100 research outputs found

    Supporting Dimensional Analysis in SystemC-AMS

    Get PDF
    This paper will introduce new modeling capabilities for SystemC-AMS to describe energy conserving multi-domain systems in a formal and consistent way at a high level of abstraction. To this end, all variables and parameters of the system model need to be annotated with their measurement units in such a way that they become intrinsic part of the data type. This enforces correct model assembly through strict interfaces and coherent formulas describing the analog behavior by means of dimensional analysis. A library of generic block diagram components has been developed to demonstrate how both requirements can be met using the Boost libraries together with SystemC- AMS. The demonstrated implementation techniques are the key to integrate new Models of Computation (MoCs) into SystemC-AMS to facilitate further the description of multi-domain systems

    On mixed abstraction, languages and simulation approach to refinement with SystemC AMS

    Get PDF
    Executable specifications and simulations arecornerstone to system design flows. Complex mixed signalembedded systems can be specified with SystemC AMSwhich supports abstraction and extensible models of computation. The language contains semantics for moduleconnections and synchronization required in analog anddigital interaction. Through the synchronization layer, user defined models of computation, solvers and simulators can be unified in the SystemC AMS simulator for achieving low level abstraction and model refinement. These improvements assist in amplifying model aspects and their contribution to the overall system behavior. This work presents cosimulating refined models with timed data flow paradigm of SystemC AMS. The methodology uses Cbased interaction between simulators. An RTL model ofdata encryption standard is demonstrated as an example.The methodology is flexible and can be applied in earlydesign decision trade off, architecture experimentation and particularly for model refinement and critical behavior analysis

    Addressing the Smart Systems Design Challenge: The SMAC Platform

    Get PDF
    This article presents the concepts, the organization, and the preliminary application results of SMAC, a smart systems co-design platform. The SMAC platform, which has been developed as Integrated Project (IP) of the 7th ICT Call under the Objective 3.2 \u201cSmart components and Smart Systems integration\u201d addresses the challenges of the integration of heterogeneous and conflicting domains that emerge in the design of smart systems. SMAC includes methodologies and EDA tools enabling multi-disciplinary and multi-scale modelling and design, simulation of multidomain systems, subsystems and components at different levels of abstraction, system integration and exploration for optimization of functional and non-functional metrics. The article presents the preliminary results obtained by adopting the SMAC platform for the design of a limb tracking smart system

    Modeling and Simulation of Cyber-Physical Electrical Energy Systems with SystemC-AMS

    Get PDF
    Modern Cyber-Physical Electrical Energy Systems (CPEES) are characterized by wider adoption of sustainable energy sources and by an increased attention to optimization, with the goal of reducing pollution and wastes. This imposes a need for instruments supporting the design flow, to simulate and validate the behavior of system components and to apply additional optimization and exploration steps. Additionally, each system might be tested with a number of management policies, to evaluate their economic impact. It is thus evident that simulation is a key ingredient in the design flow of CPEES. This paper proposes a framework for CPEES modeling and simulation, that relies on the open-source standard SystemC-AMS. The paper formalizes the information and energy flow in a generic CPEES, by focusing on both AC and DC components, and by including support for mechanical and physical models that represent multiple energy sources and loads. Experimental results, applied to a complex CPEES case study, will prove the effectiveness of the proposed solution, in terms of accuracy, speed up w.r.t. the current state of the art Matlab/Simulink, and support for the design flow

    Efficient Modelling and Simulation Methodology for the Design of Heterogeneous Mixed-Signal Systems on Chip

