74,419 research outputs found

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations

    Stewardship of the evolving scholarly record: from the invisible hand to conscious coordination

    Get PDF
    The scholarly record is increasingly digital and networked, while at the same time expanding in both the volume and diversity of the material it contains. The long-term future of the scholarly record cannot be effectively secured with traditional stewardship models developed for print materials. This report describes the key features of future stewardship models adapted to the characteristics of a digital, networked scholarly record, and discusses some practical implications of implementing these models. Key highlights include: As the scholarly record continues to evolve, conscious coordination will become an important organizing principle for stewardship models. Past stewardship models were built on an "invisible hand" approach that relied on the uncoordinated, institution-scale efforts of individual academic libraries acting autonomously to maintain local collections. Future stewardship of the evolving scholarly record requires conscious coordination of context, commitments, specialization, and reciprocity. With conscious coordination, local stewardship efforts leverage scale by collecting more of less. Keys to conscious coordination include right-scaling consolidation, cooperation, and community mix. Reducing transaction costs and building trust facilitate conscious coordination. Incentives to participate in cooperative stewardship activities should be linked to broader institutional priorities. The long-term future of the scholarly record in its fullest expression cannot be effectively secured with stewardship strategies designed for print materials. The features of the evolving scholarly record suggest that traditional stewardship strategies, built on an “invisible hand” approach that relies on the uncoordinated, institution-scale efforts of individual academic libraries acting autonomously to maintain local collections, is no longer suitable for collecting, organizing, making available, and preserving the outputs of scholarly inquiry. As the scholarly record continues to evolve, conscious coordination will become an important organizing principle for stewardship models. Conscious coordination calls for stewardship strategies that incorporate a broader awareness of the system-wide stewardship context; declarations of explicit commitments around portions of the local collection; formal divisions of labor within cooperative arrangements; and robust networks for reciprocal access. Stewardship strategies based on conscious coordination involve an acceleration of an already perceptible transition away from relatively autonomous local collections to ones built on networks of cooperation across many organizations, within and outside the traditional cultural heritage community

    Cyber physical systems implementation for asset management improvement: A framework for the transition

    Get PDF
    Libro en Open AccessThe transformation of the industry due to recent technologies introduction is an evolving process whose engines are competitiveness and sustainability, understood in its broadest sense (environmental, economic and social). This process is facing, due to the current state of scientific and technological development, a new challenge yet even more important: the transition from discrete technological solutions that respond to isolated problems, to a global conception where the assets, plant, processes and engineering systems are conceived, designed and operated as an integrated complex unit. This vision is evolving besides a set of concepts that are, in some way, to guide this development: Smart Factories, Cyber-Physical Systems, Factory of the Future or Industry 4.0, are examples. The full integration of the operation and maintenance (O&M) processes in the production systems is a key topic within this new paradigm. Not only that, this evolution necessarily results in the emergence of new processes and needs of O&M, i.e. also, the O&M will undergo a profound transformation. The transition from actual isolated production assets to such Industry 4.0 with CPS is far from easy. This document presents a proposal to develop such transition adapting one iteration of the Model of Maintenance Management (MMM) integrated into ISO 55000 to the complexity of incorporating “System of Systems” CPSs maintenance. It involves several stages: identification, prioritization, risk management, planning, scheduling, execution, control, and improvement supported by system engineering techniques and agile/concurrent project managemen

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Support for collaborative component-based software engineering

    Get PDF
    Collaborative system composition during design has been poorly supported by traditional CASE tools (which have usually concentrated on supporting individual projects) and almost exclusively focused on static composition. Little support for maintaining large distributed collections of heterogeneous software components across a number of projects has been developed. The CoDEEDS project addresses the collaborative determination, elaboration, and evolution of design spaces that describe both static and dynamic compositions of software components from sources such as component libraries, software service directories, and reuse repositories. The GENESIS project has focussed, in the development of OSCAR, on the creation and maintenance of large software artefact repositories. The most recent extensions are explicitly addressing the provision of cross-project global views of large software collections and historical views of individual artefacts within a collection. The long-term benefits of such support can only be realised if OSCAR and CoDEEDS are widely adopted and steps to facilitate this are described. This book continues to provide a forum, which a recent book, Software Evolution with UML and XML, started, where expert insights are presented on the subject. In that book, initial efforts were made to link together three current phenomena: software evolution, UML, and XML. In this book, focus will be on the practical side of linking them, that is, how UML and XML and their related methods/tools can assist software evolution in practice. Considering that nowadays software starts evolving before it is delivered, an apparent feature for software evolution is that it happens over all stages and over all aspects. Therefore, all possible techniques should be explored. This book explores techniques based on UML/XML and a combination of them with other techniques (i.e., over all techniques from theory to tools). Software evolution happens at all stages. Chapters in this book describe that software evolution issues present at stages of software architecturing, modeling/specifying, assessing, coding, validating, design recovering, program understanding, and reusing. Software evolution happens in all aspects. Chapters in this book illustrate that software evolution issues are involved in Web application, embedded system, software repository, component-based development, object model, development environment, software metrics, UML use case diagram, system model, Legacy system, safety critical system, user interface, software reuse, evolution management, and variability modeling. Software evolution needs to be facilitated with all possible techniques. Chapters in this book demonstrate techniques, such as formal methods, program transformation, empirical study, tool development, standardisation, visualisation, to control system changes to meet organisational and business objectives in a cost-effective way. On the journey of the grand challenge posed by software evolution, the journey that we have to make, the contributory authors of this book have already made further advances

