenge of designing the 

smart grid as an integrated cyber-physical system.  Several issues related to the system 

modeling, scalability, interoperability and security are covered in this work. However, 

due to the complex architecture and multidisciplinary nature of the system, it is 

recommended that the following topics be expanded by others: 

 Data modeling and interoperability: currently there are two main data 

modeling standards for the power system network, the common information 

model and the IEC 61850. The common information model covers the 

transmission and generation area, while the IEC 61850 covers substation 

automation system. There is a need for a unified data model the covers 

microgrids and distribution networks. This unified data model should be 

expanded to cover new technologies and services, such as energy storage, 

electric vehicles charging stations, vehicles to grid and grid to vehicles 

services. 

  PMU and big data analytic: extending the communication network and PMU 

application to the active distribution network produces a huge amount of data 

with a high sampling rate. Processing this huge amount of data in real time to 

extract useful information to improve the system stability is a big challenge. 
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There is an urgent need for intelligent and parallel processing techniques to 

leverage the available data resources.    

 Security: the dissertation proposed the sequence hopping security algorithm to 

secure the IEC 61850 Layer 2 messages. This security mechanism could be 

expanded to a multi-agent framework, where the agents propagate the alarms 

and information to the neighbor area for better situational awareness and 

decision.   

 Attack and anomaly detection: an artificial intelligent technique could be 

integrated with the proposed MSSMS server to detect bad and fake data 

injection.  The intelligent techniques can validate received measurement by 

learning the physical system’s behavior and dynamics, and comparing 

measured data with previously learned behavior. 

   

 

 

  



 
 

320 
 

References  

[1] H. Jiang, Y. Zhang, J. J. Zhang, D. W. Gao and E. Muljadi, "Synchrophasor-Based 
Auxiliary Controller to Enhance the Voltage Stability of a Distribution System With 
High Renewable Energy Penetration," in IEEE Transactions on Smart Grid, vol. 6, 
no. 4, pp. 2107-2115, July 2015 

[2] E. Lannoye, "Renewable energy integration: practical management of variability, 
uncertainty, and flexibility in power grids [book reviews]," in IEEE Power and 
Energy Magazine, vol. 13, no. 6, pp. 106-107, Nov.-Dec. 2015. 

[3] E. B. Ssekulima, M. B. Anwar, A. Al Hinai and M. S. El Moursi, "Wind speed and 
solar irradiance forecasting techniques for enhanced renewable energy integration 
with the grid: a review," in IET Renewable Power Generation, vol. 10, no. 7, pp. 885-
989, 7 2016. 

[4] J. Byun, I. Hong, B. Kang and S. Park, "A smart energy distribution and management 
system for renewable energy distribution and context-aware services based on user 
patterns and load forecasting," in IEEE Transactions on Consumer Electronics, vol. 
57, no. 2, pp. 436-444, May 2011. 

[5] D. Sáez, F. Ávila, D. Olivares, C. Cañizares and L. Marín, "Fuzzy Prediction Interval 
Models for Forecasting Renewable Resources and Loads in Microgrids," in IEEE 
Transactions on Smart Grid, vol. 6, no. 2, pp. 548-556, March 2015. 

[6] Q. Yang, J. A. Barria and T. C. Green, "Communication Infrastructures for 
Distributed Control of Power Distribution Networks," in IEEE Transactions on 
Industrial Informatics, vol. 7, no. 2, pp. 316-327, May 2011. 

[7] A. Abdrabou, "A Wireless Communication Architecture for Smart Grid Distribution 
Networks," in IEEE Systems Journal, vol. 10, no. 1, pp. 251-261, March 2016. 

[8] T. Morstyn; B. Hredzak; V. G. Agelidis, "Control Strategies for Microgrids with 
Distributed Energy Storage Systems: An Overview," in IEEE Transactions on Smart 
Grid, vol. PP, no.99, pp.1-1, December 2016. 

[9] X. Yu and Y. Xue, "Smart Grids: A Cyber–Physical Systems Perspective," in 
Proceedings of the IEEE, vol. 104, no. 5, pp. 1058-1070, May 2016. 

[10] H. He and J. Yan, "Cyber-physical attacks and defences in the smart grid: a survey," 
in IET Cyber-Physical Systems: Theory & Applications, vol. 1, no. 1, pp. 13-27, 12 
2016. 

[11] J. Liu, Y. Xiao, S. Li, W. Liang and C. L. P. Chen, "Cyber Security and Privacy 
Issues in Smart Grids," in IEEE Communications Surveys & Tutorials, vol. 14, no. 4, 
pp. 981-997, Fourth Quarter 2012. 

[12] R. Mahmud, R. Vallakati, A. Mukherjee, P. Ranganathan and A. Nejadpak, "A 
survey on smart grid metering infrastructures: Threats and solutions," 2015 IEEE 
International Conference on Electro/Information Technology (EIT), Dekalb, IL, 2015, 
pp. 386-391. 



 
 

321 
 

[13] Chai Jiwen and Liu Shanmei, "Cyber security vulnerability assessment for Smart 
substations," 2016 IEEE PES Asia-Pacific Power and Energy Engineering 
Conference (APPEEC), pp. 1368-1373, Xi'an, 2016. 

[14] H. H. Safa, D. M. Souran, M. Ghasempour and A. Khazaee, "Cyber security of 
smart grid and SCADA systems, threats and risks," CIRED Workshop 2016, pp. 1-
4,Helsinki, 2016. 

[15] Eric D. Knapp, Raj Samani, “Applied Cyber Security and the Smart Grid”, 
ELSEVIER, 2013, ISBN: 978-1-59749-998-9 

[16] J. Zhu, "Communication network for smart grid interoperability," 2015 IEEE 
International Conference on Communication Software and Networks (ICCSN), pp. 
260-265, Chengdu, 2015. 

[17] IEEE Draft Guide for Smart Grid Interoperability of Energy Technology and 
Information Technology Operation with the Electric Power System (EPS), and End-
Use Applications and Loads," in IEEE P2030/D7.0, July 2011, vol., no., pp.1-121, 
Aug. 2 2011. 

