Master of Science In
Advanced Mathematics and
Mathematical Engineering

Title: Cholesky-Factorized Sparse Kernel in Support Vector Machines
Author: Alhasan Abdellatif
Advisors: Jordi Castro, Lluis A. Belanche

Departments: Department of Statistics and Operations Research and
Department of Computer Science

Academic year: 2018-2019

L.
2,
LL]
L
—
LLI
LL]
14
Y,
LL]
-
&
14
LLI
—
N
<
—

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Facultat de Matematiques i Estadistica

Universitat Politecnica de Catalunya

Facultat de Matematiques i Estadistica

Master in Advanced Mathematics and Mathematical Engineering

Master's thesis

Cholesky-Factorized Sparse Kernel in
Support Vector Machines
Alhasan Abdellatif

Supervised by Jordi Castro and Lluis A. Belanche
June, 2019

I would like to express my gratitude to my supervisors Jordi Castro and Lluis A. Belanche for the
continuous support, guidance and advice they gave me during working on the project and writing the
thesis. The enthusiasm and dedication they show have pushed me forward and will always be an inspiration
for me. | am forever grateful to my family who have always been there for me. They have encouraged me
to pursue my passion and seek my own destiny. This journey would not have been possible without their
support and love.

Abstract

Support Vector Machine (SVM) is one of the most powerful machine learning algorithms due to its convex
optimization formulation and handling non-linear classification. However, one of its main drawbacks is
the long time it takes to train large data sets. This limitation is often aroused when applying non-linear
kernels (e.g. RBF Kernel) which are usually required to obtain better separation for linearly inseparable
data sets. In this thesis, we study an approach that aims to speed-up the training time by combining both
the better performance of RBF kernels and fast training by a linear solver, LIBLINEAR. The approach
uses an RBF kernel with a sparse matrix which is factorized using Cholesky decomposition. The method
is tested on large artificial and real data sets and compared to the standard RBF and linear kernels where
both the accuracy and training time are reported. For most data sets, the result shows a huge training
time reduction, over 90%, whilst maintaining the accuracy.

Keywords

Support Vector Machines, RBF Kernel, Sparse Kernel, Large data sets, Machine Learning

Contents

Introduction

Background

2.1 Support Vector Machines
2.2 Support Vector Machines Solvers
2.3 Compactly-Supported RBF Kernel
2.4 Cholesky Decomposition.

3 Sparse Kernel Properties
4 Literature Review

5 Method

6 Results and Discussion

7 Conclusion

References

A Proof of Theorem 5.3

B Implementation of the Algorithm in Python

11

12

13

16

20

21

23

24

1. Introduction

Classification in machine learning is a problem of assigning certain labels to patterns using a pre-labeled
training set. Support Vector Machine (SVM) is a supervised learning model used to perform tasks such
as classification. It can be considered one of the most powerful machine learning algorithms due to
several properties including that it is formulated as a convex optimization problem so a global minimum is
guaranteed, it can adapt to non-linear problems using the kernel trick which uses non-linear kernels to map
points into a feature space, and it is memory efficient as it uses a subset of the data points called support
vectors. In addition, it is one of the leading models in text and document categorization.

However one of the main limitations of using SVM is that it does not scale up well to large data
sets as its time complexity is O(m?) [5], where m is the number of the training points. Hence, solving
the associated optimization problem with very large data sets can be computationally expensive. Several
solvers have been developed to solve the optimization problem associated with SVM including LIBSVM
library which has a time complexity between O(n x m?) and O(n x m3) [4], where n is the dimension of
the training points, and LIBLINEAR library [20] which is practically much faster than LIBSVM [6] but can
work only with a linear kernel which is a disadvantage, since it is often required to better separate the data
in high-dimensional feature space using non-linear kernels (e.g. RBF Kernel).

Many contributions have been made to speed up SVM classification for large data sets. One idea is
to perform a preprocessing step on the large data set to obtain a smaller but yet well-representing subset.
The smaller subset is then supplied directly to an SVM solver which takes much shorter time compared to
training on the whole large data set. For example, in [21], they performed two steps to reduce the training
set: a data cleaning based on a bootstrap sampling and algorithm to extract informative patterns. In [13], a
data compression technique based on Learning Vector Quantization (LVQ) neural network is tested on large
training sets and in [10] an algorithm for instance selection is developed especially for multi-class problems
and is based on clustering. However, one drawback of these approaches is that removing some data points
from the training set can often result in an underfitting model that performs poorly on the original data set.

Another idea is to replace the RBF kernel by an approximate one, which is much faster to compute, and
hence training the data set can take less time. The experiments in [8] show that the approximate kernel
can be more than 30 times faster than the exact RBF kernel. In [9], they substitute the RBF kernel by a
kernel with a sparse matrix into the dual formulation of the optimization problem, in which they achieve
a time reduction of nearly 47% while the accuracy is preserved. While replacing the RBF kernel by an
approximate or a sparse RBF kernel can offer a time reduction, these approaches used non-linear solvers
(e.g. LIBSVM) which are relatively slow.

In this thesis, we study an approach that speeds-up SVM training combining both the better sepa-
ration by non-linear kernels and the faster training by a linear solver, LIBLINEAR. The approach uses a
compactly-supported RBF kernel which have been studied and used in [9] and [3]. Its associated sparse
gram matrix is factorized, using Cholesky decomposition, into a lower triangular matrix which acts as the
mapped training points in the feature space. The matrix is then fed into LIBLINEAR, to solve the primal
optimization problem associated with SVM. The the dual variables are then computed to classify new test
points. To verify our approach, it is tested against many real data sets and an artificial data set of large
sizes. The training time and test accuracy are reported and compared to the ones obtained using LIBSVM
with RBF Kernel and LIBLINEAR with a linear kernel.

The remainder of the thesis is organized as follows: an overview of SVM classification is provided in
section 2.1 and some known SVM solvers are discussed in section 2.2. In section 2.3, the compactly-
supported RBF kernel is discussed and some of its properties are highlighted in section 3. In section 4
some related literature results are shown. Our method is then explained discussing both training and the
testing procedures in section 5. The results of the approach are presented and compared to other methods
in section 6. Finally, a conclusion is drawn pointing out both the benefits and limitations of the approach
in section 7.

2. Background

In this section, we point out some basics behind SVM including the hard and soft margin problems, the use
of the kernel trick, the primal and dual formulations and multi-class classification. We then review some
popular SVM solvers and their main applications. The sparse kernel used in the approach is introduced and
finally we discuss Cholesky factorization and the approximate minimum degree permutation algorithm. In
the discussion below, consider m as the number of training points and n as the number of features.

2.1 Support Vector Machines

Support Vector Machine (SVM) is a machine learning algorithm that was first introduced by Vapnik in
1963 [23] and further developed in 1995 [5]. It tries to find a hyperplane that best separates the data
points into two different classes. The hyperplane is then used to classify new points to either of the two
classes. One method to obtain such hyperplane is to maximize the separation between the two classes, this
separation is called a margin. Any hyperplane can be written as

wix—b=0 (1)

where w € R” is the normal vector to the hyperplane, x € R” any point satisfying the hyperplane and

Zo N e
7 AN
o Ny 4
o o g/// \\// *
*/
7/ 7N
e®® o | S
* 4
e 9 /,/
[) ‘/ I 3
A
y o)
S e
7 //
4 7/
p
// //
“ e
I / Z1
S

Figure 1: Margin between two classes in SVM, adapted from [12].

b € R is the intercept.

