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A B S T R A C T   

We introduce two semi-supervised models for the classification of remote sensing image data. The models are 
built upon the framework of Virtual Support Vector Machines (VSVM). Generally, VSVM follow a two-step 
learning procedure: A Support Vector Machines (SVM) model is learned to determine and extract labeled sam
ples that constitute the decision boundary with the maximum margin between thematic classes, i.e., the Support 
Vectors (SVs). The SVs govern the creation of so-called virtual samples. This is done by modifying, i.e., per
turbing, the image features to which a decision boundary needs to be invariant. Subsequently, the classification 
model is learned for a second time by using the newly created virtual samples in addition to the SVs to eventually 
find a new optimal decision boundary. Here, we extend this concept by (i) integrating a constrained set of semi- 
labeled samples when establishing the final model. Thereby, the model constrainment, i.e., the selection 
mechanism for including solely informative semi-labeled samples, is built upon a self-learning procedure 
composed of two active learning heuristics. Additionally, (ii) we consecutively deploy semi-labeled samples for 
the creation of semi-labeled virtual samples by modifying the image features of semi-labeled samples that have 
become semi-labeled SVs after an initial model run. We present experimental results from classifying two 
multispectral data sets with a sub-meter geometric resolution. The proposed semi-supervised VSVM models 
exhibit the most favorable performance compared to related SVM and VSVM-based approaches, as well as (semi-) 
supervised CNNs, in situations with a very limited amount of available prior knowledge, i.e., labeled samples.   

1. Introduction 

Techniques for robustly deriving thematic information from remote 
sensing image data is of high interest. The past paradigm shift from 
expert-based systems, which involved implementing dedicated if-then 
rules to extract thematic information, to machine learning-based 
methods, which derive rules automatically from empirical observa
tions, remains relevant. 

In recent years, especially deep learning methods gained increasing 
popularity (Li et al., 2019). The underlying model structure often exhibits 
high generalization capabilities when a substantial amount of prior 
knowledge is available. Models like fully convolutional neural networks 
(CNNs) (Long et al., 2015) enable the learning of a hierarchy of 
discriminative feature representations, often resulting in improved ac
curacy for pixel-level predictions, such as semantic segmentation, when 
an ample amount of training data is available. However, depending on 

the domain under analysis, the collection of required prior knowledge 
for machine learning-based methods can remain costly. Consequently, it 
can be desirable to implement techniques that facilitate, for example, 
the efficient collection and compilation of prior knowledge such as cost- 
sensitive active learning (Persello et al., 2014; Geiß et al., 2018), the 
augmentation of the feature vector by using initial model outcomes to 
enhance estimates with the same level of deployed prior knowledge 
(Geiß and Taubenböck, 2015; Geiß et al., 2022a; Geiß et al., 2022b; Zhu 
et al., 2021), or the implementation of a model structure capable of 
achieving high generalization even when only a small amount of prior 
knowledge is available for model learning. Regarding the latter, Support 
Vector Machines (SVM) (Schölkopf and Smola, 2002) represent a 
framework that has shown excellent performance in situations with (i) a 
limited amount of prior knowledge, (ii) high dimensional feature vectors 
deployed for classification, and (iii) highly complex and intrinsically 
non-linear class patterns (Volpi et al., 2013). 
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The SVM algorithm establishes a so-called hyperplane, i.e., decision 
boundary, in between the patterns of thematic classes. To account for 
non-linear classification problems, labeled samples can be projected to a 
space of additional dimensionality using a non-linear transformation 
function. In this space, the hyperplane is positioned to maximize the 
margin between the patterns of thematic classes (Schölkopf and Smola, 
2002). It is important to note that the maximum margin between the 
thematic classes is equally determined by two marginal decision 
boundaries that enclose the labeled samples nearest to the hyperplane: 
the Support Vectors (SVs) (Burges, 1998). Only these samples are 
necessary to establish the model and its corresponding class boundaries. 
This algorithmic property is particularly well-suited for creating accu
rate models based on a limited amount of prior knowledge. Moreover, 
additional prior knowledge can be efficiently encoded into the model 
based on the SVs. Specifically, SVs can be strategically employed to 
make the classification model invariant. Thereby, invariance refers to 
model robustness regarding representation changes of the objects 
induced by variations in their shape and size, spatial composition, or 
signal-to-noise ratio, respectively (Camps-Valls et al., 2014). Consid
ering changes in representation for determining optimal decision 
boundaries is referred to as model invariance (Izquierdo-Verdiguier 
et al., 2013). As a result, the learned decision boundaries of a model 
should enable high accuracy when classifying unlabeled samples, even 
in the presence of a substantial number of changed object representa
tions (Geiß et al., 2019). Different possibilities how invariances can be 
encoded in an SVM model were proposed. Those foresee the engineering 
of kernel functions which lead to invariant SVM, the generation of 
artificially transformed samples, as well as hybrid methods which 
internalize the principles of both aforementioned approaches (DeCoste 
& Schölkopf, 2002). In this context, we adopt the idea of generating a set 
of samples that have been artificially transformed. Such so-called virtual 
samples are generated by modifying the image features to which the 
classification model needs to be invariant. However, virtual samples are 
solely generated from the training samples that have become an SV 
within the initial learning stage of the model. This is done to selectively 
enrich the training set which is deployed for a second learning stage of 
the model. This type of model belongs to the family of Virtual Support 
Vector Machines-based (VSVM) methods (DeCoste & Schölkopf, 2002). 