[18] Y. Wang, T. T. Gamage and C. H. Hauser, "Security Implications of Transport 
Layer Protocols in Power Grid Synchrophasor Data Communication," in IEEE 
Transactions on Smart Grid, vol. 7, no. 2, pp. 807-816, March 2016. 

[19] R. Khan, K. McLaughlin, D. Laverty and S. Sezer, "Analysis of IEEE C37.118 and 
IEC 61850-90-5 synchrophasor communication frameworks," 2016 IEEE Power and 
Energy Society General Meeting (PESGM, pp. 1-5), Boston, MA, 2016. 

[20] N. Kush, E. Ahmed, M. Branagan, E. Foo, "Poisoned GOOSE: Exploiting the 
GOOSE Protocol", Proceedings of the Twelfth Australasian Information Security 
Conference-Volume 149, vol. 149, pp. 17-22, 2014. 

[21] J. Sigholm and E. Larsson, "Determining the Utility of Cyber Vulnerability 
Implantation: The Heartbleed Bug as a Cyber Operation," 2014 IEEE Military 
Communications Conference, pp. 110-116, Baltimore, MD, 2014. 

[22] B. Grubb, "Heartbleed disclosure timeline," The Sydney Morning Herald, April 15, 
2014 [Online]. Available: http://www. smh. com. au/itpro/ security-it/heartbleed-
disclosure-timeline-who-knew-what-andwhen-20140415-zqurk. html. 

[23] André N. Albagli, Djalma M. Falcão, José F. de Rezende, “Smart grid framework 
co-simulation using HLA architecture,” Electric Power Systems Research, Volume 
130, January 2016, Pages 22-33, ISSN 0378-7796. 

[24] Dhananjay Bhor, Kavinkadhirselvan Angappan, Krishna M. Sivalingam, “Network 
and power-grid co-simulation framework for Smart Grid wide-area monitoring 
networks,” Journal of Network and Computer Applications, Volume 59, Pages 274-
284 January 2016. 

[25] G. Celli, P. A. Pegoraro, F. Pilo, G. Pisano and S. Sulis, "DMS Cyber-Physical 
Simulation for Assessing the Impact of State Estimation and Communication Media 



 
 

322 
 

in Smart Grid Operation," in IEEE Transactions on Power Systems, vol. 29, no. 5, pp. 
2436-2446, Sept. 2014. 

[26] E. Sharma, C. Chiculita and Y. Besanger, "Co-simulation of a low-voltage utility 
grid controlled over IEC 61850 protocol," 2015 5th International Conference on 
Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 
Changsha, 2015, pp. 2365-2372. 

[27] Oh, S.-J.; Yoo, C.-H.; Chung, I.-Y.; Won, D.-J.”Hardware-in-the-Loop Simulation 
of Distributed Intelligent Energy Management System for Microgrids,” Energies 
2013, 6, 3263-3283. 

[28] M. S. Almas and L. Vanfretti, "RT-HIL Implementation of the Hybrid 
Synchrophasor and GOOSE-Based Passive Islanding Schemes," in IEEE 
Transactions on Power Delivery, vol. 31, no. 3, pp. 1299-1309, June 2016. 

[29] David Goughnour, Joe Stevents, “Testing Intelligent Device Communications in 
Distributed System,” Available Online: http://trianglemicroworks.com/docs/default-
source/referenced-documents/testing-intelligent-device-communications-in-a-
distributed-system.pdf?sfvrsn=2 (Accessed on 01/04/2017). 

[30] Ravi Akella, Han Tang, Bruce M. McMillin, “Analysis of information flow security 
in cyber–physical systems,” International Journal of Critical Infrastructure Protection, 
Volume 3, Issues 3–4, December 2010, Pages 157-173, ISSN 1874-5482. 

[31] Ahmed, M.A.; Kang, Y.C.; Kim, Y.-C. “Communication Network Architectures for 
Smart-House with Renewable Energy Resources,” Energies 2015, 8, 8716–8735. 

[32] Huang, J.F.; Wang, H.G.; Qian, Y. “Smart grid communications in challenging 
environments,” In Proceedings of the 2012 IEEE Third International Conference on 
Smart Grid Communications (SmartGridComm), Tainan, Taiwan, 5–8 November 
2012; pp. 552–557. 

[33] Martínez, J.-F.; Rodríguez-Molina, J.; Castillejo, P.; De Diego, R. “Middleware 
Architectures for the Smart Grid: Survey and Challenges in the Foreseeable Future,” 
Energies 2013, 6, 3593–3621. 

[34] Ardito, L.; Procaccianti, G.; Menga, G.; Morisio, M., “Smart Grid Technologies in 
Europe: An Overview,” Energies 2013, 6, 251–281. 

[35] Hahn, A.; Ashok, A.; Sridhar, S.; Govindarasu, M. “Cyber-physical security 
testbeds: Architecture, application, and evaluation for smart grid,” IEEE Trans. Smart 
Grid 2013, 4, 847–855. 

[36] The Smart Grid: An Introduction, US Department of Energy. Available online: 
http://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/DOE_SG_Book_Singl
e_Pages(1).pdf (accessed on 25 February 2016). 

[37] Ozansoy, C.R.; Zayegh, A.; Kalam, A. “The real-time publisher/subscriber 
communication model for distributed substation systems,” IEEE Trans. Power Deliv. 
2007, 22, 1411–1423. 



 
 

323 
 

[38] Zaballos, A.; Vallejo, A.; Selga, J.M., “Heterogeneous communication architecture 
for the smart grid,” IEEE Netw. 2011, 25, 30–37. 

[39] Schlesselman, J.M.; Pardo-Castellote, G.; Farabaugh, B. “OMG data-distribution 
service (DDS): Architectural update,” In Proceedings of the 2004 IEEE Military 
Communications Conference, MILCOM 2004, Monterey, CA, USA, 31 October–3 
November 2004; Volume 2, pp. 961–967. 