Consider binary-classes data points x; € R"” and their labels y; € {1,—1} Vi = 1... m, the method
tries to obtain the best parameters w and b such that the associated hyperplane maximizes the margin as

depicted in Figure 1.

T

|a1—ao|

x—b=a andw'x—b=ayis]

Lemma 2.1.1 The margin between two parallel hyperplanes w

Proof. Consider a point x; lies on the first hyperplane and a point x, lies on the second, then x can be
written as xo = x; + aw. Then we have

WTX2 = WTX1 + aww

a2+ b=a;+b+a|w|?
ay —ai
o= —7.
[wll?

The margin between the hyperplanes is ||aw|| which is

dy — ai
Iw|]?

a1 — a2

law|[= laflw] = Iwll =

[[wl]

O]

From Lemma 2.1.1, it can be deduced that the margin between the two hyperplanes w’x — b = 1

and wix —b=—11is ﬁ Since maximizing ﬁ is equivalent to minimizing %||w||2 the optimization
problem associated with SVM can be formulatecj as
L2

in = 2

min S llwli (2)

Subject to yi(w'x;—b)>1Vi=1..m (3)

The above optimization problem is called hard margin SVM and only works with data sets that are linearly
separable, i.e., there exists a hyperplane that can separate all labeled points into the two classes with no
point lies in the incorrect side of the margin. Another formulation was developed called soft margin that
allows each data point x; to have a corresponding error & > 0 such that points with & > 0 lie in the
incorrect side. The difference between the hard and soft margins is shown in Figure 2. The soft margin

Hard margin Soft margin

Decision
boundary

Decision
boundary pie - L] ®

® Class1 (O Supportvector
@® Class2 © Sample violating constraint

Figure 2: Hard and soft margin in SVM

optimization problem can be formulated as following

1 .
min SwlP+ €36 ()

e i=1
Subject to yj(w'x; — b) > 1+& (5)
£>0Vi=1..m (6)

where C > 0 is a hyper-parameter that represents the trade-off between the training error and margin
maximization. In order to classify a new data point, z — {1, —1}, we use the following rule

z = sgn(w’z—b), (7)

where sgn(x) is the sign function. The above methods work with data points in the input space, another
method was developed in [5] uses what so-called kernel trick which maps the data points from the input
space to a high dimensional feature space allowing better separation for linearly inseparable data points.
The method seeks to find a mapping function

¢:R" - RN, (8)
where N is the dimension of the feature space, such that the new feature space provides a better separation,

however it is not clear how we define the mapping ¢.

It turns out that the kernel function defined by

k(xi x5) = o(xi) T 6(x) (9)

appears directly in the dual formulation of the soft margin optimization problem with no need to compute
the mapping ¢(x) if we know k(x;, x;) beforehand. The kernel function k(x;, x;) is associated with a gram
matrix K where Kj; = ¢(x;) T ¢(x;) which can be written as

K=BBT, (10)

where B is an (m x N) matrix and each row represents a data point mapped in the feature space. When
¢ is the identity function, k is often called a linear kernel in which case k(x;, x;) = XI-TXJ' and B will be the
original m x n data points matrix. Several non-linear kernels have been developed such as the Radial Basis
Function (RBF) kernel

2
X J—
() = exp (I 1)
and polynomial kernel
kpo/(va) = (XTy + C)dv (12)

where ¢, d and o are parameters to be tuned. In our method, we focus only on the RBF kernel.
In order to derive the dual formulation, we use Wolfe Duality.

Theorem. 2.1.2 (Wolfe Duality) If f(x), h(x) and g(x) are convex and differentiable functions in the
primal problem

mXin f(x) (13)
Subject to h(x) =0 (14)
g(x) <0, (15)

then a sufficient and necessary condition for the optimality of the dual function q(\, u) = min L(x, A,)
is
Vil(x, A\, p) =0, (16)

where L is the Lagrangian function, A\ and . are the dual variables associated with the constraints (14)
and (15), respectively.

The dual problem of of (13) can then be written as

max L(x, A\ 1) = F(x) + ATh(x) + 1" g(x) (17)
X, A,
Subject to ViL(x, A, u) =0 (18)

w>0. (19)

Since the objective function (4) and the constraints (5) and (6) are convex and differentiable functions,
the Wolfe duality can be used. The Lagrangian function of the soft margin problem (4), using ¢(x) instead
of x, is

L@wa§A¢0:%WTw+CéT£+AU—DM%w—m)—£+@—¢J§ (20)

where A € R™ and i € R™ are the dual variables of the constraints (5) and (6), respectively, D is an
m x m diagonal matrix with the labels of the data points and e € R™ is a vector of ones. Then the dual
problem can be written as

max 1WTw+CeTg—i—)\T(—D(BW—be)—£+e)—,u-’-£ (21)
w.bEANu 2

Subject to w — (ATDB)T =0 (22)

A De=0 (23)

Ce—A—p=0 (24)

A >0, 4> 0. (25)

Substituting equation (22) in (21) and using equations (23) and (24), we can arrive at the following
formulation

1
max ATe—éATDBBTDA (26)
Subject to AT De =0 (27)
0<A<C. (28)

Hence, knowing the kernel matrix K = BB is enough to solve the SVM dual problem. After solving the
last optimization problem and obtaining A, equation (22) can be used to calculate the weights

w = Z Aiyio(xi) (29)
i=1
=B DA (30)

In order to calculate the intercept b, we need to find a point x, which is a support vector, such point will
have & =0 and 0 < A\, < C. Using yx(w T ¢(xx) — b) = 1, we get

1

b=wT¢(xc)— T (31)
= Z)\,-y,-k(x,-, Xk) — Yk- (32)
i=1

To classify a new point z using the dual formulation we use
z— sgn(w’ ¢(z) — b) = sgn(D_ Aiyik(xi, z) — b). (33)
i=1

To perform multi-classification, two common methods are one-vs-rest and one-vs-one. In our work, we
focus on one-vs-rest method which trains k classifiers, where k is the number of classes in the data set.
For each classifier, one class is labeled by 1 and the rest by —1 and we assign to a new point z the label
that maximizes the decision function

z — argmax() _ Nyik(xi, z) — b/). (34)
J=lek

Before the sparse kernel is introduced, some properties of kernels are listed below.

Theorem. 2.1.3 Let x; € R",Vi =1, ..., m, then a symmetric function k(x,y) is a kernel if and only if
the matrix

K = (k(xi, x}))ij=1,...m

is positive semidefinite.

Proof. Proving the forward direction, let k(x, y) be a kernel and using equation (9), then for any non-zero
vector v € R™, we have

viKy = Z viv; Kij

— (3 viola), S o))
i=1 Jj=1
:H}jwﬂmwzzo

which proves that K is positive semidefnite. To prove the reverse direction, It is enough to prove the
following result on positive semidefinite matrices: If K is positive semidefinite matrix, then it can be
written as K = BB for some real matrix B.