Few studies in remote sensing image classification explored the 
integration of virtual samples to achieve SVM model invariance. For 
instance, Izquierdo-Verdiguier et al. (2013) focused on creating in
variances related to object rotations and sizes using altered square- 
shaped image subsets. Nevertheless, creating feasible invariances re
quires careful pre-engineering by a specialist. In contrast to that, Geiß 
et al. (2019) employ a self-learning technique to discard non- 
informative virtual samples that were eventually formed during a 
potentially arbitrary process of creating invariances. Therefore, the 
procedure’s goal is to select informative virtual samples that closely 
resemble their corresponding SVs. Otherwise, virtual samples may 
introduce divergence in the model, potentially reducing its generaliza
tion capabilities. The self-learning strategy serves as a pruning mecha
nism. If artificially transformed samples surpass empirically determined 
class-specific distances from their associated SVs or a specific margin 
distance, they are excluded when the model is retrained. This ensures 
that the virtual samples employed in the final model closely resemble 
their corresponding SVs and satisfy margin similarity requirements with 
respect to previous decision boundaries. As a result, the risk of causing 
model divergence is mitigated. 

It can be noted, that the implemented self-learning strategy in
ternalizes principles of active learning (Tuia et al., 2009). Model heu
ristics of active learning methods aim to identify few relevant unlabeled 
samples for prioritized labeling by an annotator (Samat et al., 2015). 
Relevance is for instance expressed by uncertainty. This rationale is 
implemented by selecting uncertain unlabeled samples which are 
located in close proximity to the border of the hyperplane (Demir et al., 
2011). In the context of the self-learning strategy, the iterative 

human–machine interaction of active learning techniques was trans
formed into a machine-machine interaction (Geiß et al., 2019). 

Related mechanisms were followed also within semi-supervised 
learning techniques (Dópido et al., 2013; Lu et al., 2016; Chen et al., 
2022; Shu et al., 2022). Semi-supervised methods aim to encode the 
structural information related to the unlabeled samples for a better 
representation of the thematic classes and fitting decision boundaries 
with a better generalization capability as compared to the deployment of 
labeled samples alone. In a typical semi-supervised learning procedure, 
unlabeled samples are iteratively labeled to create semi-labeled samples 
using an initially learned model. Subsequently, the semi-labeled samples 
are deployed in conjunction with the labeled ones for learning a final 
supervised model. However, improperly constrained semi-labeled sam
ples can lead to model divergence (Li and Zhou, 2015). As a result, query 
functions in active learning and semi-supervised models often employ 
opposing criteria. Active learning focuses on identifying the most un
certain unlabeled samples nearest to decision boundaries, as subsequent 
labeling is considered reliable. In contrast, query functions in semi- 
supervised learning prioritize selecting the most reliable semi-labeled 
samples, which are often those farthest from the decision boundary 
(Persello and Bruzzone, 2014). 

This is where the VSVM framework with a self-learning strategy 
provides a unique opportunity to deploy a set of constrained semi- 
labeled samples for encoding invariances. It allows us to target the 
augmentation of samples used for model learning by selectively 
choosing semi-labeled samples that resemble existing SVs and meet 
margin similarity requirements with respect to previous decision 
boundaries. Our goal in this work is to improve the generalization ca
pabilities of VSVM models by incorporating a set of constrained semi- 
labeled samples. As such, the pool of samples from which the model is 
learned from is enriched by informative semi-labeled samples. Thereby, 
we naturally extend the VSVM framework in the context of semi- 
supervised learning, since we utilize SVM/VSVM-specific model heu
ristics for this task. 

Generally, the discussed concepts are relevant in data settings where 
the ground sampling distance, i.e., the geometric resolution of the data, 
is much smaller than the objects that need to be extracted. Such a 
relation can emerge in various classification problems. However, 
particularly image data from remote sensing missions with a sub-meter 
geometric resolution including WorldView-I–IV or Pléiades feature such 
a relation. Furthermore, the proposed techniques, including the gener
ation of invariances, are particularly relevant for remote sensing imag
ery with limited spectral resolution, such as multispectral imagery. This 
is especially important when there is a need to generate discriminative 
information due to a high level of intra-class variability and low inter- 
class variability. 

