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A B S T R A C T   

With the continuing improvement of remote-sensing (RS) sensors, it is crucial to monitor Earth surface changes at 
fine scale and in great detail. Thus, semantic change detection (SCD), which is capable of locating and identifying 
“from-to” change information simultaneously, is gaining growing attention in RS community. However, due to 
the limitation of large-scale SCD datasets, most existing SCD methods are focused on scene-level changes, where 
semantic change maps are generated with only coarse boundary or scarce category information. To address this 
issue, we propose a novel convolutional network for large-scale SCD (SCDNet). It is based on a Siamese UNet 
architecture, which consists of two encoders and two decoders with shared weights. First, multi-temporal images 
are given as input to the encoders to extract multi-scale deep representations. A multi-scale atrous convolution 
(MAC) unit is inserted at the end of the encoders to enlarge the receptive field as well as capturing multi-scale 
information. Then, difference feature maps are generated for each scale, which are combined with feature maps 
from the encoders to serve as inputs for the decoders. Attention mechanism and deep supervision strategy are 
further introduced to improve network performance. Finally, we utilize softmax layer to produce a semantic 
change map for each time image. Extensive experiments are carried out on two large-scale high-resolution SCD 
datasets, which demonstrates the effectiveness and superiority of the proposed method.   

1. Introduction 

Change detection (CD) is the process of detecting Earth surface 
changes by using geographically co-registered multi-temporal remote- 
sensing images (Bruzzone and Bovolo, 2012). In particular, with the 
increasing improvement of sensors, a large amount of RS imagery with 
diverse resolutions and modalities are available, which make it possible 
to observe and understand Earth surface at a finer scale. As a result, it is 
crucial to monitor land use/cover changes using CD technologies, which 
have achieved tremendous success in the areas of urban spreading 
monitoring, ecosystem assessment, resources management, and munic
ipal planning (Gao and Liu, 2010; Doxani et al., 2012; Rokni et al., 2015; 
De Alwis Pitts and So, 2017; Li et al., 2018). 

The CD procedure mainly consists of three steps, namely pre- 
processing, change analysis and change map generation. According to 
the type of semantic label information desired in the output change map, 
CD falls into two categories: binary change detection (BCD) and 

semantic change detection (SCD). In BCD, the change map distinguishes 
between changed and unchanged pixels by using a binary label. In 
contrast, both change extents and change types can be determined by 
SCD. Here, change types refers to land-cover transitions between bi- 
temporal images, such as “from land to building”, “from forest to 
farmland”, etc. Consequently, “from-to” information can be well 
embedded through SCD, where problems related to both “where 
changes happen” and “how changes happen” are solved simultaneously. 
Therefore, compared with BCD, SCD is a more complex change detection 
task, where comprehensive change information can be obtained. An 
illustration of BCD and SCD is presented in Fig. 1. Notably, to facilitate 
deep convolutional network training, the proposed SCD results consist of 
two individual classification maps, with different colors denoting the 
unchanged and changed classes for each period of image. One can also 
combine the two classification maps into a single map, where each color 
represents a land-cover transition type. However, in that case, the label 
space will inevitably increase sharply. It should also be noted that the 
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proposed SCD is different from traditional land use/cover transitions, 
where explicit land use/cover category is needed to be assigned to each 
pixel or patch without considering the unchanged class (Ru et al., 2020). 
Nevertheless, in our case, large proportions of pixels are labeled as the 
unchanged class, which is crucial for reducing the annotation work for 
large-scale RS datasets. 

In the literature, the majority of the research work is focused on BCD 
due to its simplicity and lower requirements on input data. In general, 
BCD techniques evolve with the development of the RS sensors and 
benefit a lot from the ideas in computer vision. In the early stage, pixel- 
based BCD methods dominate the CD field, where pixels can be treated 
independently in low-resolution RS imagery (Bruzzone and Prieto, 
2000). Later on, very high-resolution (VHR) RS images become avail
able, making it possible for fine-grained observation of ground objects. 
In such context, object-based BCD methods are developed based on 
image objects generated by image segmentation techniques, which are 
more close to human perception. Change maps can thus be generated by 
comparing image object features (Leichtle et al., 2017) or class mem
berships (Volpi et al., 2013). Note that, on VHR images, object-based 
BCD methods far outperform pixel-based counterparts due to the 
usage of spatial context information and rich object features. Recently, 
with the development of computing resources and the availability of 
large-scale RS imagery, deep-learning based CD methods, especially 
convolutional neural network (CNN), are thriving (Shi et al., 2020). 
Benefiting from the powerful feature representation ability of CNN, 
change maps can be easily produced by comparing deep features of bi- 
temporal images (Hou et al., 2017). Furthermore, BCD can be seen as 
a binary segmentation problem, thus it is natural to learn the change 
maps directly from the input image pairs through an elaborated fully 
convolutional network (FCN) (Peng et al., 2019). In such case, the de
gree of automation and intelligence can be greatly improved. Note that 
to improve CD perforamnce, diverse attention mechanisms and Siamese 
architectures were proposed to generate discriminative features and 
obtain accurate change maps (Chen and Shi, 2020; Liu et al., 2020). 
However, large amounts of dense label maps are required to train FCNs 
with millions of parameters, which is labour intensive and costly to 
acquire for RS images. Therefore, weakly-supervised and semi- 
supervised techniques are further introduced to make it possible to 
train the FCNs with limited training data (Peng et al., 2020). In addition, 
instance-level sample augmentation techniques were also proposed to 
overcome the rarity and sparsity of the changed samples (Chen et al., 
2021). 