[40] De Diego, R.; Martínez, J.-F.; Rodríguez-Molina, J.; Cuerva, A. “A Semantic 
Middleware Architecture Focused on Data and Heterogeneity Management within the 
Smart Grid,” Energies 2014, 7, 5953–5994. 

[41] Komninos, N.; Philippou, E.; Pitsillides, A. “Survey in smart grid and smart home 
security: Issues, challenges and countermeasures,” IEEE Commun. Surv. Tutor. 2014, 
16, 1933–1954. 

[42] RTI Whitepaper, Data Centric Middleware. Available online: 
http://www.rti.com/docs/RTI_Data_Centric_Middleware.pdf (accessed on 25 
February 2016). 

[43] El Hariri, Mohamad; Youssef, Tarek A.; Mohammed, Osama A. 2016. "On the 
Implementation of the IEC 61850 Standard: Will Different Manufacturer Devices 
Behave Similarly under Identical Conditions?" Electronics 5, no. 4: 85. 

[44] Schmidt, D.C.; Van’t Hag, H. “Addressing the challenges of mission-critical 
information management in next-generation net-centric pub/sub systems with 
opensplice DDS,” In Proceedings of the IEEE International Symposium on Parallel 
and Distributed Processing (IPDPS), Miami, FL, USA, 14–18 April 2008; pp. 1–8. 

[45] Data Distribution Service for Real-time Systems; Version 1.2; Available Online 
https://community.rti.com/filedepot_download/1795/16 (accessed on 25 February 
2016). 

[46] Pardo-Castellote, G. “OMG data distribution service: Architectural overview,” In 
Proceedings of the Military Communications Conference, Boston, MA, USA, 13–16 
October 2003; Volume 1, pp. 242–247. 

[47] Esposito, C.; Russo, S.; Di Crescenzo, D. “Performance assessment of OMG 
compliant data distribution middleware,” In Proceedings of the IEEE International 
Symposium on Parallel and Distributed Processing, Miami, FL, USA, 14–18 April 
2008; pp. 1–8. 

[48] Aegis Open Architecture Weapon System. Available online: 
http://www.rti.com/docs/Lockheed.pdf (accessed on 25 February 2016). 

[49] Delivering High-Performance, Scalable and Safe Data Distribution in Next 
Generation Air Traffic Control and Management. Available online: 
http://www.prismtech.com/sites/default/files/documents/OpenSplice_DDS_ATC_AT
M_Overview.pdf (accessed on 25 February 2016). 

[50] Secure, High-Reliability and High-Performance Scalable Infrastructure. Available 
online: http://www.rti.com/industries/energy.html (accessed on 25 February 2016). 



 
 

324 
 

[51] Open Field Message Bus (OpenFMB). Available online: 
http://members.sgip.org/apps/group_public/download.php/6353/2015-03-
05%20OFMB%20Kickoff%20Presentation%20DRAFT.pptx (accessed on 
10/05/2015). 

[52] The Real-Time Publish-Subscribe Wire Protocol DDS Interoperability Wire 
Protocol Specification; Object Management Group: Needham, USA, 2009. 

[53] Gerardo P.C., “Data Distribution Service A Foundation of Real-Time Data 
Centricity”. Available Online:http://omgwiki.org/dds/sites/default/files/dds_06-09-
04.pdf (Accessed on 01/25/2017) 

[54] Salehi, V.; Mohamed, A.; Mazloomzadeh, A.; Mohammed, O.A. “Laboratory-based 
smart power system, part I: Design and system development,” IEEE Trans. Smart 
Grid 2012, 3, 1394–1404. 

[55] Amin, M.M.; Mohammed, O.A. “Development of high-performance grid-connected 
wind energy conversion system for optimum utilization of variable speed wind 
turbines,” IEEE Trans. Sustain. Energy 2011, 2, 235–245. 

[56] Corradi, A.; Foschini, L. A “DDS-compliant P2P infrastructure for reliable and 
QoS-enabled data dissemination,” In Proceedings of the IEEE International 
Symposium on Parallel & Distributed Processing, Rome, Italy, 23–29 May 2009; pp. 
1–8. 

[57] Limited-Bandwidth Plug-ing for DDS. Available online: 
http://www.rti.com/docs/DDS_Over_Low_Bandwidth.pdf (accessed on 25 February 
2016). 

[58] http://www.st.com/content/ccc/resource/technical/document/datasheet/df/07/5e/81/9
9/48/4c/57/CD00235593.pdf/files/CD00235593.pdf/jcr:content/translations/en.CD00
235593.pdf (last accessed at feb 27 2017)  

[59] von Meier, Alexandra, and Reza Arghandeh. "Every Moment Counts: 
Synchrophasors for Distribution Networks with Variable Resources." arXiv preprint 
arXiv:1408.1736 (2014). 

[60] A. von Meier, D. Culler, A. McEachern and R. Arghandeh, "Micro-synchrophasors 
for distribution systems," ISGT 2014, pp. 1-5, Washington, DC, 2014. 

[61] Emgell, S. Cyber-Physical Systems of Systems—Definition and Core Research and 
Innovation Areas. Working Paper of the Support Action CPSoS, 26 October 2014. 
Available online: http://www.cpsos.eu/wp-content/uploads/2015/07/CPSoS-Scope-
paper-vOct-26–2014.pdf (accessed on 25 February 2016). 

[62] Hossain, E.; Kabalci, E.; Bayindir, R.; Perez, R. “Microgrid testbeds around the 
world: State of art. Energy Convers,” Manag. 2014, 86, 132–153. 

[63] Hossain, M.A.; Dasgupta, D.; Abercrombie, R.K. “OPNET/simulink based testbed 
for disturbance detection in the smart grid,” In Proceedings of the 10th Annual Cyber 
and Information Security Research Conference, Oak Ridge, TN, USA, 7–9 April 
2015. 



 
 

325 
 

[64] Bhor, D.; Angappan, K.; Sivalingam, K.M. “Network and power-grid co-simulation 
framework for Smart Grid wide-area monitoring networks,” J. Netw. Comput. Appl. 
2016, 59, 274–284. 