We introduce two novel algorithms that enhance the VSVM frame
work by incorporating constrained semi-labeled samples and virtual 
semi-labeled samples to encode invariances during the learning process. 
Our contributions in this paper are as follows: 

Contribution 1 (Model 1): Our first model extends the VSVM by 
incorporating a set of constrained semi-labeled samples to establish 
decision boundaries. We demonstrate its relevance by applying it to very 
high geometric resolution multispectral remote sensing imagery. 

Contribution 2 (Model 2): Building upon the first model, our sec
ond model deploys semi-labeled samples to generate semi-labeled vir
tual samples. Specifically, we modify the image features of semi-labeled 
samples that have become semi-labeled SVs after the initial model runs. 
Constrained semi-labeled virtual samples are additionally integrated 
when establishing the final model. 

This paper is structured as follows: we use Section 2 to describe the 
two semi-supervised VSVM models. The experimental setup is docu
mented in Section 3 and the corresponding results are provided in 
Section 4. Concluding remarks are given in Section 5. 
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2. Proposed semi-supervised VSVM models 

For our models, we built upon VSVM, which are detailed in Section 
2.1. Subsequently, we propose two semi-supervised extensions of the 
algorithm: (i) we also include semi-labeled samples in the model and 
prune non-informative both virtual samples and semi-labeled samples 
with a self-learning strategy from the model before a final relearning 
step (Section 2.2); (ii) additionally, we perturb image features of semi- 
labeled samples and additionally include informative virtual semi- 
labeled samples before a final relearning step (Section 2.3). Section 
2.4 documents the procedure to encode invariances from both labeled 
and semi-labeled data. 

2.1. Virtual Support Vector Machine 

VSVM extent the well-known SVM algorithm. SVM fit a decision 
boundary in a way that enables a separation according to the maximum 
possible margin between different thematic classes (Fig. 1a) (Schölkopf 
and Smola, 2002). X =

{
xi, yi

}l
i=1 is the pool of labeled samples, with 

xi ∈ X and yi = {1,⋯,N}. Thereby, X represents the d-dimensional input 

space ∈ Rd. We find U
∼

= {xi}
l+u
i=l+1∈ X, with u≫l is the pool of unlabeled 

samples. In the VSVM approach, we begin by training an SVM model. A 
significant characteristic of SVM is that only a fraction of the available 
labeled samples makes up the actual decision boundary between classes, 
known as SVs. As a result, the trained SVM is used to identify labeled 
samples that serve as SVs. SVs determine the computation of invariances 
(Section 2.4) by exclusively modifying the image features of the iden
tified SVs to which the model should be invariant. The resulting virtual 
samples (Fig. 1b) are combined with the SVs to retrain the model, 
potentially resulting in a new decision boundary (Fig. 1c). In existing 
scientific literature (e.g., Izquierdo-Verdiguier et al., 2013), virtual 
samples derived from SVs have been referred to as virtual Support 
Vectors (vSVs). We solely use the term vSVs if the generated virtual 
samples actually turn out to be samples closest to the decision boundary 

after the relearning stage in order to follow an unambiguous 
terminology. 

Further, VSVM hyperparameters need to be determined with a cross- 
validation strategy during the relearning stage. Otherwise virtual sam
ples eventually exceed the number of SVs substantially. Consequently, 
the model can be dominantly fitted on virtual samples, while the actual 
prior knowledge, i.e., the SVs, has a marginal effect on model determi
nation. Moreover, virtual samples closely resemble their corresponding 
SVs. Therefore, when constructing a training data pool that includes 
virtual samples, it may be challenging to achieve a rigorous separation 
and simulation of unseen data using cross-validation techniques. This 
phenomenon is commonly recognized as data leakage. To allow for 
learning a valid VSVM model, we implement the holdout method, i.e., 
strictly separating the data in train and test set (Foody, 2009). To ac
count for both internal and external spatial autocorrelation, we strictly 
compile train and test set spatially disjoint to avoid overoptimistic 
model accuracy estimates (Geiß et al., 2017a). 

