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ABSTRACT 

 

    Human-induced disturbances of terrestrial and aquatic ecosystems continue at alarming rates. 

With the advent of both raw sensor and analysis-ready datasets, the need to monitor ecosystem 

disturbances is now more imperative than ever; yet the task is becoming increasingly complex 

with increasing sources and varieties of earth observation data. In this research, computer vision 

methods and tools are interrogated to understand their capability for comparing spatial patterns. 

A critical survey of literature provides evidence that computer vision methods are relatively 
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robust to scale and highlights issues involved in parameterization of computer vision models for 

characterizing significant pattern information in a geographic context. Utilizing two widely used 

pattern indices to compare spatial patterns in simulated and real-world datasets revealed their 

potential to detect subtle changes in spatial patterns which would not otherwise be feasible using 

traditional pixel-level techniques. A texture-based CNN model was developed to extract spatially 

relevant information for landscape similarity comparison; the CNN feature maps proved to be 

effective in distinguishing agriculture landscapes from other landscape types (e.g., forest and 

mountainous landscapes). For real-world human disturbance monitoring, a U-Net CNN was 

developed and compared with a random forest model. Both modeling frameworks exhibit 

promising potential to map placer mining disturbance; however, random forests proved simple to 

train and deploy for placer mapping, while the U-Net may be used to augment RF as it is capable 

of reducing misclassification errors and will benefit from increasing availability of detailed 

training data. 
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Chapter 1: Introduction to change detection and landscape 

similarity comparison  

 

1.1 Introduction  

 

    Ecosystems and environmental resources are continuously impacted at local and global scales 

by human-driven perturbations. The direct effects of anthropogenic processes such as 

urbanization and resource extraction are having direct and lasting effects on ecosystem form and 

function (Jenerette and Potere, 2010; Hamilton and Friess, 2018); whereas indirect effects of 

human activities are changing the trajectory of climate-driven processes leading to profound 

shifts in sensitive ecosystems around the globe (Townshend et al., 2012; Wulder et al., 2012; 

Greig et al., 2018). With growing and universal calls for sustainable development and climate 

change mitigation and adaptation (Neil Adger et al., 2005), the need for in-depth and up-to-date 

information on processes driving land surface changes is becoming more imperative (Mairota et 

al., 2013). Environmental data at varying spatial, temporal and thematic resolutions are 

increasingly available and being deployed within new land and resource monitoring systems. 

This data explosion originates from a multitude of sources: advances in airborne and space-borne 

sensors, Internet-driven data access and redistribution, the growth of professional and amateur 

drones, and several other commercial sources. This increased volume of data provides 

exceptional opportunity to understand how Earth systems are changing at a variety of scales 

(Wulder et al., 2018).  

     The quest to quantify and compare patterns expressed in spatial data has been a long-standing 

objective in quantitative geographical research (Csillag and Boots, 2005; Boots and Csillag, 
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2006; Foody, 2007). Given the recent increases in data acquisition technology and publicly 

available sensor  data (e.g., Landsat and Sentinel datasets), there is renewed interest towards 

understanding multitemporal and/or multi-location datasets in the context of detecting and 

characterizing change across time and space (Zhu and  Woodcock, 2014a). Consequently, there 

has been increasing interest in exploring tools capable of  extracting and comparing spatial-

temporal structures from Earth observation data to enable us  characterize and quantify process-

driven landscape change (Townshend et al., 2012; Wulder et al., 2012). Understanding the links 

between observed spatial patterns and unseen stochastic spatial processes remains the 

overarching goal of spatial analysis (Fotheringham and Rogerson, 2008; Wagner and Fortin, 

2005). However, while known processes may create defined patterns, different processes may 

result in similar patterns. Moreover, patterns may act on underlying processes, and create 

complex interactions between pattern and process (Turner, 1989a). Despite these challenges, 

spatial pattern analysis remains a frequent approach to uncovering the link between patterns and 

processes at various scales (McIntire and Fajardo, 2009; Szilassi et al., 2017). For example, 

landscape pattern comparison may be undertaken either to compare the same landscape over 

time in order to identify and characterize change induced by land change processes (Coppin et 

al., 2004; Frate et al., 2014), or to compare different landscapes at the same (or similar) time to 

quantify similarities in spatial processes (e.g., deforestation) across space (Niesterowicz and 

Stepinski, 2016).  

     Change detection has become a wide-spread application of spatial pattern comparison, in the 

context of environmental resource monitoring (Coppin et al., 2004; Kennedy et al., 2009). 

Researchers in GIScience and remote sensing have proposed a variety of methods aimed at 

detecting and isolating significant changes in patterns from less significant changes. Pixel-based 
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and object-based image analysis are frequently utilized to quantify and characterize 

spatiotemporal changes, especially in remotely sensed data. In terms of analyzing spatial 

patterns, pixels provide no valuable contextual information (Hussain et al., 2013). However, 

following pixel-based operations (i.e., post-classification), aggregating and comparing blocks of 

pixels belonging to identical landcover types can provide insight into spatial pattern change in 

multitemporal imagery (Mas, 1999; Hussain et al., 2013; Tewkesbury et al., 2015). With the 

availability of high and medium resolution satellite datasets, object-based image analysis is 

becoming increasingly common (Gartner et al., 2008). Compared to pixel-based techniques, 

object-based methods enable the extraction of contextual features required to develop robust 

environmental monitoring tools (Blaschke, 2010; Chen et al., 2012). For instance, Im et al. 

(2008) found that object-based methods that incorporate object correlation and neighborhood 

correlation features showed superior performance against pixel-based methods and object-based 

methods without contextual information. Given the availability of high spatial and temporal 

resolution datasets, opportunities to monitor ecosystem disturbances are now greater than ever; 

yet methods and tools required to achieve this ultimate goal remain fractured across diverse 

domains, making the exploration for novel and generic tools for extracting pattern information a 

pressing research need. Figure 1.1 depicts change detection in which a given landscape is 

compared over time (e.g., between the years 2010 – 2020) to quantify the loss and/or gain of 

certain landcover types. With landscape similarity assessment as illustrated in Figure 1.1, the 

focus centers on comparison and/or search for similar landscapes over variety of geographical 

locations of interest (i.e., l1 … ln locations) in order to understand similarities in processes driving 

pattern formation and/or change over space. 
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Figure 1.1 Change detection versus landscape similarity comparison. 

 

     With the advent of so called “analysis ready data” (Dwyer et al., 2018), and huge archives of 

raw geospatial sensor data, landscape similarity search is becoming a task of increasing 

importance, and complexity, especially in the context of monitoring landscape processes across 

space and time. Questions that often need to be answered through landscape similarity analysis 

include, but are not limited to: where are degraded landscapes prevalent? Are the underling 

patterns of land degradation common amongst candidate sites? Spatially explicit techniques are 

crucial to answering these questions. A possible approach is to derive landscape pattern metrics 

and compare one or several metrics between landscapes of interest (Frate et al., 2013; Remmel 
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and Fortin, 2013). For instance, the Euclidean distance between vectors of pattern metrics 

representing two landscapes could be computed to help answer questions pertaining to landscape 

similarity (Niesterowicz and Stepinski, 2016). Also, frequency distributions can be derived from 

landscape configuration components to provide a generic model of landscape structure for 

comparing similarity and differences between landscapes (Remmel, 2020). 

     Categorical maps and continuous-valued maps present two fundamental problems in pattern 

comparison research. While categorical maps assume that patterns are homogeneous with abrupt 

transitions at adjacent areas, continuous-valued data represents spatially continuous phenomena 

(Gustafson, 1998), and this dictates the range of tools required to extract spatial information for 

change detection and/or similarity analysis task. Although conventional methods for quantifying 

change, and detecting similarity have been used with some successes in categorical maps 

(Monserud and Leemans, 1992; Visser and Nijs, 2006), the problem of detecting significant 

patterns while disregarding spurious changes due to artifacts such as data collection methods or 

data errors persist to date, and requires careful consideration of the processes and patterns of 

interest (Kennedy et al., 2009; Long and Robertson, 2018).  For example, using the Euclidean 

distance between landscape metrics as measure of similarity is prone to errors resulting from 

underlying data artifacts. Additionally, the technique requires metric normalization as well as 

weighting the compositional and configurational aspect of patterns, which often lacks any 

unified approach (Niesterowicz and Stepinski, 2016). To confound pattern analysis, the link 

between patterns and processes may change with scale; hence, the scale at which processes 

operate to generate patterns may be coarser or finer than the scale at which patterns interact to 

affect spatial processes (McIntire and Fajardo, 2009). Therefore, tools that can potentially handle 

slight changes and shifts in scale would be crucial for characterizing and quantifying patterns.  
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     There is increasing scope and need for pattern comparison as a key component in 

geographical change detection and landscape similarity assessment in environmental monitoring 

systems. Fortunately, however, these dual challenges are related to image analysis tasks in 

computer vision; typically, image compression algorithm assessment which is often formulated 

as an image quality assessment problem, and image retrieval (e.g., content-based image retrieval 

(CBIR)). As depicted in Figure 1.1, image degradation behaviour of an image compression 

algorithm bears some resemblance with underlying spatial processes that for example, may have 

resulted in observed landcover changes. Similarly, content-based image retrieval in which the 

task focuses on finding a set of images similar to a query image is analogous to landscape 

similarity comparison wherein the search for similar landscapes could potentially lead to 

identifying the underlying drivers or processes of pattern similarity. Drawing from computer 

vision applications in other disciplines, there is potential to adopt computer vision algorithms to 

compare geographic spatial patterns. For example, Structure from Motion algorithms have been 

widely adopted for drone image processing in environmental applications, for example being 

deployed in monitoring canopy height as a function of ecosystem disturbance intensity (Dandois 

and Ellis, 2010; Dandois and Ellis, 2013). A landscape similarity search algorithm proposed by 

Jasiewicz et al. (2014) effectively identifies landforms whose topographic features are similar. 

Recently, Nowosad and Stepinski (2021) proposed deriving an integrated co-occurrence matrix 

for multi-thematic categorical patterns in local landscapes and calculating dissimilarities between 

landcover types or landforms using Jensen-Shannon Divergence followed by clustering or 

segmentation to identify landscape types.  

    The need to evaluate image compression algorithms quality is a commonly encountered 

problem in computer vision, often requiring the deployment of structurally sensitive indices. To 
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this end, the structural similarity (SSIM) index (Wang et al., 2004), and the complex wavelet 

structural similarity (CWSSIM) index (Sampat et al., 2009), were developed to address the 

challenge of comparing patterns of deformation present in image-reference pairs. The SSIM 

detects differences between image pairs while ignoring spurious sources of variation attributable 

to illumination and contrast change, and have been proven to effectively detect subtle changes in 

spatially patterned (geographic) phenomena (Robertson et al., 2014; Jones et al.,  2016).   

   Recently, the SSIM was applied to evaluate the ecological performance of a variety of 

hydrologic restoration methods (Wiederholt et al., 2019). Despite these successes and potential, 

structurally-sensitive metrics have found very limited application in geographical research, and 

in resource monitoring and decision-making workflows. Moreover, aside from image quality 

assessment in computer vision applications, the CWSSIM which is more robust to multi-scale 

pattern characteristics, is yet to be tested in geographical context. Until recently, conventional 

methods  dominated change detection and landscape similarity assessment systems (Hernandez 

and Ramsey, 2013; Zhu and Woodcock, 2014; Tewkesbury et al., 2015). While such techniques 

have yielded some acceptable range of outcomes, tracking incremental and progressive changes 

(e.g., in continuous-valued data) requires spatially explicit tools that incorporate structure, 

texture and contextual information pertaining to underlying patterns and processes. Such tools 

are potential candidates for bridging the limitations inherent in traditional techniques. 

     The need to employ data-driven computer vision approaches to understand underlying data 

structures is likely to become inevitable (Reichstein et al., 2019). Analysis and integration of 

“big data” now accessible via a variety of geospatial databases, for instance, could help uncover 

a wealth of information about the Earth and resources not previously known (Miller and 

Goodchild, 2015; Reichstein et al., 2019). Artificial neural networks (ANN), for example, are 



 

 

25 

typical data-driven modelling approaches with promising potential for extracting significant 

pattern information, while discarding noise and related data artifacts (Basheer and Hajmeer, 

2000). Some of the early demonstrations of ANN potential in environmental monitoring include: 

multitemporal  land use change analysis (Dai and Khorram, 1999), and change detection along 

the Nile River delta (Carpenter et al., 2001). Notwithstanding these applications, remotely sensed 

data which frequently come in several to hundreds of bands of data distributed over large pixel 

arrays have the tendency to increase the parameters required to train ANN. To reduce model 

parameters as well as exploit spatial dependence in remote sensing data, convolutional neural 

networks (CNN) are endorsed by many researchers focusing on landcover mapping (Liu et al., 

2018a). CNNs are typical spatially explicit and contextual-aware deep learning algorithms 

capable of filling the gaps in ANN models (Janowicz et al., 2020). Recent deployment of CNNs 

in a variety of tasks involving segmentation and classification confirms their superior 

performance (Buscombe and Ritchie, 2018). For example, forest change detection using CNN is 

demonstrated in Khan et al. (2017) research wherein the change detection challenge is cast as 

patch-based classification problem. Albert et al. (2017) employed deep features extracted from 

satellite imagery to compare urban neighborhood similarity across European cities, while Sylvain 

et al. (2019) and Boulent et al. (2019) demonstrate  the potential of CNNs for plant disease 

identification and  tree health monitoring. Given the data-hungry nature and training 

requirements to build deep-learning models, off-the-shelf pre-trained models are gaining 

increasing attention (Cao et al., 2019). For instance, a pre-trained CNN could be employed to 

spatially filter and classify photographs to aid in land cover and land use characterization 

(Tracewski et al., 2017), and thus providing valuable insight into processes driving patterns of 

landscape similarity. An emerging research domain which is promising and could potentially 
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improve the performance of data-driven frameworks is the utilization of features extracted from 

CNNs layers.  CNN features are discriminative and hold potential for deployment in both change 

detection and landscape similarity assessment systems (El Amin et al., 2016). 

     As computer vision methods are gradually being adopted in geographical research, there are 

several lingering questions that need to be addressed to pave the way for a more wide-spread, 

adoption, refinement, and deployment in environmental monitoring systems. To that end, a 

fundamental question this dissertation attempts to answer is: Are computer vision tools 

sufficiently robust to detect and quantify “significant patterns”, and to characterize change 

and/or similarity in patterns across temporal and spatial scales?  Some of the more specific set of 

questions to be addressed include: In the context of characterizing change and/or similarity, how 

do emerging pattern comparison indices such as structural similarity (SSIM) index and complex 

wavelet structural similarity (CWSSIM) index perform against common classical metrics (e.g., 

the mean squared error)? How do we parameterize computer vision methods to quantify 

significant changes over varying spatial scales? How do we incorporate texture learning in 

computer vision models such as CNN models when used in a geographic application? And how 

can we exploit discriminative features extracted by deep-learning models to answer spatial and 

temporal questions? This dissertation aims to approach and address these questions with practical 

examples involving the application of computer vision methods for pattern comparison in 

simulation-based data (e.g., pattern simulated via Gaussian Markov Random fields), coarse-scale 

remotely sensed imagery (i.e., GlobeSnow snow water equivalent data), and fine-scale remotely 

sensed imagery (i.e., aerial photography, SPOT imagery).  
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1.2  Research objectives 

 

   Given the challenges and questions outlined above, this dissertation focuses on the following 

specific objectives: 

(a) Evaluate the use of computer vision metrics for spatial pattern comparison and change 

detection. 

(b) Develop a new change monitoring framework using texture-encoded features learned 

within a CNN setting. 

(c) Apply new change monitoring methods in case studies exploring different spatial 

scale/pattern configurations.  
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A summary of how the research objectives will be organized into chapters and analysis is 

provided in Table 1.1 

 

Table 1.1 How this dissertation approaches the objectives of the proposed research. 

 

 

Chapter Major issues addressed Approach utilized 

2 

Theoretical: 

Understanding computer vision and 

scale issues with respect to model 

parameters 

A review of scale issues and how 

CNN could be parameterized for 

GIScience and geographical 

research 

3  

Methodological: 

Emerging structurally sensitive 

metrics for pattern comparison  

Structural similarity metrics are 

explored, highlighting their 

potentials to characterize patterns in 

continuous valued spatial data 

4 & 5 

Application oriented: 

Developing a deep-learning CNN for 

landscape similarity assessment 

 

 

Developing a U-Net CNN for placer 

mining disturbance monitoring 

Texture learning incorporated to 

develop a CNN model whose 

feature maps are subsequently 

employed to map landscape 

similarity 

 

A contextually aware U-Net model 

is developed and compared with 

Random Forest in the context 

placer disturbance monitoring 
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1.3 Overview of chapter contents 

 

    In Chapter 2, a thorough literature review is conducted to illuminate scale challenges which 

may be encountered when adopting computer vision methods in geography. More importantly, 

linkages between CNN model parameters and classical tools and concepts are highlighted. As 

CNNs are gaining increasing attention in both change detection and landscape/image retrieval 

workflows, it is essential to understand how such models could be parameterized to effectively 

discriminate patterns of interest, and to enable the extraction of discriminative features for 

environmental monitoring and decision-making systems. A review of CNNs and synthesis of 

scale terminologies provides valuable information for adoption and deployment of computer 

vision methods across multiple disciplines. The findings reveal that scale impacts both classical 

techniques and computer vision methods; but the latter is relatively robust to small-scale 

variations, though parameterization challenges remain.  

    Chapter 3 examines the use of structurally sensitive metrics to compare patterns in continuous-

valued data. Comparing patterns which vary gradually and incrementally over space is a 

daunting challenge and requires indices that are insensitive to scale, contrast and illumination. To 

this end, Chapter 3 demonstrates the potential of two computer vision metrics – SSIM and 

CWSSIM to characterize and quantify differences between images simulated using Gaussian 

Markov Random fields. To further evaluate the performance of these metrics in real-world 

dataset, Snow Water Equivalent maps are used to test the metrics potential to capture patterns of 

snow variability over the Northwest Territories, Canada. The analysis in Chapter 3 point to the 

complementarity of SSIM and CWSSIM indices. While SSIM appears to be sensitive to local 

patterns of snow variability, CWSSIM tends to capture changes in snow distribution over large 

scales. One notable advantage of CWSSIM over SSIM, however, is its robustness to shift in 
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scale. Analysis of sub-images which are shifted versions of the original image off the coast of 

Gabriola Island, British Columbia, Canada shows that the CWSSIM yields high similarity 

scores, thus demonstrating the metric’s geometric invariance property. 

    The development and deployment of deep-learning models, forms the focus in Chapters 4 and 

5. In Chapter 4, fine-scale landscape similarity analysis is presented using the Aerial Imagery 

Data (AID) and Sentinel datasets. A texture encoded CNN model is developed to extract 

discriminative feature maps. The histogram of oriented gradients (HoG) vector is extracted from 

the resulting feature maps after PCA has been performed; next, the Earth Mover’s distance 

algorithm is used to quantify landscape similarity. The finding provides insight into the potential 

to develop novel landscape similarity mapping metrics using CNN feature maps for. 

    In Chapter 5, a U-Net CNN model is developed and utilized to map placer mining disturbance 

in Yukon, Canada, using SPOT-6/7 imagery. To compare context-aware deep-learning models 

with pixel-based machine learning techniques, a Random Forest (RF) model is developed in 

parallel. The analysis provides evidence that both modelling frameworks can detect placer 

mining disturbances, and are potential tools for monitoring placer disturbance. While RF excels 

at classifying known sites – high Producer’s accuracy, U-Net performs better at unknow sites – 

high User’s accuracy. Thus, U-Net is likely to substantially mitigate misclassification errors but 

is more challenging to parameterize and train. RF on the other hand requires less computational 

time and could easily be trained and deployed to monitor placer disturbance. Chapter 6 presents 

and discusses the main contributions of this dissertation and concludes with limitations of the 

study as wells as future research directions.  Figure1.2 depicts a schematic of the dissertation 

chapters and the key focus of each of the nested research areas.  Sequentially, as can be seen in 

Figure 1.2, Chapter 2 provides a fundamental background on scale issue in both geography and 



 

 

31 

computer vision and how the computer vision discipline addresses scale problems. Next, 

structurally-sensitive computer vision metrics are presented in Chapter 3 to demonstrate spatial 

pattern comparison in continuous-valued data. Chapters 4 and 5 then present advanced computer 

vision methods – deep learning modelling to illustrate landscape similarity comparison and 

human-induced disturbance monitoring, respectively.  
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Figure 1.2 A flow chart of the approach to achieve research objectives. 
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Chapter 2: Using computer vision to compare spatial patterns: 

understanding scale parameters  

 

2.1 Abstract 

 

    Comparison of landscapes and patterns is a long-standing challenge in spatial analysis 

research. Recently, new models and tools developed for non-geographic image data are being 

used to study geographic problems involving classification or prediction. Specifically, computer 

vision models and artificial neural networks have been deployed in an ever-growing number of 

geographical analysis. In this paper, we review the use of these models in geographical analysis, 

focusing on the representation and comparison of spatial patterns. We review artificial neural 

networks and provide a semantic linking across domains using similar model constructs through 

the lens of scale. We note that scale, a contextual element in geographical research, is typically 

considered as a model parameter in computer vision. Scale impacts both computer vision 

techniques and traditional pixel-based or object-oriented analysis; yet computer vision methods 

are relatively robust to small-scale variations, though parameterization remains ad hoc. A 

typology of scales therefore provides a framework for mapping model constructs with the aim of 

developing guidelines for parameterizing and evaluating computer vision models in a geographic 

context.  

Keywords: Computer vision, pattern comparison, scale, convolutional neural networks. 
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2.2  Introduction 

 

    Two current trends in geographical analysis are simultaneously producing an increased 

demand for methods that facilitate the comparison of landscapes and their characteristic spatial 

patterns over time. First, the intensification of both natural and anthropogenic landscape change 

requires large scale monitoring of the environment in order to better understand, mitigate, and 

adapt to changes in climatic, economic, and social conditions (Townshend et al. 2012). Second, 

the availability of Earth observation sensor data at varying spectral, spatial, and temporal 

resolutions has enhanced the possibility to develop systems and approaches to rapidly detect and 

characterize change across broad landscapes (Townshend et al. 2012, Wulder et al. 2018).  

Initiatives such as Arctic Observation Networks  exemplify the trend for ongoing monitoring of 

natural systems; developing networked sensors and autonomous systems to support modelling 

and analysis of environmental system change across the biome (National Science Foundation 

2018). Embedded within such initiatives are questions about change: where is arctic tundra 

vegetation change intensifying? What is the distribution pattern of insect pests causing forest 

defoliation? Only through analysis of spatial patterns, typically derived from Earth observation 

data, can such questions begin to be addressed across broad geographic areas (Franklin 1995, 

Potter et al. 2003, Bajocco et al. 2011, Hansen and Loveland 2012). Despite this need, methods 

for comparing the patterns observable in landscapes over time and space have seen limited 

unified treatment and remain sub-discipline or even study-dependent, with limited work towards 

a generic set of tools for understanding spatial pattern change (Long and Robertson 2018).  

     Spatial pattern comparison (SPC) can be defined as the analysis of two or more spatial 

patterns to characterize their degree of similarity or difference. This definition encompasses a 

wide array of applications, such as evaluating differences between maps while noting potential 
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pattern forming processes (Csillag and Boots 2005); detecting spatial and temporal changes 

(Visser and Nijs 2006); assessing the  rate of change or fragmentation of forests (Wickham and 

Riitters 2019), and so on. For example, Jasiewicz et al. (2014) provide an example focused on 

pattern characteristics of landform elements to quantify similarity in landscape patterns. Such an 

application is useful for monitoring or locating degraded landscapes for restoration. Monitoring 

ecosystems productivity, disturbance, topography, and land cover through time can provide early 

warning information on locations of potential changes to biodiversity (Duro et al. 2007). Mairota 

et al. (2013) illustrate how landscape structure analysis can be used to identify areas facing 

fragmentation risks to enable the implementation of environmental monitoring and intervention 

programs. The analysis of changes to spatial pattern and forest loss can be used to inform 

strategies to mitigate landscape fragmentation (Carranza et al. 2015).  

    Geographers and GIScience have long recognized the need to consider scale in pattern 

comparison workflows, and have provided an extensive discussion on the effects of scale under 

concepts such as ecological fallacy (Openshaw, 1984) and, the modifiable aerial unit problem 

(MAUP) (Marceau and Hay, 1999; Dark and Bram 2007). Grain and extent are two essential 

components of scale. The finest spatial or temporal resolution available for a given dataset is 

referred to as grain, while the total size of an area under study or the duration of a study is 

termed as extent (Turner et al., 1989b). Landscape patterns tend to exhibit varying relations 

when measured over a range of scales (i.e., grain and extent) (Wu 2004). This comes with 

several implications for pattern analysis; for example, Townsend et al. (2009) demonstrated that 

landscape metrics for maps derived from remotely sensed imagery at varying grain size differed 

significantly, with varying map extent frequently resulting in substantial differences. Generally, 

the values of descriptive statistics derived from classification are profoundly affected when 
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measurement scale and aggregation level are altered (Marceau et al., 1994). Additionally, results 

derived from pattern metrics are more variable at the per class level than the landscape level but 

show more consistency and predictability with changing grain size than changing extent (Wu 

2004).  These challenges partly stem from the fact that different spatial processes can act across 

scales, creating multiscale structural variation (Kulha et al., 2019; Kulha et al., 2020). To date, 

these issues persist, and with remotely sensed data now available and ranging from sub-meter to 

kilometres in spatial resolution, scale issues in pattern comparison will continue to gain more 

attention. 

    Recent research has shown the capability of computer vision methods to quantify and 

characterize spatial patterns and as tools for assessing spatial models (Robertson et al. 2014, 

Jones et al. 2016). Computer vision methods comprise the design and application of algorithms 

that simulate the functionality of information processing principles of the human visual system 

(HVS) (Kruger et al. 2013). Although computer vision methods are increasingly being adopted 

for a wide variety of uses, these tools – developed for image data – have yet to be unified and 

integrated with traditional methods for spatial analysis that were specifically developed for 

geographic data. Figure 2.1 shows the relationships between computer vision methods, SPC 

tools, and common information needs in geographical analysis. We illustrate that when searching 

for tools capable of integrating and facilitating spatial pattern analysis, computer vision methods 

are potential candidates. For example, spatial accuracy assessment is a common analytical 

process which is used to quantify  discrepancies between a reference map (i.e., labelled as 

accurate representation) and another map (i.e., denoted as derived map) (Foody 2004,  Boots and 

Csillag 2006). Spatial measures of model goodness-of-fit can also be assessed through 

comparing observed maps and maps derived from spatial models (Csillag and Boots 2005, Visser 
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and Nijs 2006). Spatial pattern change detection has been utilized to study spatial process change 

over space and time (Long and Robertson 2018), while landscape similarity assessment paves a 

way for spatial process classification (Keane et al. 2004, He 2008). Landscape comparison has 

also been widely utilized to address information needs in content-based image retrieval problems 

(Jasiewicz et al. 2014). Unlike the aforementioned classical approaches, computer vision 

methods with neural networks as the underlying framework can be used to discover spatial 

patterns and identify features given some input data (Law et al. 2020, Li and Hsu 2020). 
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Figure 2.1 Relationships between spatial pattern comparison tools and information needs. 

 

    This paper provides a critical review and synthesis of: (1) scale representation in 

geography/GIScience and its relation to emerging computer vision methods, (2) key scale issues 

in process-pattern information extraction and SPC using computer vision, and (3) how computer 

vision methods can be applied to SPC. The paper is structured as follows: computer vision 

methods – artificial neural networks are introduced briefly, followed by a discussion on scale 
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issues in geography and computer vision in relation to pattern analysis. Finally, spatial patterns 

comparison using computer vision methods is presented. We conclude with a summary of our 

review and potential areas for future research in this emerging research area. 

 

2.3 Overview of Artificial Neural Networks 

 

    Artificial neural networks (ANN) are abstractions of biological neurons and are designed to 

mimic the complex information processing and problem-solving capacity of the human brain 

(Prieto et al. 2016). ANNs are characterized by nonlinearity in input-output mapping, high 

parallel processing, robustness, fault and failure tolerance, learning, ability to handle fuzzy 

information, and generalization capacity across domains (Jain and Mao 1996). Researchers in 

many disciplines continue to develop ANN models to solve variety of problems. Some common 

problems in which ANN have been utilized include pattern classification, change detection, and 

forecasting/prediction (Gopal 2016).  

     There are several discussions in the literature on the theoretical underpinnings and inner 

workings of ANNs. Fausett (1994) and Gershenfeld (1999) provide extensive details on the 

theory and applications of ANNs. Figure 2.2 depicts a typical ANN with one hidden layer. 

Gershenfeld (1999) notes that an ANN with one hidden layer can describe any continuous 

function and one with two hidden layers (by an obvious extension of the architecture given 

below) can describe any function at all).  
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Figure 2.2 ANN architecture for a back propagation single hidden layer neural network. 

The inputs 𝑥𝑘 are combined linearly with a set of weights 𝑤𝑗,𝑘. The network weights, 𝑤𝑗,𝑘 and 

𝑊𝑖,𝑗 , are usually determined by applying n training sets of data (e.g., a vector quantity), 𝑦𝑖(𝑥 𝑛), 

with known inputs, 𝑥 𝑛’s, and outputs, 𝑦𝑖 's to the network that is initialized to small randomly 

generated weights and optimizing the weight values by minimizing the least squares error 

function of the difference of 𝑦𝑖(𝑥 𝑛) and 𝑌𝑖(𝑥 𝑛). Once trained, novel inputs 𝑥𝑘
∗  are applied and 

the ANN generates outputs 𝑌𝑖
∗ based on the previous learning encoded in the ANN weights. 
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2.4 Convolutional Neural Networks 

 

    Convolutional neural networks (CNN) are variants of ANNs that incorporate spatial, 

contextual and textural information in their processing of inputs through the utilization of spatial 

neighborhoods (e.g., convolutional filters or kernels) (Lecun et al., 2015). Convolutional 

filters/kernels are n × n windows that are employed to extract pattern information captured in 

image pixels. In figure 2.3, each convolutional layer (e.g., conv1, conv2, conv3 and conv4) 

applies filters/kernels of arbitrary dimension to extract features. Features may be edges, lines, 

corners, object parts or even whole objects contained in images. A feature map denotes a 2D 

image extracted from a CNN layer using a filter. A fully convolutional CNN model contains no 

fully connected layers (i.e., layers with 1D feature vectors) (Springenberg et al. 2014), thus 

retains spatial information inherent in feature maps.  Feature pooling (i.e., down-sampling) may 

be applied to reduce the spatial dimension of 2D maps. The complexity of pattern representation 

increases with depth of the network. Lower layers (i.e., conv1) learn to detect fine grain features, 

edges, lines and corners, while higher layers encode global information (i.e., object parts, whole 

objects and shapes) (Nogueira et al. 2017). 
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Figure 2.3 Scene segmentation and classification CNN model. Fully convolutional layers (conv1, conv2 

and conv3) process pattern information hierarchically. 