Despite tremendous success has been achieved in BCD, there exist 
large gaps for comprehensive change recognition and understanding 

due to the absence of semantic information. With the improvement of 
scene-level interpretation, many attempts have been made to introduce 
scene-level semantic label into CD (Bovolo and Bruzzone, 2015). Based 
on post-classification comparison strategy, a scene-level CD framework 
is proposed for VHR imagery (Wu et al., 2016). However, the considered 
handcrafted features are sensitive to scenes, and the classification error 
accumulation is prone to happen. To address these drawbacks, CNN was 
introduced to extract deep feature representations, where deep canon
ical correlation analysis (DCCA) was also coupled to capture potential 
correlation of the unchanged scene patches (Ru et al., 2019). However, 
obvious limitations exist for scene-level CD: 1) it is difficult to define a 
proper patch size for different RS scenes; 2) as the scene patch only 
denotes a rectangle area of the target object, it fails to delineate the 
object boundary, which is essential for accurate change information 
post-processing and statistical analysis, such as changed object vecto
rization and changed areas calculation. Therefore, it is crucial to 
implement SCD with pixel-level label information. 

To overcome the above-mentioned limitations, a novel semantic CD 
network (SCDNet) is proposed, where pixel-level semantic change maps 
can be generated. Change transition status is therefore easily presented 
by the bi-temporal semantic change maps with “from-to” class labels. 
SCDNet, which is designed based on an encoder-decoder architecture, 
consists of two encoders and decoders, making it possible to generate 
semantic change maps by combining bi-temporal image information 
effectively. The contributions of this article can be summarized into two 
aspects:  

• We propose a novel SCDNet for dealing with pixel-level SCD task, 
which is flexible and easy to implement in an end-to-end manner. To 
fully exploit the semantic change information, a Siamese UNet ar
chitecture with shared weights is adopted to implement multi-level 
feature representations and fusions effectively for bi-temporal 
images.  

• To capture multi-scale changes, multi-scale atrous convolution units 
are employed in the encoders. For the benefit of improving feature 
fusion and avoiding gradient vanishing, attention mechanism and 
deep supervision strategy are further introduced in the decoding 
stage. To address the class imbalance issues, we define a novel class- 
wise loss function by combining the advantages of dice loss and focal 
loss. Code will be available at https://github.com/daifeng2016/ 
Semantic-Change-Detection. 

Fig. 1. Illustration of BCD and SCD tasks. The different colors in the semantic change maps denote different change classes in each period of image.  
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2. Related work 

Based on the difference of semantic label interpretation unit, SCD 
can be dividied into two categories: scene-level semantic change 
detection (SLSCD) and pixel-level semantic change detection (PLSCD). 
In SLSCD, semantic label is assigned to individual scene unit, such as 
object instances in street-view scene or object patches in RS scene. 
Instead, semantic label is given to each pixel in PLSCD, where fine- 
grained semantic change map can be therefore generated. 

2.1. Scene-level semantic change detection 

In the computer vision field, identifying scene changes is the 
necessary step towards high-level scene understanding tasks such as 
autonomous driving, traffic control and infrastructure monitoring. In 
such context, street-view images or videos produced by drones or mobile 
mapping systems are used for scene-level change analysis, where the 
main focus is on newly added or reduced objects of the interest. Kataoka 
et al. (2016) decoupled SCD into two separate tasks of semantic seg
mentation and change detection. To obtain high-level performance, 
hypermaps and multi-scale feature representations are used for image 
patches. Alcantarilla et al. (2018) proposed CDNet for detecting struc
tural changes using street-view videos, which consists of four stacking 
contraction and expansion blocks. In a similar work, Guo et al. (2018) 
proposed CosimNet for scene change detection, where a thresholded 
contrastive loss was used to learn more discriminative metrics. For the 
benefit of effective feature fusion, Lei et al. (2020) proposed HPCFNet to 
fuse features at multiple levels. However, only binary masks of the 
specified objects such as cars and traffic signs are generated. In order to 
locate and identify changes between image pairs simultaneously, Var
ghese et al. (2018) proposed ChangeNet, where multi-level outputs were 
combined to capture multi-level detail information of the objects. 
Nevertheless, the “from-to” issue, namely how the change happens, is 
still not solved. The main challenge can be attributed to the lack of the 
dataset with semantic label. To overcome the shortage of street-view 

SCD dataset, Sakurada et al. (2020) proposed a two-step SCD scheme 
by detecting change mask and estimating pixel-wise semantic labels 
separately. However, the method is too complex and can only be applied 
on the street-view dataset. 

In RS domain, SLSCD is developed with the idea of single image 
scene classification, where image scene patches can be assigned a land 
use/cover label. With multi-temporal images available, it is natural to 
monitor land use/cover variation at the semantic level. An intuitive 
solution is to adopt post-classification comparison of scene patch, but it 
easily leads to classification errors accumulation effect. In addition, 
temporal correlation between image pairs is neglected. To overcome 
these drawbacks, Wu et al. (2017) introduced kernel KSFA to extract 
nonlinear temporally invariant features, followed by post-classification 
fusion to identify “from-to” types. However, Bag of Visual Words 
(BoVW) is utilized to serve as handcrafted features, which are not robust 
for large-scale dataset. In addition, the whole scheme cannot be jointly 
optimized. To overcome such limitations, Wang et al. (2019) adopted a 
CNN to extract spectral-spatial features, DCCA is further embedded to 
enhance the temporal correlations of multi-temporal images. However, 
due to the optimization problems of DCCA on a minibatch, the proposed 
method shows no superiority against BoVW-based methods. Based on 
deep features from pre-trained CNN and temporal correlation calcula
tion by soft DCCA, Ru et al. (2020) further improved the feature rep
resentation ability of bi-temporal images by a correlation based feature 
fusion (CoffFusion) module, which achieves a remarkable performance 
gain on the proposed large-scale scene change detection dataset. How
ever, patch size issues exist as ground objects change sharply in scale. In 
addition, although “from-to” transition type can be identified, the scene- 
level semantic CD results only consists of rough object patches without 
exact boundaries, making it impossible for accurate change analysis 
such as contour vectorization and area calculation of the changed 
regions. 

Fig. 2. Flowchart of the proposed SCDNet.  