2.2. VSVM with self-learning constraints and semi-labeled samples 

We extend VSVM by considering also unlabeled samples when 
establishing the model. Fig. 2a shows a corresponding scheme. 
Congruent with the VSVM approach, an SVM model is derived from X 
and deployed to extract labeled samples that represent SVs, i.e., XSV . 
Corresponding features are perturbed to create the corresponding pool 
of virtual samples VSV . However, in parallel, n unlabeled samples U are 

randomly selected from the pool of unlabeled samples U
∼

, i.e., U⊂U
∼

, and 
the SVM model is deployed to assign semi-labeled samples Usemi− labeled. 
To remove non-informative samples from VSV and Usemi− labeled, we 
implement a self-learning mechanism. It is composed of a similarity and 
margin sampling constraint (Fig. 3). The former foresees the computa
tion of the Euclidian distance in the feature space between the samples 
of VSV and Usemi− labeled and the nearest SV (Fig. 3a) (Lu et al., 2016; Geiß 
et al., 2019). We assume that samples contained in VSV and Usemi− labeled 

Fig. 1. Functionality of a VSVM: (a) the decision boundary, i.e., separating hyperplane, that enables a separation of the different thematic classes is fitted; the 
decision boundary is fitted in a way that enables a separation according to the maximum possible margin between the different thematic classes; (b) corresponding 
SVs are deployed to generate virtual samples; (c) the model is learned for a second time using SVs and virtual samples to possibly change the position of the decision 
boundary which maximizes the margin. Previously unlabeled samples are eventually reassigned to a thematic class w.r.t. the newly found decision boundary. 
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with a significant distance from an SV are non-informative and may lead 
to model divergence. Consequently, samples of VSV and Usemi− labeled 
which exceed a certain class-specific distance threshold δ w.r.t. to the 
SVs are pruned from the model. Additionally, a margin sampling method 
is implemented (Tuia et al., 2011; Geiß et al., 2017b; Geiß et al., 2018). 
This is done to remove samples contained in VSV and Usemi− labeled that are 
positioned at a great distance from the hyperplane and are thus not 
likely to turn into a vSV or semi-labeled SV and add positively to the 
classification outcome. Only samples from VSV and Usemi− labeled that are in 
close proximity of the hyperplane are retained. The tolerated margin 
distance is specified with the threshold l (Fig. 3b). Thereby, we use a 
one-against-one SVM for multiclass classification settings: if a sample’s 
distance from the hyperplane is less than l for at least one of the class- 
specific hyperplanes, it satisfies the criteria. The optimal model selec
tion for the constrainment mechanism, which involves determining the 
class-specific distance to the SVs (δ) and distance to margin (l), is 

implemented as an additional minimization task. The optimal combi
nation of these parameters is determined based on a classification ac
curacy metric. After pruning non-informative samples, we concatenate 
constrained semi-labeled samples Ûsemi− labeled and constrained virtual 

samples V̂
SV 

with the SVs to form the new training set X̌ =

XSV ∪ V̂
SV

∪ Ûsemi− labeled. This combined dataset is used to retrain the 
model for a second time (Fig. 3c). 

VSVM with self-learning constraints and semi-labeled samples  

Algorithm 1 
Inputs: 
Labeled samples:X 
Pool of unlabeled samples:Ũ 
Output: 

(continued on next page) 

Fig. 2. Block schemes of the proposed semi-supervised VSVM learning strategies. (a) VSVM with self-learning constraints and inclusion of constrained semi-labeled 
samples; (b) additional module where also virtual semi-labeled samples are generated and eventually pruned by the self-learning constraints before the relearn
ing stage. 
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(continued ) 

A model learned with Support Vectors, constrained virtual samples V̂
SV

, and 
constrained semi-labeled samples Ûsemi− labeled 

1. Learn an SVM using X 
2. Extract SVs from X and create the corresponding pool of SVs, i.e., XSV 

(continued on next column)  

(continued ) 

3. Modify image features based on XSV to create a pool of virtual samples VSV 

4. Select n unlabeled samples from all unlabeled samples Ũ to create a subset of 
unlabeled samples U 

5. Apply model to U and obtain semi-labeled samples Usemi− labeled 

(continued on next page) 

Fig. 3. Self-learning constraints where both virtual samples and semi-labeled samples are subsequently pruned from the model with a) the similarity constraint and 
b) the margin sampling constraint before c) relearning the model based on the remaining samples. 

Fig. 4. Extended self-learning strategy where virtual semi-labeled samples a pruned from the model with a) the similarity constraint and b) the margin sampling 
constraint before c) relearning the model based on the remaining samples. 
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(continued ) 