 

    Earlier techniques to detect objects and edges bear some functional link with window-based 

operators which have been used in remote sensing for decades. For example, the Sobel filter 

detects edge features in images by using a simple pre-specified weighting scheme to find sharp 

gradients in image data. This is similar in spirit to features detected in the lower layers of a CNN 

model, except in CNNs the filter weights are unknown and ‘learned’ by relating image data in 

the filters to class labels provided to the model. The weights that get learned by the model are 

then ‘hard-coded’ in a sense, and are therefore very fast to execute on new data once they are 

known (i.e., the model is trained). Having enough training data to learn a representation of the 

weights is a key issue in applying to geographic data, one that is somewhat alleviated by growing 
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archives of satellite image data, however labelled (i.e., annotated ground-truth data) geographic 

image data required for training a CNN is still somewhat lacking. 

     Patterns detected in lower layers of a CNN provide crucial information for higher CNN 

layers. In Figure 2.4, we show agriculture landscape and forest with corresponding patterns 

extracted using Sobel filter and CNN filters. In Figure 2.4 (row a), it can be seen that as the 

Sobel filter detects agriculture landscape boundaries, the CNN filter learned to detect whole 

agricultural land with vegetation. Also, notice that the Sobel filter detects tree canopy edges as 

well as edges of shadows, while the CNN feature map ignores shadow regions but shows finer 

patterns of the entire forest landscape. The Sobel filter picks up any sharp gradient (e.g., edge 

pixels) in image data, while the CNN filter learns significant patterns based on class labels so 

has an advantage of a priori information as opposed to the unsupervised Sobel filter. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

51 

 

 

Figure 2.4 Edge detectors versus CNN higher layer filters. Row (a) shows an agricultural landscape with 

land parcels detected utilizing a Sobel filter and CNN filters. Row (b) depicts a forest stand with edge 

detection using a Sobel filter and the forest pattern extraction using a CNN filter. 

 

2.5 Spatial Patterns and Scale 

 

    A spatial pattern is a scale-dependent outcome of one or multiple interacting spatial processes. 

Process-pattern interactions refer to the complex interrelationships between spatial patterns and 

pattern generating processes (Turner 1989a; McIntire and Fajardo 2009). The extent over which 

a pattern is defined might be the global extent of the dataset, or some sub-unit defined by 

tessellation, gridding, or geographically meaningful localized criteria – often termed a spatial 

Input image Sobel filter CNN filter 

(a) 

(b) 
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neighborhood (Nelson and Robertson 2012). Similarities and/or differences observed between 

maps when making spatial pattern comparisons may be a function of the size of the analytical 

unit adopted and the extent over which the patterns are defined (Boots and Csillag 2006).  

Spatial pattern analysis involves quantifying and describing patterns of variability in space and 

time to understand how patterns vary with scale (Jelinski and Wu 1996), as well as the 

interactions among patterns and underlying spatial processes (Levin 1992). It is widely accepted 

that the scale at which patterns are analyzed influences results (Wu and Li 2006).  When 

observation scales are altered, the resulting statistical outcomes, such as mean patch size and 

variance, spatial autocorrelation, and multivariate relationships, may change (Dungan et al. 2002, 

Dark and Bram 2007; Wheatley 2010). As pointed out earlier, scale may further impact 

analytical units selected for pattern comparison. Choosing the right scale however remains a 

daunting challenge. The dynamic and self-organized nature of processes and the hierarchical 

structure of patterns they generate leads to scale and scaling problems (Garry 2000). Garry 

(2000), for instance, highlights the complications involved in translating models and data across 

scales, and emphasize the need to use key processes that are relatively stable across scales to 

determine appropriate scaling methods. Wu and Qi (2000) on the other hand suggest 

understanding patterns and processes at broad scales (e.g., regional or global) and mapping them 

to their corresponding fine scales patterns and processes in order to transfer information between 

scales. 

    Beyond the analytical challenges associated with choosing analytical scale in geographical 

analysis, there has been a growing expansion of the terminology used to refer to three underlying 

concepts of scale: 1) spatial/temporal resolution (often termed grain), 2) spatial/temporal extent, 

and 3) spatial neighborhood (e.g., spatial window, local-sub extent). In Table 2.1, we seek to 
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harmonize scale related terminologies from computer vision with those used in geographical 

analysis. To quantify patterns, analytical units as well as scales over which patterns are to be 

characterized must be explicitly established. Here, we suggest possible observational scales and 

how they could be selected and implemented when analyzing spatial patterns. 
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Table 2.1 A summary of scale terminologies in computer vision and across other domains 

 
 

Observational scale hierarchy 

 

Domain Singleton level 

 

(This scale is the 

basic/atomic unit 

of any spatial 

data) 

 

Local level 

 

(Local scale may 

consists of an 

arbitrary 

aggregation of 

pixels or objects) 

Landscape-

level/Regional 

 

(An area with a 

collection of features of 

defined attributes, 

administrative 

boundaries etc. Sizes of 

landscapes /regions 

may vary considerably)  

Global level 

 

(The entirety of an area, 

spatial units, data, features 

etc. being studied) 

References 

GIS/GIScience Pixel (for raster 

data), and object 

(vector data), a 

patch (e.g., fire-

burned area) 

Kernel, moving 

window, local 

neighborhood, 

focal operator 

Spatial grid, tile, scene, 

fishnet, group/set of 

polygons, population or 

communities (e.g., 

forested area), 

administrative areas 

A collection of all 

pixels/objects under a 

system being studied, 

A collection of global 

features (e.g., global 

landcover, lakes and 

wetlands) 

(Wu 1999, Dungan et 

al. 2002, Nowosad and 

Stepinski  2018a, 

Dabiri and Blaschke 

2019) 

Computer 

Vision 

Pixel, image 

object 

Neuron, kernel, 

filter, feature 

detector, 

detection window 

Contextual window, 

image patch, input 

image/tile, 

A collection of all image 

pixels / objects, Contiguous 

set of contextual windows 

(Sharma et al. 2017,  

Nogueira et al. 2017) 

Remote 

Sensing 

Pixel Kernel, filter, 

moving window 

Sampling grid, scene, 

spatial extent 

Sequences of data/scenes 

(e.g., images covering a 

satellite’s temporal 

resolution), 

all images/scenes sampled 

over an area and 

features/landcover types of 

interest  

(Marceau and Hay 

1999, Wu and Li 

2009) 

Medical 

Imaging 

Voxel (3D 

pixel), pixel 

(2D) 

Local 

neighborhood, 

filter (2D/3D), 

kernel (2D/3D), 

part of an organ 

(e.g., lower lungs, 

part of brain) 

Image patch, 

anatomical region, 

organ (e.g., heart, 

kidney) 

A collection of all image 

pixels/ objects, whole 

image object (i.e., for an 

image containing one 

object) 

(Shin et al. 2016, Altaf 

et al. 2019, Bernal et 

al. 2019) 
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2.5.1  Singleton level 

 

    Image pixels and objects are the basic analytical units for raster and vector datasets, 

respectively (Dungan 2006). These geographic primitives are also the atomic unit in which any 

geographic phenomena may be captured and represented, thus form the bottom of the 

observational scale hierarchy. 

 

2.5.1.1  Pixels  

 

    Pixel values reflect fundamental local properties of lattice data (Dungan 2006). While 

individual pixels cannot represent patterns, pixel resolution dictates the scale of the information 

about the underlying pattern generating process that manifests in spatial patterns that have been 

captured in data. Figure 2.5 shows possible scenarios for representation of spatial processes in 

raster data. For scenario 1, processes are operating at a finer resolution while data pixel spatial 

resolution tends to be coarser. This implies critical information pertaining to the underlying 

spatial processes may not be effectively sampled. In both scenarios 2 and 3, there could be a 

good alignment between underlying spatial processes and pixels spatial resolution, making the 

data useful for analysis (Comber and Wulder 2019).  
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Figure 2.5 Process resolution and pixel spatial resolution. Processes are denoted by irregularly shaped 

areas confined by dotted lines, while pixels are depicted as square boxes whose boundaries are delineated 

by solid lines. Process resolution is the extent of an area over which a given spatial process occurs. For 

Scenario 1, process is finer compared to pixel resolution. In Scenario 2, along the diagonal, processes and 

pixels spatial resolution are approximately equal. In Scenario 3, pixels have finer spatial resolution (i.e., 

smaller grain sizes) than the underlying spatial process.  

 

2.5.1.2  Image Objects 

 

    In image analysis, image-objects can be generated using a technique termed segmentation 

(Basaeed et al. 2016). Segmentation is typically followed by subsequent comparison of 
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corresponding image-objects (Chen et al. 2012). Vector-based data whose primary units are 

feature objects can be compared through identifying and mapping object locations between 

georeferenced datasets. Geographical objects can be categorized into area-based objects (e.g., 

polygons and image segments), and non-area-based objects (e.g., lines and points). Each of these 

analytical units present challenges in pattern analysis such as edge correction (Li and Zhang 

2007). When an image-object shape and size remain fairly constant across two time points, it can 

be unambiguously tracked. Object-based analysis may be thought of as an application of an 

“irregular kernel” or an “irregular neighborhood”, where the boundaries of the object represent 

an irregularly shaped and sized spatial kernel. Object-based approaches deal with individual 

objects as discrete entities rather than defining arbitrary scales for analysis and can form the 

basis for upscaling; thus, the MAUP and its attendant consequences can be reduced (Openshaw, 

1984). Given the hierarchical nature of landscapes (Urban et al. 1987), objects often manifest 

themselves differently over a range of scales, necessitating multiscale analysis. For example, 

Hay et al. (2001) proposed a multiscale object-specific framework and argue that their approach 

may help define critical landscape thresholds, scale domains, boundaries of ecotones, and the 

grain and extent for developing and applying scale-dependent models, hence reducing MAUP 

effects. In related study, Hay et al. (2003) showed that Fractal Net Evolution Approach, Linear 

Scale-Space and Blob-Feature Detection, and Multiscale Object-Specific Analysis facilitate 

multiscale pattern analysis as they can be used to hierarchically link image-objects and derive 

spatially explicit multiscale contextual information. Object-based methods can also minimize 

errors originating from the effects of geo-referencing, higher spectral variability, and data 

acquisition tools artefacts (Dungan 2006; Hussain et al. 2013). Object-based methods make it 

possible to delineate usable objects from imagery while utilizing spectral and contextual 
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information in a more integrated way (Blaschke 2010). For instance, corresponding image-

objects that have been successfully delineated can be matched across space and time allowing for 

comparison (Tewkesbury et al. 2015).  

     Object-based approaches are typically associated with very-high spatial resolution data 

(Hussain et al. 2013). High resolution data and segmentation parameters requirements for 

generating consistent image objects pose challenges for object-based approaches (Carleer et al. 

2005); for example, inconsistent object sizes, shapes and numbers between image/map pairs can 

potentially render comparison problematic (Ye et al. 2018a). Additionally, textural information 

which is crucial in object-oriented analysis is largely associated with fine resolution data (Boyd 

and Danson 2005, Falkowski et al. 2009, Hussain et al. 2013, Wickham and Riitters 2019). Like 

many analytical units, scale of analysis can impact objects used to represent patterns. At coarser 

scales or extents, objects may be reduced to point features, thus their pattern representation 

signal diminishes, limiting the analytical power and sensitivity of pattern comparison tools that 

rely on objects. Complicating spatial patterns represented by objects is the fact that the spatial 

location of objects can potentially change through time (Robertson et al. 2007), this phenomenon 

limits the ability to accurately match and compare objects between maps. Moreover, vector-

based objects may come with complex topological attributes that pose challenges in pattern 

comparison. For example, the presence of multiple objects (i.e., slivers), irregular boundaries, 

shapes, and unequal sizes, complicate the task of pattern comparison.   
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2.5.2  Local Scale 

 

    Two-dimensional spatial filters (or kernels) are now frequently utilized for extracting pattern 

information (Warner 2011). Filters are used to capture contextual information (Camps-valls et al. 

2008). By having a defined local neighborhood, changes to a pixel’s value can be interpreted 

statistically while filtering noise and identifying changes related to patterns. This approach is 

also useful for representing local texture and contextual relationships (Tewkesbury et al. 2015). 

Kernels also capture the spatial arrangement of differences in pixel values describing a scene, 

and therefore increase the ability to detect changes in spatial patterns of landscape features 

(Gillanders et al. 2008). Furthermore, contextual information incorporated through kernels is an 

effective way to isolate spurious change. More importantly, given that objects or pixels in a local 

spatial neighborhood may exhibit some level of dependency (i.e., spatial correlation), analysis 

based on kernels is likely to aggregate spatial information and signals most  related to the 

underlying pattern generating processes (Bruzzone and Prieto 2000, Volpi et al. 2013). Adequate 

prior knowledge about the spatial resolution of the underlying process and the imagery can 

provide information on the choice of filter dimensions (Comber and Wulder 2019). The 

deployment of filters is however associated with scale and parameterization issues. Kernel-based 

methods require setting parameters prior to analysis, which is challenging as there is often no 

well-established theoretical and practical frameworks for texture parameters selection (Warner 

2011). Additionally, the approach is highly sensitive to window size; an appropriate window is 

thus essential to avoiding smoothing-over pattern details (Shi et al. 2016). 

Several methods have been proposed to characterize and compare patterns of local variability to 

understand the effects of localized spatial processes. While processes may operate across a wide 

range of scales, it is argued that observed patterns may be an aggregation of small units upon 
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which processes have operated on (Levin 1992). Thus, localized analysis represents a starting 

point into investigating short range processes that potentially generate patterns and to link 

outcomes to long range phenomena such as climate variables. In Figure 2.6, the notion of local 

sub-extent is depicted in case 9. A 3 × 3 square unit moving window is used to capture local 

patterns consisting of four feature types. We note that in computer vision, a 3 × 3 moving 

window is the equivalent of a convolutional filter. A given unit for local pattern analysis should 

be chosen based on its potential to represent the scale at which processes operate, as well as the 

scale that process-pattern interactions occur (Comber and Wulder 2019).  
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Figure 2.6 Local scale and landscape scale analysis. A 3 × 3 local spatial window is shown in case 9. 

Local scale analysis can be thought analogously to be a moving window of area 3 × 3 square units. Case 5 

– 12 illustrate the notion of landscape level analysis using a larger pre-defined grid (commonly termed a 

fishnet). Case 1 – 4 highlight the challenges of using regularly shaped sub-units for analysis across 

regions/study areas that do not conform to those shapes.  

 

2.5.3  Landscape/Regional Scale  

 

    Medium scale pattern analysis focuses on landscapes often containing several hundreds of 

observations (i.e., pixels). Landscape-level analysis is now commonly implemented using 

contiguous grids (i.e., fishnets) across defined areas. Niesterowicz et al. (2016)  provide an 

example in which the size of a grid defines the spatial scale of local landscape. Cells containing 

differing land cover type in each grid are then represented by a histogram of co-occurrence 

features which provides insight into the nature of spatial configuration (i.e., spatial arrangement) 

of patterns. Such grid-based delineations of homogenous areas offer the potential to ignore 
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spurious local signatures of pattern and to allow for characterization and description of patterns. 

The selection of a grid size should however be informed by the spatial resolution and the spatial 

structure of the underlying data (Tisseyre et al. 2018). For example, Joseph and Possingham 

(2008) argue that uncorrelated patterns of species extinction may not be effectively detected by 

current grid-based methods. To circumvent this challenge, Hengl (2006) suggests adopting the 

finest grid resolution that encompasses 95% of spatial objects of interest and the coarsest 

resolution that considers the operational scale and data properties. While landscape and regional 

scales may seem arbitrary, and sometimes difficult to distinguish, regional scales denote 

geographically meaningful subdivisions of space whose extent may span administrative 

boundaries and, in their union, comprise the global study extent. Figure 2.7 illustrates a 

delineation of an area into four landscape types or regional sub-units with homogenous regions.  

    The concept of regional scale analysis is, in many ways, analogous to the process of 

regionalization (or spatial partitioning) (Long et al. (2010). Regional sub-extents are delineated 

via segmentation of the entire area of interest into a set of geographically meaningful single-

connected units. Natural regional scale units can be defined according to geographically 

proximal areas with similar hydrological, geological, ecological, and/or physiographical 

characteristics. Olson et al. (2001) applied a synthetic approach to delineate terrestrial ecoregions 

of the world. Zhou et al. (2003) proposed a model to generate spatially contiguous regions by 

merging the most similar pair of neighboring polygonal land units. The authors utilized a region 

growing technique to develop a three hierarchical-level eco-region map of Nebraska. 

Regionalization is another effective way of generating homogeneous zones for pattern 

comparison, but the balance between the number of clusters of regions as well as their spatial 

configuration is of fundamental importance for meaningful pattern analysis. To this end, 
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(Nowosad and Stepinski 2018b) propose using an index of spatial association called a V-measure 

to select optimal number of clusters of regions for spatial variance analysis. Klapka et al. (2016) 

emphasize regionalization of administrative areas into functional regions to capture variability of 

geographical information suitable for pattern analysis. Furthermore, region delineation serves to 

define ecosystem recovery criteria, extrapolate site-level management, and monitor global 

change.  

 

 

 

 

Figure 2.7 Landscape/Regional sub-extents delineation. Boundaries are used to demarcate areas that 

contain somewhat homogenous feature types. 

 

2.5.4  Global Scale 

 

    Local landscapes and regions may be aggregated to give global representation of patterns. 

Global scale products (e.g., global landcover maps) are also decomposable into their constituent 
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landscapes or regions using some appropriate algorithms as shown in Nowosad and Stepinski 

(2018c). One of the earliest global vegetation maps was generated using the Holdridge 

classification system and general circulation models of the atmosphere via an aggregation of 

climatic zones (Monserud and Leemans 1992). Zones in this instance could be perceived as 

landscapes or regions with somewhat similar environmental conditions. A typical global scale 

analysis is the delineation of the global land area into vegetation, lakes, wetlands or water (Frey 

and Smith 2007). Similarly, Nowosad et al. (2019) combined  change patterns in 9 km × 9 km 

mesoscale landscapes to construct global thematic maps depicting what, where, and the 

magnitude of change between 1992 and 2015. Given the availability of archived medium to 

course resolution satellite datasets, and in the wake of declining landcover types, it is becoming 

increasingly essential to derive global products consisting of information on specific landcover 

classes. For example, two 1 km × 1 km datasets from the Advanced Very High Resolution 

Radiometer (AVHRR) were combined to derive global maps showing tree cover, leaf longevity 

and leaf type (DeFries et al. 2000). Similarly, Landsat datasets were used to generate global 

maps depicting forest cover as well as change areas (Townshend et al. 2012). Recently, Li et al. 

(2020a) applied a deep-learning model to create global coral reef probability maps. They used 

global mosaic of Planet Dove satellite imagery with regional Millennium Coral Reef Mapping 

Project data for building the model. A wide variety of global landcover products highlight 

similar trends and reasonable agreements in terms of total area and spatial patterns at global 

scales. However, comparing individual/local classes in those datasets reveals limited agreement 

in spatial distribution (McCallum et al. 2006). 
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2.5.5 Scale in computer vision 

 

    The notion of scale effects on the extraction of patterns is well recognized in computer vision 

(Lindeberg, 1993). Lindeberg (1994) argues that a type of multiscale representation (i.e., scale-

space theory) proposed by Witkin (1984), can be used for feature detection, feature classification 

and shape computation as these tasks can be expressed as combinations of Gaussian derivatives 

at multiple scales. Hay et al. (2002) provide a succinct synthesis of the scale-space theory and 

highlights its usefulness in exploring and quantifying landscape patterns. The authors suggest 

that combining remotely sensed data and blob-feature detection techniques with scale-space 

theory satisfy most of the requirements for multiscale landscape pattern analysis. 

    In CNN context, Sermanet and Lecun (2011) demonstrated a multiscale approach to traffic 

signal recognition using a CNN in which stage 1 contains high spatial resolution features while 

stage 2 yields coarse spatial resolution features; merging these multiresolution features improved 

the model’s performance. Here, we identify three levels of scale within which computer vision 

methods, specifically, CNNs operate to capture spatial patterns in raster datasets. The first level 

of scale is a n × n filter (kernel) which convolves over a group or block of pixels (i.e., local 

scale) to capture patterns. In computer vision literature, a convolutional filter is equivalent to the 

concept of moving window commonly used in raster based geographical analysis. Figure 2.8a-c 

shows three variants of filters that may extract patterns at different scales. The second level of 

scale is a m × m contextual window. A contextual window can also be referred to as a tile. Figure 

2.8d depicts a 10 × 10 input tile. Tiles are analogous to landscape or regional scale analysis in the 

geographical literature (i.e., using spatial or fishnet grids). Tiles may vary in size and can be used 

to capture different scales in the analysis. The third level is the global scale, and can be defined 

in terms of modeling and prediction phases. At the model building stage, global scale refers to 
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computing features by averaging over all available information in an input map (Zou et al. 2016, 

Guo et al. 2019). During the prediction phase, global scale denotes a set of contiguous tiles 

representing features (e.g., classifying landcover types in the AVHRR dataset) worldwide as in 

Li et al. (2020b). The definition of scale using filter and tile sizes are essential parameters for 

learning and capturing spatial patterns. Computer vision methods tend to focus principally on 

local and landscape/regional scales (i.e., filters and tiles), and global scale at modeling phase. 

Broader global scale structures are rarely used as whole model inputs; hence do not influence the 

extraction of pattern information.  

     The choice of a convolutional filter size for different data products requires a careful 

consideration (Basu et al. 2015). For instance, a 3 × 3 filter covers 9 pixels with an area (referred 

to as the field of view in computer vison) equivalent to 90 m × 90 m for Landsat data, while the 

same kernel covers 30 m × 30 m for Sentinel-2 data, and 3 m × 3 m for the National Agricultural 

Image Program dataset. It is important to note that process–pattern interactions represented in 

these field of views/local sub-extents may exhibit profound differences. Thus, the size of features 

or patterns unique to the underlying process should be considered. A large filter is useful for 

capturing large features or patterns while small filters may be effective for extracting patterns 

where features are relatively small (Peng et al. 2017). For example, Peng et al. (2017) provide 

evidence that a  CNN with 15 × 15 filter outperforms a baseline CNN with 3 × 3 filter. It should 

be noted that a 1 × 1 filter does not capture contextual information but is used for channel-wise 

reduction or expansion in the number feature maps; this enables a model to learn spatial 

information across feature map channels (Chen et al. 2019). Dilated (astrous) filters use a 

dilation rate (i.e., pixel-neighbor spacing) to skip some defined set of pixels and can potentially 

expand a model’s field-of-view (i.e., spatial extent of a filter) (Chen et al. 2017). This property 
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may be found useful where the underlying dataset, for example, consist of vegetation patches 

that are further apart. Similarly, an appropriate tile size (also termed the contextual window) 

selection should consider pixel spatial resolution as well as the size of features of interest in the 

scene. For high resolution data (e.g., 1 m × 1 m pixel size), a 28 × 28 tile dimension may be  

sufficient to capture contextual information on patterns of tree canopies and grass patches (Basu 

et al., 2015). However, with coarser spatial resolution data, tile size may be increased to include 

more data points while considering the size of features in the scene. To overcome challenges 

related to tile size, attempts have been made to train CNNs on multiscale contextual windows.  

Such multiscale CNNs have been proven effectively yield robust image representations across 

various scales for characterizing and classifying patterns (Zhao et al. 2018). Recently, Srivastava 

et al. (2020) showed that a multi-input Siamese CNN model improves urban landuse 

classification by effectively  extracting scale invariant features. 

     In CNNs, the idea of capturing patterns at multiple scales can also appear somewhat implicit. 

As convolutional operations occur in different hierarchical CNN layers, both the resolution of 

patterns and feature map (sub-channels of input tiles) dimensions may change. Filters in 

successive layers operate on patterns at decreasing scales (i.e., reduced spatial resolution), and 

depending on a model architecture, input tiles spatial dimension may remain constant or reduce 

via down sampling operations. The consequence of this is that, patterns captured in lower CNN 

layers are at finer scales while those in higher layers are at coarser scales (Gong et al. 2014). 

Figure 2.8d-e illustrates convolution using a 3 × 3 filter over a 10 × 10 input tile. Down sampling 

2.8d by a factor of 2 yields 2.8e (a 5 × 5 feature map). We note that whether down sampling 

occurs or not, the patterns in feature maps obtained in 2.8e are at a coarser spatial resolution. 
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Thus, the suitability and sensitivity of patterns extracted in multiple layers for pattern 

comparison will vary and require careful selection.  

 

 

 

 

Figure 2.8 Scale levels in computer vision. (a) a 1 × 1 filter, (b) a 3 × 3 filter, (c) a 3 × 3 dilated filter, (d) 

a 10 × 10 tile (one channel), and (e) a 5 × 5 feature map after convolution and down sampling d. X 

denotes a target cell which is being convolved. 

 



 

 

69 

2.6  Characterizing patterns in computer vision  

 

    In recent years, computer vision algorithms are increasingly being employed in remote sensing 

and geographical analysis (Basaeed et al. 2016). In particular, there is a new focus on 

implementing computer vision models for extracting pattern information and mapping landcover 

patterns (Liu et al. 2018a).  

 

2.6.1  Extracting process-pattern information using computer vision  

 

    Computer vision methods deploy simple to fairly complex techniques and functions to extract 

discriminative information from raster data. Additionally, computer vision methods can 

potentially exploit multimodal data as inputs such as combining optical remote sensing as well as 

synthetic aperture radar data (Liu et al. 2018c, Mohammadimanesh et al. 2019); thus, making the 

integration of different sensor data possible.  Mean, variance and correlation computations are 

basic processing operations applied using moving windows. Composition, texture and structure 

which are fundamental components of image data and spatial patterns are well captured in such 

window operations (Volpi et al. 2013). Data transformation methods which involve the use of 

filters and activation functions (e.g., sigmoid function and rectified linear unit) may result in 

capturing discriminative patterns in remotely sensed imagery. For example, an activation 

function can introduce non-linearity in input data (Krizhevsky et al. 2012). This enables models 

to learn or extract complex spatial patterns or data structures. 

      Figure 2.9 depicts a conceptual framework on how computer vision methods and classical 

techniques process input data to discover and/or represent spatial patterns. Broken lines indicate 

potential cross feature utilization between computer vision and classical techniques. We use 
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double arrows to illustrate potential interdependence between spatial data (i.e., volume, mode, 

noise level) and pattern comparison methods used to extract and/or represent meaningful 

process-pattern relationships. 

 

 

 

Figure 2.9 A summary of data processing to discover process-pattern information; classical versus 

computer vision methods. Pattern-process interactions symbolized in spatial data can be understood via 

spatial pattern comparison. X, w, and b denote data, weight and bias, respectively; µ and σ are mean and 

standard deviation of X; f denotes an activation function used for non-linear transformation.  

 

     Despite the successes reported, remotely sensed data analysis may still pose challenges for 

computer vision algorithms. The assumption of spatial stationarity over all image local regions 

will typically not hold for remote sensing imagery acquired under varying viewing angles, 

shadow intensity and topography. If not adequately alleviated during image pre-processing, these 

issues can degrade the performance of computer vision methods. Parameter selection is another 

major challenge as there is no standardized approach to selecting the best model parameters such 
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as filter/window size, number of features to learn, or model depth (Zhao and Du 2016). 

Moreover, inadequate training samples, training data errors, and limited ground-truth data are 

potential constraints to training and evaluating computer vision models (Elmes et al. 2020).   

 

2.6.2 Comparing patterns using convolutional neural networks  

 

    Characterizing spatial patterns from big geospatial data sources, and detecting changes in 

these patterns, can be a daunting challenge for classical methods in which physical models are 

utilized to extract pattern information. Additionally, the complexity of spatial data and implicit 

spatial relationships constrains the capacity of conventional techniques to extract robust features 

to characterize spatial patterns (Shekhar et al. 2011).  

    CNN models employ a hierarchical set of spatial filters which are capable of extracting spatial 

information given a set of imagery (Chen et al. 2016, Basaeed et al. 2016, Zhang et al. 2017). 

The filters enable spatial weight sharing, and consequently constrain model parameters within 

reasonable size. Given an n × n filter and tile, the amount of pattern information to be learned 

can be manipulated. A large n × n filter and tile dimension will increase the number of pixels 

and therefore the amount of information available; spatial dependence information will however 

vary based on the degree of clustering or dispersion of the pattern of features in the underlying 

dataset.  

     Hand-coded filters (i.e., filters with predetermined weights) such as Gabor filters and Sobel 

filters have been employed in the past decades to detect and characterize patterns; such filters 

apply element-wise operation to their inputs to yield outputs showing a summary value over 

local regions. In CNN, activation functions transform inputs while filter weights are learned 

adaptively during training via backpropagation with loss functions such as hinge loss, mean 
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absolute error, and cross-entropy loss functions that minimize error between input and output 

variables. Pooling is implemented primarily to reduce input feature size with the aim to mitigate 

over overfitting as well as improving computational efficiency. Maximum pooling (max-

pooling) takes the maximum value in a pooling kernel (local sub-extent), while average pooling 

computes the mean value. Max-pooling is frequently used as it is reported to efficiently extract 

discriminative features in most pattern recognition and object detection tasks (Krizhevsky et al. 

2012). Pooling operations confer translation invariance in CNN. The translation invariance 

property enable CNN to learn to extract patterns at varying locations in a given scene. Thus, in 

geographical analysis and research where similar features or patterns are often located in 

different/localized regions of a given landscape, CNN holds potential to effectively extract 

spatial patterns of interest.  

     Figure 2.10 illustrates a hypothetical feature-based landscape comparison framework in which 

a pre-trained CNN is employed to extract features. Convolutional feature maps contain useful 

discriminative information and research has proven their suitability in change analysis (El Amin 

et al. 2016). In landscape pattern comparison, Albert et al. (2017) extracted features from fully 

connected CNN layers to characterize urban environments across several European cities. The 

authors showed that features from CNNs are robust for representing similarities and variabilities 

across urban scenes which generally exhibit somewhat complex texture and structure. Amirshahi 

et al. (2017) also propose image quality assessment metric based on CNN feature maps extracted 

from test and reference images at multiple CNN layers. The authors’ image quality assessment 

problem is similar to pattern comparison in geographical research and emphasizes the superiority 

of CNNs feature maps for capturing spatial patterns that are useful for similarity assessment.  
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Figure 2.10 Convolutional feature-based similarity comparison. Feature maps are extracted from maps at 

two locations L1 and L2. Conv1, Conv2, and Conv3 denote convolutional layer 1, 2, and 3. FC1 and FC2 

denote fully connected CNN layers. Each location image is propagated independently through a pre-

trained CNN and a high dimensional feature map is derived. The resulting feature maps are then 

compared, and similarity score computed using some algorithm (e.g., the structural similarity index). 

 

2.7 Outlook for computer vision methods in SPC analysis 

 

    ANNs offer potential to incorporate different sensor data as inputs. Given that these models do 

not rely on parametric statistical assumptions of data values, they may be suitable for analyzing 
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non-Gaussian, multi-modal, noisy and/or missing data, and categorical and continuous data 

(Rogan and Chen 2004). Fully convolutional CNNs are potential tools for GIScience and 

geographical research as spatial and topological information which are of fundamental 

importance in pattern comparison remain intact in model outputs. With the abundance of 

medium to high resolution imagery, feature-based pattern comparison research has promising 

potential for improving landscape similarity mapping and pattern change detection accuracy. 