    A dynamic systems engineering methodology research study. Phase 2: Evaluating methodologies, tools, and techniques for applicability to NASA's systems projects

    Get PDF
    A study of NASA's Systems Management Policy (SMP) concluded that the primary methodology being used by the Mission Operations and Data Systems Directorate and its subordinate, the Networks Division, is very effective. Still some unmet needs were identified. This study involved evaluating methodologies, tools, and techniques with the potential for resolving the previously identified deficiencies. Six preselected methodologies being used by other organizations with similar development problems were studied. The study revealed a wide range of significant differences in structure. Each system had some strengths but none will satisfy all of the needs of the Networks Division. Areas for improvement of the methodology being used by the Networks Division are listed with recommendations for specific action

    Managing design variety, process variety and engineering change: a case study of two capital good firms

    Get PDF
    Many capital good firms deliver products that are not strictly one-off, but instead share a certain degree of similarity with other deliveries. In the delivery of the product, they aim to balance stability and variety in their product design and processes. The issue of engineering change plays an important in how they manage to do so. Our aim is to gain more understanding into how capital good firms manage engineering change, design variety and process variety, and into the role of the product delivery strategies they thereby use. Product delivery strategies are defined as the type of engineering work that is done independent of an order and the specification freedom the customer has in the remaining part of the design. Based on the within-case and cross-case analysis of two capital good firms several mechanisms for managing engineering change, design variety and process variety are distilled. It was found that there exist different ways of (1) managing generic design information, (2) isolating large engineering changes, (3) managing process variety, (4) designing and executing engineering change processes. Together with different product delivery strategies these mechanisms can be placed within an archetypes framework of engineering change management. On one side of the spectrum capital good firms operate according to open product delivery strategies, have some practices in place to investigate design reuse potential, isolate discontinuous engineering changes into the first deliveries of the product, employ ‘probe and learn’ process management principles in order to allow evolving insights to be accurately executed and have informal engineering change processes. On the other side of the spectrum capital good firms operate according to a closed product delivery strategy, focus on prevention of engineering changes based on design standards, need no isolation mechanisms for discontinuous engineering changes, have formal process management practices in place and make use of closed and formal engineering change procedures. The framework should help managers to (1) analyze existing configurations of product delivery strategies, product and process designs and engineering change management and (2) reconfigure any of these elements according to a ‘misfit’ derived from the framework. Since this is one of the few in-depth empirical studies into engineering change management in the capital good sector, our work adds to the understanding on the various ways in which engineering change can be dealt with

    The Allocation of Software Development Resources In ‘Open Source’ Production Mode

    Get PDF
    This paper aims to develop a stochastic simulation structure capable of describing the decentralized, micro-level decisions that allocate programming resources both within and among open source/free software (OS/FS) projects, and that thereby generate an array of OS/FS system products each of which possesses particular qualitative attributes. The core or behavioral kernel of simulation tool presented here represents the effects of the reputational reward structure of OS/FS communities (as characterized by Raymond 1998) to be the key mechanism governing the probabilistic allocation of agents’ individual contributions among the constituent components of an evolving software system. In this regard, our approach follows the institutional analysis approach associated with studies of academic researchers in “open science” communities. For the purposes of this first step, the focus of the analysis is confined to showing the ways in which the specific norms of the reward system and organizational rules can shape emergent properties of successive releases of code for a given project, such as its range of functions and reliability. The global performance of the OS/FS mode, in matching the functional and other characteristics of the variety of software systems that are produced with the needs of users in various sectors of the economy and polity, obviously, is a matter of considerable importance that will bear upon the long-term viability and growth of this mode of organizing production and distribution. Our larger objective, therefore, is to arrive at a parsimonious characterization of the workings of OS/FS communities engaged across a number of projects, and their collective productive performance in dimensions that are amenable to “social welfare” evaluation. Seeking that goal will pose further new and interesting problems for study, a number of which are identified in the essay’s conclusion. Yet, it is argued that that these too will be found to be tractable within the framework provided by refining and elaborating on the core (“proof of concept”) model that is presented in this paper.
    corecore