6. Apply self-learning strategy on Usemi− labeled and VSV 

7. Establish subset of constrained semi-labeled samples Ûsemi− labeled and 

constrained virtual samples V̂
SV 

8. Compile training set X̌ = XSV ∪ V̂
SV

∪ Ûsemi− labeled 

9. Learn SVM model with X̌  

2.3. VSVM with self-learning constraints and virtual semi-labeled samples 

We further extend the previously proposed semi-supervised pro
cedure by modifying the image features of semi-labeled samples that 
have become a semi-labeled SV after the second model run (Fig. 4). We 

extract SVs of Ûsemi− labeled and add them to the pool Û
SV
semi− labeled. Analo

gous to Algorithm 1, we use Û
SV
semi− labeled to perturb features and encode 

invariances for specific semi-labeled samples that have become SVs, 
denoted as VU

semi− labeled. We employ the self-learning strategy to prune 
samples and create a subset of constrained virtual semi-labeled samples, 

referred to as V̂
U
semi− labeled (Fig. 4a and b). In the final step, we concate

nate samples representing SVs in the training set, constrained virtual 

samples V̂
SV

, constrained semi-labeled samples Ûsemi− labeled, and con

strained virtual semi-labeled samples V̂
U
semi− labeled to create the new 

training set X̌ = XSV ∪ VSV∪ Ûsemi− labeled ∪ V̂
U
semi− labeled. This combined 

dataset is used for relearning the model (Fig. 4c). 

VSVM with self-learning constraints and virtual semi-labeled samples  

Algorithm 2 
Input (¼output of Algorithm 1): 

A model learned with Support Vectors, constrained virtual samples V̂
SV

, and 
constrained semi-labeled samples Ûsemi− labeled 
Output: 

A model learned with Support Vectors, constrained virtual samples V̂
SV

, constrained 
semi-labeled samples Ûsemi− labeled, and constrained virtual semi-labeled samples 

V̂
U
semi− labeled 

1. Extract SVs of Ûsemi− labeled and create the corresponding pool Û
SV
semi− labeled 

2. Modify image features based on Û
SV
semi− labeled to create a pool of virtual semi- 

labeled samples VU
semi− labeled 

3. Apply self-learning strategy on pool of virtual semi-labeled samples 
VU

semi− labeled to establish a subset of constrained virtual semi-labeled samples 

V̂
U
semi− labeled 

4. Compile training set X̌ = XSV ∪ VSV ∪ Ûsemi− labeled ∪ V̂
U
semi− labeled 

5. Learn SVM model with X̌  

2.4. Encoding of invariances 

We encode invariances based on image segmentation techniques, 
which are an essential constituting aspect of object-based image analysis 
methods (Blaschke, 2010). The first step includes the modelling of the 
objects that need to be extracted from the (image) data with a seg
mentation algorithm. The resulting segments, i.e., super-pixels, are 
subsequently deployed to characterize the objects of interest. In chal
lenging classification settings where only a very limited number of 
labeled samples are available, the training data frequently covers solely 
a minor fraction of all existing object variations in the image domain. 
Additionally, an optimal representation of the objects of an image 
domain by segments remains challenging, despite approaches to 
compute and select an optimal segmentation in an automated way (Geiß 
et al., 2016a). Our strategy to cope with this situation foresees the 
variation of the parameters of a segmentation algorithm to generate a 
variety of object representations (details on the deployed segmentation 
algorithm are provided in the experimental setup Section 3.2). The 
parameters are varied w.r.t. to both size (i.e., object scale) and shape 
properties of the modelled objects, respectively. The technical 

implementation foresees the following processing steps: (i) a segmen
tation level with an initial parametrization of the segmentation algo
rithm is established; object features are calculated; an SVM model is 
established; and SVs are extracted (Fig. 2a); (ii) SVs are located and 
object representations from additional segmentation levels with varied 
parametrization are included in the model if they contain an SV; (iii) 
selected segments are deployed to compute features, which are inte
grated as virtual samples (cf. Fig. 1). Following this procedure, virtual 
sample equate according to the amount of SVs multiplied with the 
additional segmentation layers with varied parametrization. Likewise, 
virtual semi-labeled samples are generated by extracting the SVs of 
constrained semi-labeled samples, locating the SVs in the image domain, 
selecting corresponding additional segmentation levels with varied 
parametrization, and computing features which are depicted as virtual 
semi-labeled samples (Fig. 2b). 

We encode two sorts of invariances for model enhancement: (object) 
scale and (object) shape, respectively. To render the model invariant w. 
r.t. size, i.e., scale, we establish a set of segmentation layers in a hier
archical way (Geiß et al., 2016b; Aravena Pelizari et al., 2018): the 
segments of a particular segmentation level must only be contained in 
one segment at the subsequent coarser segmentation level in order to 
guarantee an explicit hierarchy (cf. Geiß et al., 2019). Thereby, small 
scales allow for a valid representation of the smallest objects in the 
image, while large scales allow for representing the largest objects 
properly. To render the model invariant w.r.t. shape, we alter the pa
rameters that constrain the shape-related characteristics of objects while 
maintaining the scale-related parameter unvaried. Analogous to the 
computational steps to establish invariance w.r.t. scale, a set of seg
mentations is computed for an exhaustive description of the image ob
jects. Thereby, the self-learning mechanism is intended to remove non- 
informative virtual samples, as induced by the non-proper segment- 
based representation of objects, from the classification model in an 
automated fashion. Finally, generated virtual samples are added to the 
set of virtual samples VSV and virtual semi-labeled samples VU

semi− labeled 
(Fig. 5), respectively, which can be used for relearning the model. 