Feature maps extracted from pre-trained CNNs layers contain hierarchical features at variable 

resolutions, yet retain discriminative local information that can potentially characterize changes 

in spatial patterns (El Amin et al. 2016). CNNs hold potential to extract process-pattern 

information, but this may require ad hoc parameterization (i.e., filter size, tile or grid size and 

input channels).  

     Understanding how spatial processes generate spatial patterns is an example of a causality 

dilemma whereby spatial patterns often interact with and influence relevant processes, leading to 

a progressive patterning phenomenon and vice versa (Turner 1989a, McIntire and Fajardo 2009). 

Behind the characterization of spatial patterns generated by processes is the various dimensions 

and choice of scale for analysis. We note that while scale recognized as a contextual element in 

geographical research and computer vision, there are differences between how scale and 

resolution impact computer vision techniques and traditional pixel-based or object-oriented 

analysis. For example, given that filters of varying dimensions can be utilized in a CNN model, 

features of different resolution in raster images may be effectively represented. Additionally, the 

hierarchical nature of feature extraction in CNN layers, results in capturing multiresolution 

features, thus minimizing scale effects.  
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2.8 Conclusion 

 

    Pattern comparison strides across many domains with different overarching objectives. For 

example, while in geographical research the aim may be to understand pattern generating 

processes, in medical imaging the objective may be focused on identifying unique patterns of 

certain tumors in order to relate them to the underlying causal elements. In either case, scale will 

directly impact the ultimate outcome of the analysis carried out. We therefore emphasize that in 

CNN models, scale (i.e., filters and tile sizes) needs to be mapped to the underlying pattern 

generating process of interest to minimize spurious information while extracting “significant” 

pattern signals. 

     Computer vision methods, specifically, spatially explicit CNN models have improved pattern 

recognition and object detection tasks (Xie et al. 2020). For instance, variations in image scenes 

resulting from illumination, shadows, and other artefacts not related to the underlying pattern 

generating process can be effectively handled in CNNs. However, investigation into CNN 

feature maps suitability and deployment for pattern comparison, from local to global scale is 

warranted. Additionally, given the complexity of remotely sensed data, it is essential future 

research investigates the robustness of pattern information extracted from CNNs using a 

combination of scales (e.g., varying filters and input tiles) on multimodal datasets (synthetic 

aperture radar versus Landsat) and multiresolution datasets (e.g., 30 m × 30 m Landsat versus 8 

m × 8 m Sentinel-2). 
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Chapter 3: Exploring the use of computer methods for spatial 

pattern comparison 

 

3.1  Abstract 

 

    Detection of changes in spatial processes has long been of interest to quantitative geographers 

seeking to test models, validate theories, and anticipate change. Given the current ‘data-rich’ 

environment of today, it may be time to reconsider the methodological approaches used for 

quantifying change in spatial processes. New tools emerging from computer vision research may 

hold particular potential to make significant advances in quantifying changes in spatial 

processes. In this paper, two comparative indices from computer vision, the structural similarity 

(SSIM) index and the complex wavelet structural similarity (CWSSIM) index were examined for 

their utility in the comparison of real and simulated spatial datasets. Gaussian Markov random 

fields were simulated and compared with both metrics. A case study into comparison of snow 

water equivalent (SWE) spatial patterns over northern Canada was used to explore the properties 

of these indices on real-world data. CWSSIM was found to be less sensitive than SSIM to 

changing window dimension. The CWSSIM appears to have significant potential in 

characterizing change and/or similarity; distinguishing between map pairs that possess subtle 

structural differences. Further research is required to explore the utility of these approaches for 

empirical comparison cases of different forms of landscape change and in comparison to human 

judgments of spatial pattern differences.  
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3.2  Introduction 

 

    As environmental monitoring technologies increase in scope and scale, providing new and 

varied perspectives on biotic, abiotic, and social-ecological processes; there is renewed need to 

compare representations of spatial processes across time and space (Long and Robertson 2018). 

Motivations for comparison include: (1) detection of spatio-temporal changes, (2) comparison of 

model outputs, (3) calibration and/or validation of spatial models, (4) analysis of model 

uncertainty and sensitivity, and (5) assessment of map accuracy (Pontius, Huffaker, and Denman 

2004 ; Visser and De Nijs 2006). In a pattern/process framework, detection of change in spatial 

process typically resolves to characterizing changes in temporally separable spatial patterns, and 

ideally, assessing the significance of this change relative to candidate spatial processes (Boots 

and Csillag 2006; Miller and Goodchild 2015). Increasingly, this is making use of time series of 

patterns/images obtained from growing archives of earth observation data obtained from satellite 

sensors (Greig, Robertson, and Lacerda 2018; Comber and Wulder 2019). In the geographic 

analysis context, we consider spatial pattern comparison to be a specific geographic instance of a 

broader class of spatial pattern comparison problems which are prevalent across a wide range of 

disciplines. Many disciplines, from astronomy (Groth 1986; Makowiecki and Alda 2008) to 

archeology (Papaodysseus et al. 2008; Zhou et al. 2017), to brain imaging (McIntosh et al. 1996; 

Luders, Cherbuin and Gaser 2016), rely on techniques to quantify and compare spatial patterns. 

Some of these have been informed by geographic spatial analysis, while others have not. The 

geographic context may provide particular local detail, in the form of local knowledge 

(Robertson and Feick 2017) or local values and understanding (Delmelle 2019) to help discern 

and interpret analyses of change and change attribution to underlying processes. Such locally 

situated change analysis may lead to more meaningful change analysis; moving away from 
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classical notions of randomness to more locally-relevant spatial processes (e.g., Walker and 

Schuurman 2015). However, what is common to all contexts for quantifying change in spatial 

processes is the use of spatial patterns to do so (McIntire and Fajardo 2009).  

    There are two principal settings for spatial pattern comparisons: a) comparing the same 

landscape over time in order to identify and characterize change, and b) comparing different 

landscapes at the same (or similar) time in order to quantify differences and similarities across 

spatial contexts. Much of the research into spatial pattern comparison in the GIScience and 

remote sensing literature has been focused on the first type of comparison problem. The problem 

of detecting significant changes (i.e., changes in underlying spatial processes) and disregarding 

trivial changes due to data collection methods or data errors is not straightforward and requires 

careful consideration of the processes and patterns of interest (Long and Robertson 2018). 

Simulation-based approaches to landscape comparison in Remmel and Csillag (2003) provide an 

example of the complexity associated with pattern quantification in binary landscapes. In a 

continuous-valued pattern scenario, change quantification is more complex. Despite many 

methods for change detection in remote sensing (Feng, Sui, and Tu 2016), detection of changes 

in pattern (often called spatial structure or configuration) are more limited; generally constrained 

to comparison of univariate global statistics or bivariate spatial pattern statistics (Long and 

Robertson 2018). The second setting of pattern comparison comprises similarity of specific data 

types or comparisons associated with specific types of geographic phenomena (Mairota et al. 

2013). For example, we may want to identify similar sites to function as reference locations 

when evaluating disturbance from resource extraction. As global and regional archives of 

satellite images and routine mapping programs expand, the need for spatial pattern similarity 

analysis is likely to increase (Comber and Wulder 2019). 
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     Boots and Csillag (2006) outline the dimensions of significant change detection in the context 

of categorical map comparison, stressing the importance of comparing data-generating 

processes from a spatial perspective. Yet the mechanics of how to realize such comparisons 

remain an ongoing research challenge, exacerbated in the big data era (Miller and Goodchild 

2015). Much of the spatial analysis development for map comparison has concentrated on 

categorical maps (Lu et al. 2003; Coppin et al. 2004). The Map Comparison Kit software 

package implements a fuzzy-set comparison (Hagen 2002a; Hagen 2002b; Visser and De Nijs 

2006), among other methods such as kappa and accuracy statistics. The Kappa statistic has been 

frequently deployed in tandem with other traditional metrics for measuring agreement or 

detecting changes on vegetation maps (Monserud and Leemans 1992; Hagen-Zanker, Straatman, 

and Uljee 2005). Many of these methods are criticized for their unreliability in quantifying 

change from no change. For instance, Mas (1999) highlights the sensitivity of classical change 

detection techniques to poor image enhancement methods. Moreover, there has been several 

renewed calls to refine the Kappa statistic (Pontius Jr and Millones 2011; van Vliet, Bregt and 

Hagen-Zanker 2011).  

    Classical methods of image comparison are point-based methods such as the mean squared 

error (MSE) or the Dice index (Dice 1945; Dosselmann and Xue 2005) ). Other related metrics 

used in image analysis such as peak signal-to-noise ratio (PSNR) and the signal-to-noise (SNR) 

are related to the MSE. These metrics have intuitive meaning and are simple to compute. Further, 

it has been shown empirically and analytically that the MSE for example, is closely linked to the 

structural similarity (SSIM) index and hence may perform close to the metric (Dosselmann and 

Yang 2011). Regardless, these metrics quantify global discrepancies that often fail to capture 

perceived image quality (Wang and Bovik 2002). Additionally, such  point-based similarity 
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metrics ignore spatial structure, and may extensively penalize images whose difference is just a 

pixel (Wang and Bovik 2006). Pontius (2000) argues that point-based metrics are liable to 

inaccuracies when there are errors in spatial co-registration. Similarly, Power, Simms, and White 

(2001) recognize that hierarchical fuzzy pattern matching is sometimes preferable to pixel-based 

map comparison as the latter can potentially penalize maps that differ owing to few pixel 

misalignment. Moreover, most point-based indices are sensitive to luminance and contrast (i.e., 

relative differences in signal level), and depending on the extent, might severely degrade the 

indices capability. These metrics are also sensitive to geometric and scale distortions resulting 

from shifts in image acquisition devices and sensor-solar orientations (Sampat et al. 2009). 

Consequently, such non-structural distortions may reflect and weaken the performance of the 

above indices in detecting real changes in landscape patterns, especially considering recent 

interest in drone-based image acquisition systems in environmental research and change analysis 

using multi-sensor fusion approaches. 

    Upon recognizing the intrinsic drawbacks of point-based metrics, neighborhood based indices 

such as the closest distance metric (CDM) and pixel correspondence metric (PCM) are 

increasingly employed in image comparison (Bowyer, Kranenburg, and Dougherty 2001; Prieto 

and Allen 2003). The use of spatial neighborhood-based indices can address some of these issues 

(Ping et al. 2004; Betts et al. 2006; Carl and Kuhn 2007). For instance, Wulder et al. (2007) 

utilized a local measure of spatial autocorrelation to assess model performance. Unlike point-

wise indices, neighborhood-based indices rely on spatial correlation between neighboring pixels 

in map pairs as a way to incorporate local spatial structure. These indices are relatively resilient 

to small geometric distortions such as translation, rotation and scale shifts. But, an important 

setback to the above indices is that they fail to incorporate texture and structural information of 
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objects in the visual scene and are unable to model the properties of the human visual system 

(HVS) (Wang and Bovik 2006). In non-geographic contexts, HVS is often used as a benchmark 

for pattern detection methods – and without clearly defined candidate spatial processes, may be 

useful in evaluating some types of geographic spatial pattern comparisons.  

    In computer vision applications, it is widely recognized that texture and the structural 

component of patterns often reveal tangible information about underlying pattern-generating 

processes. Metrics capable of capturing structural information may be highly sensitive to 

processes producing geographic spatial patterns or assessing the goodness-of-fit in a spatial 

model describing landscape change (Robertson et al. 2014). For instance, in the analysis of 

rainfall patterns in Sri Lanka,  Robertson et al. (2014) provide empirical evidence that the SSIM 

index is capable of revealing spatial structure that significantly improves the assessment of 

spatial interpolation models. Jones et al. (2016) study on space-use behavior of sperm whales in 

the Mediterranean Sea also emphasizes the SSIM capability to extract local-scale differences in 

space-use, providing information on spatial structure which cannot be uncovered by either pixel-

by-pixel differencing or visual inspection. Additionally, Jasiewicz, Netzel, and Stepinski (2014) 

provide an example of quantitative measurement of landscape similarity focusing on patterns of 

landform elements. These studies demonstrate the potential of computer vision techniques in 

quantitatively-driven geographical analysis and research. We aim to build on these studies by 

comparing two popular image comparison methods derived from computer vision research. 

    The structural similarity indices, complex wavelet structural similarity (CWSSIM) index and 

the SSIM index, are two structurally sensitive computer vision methods for image comparison 

which may have utility in a spatial pattern comparison context. The indices account for potential 

sources of errors resulting from luminance and contrast as well as incorporating structural 
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information in landscape patterns. These methods have been benchmarked against their ability to 

mimic human judgment, and given that spatial pattern change in a geographic context is often 

assessed by humans in order to arrive at suitable management strategies, we foresee the metrics 

as potentially promising techniques for resolving complex problems in landscape change 

analysis and decision making processes. 

    In this paper, we investigate the comparison of spatial patterns, specifically in the case of 

continuous-valued spatial distributions on regular lattices. We extensively explore the CWSSIM 

and SSIM indices to examine their potential in spatial pattern comparison by discriminating 

maps generated as realizations of stochastic spatial processes. Further, to assess the overall 

generalizability of the metrics in real-world scenarios, a case study is presented where the indices 

are tested on snow water equivalent (SWE) maps. By comparing spatial and complex wavelet 

domain metrics, we hope to illuminate how these indices can be exploited in spatial pattern 

detection and characterization of change on continuous-valued landscape maps. With this 

approach, the study further sheds light on the potential sensitivity of CWSSIM index and its 

employment in spatial model assessment and/or validation. 

 

3.3  Materials and methods 

 

3.3.1  Neighborhood-based image comparison indices 

 

    Neighborhood-based indices for image data are widely developed in signal and image 

processing over the past decades. For example, the CDM, a geometry-based index proposed by 

Bowyer, Kranenburg, and Dougherty (2001), locates a possible match in a defined neighborhood 

for every image pixel, and ultimately returns an accumulation of matched and unmatched pixels. 
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The PCM is another closely related index proposed by  Prieto and Allen (2003) which attempts 

to find pixel matches within a neighborhood of a given radius for corresponding pixels. The 

SSIM index proposed by Wang et al. (2004) also accounts for spatial correlations within a 

localized window. The SSIM index represents an extension of the universal image quality index 

in Wang and Bovik (2002). The SSIM index distinguishes itself from the aforementioned 

geometry-based indices by incorporating structural information of objects in the visual scene. 

Thus, aside from intensity and contrast, SSIM accounts for the attributes coding for structural 

information of objects in an image. 

 

3.3.2 Theoretical concepts and configurations of the CWSSIM and SSIM indices 

 

    The SSIM index was developed to mimic the HVS and therefore predict human preferences in 

image quality assessment (Wang and Bovik 2002; Wang et al. 2004). The ideas motivating the 

SSIM formulation is that the HVS is highly adapted to extracting structural information from a 

visual scene. With the measurement of structural similarity and/or distortions, perceptual image 

quality could be effectively approximated. Although the CWSSIM configuration is much more 

complex, it is worth emphasizing that CWSSIM is an extended version of SSIM, representing an 

extension and computation of SSIM from the spatial domain into the complex wavelet domain, 

employing the steerable pyramid decomposition technique (Sampat et al. 2009; Li et al. 2010). A 

closely related variant of the CWSSIM index, the Image Quality Measure (IQM2) was proposed 

by combining structural similarity index and steerable pyramid wavelet transform (Dumic, 

Grgic, and Grgic 2014).The Dual tree wavelet transform (DTWT), proposed by Ioannidou and 

Karathanassi (2007), is another closely related method whose index is strictly computed via the 

dual tree approach in the complex wavelet transform domain. 
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3.3.3 SSIM index properties 

 

    In this section, we shed light on SSIM mathematical properties that confer its utility in 

landscape change detection compared to traditional methods. The SSIM index configuration as 

proposed by Wang et al. (2004), is described below. It is assumed that x and y respectively 

represent a local region defined by a moving window in the reference image and distorted image 

(i.e., image to be compared with the reference image) with identical dimensions. Using SSIM, 

the comparison task is decomposed into luminance, contrast and structure components. The 

luminance term l(x,y), being slowing varying, is calculated as a function of the mean intensities 

(µx,µy) of image pairs. The contrast comparison c(x,y) is derived from the local window standard 

deviations (σx,σy). The third component, structure, is estimated as the local covariance s(σxy) 

between x and y. This component therefore measures the degree of correlation between the map-

pairs. The luminance component is given as: 

 

 𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+ 𝜇𝑦

2+ 𝐶1
                                                                                                    Equation 3.1 

The contrast component is written as: 

 

𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦+𝐶2

𝜎𝑥
2+ 𝜎𝑦

2+ 𝐶2
                                                                                                  Equation 3.2 

 

 

 

 

     

Finally, the structure function appears as: 

 

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦+𝐶3

𝜎𝑥𝜎𝑦+ 𝐶3
                                                                                                       Equation 3.3 

    The constants C1, C2 and C3 are intended to guard against the metric becoming unstable in 

somewhat homogeneous regions where the image local mean or standard deviation is close to 
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zero. The dynamic range L, of an 8-bit gray image is assumed as 255 and can be used to help 

determine reasonable values for the constants. The constants K1 and K2 are determined by Wang 

et al. (2004) to be far less than one; K1 and K2 << 1, C1 = (LK1)
2, C2 = (LK2)

2, and C3 = C2/2. The 

product of the above functions, after some basic algebra, yields the SSIM index as shown in 

equation 4. 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1)  (2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+ 𝜇𝑦

2+ 𝐶1)  (𝜎𝑥
2+ 𝜎𝑦

2+ 𝐶2)
                                                                       Equation 3.4 

 

The SSIM index can be written in terms of measures of luminance, contrast and structure 

components as: 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  [𝑙(𝑥, 𝑦)]𝛼[𝑐(𝑥, 𝑦)]𝛽[𝑠(𝑥, 𝑦)]𝛾                                                            Equation 3.5 

     

    In spatial pattern comparison context, the contribution of luminance, contrast and structure to 

spatial pattern variability in the form of landscape similarity can be controlled by users through 

adjusting or weighting equation 5 parameters, α, β, and γ, if there is prior knowledge on each 

component. Users can arbitrarily set non-zero weights for the parameters where (α > 0, β > 0, 

and γ > 0). Table 3.1 shows the notations in SSIM and their meanings. In this study, the default 

parameter setting, α = β = γ = 1 is adopted. This default parameter setting from Wang et al. 

(2004) weights the various components equally since there is no prior knowledge on the nature 

and extent of spatial dependence in the SWE maps. Setting all parameters to unity allows for a 

meaningful comparison of the metrics behavior in both simulation (i.e., known spatial structure) 

and real-world data (i.e., unknown spatial structure).  

    The maximum value of SSIM, SSIM (x,y) = 1 occurs if and only if x and y are identical. Note, 

also, that SSIM (x,y) is defined over a moving window (for example, 3 × 3 ) that is evaluated 
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over each local region of the image. As such, SSIM is a local metric aggregated into a global 

metric by computing the mean over local regions as common in computer vision applications. 

    In summary, SSIM operates by normalizing local patterns of pixel intensities using the 

underlying scene luminance and contrast terms within a defined local window. This feature can 

be leveraged to generate somewhat objective pattern comparison results since multitemporal 

maps may be contaminated with signals that are not representative of true landscape pattern 

change but originate from different acquisition times as well as the use of disparate data 

abstraction devices and methods. Such an attribute can also be exploited to significantly mitigate 

map preprocessing errors that impact pixel intensity values by altering image luminance and 

contrast. 

 

3.3.4 CWSSIM index properties 

 

    The CWSSIM index is proposed based on the motivation that the phase pattern (i.e., the 

spatial configuration) of natural image signals contains more profound structural information 

than their magnitude component (Oppenheim and Lim 1981). The index therefore attempts to 

differentiate magnitude and phase shifts of a pair of signals in detecting and characterizing 

dissimilarity between image-reference pairs. The structural component of natural image signals 

is critical to detecting pattern changes in paired maps, and this, in a landscape context, could 

capture underlying processes generating a particular landscape pattern. The magnitude 

component is closely associated with luminance as in the case of SSIM, and is ultimately scaled 

out. Thus, potential differences originating from illumination (e.g., sun angle, shade etc.) can be 

reduced in landscape pattern similarity analysis. This is analogous to the use of band ratios 

instead of raw channel digital numbers in analysis of remotely sensed image data. 



 

 

102 

    Given that the CWSSIM computation contains intensive mathematics, here we outline only 

the properties of the CWSSIM that relate to its potential utility as a spatial pattern comparison 

metric. Unlike the SSIM, for reference map and corresponding map whose similarity is to be 

evaluated, CWSSIM employs low-pass filtering mechanism to decompose the map-pairs into 

multiple channels (sub-bands). Successive filtering and down-sampling results in sub-bands with 

each level having a smaller dimension than the preceding channel (i.e., forming a wavelet 

pyramid). Ultimately, comparison is made between corresponding pairs of sub-bands or multiple 

frames. The comparison takes the form of measurement of the correlation in signal phase and 

magnitude between image-pairs, with emphasis on the phase component as it encodes relevant 

structural information. Extensive mathematical details on the metric can be found in (Sampat et 

al. 2009). Table 3.1 depicts the various notations in CWSSIM and their meanings. The CWSSIM 

index is given as: 

   

𝐶𝑊𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
2| ∑ 𝑐𝑥,𝑖𝑐𝑦,𝑖

∗ |+𝐾𝑛
𝑖 = 1

∑ |𝑛
𝑖 =1 𝑐𝑥,𝑖|

2+ ∑ |𝑛
𝑖 =1 𝑐𝑦,𝑖|

2+𝐾
                      Equation 3.6 

 

where cx and cy denote extracted or filtered (sub-channels or blurred-down-sampled versions) of 

the input image pairs (see Figure 3.1). That is, the CWSSIM operation initializes by 

simultaneously decomposing input maps x and y into sub-bands (sub-channels) cx and cy using 

the steerable pyramid decomposition technique as in (Sampat et al. 2009). Figure 3.1 illustrates 

input image decomposition process (i.e., for one input map, x) to generate three sub-bands (low 

pass band1, low pass band2, and low pass band3). These sub-bands (channels), cx and cy from 

input maps x and y are aligned and CWSSIM computed using a local moving window as in 

SSIM. The sub-bands correspond to samples of image pairs at the same spatial location. The 

local sub-band pixel values for an image-reference pair is denoted by: cx = {cx,i|i = 1,...,n} and  
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cy = {cy,i|i = 1,...,n}. n represents the number of pixels defined by the local moving window. For a 

3 × 3 window, n = 9. The window slides across each sub-band to compute the CWSSIM indices. 

Thus, the local neighborhood of each sub-band (wavelet) that contributes to the construction of 

the pyramid levels (hierarchical sequence of extracted sub-bands) is sampled. The K and c∗ terms 

denote stabilizing constant and complex conjugate, respectively. K improves the robustness of 

CWSSIM estimates under low local signal to noise ratios. 

    Luminance and contrast changes are approximated in the wavelet domain as a pair-wise 

transformation of local pixel values, resulting in constant scaling of all sub-bands. This ensures 

that the metric is insensitive to luminance and contrast variations between structurally dissimilar 

landscape maps or patterns being compared, hence, the metric can potentially minimize 

differences related to these sources in spatial pattern comparison task. In short, the metric 

normalizes radiometrically dissimilar multisensor or multitemporal maps leaving only the 

structural differences, crucial information in detecting and quantifying landscape pattern change. 

    The translation term corresponds to a linear phase shift (horizontal and vertical shifts) in the 

Fourier domain. This shift is approximated assuming that translation is small relative to the size 

of the wavelet filter, and under slowly varying wavelet filter envelop. The scaling and rotation 

terms are approximated using the translation term, assuming that the image pairs are subjected to 

small scaling and rotation. The scale and translation invariance attribute of the metric does not 

only confer the advantage to output consistent similarity values at varying scale shifts in 

landscape pattern change detection, but can effectively reduce map-pair differences originating 

from geometric sources such as movement of image acquisition devices and sensor-solar 

orientations, co-registration discrepancies and related georeferencing mismatches. The 

illustration in Figure 3.1 shows a conceptual overview of the CWSSIM index operation. 
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Figure 3.1 Schematics of CWSSIM index operation. This illustration depicts how the CWSSIM index 

operates on images. Each of the images being compared is simultaneously decomposed using the complex 

steerable pyramid decomposition method, yielding high pass and low pass bands; the filters are 

translation and rotation invariant. The CWSSIM index values are computed locally using a moving 

window across each of the wavelet sub-bands. 

 

    A graphical example of SSIM and CWSSIM is provided in Figure 3.2 which compares sub-

images (a) and (c) to image (b) (all sampled from the larger image (d)). The cropped samples are 

selected such that the dominance of both land and water pixels create a discernible geometry to 

C1 

C2 

C3 

C4 
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visualize the metrics’ judgement of similarity as the coastline shifts. Sub-image (a) can be 

considered an across-landscape comparison which represents an area up the coast from (b) the 

reference image, while sub-image (c) is shifted north of (b) due to a NAD27/NAD83 datum shift. 

Note that the bounding box for sub-image (b) and (c) are identical.  In each case we might 

consider the landscapes similar; yet traditional point-based or even window-based comparison 

metrics would be limited in recognizing similarity in this case. Here, CWSSIM scores (a-b: 

CWSSIM = 0.514, c-b: CWSSIM = 0.571) are higher than SSIM scores for (a-b: SSIM = 0.411) 

and (c-b: SSIM = 0.460). This demonstrates the geometric invariance properties of the CWSSIM. 

    To summarize, the CWSSIM differentiates the measurement of magnitude and phase shifts, 

has greater sensitivity to phase (i.e., spatial pattern structural change) than magnitude change, 

and is insensitive to consistent relative phase shifts. The CWSSIM geometric invariance attribute 

could enable an effective mitigation of errors emanating from small shifts in data sampling 

equipment. 
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Figure 3.2 Sample landscape comparison of SSIM and CWSSIM. Multiple images for near-infrared false 

colour composite imagery of coastline on Gabriola Island, British Columbia, Canada. Sub-image (a) 

location corresponds to the orange bounding box, while sub-image (c) is located at the red bounding box; 

note that sub-image (b) bounding box is identical to sub-image (c), but data is different due to 

NAD27/NAD83 datum shift north of (b). 

 

    We explore these features of these metrics in the following analyses in order to better 

understand their potential in map or spatial pattern comparison, change detection, model 

assessment, and several other geographical applications as evidenced in Figure 3.2. 

 

d) 
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3.3.5 Simulating Spatial Patterns 

 

    Realizations of spatial stochastic processes were used to explore indices in a controlled setting. 

Moving average fields were simulated as their distinct patchy nature will allow for visual 

inspection of the extent of dissimilarities between paired images. Two separate sets of images 

were simulated on a 50 × 50 grid. Though spatial patterns as well as the outcomes of metrics 

computed on them are largely a function of spatial grain and extent (Gustafson 1998; Comber 

and Wulder 2019), the selected grid dimension considered here is useful for analyzing patterns 

characterized by small-scale moving average fields and ensures relatively simple patterns. 

Moreover, patterns in moving average fields can be easily detected by the HVS due to smooth 

nature of the spatial structure (Dungan et al. 2002). A key parameter which can be interpreted as 

the scale of spatial dependence in the underlying spatial process, the radius r, was set at r = 3 and 

8, for each of the simulations. Note that r can be interpreted as the range (i.e., expressed in cells) 

of spatial dependence. Simulations were conducted in MATLAB programming software as 

shown in (Kroese and Botev 2015). For each simulation setting, 100 images were selected for 

matrix-wise comparison. Overall, 10,000 pair-wise comparisons were made. Throughout the 

succeeding sections of this paper, the two simulations will be referred to as mvr3 and mvr8, for 

simulations on radii r = 3 and 8, respectively. We use the prefix ‘mv’ to label series of simulated 

maps (e.g., mv314).  

 

3.3.6 Parameterizing CWSSIM and SSIM 

 

    The CWSSIM and SSIM indices are expected to perform differently given their properties as 

described in the previous section. CWSSIM has advantages over SSIM owing to its translational 
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and scale invariant attributes; depending on parameter settings, it could incorporate 6 pyramid 

levels in the wavelet domain, a property which might appear like computing SSIM 6× across the 

same image-reference pairs. Another potentially influential factor on both indices’ performance 

is the extent of complexity inherent in spatial patterns realized for simulations and SWE data 

structure, texture and edge intensity. SWE data and simulation realizations have limited 

complexity as both represent smoothly varying spatial structure. 

    The simulated and SWE maps were compared using CWSSIM and SSIM. In order to 

investigate their sensitivity to window size, three window parameterizations were adopted; 3 × 3, 

6 × 6 and 11 × 11. In Wang and Bovik (2002), 8 × 8 window size is adapted for SSIM but was 

observed to yield unnecessary "blocking" artifacts, while in Wang et al. (2004) the use of 11 × 

11 gaussian symmetric window overcomes this limitation. The variance and structure measures 

of SSIM were found to be sensitive to window sizes, 3 × 3, 5 × 5, and 7 × 7 (Jones et al. 2016). 

In CWSSIM, 7 × 7 window produced relatively high similarity values Wang et al. (2004). 

Jasiewicz, Netzel, and Stepinski (2014) employ an adaptive window parameter for retrieving 

similar features between landscape pairs. Our 3×3 window setting aligns well with mvr3 images, 

and the idea here is to intentionally inspect SSIM performance and sensitivity at known spatial 

relationships and window dimensions. Here, we intend to underline the metrics’ sensitivity 

taking into consideration the extent of spatial dependence among features in the visual scene. 

This we hope, could represent an important starting point in fine-tuning window parameters to 

any task at hand. 

    For CWSSIM, default settings were used for other parameters; the stabilizing term, K was set 

to zero (K = 0); guardb (gd), the edge size to be discarded from the four image boundaries, was 

also set as gd = 0, the number of orientations (ori) = 16, and number of levels (level) = 6. The 
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utilization of these default parameter settings is motivated by evidence that as pyramid levels 

increase, and holding ori = 16, maximum CWSSIM index value is realized as the index becomes 

more resilient to translations and rotations at advanced levels of pyramid decomposition (Sampat 

et al. 2009). This will therefore allow for exploring the full capacity of the metric. For 

implementation, SSIM constants, K1 and K2 were adjusted to 0.01 and 0.03, respectively as 

suggested in Wang et al. (2004). The analysis of SWE maps and simulated data was executed by 

running SSIM and CWSSIM indices implementation codes using MATLAB.  

 

3.3.7 Case Study: Mapping snow water equivalent change in northern Canada 

 

    In order to extend the application of the metrics from simulation scenarios to empirical data, 

we tested SSIM and CWSSIM on SWE maps. The window parameter settings implemented in 

simulation comparisons were employed in the SWE data. Sample of SWE maps were compared 

at 3 × 3, 6 × 6 and 11×11 window sizes. The SWE data are coarse resolution (25km×25km 

pixels) covering parts of the Canadian Arctic with temporal resolution stretching from 1979 to 

2017 at daily intervals. The maps used were clipped out of the global SWE data archive 

produced by the Globesnow-2 project, which combines passive microwave remote sensing with 

extensive field data to parameterize daily SWE data over the northern hemisphere (Takala et al. 