    Get PDF
    Systems on Chip (SoCs) and Systems in Package (SiPs) are key parts of a continuously broadening range of products, from chip cards and mobile phones to cars. Besides an increasing amount of digital hardware and software for data processing and storage, they integrate more and more analogue/RF circuits, sensors, and actuators to interact with their (analogue) environment. This trend towards more complex and heterogeneous systems with more intertwined functionalities is made possible by the continuous advances in the manufacturing technologies and pushed by market demand for new products and product variants. Therefore, the reuse and retargeting of existing component designs becomes more and more important. However, all these factors make the design process increasingly complex and multidisciplinary. Nowadays, the design of the individual components is usually well understood and optimised through the usage of a diversity of CAD/EDA tools, design languages, and data formats. These are based on applying specific modelling/abstraction concepts, description formalisms (also called Models of Computation (MoCs)) and analysis/simulation methods. The designer has to bridge the gaps between tools and methodologies using manual conversion of models and proprietary tool couplings/integrations, which is error-prone and time-consuming. A common design methodology and platform to manage, exchange, and collaboratively develop models of different formats and of different levels of abstraction is missing. The verification of the overall system is a big problem, as it requires the availability of compatible models for each component at the right level of abstraction to achieve satisfying results with respect to the system functionality and test coverage, but at the same time acceptable simulation performance in terms of accuracy and speed. Thus, the big challenge is the parallel integration of these very different part design processes. Therefore, the designers need a common design and simulation platform to create and refine an executable specification of the overall system (a virtual prototype) on a high level of abstraction, which supports different MoCs. This makes possible the exploration of different architecture options, estimation of the performance, validation of re-used parts, verification of the interfaces between heterogeneous components and interoperability with other systems as well as the assessment of the impacts of the future working environment and the manufacturing technologies used to realise the system. For embedded Analogue and Mixed-Signal (AMS) systems, the C++-based SystemC with its AMS extensions, to which recent standardisation the author contributed, is currently establishing itself as such a platform. This thesis describes the author's contribution to solve the modelling and simulation challenges mentioned above in three thematic phases. In the first phase, the prototype of a web-based platform to collect models from different domains and levels of abstraction together with their associated structural and semantical meta information has been developed and is called ModelLib. This work included the implementation of a hierarchical access control mechanism, which is able to protect the Intellectual Property (IP) constituted by the model at different levels of detail. The use cases developed for this tool show how it can support the AMS SoC design process by fostering the reuse and collaborative development of models for tasks like architecture exploration, system validation, and creation of more and more elaborated models of the system. The experiences from the ModelLib development delivered insight into which aspects need to be especially addressed throughout the development of models to make them reusable: mainly flexibility, documentation, and validation. This was the starting point for the development of an efficient modelling methodology for the top-down design and bottom-up verification of RF Systems based on the systematic usage of behavioural models in the second phase. One outcome is the developed library of well documented, parameterisable, and pin-accurate VHDL-AMS models of typical analogue/digital/RF components of a transceiver. The models offer the designer two sets of parameters: one based on the performance specifications and one based on the device parameters back-annotated from the transistor-level implementation. The abstraction level used for the description of the respective analogue/digital/RF component behaviour has been chosen to achieve a good trade-off between accuracy, fidelity, and simulation performance. The pin-accurate model interfaces facilitate the integration of transistor-level models for the validation of the behavioural models or the verification of a component implementation in the system context. These properties make the models suitable for different design tasks such as architecture exploration or overall system validation. This is demonstrated on a model of a binary Frequency-Shift Keying (FSK) transmitter parameterised to meet very different target specifications. This project showed also the limits in terms of abstraction and simulation performance of the "classical" AMS Hardware Description Languages (HDLs). Therefore, the third and last phase was dedicated to further raise the abstraction level for the description of complex and heterogeneous AMS SoCs and thus enable their efficient simulation using different synchronised MoCs. This work uses the C++-based simulation framework SystemC with its AMS extensions. New modelling capabilities going beyond the standardised SystemC AMS extensions have been introduced to describe energy conserving multi-domain systems in a formal and consistent way at a high level of abstraction. To this end, all constants, variables, and parameters of the system model, which represent a physical quantity, can now declare their dimension and associated system of units as an intrinsic part of their data type. Assignments to them need to contain besides the value also the correct measurement unit. This allows a much more precise but still compact definition of the models' interfaces and equations. Thus, the C++ compiler can check the correct assembly of the components and the coherency of the equations by means of dimensional analysis. The implementation is based on the Boost.Units library, which employs template metaprogramming techniques. A dedicated filter for the measurement units data types has been implemented to simplify the compiler messages and thus facilitate the localisation of unit errors. To ensure the reusability of models despite precisely defined interfaces, their interfaces and behaviours need to be parametrisable in a well-defined manner. The enabling implementation techniques for this have been demonstrated with the developed library of generic block diagram component models for the Timed Data Flow (TDF) MoC of the SystemC AMS extensions. These techniques are also the key to integrate a new MoC based on the bond graph formalism into the SystemC AMS extensions. Bond graphs facilitate the unified description of the energy conserving parts of heterogeneous systems with the help of a small set of modelling primitives parametrisable to the physical domain. The resulting models have a simulation performance comparable to an equivalent signal flow model