Then using equation (10), it is straight forward to see that k(x, y) is a kernel function.

This result can be proved by observing that K is a symmetric diagonalizable matrix and thus can be written
as K = QAQT, where Q is an orthogonal matrix and A is a diagonal matrix. Let B = Q+V/A, then

BBT = QVAVAQT = QAQT = K

and this completes the proof. O
Lemma 2.1.4 The multiplication of two kernels is also a kernel.

Proof. Let A and B be kernels and let (C); = (A);(B)jj. this is known as Hadamard product and is
denoted by C = Ao B. Using eigendecomposition, we can write

T
A= E Qjaja;

B= Zﬁjbjbj—’—'

Then we have

AoB = Z Oéiﬂj(aiaiT) © (bjbjT)
i
- Z a;Bj(aj o bj)(ai o b)) T

J)

Since (ajo bj)(ajo bj)" is positive semidefinite and «;3; > 0 for any i, j, then Ao B is positive semidefinite
and hence C is a kernel using Theorem 2.1.3. O

2.2 Support Vector Machines Solvers

Many libraries have been developed to solve the optimization problems associated with support vector
machines, such as SVMLIGHT, LIBSVM and LIBLINEAR. We consider here LIBSVM and LIBLINEAR
libraries. LIBSVM [4] was first developed in 2000 and can work with both a linear kernel and non-linear
kernels (e.g RBF kernel). It has a time complexity between O(n x m?) and O(n x m3), which can be very
slow in case of very large datasets. It uses a decomposition method named Sequential Minimal Optimization
(SMO) which was developed in 1998 at Microsoft Research Lab [17]. The method breaks the quadratic
optimization problem into small sub-problems which are solved analytically.

On the other hand, LIBLINEAR [20] works only with linear classification problems. It can be very
efficient when the number of features is large and it is often much faster than LIBSVM. For example, in
[6], they tested both libraries on a data set where the numbers of instances and features are 20, 242 and
47,236, respectively. LIBLINEAR gave almost the same accuracy as LIBSVM with a training time of about
3 seconds whereas LIBSVM took nearly 346 seconds. LIBLINEAR solves an unconstrained optimization
problem of the form:

1 .
min EWTW +C E 1 max(0,1 — yjw " x;), (35)
=

where C > 0 is a penalty parameter.

2.3 Compactly-Supported RBF Kernel

SVM solvers do not store the gram matrix associated with the RBF kernel, instead each entry is directly
computed and used in solving the optimization problem. This is because such a matrix is dense and the
available storage will not meet its space requirement. Since sparse matrices offer much smaller space
requirements and reduction of time complexity, a family of kernels with sparse gram matrices have been
studied and used in [9], [3] and [14]. These kernels can be constructed by multiplying the RBF kernel by
some compactly-supported radial basis function. We particularly consider the function

ke(x,y) = (1 —allx = y|)}, (36)

where a; = max{a,0}, x,y € R” and a > 0. R. Askey in [19] proved that k. is positive definite if
I > |n/2] + 1, where |.] is the floor function. Satisfying the condition on /, k. can then be regarded as a
kernel function using Theorem 2.1.3.

Applying Lemma 2.1.4, an RBF kernel with a sparse gram matrix can be constructed by multiplying
the kernel k. by the RBF kernel:

k(x,y) = ke(x, y)krpe(x,y) (37)
/ Ix — y?
=1 —alx=yl)y eXP(—T)- (38)
o
The parameter o controls the kernel sparsity, the percentage of zero elements in the kernel matrix, increas-
ing o makes the kernel matrix more sparse. The parameter / affects the smoothness of the kernel function.

2.4 Cholesky Decomposition

The Cholesky decomposition [11] of a real positive definite matrix A is of the form
A=LLT,

where L is a lower-triangular matrix, called Cholesky factor. The Cholesky factor is unique if A is positive
definite matrix, whereas it needs not be unique if A is positive semidefinite.

Cholesky decomposition finds many applications in numerical solutions, for example it can be more
efficient than LU factorization in solving a system of linear equations [18]. For large matrix A, computing
the Cholesky factor L can be computationally expensive, however if the matrix is sparse, Cholesky factor-
ization can be very fast. Several libraries have been developed to perform Cholesky factorization including
CHOLMOD library [22], which can also perform a sparse Cholesky factorization.

Applying Cholesky decomposition to a sparse matrix does not always guarantee that the Cholesky factor
will be as sparse as possible. Several algorithms have been studied to perform a permutation of the rows
and columns of the matrix A before applying the Cholesky factorization to increase the sparsity of the
Cholesky factor. One common algorithm is the approximate minimum degree [2], which tries to find the
best permutation P so that L is as sparse as possible. In Figure 3, the Cholesky factorization is done on an
arrowhead matrix before and after applying the approximate minimum degree algorithm in Matlab (AMD
function), it shows that the number of nonzero elements is much smaller in the Cholesky factor when using
approximate minimum degree algorithm.

10

Original Matrix A . AMD ordered A

500 500
1000 1000
0 500 1000 0 500 1000
nz = 2998 nz = 2998
5 Cholesky factor of A ChoE}asky factor of AMD ordered A

500 500

1000 1000

0 500 1000 0 500 1000
nz = 500500 nz = 1999

Figure 3: Comparison between Cholesky factors with and without applying AMD function in Matlab.

3. Sparse Kernel Properties

In this section, some properties of the sparse kernel are discussed. Since the choice of the parameters is
crucial in training SVM, the limit values of the a parameter are discussed below .

Lemma 3.1 Let K be the gram matrix associated with the kernel k(x;, x;) defined in equation (38),
then

lim K = Kpr
a—0

lim K=l

a—r00
where I, is an m x m identity matrix and K,pr is the matrix of the RBF kernel.
Proof. Using the expression of k.(x;, x;), it is clear that for any i/, j
lim (1 —allx; — xi[)\. =1
lim (1~ allx; —)} =1,
which from equation (37) results in lim,—,0 K = Kypr. On the other hand

: 0 i#J
aIIHmOO kC(Xi'Xj) - { 1 =]

since (Kpr)ii = 1Vi=1...m then limy_o0 K = Iny. O

11

From Lemma 3.1, we can observe that as we increase «, the sparse kernel matrix K gets sparser. As
a becomes very large the kernel matrix becomes totally distorted as the identity matrix. The sparse kernel
follows nearly the same performance as the RBF kernel when « is very small.

Theorem 3.2 : (Gershgorin Circle) Let A be a matrix with entries a; and let R; = > ., |a;|. Let

D(aji, R;) be a closed disk centered at aj; with radius R;. Then every eigenvalues of A lies within at least
one of the Gershgorin disks D(aj;, R;)

Lemma 3.3 The radius of the Gershgorin Disk of matrix of the sparse kernel k defined by (37) is less
than that associated with the RBF Kernel.