[65] Huang J, “A review on distributed energy resources and MicroGrid,” Renewable and 
Sustainable Energy Reviews, vol.12, Page(s): 2472–2483, 2008. 

[66] Najy, W.K.A, Zeineldin, H.H., Woon, W.L. “Optimal Protection Coordination for 
Microgrids With Grid-Connected and Islanded Capability,” IEEE Transaction on 
industrial electronics, vol. 60, Issue: 4, Page(s): 1668 - 1677, 2013. 

[67] Jackson John Justo, “AC-microgrids versus DC-microgrids with distributed energy 
resources: A review,” Renewable and Sustainable Energy Reviews, vol. 24, Page(s): 
387–405, 2013 

[68] C. Yoon, J. Kim, and S. Choi, “Multiphase DC–DC converters using a boost-half-
bridge cell for high-voltage and high-power applications,” IEEE transaction on power 
electronics, vol. 26, no. 2, pages(s):  381–388, Feb. 2011 

[69] Carrasco, J.M; Franquelo, L.G.; Bialasiewicz, J.T.; Galvan, E. “Power-Electronic 
Systems for the Grid Integration of Renewable Energy Sources: A Survey,” IEEE 
transaction on industrial electronics, vol. 53, Issue: 4, Page(s): 1002 - 1016, 2006 

[70] Chien-Ming Wang, Chang-Hua Lin, Shih-Yung Hsu, Chien-Min Lu, Jyun-Che Li, 
“Analysis, design and performance of a zero-currentswitching pulse-width-
modulation interleaved boost dc/dc converter,”  IET Power Electron., Vol. 7, Iss. 9, 
pp. 2437–2445, 2014. 

[71] M. Elsied, A. Salem, A. Oukaour, H. Gualous, H. Chaoui, T. Youssef, De. Belie, J. 
Melkebeek, O. Mohammed,’’ Efficient power-electronic converters for electric 
vehicle applications’’, in: 2015 IEEE Vehicle Power and Propulsion Conference 
(VPPC), Montreal, 2015. 

[72] Kai Zhang, Zhenyu Shan and Juri Jatskevich, Senior Member, IEEE, “Large- and 
Small-Signal Average-Value Modeling of Dual-Active-Bridge DC–DC Converter 
Considering Power Losses,”  IEEE   Trans. Power Electron, Vol. 99, no. 1, pp. 1-1, 
April. 2016.. 

[73] DAS. M, Agarwal. V, “Design and Analysis of a High Efficiency DC-DC Converter 
with Soft Switching Capability for Renewable Energy Applications Requiring High 
Voltage Gain,” IEEE transaction on industrial electronics, vol. PP, issue. 99, Page(s): 
1, 2016. 

[74] Yu Gu, and Donglai Zhang, Member, IEEE, “Interleaved Boost Converter with 
Ripple Cancellation Network”, IEEE   Trans. Power Electron, VOL. 28, no. 8, August 
2013. 

[75] Luo-wei Zhou, Bin-xin Zhu, Quan-ming Luo, Si Chen,’’ Interleaved non-isolated 
high step-up DC/DC converter based on the diode–capacitor multiplier, IET Power 
Electron. , Vol. 7, Iss. 2, pp. 390–397, 2014. 



 
 

326 
 

[76] A. Salem, M. Elsied, J. Druant, F. De Belie, A.Oukaour, H.Gualous, and J. 
Melkebeek “An Advanced Multilevel Converter Topology with Reduced Switching 
Elements,”, in: the 40th Annual Conference of the IEEE Industrial Electronics 
IECON 2014, Dallas, USA, 2014 

[77] P. Thounthong and B. Davat, “Study of a multiphase interleaved step-up converter 
for fuel cell high power applications,” Energy Convers. Manag., vol. 51, no. 4, pp. 
826–832, 2010. 

[78] A. Prodic, D. Maksimovic and R.W. Erickson, “Design and implementation of a 
digital PWM controller for a high-frequency switching DC-DC power converter,” 
Proc. the 26th Annual Conference of the IEEE Industrial Electronics IECON 2001, 
pp. 893-898, 2001 

[79] Pengfei Li,“ Synchronization and control of high frequency DC-DC converters”, 
PhD thesis; Florida university,2009. 

[80] IEEE Std. 1588-2008. “, IEEE Standard for a Precision Clock Synchronization 
Protocol for Networked Measurement and Control Systems’’, Available: 
http://www.nist.gov/el/isd/ieee/ieee1588.cfm [Accessed Feb 28/ 20016].  

[81] National Instruments, “Timing and Synchronization Systems,” [Online]. Available 
http://www.ni.com/white-paper/9882/en/ . [Accessed Feb 28/ 2016]. 

[82] Wenbo Shi, Na Li, Member, and Rajit Gadh; “Real-Time Energy Management in 
Microgrids”  IEEE TRANSACTIONS ON SMART GRID, Vol 99, PP:1-1, August 
2015. 

[83] Priewasser.  R,  Agostinelli. M, Unterrieder. C, Marsili. S,  “Modeling, Control,       
and  Implementation of  DC–DC Converter for Variable Frequency Operation,” IEEE   
Trans. Power Electron, Vol. 29, no. 1, pp. 287–301, Jan. 2014. 

[84] https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techop
s/navservices/gnss/faq/gps/ [Accessed Feb 27/ 2017]. 

[85]  Boyr; France Thomas  J. L “A review on synchronization methods for grid-
connected three-phase VSC under unbalanced and distorted conditions” in  Power 
Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European 
Conference, pp. 1-10, 2011. 

[86] Fainan Hassan and Roger Critchley  “A Robust PLL for Grid Interactive Voltage 
Source Converters” in Power Electronics and Motion Control Conference 
(EPE/PEMC), 14th International, pp. T2-29-T2-35, 2010. 