3. Data and experimental setup 

3.1. Data 

We apply the algorithms for classifying two data sets of WorldView-II 
multispectral data with 0.5 m geometric resolution. The first data set 
covers a small part of the built-up area of Cologne in Germany, and was 
recorded on January 31, 2014 (Fig. 6a). The imagery was taken form an 
off-nadir position. Six thematic classes were defined, i.e., “bush/tree”, 
“meadow”, “roof”, “facade”, “shadow”, and “other impervious surface” 
(Fig. 6b). The six thematic classes were assigned using techniques of 
photointerpretation while including both additional aerial imagery and 
cadastral information. As mentioned in Section 2.1, we strictly separate 
the image data spatially according to training, test, and validation data 
(Fig. 6c). 

The second data set represents a subset of 2000 × 2000 pixels 
showing the refugee camp of Hagadera in Kenya. It was acquired on 
March 01, 2012 (Fig. 6d). We distinguish five thematic classes, i.e., 
“built-up area”, “bush/tree”, “bare soil”, “fence/wall”, and “shadow” 
(Fig. 6e). The labels were determined with techniques of photointer
pretation while integrating a thematic map from UNHCR (UNHCR, 
2012). Fig. 6f documents the spatial separation of training, test, and 
validation data. 

3.2. Experimental setup 

To establish multiple segmentation layers for the generation of in
variances, we followed a bottom-up region-growing segmentation pro
cedure (Baatz & Schäpe, 2000). Thereby, a number of parameters need 
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to be determined: To create an initial segmentation level, we parame
terized the algorithm in a way that stresses the shape heterogeneity of 
generated segments. We followed this strategy since objects of the built 
environment feature distinct shape and size characteristics. The nu
merical value for the so-called scale parameter of the algorithm, which 
determines the extent of the modelled objects, corresponds to 20 for the 
Cologne data set and 25 for the Hagadera data set to establish a suitable 
tradeoff between under- and oversegmentation. When establishing scale 
invariance, we created nine extra segmentations with varied scale 
parameter for the first data set and seven extra segmentations for the 
second data set, respectively. To encode invariances of shape, we 
created for both images eight additional segmentation layers with 
varying parametrization of shape properties of modelled objects. A very 
detailed description of the optimization of all parameters can be found 
in Geiß et al. (2019). 

An exhaustive number of features was computed to describe the 
modelled objects. The features comprise statistical metrics of central 
tendency (mean) and spread (standard deviation), regarding the bands 
of the multispectral imagery, and the Normalized Differenced Vegetation 
Index. Additionally, rotation-invariant texture metrics based on the 
grey-level co-occurrence matrix (GLCM) (Guo et al., 2021; Haralick 
et al., 1973) were computed. Regarding the latter, we deployed three 
measures, i.e., mean, homogeneity, and dissimilarity. Additionally, five 
shape-related features were computed, i.e., the so-called rectangular and 
elliptic fit, roundness, shape index, as well as compactness. Analogous to 
the segmentation procedure, we deployed the software eCognition 
(Trimble, 2014) to calculate the features based on provided or 
customized feature computation protocols. It can be noted that the 

numerical feature values were normalized to a 0–1 interval based on the 
segmentation with the initial parameterization. Subsequently, feature 
values as induced by segmentations with varied parameterization were 
aligned accordingly. 

We used Gaussian RBF kernels for the models. We determined C and 
γ for each model individually as follows: C =

{
2− 4,2− 3,⋯, 212} and γ =

{
2− 5, 2− 4.5,⋯, 23}. We carried out experiments for both binary and 

multiclass classification, respectively. Regarding binary classification, 
we distinguish the class “bush/tree” from the remaining classes for data 
set I, and “built-up area” from the remaining classes for data set II. 
Naturally, we distinguish between all six and five of the thematic classes 
present in the Cologne and Hagadera data set, respectively, in terms of 
multiclass categorization. We created balanced training and test sets by 
randomly picking labeled samples from the training and test sets in a 
stratified way, using the same number of labeled samples per thematic 
class for learning and selecting a model. However, subsequently the 
amount of labeled samples per thematic class was varied to quantify the 
corresponding sensitivity of the model w.r.t. accuracy, i.e., we learn all 
models with a varying number of labeled samples per class =