2011). In many remote polar regions where climate change is greatly impacting ecosystems, 

remotely sensed SWE data is the only data available for understanding landscape scale patterns 

of snow and related hydrological processes and functions. As such, understanding changes in 

spatial structure of SWE over large regions is an important information. For the purpose of this 

practical demonstration, 1980 and 2013 datasets were chosen. These datasets were found to 

contain sufficient maps at desired temporal resolution covering the months in winter when snow 
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abundance and spatial distribution was sufficient for testing the metrics performance. Within 

each year, comparisons were made on a monthly basis to account for seasonal variability in snow 

and water dynamics. Ten images were selected in each particular month of the year and 

compared with the other year’s imagery, yielding approximately 100 pair-wise matching in each 

month’s dataset. To rank SWE maps based on perceived similarity to a given reference map on 

SSIM and CWSSIM indices, Wilcoxon rank tests was performed using R programming software. 

 

3.3.8 Metric Comparison Analysis 

 

    Similarity values for different simulations and comparisons were conducted using rank test for 

statistical significance between ranks. Significance tests were carried out on similarity values 

using Wilcoxon signed rank test. Hypothesis tests were performed in all scenarios of CWSSIM 

and SSIM comparisons using variable window sizes. Comparisons were relative rather than 

dependent on absolute metric values. The approach also renders it feasible to compare agreement 

and/or discrepancy in SSIM and CWSSIM judgment as to which image-reference pairs are most 

similar. 

 

3.4  Results 

 

In this section, we report the results of our experiments. For each image pair comparison, we 

compute the MSE score to compare with the structurally sensitive metrics. It is worth noting that 

the MSE is a widely deployed classical metric which captures the difference in error signals 

between paired images but not the visually perceptual structural components. 
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3.4.1 Similarity index values distribution 

 

    Figure 3.3 depicts the distribution of similarity values for the simulation realizations under 

different spatial dependence parameters. In general, as the window size increases, the metrics 

generate lower similarity values. As well when window dimension is aligned with spatial scale, 

similarity is higher, but when it is mis-specified and/or larger, similarity values are lower and 

more dispersed. SSIM values are notably higher than that of CWSSIM. In Figure 3.3 (a), cross-

simulation (i.e., cross spatial process) comparison is denoted by mvr3_mvr8_w6 (i.e., mvr3 

versus mvr8 comparison using a window with size 6), and mvr3_w3 denotes within simulation 

(i.e., within spatial process) comparison (i.e., mvr3 versus mvr3 using a window with size 3). It 

can be seen from Figure 3.3 (a) that CWSSIM values are more dispersed around the median 

while SSIM values tend to exhibit less variability. A plot of the metrics variances, Figure 3.3 (b) 

further illuminates on the inherent variability in the indices estimates of similarity with changing 

window size. SSIM scores remain consistently higher than CWSSIM; these values point to the 

extent of penalization of image dissimilarities by the metrics. Interestingly, however, as can be 

seen from Figure 3.3 (a) there appears to be little overlap between SSIM and CWSSIM; this is 

probably driven by higher variance characteristic of CWSSIM values. While lower similarity 

scores are expected for cross-simulation comparison, SSIM generated higher values than did 

CWSSIM. This suggests that with SSIM, the cross-process comparison with a slightly mis-

specified window may be estimated more similar than a within-process comparison with a poorly 

defined window-size as seen in the within-process (mvr3_w11) comparison (see Figure 3a). It is 

important to emphasize that the Wilcoxon signed rank test generated p < 0.05 (95% confidence 

interval) in all test scenarios; thus, the null hypothesis that SSIM and CWSSIM values are not 

significantly different is rejected throughout the analysis. This rendered the deployment of ranks 
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values in comparing agreement and discrepancy in the metrics judgment relevant as the index 

values themselves are not directly comparable. 

 

 

 

 

Figure 3.3 Similarity values and variance distributions. As observed from (a), SSIM values are generally 

higher than CWSSIM, and separable due to low variability. Conversely, CWSSIM scores exhibit lower 

values with higher dispersion than SSIM. 

 

3.4.2 SWE similarity maps and similarity values distribution 

 

    The distributions of similarity values in the SWE datasets are summarized in Figure 3.4. SSIM 

values are generally higher and separable from CWSSIM, except for February and April where 

overlaps can be seen in the box plots. As observed in simulation scenario, CWSSIM has greater 

variability than SSIM, while SSIM values remain generally higher. The February SWE map 
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similarity in Figure 3.4b shows SSIM to yield higher similarity values when comparison was 

made using window 3 × 3. SSIM index values however appear to decrease as window size 

increases, while that of CWSSIM remained virtually constant. It can be seen that the median 

value for SSIM and CWSSIM are almost identical at window size 6 × 6. Thus, at larger window 

size, SSIM indicates dissimilarity compared to other months, while CWSSIM does not. Figure 

3.5 depicts SWE images captured on different dates in February 1980 and 2013 – February 2nd 

1980 (a: FEB800202), February 1st 2013 (b: FEB130201), February 10th 1980 (c: FEB800210), 

and February 10th 2013(d: FEB130210). We observe inverse patterns in snow distribution, with 

low SWE in 1980 in the southwest of the images, and higher SWE in 1980 in the northeast 

region of the images. We further notice an inverse trend in snow distribution in 2013 images, this 

time, lower SWE in 2013 in the northeast region, and higher snow in the southwest region.  

 

 



 

 

114 

 

 

Figure 3.4 Box plots of SSIM and CWSSIM values distribution. Comparison is monthly or seasonal 

based (a) January 1980 versus January 2013; (b) February 1980 versus February 2013, (c) March 1980 

versus March 2013, and (d) April 1980 versus April 2013). The difference between the sample means and 

variances is statistically significant (p < 0.05).  
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Figure 3.5 SWE distribution in February 1980 and 2013. As can be seen from the images, there is higher 

SWE in northeast compared to the southeast in 1980 for both (a) and (c). Compared with the 1980 

images, the 2013 images (b) and (d), appear to depict an inverse trend – higher SWE distribution in the 

southeast. Similarity values are derived from comparing (a-b), and (c-d), where (a) and (c) are reference 

images. 
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    In Figure 3.6, it can be noticed that increasing window size results in map ranks shift, 

especially, for SSIM relative to CWSSIM. This demonstrates the indices sensitivity to varying 

window dimensions. For CWSSIM, we observe some consistency in image ranks in the first and 

fourth quadrants of Figure 6(a) and 6(b). While it is not certain about CWSSIM behavior with 

differing window sizes, it appears clear that SSIM is relatively sensitive to changing window 

configurations. We also note that there are clear rank discrepancies between the metrics across 

all scenarios. 
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Figure 3.6 Plot of SSIM and CWSSIM ranks. (a) and (b) depict April SSIM and CWSSIM ranks, (c) and 

(d) are SSIM and CWSSIM ranks for February. Each square box on the graph represents an image (i.e., 

SWE map). We arbitrarily split ranks distributions into four quadrants to demonstrate agreement and 

discrepancy on SSIM and CWSSIM indices.  

 

 

(a)  April ranks, window 3 

(d)  February ranks, window 11 

 

(b)  April ranks, window 11 

(c)  February ranks, window 3 
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    In Figures 3.7-3.8 red, green and blue frames respectively represent reference image, metrics 

agreement and discrepancy in ranks. Unlike the simulation case, in the SWE dataset, comparison 

and ranking employing window size 3 and 6 yielded repetitive maps and ranks, thus we focus on 

window dimensions 3 and 11 instead. Figure 3.7 shows samples of SWE maps from February 

1980 (b) and February 2013 (a and c). SSIM and CWSSIM indices show discrepancy in 

assigning ranks to map FEB13101. In contrast, the indices ranking agree for FEB1304. As 

noticed previously, limited variability exists in the metrics values on the same index using 

window settings 3; cross index values are however different. MSE estimates are opposite and 

disagree with both metrics’ similarity assignments.  
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Figure 3.7 Sample of SWE maps in February 1980 and 2013. (b) is reference image, (a) and (c) are SWE 

maps taken on different dates. SSIM and CWSSIM show discrepancy in assigning ranks to map (c) 

FEB13101.  Conversely, the indices ranking agrees for (a) FEB1304. 
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    Similarity maps in April SWE dataset are shown in Figure 3.8 using window size 3. The ranks 

of SSIM and CWSSIM match for APR1301; also, MSE estimates align with both metrics. Again, 

the closeness of the metrics values on the same scale is emphasized. 

 

 

Figure 3.8 SWE maps in April 1980 and 2013. (b) is reference image, (a) and (c) are SWE maps on 

different dates. Window size 3 was maintained for similarity measurements. Ranks of SSIM and 

CWSSIM turn out to match for (a) APR1301. 

 

    Figures 3.9 and 3.10 depict surface snow cover dynamics from January to April in the year 

2013. The reference image was capture on 2nd January, 2013. Window size 3 × 3 was used to 

compute SSIM values. Although SSIM index shows fluctuating snow levels through figures 

3.9(b) to 3.9(h) probably due to daily snow variability, a consistent decrease in snow level is 

obvious from Figures 3.9(i) to 3.9(l). The snow melting process is further emphasized in figure 
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10 where both CWSSIM index and SSIM index exhibit apparent decline in surface 

snow cover in 2013, from first April through to twenty fifth April. 
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Figure 3.9 Comparison of January SWE map and April SWE maps. (a) January SWE map, and (b) - (l) 

are April SWE maps. SWE map Jan1302 represents the reference image. A gradual decline in similarity 

values can be noticed from the beginning towards the end of April. 
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Figure 3.10 Trend in snow melting process in northern Canada, April 2013. On the horizontal axis, labels 

s01 to s25 represent samples of SWE maps in April, and the corresponding similarity scores on the 

vertical axis. Note that here, comparison is made using January SWE map as reference. Overall, the plot 

depicts a closely related trend in similarity values recorded by the metrics, though SSIM values are higher 

than CWSSIM. 

 

3.5 Discussion 

 

    Using Wilcoxon signed rank test, similarity estimates on SSIM and CWSSIM indices were 

found to be statistically significant for within simulation (mvr3 versus mvr3) and between 

simulation (mvr3 versus mvr8). For each simulation, the test was significant when windows  
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3 × 3, 6 × 6, and 11 × 11 were used. It was only in one scenario that there was no statistical 

significance in mvr3 versus mvr3 using window size 11 × 11 (i.e., p-value = 0.793).  Wilcoxon 

tests for most image-reference pairs yielded p-value < 0.05 for our simulation data. When ranks 

of image-reference pairs on both indices were compared, patterns of both agreements and 

discrepancies were observed. There were more frequent agreements in mvr3 versus mvr3 with 

window size set to 11 × 11 than in mvr3 versus mvr3, and mvr3 versus mvr8, using window 3 × 

3 and 6 × 6, respectively.  

    For CWSSIM, the variance pattern shown in Figure 3.3b is expected; being lowest for mvr3 

versus mvr3 compared to comparisons where process parameters were different. The differences 

in variance for SSIM were less pronounced. This exposes SSIM’s lower power to detect subtle 

changes in spatial patterns or spatial pattern generating processes and perhaps emphasizes 

CWSSIM insensitivity to non-structured changes (Sampat et al. 2009), a feature of possible 

utility in spatial pattern comparison (e.g., see Figure 3.2). In the cross-process comparison of 

mvr3 versus mvr8 images, the metrics’ similarity scores reduced substantially below mvr3 

versus mvr3 comparison on window 3 × 3 but remained higher on that same data with window 

11×11. Given that there is higher spatial dependence in mvr8, we anticipate lower similarity 

values for mvr3 versus mvr8 than in mvr3 versus mvr3 at the same window dimensions. 

However, as depicted in Figure 3.3a, this turns out to be true on the smallest window 3 × 3 and 

not on the largest window 11 × 11. Such an observation points to the effects of spatial smoothing 

and loss of local spatial information on the degree of spatial dependence existing in the map-

pairs as the window size increases. Thus, we notice that within simulation (i.e., similar 

underlying geographical process), there occurred decreased similarity values, but with increased 

image-pair rank agreement on both indices at window size 11 × 11. This sheds light on the 
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overall importance of window dimensions on the sensitivity of the metrics and emphasizes the 

importance of window choice and scale in geographical pattern comparison. An inappropriate 

window size is likely to miss the real variability in the underlying pattern structure. These 

inferences further highlight the widely debated issue of scale in geographical research. 

Therefore, to properly quantify and characterize spatial patterns using these metrics, an 

appropriate window choice should be adopted vis-a-vis prior knowledge pertaining to scale and 

extent of spatial dependence in processes generating spatial patterns (Comber and Wulder 2019).  

    Jones et al. (2016) research on sperm whales space use behavior in the Mediterranean Sea 

demonstrates the influence of window size on the various components of SSIM index. The 

authors found that varying window size from 3 × 3 to 5 × 5 showed noticeable differences in 

variance (contrast) and covariance (spatial structure) components in the maps being compared. 

Similarly, in our experiments with varying window sizes, the metrics yielded different similarity 

values. In moving from window size 3×3 to 11×11, sharp changes in map-pair similarity values 

as well as rank shifts occurred compared to traversing from window dimension 3 × 3 to 6 × 6. To 

overcome window selection issues in geographical research, Wu (2004) suggests that the choice 

of local neighborhood size (i.e., window size) should include the spatial resolution of the data or 

maps being compared, ecological questions intended to be answered via map comparison, and 

possible scale-dependence in the pattern generating processes. 

    In remote sensing data acquisition, sun angle change, uneven topography, sensor platform 

shift and/or angle displacement are common problems requiring image registration and 

radiometric correction (Dai and Khorram 1998; Rogan and Chen 2004). The CWSSIM is 

inherently translation, rotation, and scale insensitive to marginal variations between map-pairs 

(Gao, Rehman, and Wang 2011; Sampat et al. 2009); such attributes render the metric robust to 
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the non-structured distortions mentioned above. We use real-world maps to emphasize the 

geometric insensitive attribute of CWSSIM in Figure 3.2. Higher variance in CWSSIM values 

observed in our analysis, for example, demonstrates its inherent translational, rotational, and 

scale invariance property; thus, the index can potentially capture real and detailed structural 

changes between pairs of landscape maps without compromising its performance. This implies 

CWSSIM has the tendency to characterize and quantify differences even in patterns generated by 

closely related but somewhat diverging geographical processes. Contrarily, the SSIM index 

yielded relatively small standard deviations, suggesting that the image-reference pairs are 

produced by similar spatial pattern-generating processes which are probably difficult to isolate. 

Given that similar process can create distinct spatial patterns, differences in spatial patterns 

resulting from the same spatial processes may not be well characterized or observed using SSIM. 

In geographical analysis, especially comparing continuous-valued maps, image mis-registration 

can lead to false accuracy reports; the rotation and translation invariance attribute of CWSSIM 

can be useful for mitigating such errors. Other studies such as (Gao, Rehman, and Wang 2011) 

and (Rehman et al. 2013) emphasize CWSSIM’s potential to discriminate and classify different 

image sets.  

    The SWE maps presented as case studies provide an insight into the potential deployment of 

computer vision methods in quantifying real geographical data. Wilcoxon signed rank tests in 

SWE data produced p-value < 0.05 for most samples, implying significant difference in the 

metrics evaluation of map-pair similarity. Figures 3.4 and 3.6 depict SSIM and CWSSIM values 

distribution and map ranks pattern change, respectively in SWE data. Shifts in ranks appeared 

less in the real geographical data (i.e., SWE data) which could be attributed to the relatively 

smooth transitional nature of snow patterns. Rank discrepancy tends to occur frequently where 
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the metrics values were close with less variability. As can be seen in figures 3.7, SSIM values are 

higher at small window size, suggesting that the metric is sensitive to local patterns in SWE 

variability. This property is useful for characterizing small scale changes in SWE.  CWSSIM’s 

translation and rotational invariance properties are probably smoothing or averaging out local 

variability; thus, accounting for the unchanged SWE distribution which were captured by SSIM 

in Figure 3.5. This implies CWSSIM may be less sensitive to local changes in SWE, but can be 

utilized to characterize structural changes in pattern rather than local changes in SWE maps. 

These observations, in all, highlight the metrics complimentary functionality and the potential to 

deploy them together to characterize changes in spatial patterns from local to large scale. In 

terms of snow spatio-temporal change, the metrics portray low snow levels in February and April 

1980 compared to the amounts in 2013. Figures 3.9 and 3.10 illustrate temporal changes in snow 

pattern throughout April 2013. Substantial snow melting occurred in the last week (i.e., 23rd to 

25th April). Such subtle spatio-temporal changes in climatic processes can be important 

indicators in climate trend analysis but cannot be effectively revealed by traditional map/image 

comparison methods (Robertson et al. 2014; Jones et al. 2016).  

    The CWSSIM index discriminative power was demonstrated through its successful use in 

recognizing the similarity of palmprints (Zhang et al. 2007). Dumic, Grgic, and Grgic (2014) 

study also shed light on pattern recognition capability of a variant of CWSSIM. As mentioned 

previously, these applications can be considered analogous to landscape pattern or spatial model 

comparison, hence demonstrates the potential of these metrics in geographical research. For 

instance, the unique structural pattern recognition attributes of  SSIM and CWSSIM shows that 

the metrics may have utility in map comparison or finding goodness-of-fit in spatial model 
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output and/or spatial explicit model validation (Pontius Jr and Schneider 2001; Pontius, 

Huffaker, and Denman 2004).  

    Recent trends in spatial pattern analysis have shown entropy-based metrics and deep-learning 

methods to be effective  for extracting spatial structure at varying scales (Frazier 2019). For 

instance, Zhao and Zhang (2019) utilized a Wasserstein metric to estimate spatial configurational 

entropy of landscapes in digital elevation models and simulated datasets. Landscape patterns can 

also be characterized through information theory approaches that analyze spatial patterns by 

transforming them into two-dimensional spaces (Nowosad and Stepinski 2019). However, given 

that changes in entropy result from  changes in processes,  challenges remain in attempts to infer  

spatial patterns from processes (Vranken et al. 2015). The application of metrics from deep-

learning methods such as neural networks offer potential for analysis and interpretation of 

patterns and processes in a data-driven framework to augment the limitations of hand-crafted 

pattern extraction metrics mentioned above (Buscombe and Ritchie 2018; Reichstein et al. 2019). 

More importantly, deep-learning approaches also take spatial context and texture into account 

while under-weighing illumination and luminance variations in underlying process-pattern 

change, and hence are able to effectively classify data with large and complex spatial structures 

(Buscombe and Ritchie 2018). These emerging tools could be compared with SSIM and 

CWSSIM to generate rank-order of images so as to establish a framework for selecting metrics 

for a given problem at hand (e.g., Dosselmann and Yang 2013).   

    We note that the use of CWSSIM in spatial pattern comparison might raise certain potentially 

challenging questions. For example, given that the metric is insensitive to non-structured 

distortions only at small scales, the question pertaining to the threshold distortions such as mis-

registration and radiometric correction errors are considered extreme, and the scale at which 
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CWSSIM gains sensitivity and ceases to be geometric and scale invariant calls for further 

investigation. Also, as critiqued by Robertson et al. (2014) in the case of the SSIM index, 

presently there is no existing consensus on the indices scales in map comparison beyond 

relational mapping. Research could focus on development of a comprehensive scale for 

evaluating map similarity values and perhaps for commonly used sensors or data sources (e.g., 

Landsat analysis-ready data). For example, via computing similarity values for sequences of 

map-pairs, null distributions could be generated for certain geographical pattern types to enable 

hypotheses formulation and significance testing. Future research is also warranted to explore and 

exploit the geometric invariance property of the CWSSIM metric for implementation in irregular 

map comparison and landcover classification tasks.  

    The SWE maps employed in this study to represent real geographical data possess limited 

intrinsic structural complexity. Testing the indices on data sets with greater complexity in spatial 

structure, texture and edge patterns is suggested. Furthermore, future research might focus on 

assessing the metrics performance on maps yielded by independent pre-registration and 

radiometric correction methods or models. This will likely expose the degree of their invariance 

to scale, pixel misalignment, illumination and contrast changes. Finally, we suggest that human 

judgment of structural similarity is simultaneously assessed alongside CWSSIM index values to 

ascertain the extent to which the metric mimics human perception of landscape pattern similarity. 

Such analyses might be able to calibrate index values with decision-points in a natural resource 

management context. 
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3.6 Conclusion 

 

    To summarize, the paper concludes that computer vision metrics CWSSIM and SSIM are 

clearly of potential utility in geographical analysis, though with sensitivity to window size 

definition and need for further research to map index values to specific types of landscape 

change/similarity. The ranks yielded by both metrics disagree much more in the simulation 

scenario than in the SWE dataset, especially where similarity values were close. The metrics are 

both capable of detecting changes in real geographical patterns as seen in the SWE maps, but 

SSIM maps retain more spatially relevant information compared to CWSSIM maps. While SSIM 

values remained consistently higher than CWSSIM, there was higher variance in CWSSIM 

estimates. Though the behavior of CWSSIM with respect to changing window configuration is 

difficult to generalize, it demonstrated some slight improvements over SSIM when it comes to 

spatial pattern discrimination. This attribute may render the index robust for comparing output 

maps generated from spatial models. The metrics could enable the capture and comparison of 

subtle changes in spatial patterns. The CWSSIM, could be significantly sensitive to different 

model realizations, and could potentially distinguish between geographical or landscape patterns 

produced by closely associated but different spatial processes. However, we note that both 

metrics possess complimentary functionalities, suggesting the need to consider their tandem 

deployment, especially, where pattern comparison interest is to characterize medium to large 

scale changes in spatial patterns. We further emphasize that the most sophisticated pattern 

comparison metric may or may not extract features that depict the true underlying pattern 

generating process as seen in the SSIM and CWSSIM indices results in simulation and real-

world datasets. It is possible to optimize different metrics to extract spatially discriminative 

patterns for specific landscape tasks. Therefore, for a broader spectrum deployment in landscape 
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pattern analysis and change detection, a suite of metrics ranging from simple (e.g., MSE) to the 

most sophisticated methods (e.g., deep learning methods) need to be considered. For example, 

ranking the scores of image-reference pairs under candidate metrics for a given landscape type 

may provide insight into which metric best captures the underlying changes in spatial patterns 
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Appendix 3A 
 

 
Table 3.1 Mathematical notations and meanings 

 

Notation Meaning 

x Reference image 

y Image to be compared with the reference image 

c Sub-band (sub-channel) of image 

c∗ Complex conjugate (transformed version) of c 

cx Sub-band of reference image 

cy Sub-band of image to be compared with the reference 

image 

cx,i Pixel intensity for sub-band cx 

cy,i Pixel intensity for sub-band cy 

i Pixel or cell value 

l(x,y) Luminance term 

c(x,y) Contrast term 

s(x,y) Structure term 

n number of pixels defined by window dimension 

β Weight parameter for contrast term 

γ Weight parameter for structure term 
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Table 3.2 Mathematical notations and meanings (continued) 

 

 

Notation Meaning 

  

K Small stabilizing positive constant for CWSSIM 

K1 Small constant to derive C1 

K2 Small constant to derive C2 

C1 Stabilizing constant derived from K1 

C2 Stabilizing constant derived from K2 

C3 Stabilizing constant derived from C2 

L Dynamic range of pixel values 

µx image x mean intensity 

µy image y mean intensity 

σx Standard deviation of image x 

σy Standard deviation of image y 

σxy Covariance of map x and y 

α Weight parameter for luminance term 

β Weight parameter for contrast term 

γ Weight parameter for structure term 
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Chapter 4:  Landscape Similarity Analysis Using Texture Encoded 

Deep-Learning Features on Unclassified Remote Sensing Imagery  

 

4.1 Abstract 

 

    Convolutional neural networks (CNNs) are known for their ability to learn shape and texture 

descriptors useful for object detection, pattern recognition, and classification problems. Deeper 

layer filters of CNNs generally learn global image information vital for whole-scene or object 

discrimination. In landscape pattern comparison, however, dense localized information encoded 

in shallow layers can contain discriminative information for characterizing changes across image 

local regions but are often lost in the deeper and non-spatial fully connected layers. Such 

localized features hold potential for identifying, as well as characterizing, process–pattern 

change across space and time. In this paper, we propose a simple yet effective texture-based 

CNN (Tex-CNN) via a feature concatenation framework which results in capturing and learning 

texture descriptors. Using the Tex-CNN, gradient-based spatial attention maps (feature maps) 

which contain discriminative pattern information are extracted and subsequently employed for 

mapping landscape similarity. To enhance the discriminative capacity of the feature maps, we 

further perform spatial filtering, using PCA and select eigen maps with the top eigen value. We 

show that CNN feature maps provide descriptors capable of characterizing and quantifying 

landscape similarity. Using the feature maps’ histogram of oriented gradient vectors and 

computing their Earth Movers Distances, our method effectively identified similar landscape 

types with over 60% of target-reference scene comparisons showing smaller Earth Movers 

Distance (EMD) (e.g., 0.01), while different landscape types tended to show large EMD (e.g., 
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0.05) in the benchmark AID. We hope this study will inspire further research into the use of 

CNN layer feature maps in landscape similarity assessment, as well as in change detection. 

 

 

4.2 Introduction 

 

    Earth system and environmental data have become abundant via a variety of sources ranging 

from model simulation data, citizen science, amateur drones, airborne sensors, commercial 

satellites, and easily accessible data such as Landsat (Dandois and Ellis, 2013; Miller and 

Goodchild, 2015). These data are available at unprecedented spatial and temporal resolutions and 

are widely used for understanding processes of environmental change across time and space. 

Given the rapidity of human-induced landscape disturbances, there is increasing interest in using 

environmental data resources to not only understand but also characterize and quantify 

landscape-scale disturbances, and to support decisions and policies aimed at remediating 

degraded landscapes (Townshend et al., 2012; Wulder et al., 2018).  

    Identifying the underlying processes that generate spatial patterns is critical to quantifying 

changes in patterns across space and time (Comber and Wulder, 2019). For instance, we ask 

questions like, where are degraded landscapes? What types of specific features are common or 

different between geographical locations? Such questions can be addressed through landscape 

pattern comparison. Traditional landscape similarity analysis tools, however, rely largely on 

change-detection analysis of classified landcover maps to predict or quantify process-driven 

changes. While these approaches have been successful, they are limited in uncovering the 

complex and non-linear nature of process–pattern relationships (Long and Robertson, 2018). 

Classification-based techniques also depend on the accuracy of the underlying map classification 
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method and incur challenges associated with legend harmonization and consistency/reproducible 

methods for data processing (Li et al., 2020a). Furthermore, processes and patterns are both 

interdependent and affect each other in many ways, thus complicating prediction efforts (Turner, 

1989a). The growing historical archive of image data is increasingly being used to develop 

monitoring schemes and tools for understanding complex land-change processes (Comber and 

Wulder, 2019). Despite these advances, tools capable of extracting structural information from 

raw, unclassified land-image data in geographic context are limited.   

    Deep learning models are capable of learning to extract robust descriptors from image data. 

Such descriptors are useful representations of data structure, and hence hold potential for 

landscape research (Reichstein et al., 2019). For example, Tracewski et al. (2017) demonstrated 

the application of deep learning for characterizing different landcover types.  Grinblat et al. 

(2016) also applied deep neural networks for plant species identification based on vein 

morphological patterns. The landscape similarity search algorithm proposed by  Jasiewicz et al. 

(2014) illustrates the potential of computer vision methods to discover similar landscapes across 

space. Landscape similarity analysis is a fundamentally different problem than classification, 

seeking to quantitatively assess the similarity of whole landscapes, rather than label 

homogeneous elements within them. CNN models can be considered a recent class of spatially 

explicit models  in geographic context which have demonstrated their effectiveness in many 

classification problems and show potential for application in a landscape similarity context 

(Janowicz et al., 2020). 

    Computer vision models, such as CNNs, contain filter banks which engage in spatial learning, 

to extract spatially discriminative features of increasing complexity through weight-sharing 

(Cimpoi et al., 2016). Lower CNN layer (e.g., first and second convolutional layer) feature maps 
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contain local information that captures fine-grain discriminative patterns useful for similarity 

mapping, while deep layer (i.e., layers close to network output) features lack geometric 

invariance, which weakens their robustness to map finely detailed landscape patterns across 

variable scenes (Gong et al., 2014). The layers of CNNs can preserve representative information 

about an input image with varying rotation and illumination characteristics (Mahendran and 

Vedaldi, 2014); consequently, pretrained CNNs can be employed to extract features for 

characterizing dynamic texture and dynamic scenes (Qi et al., 2016). Convolutional neural 

network filters exhibit consistent response to useful local regions of images; based on this 

property, Li et al. (2018) proposed a PatternNet that utilizes deconvolution (i.e., up-sampling) to 

discover discriminative and representative patterns in images. In a related study, Lettry et al. 

(2017) introduced a model capable of detecting repeated patterns in images. The authors provide 

evidence that consistent small patterns can be strongly expressed in the lower layers and hence 

are detected as major repetitions. Given the importance of texture in landscape aerial scenes, 

these properties may be particularly useful in recognizing different types of landscape scenes in 

aerial and satellite image data. 

    A variety of CNN architectures have been proposed to resolve image-classification problems 

in recent years (Kalantar et al., 2020; Flores et al., 2019). CNN layer depth, input size, and even 

training strategies adopted may influence the model performance and competitiveness with 

traditional machine learning techniques (Ghorbanzadeh et al., 2019). For instance, to learn multi-

scale features which are robust to scale variation, and thus reduce misclassification rates, Liu  et 

al. (2018d) proposed a method in which randomly cropped image patches are used for model 

development. Gong et al. (2018) also introduced a saliency-based feature extraction framework 

with anti-noise transfer network and found the approach to yield high classification accuracy on 
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benchmark datasets. CNNs with feature concatenation or fusion modules are simple but effective 

feature extraction frameworks that have been adopted to combine local and global image features 

for improving the performance of many scene classification and other pattern recognition tasks 

(Zhu et al., 2018; Zhuang et al., 2019; Petrovska et al., 2020).  Ye et al. (2018b) presented a 

multi-stage model that extracts and fuses low-, middle-, and high-level features, and obtained 

95% accuracy on the Aerial Image Dataset (AID).  Kang et al. (2017) also developed a network 

that captures contextual information via the fusion of deep and shallow features to improve ship-

detection accuracy. A framework with dilated convolution and skip connections was found to 

learn multiresolution discriminative features for scene classification (Fu et al., 2017a). Similarly, 

Gao et al. (2018) proposed a network in which feature maps generated from input images are 

passed on to a concatenating layer, forming a combined feature map with richer discriminative 

information. The authors concluded that their method significantly improved hyperspectral 

image classification. In a related study,  Huang and Xu (2019) used weighted concatenation to 

combine features across all CNN layers, yielding overall accuracy of 95% in the AID. Similarly, 

Zeng et al. (2018) developed a two-branch CNN in which local and global features are 

independently extracted and concatenated. With extensive experiments, the authors demonstrated 

that feature concatenation resulted in over 90% accuracy for most scene classes in AID. 