Proof. Let djj and zj; be the entries of the matrices of k., and k., respectively. Since the entries of both
matrices are non-negative, djj > 0 and z; > 0, we can drop out the notation of absolute values defined of
radii in Theorem 3.2. We can show that

ZKU:ZC/,JZU<ZC/U

J#i J#i J#i
if we can prove that,
zj < 1for j#1i.

Since a > 0 and / is a positive integer, it is clear that zj; = max{0, (1 — a||x; — xj||)/} < 1forj#i. O

4. Literature Review

In section we review some literature papers that have used the compactly supported kernel in support
vector machines. A closely related work was developed in [9], where they used the same sparse kernel in
equation (38). They pointed out some properties of the sparse kernel and describe techniques to tune the
sparsity parameter «. One technique is to perform a trade-off between similarity A(«) and sparsity S(«),
they define A(a) and S(«) as follows:

(K, Kivf) g
\/< K, K>F< Kb Krbf)FY

Ala) = (39)

where (K1, Ko) p = 27,}:1 K1(xi, xj)K2(xi, x;) is the Frobenius inner product between two matrices and

number of zero entries in K

S(a) = o (40)
The trade-off can be done by maximizing a linear combination between similarity and sparsity,
max A(a) + 8S(). (41)

where 8 > 0 is a tuning parameter. Another procedure is to pre-evaluate the maximum number of nonzero
elements that can be stored on the machine and from that we can choose a lower bound of the sparsity.
For example, if only 25% of the nonzero entries can be stored, then we may set S(a) > 0.75 and 1/« to

12

be the first quartile of the pairwise distances ||x; — xj||,i,j =1,... m.

One application they performed is replacing the matrix of the RBF kernel in the dual problem of SVM,
K = BBT in equation (26), by the sparse matrix of the compactly supported RBF kernel. They tested
their method on a small data set (100 instances) and reported the accuracy which was very close to the one
obtained using the RBF kernel. They also used the sparse kernel in training an LS-SVM classifier, which
instead of solving a quadratic optimization problem solves a linear system, and tested that on a relatively
larger data set of (5000) where they reported both accuracy and time, in the best case the sparse kernel
saved the computation time by 47% while maintaining good accuracy.

In [3], they used the same sparse kernel for regression problems using LS-SVM. They set the parameter
a = 1/30, where o is the same parameter in the RBF kernel. They solved the linear system associated
with LS-SVM by using Cholesky factorization. They tested both the compactly-supported kernel and the
RBF kernel on a sinc-toy problem with 1334 training points. The compactly-supported kernel obtained a
similar accuracy with a speed-up of about 50% compared to the RBF kernel.

While the work done in [9] was able to reduce the training time, they solved the dual optimization
problem using non-linear solvers such as LIBSVM which is often slow. Although they did not show results
for very large data sets, it is likely that the speed-up by the sparse kernel will not compensate the painful
slowness in LIBSVM for very large data sets. In our method, we were able to reach a speed up of over
90% for data sets of more than 100k and 200k instances. In the next section, we dicuss the details of our
method.

5. Method

As discussed in section 2.2, LIBLINEAR is much faster than LIBSVM but only works with a linear kernel
and hence favours data sets where the linear kernel is enough to best separate the points. On the other

hand, when n is much smaller than m, non-linear kernels are favoured to get better accuracy in which case
LIBSVM is better.

Our approach combines both the better performance of non-linear kernels and the faster training by
LIBLINEAR. It seeks to find an m x N matrix B that represents the data points in N-dimensional feature
space which best separates the data such that K = BB , where K is a non-linear kernel. Having obtained
B, we can directly feed it to LIBLINEAR, as input matrix, to solve the primal optimization problem. It
is not clear however what is the optimal dimension N of the space in which we can separate the data points.

Definition 5.1 (Shattered set) Let A be a set and C be a class of sets, we say that C shatters A if
for each subset a of A, there is some element ¢ of C such that

a=cnNA.

In the context of classification, shattering means that for all possible assignments of the labels to the set
points A , any classifier model ¢ € C is able to correctly classify them all.

Definition 5.2 Vapnik—Chervonenkis (VC) dimension of a class of classifier is the maximum number of

points the classifiers can shatter.
The VC dimension measures the complexity of the set of classifiers. For example, a straight line in R? has

13

a VC dimension of 3, meaning that there is a combination of 4 points in R? such that no straight line can
shatter them, as shown in Figure 4.

Theorem 5.3 The VC-dimension of the set of affine classifiers {f : f(x) = sgn(w” x4+ b), w € R?, b € R}
isd+1.
A proof of Theorem 5.3 can be found in Appendix A. From Theorem 5.3, we can say that any m data
points can be shattered in R™ using hyperplanes.

In our approach, we choose the dimension N = m, in which case the matrix B becomes an m x m square

+

+

Figure 4: A line can not shatter this combination of 4 points, adapted from [16]

matrix, although there might be spaces with dimension less than m that can shatter the m points as well.
The question becomes how the kernel matrix K can be decomposed into BBT. One way is to use Cholesky
decomposition discussed in section 2.4 in that case B becomes a lower triangular matrix, for the sake of
simplicity we denote B by L.

Since kernel matrices are in general dense, Cholesky decomposition can be computationally expensive,
in addition to the huge space requirements needed to store large matrices associated with large data sets.
For example, a data set of m = 200, 000 instances requires at least 160GB, using 8 bytes for every entry,
to store the kernel matrix before applying the factorization. In order to overcome the space and time
problems, the sparse RBF kernel discussed in section 2.3 is used, where it acts as an approximation for the
RBF kernel. The usage of the sparse kernel matrix significantly reduces the storage needed for both the
kernel matrix and Cholesky factor. For example, if the sparsity is over 95% for the same 200, 000 instances,
we need less than 4GB to store the kernel matrix. In addition, sparse Cholesky factorization algorithm is
much faster than the one with a dense matrix.

Although L is a triangular matrix, it is still needed to be sparse because of the space requirement. For
this reason, before applying the decomposition, a permutation (P) of the rows and columns of the sparse
kernel matrix K was performed by approximate minimum degree algorithm discussed in section 2.4. It is
important to note that the permutation for the kernel matrix K is equivalent to the permutation of the
rows of L, i.e., it is a reordering of the data points in the matrix L. Hence, before solving the primal
optimization problem we need to reorder the labels, y; Vi = 1... m, with the same permutation P.

Solving the primal problem using LIBLINEAR vyields the weights w and the intercept b, but now w € R™
since each data point (each row of the matrix L) is in R™. To classify a new test point z € R”, we use
equation (7) :

z — sgn(w' ¢(z) — b),

but since we don't know the explicit expression of ¢, we can solve for the dual variables A\ using equation

14

(22) which can be rearranged as
(LTDp)A = w, (42)

where D, is a permuted version of the labels diagonal matrix D. The reason that D has to be permuted
is that both L and w are not in the original order but in the permuted order. The linear system of LTDP
can be very large but yet sparse and triangular which makes it very fast to solve. Then we can use the
classification rule (33)

z = sgn(D_ A yik(xi, 2) — b), (43)
i=1

where k(x;, z) is the sparse kernel, y; and x; are in their original order and A" is a P-permuted version of
A

The approach can be viewed as training using the primal problem and testing using the dual variables
and is summarized in Algorithm 1.