{10,20,30,60,90,120,160,200}. Thereby, we treated the number of 
semi-labeled samples and virtual semi-labeled samples as a further 
hyperparameter that is required to be determined for all considered 
semi-supervised models in this work. Consequently, we deploy inter
changeably up to 100 (20, 40, …, 100) semi-labeled and virtual semi- 
labeled samples per thematic class additionally for model learning and 
select the model with the highest estimated generalization capability in 
terms of overall accuracy. Results for each model, learned with a specific 
number of labeled samples, are documented as averaged accuracies of 
20 fully independent runs. However, independent from the SVM/VSVM- 
based algorithms, we implemented both CNNs (Geiß et al., 2022a) and 
semi-supervised CNNs to gain further insights on the competitiveness of 
the proposed models. Regarding the latter, we designed a semi- 
supervised CNN framework. Thereby, multinomial logistic regression 
is deployed as classifier, whose scores represent class-conditional 
probabilities given by the softmax function (Geiß et al., 2022a). The 
class-conditional probabilities, obtained after an initial model run, are 
deployed to determine reliable semi-labeled samples which are included 
in a second model run. Here it can be noted, that all considered methods 
in this paper have strictly seen the same amount of prior knowledge. 
This is in particular relevant, since especially deep learning-based 
methods are frequently pretrained based on additional prior knowl
edge and subsequently transferred to address small sample settings, for 
instance in the context of few-shot learning approaches (Wang et al., 
2020). To account for the available computational resources for this 
study, we provide averaged accuracies as a function of five fully inde
pendent runs regarding the considered CNN-based techniques. Addi
tionally, corresponding classification maps (with additional κ and F1 
statistics) from single model runs with 20 labeled samples per thematic 
class are presented to particularly highlight visual differences in the 
classification maps for settings with a few labeled samples. 

4. Experimental results and discussion 

The added value of the semi-supervised models is demonstrated by 
benchmarking them w.r.t. an SVM model which is built from features 
using the initial segmentation level, i.e., the model which is actually 
deployed for generating SVs (SVM-single-level). Moreover, an SVM is 
trained utilizing features computed from multiple segmentations (SVM- 
multi-level): further encoded object attributes are represented as extra 
features rather than virtual samples like in the VSVM approach (a 
likewise method is described in Bruzzone and Carlin, 2006). Addition
ally, we integrate accuracies of the VSVM when established with self- 
learning constraints (VSVM-SL) and without self-learning constraints 
(VSVM), respectively. Moreover, we also implemented a semi- 
supervised SVM, where also a self-learning strategy was adopted to 

Fig. 5. Illustration of the creation of both virtual samples (green) and virtual 
semi-labeled samples (red) regarding scale and shape properties for a labeled 
and semi-labeled sample, respectively. Initially, an image segmentation algo
rithm with varying parameters is applied to the image to model (varying green/ 
red object outlines) and characterize (compute features) the objects of interest. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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solely include relevant semi-labeled samples (SVM-semi-labeled-SL). As 
additional benchmark, results from the supervised CNNs (CNN) and 
semi-supervised CNNs (CNN-semi-labeled) are also documented. In the 
following, the two newly proposed models are termed VSVM-SL-semi- 
labeled and VSVM-SL-virtual-semi-labeled, respectively. The consid
ered classification problems represent situations where solely a few 
labeled training samples can be deployed for model learning. 

4.1. Results from data set I (Cologne) 

Fig. 7 documents overall accuracies as a function of the number of 
labeled samples for data set I. For the binary classification problem, both 
types of invariances reveal comparable accuracies (Fig. 7a-b). The two 
newly proposed semi-supervised VSVM models allow obtaining unam
biguously the highest accuracies across the whole spectrum of available 
prior knowledge and establish already with a few labeled samples a 
plateau-like performance pattern. A notable competitor represents the 
constrained semi-supervised SVM model (SVM-semi-labeled-SL), with 
slightly decreased performance properties, which underlines the general 
usefulness of informative semi-labeled samples. The VSVM-SL approach 
also achieves high accuracy levels especially with a few labeled samples. 
Overall, this stresses the necessity to solely include constrained, i.e., 
informative, both semi-labeled or virtual samples, to avoid model 
divergence. Correspondingly, the accuracies of unconstrained VSVM, 
SVM-single-level, and SVM-multi-level reveal a gap in performance 
compared to the aforementioned approaches for settings with a few 
labeled samples. Lastly, both CNN-based approaches require a sub
stantially larger number of labeled samples to accelerate the gain in 
accuracy and achieve a competitive accuracy level, whereby the CNN- 
semi-labeled model provides slight but consistent advantages 
regarding accuracy compared to the CNN. 