[87] Fran González-Espí; Emilio Figueres; Gabriel Garcerá  ”An Adaptive Synchronous-
Reference-Frame Phase-Locked Loop for Power Quality Improvement in a Polluted 
Utility Grid” in  Industrial Electronics, IEEE Transactions on, Volume: 59 , Issue: 6, 
pp. 2718 – 2731, 2012. 

[88] Yun-Hyun Kim; Kwang-Seob Kim; Byung-Ki Kwon; Chang-Ho Choi “A fast and 
robust pll of mcfc pcs under unbalanced grid voltage” in Power Electronics 
Specialists Conference, PESC 2008. IEEE  



 
 

327 
 

[89] Canbing Li, Chi Cao, Yijia Cao, Yonghong Kuang, Long Zeng, Baling Fang, “A 
review of islanding detection methods for microgrid,” Renewable and Sustainable 
Energy Reviews, Volume 35, July 2014, Pages 211-220, ISSN 1364-0321, 
http://dx.doi.org/10.1016/j.rser.2014.04.026. 

[90] A. Mazloomzadeh, M. H. Cintuglu and O. A. Mohammed, "Islanding detection 
using synchronized measurement in smart microgrids," 2013 IEEE PES Conference 
on Innovative Smart Grid Technologies (ISGT Latin America), Sao Paulo, 2013, pp. 
1-7., pp. 4712-4716, 2013. 

[91]  Ghoshal, Anirban and John, Vinod, “A Method to Improve PLL Performance Under 
Abnormal Grid Conditions,” In: National Power Electronics Conference, Indian 
Institute of Science, Bangalore, 2007. 

[92] A. Basit, G. A. S. Sidhu, A. Mahmood and F. Gao, "Efficient and Autonomous 
Energy Management Techniques for the Future Smart Homes," in IEEE Transactions 
on Smart Grid, vol. 8, no. 2, pp. 917-926, March 2017 

[93] C. Zhao; J. He; P. Cheng; J. Chen, "Consensus-Based Energy Management in Smart 
Grid With Transmission Losses and Directed Communication," in IEEE Transactions 
on Smart Grid , vol.PP, no.99, pp.1-13, January 2016. 

[94] W. Shi, X. Xie, C. C. Chu and R. Gadh, "Distributed Optimal Energy Management 
in Microgrids," in IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1137-1146, 
May 2015. 

[95] S. Salinas, M. Li, P. Li and Y. Fu, "Dynamic Energy Management for the Smart 
Grid With Distributed Energy Resources," in IEEE Transactions on Smart Grid, vol. 
4, no. 4, pp. 2139-2151, Dec. 2013. 

[96] Z. Chen and L. Wu, "Residential Appliance DR Energy Management With Electric 
Privacy Protection by Online Stochastic Optimization," in IEEE Transactions on 
Smart Grid, vol. 4, no. 4, pp. 1861-1869, Dec. 2013. 

[97] OpenEI. Available Online: en.openei.org/datasets/dataset (accessed on March 2015). 

[98] Object Management Group (OMG), the Real-time Publish-Subscribe Wire Protocol 
DDS Interoperability Wire Protocol Specification, 2009. 

[99] Assessment of Demand Response and Advanced Metering. Available online: 
https://www.ferc.gov/legal/staff-reports/2015/demand-response.pdf (accessed on 01 
December 2016). 

[100] Florida Power and Light Company. Available Online” 
https://www.fpl.com/rates/pdf/Sept2016-Residential.pdf” (Accessed on 20 November 
2016). 

[101] D. G. Vutetakis and H. Wu, "The effect of charge rate and depth of discharge on 
the cycle life of sealed lead-acid aircraft batteries," IEEE 35th International Power 
Sources Symposium, pp. 103-105, Cherry Hill, NJ, 1992. 



 
 

328 
 

[102] Y. Gong, Y. Cai, Y. Guo and Y. Fang, "A Privacy-Preserving Scheme for 
Incentive-Based Demand Response in the Smart Grid," in IEEE Transactions on 
Smart Grid, vol. 7, no. 3, pp. 1304-1313, May 2016. 

[103] M. Zeifman and K. Roth, "Nonintrusive appliance load monitoring: Review and 
outlook," in IEEE Transactions on Consumer Electronics, vol. 57, no. 1, pp. 76-84, 
February 2011. 

[104] G. W. Hart, "Nonintrusive appliance load monitoring," in Proceedings of the IEEE, 
vol. 80, no. 12, pp. 1870-1891, Dec 1992. 

[105] H. H. Chang, K. L. Chen, Y. P. Tsai and W. J. Lee, "A New Measurement Method 
for Power Signatures of Nonintrusive Demand Monitoring and Load Identification," 
in IEEE Transactions on Industry Applications, vol. 48, no. 2, pp. 764-771, March-
April 2011. 

[106] C. Dinesh, B. W. Nettasinghe, R. I. Godaliyadda, M. P. B. Ekanayake, J. 
Ekanayake and J. V. Wijayakulasooriya, "Residential Appliance Identification Based 
on Spectral Information of Low Frequency Smart Meter Measurements," in IEEE 
Transactions on Smart Grid, vol. 7, no. 6, pp. 2781-2792, Nov. 2016. 

[107] Timothy John Eastham, Reactive Power Control in Electric Systems, Wiley, 1982. 

[108] Leon M. Tolbert, Harold D. Hollis and Peyton S. Hale, "Evaluation of Harmonic 
Suppression Devices", IEEE Thirty-First IAS Annual Meeting, San Diego, CA, PP. 
2340-2346, Oct. 1996. 

[109] Ali I. and M. H. Haque, "Harmonics, Sources, Effects and Mitigation Techniques", 
Second International conference on Electrical and Computer Engineering (ICECE), 
PP. 87-90, December 2002. 

[110] Illindala, M.; Venkataramanan, G., "Frequency/Sequence Selective Filters for 
Power Quality Improvement in a Microgrid," Smart Grid, IEEE Transactions on , 
vol.3, no.4, pp.2039,2047, Dec. 2012. 