Algorithm 1 Binary Classification using Cholesky-Factorized Compactly Supported Kernel
Input : Data set x; € R",y; € {1, —1}, Test point z € R"
Output: Class of z

e Choose the parameters «, o, / and C.
e Compute the sparse matrix of the compactly supported kernel K where

_ HX;—X,-H2)

Kij = (1— alxi — x|}y exp (— 55

e Apply the approximate minimum degree algorithm to the matrix K to find the permutation matrix
P.

e Apply the permutation P to both K and y to get Kp and yp
o Apply the Cholesky factorization to the permuted matrix K, to obtain the Cholesky factor L.

e Solve the primal optimization problem using LIBLINEAR with matrix L and labels yp and trade-off
parameter C, to get the weights w and intercept b.

e Solve the system (L7 Dp)\ = w for A\, where Dp is a P-permuted labels diagonal matrix.

e Apply z = sgn(3.7, APyik(x;, z) — b), where AP is the P-permuted version of .

In order for the Cholesky factor L to be unique, we need to make sure that the sparse kernel matrix is
positive definite, for this reason a diagonal matrix with small entries (0.0001) is added to the sparse kernel
matrix. Since the diagonal elements of the kernel matrix is 1, adding such diagonal matrix will not change
the main characteristics of the kernel matrix.

When choosing the parameter «, we followed a similar idea proposed in [3] where they set the parameter
a = 1/30, where o is the same parameter in the RBF kernel. The sparse RBF kernel can then be written
as

X — x —yl?
(xy) = (0 - Py e (I (44)

15

The value of 30 can be regarded as the cut-off of the pairwise distances such that distances that are
greater than 3¢ has a corresponding zero in the RBF kernel which means that points that are very far from
each other has a zero similarity. The value of o now has the reverse effect of o as discussed in section 3,
decreasing o will make the kernel matrix sparser. We tried different values of o for each data set, hopefully
to find the best value that makes the kernel matrix sparse enough and yet gives high test accuracies, details
about these values are shown in the next section 6.

The parameter / is set to be the smallest integer satisfying / > |n/2]+1 in order to satisfy the condition
set by Askey in [19] for the positive definiteness of the kernel. In the experiments we performed, we choose
the value of C to be 1. We note that C can be fine tuned for every data set, though the accuracies obtained
using RBF and linear kernels suggested that the value of 1 is good enough.

To perform multi-classification, we used the one-vs-rest method discussed in section 2.1. The corre-
sponding modification in Algorithm 1 would be in the last three steps as we obtain k-values of w and b,
where k is the number of classes. The system

(L"Dp)N\j = w;,¥j=1,... . k (45)

is solved k times and finally we compute the decision function > ",)\f’jy,-k(x,-,z) — b/ for each class

j =1...k and pick the class achieving the maximum decision value.

The implementation of the algorithm is done in Python using scikit-learn [24] libraries which have im-
plementation of LIBSVM and LIBLINEAR. The computation of the sparse kernel uses a Cython wrapper so
that the comparison could be fair as both LIBSVM and LIBLINEAR in scikit-learn uses Cython wrappers
as well. For the sparse Cholesky factorization, CHOLMOD library [22] is used, it also provides the imple-
mentation of the approximate minimum degree algorithm. The code of the algorithm is shown in Appendix
B and can be accessed on the online repository [1]. The next section shows the results of the approach of
the sparse RBF kernel on some data sets and the comparison to RBF and linear kernels.

6. Results and Discussion

To validate our approach, we performed a comparison with the standard RBF kernel using LIBSVM and
with the linear kernel using LIBLINEAR. Several data sets are used in the comparison and each one was
splitted into training and testing sets. The different methods are trained on the training sets and validated
on the test sets. The training time (in seconds) and the testing accuracy are reported and compared for
each method.

Since our approach uses a non-linear kernel and a linear solver, we wanted to make sure that it still
performs well even when a linear kernel performs poorly. For this reason, we created an artificial data set
that is linearly inseparable such that the RBF kernel performs much better on accuracy than the linear
kernel. The artificial data set has 3 dimensions and 3 classes and is shown in Figure 5. Other data sets are
obtained from online resources [15] and summarized in Table 1.

For each data set, we tried different values of o to obtain the best accuracy and to make sure that both
the kernel and Cholesky factor matrices are as sparse as possible. Since we are limited with the amount
of RAM on the machine, we start with small values of o and then gradually increase o and observe the
corresponding test accuracy. We choose the best value of o that gives the highest accuracy on the test set
and still provides a high sparsity such that the matrices can be stored on the machines. The best value of
o, is then used to train the same data set with an RBF kernel using LIBSVM.

16

Figure 5: Swiss-roll artificial data set.

Data sets Train points | Test points | Features | Classes
Artificialy 225000 75000 3 3
Artificialp 100500 49500 3 3
Skin Segmentation 108783 71913 3 2
Covtype 97319 47934 54 2
CodRNA 59535 80890 8 2
Shuttle 43500 14500 9 7
aba 11220 21341 123 2
usps 7291 2007 256 10

Table 1: Summary of data sets used in the experiments

The comparison of our approach to LIBSVM with RBF kernel and to LIBLINEAR is presented in Table
2, where we also report the sparsity of the kernel matrix and time reduction percentage obtained when
using the sparse RBF kernel. The platform used for the experiments was Intel Core i7-3520M dual core
2.9 GHz with 8MB RAM and all the codes were compiled by Python 3.6.7 under a Linux operating system
(Ubuntu 18.04.2).

Concerning the first three data sets in Table 2, the linear kernel performed poorly, in terms of accuracy,
compared to the RBF kernel and sparse RBF kernel. Moreover, the sparse kernel approach outperforms
both the RBF kernel and linear kernel, where the accuracy is very close to that of the RBF kernel but
with a huge training time reduction (between 90 and 99%) . For example, the artificial data set with over

17

Data sets o Sparse Kernel RBF Kernel Linear Kernel Sparsity Time
(LibSVM) (LibLinear) Reduction
- - Accuracy | Time(s) | Accuracy | Time(s) | Accuracy | Time(s) - -
Artificialy 0.01 0.995 182.5 0.995 12413 0.45 17.2 0.9998 0.985
Artificialp 0.01 0.983 51 0.995 2600 0.45 7.6 0.9998 0.98
Skin . 0.5 0.965 52.3 0.988 566.3 0.85 13.8 0.9960 0.91
Segmentation
CodRNA 0.3 0.934 29.7 0.935 343 0.94 9.4 0.9997 0.91
Shuttle 0.002 0.90 25 0.996 101.36 0.922 23 0.9992 0.75
aba 0.3 0.76 9.43 0.77 50.86 0.84 0.23 0.9998 0.81
Covtype (/ =29) | 0.075 0.55 548 0.92 4640 0.755 3.6 0.998 0.88
Covtype (I =3) | 0.075 0.90 543.4 0.92 4640.8 0.755 3.6 0.998 0.88
usps (/= 129) 3 0.19 50.5 0.933 13 0.92 4.63 0.8300 -
usps (/= 3) 3 0.72 64.5 0.933 12.8 0.92 4.63 0.8300 -

Table 2: Comparison of the experimental results using the sparse kernel, RBF kernel and linear kernel

200k instances took around 12,400 seconds using the RBF kernel, whereas the sparse RBF kernel took
only 182.5 seconds which is around 68 times faster. When training on the skin data set, our approach was
10 times faster with only 2% reduction in accuracy compared to the RBF kernel. In the CodRNA data
set, the accuracies of the three methods are almost the same, while our approach is much faster than the
LIBSVM with RBF kernel with 91% time reduction. In the Shuttle data set, the accuracy was dropped by
10% when using the sparse kernel, which can be substantial, but provides faster performance.