D. Peng et al.                                                                                                                                                                                                                                    



International Journal of Applied Earth Observation and Geoinformation 103 (2021) 102465

4

2.2. Pixel-level semantic change detection 

Pixel-level semantic annotations for input image pairs is required in 
pixel-level semantic change detection. Compared with pixel-level an
notations in single image semantic segmentation, the annotations in 
PLSCD are much easier, as only the changed regions are needed to be 
annotated while the rest are labeled as the unchanged. However, due to 
the scarcity of such dataset, few work has been investigated to solve 
PLSCD issues. Recently, Daudt et al. (2019) proposed a multitask 
learning for large-scale SCD, where a large-scale high-resolution se
mantic change detection (HRSCD) dataset for RS community was first 
proposed. Notably, four strategies of SCD were compared and analysed 
systematically. However, the change type is only determined without 
“from-to” information between bi-temporal images. It is noteworthy 
that Cheng et al. (2020) proposed a SCD dataset using aerial images, 
named as SCPA-Wuhan City (SCPA-WC). Tian et al. (2020) proposed a 
large-scale SCD dasetset named Hi-UCD, which consists of tri-temporal 
images and their corresponding land cover change maps of nine object 

types. However, both the SCPA-WC and Hi-UCD datasets have not been 
open to public yet. To address the issues of categorical ambiguity of 
different changed classes, an asymmetric Siamese network for semantic 
change detection was proposed (Yang et al., 2020). A novel SCD dataset 
named SECOND was further presented and evaluated. More recently, an 
artificial intelligence remote sensing interpretation competition was 
held by the famous Sensetime company, where a large-scale pixel-level 
semantic change detection dataset was provided for SCD task.1 The 
challenging dataset greatly promotes the research of PLSCD as well as 
motivating us to explore the deep learning methods to solve PLSCD task. 

Fig. 3. Illustration of the multi-scale atrous convolution (MAC) unit and attention unit. (a) MAC unit. (b) attention unit.  

Fig. 4. Illustration of label distribution of two datasets. (a) Sensetime dataset. (b) HRSCD dataset.  

1 https://rs.sensetime.com/competition/index.html. 
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Fig. 5. Example images of Sensetime dataset.  

Fig. 6. Example images of HRSCD dataset.  
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Fig. 7. Effects of parameter ωce on the quantitative performance of the proposed method. (a) Sensetime dataset. (b) HRSCD dataset.  

Fig. 8. Visual comparisons of the change maps obtained by different methods on the first three image pairs for Sensetime dataset.  
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3. Proposed SCDNet 

3.1. Problem definition 

Assume two periods of input images are X1 and X2 , which contains L 
object labels, namely class(X1)⊂{0,1,…, L − 1} and class(X2)⊂{0, 1,
…L − 1}. The output change maps are denoted as Y1 and Y2. Note that 
due to the inclusion of unchanged class, the possible label space in Y1 
and Y2 is L + 1, i.e., class(Y1)⊂{0,1,…, L} and class(Y2)⊂{0, 1, …, L}. 
Then the process of SCD is to find a mapping function f, so that: 

f (X1,X2) = (Y1,Y2) (1) 

In particular, the two semantic change maps can be combined into a 
single map Y, namely Y = C(Y1, Y2), where C(.) is the combination 
operation. The label in Y encodes the unchanged and changed transition 
types between X1 and X2, thus the possible label space in Y is L2 − L + 1, 
namely class(Y)⊂{0,1,…,L2 − L}

3.2. SCDNet architecture 

Fig. 2 presents the SCDNet architecture, which is made up of dual- 
branch encoders and decoders with shared weights. To accelerate 
network convergence, pre-trained ResNet34 is adopted as the backbone 
for the encoder. Difference feature maps of each scale are generated for 
change analysis. At the end of the encoder, a multi-scale atrous convo
lution (MAC) module is inserted to enlarge the receptive field. Then, the 
contracted feature maps are expanded by a series of upsampling and 
convolution operations to recover a full-resolution feature map. To 
embed change information for each period of image, image feature maps 
and difference feature maps from different levels are combined in skip- 
connections. Furthermore, to fuse feature maps between encoders and 
decoders effectively, an attention module is utilized to re-calibrate the 
features. At the end of the decoder, a dropout layer is inserted to 
improve the network generalization ability. Finally, semantic change 
maps are produced by using softmax layers. Note that to improve the 
convergence of deep networks and overcome the vanishing gradient 
problems, deep supervision strategy (Lee et al., 2015) was further 
adopted to facilitate the network training, where three auxiliary clas
sifiers are employed to generate multi-scale intermediate semantic 
change maps, as shown in the dotted box area of Fig. 2. 

3.3. Multi-scale atrous convolution unit 

After a series of pooling operations in the encoder, the resulted 
feature maps are much smaller than the input images, in our case they 
are 1

32 of the input size. To enlarge the receptive field (RF) and capture 
multi-scale information, atrous convolution is usually introduced. For 
example, in the classic Atrous Spatial Pyramid Pooling (ASPP) module, 
multiple atrous convolution units are employed in a parallel manner and 
fused by concatenation operation (Chen et al., 2017). Instead, three 
successive atrous units are cascaded and fused by sum operation in our 
MAC unit, which is capable of capturing multi-scale information at the 
cost of lower computational burden, as shown in Fig. 3(a). Note that 
512@16*16 denotes the feature map has 512 channels and a spatial size 
of 16× 16. 

Let Di(i = 1, 2,4) denote atrous convolution layers with different 
dilation rates i, Fe denotes the output feature maps of the encoder. Then 
the output of the MAC can be expressed as: 

Fm = Fe +Fe ⊗ D1 +Fe ⊗ D1 ⊗ D2 +Fe ⊗ D1 ⊗ D2 ⊗ D4 (2)  

where ⊗ denotes the convolution operation. Note that when the 
convolution kernel size is 3, the RF after different convolution layers of 
D1,D2,D4 is 3, 5, 9, respectively. However, when the convolution layers 
are cascaded, D1 ⊗ D2 results in a RF of 7, and D1 ⊗ D2 ⊗ D4 leads to a RF 
of 15, which covers almost the full size of the feature maps Fe. As a result, 

multi-scale features with different RFs can be generated effectively 
through MAC operation, which is essential for capturing image objects 
with different scales. 