    Towards Multidimensional Verification: Where Functional Meets Non-Functional

    Full text link
    Trends in advanced electronic systems' design have a notable impact on design verification technologies. The recent paradigms of Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) assume devices immersed in physical environments, significantly constrained in resources and expected to provide levels of security, privacy, reliability, performance and low power features. In recent years, numerous extra-functional aspects of electronic systems were brought to the front and imply verification of hardware design models in multidimensional space along with the functional concerns of the target system. However, different from the software domain such a holistic approach remains underdeveloped. The contributions of this paper are a taxonomy for multidimensional hardware verification aspects, a state-of-the-art survey of related research works and trends towards the multidimensional verification concept. The concept is motivated by an example for the functional and power verification dimensions.Comment: 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC

    Wireless extension to the existing SystemC design methodology

    Get PDF
    This research uses a SystemC design methodology to model and design complex wireless communication systems, because in the recent years, the complexity of wireless communication systems has increased and the modelling and design of such systems has become inefficient and challenging. The most important aspect of modelling wireless communication systems is that system design choices may affect the communication behaviour and also communication design choices may impact on the system design. Whilst, the SystemC modelling language shows great promise in the modelling of complex hardware/software systems, it still lacks a standard framework that supports modelling of wireless communication systems (particularly the use of wireless communication channels). SystemC lacks elements and components that can be used to express and simulate wireless systems. It does not support noise links natively. To fill this gap, this research proposes to extend the existing SystemC design methodology to include an efficient simulation of wireless systems. It proposes to achieve this by employing a system-level model of a noisy wireless communication channel, along with a small repertoire of standard components (which of course can be replaced on a per application basis). Finally, to validate our developed methodology, a flocking behaviour system is selected as a demonstration (case study). This is a very complex system modelled based on the developed methodology and partitioned along different parameters. By applying our developed methodology to model this system as a case study, we can prove that incorporating and fixing the wireless channel, wireless protocol, noise or all of these elements early in the design methodology is very advantageous. The modelled system is introduced to simulate the behaviour of the particles (mobile units) that form a mobile ad-hoc communication network. Wireless communication between particles is addressed with two scenarios: the first is created using a wireless channel model to link each pair of particles, which means the wireless communication between particles is addressed using a Point-to-Point (P2P) channel; the other scenario is created using a shared channel (broadcast link). Therefore, incorporating wireless features into existing SystemC design methodology, as done in this research, is a very important task, because by developing SystemC as a design tool to support wireless systems, hardware aspects, software parts and communication can be modelled, refined and validated simultaneously on the same platform, and the design space expanded into a two-dimensional design space comprising system and communication

    Understanding multidimensional verification: Where functional meets non-functional

    Get PDF
    Abstract Advancements in electronic systems' design have a notable impact on design verification technologies. The recent paradigms of Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) assume devices immersed in physical environments, significantly constrained in resources and expected to provide levels of security, privacy, reliability, performance and low-power features. In recent years, numerous extra-functional aspects of electronic systems were brought to the front and imply verification of hardware design models in multidimensional space along with the functional concerns of the target system. However, different from the software domain such a holistic approach remains underdeveloped. The contributions of this paper are a taxonomy for multidimensional hardware verification aspects, a state-of-the-art survey of related research works and trends enabling the multidimensional verification concept. Further, an initial approach to perform multidimensional verification based on machine learning techniques is evaluated. The importance and challenge of performing multidimensional verification is illustrated by an example case study

    Proposal for a Bond Graph Based Model of Computation in SystemC-AMS

    Get PDF
    SystemC-AMS currently offers modelling formalisms with specialised solvers mainly focussing on the electrical domain. There is a need to improve its modelling capabilities concerning conservative continuous time systems involving the interaction of several physical domains and their interaction with nonconservative digital control components. Bond graphs unify the description of multi-domain systems by modelling the energy flow between the electrical and non-electrical components. They integrate well with block diagrams describing the signal processing part of a system. It is proposed to develop an extension to the current SystemC-AMS prototype, which shall implement the bond graph methodology as a new Model of Computation (MoC)
    • …
    corecore