1,687 research outputs found

    Automated recognition of design patterns for framework understanding

    Get PDF
    System design is one of the most important tasks in the software development cycles but it is also one of the most complex and time-consuming tasks. Thus, reuse of existing designs becomes very important. Object-oriented frameworks are generic designs for specific application domains that enable the reuse of designs and domain expert experience. In spite of this, frameworks are not simple to reuse because they are difficult to comprehend, mainly due to a lack of good documentation and supporting tools. In this work, an approach to framework comprehension based on the automated recognition and visualization of design patterns is presented. A tool was built to support this approach, by trying to automatically identify and explain the potentia~ patterns existing in a given designo Experimental results and conclusions of tool utilization are also presented

    Towards automated restructuring of object oriented systems

    Get PDF
    The work introduces a method for diagnosing design flaws in object oriented systems, and finding meaningful refactorings to remove such flaws. The method is based on pairing up a structural pattern that is considered pathological (e.g. a code smell or anti-pattern) with a so called design context. The design context describes the design semantics associated to the pathological structure, and the desired strategic closure for that fragment. The process is tool supported and largely automated

    Reusable abstractions for modeling languages

    Full text link
    This is the author’s version of a work that was accepted for publication in Information Systems. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Systems, 38, 8, (2013) DOI: 10.1016/j.is.2013.06.001Model-driven engineering proposes the use of models to describe the relevant aspects of the system to be built and synthesize the final application from them. Models are normally described using Domain-Specific Modeling Languages (DSMLs), which provide primitives and constructs of the domain. Still, the increasing complexity of systems has raised the need for abstraction techniques able to produce simpler versions of the models while retaining some properties of interest. The problem is that developing such abstractions for each DSML from scratch is time and resource consuming. In this paper, our goal is reducing the effort to provide modeling languages with abstraction mechanisms. For this purpose, we have devised some techniques, based on generic programming and domain-specific meta-modeling, to define generic abstraction operations that can be reused over families of modeling languages sharing certain characteristics. Abstractions can make use of clustering algorithms as similarity criteria for model elements. These algorithms can be made generic as well, and customized for particular languages by means of annotation models. As a result, we have developed a catalog of reusable abstractions using the proposed techniques, together with a working implementation in the MetaDepth multi-level meta-modeling tool. Our techniques and prototypes demonstrate that it is feasible to build reusable and adaptable abstractions, so that similar abstractions need not be developed from scratch, and their integration in new or existing modeling languages is less costly.Work funded by the Spanish Ministry of Economy and Competitivity with project “Go Lite” (TIN2011-24139), and the R&D programme of Madrid Region with project “eMadrid” (S2009/TIC-1650)

    Trends and concerns in digital cartography

    Get PDF
    CISRG discussion paper ;

    GRASP/Ada (Graphical Representations of Algorithms, Structures, and Processes for Ada): The development of a program analysis environment for Ada. Reverse engineering tools for Ada, task 1, phase 2

    Get PDF
    The study, formulation, and generation of structures for Ada (GRASP/Ada) are discussed in this second phase report of a three phase effort. Various graphical representations that can be extracted or generated from source code are described and categorized with focus on reverse engineering. The overall goal is to provide the foundation for a CASE (computer-aided software design) environment in which reverse engineering and forward engineering (development) are tightly coupled. Emphasis is on a subset of architectural diagrams that can be generated automatically from source code with the control structure diagram (CSD) included for completeness

    First Class Copy & Paste

    Get PDF
    The Subtext project seeks to make programming fundamentally easier by altering the nature of programming languages and tools. This paper defines an operational semantics for an essential subset of the Subtext language. It also presents a fresh approach to the problems of mutable state, I/O, and concurrency.Inclusions reify copy & paste edits into persistent relationships that propagate changes from their source into their destination. Inclusions formulate a programming language in which there is no distinction between a programÂs representation and its execution. Like spreadsheets, programs are live executions within a persistent runtime, and programming is direct manipulation of these executions via a graphical user interface. There is no need to encode programs into source text.Mutation of state is effected by the computation of hypothetical recursive variants of the state, which can then be lifted into new versions of the state. Transactional concurrency is based upon queued single-threaded execution. Speculative execution of queued hypotheticals provides concurrency as a semantically transparent implementation optimization

    Identifying Extract Class and Extract Method Refactoring Opportunities Through Analysis of Variable Declarations and Uses

    Get PDF
    For small software systems, with perhaps a few thousand lines of code, software structure is largely an esthetic issue. When software systems grow large, including perhaps a million or more lines of source code, their structures become much more important. Developing a large system requires teams of developers working in concert to provide a finished product in a reasonable amount of time. That means that many people will read each component to use, test or modify towards accomplishing new features. In the software development life cycle, the maintenance phase is a dominant stage that impacts production cost of the system dramatically. This is mainly because, for a successful system, the maintenance phase lasts until the system\u27s retirement and includes crucial operations such as enhancing performance, fixing newly discovered bugs and adopting/expending the software to meet new user requirements. Moreover, a software component may be modified or fixed by someone who is not the original author of that component. In this case, all the operations conducted during maintenance or initial development may lead to insertion of code into a unit that may be unrelated to the original design concept of that unit. As software systems become large and complex they grow too long to read and understand completely by a single person. After their initial implementations, maintenance operations tend to make the system even less maintainable, increasing the time and effort needed for future maintenance. In this research, we are interested in finding ways to successfully detect code defects and propose solutions to increase the overall maintainability of software systems that are larger than any one person can completely comprehend from its code alone. This process of refactoring software impacts the total production cost of the system positively by improving the quality of software code such as its comprehensibility and readability. To reduce the total development cost for a system, we suggest three main re-factorings. These novel forms of refactoring techniques aim to eliminate code defects such as large classes and long methods. The main goal of these re-factorings is to create smaller and cohesive software units with clear intentions to improve the maintainability of software. We provide analysis and visualization tools to help a user identify candidate code fragments to be extracted as separate unites. With these automation tools, developers do not have to manually inspect a foreign code base to detect possible refactoring opportunities. Through the visual representations we provide, one can observe all suggested re-factorings effectively on large scale software systems and decide whether a particular refactoring needs to be applied. To show the effectiveness of our techniques, we also provide some experiments conducted using these tools and techniques both on our own project\u27s source code and other open-source projects

    A Domain-Specific Language and Editor for Parallel Particle Methods

    Full text link
    Domain-specific languages (DSLs) are of increasing importance in scientific high-performance computing to reduce development costs, raise the level of abstraction and, thus, ease scientific programming. However, designing and implementing DSLs is not an easy task, as it requires knowledge of the application domain and experience in language engineering and compilers. Consequently, many DSLs follow a weak approach using macros or text generators, which lack many of the features that make a DSL a comfortable for programmers. Some of these features---e.g., syntax highlighting, type inference, error reporting, and code completion---are easily provided by language workbenches, which combine language engineering techniques and tools in a common ecosystem. In this paper, we present the Parallel Particle-Mesh Environment (PPME), a DSL and development environment for numerical simulations based on particle methods and hybrid particle-mesh methods. PPME uses the meta programming system (MPS), a projectional language workbench. PPME is the successor of the Parallel Particle-Mesh Language (PPML), a Fortran-based DSL that used conventional implementation strategies. We analyze and compare both languages and demonstrate how the programmer's experience can be improved using static analyses and projectional editing. Furthermore, we present an explicit domain model for particle abstractions and the first formal type system for particle methods.Comment: Submitted to ACM Transactions on Mathematical Software on Dec. 25, 201
    • …
    corecore