3.4. Attention unit 

Low-level feature maps in the encoder contain rich detailed infor
mation but few semantic cues, whereas their high-level counterparts in 
the decoder have more semantic cues but less detailed information. 
Therefore, it is natural to enhance the feature representation ability by 
combining the two kinds of feature maps through a skip connection 
operation. However, due to the semantic discrepancy, simple feature 
maps combination through concatenation or sum operation will easily 
lead to feature confusion. In addition, it is computationally complex and 
memory-consuming to generate discriminative features using self- 
attention mechanisms (Fu et al., 2019; Chen and Shi, 2020). In 
contrast, a novel light-weighted attention module is proposed, as shown 
in Fig. 3(b). An attention map Wh is generated by using high-level 
feature map Fh , then the low-level feature map Fl is re-calibrated, 
thus bridging the semantic gap for effective feature fusions and 
representations. 

Let us assume Fh ∈ RC×H×W, Fl ∈ RC×H×W, where C,H and W denote 
the channel number, height and width of the feature maps, respectively. 
First, we use average pooling and max-pooling operations to capture 
different channel-wise attention clues. Then the channel correlations 
and weight distributions are learned by a 1 × 1 convolution layer. After 
combining the two outputs of 1 × 1 convolution layers, an attention map 
Wh ∈ RC×1×1 can be generated by applying a sigmoid layer. Finally, the 
re-weighted feature maps Fout can be generated by an element-wise 
multiplication between Fl and Wh: 

Wh = σ[Conv(AvgPool(Fh))+Conv(MaxPool(Fh))] (3)  

Fout = Wh ⊙ Fl (4)  

where σ and ⊙ refers to the sigmoid operation and element-wise 
multiplication operation, respectively. Note that there exist two kinds 
of low-level feature maps, namely original feature maps and difference 
feature maps. Let Fl1 and Fl2 denote the original feature maps generated 
by the encoders, the difference feature maps are calculated as: 

Fld = abs(Fl1 − Fl2) (5)  

where abs(.) denotes the absolute difference operation. 

3.5. Loss functions 

For the proposed SCDNet, four output segmentation maps yp
i (1⩽i⩽4)

are generated for each period of image due to the usage of a deep su
pervision strategy. Thus, the single-temporal loss function ℒ can be 
defined as a combination of the four side-output losses: 

ℒ =
∑4

i=1
ℒi

side(y
p
i , y

t
i) (6)  

where yt
i(1⩽i⩽4) denote the targets outputs corresponding to yp

i , which 
are generated by bi-linear down-sampling. Let us assume yt

4 is the final 
output at full resolution, BDs is a down-sampling operation at scale s. 
Then we can get yt

1 = BD16(yt
4), yt

2 = BD8(yt
4), yt

3 = BD4(yt
4). The side- 

output loss consists of two parts: global-level cross-entropy loss ℒce 
and class-level combination loss ℒdf . 

ℒside = ωceℒce +ℒdf (7)  

where ωce is a trade-off parameter. The cross-entropy loss is used to 
penalize the inconsistency between prediction outputs yp and target 
outputs yt globally. It can be defined as: 

D. Peng et al.                                                                                                                                                                                                                                    
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ℒce = − ytlog(yp) (8) 

To tackle the class imbalance issues, dice loss and focal loss are 
usually employed (Milletari et al., 2016; Lin et al., 2017). To be specific, 
the network is forced to pay more attention on the hard samples by using 
focal loss. However, focal loss is calculated pixel-by-pixel without 
considering spatial dependence, while dice loss is a region-aware loss 
with spatial constraints. To combine the advantages of two losses in a 
multi-class segmentation task more concisely, we use one-hot encoding 
strategy to generate binary ground truth for each category individually. 
Then, class-wise binary dice loss and focal loss can be combined 

effectively, and class weight can also be embedded flexibly. 

ℒdf =
∑C

j=1
ωj(ωdiceℒdice +ωflℒfl) (9)  

where C is the number of class categories, ωj denotes the class weight for 
each class label j ∈ C,ωdice and ωfl denote the weights of dice coefficients 
loss ℒdice and focal loss ℒfl, respectively. Given the one-hot encoded 
output yp and its target output yt ,ℒdice and ℒfl can be calculated as: 

Fig. 9. Visual comparisons of the change maps obtained by different methods on the second three image pairs for Sensetime dataset.  

Table 1 
Quantitative results on the accuracy of different methods.  

Method Senetime dataset  HRSCD dataset 

mIoU Sek Score  mIoU Sek Score 

DSCD 0.6245 0.1020 0.2588  0.6415 0.0783 0.2473 
SCDS 0.6918 0.1496 0.3122  0.6815 0.1028 0.2764 
ICDS 0.7195 0.2183 0.3686  0.6853 0.1337 0.2992 

HBSCD 0.7240 0.2146 0.3674  0.6238 0.0448 0.2185 
Proposed SCDNet 0.7306 0.2366 0.3848  0.6950 0.1418 0.3077  

D. Peng et al.                                                                                                                                                                                                                                    
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ℒdice = 1 −
2ytyp

yt + yp
(10)  

pt = (1 − yt)(1 − yp)+ ytyp (11)  

ℒfl = − (1 − pt)
γlog(pt) (12)  

where γ is used to adjust the influence of the easy samples, which is 
commonly set to 2 (Lin et al., 2017). Notably, here, yt is one-hot encoded 
so as to include class-level information individually. In that case, yt , yp ∈

RC×W×H can be regarded as a combination of targets and predictions of C 
binary output maps for each change category, respectively. In addition, 
assuming r(j)(1⩽j⩽C) ∈ [0, 1] denotes the class ratio of each change 
category, the class weight ωj of each class j can be then defined as: 

ωj =

{
f (r(j)) if r(j) > 0
0 otherwise (13)  

r′(j) = max
(

r(j)
min(r(j))

)/(
r(j)

min(r(j))

)

(14)  

f (r(j)) =
r′(j)

∑
(r′(j))

(15)  

Finally, the total loss function ℒtotal can be defined by summing over the 
losses between each period of image: 

ℒtotal = ℒt1 +ℒt2 (16)  

where ℒt1 and ℒt2 denote the loss function of images t1 and t2, respec
tively. 