[111] Corasaniti, V.F.; Barbieri, M.B.; Arnera, P.L., "Compensation with Hybrid Active 
Power Filter in an Industrial Plant," Latin America Transactions, IEEE (Revista IEEE 
America Latina) , vol.11, no.1, pp.447,452, Feb. 2013. 

[112] Bhattacharya, A.; Chakraborty, C.; Bhattacharya, S., "Parallel-Connected Shunt 
Hybrid Active Power Filters Operating at Different Switching Frequencies for 
Improved Performance," Industrial Electronics, IEEE Transactions on , vol.59, no.11, 
pp.4007,4019, Nov. 2012. 

[113] Acuna, P.; Moran, L.; Rivera, M.; Dixon, J.; Rodriguez, J., "Improved Active 
Power Filter Performance for Renewable Power Generation Systems," Power 
Electronics, IEEE Transactions on , vol.29, no.2, pp.687,694, Feb. 2014. 

[114] Round S.D. and Ingram D.M.E, " An Evaluation of Techniques for Determining 
Active Filter Compensating Currents in Unbalanced Systems", Proc. Of the European 
Conf. on Power Electronics and Applications, Vol. 4, no. 5, PP. 767-772, Trondheim, 
1997. 



 
 

329 
 

[115] H. Akagi, E. H. Watanabe and M. Aredes, “Instantaneous Power Theory to Power 
Conditioning,” Wiley, 2007. 

[116] H. Akagi, E. H. Watanabe and M. Aredes, " More power to you (review of 
Instantaneous Power Theory to Power Conditioning by Akagi, H. et al.; 2007)", IEEE 
Power and Energy Magazine, Vol. 6, no. 1, PP. 80-81, 2008. 

[117] Bhim Singh , Kamal Al-Haddad and Ambrish Chandra, "A Review of Active filters 
for Power Quality Improvement", IEEE Trans. on Industrial Electronics , Vol. 46, no. 
5, PP. 960-967, Oct. 1999. 

[118] Tarek Youssef and O. A. Mohammed, " Adaptive SRF-PLL with Reconfigurable 
Controller for Microgrid in Grid-Connected and Stand-Alone Modes" 2013 Power 
and Energy Society General Meeting, Vancouver, B.C., Canada, 21-25 Jul 2013.  

[119] Simone Buso, Luigi Malesani  and Paolo Mattavelli, "Comparison of Current 
Control Techniques for Active filter Applications", IEEE Trans. on Industrial 
Electronics , Vol. 45, no. 5, PP. 722-729, Oct. 1998. 

[120] Ingram D.M.E. and Round S.D, " A Novel Digital Hysteresis Current Controller 
for an Active Power Filter", Proc. of Conf. on Power Electronics and Drive Systems, 
vol. 2, pp. 744-749, Singapore, 1999. 

[121]  J.-F. Brudny and J.-P. Lecointe, “Rotor design for reducing the switching magnetic 
noise of AC electrical machine variable-speed drives,” IEEE Trans. Ind. Electron., 
vol. 58, no. 11, pp. 5112–5120, Nov. 2011. 

[122] R. Islam, I. Husain, A. Fardoun, and K. McLaughlin, “Permanent magnet 
synchronous motor magnet designs with skewing for torque ripple and cogging 
torque reduction,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 152–160, Jan./Feb. 
2009. 

[123] Y. Liu, Z. Q. Zhu, and D. Howe, “Direct torque control of brushless DC drives 
with reduced torque ripple,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 599–608, 
Mar./Apr. 2005. 

[124] ] Z. Zhengming et al., “Hybrid selective harmonic elimination PWM for common-
mode voltage reduction in three-level neutral-point-clamped inverters for variable 
speed induction drives,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1152–1158, 
Mar. 2012. 

[125] B. Ozpineci, L. M. Tolbert, and J. N. Chiasson, “Harmonic optimization of 
multilevel converters using genetic algorithms,” in Proc. IEEE 35th Annu. Power 
Electron. Spec. Conf., vol. 5, 2004, pp. 3911–3916. 

[126] W. Fei, X. Ruan, and B. Wu, “A generalized formulation of quarter-wave 
symmetry SHE-PWM problems for multilevel inverters,” IEEE Trans. Power 
Electron., vol. 24, no. 7, pp. 1758–1766, Jul. 2009 

[127] M. S. A. Dahidah and V. G. Agelidis, “Selective harmonic elimination PWM 
control for cascaded multilevel voltage source converters: A generalized formula,” 
IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1620–1630, Jul. 2008. 



 
 

330 
 

[128] E. Babaei, S. H. Hosseini, and G. B. Gharehpetian, “Reduction of THD and low 
order harmonics with symmetrical output current for single-phase ac/ac matrix 
converters,” Int. J. Elect. Power Energy Syst., vol. 32, no. 3, pp. 225–235, Mar. 2010. 

[129] Z. Du, L. M. Tolbert, and J. N. Chiasson, “Active harmonic elimination for 
multilevel converters,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 459–469, 
Mar. 2006. 

[130] Z. Du, L. M. Tolbert, and J. N. Chiasson, “Active harmonic elimination in 
multilevel converters using FPGA control,” in Proc. IEEE Workshop Comput. Power 
Electron., Urbana-Champaign, IL, USA, Aug. 2004, pp. 127–132. 

[131] Z. Du, L.M. Tolbert, and J. N. Chiasson, “Harmonic elimination in multilevel 
converter with programmed PWMmethod,” in Proc. IEEE Ind. Appl. Soc. Annu. 
Meeting, Seattle, WA, USA, Oct. 2004, pp. 2210–2215. 

[132] V. G. Agelidis, A. Balouktsis, I. Balouktsis, and C. Cossar, “Five-level selective 
harmonic elimination PWM strategies and multicarrier phase shifted sinusoidal 
PWM: A comparison,” in Proc. IEEE Power Electron. Spec. Conf., Recife, Brazil, 
Jun. 2005, pp. 1685–1691. 