    Despite the state-of-the-art performance of current CNN architectures, deep learning 

algorithms are generally perceived as “black-boxes” in both computer vision and across other 

domains; consequently, there have been intensifying calls to interrogate and reveal the inner 

workings of deep learning models in disciplines such as geography (Gahegan, 2020). Visualizing 

spatial attention maps (i.e., feature maps) is a fairly simple method of exploring how CNNs learn 

and make decisions on an input image. The approach may be gradient-based and involve 
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computing network output changes with respect to input (Simonyan et al., 2013), or utilize a 

deconvolution network that projects image features over a plane (Zeiler and Fergus, 2014). Zhou 

et al. (2016) also proposed converting the linear decision (regression) layer into a convolutional 

layer for generating class-based attention maps. To improve gradient-based feature map quality, 

guided backpropagation has also been introduced (Springenberg et al., 2014). As these 

approaches do not always produce class-specific feature maps (Zagoruyko and Komodakis, 

2017), Selvaraju et al. (2017) proposed Grad-CAM, which integrates guided backpropagation 

and class activation maps, and thus yielding class-discriminative spatial attention maps. In 

related research, Omeiza et al. (2019) proposed Smooth Grad-CAM++ to improve the spatial 

resolution and localization of patterns in feature maps. Class-selective relevance mapping has 

also been proposed to derive feature maps that contain the most discriminative regions of interest 

in medical images (Hongyun Zhang et al., 2019). 

    In this study, we focused on landscape similarity assessment on unclassified imagery using 

gradient-based convolutional feature maps. Gradient with respect to an image is a sensitivity map 

measuring how changes at a pixel spatial location affect changes in CNN model predictions 

(Selvaraju et al., 2017). To derive gradient-based feature maps, a pre-trained CNN model is 

therefore required. To this end, we propose training and deploying a texture-encoded CNN 

model (Tex-CNN) to extract feature maps for landscape similarity comparison. A classical CNN 

was also trained to assess the effectiveness of the proposed Tex-CNN model. Using the trained 

Tex-CNN, we derived feature maps which were evaluated in terms of capturing discriminant 

properties of different landscape scenes. The similarity analysis framework adopted here could 

form the basis of landscape retrieval / search systems, as well as fuzzy landscape search where 

multiple landscape scene types co-occur. 
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    The contribution of this study is, therefore, two-fold. (1) A gradient-based convolutional 

feature map approach to landscape similarity analysis was proposed. Using gradient-based 

features, the proposed landscape similarity assessment utilizes significant spatial patterns in a 

query and a candidate image for comparison. (2) A landscape similarity metric capable of 

detecting within- and between-landscape types was developed. The use of CNN feature maps to 

characterize landscape similarity is limited in geography, and more importantly, this study is the 

first exploration of gradient-based CNN features for comparing landscapes. The paper is 

arranged as follows: We first illuminate the importance of spatial feature maps in landscape 

comparison; next, the methodological pipeline is presented, followed by results, discussion, and 

conclusion. 

 

4.3  Related Work 

 

    Prior to the emergence of state-of-the-art of CNNs capable of detecting and classifying objects 

and patterns, image texture processing was one of the earliest applications in which CNNs were 

employed to extract discriminative local features (Ustyuzhaninov et al., 2016; Gatys et al., 2017). 

 

4.3.1 Representing Patterns in CNN Feature Maps 

 

    Convolutional feature maps can be thought of as spatial activation features encoding 

discriminative regions within a given input image (Girdhar and Ramanan, 2017). A feature map 

can also be viewed as detection scores resulting from the application of a filter over spatial 

locations in a 2D image; the activation value obtained at the i-th location quantifies the 

importance of the pixel at that location (Cao et al., 2016). Such locations may be linked, at least 
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conceptually, to “landscape features of interest” or those areas of the landscape that are 

discriminative of the landscape scene label. The potential of a convolutional-feature-based 

approach in urban landscape change detection was presented in El Amin et al. (2016). The 

authors demonstrated that CNN features can perform higher than “hand-crated features” and 

other state-of-the-art techniques. In related research, Albert et al. (2017) showed that features 

extracted from CNNs trained discriminatively on urban imagery effectively compare 

neighborhood similarity across European cities. 

    In landscape research where local-to-global changes or pattern similarity are sometimes of 

interest, CNN maps can be helpful. Feature maps represent local response regions of filters and 

thus encapsulate valuable pattern information (Zagoruyko and Komodakis, 2017). These local 

regions also encode information pertaining to the underlying pattern-generating process. Feature 

maps from convolutional layers represent local descriptors of particular image regions which can 

be aggregated into global descriptors for image retrieval (Yandex and Lempitsky, 2015). An 

image-retrieval framework is also closely related to the landscape-pattern comparison problem. 

For instance, CNN activations containing pronounced spatial information can be utilized for 

detecting repeated patterns (Lettry et al., 2017). The challenge to detect repetitive spatial patterns 

is similar to the landscape similarity analysis problem. It has been illustrated that convolutional 

layer activations are local region descriptors and outperform many state-of-the-art descriptors 

(Gatys et al., 2017; Girdhar and Ramanan, 2017); thus, if these feature maps are well-pooled, a 

compact representation of a given landscape can be derived. Additionally,  Zagoruyko and 

Komodakis (2017) have shown that feature maps represent “knowledge learned” by a given 

network about the underlying pattern and can be transferred to other networks, to improve 

pattern detection. Furthermore, classical machine-learning algorithms for pattern detection or 
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classification, such as Random Forest, Support Vector Machine, and Maximum Likelihood being 

employed in landscape research, can be coupled with deep feature extraction models to boost 

performance (Wang et al., 2019). For example, it has been shown that feeding features from 

CNNs to other models improve results (Petrovska et al., 2020). We therefore postulate that 

CNN-feature-based frameworks hold the potential to enable the detection and quantification of 

spatial patterns in unclassified image data. 

 

4.3.2 CNN-Feature-Based Image Retrieval 

 

    Image retrieval is an active research area in this era of “big data”, where the objective is to 

find a set of images that are the most similar to a given query image. Content-based image 

retrieval (CBIR) is a widely applied technique for retrieving images in databases. In CBIR, low-

level image descriptors (e.g., color, texture, and structure) are extracted to form an image 

representation; a suitable measure is then selected to estimate similarity between images. Several 

algorithms have been proposed for an improved CBIR. For example, Unar et al. (2019) combine 

both visual and textual features for image retrieval.  Zhang et al. (2019) also developed an 

algorithm that segments an image into salient, non-salient, and shadowed regions, in order to 

extract spatially relevant information. Earth observation data now available in various archives 

could provide a wealth of information through effective search and retrieval techniques (Peng et 

al., 2019). 

    Recent research has shifted towards the use of features extracted from deep convolutional 

layers of CNNs for image matching and retrieval (Shi and Qian, 2019; Gu et al., 2019). The use 

of deep convolutional features for image retrieval is demonstrated in a study conducted by 

Yandex and Lempitsky (2015). Chen et al. (2019) propose region-of-interest deep convolutional 
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representation for image retrieval. Their approach first identifies regions of interest and proceeds 

to extract features from the fully connected layer. Shi and Qian (2019) also adapted the region-

of-interest-based approach called strong-response-stack-contribution, by exploring spatial and 

channel contribution, to generate a more compact global representation vector for an object-

based image retrieval challenge.  Cao et al. (2016) applied adaptive matching by splitting feature 

maps and later spatially aggregating them into regions of interest for comparison. Liu et al. 

(2015) proposed extracting and pooling subarrays of feature maps as local descriptors for visual 

classification task and found that the method outperforms features from fully connected layers. 

The aforementioned applications demonstrate the capability of CNN features to represent 

discriminative patterns which are useful for quantifying change and similarity, and therefore hold 

potential for designing resource management and decision-making applications in geography. 

 

4.4 Materials and Methods 

 

4.4.1 Models’ Architecture 

 

    In the context of landscape similarity mapping, global shape information present in fully 

connected layers is of less significance, as landscape patterns often lack unique or stable 

geometry across space. Given that lower layers capture local patterns (Cimpoi et al., 2016), we 

concatenated multi-layer features, to learn a discriminative representation of the data-generating 

process. In feature fusion, feature maps from three convolutional layers (i.e., conv1, conv2, and 

conv3) are concatenated followed by flattening into feature vectors to yield a dense layer 

(denoted FC1). One possible approach to improving CNN features’ discriminative potential is to 

apply attention pooling strategies that takes the weighted sum of different feature maps instead of 
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concatenating features, but this technique exponentially increases model parameters as well. 

However, we adopted feature concatenation, as it has been proven to enable the extraction of 

multiscale features, potentially obviating the need for multiscale inputs during model 

development (Lim and Keles, 2020). Moreover, attention strategies are effective for object 

recognition tasks but may not tangibly improve landscape pattern discrimination. 

    Work similar to our approach is Andrearczyk and Whelan (2016) feature concatenation 

framework. Figure 4.1 illustrates the architecture of a classical CNN, while Figure 4.2 depicts 

our model architecture. For model design, we build on the VGG16 model architecture and filter 

constellation (Simonyan and Zisserman, 2015). Thus, 32, 64, and 128 Filters are used in the first, 

second, and third convolutional layers of the classical CNN and the Tex-CNN models. The 

proposed model architecture is intended to be simple with minimum parameters as possible for 

field deployment.  

 

 

 

Figure 4.1 Architecture of a classical convolutional neural network (CNN). The CNN applies 

convolutional operations, as well as max-pooling, to process input tiles, but no feature concatenation is 

implemented. 
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Figure 4.2 Architecture of our proposed texture-based (Tex-) CNN model. Con1, Conv2, and Conv3 

denote convolutional layers, while FC1 denotes fully connected layer. Concat layer represents 

concatenation of Conv1, Conv2, and Conv3 feature maps. 

 

4.4.2 Model Parameterization and Training 

 

    We opted for training our models from scratch, as this approach gives flexibility over model 

architecture. Although there is potential for data limitation, as well as over-fitting, in this 

framework (Nogueira et al., 2017), the approach facilitates feature maps comparison, as it 

ensures that features are the direct result of filters learned on data presented to models, compared 

to using pretrained networks in which filters learned from an entirely different domain than the 

task at hand. Given that the input image size is large enough (i.e., 225 × 225), we selected 7 × 7 

convolutional kernels and used a fixed filter size throughout the convolutional layers. The space 
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between successive convolutional filter operations (stride) is set to 1 pixel. Filter receptive field 

size changes with layer depth and could result in profound differences in feature spatial 

resolution between successive layers. In the pooling layers, 2 × 2 max pooling with stride 2 is 

applied. The receptive field size at the third convolutional layer, therefore, becomes 46. We 

utilized 75% of the sample data for training and 25% for validation. To mitigate potential 

overfitting, 25% drop-out is used in convolutional layers, while 50% is applied to the FC1 layer 

(Hinton et al., 2012). The rectified linear unit (ReLU) is used as the activation function. 

Multiclass cross-entropy loss function is employed, and the models are trained for 30 iterations 

with Adam as the optimizer. Adam adaptively computes and updates gradients and is invariant to 

diagonal scaling of gradients (Kingma and Ba, 2015). The Keras-Tensorflow backend was used 

for building and supporting computations required to train the CNN models on a GPU with a 

NVIDIA-supported graphics card. Table 4.1 summarizes the models’ architecture and 

parameters. 

 

 

Table 4.1 A summary of models’ architecture and parameters. 

 

 

Layer Name Convolution Max-Pooling Activation Drop-Out 

Conv-1 7 × 7 × 32 2 × 2 ReLU 25% 

Conv-2 7 × 7 × 64 2 × 2 ReLU 25% 

Conv-3 7 × 7 × 128 2 × 2 ReLU 25% 

FC1 No No SoftMax 50% 
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4.4.3  Application Context: Landscape Comparison 

 

 

    Unclassified imagery, which is now ubiquitous due to the availability of sensors of varying 

types, offers the potential for landscape similarity queries. While land-cover classification in 

which pixels are labeled (classified) or objects are segmented and characterized is a predominant 

use of aerial and satellite imagery (Liu et al., 2015), in this modeling framework, we focus on 

characterizing whole scenes or landscapes. An implementation of this would be helpful for 

automating image retrieval and potentially provide a basis for mixed scenes and/or novel land-

scene categories and/or descriptors. A conceptual representation for comparing unclassified 

images (aka landscapes/scenes) is depicted in Figure 4.3, using three landscapes/scenes denoted 

as X, Y, and Z, but the representation is expandable to multiple landscape types. Given an image, 

the feature map will be extracted for comparison, using EMD. EMD(X, X’), EMD(Y, Y’), and 

EMD(Z, Z’) compute within-landscape similarity, while EMD(X, Y), EMD(Y, Z), and EMD(Z, 

X) estimate between-landscape similarity. 
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Figure 4.3 A conceptual framework for unclassified images/scenes comparison. Earth Movers Distance 

(EMD)(X, X’), EMD(Y, Y’), and EMD(Z, Z’) denote within-landscape comparison, while EMD(X, Y), 

EMD(Y, Z), and EMD(Z, X) represent between-landscape comparison. 

 

    Benchmark datasets have long been used in computer vision for model development, due to 

the scarcity of labeled data, and the laborious processes required for generating such datasets, yet 

they remain relatively rare in geospatial research. The aerial imagery dataset is composed of 

high-resolution benchmark data recommended for training scene classification models (Xia et 

al., 2016). The AID contains multi-resolution images; the pixel spatial resolution varies from 

about half a meter to eight meters, providing a suitable dataset for training classical CNN and 
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Tex-CNN models. Although, there are 30 aerial scene types in the AID; this study considered 3 

scene types – agriculture, forest and mountain were selected. Agricultural scene types are 

generally characterized by fields with conspicuous boundaries. Such fields may be bounded by 

regular or irregular boundaries and may contain green vegetation or bare soil. Forests scenes are 

landscapes most covered with trees, sometimes with intermittent patches. Mountains are terrain 

type scenes with variable morphology and may or may not contain vegetation. It is important to 

note that in reality these scene categories are not mutually exclusive: forests occur on mountains 

and agriculture can as well. We employ the notion of a dominant scene category as the basis for 

our modelling, and explore how scenes with lower similarity scores may represent mixed-scene 

landscapes. A common protocol in computer vision is to split a given dataset into training, 

validation, and test samples. This may sometimes result in high-accuracy reports resulting from 

overfitting. Owing to this caveat, and the need to find models capable of generalizing over a 

range of datasets for field application, we propose carrying out further validation by using a 

dataset from an entirely different sensor. As such, we employed Sentinel data to evaluate the 

generalizability of the models.  

 

4.4.4 Datasets and data augmentation    

 

    The AID consists of diverse landscape types; to test the robustness and potential 

generalizability of the proposed CNN feature-based landscape similarity comparison, we 

selected three landscape types in which some landscape instances can be difficult to clearly 

distinguish. For example, the occurrence of vegetation on certain mountains may challenge the 

capability of a metric to accurately distinguish mountainous landscapes from agriculture and 

forest landscapes. However, considering only three landscapes reduces the sample size. 
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Convolutional neural networks are “data hungry” models; thus, training such models from 

scratch by using fewer samples and classes is likely to pose data limitation issues and overfitting. 

Overfitting occurs when the CNN performance is better on the training dataset but low on the 

test dataset (i.e., the model has high variance) (Hinton et al., 2012). We attempt to circumvent 

this challenge via the application of data augmentation. Data augmentation strategies have been 

shown to improve models' performance by increasing the size of feature space and patterns 

available for models to learn. To that end, we employed the Keras image data generator API to 

augment our training dataset. The original spatial extent of images in AID is 600  600 pixels; to 

generate 255  255 tiles, images belonging to the three scene types were selected and randomly 

cropped to yield 1000 images per scene. Given that the AID is multiresolution – image pixel 

sizes vary from about half a meter to eight meters, scale representation challenges are inherently 

reduced such that scale transformations may not make substantial difference following data 

augmentation. Bearing this in mind, horizontal flips and rotations (i.e., 45 – 180 degrees) were 

applied to the 1000 images in each scene category, resulting in 3000 images per aerial scene 

type, thus yielding 9000 training samples for three landscape types: agriculture, mountain, and 

forest. An additional 150 images in each landscape type were augmented, doubling the number 

of images per landscape type, and resulting in 900 test samples. In the Sentinel dataset, 600 

images were used for independent validation of the potential generalizability of the method on 

medium-resolution satellite imagery. A separate set of 510 images from Sentinel dataset were 

combined with the 9000 images from AID to retrain the models. Table 4.2 describes the datasets 

and number images utilized in this study. We note that no data augmentation was applied to 

Sentinel dataset.  Figure 4.4 illustrates samples of AID landscapes used in our experiments. 
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Table 4.2 Data types and specific application. 

 

 

Data Source Attribute How Data is Utilized No. of Images 

AID 

Aerial imagery, 

pixel spatial resolution 

vary between 0.5 m and  

8 m 

Training and testing models,  

and building similarity  

distributions 

9000 images used 

training (75%) and  

validation (25%). 

900 images used for 

testing (e.g., deriving 

confusion matrix) 

 

Sentinel data 

Open-source satellite 

data; 10 m pixel  

resolution 

Visualizing feature maps, 

testing model generalization to  

medium resolution imagery 

 

Retraining models on Sentinel 

dataset 

600 images used for 

testing and computing 

confusion matrix.  

 

510 images combined 

with 9000 AID mages 
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Figure 4.4 Selected landscape categories from the AID dataset. Row (a) forest landscape, row (b) 

agriculture landscape, and row (c) mountain landscape. 

 

4.4.5 Activation/Feature Maps Derivation 

 

    Given a trained CNN model, gradient-based activation maps can be computed to allow for 

visualization of localized regions in an image that contribute significantly to a given output 

pattern. Using our trained classification model, activation maps were derived via 

backpropagation of filter responses to input pixel intensities (Selvaraju et al., 2017). ReLU was 

employed to constrain the backpropagation process to propagate only positive pixel values that 

activate filters; these pixel positions contain the highest weight and are therefore said to encode 

“significant patterns” or represent the signatures of the underlying pattern-generating process. 
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The gradient-based class activation map proposed by Selvaraju et al. (2017) is derived as 

follows: Let 𝑌𝑐 denote the score for a particular landscape scene. The gradient, with respect to 

𝑌𝑐 (i.e., backpropagation gradient), is formulated as 
𝜕𝑌𝑐

𝜕𝐴𝑖𝑗
𝑘  . 𝐴

𝑘 denotes a set of CNN activation 

maps, and (i, j) are locations of pixels in the feature maps. Equations (1) and (2) summarize 

feature maps derivation. 

 

𝛼𝑘
𝑐
⏟

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝 𝑤𝑒𝑖𝑔ℎ𝑡

=      
1

𝑍
∑ ∑  

𝜕𝑌𝑐

𝜕𝐴𝑖𝑗
𝑘

⏟
𝑗𝑖

⏞      
               𝐺𝑙𝑜𝑏𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑜𝑜𝑙𝑖𝑛𝑔

                                        Equation 4.1  

 

 

 

𝐿𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝
𝑐 = 𝑅𝑒𝐿𝑈 (∑ 𝛼𝑘

𝑐
𝑘 𝐴𝑘)                                                             Equation 4.2     

 

The weight term 𝛼𝑘
𝑐  captures the “significance” of feature map k for a target landscape 

type/scene. ReLU is applied to the weighted sum of feature maps, yielding heat-maps whose 

local regions highlight the most discriminant patterns in images. The resultant CNN activation 

maps pinpoint locations where the model focuses its attention on, since such locations contain 

significant spatial patterns. Therefore, activation maps can be referred to as “saliency maps” or 

“spatial attention maps”. 
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4.4.6 Extracting HoG Vector from Feature Maps 

 

    For each landscape type, 50 landscapes were randomly selected from the AID for feature map 

extraction. The 50 landscape types were drawn from the original 150 samples, and hence were 

not augmented. The 50 landscape types chosen here are for the purpose of demonstration only, 

but our method can be extended to over 50 landscapes. Aerial scenes were collected from 

different countries to create the AID (Xia et al., 2016). Therefore, each randomly selected scene 

type can be treated as a potential landscape from different spatial location. As shown in Table 

4.2, feature map similarity distributions were derived using AID, while Sentinel data was used to 

visualize gradient-based feature maps. We note that, since the number of filters in the second 

convolutional layer from which the feature maps were computed is 64, each image 

correspondingly yields 64 feature maps. Spatial filtering was performed using PCA to reduce the 

number of feature maps per image, yielding a more compact image descriptor (Yandex and 

Lempitsky, 2015). Such a step is inevitable when CNN feature maps are being compared; due to 

discriminative learning, not all filters respond to input images or pixels, and, as such, certain 

feature maps may contain no features/patterns where a filter is not activated by an input image 

(Yang et al., 2015; Xie et al., 2017; Luo et al., 2018). Using PCA, a feature map (i.e., eigen map) 

that has the highest eigen value was selected. Next, the HoG vector is extracted from each 

landscape type feature map. HoG has been shown to extract effective image descriptors for 

pattern recognition tasks. For example, human face recognition across standard datasets was 

found to improve with the use of HoG descriptors (Déniz et al., 2011). In related research, 

different plant species were effectively recognized from leaf patterns, using HoG descriptors 

(Quoc Bao et al., 2020). Setting the spatial parameters (i.e., cell size and cells per block) for 

extracting HoG features, however, requires a careful approach. In our implementation, the HoG 
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vector was extracted by considering cell size 24 × 24 dimension and cell-per-block = 2 × 2 of 

each feature map. We deployed the EMD, a multivariate histogram distance measure to compare 

the resultant HoG vector representing reference and test feature maps. Rubner et al. (2000) 

illustrated the effectiveness of EMD in image retrieval context. 

 

4.4.7 Formulating the Feature Map Comparison Metric 

 

    In the literature, there are a variety of pattern similarity comparison metrics, yet it is 

challenging to find robust and generic metrics to rely on when it comes to landscape similarity 

comparison. In this section, we illustrate how our convolutional feature map comparison metric 

was derived. Figure 4.5 is a depiction of our proposed convolutional feature-based landscape 

similarity comparison. 
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Figure 4.5 A framework for CNN-feature-based landscape similarity comparison. Notice that within-

landscape comparison (WLsim) compares features in similar landscapes type 1 (agriculture landscapes) 

and landscape type 2 (forest landscapes), while between (an across) landscape comparison (BLsim) cross-

compares feature maps in landscape type 1 versus landscape type 2. 

 

    Equations (3) and (4) illustrate our formulation and computation of within- and between-

landscape similarities. 

 

𝑊𝐿𝑠𝑖𝑚 = 𝐸𝑀𝐷 (𝐻𝑜𝐺(𝐿𝐿1 𝑡𝑦𝑝𝑒,𝑙𝑜𝑐𝑋),𝐻𝑜𝐺(𝐿𝐿1,𝑙𝑜𝑐𝑌))                                     Equation 4.3 

𝐵𝐿𝑠𝑖𝑚 = 𝐸𝑀𝐷 (𝐻𝑜𝐺(𝐿𝐿1 𝑡𝑦𝑝𝑒),𝐻𝑜𝐺(𝐿𝐿2 𝑡𝑦𝑝𝑒))                                              Equation 4.4 

 

where 𝐿𝐿1 𝑡𝑦𝑝𝑒 and 𝐿𝐿2 𝑡𝑦𝑝𝑒 represent different landscape categories from different spatial 

locations. 𝑊𝐿𝑠𝑖𝑚 and 𝐵𝐿𝑠𝑖𝑚 denote within- and between-landscape type comparison, 

respectively. For 𝑊𝐿𝑠𝑖𝑚, we compare similar landscapes; example 𝐿𝐿1 𝑡𝑦𝑝𝑒, but from different 

locations (e.g., 𝑙𝑜𝑐𝑋 𝑣𝑠 𝑙𝑜𝑐𝑌). For example, to compare agriculture landscapes, 𝑙𝑜𝑐𝑋 will 
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represent a reference landscape, while 𝑙𝑜𝑐𝑌(1,2,3…,𝑛) denotes agriculture landscapes (e.g., 225 × 

225 grids) from other locations of interest. Landscapes whose spatial extents are large could be 

tiled into spatial grids of equivalent dimension as the model input size for comparison. 𝐵𝐿𝑠𝑖𝑚 

involves a comparison of two disparate landscape types (e.g., forest versus agriculture). 𝐻𝑜𝐺(   ) 

computes HoG feature vector, given an input feature map, while 𝐸𝑀𝐷(   ) estimates HoG 

feature vector similarity based on the EMD between landscapes. To test the proposed metric, 50 

feature maps from each landscape type exhibiting the highest eigen value were randomly split 

into two subsets, thus yielding 25 images per subset, which are named G1 and G2 (e.g., agricG1 

and agricG2 each contains 25 images belonging to agriculture landscapes). The random shuffle 

function in scikit-learn library effectively shuffles training data to ensure that images with 

similar features/patterns are thoroughly mixed. The random shuffle function was therefore 

applied to shuffle feature maps before splitting them into a subset of 25; this resulted in 

substantial intra-landscape variability in each subset. Using the proposed metric, a compact 

distribution based on EMD was computed for within- and between-landscape, by comparing 

each scene type; for example, in agricG1, a selected scene was compared with all other scenes in 

agricG2. This permutation schema was repeated for all the 25 scenes in agricG1. 

 

4.5 Experimental Results 

 

4.5.1 Landscape Type Prediction Models 

 

    Figure 4.6a–f depicts classification accuracies for landscape types on AID and Sentinel data. 

The confusion matrices are computed by deploying the models on the test images from AID and 

Sentinel datasets (i.e., 900 images for AID and 600 images for Sentinel-2). In Figure 4.6a,b, the 
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Tex-CNN and the classical CNN classification accuracy reports are similar except for 

mountainous scenes where Tex-CNN has higher classification accuracy. In Figure 4.6c,d, the 

first row of the confusion matrix shows that over 90% of the agriculture landscapes are 

misclassified as forest in Sentinel dataset. About 70% of the mountain landscapes are correctly 

classified by the Tex-CNN, while the classical CNN achieves only 25% classification accuracy. 

Figure 4.6e,f shows classification accuracies after fine-tuning the models. Fine-tuning was 

conducted using a combination of AID and Sentinel data to re-train the models. It can be 

observed that misclassification rates for agriculture landscapes have been substantially reduced 

after fine-tuning. 
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Figure 4.6 Confusion matrix for landscape-type classification accuracy. (a,b) Tex-CNN and classical 

CNN accuracy on AID. (c,d) Classification accuracy for Tex-CNN and classical CNN on Sentinel dataset.  

(e,f) Accuracy for Tex-CNN and classical CNN, respectively, after retraining on a combination of AID 

and Sentinel test data.  

Predicted label 

 

Predicted label 

 
a) b) 

c) d) 

d) e) 
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    Table 4.3 compares the accuracy reports for reference state-of-the-art techniques and Tex-

CNN on the AID. It can be seen that the Tex-CNN is competitive with other methods in terms of 

per-landscape type classification accuracy. 

 

Table 4.3 Overall accuracy (OA) and selected per-scene class accuracy for reference and our proposed 

Tex-CNN on the AID. 

 

Methods Agriculture (%) Mountain (%) Forest (%) OA (%) 

TEX-Net-LF (Anwer et al., 2018) 95.5 99.9 95.75 92.96 

Fine-Tuned SVM (Yu and Liu, 

2018) 
97.0 99.0 98.0 95.36 

PMS (Petrovska et al., 2020) 98.0 99.0 99.0 95.56 

CTFCNN (Huang and Xu, 2019) 99.0 100 99.0 94.91 

GCFs + LOFs (Zeng et al., 2018) 94.0 99.0 99.0 96.85 

MF2Net (Xu et al., 2020) 97.0 91.0 94.0 95.93 

Classical CNN 100 75.0 100 91.67 

Tex-CNN 99.0 90.0 100 96.33 

 

 

4.5.2 Exploring CNN Layer Features Suitability for Landscape Comparison 

 

    Given that CNN layers process inputs hierarchically, feature maps spatial resolution become 

coarser with layer depth: Earlier layers contain finer resolution features, while deeper layer 

representation gives coarser features. We conducted visual assessment of feature map quality, as 

well as the potential utilization of the second- and third-layer feature maps. Layer-one features 

were not included in this analysis, as gradient-based features cannot be computed by using input 

image data as the penultimate layer. Figure 4.7 depicts feature maps with the highest eigen 
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values extracted from Tex-CNN. The feature maps are the result of applying PCA to layer two- 

and three-feature tensors. Notice how the spatial resolution changes across the layers. While 

layer-two eigen maps are fine-grained, with distinct patterns (e.g., agriculture landscape 

boundaries, tree clusters), this pattern is not clearly interpretable in layer-three eigen maps. In 

Figure 4.7, row (a), layer-two shows high-resolution features with conspicuous agricultural field 

boundaries. Contrarily, layer-three map depicts low-resolution features; the boundaries of 

individual parcels are blurred out. In Figure 4.7, row (b), layer-two shows fine-grained clusters 

of trees; layer-three, on the other hand, depicts coarse scale patterns which are not immediately 

recognizable as forest. 
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Figure 4.7 Original images and visualization of CNN feature maps reflecting their spatial resolution. Row 

(a) depicts agriculture landscapes, row (b) shows Forest landscapes, and row (c) represents Mountain 

landscapes. Column one shows input images. Columns two and three are the corresponding feature maps 

extracted from our Tex-CNN layers two and three, respectively. Note that the CNN features are eigen 

maps with the highest eigen values obtained after applying PCA to feature tensors in layers two and three. 
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4.5.3 Mountainous Terrains 

 

    We hypothesized that feature maps from within-landscape types would have lower EMD 

values, while those originating from disparate classes would have higher EMD values. We first 

conducted a Kolmogorov-Smirnov test to ascertain the validity of this hypothesis. As expected, it 

turns out that between-class feature distributions were statistically significantly different (𝑝 <

0.05). A sample of mountain landscapes from the AID and Sentinel datasets is depicted in Figure 

4.8. Feature map regions that are highlighted in warmer colors represent the most significant 

discriminative patterns learned by the three filters; notice that most of these areas are 

predominantly less vegetated. Regions with cooler (blue) colors are found to be less significant, 

according to the model’s weighting decision. Notice also that the filters sometimes perceive 

similar regions differently in terms of significant patterns – pixels that are found to be significant 

by one filter may be seen to have less weight by another filter, due to the discriminative learning 

behavior of CNNs. 
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Figure 4.8 Mountain sample landscapes. Row (a) shows a sample mountain from Sentinel dataset. Row 

(b) shows a sample mountain from AID dataset. Feature maps are from Filters 48, 51, and 64. 

 

    Figure 4.9 shows the results for comparing mountainous landscapes and agriculture landscape 

types. It can be seen from Figure 4.9a,d that feature maps from similar landscapes display 

smaller distances, and hence their distribution falls to the left, characterized by smaller EMD. 

Over 60% of features in Wclass_mount of Figure 4.9a,b show EMD score of 0.01, while more 

than 50% of between class comparison yields EMD values higher than 0.05. Moreover, it can be 

observed that aside from shape differences, there is little overlap in the distributions of within 

class (Wclass_mount, Wclass_agricG1, and Wclass_agricG2).  
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Figure 4.9 Landscape similarity comparison. EMD similarity distribution for mountain, forest, and 

agriculture patterns is depicted in (a–d). Mountain feature map comparison is within-class (i.e., mountain 

versus mountain).  Between-landscape type similarity distribution is derived through mountain versus 

agriculture landscape (a,b), and mountain versus forest comparisons (c,d). 