4. Experimental results and discussion 

4.1. Datasets description 

The effectiveness of the proposed SCDNet is verified on two VHR 
remote-sensing SCD datasets, namely Sensetime dataset and HRSCD 
dataset (Daudt et al., 2019). 

Sensetime Dataset. This SCD dataset consists of 2968 training 
image pairs and 847 testing image pairs. For each pair of training data, 
both original images and their corresponding semantic change maps are 
provided, while only original images are available for the testing data. 
Thus, we split the training data into training set and testing set randomly 
using a ratio of 9:1. Fig. 5 presents the example images of the Sensetime 
dataset. To be specific, these image pairs have a size of 512 × 512 pixels, 
covering six types of land-cover classes, i.e. water, ground, low- 
vegetation, tree, building, and playground, which leads to 31 “from- 
to” change types in total. It should be noted that, the annotations of the 
dataset is highly imbalanced. Fig. 4(a) presents the label distribution of 
bi-temporal image pixels. As one can see, non-changed pixels accounts 
for more than 80% of the total pixels, while the 31 changed types only 
take up small proportions. In addition, many changed types are under 
0.1%, which poses great challenges for the SCD method. 

HRSCD Dataset. This dataset is made up of 291 RGB aerial image 
pairs of 10000 × 10000 pixels at a resolution of 50 cm per pixel, which 
are acquired in 2005/2006 and 2012 for each period of image, respec
tively. Both original images, binary change maps (BCM) and their land- 
cover maps (LCM) are provided. To make this dataset consistent with the 
Sensetime dataset, we generate semantic change maps based on the BCM 
and LCM. To facilitate GPU training, original large images are cropped 
into non-overlapping 512 × 512 image pairs, where the example images 
are presented in Fig. 6. The training set and testing set are also randomly 
split with the ratio of 9:1. Note that, the five land-cover classes only 
result in 11 “from-to” change types due to the missing of many change 
types in the annotations. Fig. 4(b) illustrates the label distribution of bi- 
temporal image pixels, where the non-changed types occupy more than 

99.2% of the total pixels, while the changed types only take up less than 
0.8%. That results in a serious class imbalance issue. In addition, 
compared with Sensetime dataset, the annotions in HRSCD dataset are 
coarser, many noisy labels such as inaccurate boundaries and false an
notations exist, which brings even more challenges for SCD task. 

4.2. Comparative methods and evaluation metrics 

For comparative analysis, four SOTA SCD methods are compared and 
analyzed comprehensively: 

1) Direct SCD (DSCD). In DSCD, each possible type of change is regar
ded as an independent semantic label, thus SCD can be treated as a 
simple semantic segmentation task (Daudt et al., 2019). In that case, 
“from-to” change is encoded in a single label, a semantic label map is 
therefore generated based on the semantic change maps from two 
periods of images.  

2) Separate CD and segmentation (SCDS), where SCD is decoupled into 
two separate tasks, namely BCD and semantic segmentation (Daudt 
et al., 2019). Therefore, two different networks, BCD Network 
(BCDNet) and Semantic segmentaion Network (SSNet), are designed 
and trained separately to tackle each task. In our case, image pairs 
are fed into the BCDNet to generate binary change maps, which are 
then combined with each period of image to generate the related 
semantic segmentation maps.  

3) Intergrated CD and segmentation (ICDS). In ICDS, a multitask 
network is designed to solve BCD and semantic segmentation 
simultaneously (Daudt et al., 2019), where three output maps are 
generated, i.e. one binary change map and two semantic segmenta
tion maps.  

4) HRNet based semantic change detection (HBSCD). This is the winner 
method of the Sensetime change detection competition, where 
HRNet40 is served as the backbone to extract deep features for bi- 
temporal images, then two semantic segmentation heads and one 
binary change detection head are used to generate the semantic 
change maps.2 

Due to the high label imbalance issues, traditional evaluation met
rics, such as overall accuracy (OA), fail to provide a reasonable accuracy 
metric. For example, as the no-change pixels account for more than 80% 
of the total pixels, the OA is always larger than 0.8 when all the pixels 
are classified as the no-change type. Therefore, two novel evaluation 
metrics are used, namely mean Intersection over Union (mIoU) and 
separate Kappa (Sek). The former is used to evaluate the SCD results 
from the perspective of BCD, while the latter is in view of SCD. To be 
specific, mIoU is calculated by averaging the IoUs between the non- 
changed and changed classes: 

IoU1 =
TN

TN + FP + FN
(17)  

IoU2 =
TP

TP + FN + FP
(18)  

mIoU = 0.5*(IoU1 + IoU2) (19)  

where IoU1 and IoU2 denote the IoU of non-changed type and changed 
type, respectively. TP, FP, TN and FN refer to the number of true posi
tives, false positives, true negatives, and false negatives, respectively. 
They are defined using the BCD confusion matrix Bij(0⩽i⩽1,0⩽j⩽1). 