In situations where the linear kernel is sufficient (e.g. a6a), LIBLINEAR gave the highest accuracy and
the fastest performance as well. In the experiments with the usps and Covtype data set, the accuracy
of the sparse kernel was dropped significantly, the reason is the condition set on the parameter /. When
the number of features is large, the value of / will also be large as / > |n/2] + 1 and since the values of
ke(x,y) = (L — af|x — y||)! defined in equation (36) is less than one then the values of the sparse RBF
kernel become negligibly small compared to the value of intercept b and thus the decision function, used
in equation (43) as

g(z) = sgn(d>_ Ayik(xi,) — b),
i=1

will give most of the time a sign that is determined by the dominant value b. One way to fix this problem is
to reduce the value of /, although this will violate the condition set by Askey [19] to make sure that matrix
is positive definite. However, we note that this condition is a sufficient, not a necessary one. In Covtype
and usps data sets, we rerun the experiments with / = 3 , which gave a very good accuracy in Covtype
data set, close to that of the RBF kernel with faster training, but failed to give a similar performance in
usps data set.

It is worth mentioning that, the second step in Algorithm 1 (computing the sparse RBF kernel) took
most of the training time. Other steps such as Cholesky factorization and solving the linear system are very
fast, when the matrices are sparse. The testing time was not reported as we were only concerned with the
training performance. It is not also necessary to store the kernel matrix between the training and testing
sets, we can compute each entry of the matrix and use it directly when classifying a testing point.

In some data sets, the RBF kernel requires large values of o to attain a high accuracy in which case

18

our approach with the sparse RBF kernel might not be a good choice. The large value of o will produce a
dense kernel matrix which in case of very large data sets can not be stored on the machines. In addition,
training with the sparse RBF kernel can even be much slower. For instance, we show in Figure 6 different
experimental results performed on a small data set, used in [6], named svmguidel with 3,089 training
instances. The accuracies of both our approach and RBF kernel are plotted for different values of ¢ and
we also plot the sparsity of the kernel matrix. We observe that the accuracy increases with the increase of
o while the sparsity decays. If we decide that ¢ = 16 is a good choice which provides an accuracy of 94%,
then we will have a sparsity of 0.88 which will not be very good for large data sets.

Performance with differtent values of o

1 i T

2 , — E— _j.
0.85 | / _
08t / _

075 | | l

[Accuracy of the Sparse Kernel
0.7 r Accuracy of the RBF Kernel E

/ Sparsity of the kernel matrix
065+ [/ E

055/ .

05 ..'_ I I I I 1

Figure 6: Performance of the sparse RBF kernel and RBF kernel on svmguidel data set for different values of o .

19

7. Conclusion

In this thesis, we studied a novel approach of training support vector machines that has shown a signif-
icant speed-up over traditional training methods. As discussed in section 2, support vector machines is
a classification method used to assign labels to patterns. It builds a model by using a set of pre-labeled
training set and solving an optimization problem to find a hyperplane that separates the data points into
two classes. One advantage of using SVM is that it can use a kernel trick that maps the data points into
high-dimensional features space where it is easier to separate the points.

Working with the non-linear kernels can be computationally expensive and usually solving the SVM
optimization problem with them is painfully slow for large data sets. A kernel with sparse matrix was
discussed in section 2.3 and we showed some of its properties in section 3. The kernel is constructed by
multiplying a compactly- supported radial basis function by the RBF kernel. This multiplication leads to
a kernel by using results from Theorem 2.1.3 and Lemma 2.1.4 provided that a condition is met on the
parameter / in the kernel definition. Some literature papers have used the same sparse kernel, particularly
[9] and [3], in support vector machine problems. One has replaced the RBF kernel by the sparse kernel
directly in the optimization problem. Although, such substitution led to a speed-up in the training time,
they used non-linear solvers which are still slow in case of large data set. Further results are shown in
section 4.

In section 5 we discussed the details of our algorithm. The algorithm tries to combine the better
performance of RBF kernel and the faster training of LIBLINEAR [20]. It computes the sparse matrix of
RBF kernel discussed in section 2.3 and instead of solving the dual problem, we a perform a Cholesky
factorization of the sparse matrix of the constructed RBF kernel. To make sure that the Cholesky factor
is sparse as well, to meet space requirements, the approximate minimum degree algorithm [2] is used.
The factor matrix, which now represents the data points mapped into the feature space, is then used to
solve the primal optimization problem of SVM using LIBLINEAR solver. The novel approach showed very
promising results over the standard training with RBF kernel. Experiments were conducted on several data
sets and the time reduction obtained was sometimes over 90% while the accuracy was nearly the same as
the one obtained using the RBF kernel. In cases where the linear kernel did not perform well, our approach
was still able to perform similar to the RBF kernel but with much faster training procedure.

The main limitation of this approach is the need to store the sparse kernel matrix. This limitation can
lead to out-of-memory errors if the parameter o is chosen inappropriately and makes the approach not a
good choice if o has to be large to obtain a high accuracy. Another issue happens when the number of
features is large, this will make the parameter / large as well because of Askey's condition. The large value
of | may lead to poor accuracy as discussed in section 6. Reducing the value of / practically enhanced
the accuracy but theoretically we are not sure if the function defined in equation (38) will be a kernel in
general.

One possible continuation of this work is to solve its limiting situations. One could try to find an
alternative relation between the sparsity parameter o and the parameter ¢ that does not lead to memory
problems if o is large. One could also try to fix situations where the number of features is large either
by providing theoretical bounds on the parameter / that guarantee that the function k. is a kernel or by
finding a practical framework that performs well when the number of features is high and still meets the
current theories. Another future work is to apply similar ideas on other applications that use the kernel
trick such as SVM in regression, kernel PCA and spectral clustering.

20

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

A. Abdellatif (2019). Master thesis code. GitHub repository, http://www.github.com/
AlhasanAbdellatif123

A. George and W. H. Liu (1989).The evolution of the Minimum Degree Ordering Algorithm. SIAM
Review. 31 (1): 1-19.

B. Hamers, J. A. K. Suykens and B. D. Moor (2002). Compactly Supported RBF Kernels for Sparsifying
the Gram Matrix in LS-SVM Regression Models. International Conference on Artificial Neural Networks
2415, 720-726.