 

    HoG can also be extracted directly from the original data (i.e., raw images) for comparison. 

We demonstrate this by computing EMD over the same set of original images used for extracting 
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CNN feature maps. Figure 4.10a,d presents within-class (i.e., Wclass_mount), between-class 

(i.e., (mountain versus agriculture landscape) and (mountain versus forest) EMD distributions. 

As can be seen in the derived CNN features, the mountain versus forest comparison poses 

challenges for real image comparison as well. 
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Figure 4.10 Original image histogram of oriented gradients (HoG) comparison. Image EMD values 

distribution for mountain, forest, and agriculture landscape patterns are depicted in (a–d).  (a,b) Show 

within-class (mountain versus mountain) and between-class (mountain versus agriculture); meanwhile, 

(c,d) depict within-class (mountain versus mountain) and between-class (mountain versus forest). 

 

 

 

 

 agricG2  agricG1 

 agricG2  agricG1 
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4.5.4 Agriculture Landscapes 

 

    Figure 4.11 presents agriculture landscape samples and their corresponding feature maps. 

Convolutional filters are randomly selected to illustrate patterns learned on agriculture landscape 

types. It can be observed that the filters specialize in detecting different features. For example, 

Filter 43 recognizes agriculture landscape boundaries to be significant patterns, while Filter 8 

weights blocks of vegetated areas higher. As shown in Figure 4.11a,b, the filters appear to assign 

significance to similar features in both AID and Sentinel datasets.  

 

 

 

Figure 4.11 Agriculture landscapes and feature maps. Row (a) Sentinel dataset and row (b) AID dataset 

samples. Feature maps are extracted from Filters 7, 8, and 43.  It can be seen that certain filters (e.g., 

Filter 43) specialize in detecting agriculture landscape boundaries, while Filters 7 and 8 detect regions 

with vegetation. 
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    Figure 4.12a–d depicts within-landscape feature maps’ similarity (Wclass_agric) and between-

class similarity (Bclass_mountG1 and Bclass_mountG2, for mountains; Bclass_forestG1 and 

Bclass_forestG2, for forests). The Wclass_agric distribution shows most feature maps with EMD 

values close to zero, and over 65% of the feature maps show EMD values of 0.01. Conversely, 

Bclass_forestG1 and Bclass_mountG1 distributions tend to fall towards higher distances, with 

over 50% of feature maps having EMD value of 0.05. 
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Figure 4.12 Landscape similarity comparison. Wclass_agric denotes within-agriculture landscape 

similarity. (a,b) Bclass_mountG1 and Bclass_mountG2 are distributions resulting from comparing 

agriculture landscape with mountains.  (c,d) Bclass_forestG1 and Bclass_forestG2 are distributions 

generated by comparing agriculture landscapes with forests. 
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4.5.5 Forested Landscapes 

 

Forest landscapes from the AID dataset and their feature maps are depicted in Figure 4.13a,b. 

Filters 11, 15, and 53 depict features at varying grain sizes, yet they represent discriminative 

features from an identical forest landscape.  

 

 

 

Figure 4.13 Forest landscapes from AID dataset. Row (a) denotes a sample image and its feature maps. 

Row (b) is sample of forest landscape from the different location.  Notice that Filters 11, 15, and 53 depict 

features with varying grain sizes, yet they originate from an identical forest landscape. 

 

    Figure 4.14a,b illustrates the similarity distributions for within forest landscape 

(Wclass_forest) and forest versus agriculture landscape (Bclass_agricG1 and Bclass_agricG2). 

The two landscape types show distinct EMD similarity distribution with very little overlap. 

Moreover, high variance is noticeable in the between-landscape comparison. Feature maps in 

within-landscape comparison depict lower EMD scores, with over 60% of features showing 
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EMD values of 0.00–0.01, while over 70% feature maps in between-landscape comparison show 

0.05 EMD similarity scores. Figure 4.14c,d compares forest landscapes with mountains. Within-

class distribution (i.e., Wclass_forest) shows lower variance and relatively shorter EMD scores. 

However, though the distributions depict different shapes, there tend to be substantial overlap in 

within-class and between-class (Bclass_mountG1 and Bclass_mountG2) distributions. 
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Figure 4.14 Landscape similarity comparison. (a,b) Distributions from within-landscape (Wclass_forest) 

and forest versus agriculture landscape types comparison (Bclass_agricG1 and Bclass_agricG2).  (c,d) 

Distributions for forest versus mountain types comparison (Bclass_mountG1 and Bclass_mountG2). 
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4.6 Discussion 

 

    A comparison of the Tex-CNN accuracy reports on the test data, as shown in the confusion 

matrix (Figure 4.6), emphasizes the promising potential of textural information in capturing 

discriminative patterns. Although the performance of both models is virtually similar for 

agriculture and forested landscapes, we noticed a dramatic difference in the models’ 

classification accuracies for mountainous terrain types. As seen in Figure 4.13, the feature maps 

display multi-resolution patterns in the forest landscape types. The feature concatenation method 

introduced may have encouraged the CNN to learn both fine and coarse grain spatial patterns 

(Basu et al., 2018). To illustrate the effectiveness of texture-encoded models, Table 4.3 presents 

the Tex-CNN classification results and that of the state-of-the-art models. Given that few 

landscape types were considered in this study, overall accuracy will not be a metric for an 

objective comparison; however, per-landscape accuracy shows that the Tex-CNN is competitive 

with other methods. The incorporation of texture features enhances model performance, 

especially for complex patterns (Andrearczyk and Whelan, 2016; Basu et al., 2018). It should be 

emphasized that the model is simple (i.e., small in size) and computationally efficient compared 

to other models (e.g., Huang and Xu, 2019; Anwer et al., 2018).  

    In Figure 4.6c,d, it can be observed that classifying landscapes in Sentinel data is challenging 

for both models, as they did not perform up to expectation in the first row of the confusion 

matrix. Over 90% of the agriculture landscapes tend to be classified as forest (i.e., false positive); 

contrarily, 92% and 79% of forest landscapes are correctly classified by the Tex-CNN and the 

classical CNN, respectively. This is partly explained by the relatively low spatial resolution of 

Sentinel data, as well as the data not being part of the training sample. Visual exploration of 

feature maps in Sentinel data shows most agriculture landscape boundaries disappearing 
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completely in higher layers of the CNN, thus making agriculture landscape samples appear as if 

they contain only vegetation patterns. The absence of boundary-like patterns likely triggers filter 

responses, leading to the misclassification of agriculture landscapes as forest. A profound 

reduction in misclassification rates, especially for agriculture landscapes, was achieved by 

adding Sentinel data (Figure 4.6e,f). Thus, presenting models with multimodal data at training 

time is likely to improve discriminative learning, while reducing misclassification errors. 

    The use of feature maps in pattern recognition is borne from the notion that the human visual 

system extracts the most relevant structural information from visual scenes in order to make 

decisions or characterize them semantically (Murabito et al., 2018). There is a great deal of 

analogy between landscape similarity comparison and assessment of feature maps similarity 

common in computer vision research (Reichstein et al., 2019). CNN feature maps are 

continuous-valued data which can avoid classification problems that arise in landscape research 

owing to landcover type discretization and artificial boundaries generation (Coops and Wulder, 

2019). We adopted a novel approach to compare landscapes via the extraction of feature maps 

from specific landscape types. This framework leads to the availability sufficient feature 

templates describing a particular landscape and thus enabling robust similarity mapping. The 

PCA method resulted in objective selection of feature maps that best represent a given landscape. 

Feature map dimensionality reduction through PCA has been proven to not degrade but further 

improve the discriminative potential of convolutional features (Yandex and Lempitsky, 2015). 

Figure 4.7 shows samples of original images and their corresponding eigen maps. For landscape 

similarity comparison, layer-two feature maps were utilized. As can be seen in the figure, layer-

two yields compact and high-resolution feature representations compared to layer-three. This 
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suggests that layer-two features may be suitable for similarity assessment, hence our adoption of 

the layer’s feature maps. 

    In Figure 4.9a,b, mountainous landscapes show distinct differences with agriculture landscape 

types. The EMD values for the within class comparison (Wclass_mount) falls largely on the left, 

pointing to shorter distances and hence higher similarity. More than 60% of the feature maps 

show EMD values of 0.01. Over 50%, the feature maps between class comparison EMD values 

are as high as 0.05. This suggests that there exist significant discriminative features between 

these two distinct landscape types. Song et al. (2018) provide evidence that, by using feature map 

distances, it is possible to select the most discriminative patterns to represent mountainous 

terrains. The feature maps within the similar landscape also tend to depict higher EDM densities, 

which is an indicator of feature maps clustering (Zhou et al., 2016), and high-density (frequency) 

values imply that a large proportion of feature maps are similar. Figure 4.10a–d compares HoG 

features extracted directly from the original images. The EDM distributions are somewhat 

similar to the CNN feature maps, but it can be observed that the CNN features appear to be 

slightly sensitive; for example, fewer images in the between-class comparison fall in EDM of 0 –

0.01. Moreover, compared to the original image HoG features, it can be seen that EMD values’ 

distribution tends to be peakier for within-class and a little flatter for between-class in the CNN 

feature comparison. This suggests that our Tex-CNN features may possess more image 

descriptors compared to raw image pixels. 

    When comparing mountains versus forested landscapes, EMD distributions appear to overlap. 

This challenge is not unexpected, given the diverse morphology of mountains in some images, 

especially given that some mountains contain forest. Furthermore, recalling that the model’s 

performance at predicting mountainous terrains is low, it follows that feature maps derived for 
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certain input images that record poor scores may be of lower quality for landscape comparison. 

This suggests that, if a model is optimized to predict a particular landscape type with high 

accuracy, its corresponding feature maps will be of better discriminative quality and hence can 

be suitable for mapping landscape similarity (Zagoruyko and Komodakis, 2017). 

    Agriculture landscapes turn out to be the most easily discriminated patterns using the CNN 

model’s feature maps (see Figure 4.12 a,b). As expected, the within-landscape type comparison 

shows smaller EMD values for agriculture landscape feature maps, with between-landscape 

distributions falling towards the right. Additionally, there is very little overlap in the distributions 

of within- and between-feature map distributions. Higher EMD values suggest lower similarity 

scores for landscapes being compared. Moreover, within-class feature maps exhibit somewhat 

low variance in EMD values. Over 65% of the Wclass_agric shows 0.01 EMD. This shows 

higher similarity compared to agriculture landscape versus forest comparison, where EMD 

values as large as 0.05 are recorded. The unique vertical and horizontal boundary features may 

be among the discriminative patterns the model learns in agriculture landscapes. Lower layers of 

CNN are superior in learning edges, blobs, curves, and fine-grained textural patterns (Grinblat et 

al., 2016). This observation emphasizes the high prediction accuracy recorded for the agriculture 

landscape type, as shown in the confusion matrix (Figure 4.6). Murabito et al. (2018) study 

found that saliency maps, a variant of gradient-based attention maps (i.e., feature maps), improve 

pattern detection. 

    Figure 4.14a–d depicts within-forest landscape and between landscapes, which consist of 

forest versus agriculture landscape (e.g., Bclass_agricG1), and forest versus mountain (e.g., 

Bclass_mountG1). Figure 4.14a,b emphasizes the existence of distinct discriminative features 

between forest and agriculture landscapes, as these two distributions show very little overlap. 
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More importantly, within-forest landscape (Wclass_forest) distribution shows lower EMD 

values, suggesting higher similarity scores. More than 60% of the feature maps have EMD 

values of 0.00–0.01, while over 70% of the between-landscape comparison shows 0.05 EMD 

similarity scores. However, the Wclass_forest versus Bclass_mount distributions show overlaps 

(Figure 4.14c,d), though the shape of the distributions suggest that the two landscapes belong to 

distinctively different class types. The Kolmogorov–Smirnov test further confirmed that the 

distributions are statistically significantly different (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05). 

    The remote-sensing and spatial-analysis literature has many metrics for comparing spatial 

patterns, yet this domain is largely fractured, and sometimes lacks generic toolsets for comparing 

continuous valued (i.e., unclassified) image data (Long and Robertson, 2018). Amirshahi et al. 

(2017) proposed extracting HoG and applying histogram intersection kernel to compare feature 

maps. Liu et al. (2020) also introduced a similarity distribution learning framework, using a 

CNN ensemble to incorporate feature uncertainty similarity at training time. The extracted 

features from the trained model are then employed in image retrieval and scene classification. 

Given that CNN feature maps are inherently discriminative and can potentially handle similarity 

uncertainties, we propose a metric to compare CNN feature maps’ similarity via the computation 

of feature EMD. Our approach applies gradient-based computation to extract discriminative 

spatial patterns given an input image. The extracted feature maps contain local descriptors which 

are essential for pattern recognition. Utilizing EMD resolves the problem of histograms’ bin size 

on similarity scores. 

    Our proposed metric effectively distinguishes agriculture landscape types from non-

agriculture landscapes. Mountainous terrains and forested landscapes are discriminated, as their 

distributions are significantly different. A highly sensitive spatial pattern domain metric may be 
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able to overcome the overlaps seen in forested and mountainous landscapes distributions. We 

tested structural similarity and the complex-wavelet structural similarity metrics which capture 

spatial information but did not realize impressive results. We point out that our findings 

demonstrate the challenging nature of the AID dataset and its potential suitability for training 

models; despite containing fewer samples per scene categories, the images can be described as 

multi-scale (i.e., mountain patterns vary within the same landscape type). Such data can present 

challenges to CNNs without explicit multi-resolution encoding (Liu et al., 2018b). To surmount 

such a limitation, Li et al. (2018) suggested utilizing the last convolutional layer feature maps, 

since these enable the discovery of locally consistent spatial patterns. However, we chose not to 

apply these features, since they lack full geometric invariance, as well as fine-grain textural 

details (Gong et al., 2014). Figure 4.8 further emphasizes our claim, as it illustrates the low 

spatial resolution of layer-three feature maps. The last layer (i.e., FC1) encodes structure and 

global information (e.g., shape). As pointed out earlier, unlike object recognition, landscape 

patterns lack definite shapes; hence, features from this layer may not improve mountain versus 

forest discrimination substantially. Furthermore, given that the FC1 features are 1D vectors, the 

approach to computing the HoG adopted cannot be applied. The bag-of-words approach widely 

used in CBIR (Ahmed et al., 2019) could improve mountain versus forest distinction, but this 

approach was not considered in this work, as it is out of scope. The low classification accuracy 

of the models on Sentinel data (see Figure 4.6c,d) emphasizes the potential effects of spatial 

resolution on models’ performance. Interestingly, however, the Tex-CNN outperforms the 

classical CNN, as it shows high classification accuracy for mountains. The inclusion of texture 

information may have improved the model’s performance across scales. 
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4.7 Conclusion 

 

    The landscape-similarity mapping problem can be formulated as a challenge to detect repeated 

patterns, in other words, similar patterns across different locations, as shown in a study 

conducted by Lettry et al. (2017). The problem of comparing landscapes can also be considered 

in the context of image-retrieval tasks, as demonstrated by Yandex and Lempitsky (2015), using 

convolutional feature maps. Landscape similarity or change-detection problems may further be 

cast as image-quality assessment challenges, as demonstrated in Amirshahi et al. (2017). In this 

study, we showed that CNN-based features (aka spatial attention maps) contain discriminative 

descriptors of image quality and, hence, computing similarity over feature maps can be an 

effective and generic way to compare landscapes. Our approach provides evidence that a generic 

pattern-comparison metric can be developed from highly discriminative feature maps capable of 

mapping diverse landscape types. 

    The challenge encountered in the mixing of forest and mountain similarity distributions points 

to the potential occurrence of false positives when attempting to make search queries between 

forests and mountains. The models’ performance being consistently low for mountains in AID 

and Sentinel data further emphasizes that scaling of features represented in feature maps might 

work for agriculture landscapes and forests but not for mountains. As mentioned previously, the 

morphology of the mountain class is highly variable; moreover, the presence of forest on 

mountains further complicates discrimination between the landscapes. In this context, a priori 

knowledge may help decrease false positives at the time of query.  

    One potential limitation of the proposal stems from the fact that mixed landscape samples 

were not considered in model development; widening the sample size to include scenes that 

contain a mixture of two or more landcover types could improve the metric’s performance, 
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especially in discriminating mountains and forests. Such a fuzzy definition of landscape classes 

may be more useful for landscape-similarity and/or scene-retrieval applications in the future, as 

they more closely align with the complexity of landscapes in the real world. Additionally, the 

nested framework (i.e., PCA and HoG, and EMD) computations may increase the complexity of 

the proposed metric. Given that what constitutes the best approach to feature map selection 

approach remains an open question (Liu et al., 2015), an innovative and objective framework to 

select feature maps to enhance similarity detection, as shown by Rui et al. (2017) by utilizing 

feature map separability index, needs future consideration. Also, further research needs to 

consider expanding the number of landscape types to test the robustness and generalizability of 

the proposed metric. Independent validation datasets from different sensors, such as Sentinel, can 

be challenging for models trained on high-resolution aerial imagery; thus, it is essential that 

future research considers combining samples of multi-modal datasets for model development. 

The utilization of gradient-based CNN feature maps for landscape-change detection also 

warrants future research. 
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paper.  
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Chapter 5: U-Net convolutional neural network models for detecting 

and quantifying placer mining disturbances at watershed scale 

 

5.1 Abstract 

 

Placer mining is a mineral extraction method in floodplains that involves the removal of earth 

material to access mineral-laden sediments, a process that can have significant and long-term 

impacts on aquatic ecosystems. Given the widespread nature of mining, new tools are required to 

monitor the potential watershed-scale ecological impacts of placer mining.  This study adapted 

and evaluated a deep learning model – a U-Net convolution neural network – and compared it to 

a traditional image classification method – random forests (RF) – to detect and quantify the area 

of post-placer mining disturbance at the watershed scale. Both modelling frameworks achieved 

at least 75% accuracy in the classification of digitized (i.e., labelled placer pixels) placer samples 

in 7 out of 12 modelling scenarios. Misclassification of non-placer pixels as placer was highly 

variable among different models, data configurations, study sites, and time periods. The addition 

of vegetation index channels – Normalized Difference Vegetation Index and Soil Adjusted 

Vegetation Index as model inputs tended to be more important for U-Net models than RF 

models. In general, U-Net models performed better in terms of minimizing misclassification 

errors, whereas RF models performed slightly better in classifying known placer pixels. We 

conclude with discussions on the advantages of deploying U-Net and RF models for placer 

detection, and identifying outstanding issues which need to be addressed in future placer 

modelling studies.  

Keywords: Placer mining, placer disturbance detection, U-Net, semantic segmentation, Random 

Forest 
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5.2 Introduction 

 

    The Earth’s water resources are increasingly being exposed to human-induced disturbances 

from global to local scales. Human disturbances of fluvial ecosystems can degrade water quality, 

altering adjacent and downstream fish and aquatic invertebrate communities as water is delivered 

from headwaters to oceans (Matthews, 2016). Spatial-temporal changes in land use and the 

exposure of biotic communities to disturbances challenges our ability to monitor and manage 

these systems (Solana-Gutiérrez et al., 2017). For example, impacts from disturbance may 

attenuate downstream, accumulate where there are multiple disturbed sites, and impact how 

disturbed sites recover. Therefore, tools for quantifying the amount of human-induced 

disturbance are important for estimating the exposure of biotic communities to impacts which are 

crucial for understanding and managing these fluvial ecosystems.  

    There is an increasing interest in the use of remotely sensed data for monitoring mining areas 

as most available methods and techniques can achieve high land-use/landcover classification as 

well as improve accuracy in extracting environmental variables. Freely available datasets such as 

Landsat and Sentinel, and the advent of archives of analysis-ready data (Dwyer et al., 2018), are 

enabling unprecedented access to data, hence unlocking the potential to characterize, quantify 

and monitor human-induced disturbances. It has been estimated that most forms of disturbances 

such as mineral resource extraction have widespread spatially explicit ecological and 

environmental impacts due to land transformation, and quantifying these impacts is  key to 

understanding the extent of impacts and developing mitigation measures (Werner et al., 2019). 

    Remote sensing has been successfully deployed to document changes in fluvial environments 

for decades (Nellis et al., 1998; Wright et al., 2000; Woldai, 2001). For example, Gilvear et al. 

(1995) applied image analysis to quantify water depths and instream habitats and showed that 
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placer mining contributed to reduced water depth and habitat diversity. Ghoshal et al. (2010) also 

proposed using topographic maps to quantify the impacts of historic placer mining on stream 

sediment load. Other studies have employed hyperspectral data (Marcus 2002), terrain data 

(Egidarev and Simonov 2015)  and object-based image analysis (Whiteside and Bartolo 2015; 

Wang et al. 2016)  to examine the impacts of mining on aquatic ecosystems. Using high spatial 

resolution imagery, Asner et al. (2013) quantified  gold mining in the Amazon from 1999 – 2012 

and showed that mining is expanding rapidly  than has been previously reported. Similarly, 

Espejo et al. (2018) found that gold mining in Western Amazon increased by 21% between 1985 

– 2017 compared to what has been reported. In related research, Classification and Regression 

Trees implementation in Google Earth Engine was employed to detect mining areas in Amazon; 

various type of minerals mines were discovered with an increased area of activity than 

previously known (Lobo et al., 2018).  Obodai et al. (2019) applied Spectral Angle Mapper 

(SAM) on Landsat imagery and detected about 50% reduction in closed forest areas from 1991 – 

2016 in the Ankobra River basin, Ghana. Mhangara et al. (2020) quantified changes in 

vegetation cover, bare soil, and mined open pits from 2014 – 2018 in South Africa using SPOT-6 

satellite imagery and reported progressive decline in vegetation cover. The authors utilized 

morphological classification and SAM to map changes in vegetated areas and bare soil. A study 

conducted by Yu et al. (2018a) demonstrates the potential of remotely sensed data to provide 

insight into the dynamics of mining activities at global scales. Using multiple sensor datasets, the 

findings revealed that a substantial number of surface mines in North America decreased in size 

(i.e., were rehabilitated) from 1980 – 2013; conversely, South America and Asia experienced the 

highest expansion in mining areas. 
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Despite the above accomplishments, specific applications of modern image-based 

classification/mapping methods to placer mining are limited, and considerable work remains to 

realize disturbance mapping over large areas owing to the complexity of placer signature and its 

spatial/temporal properties. More importantly, the above approaches offer limited contextual 

information required to discriminate placer signals; thus, the need for contextual-aware detection 

methods.  

 

5.2.1 Classification/detection of Placer Mining Disturbance     

 

    Placer mining requires several activities which leave a visible trace on the landscape; 

including but not limited to road building, dirt/earthen mounds, and ponding. For example, 

discharge of placer mine tailings change sediment concentrations, as well as downstream water 

turbidity, thus degrading benthic habitat quality, providing a detectable signal from moderate 

spatial resolution image data (Nelson and Church, 2012; Egidarev and Simonov, 2015).  Figure 

5.1 provides an air photo depicting a section of a watershed with active placer mining. Roads, 

mining ponds/water pools and placer mines occur in close proximity, while natural disturbances 

frequently appear near forested areas. The challenge for mapping at the watershed scale is to 

develop an image analysis scheme that can effectively recognize and discriminate placer 

signature. Clearly, the complexity of the placer mining disturbances on the landscape does not 

lend itself well to discrimination via pixel-based analysis. 
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Figure 5.1 A section of Alsek watershed depicting the scale of placer disturbance. 

 

5.2.2 Deep Learning Models in Environmental Mapping    

 

        Machine learning models are increasingly being deployed to map mineral mining related 

disturbances. For example, Ibrahim et al. (2020) identified placer mining areas in Colombia and 

estimated 35% vegetation loss between 2016 – 2019. The study demonstrates the effectiveness of 

support vector machine (SVM) and potential of Sentinel-2 data to detect placer disturbance.  In 

related research, Dlamini and Xulu (2019) illustrated the potential of Google Earth Engine based 
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LandTrendr algorithm to map mine disturbance and recovery trajectory in South Africa. Support 

vector machine optimized with k-fold cross validation was found to improve landcover 

classification in open pit mines (Chen et al., 2020). Given the complexity of mining disturbances, 

other sophisticated modelling approaches have been employed to monitor mining activities. For 

instance, Abaidoo et al. (2019) applied Artificial Neural Networks to detect landcover changes as 

result of mining as well as vegetation response to land reclamation practices in abandoned mine 

areas. 

    Inspired by successes in classification, pattern recognition, and object detection (Krizhevsky et 

al., 2012), deep learning models are now frequently deployed to exploit spectral and contextual 

information available in remote sensing data to improve landcover classification (Zhang et al., 

2020; Han et al., 2020). Convolutional neural networks (CNN) are spatially explicit models 

consisting of layers that process their input hierarchically using convolutional operations and 

non-linear mapping functions (Krizhevsky et al., 2012).  Wang et al. (2020) applied Mask 

Region-based CNN (Mask R-CNN) to identify  open-pit mines and evaluate environmental 

damages caused by mines; while  Maxwell et al. (2020)  proposed applying Mask R-CNN for 

topographic mapping of valley fill faces which is indicative of mountaintop removal due to coal 

mining. In related research, Madhuanand et al. (2021) detected surface coal mines from satellite 

images using Mask R-CNN,  reporting 95+% overall accuracy on independent validation satellite 

images from different countries. U-Net is a modification of CNN, employing a U-shaped 

architecture. U-Net was first implemented in biomedical image segmentation and found to 

segment cells with high speed and accuracy while learning discriminative patterns on very few 

training images (Ronneberger et al., 2015). The U-Net model has been shown to be effective in 

environmental mapping as the model architecture enables the learning of texture and other 
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spatially discriminative features (Flood et al., 2019). Recently, Gallwey et al. (2020) developed a 

U-Net model to map and quantify small scale mining disturbances in Southern Ghana using 

Sentinel-2 data. The authors modified the model’s output to yield classifications from the final 

layer as well as per landcover class prediction probability; the mean probability score was 

ultimately used to determine final pixel classes, and thus minimizing classification errors.   

    The studies noted above emphasize the potential of remotely sensed imagery as well as the 

capability of machine learning techniques to map mining related disturbances. RF on the one 

hand is an ensemble learning method that is increasingly been applied in land-use/landcover 

classification owing to its high performance. It has been proven to efficiently model complex 

relationships due to its effective weighting of contributing variables via majority voting 

mechanism and requires less training time (Syrris et al., 2019). Convolutional neural networks on 

the other hand are known for their inherent capacity to model complex processes using 

contextual information and a high number of parameters. U-Net and RF models are both non-

parametric and have been proven to learn sophisticated patterns with low overfitting tendency 

when exposed to large number of input variables. Thus, these two modelling frameworks hold 

potential for learning the complex patterns of disturbance associated with placer mining 

activities. 

    The goal of this study was to characterize and quantify placer-induced disturbances at 

watershed scale using different configurations of high spatial resolution satellite imagery and 

machine learning models. More specifically, we focus on evaluating the potential and limitations 

of two modeling frameworks, U-Net and RF, in detecting placer mining activity. Through the 

use and comparison of multiple complimentary modelling approaches, and different 

combinations of satellite data (e.g., SPOT-6/7 band combination), we expect to get a clear 
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understanding of the potential for image-based placer disturbance monitoring. Operational 

mapping and monitoring of placer disturbances remains limited and significant potential exists to 

develop real-world tools capable of filling this gap in environmental monitoring systems. The 

contributions of this study are: (a) model parameterization issues in mapping placer disturbances 

are highlighted; (b) tools that hold potential to detect and characterize placer mining disturbance 

at watershed scale are proposed. We structure the remaining body of the paper as follows: first, 

our methodological approach is highlighted (e.g., study site and sampling, datasets and ancillary 

data derivation, and model design/architectures); next, the results of the modeling frameworks 

are presented followed by discussion and conclusions.   

 

5.3 Materials and Methods 

 

5.3.1 Study site selection 

 

    Our study is focused on a region with significant placer mining activity in Yukon Territory, 

Canada (Figure 5.2). The relationship between placer mining and its impacts are complex due to 

the long history of placer mining and vast areas it has taken place. The Alsek watershed was 

chosen for this study as mining has commenced relatively recently (early 1980s) in this 

watershed, therefore limiting the impact of noise introduced through remediated and/or semi-

remediated historical mining sites. For example, in the Klondike watershed, the area has been 

continuously mined for over 100 years. We focused model development on recent placer mining 

activities to simplify the development of the initial models for placer classification. Figure 5.2 

depicts the study site as well as the distribution of training/reference placer parcels and aquatic 

health monitoring test/reference sites. Placer areas are usually demarcated by monitoring 
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authorities using polygons (i.e., parcels) (e.g., see rectangles in Figure 5.2). Licenses are then 

assigned to parcels for individuals/companies interested in placer mining. Each parcel therefore 

has a unique license holder and thus forms the unit for disturbance monitoring relative to the 

level of compliance. 

 

 

 

  

Figure 5.2 Map of distribution of training/reference placer parcels and aquatic health monitoring 

test/reference sites. The Panel on left shows a small-scale map of the Alsek watershed with letters A, B, 

C, D and aerial photographs showing locations of training/reference placer parcels.  The four panels on 
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the right show a larger scale of the groupings of training/reference placer parcels (i.e., placer claims) with 

the letters in the top left corner corresponding with small scale map.  Aerial photographs were taken in 

August 2013. 

 

5.3.2 Placer Parcel Selection Criteria 

 

    Within the Alsek watershed, individual parcels of land were selected to create training and 

reference datasets for model development and validation. Parcels are the areal units of land 

which are used for managing placer claims. We used objective criteria to select these parcels, 

outlined in Table 5.1. 

 

 

Table 5.1 Placer parcel selection criteria. 

 

 

 

Parcel criterion Justification 

Major operations 

Long-term, large-scale operations which have 

mandatory compliance monitoring and 

inspection water sampling  

Upstream from monitoring stations  

Monitoring stations data can be mapped to 

mining disturbance which has occurred 

upstream 

Placer stake data < 20 years 

Limits model development to parcels with 

only recent placer disturbance making it 

easier to detect disturbance events versus 

natural landscapes 
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    Major mining operations were chosen as a criterion as these operations are generally larger 

scale and multi-year (i.e., small-scale exploration work and reclamation are typically completed 

within one year). Major operations require greater regulatory and environmental monitoring due 

to the increased environmental impacts.  As such, these sites are potential test beds to evaluate 

remote sensing tools capability for disturbance intensity monitoring.     

    Within the past 40 years, substantial mining activity and subsequent reclamation/regeneration 

has occurred, thus significantly altering the landscape making it challenging to distinguish 

between naturally occurring landscapes and areas which have been disturbed but may be in the 

process of regeneration. Parcels polygon data were overlaid on aereal and satellite imagery to 

map identify placer disturbed areas.  We relied on recently staked claims to visually discriminate 

between natural and disturbed areas by employing available high resolution multi-temporal aerial 

and satellite imagery.  By using a multi-temporal/time-series approach to visually identify 

disturbance/regeneration events, it is possible to better understand the spectral response 

associated with short and long-term disturbance events and track stages of regeneration. The 

criteria rendered 75 parcels, 41 of which were used for training and 28 of which will be used as a 

reference dataset to validate the models. The remaining 6 parcels were not used due to challenges 

in visually classifying landscape features. Of the 75 parcels, 12 were staked between 2010 and 

2019, 15 were staked between 2000 and 2009, 21 were staked between 1990 and 1999 and 27 

between 1980 and 1989. Figure 5.3 shows the location and distribution of training and validation 

datasets. Sites A, C2 were selected for independent validation, while sites B, C3 and D were used 

for model training. Site C1 consists of 6 placer parcels, and these were not utilized due the 

challenges indicated above. The selection of both training and independent validation datasets is 
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based on the criteria outlined in table 5.1. Additionally, we found that placer disturbances can be 

visually identified at the selected sites with minimum errors using air photos. 