However, mIoU, which is dominated by the non-changed pixels, still 
suffers from the label imbalance issue. To address this drawback, Sek is 
defined by combining IOU2 and a novel Kappa after removing true 
predictions of the non-changed class. Assuming the label category in the 

2 https://github.com/LiheYoung/SenseEarth2020-ChangeDetection. 
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semantic change map is C, where label ‘0’ represents the non-changed 
class, the SCD confusion matrix is Sij(0⩽i⩽C − 1,0⩽j⩽C − 1). To remove 
the true predictions of the non-changed, S00 is set to 0, SeK can be then 
calculated as: 

Sek = Kappa*eIoU2 − 1 (20)  

Kappa =
p0 − pe

1 − pe
(21)  

p0 =

∑C− 1

i=0
Sii

∑C− 1

i=0

∑C− 1

j=0
Sij

(22)  

pe =

∑C− 1

i=0
(Si+*S+i)

(
∑C− 1

i=0

∑C− 1

j=0
Sij

)2 (23)  

where Si+ denotes the row sum of the confusion matrix Sij, while S+i 
denotes the column sum. Based on mIoU and Sek, a comprehensive score 
can be calculated: 

Score = 0.3*mIoU + 0.7*Sek (24)  

4.3. Training details 

Based on Pytorch framework,3 we implement SCDNet using a single 
1080Ti GPU. Due to the fast convergence and weight regularization 
performance, AdamW optimizer is used, which combines the advantages 
of Adam and L2 regularization (Loshchilov and Hutter, 2017). The base 
learning rate (base lr) is set to 1e-4. To stabilize network parameters 
learning, a learning rate warm-up strategy is adopted (He et al., 2016), 
where the learning rate is first increased from 0 to base lr by a cosine 
method and then decreased by the cosine annealing scheme for each 
epoch. Note that the total epochs is set to 30, and warm-up epochs is set 
to 4. Due to the limitation of GPU, the batch size is set to 4 during the 
training stage. To overcome overfitting effect and improve network 
generalization ability, a scheduled dropblock strategy is adopted (Ghiasi 
et al., 2018) before the final softmax layer, where random window 
blocks with size of 7 × 7 in the feature maps are dropped. To further 
improve the performance, the drop ratio is linearly increased to the 
defined value of 0.1. 

In training process, the training data are augmented online through 
randomly scaling, flipping and rotating by 90◦, 180◦, and 270◦. In 
addition, 10% training data is chosen as the validation set to calculate 
the score metric for each epoch, so that the best model can be selected. 
The convolution kernel size is set to 3× 3, and the number of convo
lution kernels in the encoder is set to {64, 128, 256, 512}. During the 
testing stage, test time augmentation (TTA) strategy is utilized to 
improve prediction performance, where the augmentation is carried out 
through rotation by 90◦,180◦, and 270◦. 

4.4. Results 

4.4.1. Parameter setting 
In the loss function of Eq. (7), ωce is used to balance the influence of 

global-level loss ℒce and class-level loss ℒdf . To verify its sensitivity, ωce 

is varied from 0 to 10 for both datasets, and the score metric is calculated 
accordingly. As one can see in Fig. 7, when ωce is 0, only class-level 
combination loss is used, leading to lowest scores for both datasets. 
That means the global-level cross-entropy loss is indispensable for stable 

SCDNet training. Then, with the increase of the parameter ωce, the 
global-level cross-entropy is playing a more important role and the score 
value is also increased gradually. It reaches the peak when ωce is set to 4 
and 2 for the Sensetime dataset and HRSCD dataset, respectively. 
However, by further increasing the value of ωce, the score value presents 
a decreasing trend on both datasets, which implies that higher global- 
level cross-entropy loss may reduce the network performance. There
fore, to achieve better performance, ωce is set to 4 and 2 for Sensetime 
dataset and HRSCD dataset, respectively. In addition, in Eq. (9) focal loss 
is assigned a higher weight to overcome sample imbalance issue, where 
ωdice and ωfl are experimentally set to 0.5 and 2.0, respectively. 

4.4.2. Performance analysis 
Sensetime Dataset. For the benefit of visual comparison, six typical 

areas are selected and presented in Fig. 8 and Fig. 9. One can observe 
that SCDNet achieves the best visual performance. In particular, 
compared with DSCD method, small-scale changes can be better detec
ted by SCDNet, such as playground and low-vegetation. In addition, 
missed detections such as building and ground can also be largely 
reduced. Note that the unchanged class is consistent between the two 
corresponding semantic change maps for the DSCD and HBSCD 
methods, while there exist some discrepancy for the other considered 
methods, which can be seen as false detections. The reasons lie in the 
fact that only one decoder is used for generating change maps in DSCD, 
resulting in a single label for each pixel in the output map, which will be 
transformed into two individual semantic change maps while main
taining the label consistency. In HBSCD, the outputs of the two seg
mentation maps are constrained by the binary change map, thus 
generating consistent semantic change maps. On the contrary, for the 
other considered methods, two decoders are employed to generate two 
semantic change maps directly, which will inevitably lead to the 
inconsistency of the unchanged class due to random segmentation er
rors. Table 1 reports the quantitative evaluation results, we can observe 
that the proposed SCDNet achieves the highest mIoU, Sek, and Score 
values. It is noteworthy that DSCD method achieves the lowest values on 
the three metrics, which are 0.6425, 0.1020 and 0.2588, respectively. 
This maybe due to the fact that output space is increased sharply when 
“from-to” label is introduced. For example, the class number is increased 
from 7 to 32 for Sensetime dataset. That leads to even more serious class 
imbalance problems as well as making it difficult to train the network 
using the available training data. By decoupling the SCD into two simple 
sub-tasks of binary change detection (BCD) and semantic segmentation, 
the output space can be thus largely reduced, which reduces class 
imbalance issues and facilitates network training. As a result, compared 
with DSCD, SCDS achieves a gain of 6.73%, 4.76% and 5.34% for mIoU, 
Sek and Score, respectively. However, the two individual networks, 
namely BCD network and semantic segmentation network, have to be 
designed and trained sequentially, which inevitably leads to error 
accumulation effect and increases the training burden to a large extent. 
On the contrary, ICDS combines BCD and semantic segmentation into a 
unified framework, where two segmentation maps and one binary 
change map are generated simultaneously. Therefore, it is possible to 
optimize the two tasks jointly through end-to-end training, which 
overcomes the drawbacks of error accumulation. Consequently, 
compared with SCDS, ICDS achieves an improvement of 2.77%, 6.87% 
and 5.64% for mIoU, Sek and Score, respectively.However, it is hard to 
balance the influence between the BCD and semantic segmentation 
tasks, which are defined by different loss terms. Note that as two seg
mentation maps and one binary change map are also produced by 
HBSCD, it achieves similar quantitative performance with ICDS. Inevi
tably, the drawbacks of the balance issues between different tasks still 
exist. Rather than generating binary change maps explicitly, multi-scale 
difference feature maps are generated to serve as guidance to produce 
semantic change maps in our proposed SCDNet. This strategy brings two 
obvious advantages: 1) SCD can be regarded as a semantic segmentation 

