15 research outputs found

    Una metodología para detección de cambios en imágenes SPOT-Pan

    Get PDF
    La capacidad de un algoritmo para detectar cambios varía según el tipo de cambio, y depende de la metodología seleccionada. Existe una serie de técnicas digitales de detección de cambios que, en general, se pueden agrupar en dos categorías: aquellas en las que se detecta información binaria cambio o no cambio, y aquellas en las que se detecta al detalle "origen-destino" en la trayectoria del cambi

    Model-Based Outlier Detection System with Statistical Preprocessing

    Get PDF
    Reliability, lack of error, and security are important improvements to quality of service. Outlier detection is a process of detecting the erroneous parts or abnormal objects in defined populations, and can contribute to secured and error-free services. Outlier detection approaches can be categorized into four types: statistic-based, unsupervised, supervised, and semi-supervised. A model-based outlier detection system with statistical preprocessing is proposed, taking advantage of the statistical approach to preprocess training data and using unsupervised learning to construct the model. The robustness of the proposed system is evaluated using the performance evaluation metrics sum of squared error (SSE) and time to build model (TBM). The proposed system performs better for detecting outliers regardless of the application domain

    Change Detection Using Synthetic Aperture Radar Videos

    Full text link
    Many researches have been carried out for change detection using temporal SAR images. In this paper an algorithm for change detection using SAR videos has been proposed. There are various challenges related to SAR videos such as high level of speckle noise, rotation of SAR image frames of the video around a particular axis due to the circular movement of airborne vehicle, non-uniform back scattering of SAR pulses. Hence conventional change detection algorithms used for optical videos and SAR temporal images cannot be directly utilized for SAR videos. We propose an algorithm which is a combination of optical flow calculation using Lucas Kanade (LK) method and blob detection. The developed method follows a four steps approach: image filtering and enhancement, applying LK method, blob analysis and combining LK method with blob analysis. The performance of the developed approach was tested on SAR videos available on Sandia National Laboratories website and SAR videos generated by a SAR simulator

    SCDNET: A novel convolutional network for semantic change detection in high resolution optical remote sensing imagery

    Get PDF
    Abstract With the continuing improvement of remote-sensing (RS) sensors, it is crucial to monitor Earth surface changes at fine scale and in great detail. Thus, semantic change detection (SCD), which is capable of locating and identifying "from-to" change information simultaneously, is gaining growing attention in RS community. However, due to the limitation of large-scale SCD datasets, most existing SCD methods are focused on scene-level changes, where semantic change maps are generated with only coarse boundary or scarce category information. To address this issue, we propose a novel convolutional network for large-scale SCD (SCDNet). It is based on a Siamese UNet architecture, which consists of two encoders and two decoders with shared weights. First, multi-temporal images are given as input to the encoders to extract multi-scale deep representations. A multi-scale atrous convolution (MAC) unit is inserted at the end of the encoders to enlarge the receptive field as well as capturing multi-scale information. Then, difference feature maps are generated for each scale, which are combined with feature maps from the encoders to serve as inputs for the decoders. Attention mechanism and deep supervision strategy are further introduced to improve network performance. Finally, we utilize softmax layer to produce a semantic change map for each time image. Extensive experiments are carried out on two large-scale high-resolution SCD datasets, which demonstrates the effectiveness and superiority of the proposed method

    Examining the Capability of Supervised Machine Learning Classifiers in Extracting Flooded Areas from Landsat TM Imagery: A Case Study from a Mediterranean Flood

    Get PDF
    This study explored the capability of Support Vector Machines (SVMs) and regularised kernel Fisher’s discriminant analysis (rkFDA) machine learning supervised classifiers in extracting flooded area from optical Landsat TM imagery. The ability of both techniques was evaluated using a case study of a riverine flood event in 2010 in a heterogeneous Mediterranean region, for which TM imagery acquired shortly after the flood event was available. For the two classifiers, both linear and non-linear (kernel) versions were utilised in their implementation. The ability of the different classifiers to map the flooded area extent was assessed on the basis of classification accuracy assessment metrics. Results showed that rkFDA outperformed SVMs in terms of accurate flooded pixels detection, also producing fewer missed detections of the flooded area. Yet, SVMs showed less false flooded area detections. Overall, the non-linear rkFDA classification method was the more accurate of the two techniques (OA = 96.23%, K = 0.877). Both methods outperformed the standard Normalized Difference Water Index (NDWI) thresholding (OA = 94.63, K = 0.818) by roughly 0.06 K points. Although overall accuracy results for the rkFDA and SVMs classifications only showed a somewhat minor improvement on the overall accuracy exhibited by the NDWI thresholding, notably both classifiers considerably outperformed the thresholding algorithm in other specific accuracy measures (e.g. producer accuracy for the “not flooded” class was ~10.5% less accurate for the NDWI thresholding algorithm in comparison to the classifiers, and average per-class accuracy was ~5% less accurate than the machine learning models). This study provides evidence of the successful application of supervised machine learning for classifying flooded areas in Landsat imagery, where few studies so far exist in this direction. Considering that Landsat data is open access and has global coverage, the results of this study offers important information towards exploring the possibilities of the use of such data to map other significant flood events from space in an economically viable way