 

5.3.3 Datasets 

 

    We explored both free (i.e., Landsat, and Sentinel), and commercial (i.e., World-View-2, 

IKONOS, SPOT-6/7 etc.) image sources to identify the data required to detect placer 

disturbance. After visually examining layers of free image sources and high-resolution base 

maps available at the GeoYukon website, we found that the low resolution of free imagery did 

not provide the image quality and spatial resolution required for accurate image classification. 

SPOT- 6/7 satellite imagery (60km x 60km scenes) and a high-resolution digital elevation model 

were the primary data sources used in the image analysis. 

 

5.3.3.1 Satellite imagery pre-processing 

 

    High spatial resolution imagery is capable of providing detailed feature information which 

may capture potential signatures of placer disturbances. The SPOT-6/7 satellites capture four-

band multispectral imagery (i.e., Red, Green, Blue and Near Infrared (NIR)) with a multispectral 

band spatial resolution of 6 m and panchromatic mode with a spatial resolution of 1.5 m. The 

four bands were pansharpened using the panchromatic band; this renders the satellite data 

suitable for finer detail habitat characterization (Whiteside and Bartolo, 2015). Available SPOT-

6/7 products have been geometrically, radiometrically and atmospherically corrected, enabling 

indices used for disturbance detection, such as Normalized Difference Vegetation Index (NDVI) 

to be easily derived. 
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5.3.3.2 Ancillary data derivation       

 

    In addition to multi-spectral bands from SPOT-6/7 sensors, ancillary datasets including NDVI, 

and Soil-Adjusted-Vegetation Index (SAVI) were used.  NDVI is readily used for assessing plant 

health and abundance and has been used to enhance detection of land cover changes driven by 

mining activities (Almeida-filho and Shimabukuro, 2000).  The index is derived by using the 

Red and NIR bands from multi-spectral satellite imagery, as the spectral information captured by 

the Red band is related to chlorophyll absorption and the NIR band is related to plant mesophyll 

cellular reflectance (Hurcom and Harrison, 1998).  Additionally, the normalization procedure is 

used to reduce the effect of atmospheric attenuation and seasonal sun angle differences (Rouse et 

al., 1974). NDVI is calculated by finding the ratio between the difference of the NIR band and 

Red band and the sum of the NIR band and Red band, rendering a scale of -1 to +1, with high 

values indicating healthy vegetation and low values being linked to disturbed vegetation or 

absence of vegetation (Rouse et al., 1974).  Given the invasive nature of placer mining, it is 

anticipated that low values of NDVI will be an indicator of land degradation associated with 

areas of placer mining disturbance as a result of complete or partial removal of vegetation in the 

trenching process (Chen and Rao, 2008). SAVI, which is an extension of NDVI and corrects for 

the influence of soil brightness when vegetative cover is low, was also used. Equations 5.1 and 

5.2 denote NDVI and SAVI, respectively. L denotes soil brightness correction factor which is set 

to 0.5 to accommodate most landcover types.  

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
                                                                                         Equation 5.1  

 

𝑆𝐴𝑉𝐼 =  
(1+𝐿)(𝑁𝐼𝑅−𝑅)

𝑁𝐼𝑅+𝑅+𝐿
                                                                                 Equation 5.2 
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5.3.3.3 Identifying placer patterns/signals 

 

    Placer features in imagery may vary with mining characteristics such as time-since-mining, 

intensity of mining, and type of extraction equipment deployed. Placer effects may manifest on 

watercourses as deposits of washed rocks or sand often seen as a light band along the rivers. The 

existence of small dams or pools, sometimes visible as black spots, are indicative placer 

signatures. Bare soil or barren lands adjacent to river reaches are prevalent features of placer 

effects originating from the removal of fertile soil layer along with vegetation. After visually 

exploring placer disturbed areas using air photos, we identified five land cover classes – placer, 

natural disturbance, floodplain, water, and forest. These classes may be distinguished from each 

other given their spectral, textural, and morphological differences. We defined the placer class as 

areas disturbed by human activities but are near the river reach, and sometimes adjacent to 

floodplains. Such areas are mostly characterized by bare soil, earthen mounds, and corrugated 

land surfaces in the river reach. Dark areas in the main river channels were identified as water. 

Also, pools of water that appear in placer mining areas were classified as water. The floodplain 

class is typically sand-rocks mixture deposited by water currents and are located adjacent to 

water in the river channels. The natural disturbance class is characterized by non-human 

disturbed areas, and may appear as bare soil, eroded land, or eroded mountain surfaces. Also, any 

bare soil located within forest is identified as natural disturbance since placer mining is restricted 

to mineral rich areas near the river reach. The forest category encompasses land surfaces covered 

with green or dry vegetation. 

    Placer disturbance polygons were digitized from high resolution air photos. We note that the 

placer polygon data demarcate the boundaries of each landowner, and therefore were only used 
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to map placer activity to aerial photos and SPOT-6/7 imagery. As mentioned earlier, the 41 

parcels that met our selection criteria were used for model training (i.e., sites B, C3 and D). 

Twenty-eight placer parcels were digitized and not used for model training (i.e., sites A and C2), 

being held back for independent model validation. Given that training patches or pixels are not 

statistically independent from each other as they are split via bootstrapping into in-bag and out-

of-bag (i.e., for RF model) (Cánovas-García et al., 2017), and training and validation (i.e., for U-

Net), independent validation, we believed, was crucial for testing the models’ generalization to 

watersheds in different locations. The validation sites were at Site A (2014 and 2018) (images 

were acquired in July 19, and September 16) and Site C2 (2013 and 2019) (images were acquired 

on July 12, and August 10). Other classes that were digitized were forest, floodplain, water, and 

natural/other disturbance. Figure 5.3 illustrates training and independent validation sample sites. 
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Figure 5.3 A flowchart for training/validation sample selection and model testing. 
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5.3.4 U-Net Model architecture and modeling framework 

 

    The proposed modelling framework employed classical approaches and deep learning models 

to detect and characterize placer signals. The U-Net is a deep feature extraction model that 

incorporates texture and spatial information to implement semantic learning and subsequent 

segmentation or classification of image pixels. The model architecture encompasses a feature 

encoding path and a decoding path. The encoding path extracts hierarchical features/patterns 

given labelled input data, while the feature decoding path learns spatial information required in 

order to reconstruct the original input (Ronneberger et al., 2015). The model has demonstrated 

outstanding performance in variety of semantic segmentation tasks (Gallwey et al., 2020). Image 

segmentation and/or classification problems are analogous to detecting or predicting placer 

signatures, though this was the first application of this modeling framework to placer disturbance 

monitoring that we are aware of. 

 

5.3.4.1 Data augmentation 

 

     Training deep-learning models from scratch has overfitting consequences. To mitigate this 

limitation, data augmentation was applied to substantially increase the training sample size. 

ArcGIS-pro provides export training data for deep learning tool. Using this tool, we set the 

rotation parameter to 45 degrees. This flips each image-mask pair 45 degrees, thus resulting in in 

two-fold increase in the training sample size during image chip generation as each sample is 

doubled. In total, 2,058 of 256  256 patches were used for model training and testing. Figure 5.4 

depicts samples of images and the corresponding augmented copies. 
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Figure 5.4 Samples of augmented SPOT-6/7 data from Site C3. Row a shows original data, while row b 

presents the corresponding augmented images at 45 degrees.  

 

5.3.4.2 Model architecture 

 

     For operational purposes, we opted to develop a U-Net model from scratch with minimal 

parameters as possible. A computationally efficient and relatively small model is crucial for field 

operation. Moreover, given the limited size of our dataset, a large model is likely to result in over 

fitting. Three input data combinations were employed to evaluate the models’ performance on 

placer detection: the original RGBNIR bands and the derived data (e.g., NDVI and SAVI). This 

(a) 

(b) 
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resulted in three data-model configurations – RGBNIR (i.e., U-Net RGBN model), 

RGBNIR+NDVI (i.e., U-Net NDVI model) and RGBNIR+SAVI (i.e., U-Net SAVI model). 

Given the band combinations, the RGBN model input remain four image channels, while the 

NDVI and SAVI models take five image channels as their input. We adopted the U-Net 

architecture proposed by Ronneberger et al. (2015), but reduced the number filters in the 

convolutional layers to develop a smaller model. To learn placer signals, a more flexible non-

linear function was used to handle NDVI and SAVI bands where pixels range from small 

positive to negative values. We did this by applying elastic ReLU (EReLU) which  randomly 

compresses and enlarges network activation within a moderate range at training time. EReLU 

has been proven to improve model training while minimizing overfitting (Jiang et al., 2018). To 

improve accuracy and reduce training time, Batch Normalization (BN) was applied to the down-

sampling path of the model.  Batch Normalization is a linear transformation of model input or 

activation to have mean of zero and unit variance; this reduces internal covariate shift and speeds 

up model convergence (Ioffe and Szegedy, 2015). Figure 5.5 shows the U-Net architecture 

adopted, while Table 5.2 summarizes the model architecture and parameters. The models were 

trained for 50 epochs but with early stopping parameter (i.e., patience set to 10) to stop training if 

there was no improvement after 10 epochs to avoid overfitting. Adam was used as the optimizer 

(Kingma and Ba, 2015). The learning rate was set to 0.001; other parameters were maintained at 

their default values. Keras-TensorFlow backend was used to support computations on computer 

(Intel(R) Xeon (R) CPU E5-2650 v2 @ 2.60GHz, RAM 64 GB) and NVIDIA enabled GPU 

(Quadro K4000) with 4G memory. 
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Figure 5.5. Architecture of placer disturbance detection U-Net. Down-sampling and up-sampling paths 

both lead to learning placer disturbances. Six classes are depicted in the mask, where the sixth class 

represents areas that were not digitized. Note that red pixels in the target/mask denote placer mining area. 
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Table 5.2 A summary of model architecture and parameters. 

 

 

Layer name  Feature maps  No. of Filters Max-Pooling Activation BN 

Conv-1 256 × 256 32 2 × 2 EReLU Yes 

Conv-2 128 × 128 64 2 × 2 EReLU Yes 

Conv-3 64 × 64 128 2 × 2 EReLU Yes 

Conv-4 32 × 32 256 2 × 2 EReLU Yes 

Conv-5 16 × 16 512 2 × 2 EReLU Yes 

deConv-1 16 × 16 512 No EReLU No 

deConv-2 32 × 32 256 No EReLU No 

deConv-3 64 × 64 128 No EReLU No 

deConv-4 128 × 128 64 No EReLU No 

deConv-5 256 × 256 32 No EReLU No 

deConv-6 256 × 256 6 No Sigmoid No 

 

 

 

     Although the U-Net architecture inherently incorporates fine-grain learning as well as spatial 

and contextual information, detecting placer disturbances interspersed with other landcover types 

having closely related signals could confound the task at hand. In this context, the models’ filter 

size is one of the crucial parameters to consider, especially, for learning spatial dependency 

between different classes. Figure 5.6 illustrates a conceptual framework of the filter 

parameterization process to detect placer signals. We set the filter size to 3  3 (Figure 5.6b) 

after a close examination of high-resolution aerial imagery showed that most placer mining 

disturbances exceeded 5m  5m. A pansharpened SPOT-6/7 imagery has spatial resolution of 

1.5m  1.5m pixel (Figure 5.6a). Note that the receptive field of the first convolutional layer 

filters is also equivalent to 3  3 (Figure 5.6c), and this translates to 4.5m  4.5m in SPOT-6/7 

data (Figure 5.6d). The filter size adopted, and receptive field size were sufficient to extract 

placer signals/signatures from the input data. Figure 5.6e shows original SPOT6/7 image and a 

sub-image depicting an area with intense placer disturbance. We assessed wider filter sizes and 

receptive fields (e.g., 5  5 and 7  7) but they did not improve the models’ discriminative 
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performance. Also, large filters are likely to reduce detection accuracies in water areas and for 

natural disturbances which tended to be smaller than 3  3 pixels or 5m  5m.  

 

 

 

Figure 5.6 Schematics of U-Net filter selection to detect placer signatures. (a – c) show SPOT-6/7 pixel 

resolution, U-Net filter (kernel), and the first convolutional layer’s filter receptive field size, respectively.  

(d) depicts convolutional operation over some input data using a 3  3 filter, an equivalence of 4.5m  

4.5m in SPOT-6/7 image. (e) denotes an original SPOT-6/7 image with a sub-image showing intense 

placer disturbance area. 
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5.3.4.3 Class weighting 

 

    During assessment of the augmented dataset, it became apparent that certain landcover classes 

(e.g., placer and natural disturbance areas) were underrepresented classes. Training models with 

such an imbalanced dataset could lead to lower accuracy on rare classes (Buschbacher et al., 

2020). One possible approach to circumvent class imbalance problem is under-sampling 

technique which involves discarding images that contain the dominant classes (e.g., forest). 

Since landcover classes occur together, this solution could, diminish an already scarce dataset 

and reduce learning of discriminative patterns to distinguish classes. To surmount this limitation, 

oversampling which randomly increases the size of underrepresented minority class is 

recommended for improving deep learning models performance (Buda et al., 2018). Cost 

sensitive learning techniques that modify model architecture by introducing specific loss 

functions are also widely used (Khan et al., 2018). Dice loss is a potentially effective loss 

function for tackling class distribution problems. Dice score coefficient measures the extent of 

overlap between classes during segmentation, and is proven to be effective, especially when 

there is gold standard or ground truth. A variant of the Dice loss function which is modified to 

provide invariance to different class properties (Crum et al., 2006), has been shown to be 

effective for training deep learning models (Sudre et al., 2017). Class weighting is yet another 

effective approach proven to improve U-Net performance for an imbalanced class distribution 

(Ronneberger et al., 2015). We adopted class-sensitive learning by weighting class instances 

differently during model training. A custom weighted categorical cross-entropy (WCE) loss 

function was implemented to achieve this. With fewer classes, weights can be set and adjusted 

iteratively to obtain the best per-class accuracy. Forest and floodplain weights were set to 0.8 and 

0.9 respectively, after a series of experiments; the remaining classes weights were maintained at 
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1.0. Since it was not feasible to digitize the entire training area, undigitized pixels were 

converted to the sixth landcover class. The weighting technique adopted allowed us to efficiently 

exclude these undigitized pixels at training time by setting the weight of the sixth class to a very 

negligible number. As shown by Buschbacher et al. (2020), WCE loss function can be 

formulated as follows: 

 

𝐿(𝑦,̂ 𝑦) =  −∑ 𝑤𝑖�̂�𝑖𝑖 𝑙𝑜𝑔(𝑦𝑖)                                                                                 Equation 5.3 

 

Where 𝑤𝑖 denotes the weight of class 𝑖, while �̂� and 𝑦  are the network’s output (i.e., logits) and 

the corresponding true class label, respectively. 

 

5.3.5 Random Forest model 

 

    Random forest classification offers a solution to the shortcomings of classification trees by 

employing bagging to construct an ensemble of independent, unpruned regression trees using a 

boot-strap sample of the dataset from which variable importance is decided based on a voting 

system (Breiman, 2001).  Each tree of RF is based on a random subset of the dependent variable 

(on average 36.8% “out of the bag” not used for any individual tree), and each split within each 

tree is decided based on a random subset of independent variables (Breiman, 2001).  Random 

forest has been found to be highly accurate in land cover classification, but RF are a-spatial and 

do not natively take advantage of spatial (i.e., contextual) information. In this modelling, 300 

trees were utilized to create the RF model. To account for the class imbalance problem, 90% of 

the pixels in the forest class were dropped at training. Like the U-Net models, three RF models 
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were employed using similar image data combination – RGBNIR (i.e., RF RGBN model), 

RGBNIR+NDVI (i.e., RF NDVI model), and RGBNIR+SAVI (i.e., RF SAVI model). 

 

5.3.6 Accuracy evaluation metrics 

 

    Accuracy of model predictions were determined by calculating confusion matrices over 

mapped classes as this approach is an intuitive and acceptable standard for evaluating remote 

sensing image classification accuracy (Conglaton, 1991). Producers’ Accuracy (PA), Users’ 

Accuracy and Overall Accuracy (OA) are intuitive and widely utilized accuracy assessment 

metrics. Placer detection accuracy was evaluated in terms of PA (aka recall) and UA (aka 

precision) for placer detection. Per class accuracy measures are suitable for dataset with no 

background class (Csurka et al., 2013). Omission errors (False Negative (FN)) are associated 

with PA (i.e., FN = 1-PA), while commission errors (False Positive (FP)) complements UA (i.e., 

FP = 1- UA). PA, given by  𝑃𝐴 = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
  is derived from True Positive (TP) and FN which are 

in the same column of the confusion matrix, hence, PA is unaffected by the data distribution. 

Contrarily, UA denoted by  𝑈𝐴 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , is influenced by imbalanced data (Tharwat, 2018). 

Similarly, OA given by 𝑂𝐴 = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+ 𝐹𝑁
 , which is a commonly used metric for evaluating 

classification performance, is sensitive to data distribution, and hence is not suitable for 

imbalanced datasets (He and  Garcia, 2009; Tharwat, 2018). PA can be thought of as how often 

the known features on the land are correctly classified on the map – how well are the features on 

the land represented by the map. For example, how often is a pixel that is truly placer classified 

as placer on the map. Alternatively, UA is how often the classifications on the map correctly 

represent the features on the land – how well does the map predict features on the land. For 
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example, how often is a pixel predicted by the model as placer is actually placer. While both 

accuracy metrics are useful information, for the purposes of detecting and quantifying placer 

activity more weight should be given to the UA results when evaluating model performance, 

since this would indicate the accuracy of using the output classification map. Additionally, since 

the aim is to quantify only placer disturbance in an applied earth-observation monitoring context, 

the effects of imbalanced data on placer detection is likely to be considerably low in areas where 

placer mining dominates compared to instances where all class types are of interest to the user. 

The above accuracy statistics should however be interpreted in conjunction with the total class 

area to provide further insight into class abundance.  Other assessment metrics such as receiver 

operating characteristic  curves, geometric mean, precision-recall and  F measure are suitable for 

two-class imbalance problems (He and Garcia, 2009).  

 

5.4 Results of modeling  

 

5.4.1 Model performance assessment 

 

    As can be seen in Figure 7, the lowest loss was measured after 45 epochs. Also, it can be 

noticed that the training Dice loss remained consistently high and appears to not overlap with the 

validation dice loss. Contrarily, training and validation WCE losses overlap with training WCE 

loss being relatively low. Also, it can be observed that the model performance did not improve 

after 45 epochs. 
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Figure 5.7 U-Net NDVI model training and validation losses. (a) training and validation Dice loss and (b) 

training and validation WCE loss. Dice losses assess model classification performance by computing the 

area of overlap between target pixels and predicted pixels, and the total area (i.e., intersection over union), 

while WCE applies custom weights to class instances. 

 

5.4.2 Producers’ accuracy 

 

    Overall, the models classified digitized placer sites well, with median producer accuracy (i.e., 

% of independent digitized placer samples) of 78.94% across all models (Table 5.3). Median for 

U-Net models was 77.31%, while median producer accuracy for RF models was 84.42%. The 

models’ performance was relatively high in site C and site A-2018. Site A-2014 presented 

challenges to U-Net and RF as the models’ accuracy tended to be lower (e.g., lowest accuracy 

for U-Net and RF were 45.52% and 71.73%, respectively).  
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Table 5.3 Classification accuracy assessment of placer disturbance mapping reported as Producer’s 

accuracy.  

 

Site-Year Model 
Placer Area 

(Ha) 

 U-Net 

Producer’s 

Accuracy 

RF Producer’s 

Accuracy 

Best Model 

Approach 

C-2013 

RGBN 0.71 64.79 91.89 RF 

NDVI 0.71 84.32 90.55 RF 

SAVI 0.71 75.21 90.36 RF 

C-2019 

RGBN 0.52 79.40 78.47 U-Net 

NDVI 0.52 82.00 77.06 U-Net 

SAVI 0.52 89.22 76.54 U-Net 

A-2014 

RGBN 0.77 45.52 71.73 RF 

NDVI 0.77 63.69 72.61 RF 

SAVI 0.77 47.43 73.20 RF 

A-2018 

RGBN 7.88 73.33 95.17 RF 

NDVI 7.88 92.36 95.78 RF 

SAVI 7.88 95.13 95.75 RF 

 
 

 

5.4.3 Users Accuracy 

 

    The median user accuracy (i.e., % of sites classified as placer that were actually placer) was 

65.47%. Overall, models were able to classify digitized samples well, but had also misclassified 

non-placer sites as placer (Table 5.4). On average, the U-Net model’s User’s accuracy tended to 

be higher than that of the RF.  
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Table 5.4 Classification accuracy assessment of placer disturbance mapping reported as User’s accuracy. 

The best model approach is the model with highest accuracy.  

 

 

Site-Year Model Placer (Ha) U-Net RF 
Best Model 

Approach 

C-2013 

RGBN 0.71 84.98 61.94 U-Net 

NDVI 0.71 88.58 65.52 U-Net 

SAVI 0.71 86.98 65.43 U-Net 

C-2019 

RGBN 0.52 66.94 60.52 U-Net 

NDVI 0.52 61.20 58.62 U-Net 

SAVI 0.52 65.58 58.23 U-Net 

A-2014 

RGBN 0.77 5.72 27.98 RF 

NDVI 0.77 39.41 35.69 U-Net 

SAVI 0.77 61.74 35.67 U-Net 

A-2018 

RGBN 7.88 97.67 74.85 U-Net 

NDVI 7.88 80.10 83.25 RF 

SAVI 7.88 92.55 82.59 U-Net 

 

 

 

 

    Accuracies were highest for site C, especially the U-Net models (Figure 5.8). It is important to 

note that the sites they were obtained from were the same site used to train the model.  As such, 

the site characteristics here for the training samples are more similar to the validation samples, 

however they were partitioned into training and validation parcels (Figure 5.3), so these accuracy 

statistics for site C still represent independent validation.  
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Figure 5.7 Comparison of U-Net and RF Producer’s and User’s accuracy for 2013 and 2019 sub-image at 

site C. Notice that lower illumination conditions in 2019 reduced classification accuracy. 
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5.4.4 Class Error Matrices 

 

    Tables 5.5 – 5.8 present the actual number of pixels in the validation data and class specific 

classification accuracies. The column sums are the total number of pixels in each class, while the 

row sums are the total number of pixels classified as the corresponding class. We note that since 

non-overlapping tiles were generated using the ArcGIS export training data for deep learning 

tool, column sum for pixels (i.e., labelled landcover classes) in the U-Net confusion matrix tables 

are less than RF due to dropping of tiles that were less than 256  256 at the edges during tiling 

of samples. For example, in tables 5.5 and 5.6, the number of labelled placer pixels for RF 

models exceed U-Net by 477 pixels. This corresponds to 14% reduction in actual placer pixels 

for U-Net at site A-2014. Similarly, in tables 5.7 and 5.8, placer pixels presented to RF exceed 

that of U-Net by 445 pixels. Again, this leads to 1.3% reduction in actual placer pixels for U-Net 

at site A-2018. Also, note that column sum for forest pixels in RF matrices are less than U-Net 

columns sums as 90% of forest pixels were dropped at training, testing and validation to reduce 

the class imbalance problem. 

 

5.4.4.1 Site A class accuracy 

 

    Placer detection error rates vary remarkably between the models. Both models detect placer at 

reasonable accuracy but over 1500 actual pixels were detected to be Natural disturbance. There 

were a total of 2922 pixels in the placer class as determined by digitizing, and 1861 were 

correctly classified as placer by U-Net. Notably, U-Net error for placer misclassification as 

Water and Flood plain was zero pixels, while that of the RF exceeded 94 pixels (see Tables 5.5 
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and 5.6 second column). Interestingly, only 12 placer pixels were misclassified as forest by the 

RF, yet over 562 placer pixels were incorrectly detected to be forest by the U-Net. 

Table 5.5 Class specific accuracy for A-2014 site using U-Net – NDVI model. 

 
 Water Placer Natural disturb. Forest Floodplain Total 

Water  28 0 0 3 0 31 

Placer 507 1861 224 2033 97 4722 

Natural disturb. 182 499 68 24 321 1094 

Forest 12 562 371 619765 14 620724 

Floodplain 0 0 0 0 18 18 

Total 729 2922 663 621825 450 626589 

 

 

 

 
Table 5.6 Class specific accuracy for A-2014 using RF – NDVI model. 

 

  
Water Placer Natural disturb. Forest Floodplain Total 

Water 13 207 589 228 13 1050 

Placer 819 2468 436 2853 339 6915 

Natural disturb. 10 12 1 0 53 76 

Forest 185 618 162 37958 0 38923 

Floodplain 0 94 0 0 235 329 

Total 1027 3399 1188 41039 640 47293 

 

 

 

    There was a total of about 35000 pixels in the placer class as determined during digitization. 

Placer detection was very high for both models (i.e., 31913 and 33532 pixels; for U-Net and RF, 

respectively). Distinguishing natural disturbance class from placer however tended to be 

challenging for the models. Over 1618 actual placer pixels were detected as natural disturbance 

by U-Net. Also, 596 and 25 placer pixels were incorrectly classified by RF and U-Net, 

respectively, to be Water (see column two of Tables 5.7 and 5.8). 
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Table 5.7 Class specific accuracy for A-2018 using U-Net – NDVI model. 

  
Water  Placer Natural disturb. Forest Floodplain Total 

Water  0 25 0 23 0 48 

Placer 323 31913 0 7453 154 39843 

Natural disturb. 0 1618 0 16 0 1634 

Forest 32 996 180 559416 0 560624 

Floodplain 0 0 0 0 0 0 

Total 355 34552 180 566908 154 602149 

 

 

 

 

 

 

 
Table 5.8 Class specific accuracy for A-2018 site using RF – NDVI model. 

  
Water Placer Natural disturb. Forest Floodplain Total 

Water  37 598 21 0 0 656 

Placer 465 33531 11 5981 289 40277 

Natural disturb. 0 4 0 12 0 16 

Forest 101 876 594 35730 8 37309 

Floodplain 0 0 0 0 0 0 

Total 603 35009 626 41723 297 78258 

 

 

 

 

 

5.4.5 Visual assessment of placer detection performance 

 

    In Figure 5.9 row (a), it can be seen that A-2014 is the most difficult area to distinguish placer 

from other landcover types. The U-Net appears to detect only placer and forest, but unable to 

distinguish other feature types (e.g., Water/Flood-plain). The RF detected most of the different 

classes but tended to misclassify few forested areas as placers. This outcome aligns well with 
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per-class accuracy report presented in Table 5.7. In Figure 5.9 row (b), we noticed substantial 

placer detection. Again, this visual observation aligns with per-class accuracy report shown in 

the error matrix (see Table 5.8). The U-Net detected placers well, but with some error rates as 

certain placer pixels were identified to be natural disturbance (i.e., False negative). Similarly, the 

RF detected most of the digitized placer areas with acceptable accuracy levels. However, a large 

proportion of RF map errors can be observed in forested areas where reasonable amounts of 

actual forest pixels were identified as placer (i.e., False positive). 
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Figure 5.8 U-Net NDVI and RF NDVI models’ placer detection maps using in 2014 and 2018 images. 

Rows (a) and (b) denote site A-2014 and site A-2018, respectively. Columns one shows original images 

with digitized independent validation samples. Columns two and three present classification maps using 

U-Net and RF models. 

 

UNET NDVI Model 

 
RF NDVI Model 

 

(a) 

(b) 
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    Placer detection maps are shown in Figure 5.10 for validation site C2-2013 and C2-2019. Row 

(a) shows C2-2013 image, and row (b) denote C2-2019 images and their corresponding placer 

detection maps using U-Net and RF. On average, the models performed satisfactorily in 

detecting placer areas that were digitized for validation. While U-Net may be under detecting 

placer, the RF appears to over detect placer as the maps show substantial placer pixels in forested 

areas away from the river reach. Natural disturbances occurring away from the reach and within 

forested areas tended to be well discriminated by U-Net. Contrarily, most naturally disturbed 

areas were detected by RF to be placer pixels. It should be noted that the U-Net also detected 

certain pixels in the river reach to be natural disturbance, but these were actually either water or 

flood-plain, and in some instances were placer pixels (see Figure 5.10 column two). As 

mentioned earlier, the two images (C2-2013 and C2-2019) exhibit marked differences in 

illumination characteristics due to variation in image acquisition dates.  
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Figure 5.9 U-Net NDVI and RF NDVI models’ placer detection maps using in 2013 and 2019 images. 

Row (a) site C2-2013, and row (b) site C2-2019. Column one shows original images with digitized 

validation samples. Columns two and three are classification maps. 

 

(b) 

UNET NDVI Model 

 

RF NDVI Model 

 

(a) 
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5.5 Discussion 

 

    This study utilized SPOT-6/7 imagery to demonstrate the potential of machine learning 

methods in monitoring placer disturbance at watershed scales. A deep learning model – U-Net 

and RF models were fitted and used to detect placer disturbance on an independent validation 

dataset. U-Net models performance measured in terms of Dice losses and WCE losses varied but 

remained relatively low after few epochs (Figure 5.7), with the lowest loss determined after 45 

epochs. While Dice loss suggests no overfitting (Figure 5.7a), WCE loss provides evidence of 

some potential overfitting. Maxwell et al. (2020) reported optimal model performance following 

few epochs while highlighting overfitting issues. Both modeling frameworks successfully 

detected placer with reasonable accuracy and showed promising potentials for operational 

mapping of placer disturbances.  A U-Net architecture with 3  3 convolutional filters performed 

best at discriminating placer signals from disturbances.   

     Random forest models tended to outperform on Producer Accuracy (Table 5.3) whereas the 

U-Net models tended to outperform on User Accuracy (i.e., reducing misclassifications) (see 

Table 5.4). As depicted in Figure 5.9, there are differences in placer detection performance 

between models and data configurations. While there were occurrences of false positives in 

placer detection for RF models, similarly, there exists false negative rates in placer areas detected 

by U-Net models. Most misclassification was due to water, in the 2014 image for site A (see 

Tables 5.5 – 5.8). However, as can be seen in Figure 5.9 row (a), there was large 

misclassification of forest sites as placer, occurring for both models. We note that although the 

number of placer pixels presented to RF and U-Net models differed between sites A-2014 and A-

2018 as shown in tables 5.5 – 5.8, the difference is not large enough to cause a significant change 

in the accuracy reports at site A-2018 where there was only 1.3% reduction in placer pixels for 
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U-Net models. However, at site A-2014 wherein there was relatively low placer pixels (i.e., total 

of 3399 placer pixels), and given that the site posed challenges to both RF and U-Net models, 

14% reduction in placer pixels may have some impact on U-Net’s accuracy reports. 