3 https://pytorch.org/. 
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task with two outputs, where multi-scale difference information can be 
used, 2) the network can be trained in an end-to-end way without the 
consideration of troublesome task balance issues between BCD and se
mantic segmentation. To capture multi-scale information and fuse multi- 
level features effectively, MAC unit and attention unit are employed. 
Furthermore, a deep-supervision strategy is utilized to suppress gradient 
vanishing and learn useful information from intermediate layers. 
Therefore, compared with ICDS method, the proposed SCDNet achieves 
better performance with a gain of 1.11%, 1.83% and 1.62% for mIoU, 
Sek and Score, respectively. 

HRSCD Dataset. For a qualitative analysis, visual comparisons the 
change maps obtained by different methods on six typical areas are 
presented in Fig. 10 and 11. We can conclude that SCDNet achieves the 
best performance against other SOTA methods. Notably, for DCDS and 
SCDS, due to the large output space and error accumulation issues, noisy 
predictions are more easily generated, as shown in the last two rows in 
Fig. 10 and 11. Furthermore, some small-scale changes such as forest 
and wetland can not be detected for all the methods. This may due to the 
extreme class imbalance in the dataset. For example, no wetland class 
exist in the first period of images in HRSCD dataset, while the forest class 
only occupies 0.001% of the total pixels in the second period of images. 
In such case, it is almost impossible to detect such changes with the 

trained network. 
Based on the quantitative results in Table 1, we can conclude that 

SCDNet still outperforms other comparative methods. Notably, one can 
observe that HBSCD method achieves the worst quantitative perfor
mance among the compared methods. This is due to the fact that only 
the changed pixels are used for optimizing the two segmentation heads 
in HBSCD, while the unchanged pixels are only used for optimizing the 
binary change detection head. In such case, the network cannot be 
converged with limited labeled data, leading to a sharp drop of the 
quantitative performance. In particular, only 0.8% changed pixels are 
annotated in the HRSCD dataset, which is far from the need of the su
pervised training for HBSCD. In addition, due to the large output space 
caused by “from-to” label, it is difficult to train DSCD using the available 
training data. Consequently, DSCD achieves a poor performance, with a 
mIoU of 0.6415, a Sek of 0.0783 and a Score of 0.2473. The decoupling 
of the SCD task into two sequential sub-tasks of BCD and semantic 
segmentation results in a better optimization of the corresponding net
works using the available training data. As a result, SCDS outperforms 
DSCD by a large margin, with a mIoU increase of 4%, a Sek increase of 
2.45%, and a Score increase of 2.91%, respectively. However, the per
formance of semantic segmentation rely on the initial results of BCD, 
which easily lead to error propagation issues. Additionally, the two- 

Fig. 10. Visual comparisons of the change maps obtained by different methods on the first three image pairs for HRSCD dataset.  
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stage training mode in SCDS also makes it impossible to optimize the 
objective function jointly. Through generating binary change maps and 
semantic change maps simultaneously, it is possible to solve SCD task in 
an end-to-end way, where BCD and semantic segmentation can be 
optimized jointly. Benefiting from such advantages, ICDS outperforms 
SCDS with a mIoU gain of 0.38%, a Sek gain of 3.09%, and a Score gain 
of 2.28%. It is noteworthy that our proposed SCDNet can further 
improve the performance over ICDS, with an improvement of mIoU of 
0.97%, an improvement of Sek of 0.81%, and an improvement of Score 
of 0.85%, respectively. This is due to the reason that binary change maps 
have to be generated explicitly to serve as guidance for semantic 

Fig. 11. Visual comparisons of the change maps obtained by different methods on the second three image pairs for HRSCD dataset.  

Table 2 
Summary of model parameters and computational complexity for different 
methods  

Method Params(M) Flops(GMac) 

DSCD 42.03 109.47 
SCDS 79.97 285.67 
ICDS 44.45 122.44 

HBSCD 46.17 128.87 
Proposed SCDNet 39.62 116.98  

Fig. 12. Visual comparison of training time for different methods.  
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segmentation in ICDS, which inevitably leads to the troublesome bal
ance issues between different loss terms. Nevertheless, in the proposed 
SCDNet, difference information is embedded into the network by fusing 
multi-scale difference feature maps and image feature maps, thus miti
gating the limitations of balance issues effectively. 

For a more comprehensive comparison, model parameters and 
computational complexity of different methods are calculated and re
ported in Table 2. One can observe that our proposed method out
performs other SOTA methods with less model parameters and lower 
computational complexity. This is of great significance when consid
ering training large-scale remote-sensing dataset. Fig. 12 presents the 
visual comparison of training efficiency by different methods. Due to the 
usage of two-stage training mode, SCDS requires the highest training 
time for both datasets. On the contrary, DSCD and ICDS methods benefit 
from the advantages of end-to-end training, thus the required training 
time is largely reduced. Almost the same time is needed in DSCD and 
ICDS for Sensetime dataset and HRSCD dataset. Compared with DSCD 
and ICDS, HBSCD requires similar training time due to comparable 
model parameters and computational complexity. Note that due to 

smaller computational complexity and end-to-end training mode, 
SCDNet requires shorter training time among the considered methods. 
Therefore, compared with other methods, the proposed SCDNet ach
ieves the best performance on both accuracy and efficiency. 