    Semi-supervised learning with constrained virtual support vector machines for classification of remote sensing image data

    Get PDF
    We introduce two semi-supervised models for the classification of remote sensing image data. The models are built upon the framework of Virtual Support Vector Machines (VSVM). Generally, VSVM follow a two-step learning procedure: A Support Vector Machines (SVM) model is learned to determine and extract labeled samples that constitute the decision boundary with the maximum margin between thematic classes, i.e., the Support Vectors (SVs). The SVs govern the creation of so-called virtual samples. This is done by modifying, i.e., perturbing, the image features to which a decision boundary needs to be invariant. Subsequently, the classification model is learned for a second time by using the newly created virtual samples in addition to the SVs to eventually find a new optimal decision boundary. Here, we extend this concept by (i) integrating a constrained set of semilabeled samples when establishing the final model. Thereby, the model constrainment, i.e., the selection mechanism for including solely informative semi-labeled samples, is built upon a self-learning procedure composed of two active learning heuristics. Additionally, (ii) we consecutively deploy semi-labeled samples for the creation of semi-labeled virtual samples by modifying the image features of semi-labeled samples that have become semi-labeled SVs after an initial model run. We present experimental results from classifying two multispectral data sets with a sub-meter geometric resolution. The proposed semi-supervised VSVM models exhibit the most favorable performance compared to related SVM and VSVM-based approaches, as well as (semi-)supervised CNNs, in situations with a very limited amount of available prior knowledge, i.e., labeled samples

    Hydrometeor classification from two-dimensional video disdrometer data

    Get PDF

    Supervised change detection in VHR images using contextual information and support vector machines

    No full text
    In this paper we study an effective solution to deal with supervised change detection in very high geometrical resolution (VHR) images. High within-class variance as well as low between-class variance that characterize this kind of imagery make the detection and classification of ground cover transitions a difficult task. In order to achieve high detection accuracy, we propose the inclusion of spatial and contextual information issued from local textural statistics and mathematical morphology. To perform change detection, two architectures, initially developed for medium resolution images, are adapted for VHR: Direct Multi-date Classification and Difference Image Analysis. To cope with the high intra-class variability, we adopted a nonlinear classifier: the Support Vector Machines (SVM). The proposed approaches are successfully evaluated on two series of pansharpened QuickBird images

    Change detection and landscape similarity comparison using computer vision methods

    Get PDF
    Human-induced disturbances of terrestrial and aquatic ecosystems continue at alarming rates. With the advent of both raw sensor and analysis-ready datasets, the need to monitor ecosystem disturbances is now more imperative than ever; yet the task is becoming increasingly complex with increasing sources and varieties of earth observation data. In this research, computer vision methods and tools are interrogated to understand their capability for comparing spatial patterns. A critical survey of literature provides evidence that computer vision methods are relatively robust to scale and highlights issues involved in parameterization of computer vision models for characterizing significant pattern information in a geographic context. Utilizing two widely used pattern indices to compare spatial patterns in simulated and real-world datasets revealed their potential to detect subtle changes in spatial patterns which would not otherwise be feasible using traditional pixel-level techniques. A texture-based CNN model was developed to extract spatially relevant information for landscape similarity comparison; the CNN feature maps proved to be effective in distinguishing agriculture landscapes from other landscape types (e.g., forest and mountainous landscapes). For real-world human disturbance monitoring, a U-Net CNN was developed and compared with a random forest model. Both modeling frameworks exhibit promising potential to map placer mining disturbance; however, random forests proved simple to train and deploy for placer mapping, while the U-Net may be used to augment RF as it is capable of reducing misclassification errors and will benefit from increasing availability of detailed training data
    corecore