[133] V. G. Agelidis, A. Balouktsis, and M. S. A. Dahidah, “A five-level symmetrically 
defined selective harmonic elimination PWM strategy: Analysis and experimental 
validation,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 19–26, Jan. 2008. 

[134] M. S. A. Dahidah and V. G. Agelidis, “Generalized formulation of multilevel 
selective harmonic elimination PWM: Case I—Non-equal dc sources,” in Proc. IEEE 
Power Electron. Spec. Conf., Jeju, Korea, Jun. 2006, pp. 472–1477. 

[135]  H. A. Toliyat et al., “Electric Machines: Modeling, Condition Monitoring, and 
Fault Diagnosis,” Boca Raton, FL, USA: CRC Press, 2012. 

[136] M. Barzegaran, A. Mazloomzadeh, and O. A. Mohammed, “Fault diagnosis of the 
asynchronous machines through magnetic signature analysis using finite-element 
method and neural networks,” IEEE Trans. Energy Convers., vol. 28, no. 4, pp. 1064–
1071, Dec. 2013. 

[137] C. Lascu et al., “High performance current controller for selective harmonic 
compensation in active power filters,” IEEE Trans. Power Electron., vol. 22, no. 5, 
pp. 1826–1835, Sep. 2007. 

[138] F. Z. Peng, J.-S. Lai, J.W. McKeever, and J. VanCoevering, “A multilevel voltage-
source inverter with separateDCsources for static var generation,”IEEE Trans. Ind. 
Appl., vol. 32, no. 5, pp. 1130–1138, Sep./Oct. 1996. 

[139] J. Rodriguez, J. S. Lai, and F. Z. Peng, “Multilevel inverters: A survey of 
topologies, controls, and applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 
724–738, Aug. 2002. 

[140] A. Kavousi, B. Vahidi, R. Salehi, M. Bakhshizadeh, N. Farokhnia, and S. S. Fathi, 
“Application of the bee algorithm for selective harmonic elimination strategy in 



 
 

331 
 

multilevel inverters,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1689–1696, 
Apr. 2012. 

[141] S. B. A. Khalid, G. Aliyu, M. W. Mustafa, and H. Shareef, “An improved Walsh 
function algorithm for use in sinusoidal and nonsinusoidal power components 
measurement,” J. Energy, vol. 2013, art. no. 807639, p. 10, 2013. 

[142] Y. Liu, H. Hong, and A. Q. Huang, “Real-time calculation of switching angles 
minimizing THD for multilevel inverters with step modulation,” IEEE Trans. Ind. 
Electron., vol. 56, no. 2, pp. 285–293, Feb. 2009. 

[143] K. Georgakas, P. Vovos, and N. Vovos, “Harmonic reduction method for a single-
phase dc-ac converter without output filter,” IEEE Trans. Power Electron., vol. 29, 
no. 9, pp. 4624–4632, Sep. 2013. 

[144]  S. Jeevananthan, R. Nandhakumar, and P. Dananjayan, “Inverted sine carrier for 
fundamental fortification in PWM inverters and FPGA based implementations,” 
Serbian J. Elect. Eng., vol. 4, no. 2, pp. 171–187, 2007. 

[145] J. R. Rodr´ıguez et al., “PWM regenerative rectifiers: State of the art,” IEEE Trans. 
Ind. Electron., vol. 52, no. 1, pp. 5–22, Feb. 2005. 

[146] A. Radan, A. H. Shahirinia, and M. Falahi, “Evaluation of carrier-based PWM 
methods for multi-level inverters,” in Proc. IEEE Int. Symp. Ind. Electron., 2007, pp. 
389–394. 

[147] M. Barzegaran, A. Mohamed, T. Youssef, and O. A. Mohammed, 
“Electromagnetic signature study of a power converter connected to an electric motor 
drive,” IEEE Trans. Magn., vol. 50, no. 2, pp. 201–204, Feb. 2014. 

[148]  J. W. Gordon and J. O. Smith, “A Sine Generation Algorithm for VLSI 
Applications,” in Proc. Int. Computer Music Conf. (1985), pp. 165–168. 

[149] ] V. F. Kroupa, “Direct Digital Frequency Synthesizers,” Piscataway, NJ, USA: 
IEEE Press, 1999. 

[150] P. C. Krause et al., “Analysis of Electric Machinery and Drive Systems”, vol. 75. 
Hoboken, NJ, USA: Wiley, 2013. 

[151] J. A. Baroudi, V. Dinavahi, and A. M. Knight, “A review of power converter 
topologies for wind generators,” Renewable Energy, vol. 32, no. 14, pp. 2369–2385, 
Nov. 2007. 

[152] S. K. Mondal et al., “Space vector pulse width modulation of three-level inverter 
extending operation into overmodulation region,” IEEE Trans. Power Electron., vol. 
18, no. 2, pp. 604–611, Mar. 2003. 

[153] Technical Report “IEC TR 61850-1”, First edition, 2003-04, reference number 
IEC/TR 61850-1:2003(E) 

[154] J. Hoyos, M. Dehus, and T. X. Brown, “Exploiting the goose protocol: A practical 
attack on cyber-infrastructure,” in Globecom Workshops (GC Wkshps), 2012 IEEE. 
IEEE, 2012, pp. 1508–1513. 



 
 

332 
 

[155] M. T. A. Rashid, S. Yussof, Y. Yusoff, and R. Ismail, “A review of security attacks 
on iec61850 substation automation system network,” in Information Technology and 
Multimedia (ICIMU), 2014 International Conference on. IEEE, 2014, pp. 5–10. 

[156] M. Hariri, T. Youssef, and O.A. Mohammed, “On the Implementation of IEC 
61850 Standard: Will Different Manufacturer Devices Behave Similarly Under 
Identical Condistions?”. Electronics, 2016. 

[157]   Q. Li, C. Ross, J. Yang, J. Di, J. C. Balda, and H. A. Mantooth, “The effects of 
flooding attacks on time-critical communications in the smart grid.” 