4.5. Discussion 

4.5.1. Effect of the MAC unit 
In order to enlarge the receptive field after a series of convolution 

and pooling operations, a MAC unit is used by cascading different 
dilated convolution operations in a parallel manner, where multi-scale 
information can be well exploited. To verify the effectiveness of this 
unit, an ablation study has been conducted, as shown in Fig. 13. One can 
observe that better performance can be achieved by using the proposed 
MAC unit for both datasets, with a mIoU increase of 0.73% and 0.5%, 
and a Sek increase of 1.19% and 0.58% for the Sensetime dataset and 
HRSCD dataset, respectively. This demonstrates the effectiveness of the 
MAC unit in capturing multi-scale object changes for SCDNet. 

Fig. 13. The effect of MAC unit on the quantitative performance of the proposed SCDNet method. (a) Sensetime dataset. (b) HRSCD dataset.  

Fig. 14. The effect of attention unit on the quantitative performance of the proposed SCDNet method. (a) Sensetime dataset. (b) HRSCD dataset.  
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4.5.2. Effect of the attention unit 
Due to the existence of semantic gap between high- and low-level 

feature maps, direct fusing through concatenation operation will 
easily lead to information confusion. To address this issue, an attention 
unit is adopted to re-weight input features. To be specific, an attention 
map is learned by using high-level feature maps, which aims to re- 
calibrate the low-level feature maps before concatenation operation. 
Fig. 14 presents the influence of the attention unit. We can conclude that 
the SCDNet benefits from the proposed attention mechanism for both 
datasets, with a mIoU improvement of 0.23% and 0.71%, and a Sek 
improvement of 1.21% and 1.19% for the Sensetime and the HRSCD 
datasets, repectively. The reason lies in the fact that low-level features 
are re-calibrated by a learned attention map, whereby high- and low- 
level features can be combined more effectively. 

4.5.3. Effect of the deep supervision 
To overcome gradient vanishing and improve network performance, 

a deep supervision (DS) strategy is employed, where semantic change 

maps from three intermediate layers are generated for final loss calcu
lation. To validate the effectiveness of this strategy, we have conducted 
an ablation study. Fig. 15 reports the effect of deep supervision strategy 
on the accuracy of SCDNet in terms of mIoU and Sek. As one can see, the 
DS strategy improves the model performance, with a gain of mIoU of 
0.5% and 2.08%, and a gain of Sek of 1.22% and 2.2% for the Sensetime 
and the HRSCD datasets, respectively. This can be explained by the 
following reasons: 1) more gradient information is propagated into in
termediate layers during backward gradient propagation process, 
whereby gradient vanishing is largely reduced; 2) instead of only pro
ducing main outputs only from feature maps of the last layer, multi-scale 
feature maps are used effectively to generate side outputs, thus 
improving the network convergence performance as well as providing 
more regularization constraints. 

4.5.4. Effect of feature difference versus concatenation 
In the process of generating the semantic change map for each period 

of image, feature maps from two periods of images have to be fused 

Fig. 15. The effect of deep supervision on the quantitative performance of the proposed SCDNet method. (a) Sensetime dataset. (b) HRSCD dataset.  

Fig. 16. The effect of feature concatenation and difference on the quantitative performance of the proposed SCDNet method. (a) Sensetime dataset. (b) 
HRSCD dataset. 
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either by feature map difference or by concatenation operation. To 
validate the effect of the different strategies, we have conducted a 
comparative study. Fig. 16 presents the accuracy of different ap
proaches. We can conclude that feature difference strategy stably out
performs the feature concatenation strategy, with an improvement of 
mIoU of 1.3% and 1.97%, and an improvement of Sek of 1.9% and 
1.98% for the Sensetime and the HRSCD datasets, respectively. This is 
due to: 1) difference image is generated through feature difference 
operation, where change information is embedded into the network 
implicitly; 2) to maintain channel consistency of feature maps, a con
volutional layer is needed after the concatenation operation for the 
purpose of channel-dimension reduction, which inevitably leads to 
inferior performance caused by the increase of network parameters and 
training burden. 

4.5.5. Effect of the loss function 
To address the class imbalance issues, a class-level combination loss 

ℒdf is employed by using class-wise dice loss and focal loss. To verify its 
effectiveness, an ablation study is conducted. Fig. 17 presents the effect 
of the class-level combination loss on the quantitative accuracy of pro
posed SCDNet. One can observe a performance gain for both datasets. 
For the Sensetime dataset, the class-level combination loss yields an 
improvement of 1.16% in mIoU and 1.77% in Sek. The gain is of 0.98% 
in mIoU and 1.49% in Sek for the HRSCD dataset. This is due to the 
reason that more weight is assigned to the objects of small proportions, 
thus enforcing the network to generalize better to such categories. In 
addition, the advantages of dice loss and focal loss are combined to 
further improve the network performance. 

5. Conclusion 

In this paper, we propose a novel semantic change detection archi
tecture named SCDNet, which is aimed to solve SCD task for large-scale 
RS datasets in an end-to-end manner. To generate semantic change maps 
for each period of input image, SCDNet consists of two parallel encoders 
and decoders with shared weights. The former is intended to extract 
multi-scale deep feature maps, while the latter is used to decode change 

information by combining deep feature maps and difference feature 
maps. To exploit multi-scale information, a MAC unit is introduced at 
the end of the encoders. An attention mechanism is also adopted to fuse 
feature maps between encoders and decoders effectively. To avoid 
gradient vanishing and improve network performance, a deep supervi
sion strategy is used by generating multi-scale semantic change maps for 
intermediate layers. Dropblock module is further included before the 
softmax layers, which aims to improve network generalization ability. 
The effectiveness of the proposed method is verified on two VHR SCD 
datasets. The experimental results demonstrate that SCDNet stably 
surpasses other SOTA methods on both visual comparisons and quanti
tative accuracy metrics. In the future, more effective CNN architectures 
will be investigated to further improve SCD performance. 
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