C.-C. Chang and C.-J. Lin (2011). LIBSVM A library for support vector machines, ACM Transactions
on Intelligent Systems and Technology 2, 27:1-27:27. Software available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm

C. Cortes and V. Vapnik (1995). Support-vector networks. Machine learning 20(3): 273-297

C.-W. Hsu, C.-C. Chang, and C.-J. Lin (2003). A Practical Guide to Support Vector Classification.
Department of Computer Science, National Taiwan University.

F. Lauer(2014). Lecture notes. Retrieved from http://mlweb.loria.fr/book/en/
VCdimhyperplane.html

H. Cao, T. Naito and Y. Ninomiya (2008). Approximate RBF Kernel SVM and Its Applications
in Pedestrian Classification. The Ist International Workshop on Machine Learning for Vision-based
Motion Analysis .

H. H. Zhang and M. Genton (2004). Compactly Supported Radial Basis Function Kernels.

J. Chen, C. Zhan X. Xue and C. -L. Liud (2013). Fast instance selection for speeding up support
vector machines. Knowledge-Based Systems 45, 1-7.

J. C. Nash. (1990)" The Choleski Decomposition.” Ch. 7 in Compact Numerical Methods for Com-
puters: Linear Algebra and Function Minimisation, 2nd ed. Bristol, England: Adam Hilger, pp. 84-93.

Larhmam - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=
73710028

M. Blachnik (2014). Reducing Time Complexity of SVM Model by LVQ Data Compression. Artificial
Intelligence and Soft Computing 687-695.

M. G. Genton (2002). Classes of kernels for machine learning: a statistics perspective. The Journal of
Machine Learning Research 2, 299-312.

M. Lichman (2013) UCI machine learning repository. URL http://archive.ics.uci.edu/ml

MithrandirMage - Own work based on: VC4.png by BAxelrod., CC BY-SA 3.0, https://commons.
wikimedia.org/w/index.php?curid=19998946

Platt, John (1998). Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector
Machines, Advances in Kernel Methods-Support Vector Learning 208.

21

http://www.github.com/AlhasanAbdellatif123
http://www.github.com/AlhasanAbdellatif123
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://mlweb.loria.fr/book/en/VCdimhyperplane.html
http://mlweb.loria.fr/book/en/VCdimhyperplane.html
https://commons.wikimedia.org/w/index.php?curid=73710028
https://commons.wikimedia.org/w/index.php?curid=73710028
http://archive.ics.uci.edu/ml
https://commons.wikimedia.org/w/index.php?curid=19998946
https://commons.wikimedia.org/w/index.php?curid=19998946

[18]

[19]

[20]

[21]

[22]

[23]

[24]

22

P. William, S. Teukolsky, W. Vetterling; B Flannery (1992). Numerical Recipes in C: The Art of
Scientific Computing (second ed.). Cambridge University England EPress. p. 994. ISBN 0-521-43108-
5.

R. ASKEY (1973). Radial characteristic functions. Mathematical Research Center, University of Wis-
consin, Madison. Technical summary report n 1262.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. (2008). LIBLINEAR: A Library for
Large Linear Classification, Journal of Machine Learning Research 9, 1871-1874. Software available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear

S. Wang, Z. Li, C. Liu, et al. (2014). Training data reduction to speed up SVM training. Applied
Intelligence 41, 405-420.

T. A. Davis and W. W. Hager (2009). Dynamic supernodes in sparse Cholesky update/downdate and
triangular solves, ACM Trans. Math. Software, Vol 35, No. 4.

V. Vapnik and A. Lerner (1963) . Pattern recognition using generalized portrait method. Automation
and Remote Control, 24, 774-780.

F. Pedregosa, G. Varoquaux, et al. (2011) Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research 12, 2825-2830.

http://www.csie.ntu.edu.tw/~cjlin/liblinear

A. Proof of Theorem 5.3

The proof is adapted from [7].
Theorem 5.3 The VC-dimension of the set of affine classifiers {f : f(x) = sgn(w'x+b), w € R, b € R}
isd—+1.

In order to prove Theorem 5.3, we first prove a result on linear classifiers.

Theorem A.1: The VC dimension of the set of linear classifiers {f : f(x) = sgn(w'x),w € R} is
d.

Proof. Consider a set of points S = {xi, ..., x4}, that are canonical basis in RY and let w = Z,d vix;j, then
we have

d
f(x) = sgn(z yixi’ x).

Since we have that x./ x; = 0 if i # j and 1 otherwise, then f(x;) = sgn(y;) = y;. Hence, this set of points
can be shattered by the linear classifier and VC-dim(f) > d.

Assume that there are d+1 points S = {xq, ..., xg+1} that can be shattered by f. Then for any of the
291 combinations of possible labels, there is a parameter wj such that f(x) = sgn(w, x) produces the
correct labeling.

Consider the matrix H = XW, where X = [x, ..., xg+1] and W = [wy, ..., wpa11]. let a be a non-zero
vector, then there exists k such that sgn(Xwy) = sgn(a) and as a result a’ Xw is a sum of positive
numbers and since there is no such vector a where a” H = 07, the rows of H are linearly independent and
the rank(H) = d + 1. But since H = XW, we have

rank(H) < min{rank(X), rank(W)} < d

which is a contradiction and hence VC-dim(f) < d. Using the lower bound above we conclude that
VC-dim(f) = d O

Proving Theorem 5.3 where now f(x) = sgn(w ' x + b).

Proof. Consider a set of points S = {xi, ..., x4} that are canonical basis in R? and extend it with vector
Xd+1 = 0. Set w = Z?(y, — yd+1)X,' and b = yg11. Then

d

Flx:) — . T — Y J.#
(%) sgn(E (Vi = Yd+1)%;' Xj + Yd+1) { Va1 j=d+1

then there is a set of d + 1 points shattered by f and hence VC-dim(f) > d + 1.

Using the fact that an affine classifier in R? is a linear classifier operating on a subspace of R9*1 and
since the VC-dimension of a linear classifier in R9T1 is d + 1, then there is no set of d +2 points shattered
by an affine classifier in R and hence VC-dim(f) < d + 1, using the upper bound above we conclude that
VC-dim(f) = d + 1. O

23

© 00 ~NOOT S~ WN

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

B. Implementation of the Algorithm in Python

The code below is just to show how the algorithm is implemented and full access to the code can be found
on the online repository [1]. The inputs to the algorithm are

- The files names of the training and testing sets, lines 17 and 18.

- Parameters (o, I, C), lines 27 to 33.

Remarks:

e The code is written as cells on a Jupyter notebook, so it should be run cell by cell as below, cells are
separated by lines.

e The code first runs the approach with the sparse kernel and then with LIBSVM and LIBLINEAR.

e The main routine in the algorithm is sp_rbf (), defined in line 49. Its input arguments are the training
set and the parameters v and p which are computed from o in lines 35 and 36 and the parameter /.
It returns the nonzero entries of the kernel matrix along with their associated rows and columns.

