167,502 research outputs found

    A Hybrid Approach Support Vector Machine (SVM) – Neuro Fuzzy for Fast Data Classification

    Full text link
    In recent decade, support vector machine (SVM) was a machine learning method that widely used in several application domains. It was due to SVM has a good performance for solving data classification problems, particularly in non-linear case. Nevertheless, several studies indicated that SVM still has some inadequacies, especially the high time complexity in testing phase that is caused by increasing the number of support vector for high dimensional data. To address this problem, we propose a hybrid approach SVM – Neuro Fuzzy (SVMNF), which neuro fuzzy here is used to avoid influence of support vector in testing phase of SVM. Moreover, our approach is also equipped with a feature selection that can reduce data attributes in testing phase, so that it can improve the effectiveness of time computation. Based on our evaluation in real benchmark datasets, our approach outperformed SVM in testing phase for solving data classification problems without significantly affecting the accuracy of SVM

    A Hybrid Approach Support Vector Machine (SVM) – Neuro Fuzzy For Fast Data Classification

    Get PDF
    In recent decade, support vector machine (SVM) was a machine learning method that widely used in several application domains. It was due to SVM has a good performance for solving data classification problems, particularly in non-linear case. Nevertheless, several studies indicated that SVM still has some inadequacies, especially the high time complexity in testing phase that is caused by increasing the number of support vector for high dimensional data. To address this problem, we propose a hybrid approach SVM – Neuro Fuzzy (SVMNF), which neuro fuzzy here is used to avoid influence of support vector in testing phase of SVM. Moreover, our approach is also equipped with a feature selection that can reduce data attributes in testing phase, so that it can improve the effectiveness of time computation. Based on our evaluation in real benchmark datasets, our approach outperformed SVM in testing phase for solving data classification problems without significantly affecting the accuracy of SVM

    Robust optimization of SVM hyperparameters in the classification of bioactive compounds

    Get PDF
    Background: Support Vector Machine has become one of the most popular machine learning tools used in vir - tual screening campaigns aimed at finding new drug candidates. Although it can be extremely effective in finding new potentially active compounds, its application requires the optimization of the hyperparameters with which the assessment is being run, particularly the C and γ values. The optimization requirement in turn, establishes the need to develop fast and effective approaches to the optimization procedure, providing the best predictive power of the constructed model. Results: In this study, we investigated the Bayesian and random search optimization of Support Vector Machine hyperparameters for classifying bioactive compounds. The effectiveness of these strategies was compared with the most popular optimization procedures—grid search and heuristic choice. We demonstrated that Bayesian optimiza- tion not only provides better, more efficient classification but is also much faster—the number of iterations it required for reaching optimal predictive performance was the lowest out of the all tested optimization methods. Moreover, for the Bayesian approach, the choice of parameters in subsequent iterations is directed and justified; therefore, the results obtained by using it are constantly improved and the range of hyperparameters tested provides the best over - all performance of Support Vector Machine. Additionally, we showed that a random search optimization of hyperpa- rameters leads to significantly better performance than grid search and heuristic-based approaches. Conclusions: The Bayesian approach to the optimization of Support Vector Machine parameters was demonstrated to outperform other optimization methods for tasks concerned with the bioactivity assessment of chemical com- pounds. This strategy not only provides a higher accuracy of classification, but is also much faster and more directed than other approaches for optimization. It appears that, despite its simplicity, random search optimization strategy should be used as a second choice if Bayesian approach application is not feasible

    Cholesky-factorized sparse Kernel in support vector machines

    Get PDF
    Support Vector Machine (SVM) is one of the most powerful machine learning algorithms due to its convex optimization formulation and handling non-linear classification. However, one of its main drawbacks is the long time it takes to train large data sets. This limitation is often aroused when applying non-linear kernels (e.g. RBF Kernel) which are usually required to obtain better separation for linearly inseparable data sets. In this thesis, we study an approach that aims to speed-up the training time by combining both the better performance of RBF kernels and fast training by a linear solver, LIBLINEAR. The approach uses an RBF kernel with a sparse matrix which is factorized using Cholesky decomposition. The method is tested on large artificial and real data sets and compared to the standard RBF and linear kernels where both the accuracy and training time are reported. For most data sets, the result shows a huge training time reduction, over 90\%, whilst maintaining the accuracy

    Classification and Verification of Online Handwritten Signatures with Time Causal Information Theory Quantifiers

    Get PDF
    We present a new approach for online handwritten signature classification and verification based on descriptors stemming from Information Theory. The proposal uses the Shannon Entropy, the Statistical Complexity, and the Fisher Information evaluated over the Bandt and Pompe symbolization of the horizontal and vertical coordinates of signatures. These six features are easy and fast to compute, and they are the input to an One-Class Support Vector Machine classifier. The results produced surpass state-of-the-art techniques that employ higher-dimensional feature spaces which often require specialized software and hardware. We assess the consistency of our proposal with respect to the size of the training sample, and we also use it to classify the signatures into meaningful groups.Comment: Submitted to PLOS On

    Fast implementation of singular spectrum analysis for effective feature extraction in hyperspectral imaging

    Get PDF
    As a recent approach for time series analysis, singular spectrum analysis (SSA) has been successfully applied for feature extraction in hyperspectral imaging (HSI), leading to increased accuracy in pixel-based classification tasks. However, one of the main drawbacks of conventional SSA in HSI is the extremely high computational complexity, where each pixel requires individual and complete singular value decomposition (SVD) analyses. To address this issue, a fast implementation of SSA (F-SSA) is proposed for efficient feature extraction in HSI. Rather than applying pixel-based SVD as conventional SSA does, the fast implementation only needs one SVD applied to a representative pixel, i.e., either the median or the mean spectral vector of the HSI hypercube. The result of SVD is employed as a unique transform matrix for all the pixels within the hypercube. As demonstrated in experiments using two well-known publicly available data sets, almost identical results are produced by the fast implementation in terms of accuracy of data classification, using the support vector machine (SVM) classifier. However, the overall computational complexity has been significantly reduced

    An Automated Computer-aided Diagnosis System for Abdominal CT Liver Images

    Get PDF
    AbstractIn this paper, we present a computer-aided diagnosis (CAD) system for abdominal Computed Tomography liver images that comprises four main phases: liver segmentation, lesion candidate segmentation, feature extraction from each candidate lesion, and liver disease classification. A hybrid approach based on fuzzy clustering and grey wolf optimisation is employed for automatic liver segmentation. Fast fuzzy c-means clustering is used for lesion candidates extraction, and a variety of features are extracted from each candidate. Finally, these features are used in a classification stage using a support vector machine. Experimental results confirm the efficacy of the proposed CAD system, which is shown to yield an overall accuracy of almost 96% in terms of healthy liver extraction and 97% for liver disease classification
    • …
    corecore