[158] N Kush, E. Ahmed, M. Branagan, Ernest .F, " Poisoned GOOSE: Exploiting the 
GOOSE Protocol," Proceedings of the Twelfth Australasian Information Security 
Conference (AISC 2014), Auckland, New Zealand, pp. 17-22. 

[159] H. Falk, “Securing iec 61850,” in 2008 IEEE Power and Energy Society General 
Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, 2008. 

[160] Frances Cleveland “IEC 62351 Security Standards for the Power system 
Information Infrastructure”. IEC TC57 WG15 security standard Ver 14, June, 2012.  

[161] E. D. Knapp, “Applied Cyber Security and the Smart Grid: Implementing Security 
Controls into the Modern Power Infrastructure” Elsevier, 2013. 

[162] F. Hohlbaum, M. Braendle, and F. Alvarez, “Cyber security practical 
considerations for implementing iec 62351,” Switzerland, library.e.abb.com. 

[163] S. Fuloria, R. Anderson, K McGrath, K Hansen, F Alvarez, “The Protection of 
Substation Communications”, ABB Corporate research, 
https://www.cl.cam.ac.uk/~rja14/Papers/S4-2010.pdf. 

  



 
 

333 
 

VITA 

TAREK YOUSSEF 

1977 Born, Cairo, Egypt 
 

1996-2001 
B.S., Electrical Engineering 
Helwan University, Cairo, Egypt  

 

2008 
M.S., Electrical Engineering 
Helwan University, Cairo, Egypt 
 

2012-2017 Doctoral Candidate, Electrical Engineering 
 

2015 
Outstanding Scholar award for Academic Achievement and 
Academic Research, Florida International University 
 

2017 
Award, Dissertation Year Fellowship 
Florida International University, Miami, Florida 
 

SELECTED PUBLICATIONS AND PRESENTATIONS 

[1] Tarek A. Youssef, Ahmed T. Elsayed,  Osama A. Mohammed "data distribution 
service based  Interoperability Framework  for Smart Grid Testbed Infrastructure", 
Energies Journal, 2 March 2016. 
 

[2] M. H. Cintuglu; T. Youssef; O. A. Mohammed, "Development and Application of a 
Real-Time Testbed for Multiagent System Interoperability: A Case Study on 
Hierarchical Microgrid Control," in IEEE Transactions on Smart Grid , vol.PP, no.99, 
pp.1-1. 

[3] El Hariri Mohamad, Tarek A. Youssef, and Osama A. Mohammed. "On the 
Implementation of the IEC 61850 Standard: Will Different Manufacturer Devices 
Behave Similarly under Identical Conditions?" Electronics 5.4 (2016): 85. 
 

[4] H. F. Habib, T. Youssef, M. H. Cintuglu and O. Mohammed, "A multi-agent based 
technique for fault location, isolation and service restoration," 2016 IEEE Industry 
Applications Society Annual Meeting, Portland, OR, 2016, pp. 1-8. 

[5] M.R Barzegaran, Ahmed Mohamed, Tarek Youssef, O.A. Mohammed 
“Electromagnetic signature study of the power converter connected to an electric 
motor drives,” IEEE Transaction on Magnetics (Volume:50 ,  Issue: 2 ), Feb. 2014. 
 

[6] M. R. Barzegaran, Tarek Youssef, Alberto Berzoy, , O. A Mohammed, “Electric 



 
 

334 
 

Machine Drive Design Improvements through Control and Digital Signal Processing 
Techniques”, Accepted for IEEE Transaction on Energy conversion. 
 

[7] Abla O. Hariri, Tarek Youssef, Ahmed T. Elsayed, Osama Mohammed, “A 
Computational Approach for a Wireless Power Transfer Link Design Optimization 
Considering Electromagnetic Compatibility”, Accepted to be published in IEEE 
Transactions on Magnetics. DOI: 10.1109/TMAG.2015.2492922. 
 

[8] A. T. Elsayed, T. A. Youssef and O. A. Mohammed, "Modeling and Control of a 
Low-Speed Flywheel Driving System for Pulsed-Load Mitigation in DC Distribution 
Networks," in IEEE Transactions on Industry Applications, vol. 52, no. 4, pp. 3378-
3387, July-Aug. 2016.  
 

[9] Mohamad El Hariri, Tarek A. Youssef, Abla Hariri and O. A. Mohammed, 
“Microgrids on Wheels: Not to Leave Security Behind,” in IEEE Electrification 
Magazine (E-M), June 2016 
 

[10] Mohamed, Ahmed Elsayed, Tarek. Youssef and O. A. Mohammed, "Wide-area 
monitoring and control for voltage assessment in smart grids with distributed 
generation,"  Proceedings of the 2013 PES Innovative Smart Grid Technologies 
Conference (ISGT),Washington, D.C., USA, 24-27 Feb 2013. 

 

[11] Ahmed Elsayed, Tarek Youssef, A. Mohamed and O. A. Mohammed, "Design and 
Control of Standalone P-V System for Rural Residential Applications," Fifth 
International Symposium on Energy ,Puerto Rico Energy Center-Laccei, February 7-
8, 2013,Puerto Rico.  

[12] Tarek Youssef and O. A. Mohammed, " Adaptive SRF-PLL with Reconfigurable 
Controller for Microgrid in Grid-Connected and Stand-Alone Modes"   Proceedings 
of the 2013 Power and Energy Society General Meeting, Vancouver, B.C., Canada, 
21-25 Jul 2013. 

[13] Tarek Youssef, A. Elsayed, A. Mohamed and O. A. Mohammed,”Intelligent Multi-Objective 
Control for Improved Integration of Microgrids to Power Systems Involving Highly 
Nonlinear Local Loads” ," 5th Innovative Smart Grid Technologies Conference (ISGT North 
America), Washington, D.C., USA, 19-22 Feb 2014. 

 


	Florida International University
	FIU Digital Commons
	4-6-2017

	Co-design of Security Aware Power System Distribution Architecture as Cyber Physical System
	Tarek Youssef
	Recommended Citation


	Microsoft Word - Tarek Dissertation after final modifications by Dr Mohammed