———— Importing libraries

import numpy as np

import math

import time

from sklearn.svm import SVC, LinearSVC

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import accuracy_score ,fl_score,confusion_matrix

from scipy.sparse import csc_matrix ,lil_matrix ,csr_matrix , bsr_matrix ,diags,coo_matrix,
dok_matrix

from scipy.sparse.linalg import spsolve_triangular ,spsolve

from sksparse.cholmod import cholesky

from sklearn.datasets import load_svmlight_file

from sklearn.datasets.samples_generator import make_swiss_roll

%load_ext Cython

#———— reading data set ——
x_tr,y_tr = load_svmlight_file(”a6a.txt")

x_tes ,y_-tes = load_svmlight_file(” a6at.txt")
x_tes = x_tes.toarray()
X_tr = x_tr.toarray ()

#—————specifying parameters
m = x_tr.shape[0]
n = x_tr.shape[1]

m_test = len(y_tes)
sigma = 0.3
c=1

compute |
r = math. floor(n/2)+1
if (r%2==0):
r = r+l1
Il =

24

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

gamma = 1/(2x(sigmaxx2))
mu= 1/(3xsigma)

classes

classes = np.unique(y-tr)
n_classes = len(classes)
print(m ,m_test,n)

———— cython wrapper to compute the kernel for the training test

%Y%cython
from libc.math cimport exp
cdef extern from "math.h":
double sqrt(double m)
def sp_rbf(double[:,
cdef list data = []
cdef list row =[]
cdef list col =]]
cdef int i,j,d
cdef double r =0
cdef double yj
cdef int nl = X.shape[1]
cdef int ml = X.shape[0]

for i in range(ml):
for j in range(i ml):
r =0

for d in range(nl):

r += (X[i,d] — X[j, d]) *x 2
yj = l-muxsqrt(r)
if yj>0:

yj = (yjx**|)xexp(—gammaxr) # =data # col = j # row |

data.append(yj)

col.append(j)

row . append (i)
return data,row, col

————— TRAINING USING THE SPARSE RBF KERNEL
Computing the sparse RBF kernel

s = time.time()

data ,row, col = sp_rbf(x_tr ,mu,gamma, |)

K2 = csc_matrix((data, (row, col)), shape=(m, m))

del data,row, col

K2 = K24+K2.transpose ()—diags ([1],shape = (m,m))

e = time.time ()

print (" Time of computing the sparse kernel” ,e—s)

print ("sparsity of the kernel” ,1-K2.count_nonzero()/mxx2)
total_time = e—s

Cholesky factorization

f = cholesky (K2, beta=0.0001, mode="auto', ordering_-method= '

Lsl = f.L()
P=f.P()
print (" Sparsity of Matrix L", 1-Lsl.count_nonzero()/mxx2)

check that the labels are (1,—1) for binary classes data set

class2 = False

:] X, double mu,double gamma, double |):

use_long=None)

25

92 if(n_classes==2):

93 class2 = True

94 if(classes[0] = 1):
95 pos = y_tr==1
96 y_tr[pos] = -1
97 neg = y_tr==2
98 y_-tr[neg] =1
99 pos = y_tes==1
100 y_tes[pos] = —1
101 neg = y_tes==2
102 y_tes[neg] =1
103

104 # LibLinear Classifier

105 clIf = LinearSVC(C = 1,dual = False)
106 clf.fit(Lsl,y_tr[P])

107 w = clf.coef_.T

108 b = clf.intercept_

109

110 # Solving for lamdas

111 if(class2 == True):

112 lamda = spsolve_triangular(Lsl.transpose().dot(diags(y_tr[P])),
113 w, lower = False)

114 else:

115 lamda = np.zeros((m, n_classes))

116 for i in range(n_classes):

117 pos = y_tr=classes[i]

118 y-tr_i = —np.ones(m)

119 y_tr_i[pos] =1

120 lamda[:,i] = spsolve_triangular(Lsl.transpose().dot(diags(y-tr_i[P])),
121 w[:,i],lower = False)

122 e = time.time()

123 total_time = e—s

124 print (" Total Training time " ,total_time)

125

126 # ——— cython wrapper to compute the kernel for the test set ——
127

128 %Y%cython

129 from libc.math cimport exp

130 cdef extern from "math.h":

131 double sqrt(double m)

132 def sp_rbf_test(double[:,:] X_train,hdouble[:,:] X_test,
133 double mu,double gamma, double |):

134 cdef list data = []

135 cdef list row =[]

136 cdef list col =]]

137 cdef int i,j,d

138 cdef double r =0

139 cdef double vyj

140 cdef int nl = X_train.shape[1]

141 cdef int m_tr = X_train.shape[0]

142 cdef int m_tes = X_test.shape[0]

143 for i in range(m_tr):

144 for j in range(m_tes):

145 r =0

146 for d in range(nl):

147 r += (X_train[i,d] — X_test[j, d]) =x 2
148 yj = l-muxsqrt(r)

26

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

return d

if yj>0:

yi = (yj*x|)xexp(—gammaxr) # =data # col = j # row i

data.append(yj)

col.append(j)

row.append (i)
ata ,row, col

———— Testing using the Sparse kernel

data ,row, col

= sp_rbf_test(x-tr,x_tes ,mu,gamma, |)

K2_t = csc_matrix((data, (row, col)), shape=(m, m_test))

del data,row

if(class2 =
y_pred =
+ bx*xnp.o
else:

,col

True):
np.sign(K2_t.T.dot(diags(y-tr).dot(lamda[P]))
nes((m_test,1)))

dec_fun = np.zeros((m_test,n_classes))

lamda =
for i in

lamda [P]
range(n_classes):

pos = y_tr=classes|[i]

y_tr
y-tr

_i = —np.ones(m)
_i[pos] =1

dec_fun[:,i] = K2_t.T.dot(diags(y_tr_i)).dot(lamda[:,i])+
b[i]*np.ones((m_test))
| = np.argmax(dec_fun,axis = 1)

y_pred =
acc = accura

classes[1]
cy_score(y-pred ,y_tes)

print (" Accuracy of Sparse kernel” acc)

———— Training and Testing using the RBF kernel (LibSVM)
start = time.time()

clf_.2 = SVC(C = 1,kernel = "rbf’ ,gamma = gamma)

clf_2 . fit(x_tr,y_tr)

end = time.time ()

print (" Time

of RBF Kernel” ,end — start)

rbf_acc = clf_2 .score(x_tes,y_tes)
print (" Accuracy of RBF kernel” ,rbf_acc)

print (" Total

i

Training time " ,total_time)

print (" Accuracy of Sparse kernel” b acc)

#———— Training and Testing using the linear kernel (LIBLINEAR) ——

start = time

.time ()

clf_3 = LinearSVC(C = 1)
clf_3 . fit(x_tr,y_tr)

end = time.time ()

print (" Time of Linear Kernel” ,end — start)
lin_acc = clf_3 .score(x_tes,y_tes)
print (" Accuracy of Linear kernel” ,lin_acc)

27

	Introduction
	Background
	Support Vector Machines
	Support Vector Machines Solvers
	Compactly-Supported RBF Kernel
	Cholesky Decomposition

	Sparse Kernel Properties
	Literature Review
	Method
	Results and Discussion
	Conclusion
	References
	Proof of Theorem 5.3
	Implementation of the Algorithm in Python