     Two things are worth noting on the classification results from site A. Firstly, site A was not 

used for model training; as such, the characteristics of that particular site were not seen by the 

model. This appears to be more of a factor for the U-Net models (which had some difficult 

classifying this site) than for the RF models. Secondly, for both models there was a major 

difference in performance between the 2014 and 2018 images. 

    It has been shown that given small datasets, RF models can perform at par with deep-learning 

models containing few hidden layers (Benkendorf and Hawkins, 2020). Additionally, model 

architecture (e.g., layer depth), input tile size and training strategies adopted are known to 

influence performance (Ghorbanzadeh et al., 2019). However, for potential real-world/field 

deployment, it is essential to implement a fairly light and computationally effective U-Net model 

with reduced parameters (Gadosey et al., 2020). Though we applied data augmentation to 

increase the training sample size for U-Net model, independent validation datasets with different 

feature distributions such as in site A can prove challenging for deep-learning models. The 

attention cropping strategy proposed by Xiao et al. (2018) is one possible and effective data 

augmentation approach, but we did not investigate this alternative. Transfer learning in which 

pretrained models and parameters are employed in model development is one of the effective 

techniques to circumvent overfitting while improving model performance, especially where there 

is limited amount of training data (Oquab et al., 2014; Yosinski et al., 2014). For instance, the 

VGG19 model was utilized for transfer learning but modified to FCN suitable for semantic 

segmentation of slums (Nowakowski et al., 2021). Cui et al. (2020) also modified U-Net with 
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dense connections for landuse/landcover classification and found that transfer learning 

effectively deals with insufficient and imbalanced data problems.  

    The models’ error rates on average were relatively low throughout site C. As mentioned 

earlier, sites C2-2013 and C2-2019 images were a sub-set of site C data which were not used for 

model training. The features distribution as well as spectral signatures are therefore closely 

similar to the training dataset. This suggests that so long as representative samples are obtained 

for model training, reasonable classifications can be obtained. Examining a sub area of site A in 

Figure 5.9 row (b), we can see that in addition to significant placer disturbance, the images differ 

markedly in illumination characteristics. Furthermore, profound phenological difference exists 

between the images probably due to the differences in image acquisition times. Similarly, we 

observed differences in placer classification accuracy between site C in 2013 and 2019, likely 

due to differences in illumination conditions (Figures 5.10) and Figure 5.A1 in Appendix 5A. 

These differences could be due to atmospheric constituents or solar illumination with respect to 

image acquisition (July versus September).  

    The RF model is pixel-wise and encodes no texture or contextual information (Stoian et al., 

2019); hence false positives are expected, especially for spectrally related classes. This probably 

resulted in misclassification of some classes; for example, placer as flood-plain/natural 

disturbance. Also, certain areas further away from flood plains (i.e., forest areas) at sites A and C 

were detected as placer by the RF; a visual examination shows that such areas consist of dry 

vegetation interspersed with bare/exposed soil. The SAVI model (see Figure 5.A2 in Appendix 

5A) which accounts for exposed surfaces/soil was able to reduce such false positive rates but 

overall, the accuracy was not substantially different from the NDVI models’ performance. 

Addition of vegetation index channels as model inputs tended to be more important for U-Net 
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models than for RF models. RF error rates can be reduced by using RF with conditional random 

field graph model to derive the contextual information (Sun et al., 2017). For example, to remove 

classification errors and  improve accuracy, Tian et al. (2016) suggest incorporating phenological 

difference and textural information  from grey level co-occurrence matrix, while Fu et al. 

(2017b) emphasize adopting object-based modelling to incorporate contextual information. 

Izquierdo-Verdiguier and Zurita-Milla (2020) suggest using RF with guided regularization as it 

does not require setting a threshold on the number of features to be selected and yields non-

redundant and representative features. Given that placer occurrences are closer to river reaches, 

we believe that the RF has potential for field deployment despite the observed false positive rates 

in forested areas. 

    The SPOT data used in this analysis was sufficient for the classification task. While it is 

shown that higher resolution data (e.g., World-View-2 data) would likely result in  better 

accuracies, especially for the U-Net (Melville et al., 2018), this may come at a cost of geographic 

and historical archive. Data fusion (e.g., SPOT-6/7 and SAR data) may help improve accuracy  

(Liu et al., 2018c; Yu et al., 2018b), yet this may increase data processing requirements for end-

users. Additional data preprocessing might however be needed to ensure image data are 

adequately prepared for model training. This is especially true when using a model to predict 

placer at sites beyond the sites used to fit the model as seen in sites A-2014 and A-2018.   

    Recently, U-Net has been applied to map small-scale mining using Sentinel-2 dataset and 

shown to effectively detect mined areas with high accuracy (Gallwey et al., 2020). Hence, the U-

Net modelling framework has potential for mapping placer disturbance at watershed scale; 

nevertheless, we suggest developing both models further in parallel for the following reasons. 

Firstly, RF models are relatively easy to set-up and implement, and given input data resources, 
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can be used as a reference model for comparison. Secondly, unlike U-Net, RF models require 

less computational resources and technical expertise to run and parameterize, which may be 

critical factors in an operational setting (Stoian et al., 2019).  

 

5.5.1 Limitations and future modeling improvement  

 

    We find image selection to be one of the crucial steps in the modelling framework; therefore, a 

set of guidelines on imagery selection could be specified for a given model, for example (e.g., 

image acquired in August/September are likely to improve classification accuracy). For instance, 

a study conducted by Noi Phan et al. (2020) finds that datasets with summer scenes covering 

June and September produced the best accuracy as such images reflect features with closely 

similar scene characteristics (e.g., illumination and vegetation phenology). 

    Given that we saw some differences in illumination and atmospheric conditions which 

affected our results, we should strive as much as possible to reduce atmospheric noise in imagery 

and radiometric differences in input imagery prior to model training. There are two possible 

approaches to do this; one is to preprocess and normalize input data as much as possible to 

reduce artefactual differences; the second is to capture enough variability in illumination 

differences within the training samples to capture these characteristics within model features.  

    One limitation during training and validation dataset generation is that digitizing specific land 

cover classes (e.g., placer, floodplain, and natural disturbance) was difficult for ~10% of the 

sites. This resulted in 6 out of 75 potential sites (i.e., placer parcels) being discarded and there is 

the potential for errors in the sites and landscape features that were classified. Since there was no 

ground truth data for wall-to-wall mapping, and the independent validation data was based on 

landcover types that were manually interpreted during digitizing process, the accuracy of our 
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assessment metrics is subject to potential errors from incorrectly identifying class types. 

Improving training and validation data using ground truth samples identified by field experts 

would likely reduce error rates for both models and improve confidence in derived outputs (i.e., 

classification maps). 

    One specific variable to incorporate into the models’ input is digital elevation model (DEM) 

data. As placer mining occurs in close proximity to waterways, Height Above Nearest Drainage 

(HAND) (Rennó et al., 2008), which is essentially a topographic normalization of a drainage 

network using existing DEM, could be a potential variable for improving placer detection in 

future modelling. 

    Understanding the intensity of disturbance in each placer parcel would be useful for 

monitoring and decision-making. To this end, we suggest future modeling frameworks consider 

converting model outputs of pixels classified as placer to create an indicator of total area of 

placer per parcel.  

 

5.6 Conclusion 

 

    Understanding the impacts of large-scale land alteration requires accurate estimates of the 

amount of land altered by human development. We used U-Net convolutional neural network 

and RF models to detect placer mining activity. We compared the accuracy of the two modeling 

approaches and variables (e.g., NDVI and SAVI) to gain insights into the feasibility of using 

these tools for monitoring placer mining activity in the Yukon. Our analysis demonstrated the 

utility of SPOT-6/7 satellite imagery for detecting placer activity. Overall, the user’s accuracy 

was more variable (even only within site C) for both modelling frameworks. For areas with 

larger areas of placer activity (e.g., site A-2018), both models performed well. Given that the 
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user’s accuracy for U-Net was higher than RF for most of the sites, we believe that the U-Net has 

potential to improve misclassification errors with additional training data and model 

development.  

    It is worth noting too that the technical requirements and computation time for these modelling 

frameworks are not equal. RF models behave in much the same way as other modelling tools for 

image data, employing ground truth samples and input image data, and generating classifications 

for outputs. RF modelling as was completed here is relatively easy, requiring use of GIS 

software for image processing and generating training samples, and statistical software or remote 

sensing software for fitting classification models. U-Net modelling requires more extensive 

parameterization in terms of defining a tile size, methods to reduce overfitting, and greater 

computation times. However, once U-Net models are fit they can be utilized in much the same 

way as RF models.  
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Appendix 5A  

 

 
 
 

Figure A1. U-Net SAVI and RF SAVI models’ placer detection maps using in 2013 and 2019. (a) site C2-

2013, and (b) site C2-2019. 
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Fig. A2. SAVI U-Net and SAVI RF models’ placer detection maps using in 2014 and 2018. (a) site A-

2014, and (b) site A-2018. 
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Chapter 6: Conclusions 

 

6.1  Overview 

 

     In this research, computer vision methods capability and potential adoption for geographical 

research are addressed using simulation-based data as well as real-word datasets. Specifically, 

the research provides an in-depth insight into both simple and complex computer vision tools, 

and how they can be employed to extract spatial pattern information, a crucial ingredient for 

quantifying and characterizing changes and similarities in patterns and processes of interest 

across space and time. Chapter 2 provides a compilation of literature and explores scale domains 

and how computer vision algorithms are developed to handle scale issues. As theories on scale 

and techniques to address scale challenges are well matured in geography, computer vision 

discipline’s approach to resolve scale issues is not entirely new to geography, and in fact, 

geographers and GIScientist do not only have a fundamental role to play in adapting computer 

vision methods but can contribute to the development of scale and context-aware models. 

    Spatial structure is known to be the defining characteristics of patterns generated by spatial 

processes acting of a range of scales. While illumination and contrast are frequently occurring 

components in remotely sensed data, these are regarded as fundamental artifacts that 

substantially impede the performance of many classical pattern comparison metrics. Chapter 3 

addresses this challenge by comparing patterns in simulated data and snow water equivalent 

maps using two structurally-sensitive computer vision algorithms (i.e., SSIM and CWSSIM). By 

accounting for contrast and illumination differences between image-reference pairs, the indices 

focus more on spatial structure when comparing patterns. 
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     Chapter 4 attempts to avoid the challenges posed by illumination, contrast and other implicit 

data artifacts through the use of deep learning models.  Extracting relevant pattern signatures 

from trained CNN models and comparing patterns using CNN feature maps precludes the need to 

deal with raw image data which is vulnerable to the above artifacts. Such a novel approach 

demonstrates the potential of CNN features for environmental monitoring. Deep learning models 

come with various architectures aimed at optimizing model performance. U-Net CNN which is 

known for effectively segmenting biomedical images is presented in Chapter 5 to detect placer 

disturbance signatures at watershed scales. U-Net model is a typical example of context-aware 

deep learning modelling, a novel and promising tool for detecting and monitoring placer mining 

disturbance.   

 

6.2 Contributions of this research 

 

    This research points to the potential for computer vision methods and tools to be easily 

adopted to resolve pattern comparison challenges in geography and GIScience. There are well-

known theories and methods for representing and analyzing spatial patterns in geography. For 

example, the awareness of spatial structure and correlation, spatial interpolation methods, and 

other geostatistical techniques that been employed to study patterns in geography and GIScience 

(Atkinson and Tate, 2000), are fundamental to sampling and processing data to develop 

computer vision tools. For instance, scaling image data to represent spatial objects at varying 

spatial resolutions is a common data augmentation technique in computer vision whose 

underlying objective can be well understood in geographic context.  

    The literature synthesized in Chapter 2 illuminates the potential of computer vision algorithms 

to be used in spatial pattern comparison applications, especially for continuous-value data. A 
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scale typology outlines fundamental challenges in parameterizing computer vision algorithms to 

capture the signals of pattern generating processes, and how to address scale issues as they 

emerge in pattern comparison tasks. As scale is a core geographical concept, this may also be an 

area where geographers and GIScientists can help to facilitate adoption and refinement of 

computer vision tools for environmental monitoring. For instance, in geography, it is widely 

recognized that remotely sensed data is not immune from MAUP and ecological fallacy 

(Openshaw, 1984; Marceau and Hay, 1999). Changing scale and aggregation level, for example, 

is proven to substantially reduce per-class classification accuracy (Marceau et al., 1994). 

Therefore, parametrizing models based on the possible effects of scale is likely to lead to 

generalizable models and more predictable results. To partly address scale issues when 

developing CNN models, an appropriate dimension of scale – pixel spatial resolution (i.e., grain) 

and input tile size (i.e., spatial extent) is crucial. Another viable approach is to develop texture 

encoded models in which fine-grained spatial information residing in lower layers is propagated 

across to augment coarser features in higher layers. Additionally, selecting the best model 

parameters given prior knowledge of process-pattern spatial and temporal resolutions is an 

effective technique. For example, while processes that manifest themselves as fine-grained 

patterns may require small-sized filters (e.g., 3  3), in order extract discriminative signatures, 

coarser pattern signatures may be best extracted by deploying large filters (e.g., 15  15) (Peng et 

al., 2017). Finally, multiscale CNNs (e.g., Zhao and Du, 2016; Liu et al., 2018b), can be used to 

mitigate the MAUP problem as such models can take tiles with varying dimensions or scaled 

(i.e., zoomed-in or zoomed-out images) data as their input. This approach aligns well with the 

multiscale Object-Specific framework suggested by Hay et al. (2001). 
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    As discussed in Chapter 2, spatial patterns tend to exhibit unique structure that is linked to 

underlying processes; yet at varying scales, these patterns manifest themselves differently (Wu, 

2004; Kulha et al., 2019), requiring methods and tools that are relatively robust to changes in 

scale. Aside artifacts that may be introduced due to the range of scale over which patterns are 

studied, illumination, contrast, image misregistration and shift in sensor platforms are amongst 

potential sources of errors in remotely sensed data that may impact the accuracy of pattern 

comparison (Townshend et al., 1992; Coppin et al., 2004). Additionally, given that patterns are 

shaped by complex dynamic processes acting at various scales, classical pattern metrics that 

quantify static, discrete overall pattern or individual patch properties may not be suitable for 

continuous-valued data or data derived from model simulations (Bolliger et al., 2007). 

Structurally sensitive metrics (e.g., SSIM and CWSSIM) are key to resolving some of the 

foregone challenges. By examining exemplar computer vision algorithms, Chapter 3 revealed the 

potential of SSIM and CWSSIM to discover changes in patterns. The research elucidated the 

geometric invariant property and robustness of CWSSIM to frequently encountered errors such 

as shifts in data acquisition instruments. When it comes to pattern comparison in continuous-

valued data, structurally sensitive tools remain somewhat limited in geography. Therefore, this 

finding is likely to pave a way for adoption of existing as well as emerging computer vision tools 

for spatial pattern comparison in geographic research. 

    Chapter 4 extends the work in Chapter 3 by developing a texture-based CNN model to extract 

feature maps for landscape similarity analysis. Feature maps represent the most discriminative 

pattern signatures learned by a deep learning model and thus may contain vital information 

pertaining to patterns generated by spatial processes (Amirshahi et al., 2017). The study 

demonstrated the utility of deep learning models in a landscape comparison context. More 
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importantly, the novelty of the approach stems from combining multiple techniques: encoding 

texture information, the utilization of CNN feature maps, and deriving feature map histograms to 

compare landscapes. Histograms of a given landscape derived from its corresponding CNN 

feature maps also retain the distribution of the discriminative features. Such distributions hold 

potential to represent the complexity and uniqueness of a given landscape, and hence could help 

resolve spatial pattern comparison challenges. By employing this approach, Chapter 4 

demonstrates that similarity distributions could be established for any landscape type to aid in 

comparison and to effectively distinguish disparate landscapes. This technique would be 

essential for developing tools aimed at discovering spatial processes driving for example, a 

particular land degradation pattern across a variety of geographical locations.  

    The analysis carried out in Chapter 5 builds on the texture-based model presented in Chapter 4 

by introducing a more spatially explicit and contextual-aware variant of CNN models – U-Net, 

and comparing the model’s performing with RF. The study revealed the potential of both RF and 

U-Net for watershed scale monitoring in real-world scenarios. By combing SPOT-6/7 data and 

derived data (e.g., RGBN + SAVI and RGBN + NDVI), this research further illuminates the data 

requirements for developing models to detect Placer mining disturbance and showed that SAVI 

and NDVI may be helpful for improving the discriminative performance of U-Net models. The 

findings of this research bring to light the potential complementarity of both modelling 

frameworks.  While the U-Net models reduced misclassification errors, the RF models were 

found to be easily trainable with less modelling and computational demands.  
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6.3 Adopting computer vision methods in geography: challenges and opportunities 

 

    In this study, both the potentials and drawbacks of computer vision methods in spatial pattern 

comparison are highlighted. The applicability of computer vision methods in geographic context, 

however, requires further scrutiny with experimental approaches that examine process-pattern 

relationships at varying scales, and across multimodal datasets (e.g., vector, raster, radar and 

lidar). It is also worth noting that, like classical approaches to pattern comparison, computer 

vision methods do not provide adequate explanations of the relationships between patterns and 

processes (Reichstein et al., 2019; Gahegan, 2020). Although neural networks learn underlying 

data generating processes, the models are unable to explain how processes operate to create 

patterns, and process-pattern linkages learned by models may not resemble how real-world 

processes and patterns interact within a given problem domain (Gahegan, 2020). Integrating a 

process-based framework for pattern comparison proposed in Csillag and Boots (2005) with 

current techniques in computer vision may offer a more valuable insight into understanding 

process-pattern interactions, though this may involve extensive and statistically defensible 

evaluation of several candidate pattern generating processes.  

    Chapter 3 demonstrated the potential of CWSSIM and SSIM indices for pattern comparison in 

continuous-valued data; however, there are caveats underlying their applicability, especially for 

geographic phenomena comparison. The simulation-based approach presented using GMR fields 

sheds light on the challenges likely to be encountered when using simulation to model real 

geographic processes. For example, mvr3 and mvr8 images were generated by disparate spatial 

dependence parameter; yet the metrics, in some instances, could not distinguish these patterns.  

This highlights limits to the process-pattern framework as a whole and what can be learned by 

pattern analysis alone. Also, as shown in this study, both CWSSIM and SSIM are sensitive to 



 

 

262 

change in scale (i.e., window size). In geographic phenomena comparison, selecting an 

appropriate scale at which processes operate, and interact with patterns is fundamental to 

uncovering changes or similarity in spatial patterns (Frate et al., 2014). Thus, the use of 

CWSSIM and SSIM requires thorough examination of the window size to effectively compare 

patterns. For instance, CWSSIM’s relative resilience to shift in scale is only valid for “small” 

changes in scale relative to the size of the wavelet filter (Sampat et al. 2009). Given that 

geometric errors in geographic datasets can span scales ranging from sub-meters to kilometers, 

the utility of CWSSIM’s geometric invariance property cannot be guaranteed at large scales 

(e.g., datum shift between NAD27 versus WGS84). Moreover, extensive evaluation of the 

performance of wavelet domain indices such as CWSSIM has been conducted on generic images 

(Zhang et al., 2007; Yang et al., 2008; Gao et al., 2011). The robustness of CWSSIM therefore 

remains to be extensively assessed in datasets representing real-world geographic phenomena. 

Unlike CWSSIM, several authors have demonstrated the superior performance of SSIM in 

comparing geographic patterns (e.g., Robertson et al., 2014; Jones et al., 2016; Wiederholt et al., 

2019). However, there is no empirical assessment of CWSSIM and SSIM perceptual similarity 

property against human observers’ judgment of pattern similarity in the context of patterns 

generated by geographic processes.  

    Convolutional neural networks are a class of spatial-aware models which have attained high 

accuracy in solving a variety of geographic related problems such as scene classification, object 

detection and image segmentation (Krizhevsky et al., 2012; Lecun et al., 2015). The potential of 

CNNs to model complex non-linear relationships peculiar to geographic patterns and processes 

makes them useful tools for spatial data analysis (Fischer, 2001). Convolutional neural networks 

do not rely on pixel level information but leverage contextual information using filters to detect 
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and classify patterns.  The adoption of CNNs for analyzing patterns is thus likely to improve the 

characterization of spatial and temporal patterns leading to the discovery of processes that 

govern pattern formation over a range of scales (Brodrick et al., 2019). Despite this promising 

potential, a widespread adoption and deployment of CNNs for geographic problem solving will 

not be as straightforward as found in computer vision. For instance, deep learning algorithms 

require a huge amount of labelled data for training, validation, and testing, and this motivates 

deep learning researchers to turn to benchmark datasets (Zhu et al., 2017; Reichstein et al., 

2019). Benchmark datasets are generally limited in geography, and this can impair the ability of 

geographers to rigorously validate models in geographic context. To add to this challenge, 

satellite imagery which is one of the primary sources of geospatial data, comes in configurations 

that are often more complex than the generic images used to develop many deep learning 

models. This may weaken the generalizability and transferability of models to different locations 

and datasets. In Chapter 4 for example, the CNN models performed better on AID than on 

Sentinel-2 data; surprisingly, retraining them with a combination of AID and Sentinnel-2 data 

substantially improved their performance. This observation underlines the complexity inherent in 

satellite imagery compared to high spatial resolution aerial images which are relatively simple to 

classify.  In geographic context, datasets such as AID have inherent limitations in terms of class 

definitions. For example, the definition of what constitutes mountainous pattern versus forested 

landscape is not mutually exclusive for some training examples but turns out to be a function of 

scale in geographic context. Clearly, this problem manifests in the comparison of feature map 

distributions between forest and mountains wherein the distributions tend to overlap. Such an 

outcome is largely driven by the fact that feature maps from mountains that contain forest are 

likely to be similar to actual forest landscapes at high spatial scales. Unlike the computer vision 
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discipline, generating benchmark datasets in geography can be challenging. The perception of 

similarity in geographic constructs and patterns may be influenced by the level of expertise and 

field of interest of a geographer (Csillag and Boots, 2005). In geographic context, creating a huge 

benchmark dataset in which class labels are mutually exclusive will require extensive 

crowdsourcing using audience from varied sub-fields. Citizen science is a potential platform that 

can be utilized to obtain labelled data (Robertson and Feick, 2017). However, to ensure labels are 

mutually exclusive, further filtering using a representative subset of audience in geography will 

be essential. 

    The U-Net model is a CNN architecture in which fine spatial resolution features in early layers 

of the network are utilized to improve the spatial resolution of corresponding higher layer 

features. The U-Net learning module is spatially explicit in that it applies only fully 

convolutional layers (i.e., layers with 2-dimensional feature maps). The model is widely utilized 

to classify biomedical images (e.g., Ronneberger et al., 2015; Chen et al., 2019), and in a variety 

of landcover mapping and change detection tasks (e.g., Flood et al., 2019; Gallwey et al., 2020). 

By comparing RF and U-Net, Chapter 5 sheds light on how competitive a non-spatial model – 

RF can be; suggesting that the most complicated modelling framework may not always be the 

best technique to detect placer mining disturbance. Chapter 5 further points to the need for 

careful examination of the approach used to obtain validation data for model testing. As 

illustrated in the modelling results, the correlation structure in samples from the same spatial 

location may be easily learned by deep learning models resulting in high performance, yet 

samples taken from disparate locations tend to be challenging for models to accurately classify.  

    To accurately assess the performance of deep learning models, large and spatially explicit data 

are recommended (Elmes et al., 2020). Unlike the computer vision discipline, the limited nature 
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of labelled data in geography compels researchers to evaluate models on few available samples. 

In Chapter 5 for example, U-Net and RF performance was assessed based on limited validation 

data. More often, training and validation samples are assumed to accurately represent the 

underlying ground features or phenomena; yet errors may result from sampling design and data 

collection techniques (Elmes et al., 2020). Assessing the accuracy of training and validation 

samples using expert knowledge is therefore crucial to minimizing data errors. The U-Net and 

RF models need to be subjected to further scrutiny with substantial amounts of independent 

validation data in which classes are identified, interpreted, and labelled by experts in geography. 

 

6.4 Key limitations in this research 

 

    One fundamental limitation of the review presented in Chapter 2 is that the complexity of 

computer vision models and the challenges related to explaining and linking models’ decisions 

and/or predictions to underlying input variables was not addressed. Although there has been 

substantial progress towards explaining the mechanics underlying deep neural networks 

decisions (e.g., Omeiza et al., 2019; Srinivas and Fleuret, 2019), much remains to be seen when 

it comes to linking model input variables to outputs. Explaining the linkages between deep 

learning models inputs and outputs will not only go a long way to improve adoption and 

deployment, but could potentially lead to effective model parameterization in the geographic 

context. 

    In Chapter 3, the assessment of CWSSIM and SSIM capability to compare spatial patterns 

excluded human subjects’ judgement of pattern similarity; an experimental design to compare 

both metrics similarity values and human observations decisions as to which image pairs are 

more similar would be crucial to increasing confidence in the use of the metrics in real-life 
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decision-making systems. Additionally, CWSSIM and SSIM evaluation in simulation data was 

based on moving average fields with two disparate sets of spatial dependence parameter settings 

– high spatial dependence (mvr3) and low spatial dependence (mvr8). While these two sets of 

data were helpful for demonstrating the capability of the metrics to expose subtle differences in 

patterns between reference-images pairs, examining the metrics sensitivity over a more varying 

range of spatial dependence parameters would be essential, especially, for deployment in real-

world pattern comparison tasks.   

    The Tex-CNN developed in Chapter 4 though proved to be more discriminative, did not 

outperform the classical CNN significantly except for mountain landscapes. This leads to many 

open questions regarding the effectiveness of our texture learning module. Other approaches that 

retain spatially discriminative features via residual network architecture may warrant future 

consideration. We also found that the models, trained using high resolution AID imagery, 

misclassified over 90% of agriculture landscapes as forest in Sentinel dataset. While this 

outcome may not be surprising owing to the significant difference in spatial resolutions of the 

two datasets, we anticipated that the Tex-CNN would be relatively robust to varying image 

resolutions.  This observation again calls into question the potential robustness and 

generalizability of our Tex-CNN to lower resolution datasets. Retraining the models with a 

combination of AID and Sentinel however produced models with high classification accuracies, 

suggesting the need for inclusion of both AID and Sentinel datasets at model training phase. 

Additional limitation of our feature-based approach stems from the fact that when extracting 

feature maps, we considered only layer-two of the CNN; while this layer tended to yield more 

visually meaningful and interpretable feature maps, it would be worthy investigating the 
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discriminative potential of other layer feature maps, especially the fourth layer since most of the 

models’ decisions are made using information from this layer. 

    In Chapter 5, we maintained the originality of SPOT-6/7 data and therefore did not apply 

preprocessing techniques, however, it turned out that due to varying image acquisition dates, 

differences in scene characteristics (e.g., varying illumination and vegetation phenology) likely 

reduced models’ performance, especially at site A-2018. Another limitation and a possible 

source of error stems from the lack of ground validation of the digitized Placer areas. It is 

probable that some areas that were identified to be Placer during digitization actually belong to 

other landcover types or certain actual Placer disturbed areas were not digitized at all and hence 

were excluded from the data. While omitting actual Placer pixels only reduces sample size, 

incorrectly identifying Placer pixels could significantly impact results derived from accuracy 

metrics.  

 

6.5 Future research directions 

 

    In this research, the caveats and limitations of computer vision methods were identified; such 

drawbacks could be harnessed to improve adoption and deployment of computer vision methods 

and tools for environmental resource monitoring. We suggest future research examines CWSSIM 

and SSIM on images with more complex spatial patterns such as images with distinct edges (e.g., 

urban environments) and images with visible objects (e.g., forests). The results of these metrics 

on the aforementioned datasets would provide vital information on the sensitivity and potential 

of the metrics to compare spatial patterns in real-world problems.  

    The current data deluge offers enormous opportunity to explore and discover the potentials of 

computer vision methods in geographical and GIScience research endeavors. Unlike the 
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disciplines of geography and GIScience, the computer vision discipline has utilized the recent 

data-rich environment and computational resources to advance the development and deployment 

of pattern detection and recognition algorithms.  With the abundance of raw sensor data as well 

as analysis ready datasets, testbeds for parametrizing computer vision models in geographical 

context could be designed. To this end, it is crucial that future research focuses on curating and 

compiling labeled environmental data to create benchmark datasets as shown in (e.g., Basu et al., 

2015 and Xia et al., 2016). Given the complex nature of patterns geographers are interested in, 

such novel datasets will serve as essential testbeds to effectively evaluate computer vision 

model’s potential to compare real-world patterns driven by the complex landscapes processes as 

well as their interactions at varying scales. For example, labeled datasets with healthy versus 

disease forest (e.g., mountain pine beetle infestation), mining (e.g., placer disturbance) versus 

natural disturbance (e.g., landslide) and burned forest versus harvested forest present complex 

pattern-process interactions whose signatures could be learned by deep learning models for 

classification and monitoring Earth’s resources; yet compilations of such novel datasets are 

either limited or non-existent in geography. 

    Chapter 4 investigated the potential utilization of deep learning features to compare 

landscapes. We believe that CNN feature maps possess useful discriminant features and could be 

utilized in change detection as well. Thus, future research in this direction is warranted. 

Furthermore, the CNN feature-based approach can be considered as an important starting point 

for future studies towards explaining the decisions and/or predictions of deep CNNs in a more 

geographically relevant context. It is also essential that further research focuses on linking 

models’ inputs to outputs at varying scales to improve confidence and acceptability of models’ 

decisions, and in the utilization of features maps for further tasks (e.g., change detection). 
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   The Placer modelling results in Chapter 5 hold potential for future improvement in many key 

areas. For example, training and validation datasets could be improved and increased by using 

ground truth samples identified by field experts to reduce digitization errors. Furthermore, given 

that differences in illumination and atmospheric conditions impacted the results, future 

modelling should focus on using images that are acquired with a minimum of at least one month 

interval or apply preprocessing reduce atmospheric noise and radiometric differences in input 

imagery prior to model training. For operational mapping and monitoring mining activities in 

each Placer parcel, we suggest that future research strives to obtain the magnitude of disturbance 

per parcel by converting areas detected as placers to create disturbance intensity over an entire 

area of interest.    

    As CNNs are “data hungry” models, it is worth investigating the utility of fine-tuning (i.e., 

transfer-learning) and using pretrained networks from other domains (e.g., medical imaging and 

graphical image processing) to extract discriminative features and pattern signatures. Pretrained 

models may not only obviate the need for large training sample size, but could alleviate the 

relatively high computational resources and time required to parameterize and develop deep 

learning models. However, there are challenging dilemmas in the choice of pretrained CNNs, 

and we emphasize that models trained on datasets that contain related features of interest to the 

problem being investigated by geographers and GIScientists should be considered.  

    Finally, with the advent of cloud computing services, model training and deployment 

workflow is envisioned to scale-up with sophisticated algorithms been accessible to geographers. 

However, to increase credibility of such models, their performance must be validated against 

labeled geographic datasets. Additionally, establishing a library of signatures characterizing 

certain patterns, is likely to streamline models’ performance validation workflows. It must be 
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stressed that building libraries of pattern signatures would be a convoluted task given the 

complexity of features/patterns and underlying processes often encountered in real-world.  
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