The related classification maps obtained with 20 samples per class 
reflect these relationships (Fig. 8a): they indicate that the conventional 
SVM-based methods, i.e., SVM-single-level and SVM-multi-level, suffer 
from commission errors regarding the class “bush/tree”. In contrast, the 
more advanced methods are able to reduce errors of commission for the 
class “bush/trees”. This is also true for the CNN-based models, whereby 
the high level of commission errors regarding the class “bush/tree” 
produced by the CNN could be reduced by the CNN-semi-labeled 
approach. However, for both CNN-based methods a low level of 
spatial regularization can be observed. In contrast, in this binary clas
sification setting, the two newly proposed models feature the most 
favorable tradeoff between errors of commission and omission, i.e., 
highest F1 values, and they provide spatially smooth classification maps. 

A likewise accuracy pattern can be inferred from the multiclass 
classification problem with shape invariance (Fig. 7d). It is exigent that 
more labeled samples are required to obtain high accuracy levels in the 
multiclass environment than in the binary one. Thereby, the semi- 
supervised methods unambiguously allow for the highest accuracies. 
The strategy to encode additional object characteristics as features and 
not as virtual samples, i.e., SVM-multi-level, reveals increasing accu
racies solely with an increasing number of labeled samples, i.e., with a 
decreasing level of overfitting. Thereby the SVM-single-level models are 
overtaken along the spectrum of available prior knowledge in an ideal- 
typical way by the SVM-multi-level models. This indicates that the vir
tual samples-based approaches avoid problems related to a curse of 
dimensionality, i.e., no additional dimensions are added to the feature 
space what can be disadvantageous in small sample settings. When 
encoding scale invariance (Fig. 7c), the two newly proposed semi- 
supervised VSVM models feature frequently the highest and most 
consistently increasing accuracies, which further underlines the bene
ficial performance properties induced by a constrained set of semi- 

Fig. 6. Data set I – Cologne: (a) multispectral imagery, (b) thematic classes, (c) distinction of areas according to training, test, and validation data; Data set II – 
Hagadera: (d) multispectral imagery, (e) thematic classes, (f) distinction of areas according to training, test, and validation data. 
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labeled and virtual semi-labeled samples for model generation, respec
tively. Also here, both CNN-based models can solely reach a competitive 
accuracy level when learned from a substantial amount of prior 
knowledge. Corresponding classification maps achieved with 20 sam
ples per class (Fig. 8b) further stress the properties of the SVM/VSVM- 
based semi-supervised models to enable spatially regularized and 
more precise maps in this very challenging multiclass classification 
setting with very few labeled samples. 

4.2. Results from data set II (Hagadera) 

We plotted overall accuracies w.r.t. the number of labeled samples 
for data set II in Fig. 9. In the binary classification context (Fig. 9a-b), 
the models utilizing constrained semi-labeled samples are consistently 
beneficial. Notably, regarding scale invariance, the model which also 
includes virtual semi-labeled samples (VSVM-SL-virtual-semi-labeled) 
induces additional performance gains with very little prior knowledge, i. 
e., 10–20 labeled samples per thematic class. Also here, the constrained 
VSVM model (VSVM-SL) allows for competitive accuracies and the un
constrained models, i.e., VSVM, SVM-single-level, and SVM-multi-level, 
feature the least favorable accuracy patterns of the SVM/VSVM-based 
methods. Analogous to data set I, the (semi-)supervised CNN algo
rithms require a substantially larger number of labeled samples for 

reaching a competitive accuracy level. However, while the SVM/VSVM- 
based methods reach a plateau fairly soon with only moderate im
provements given additional prior knowledge, the (semi-)supervised 
CNN can consistently improve as the amount of prior knowledge grows. 
Thereby, the CNN-semi-labeled approach provides slight but consistent 
advantages regarding accuracy compared to the CNN. Also, the associ
ated classification maps mirror these numbers (Fig. 10a). SVM-based 
maps feature a substantial error of commission regarding “built-up” 
areas. Instead, the (semi-supervised) constrained virtual sample-based 
models allow for considerably few errors of commission for “built-up” 
areas while jointly enabling spatially well-regularized yet fine-grained 
maps. Contrarily, given such as restricted amount of prior knowledge, 
the CNN-based maps suffer from a high level of omission of “built-up” 
areas. 

Multiclass classification setting results are documented in Fig. 9c-d. 
The models which include constrained semi-labeled samples, i.e., SVM- 
semi-labeled-SL and VSVM-SL-semi-labeled, enable the highest accu
racies. Thereby, our newly proposed VSVM-SL-semi-labeled model en
ables consistently the highest accuracy with a few labeled samples. 
When models are learned with 50 or more labeled samples per class, all 
SVM/VSVM-based techniques converge to a plateau of maximum ac
curacy, similar to the binary classification problem. Thereby, conven
tional SVM-based methods, i.e., SVM-single-level and SVM-multi-level, 

Fig. 7. Overall accuracy (%; y-axis) reported as mean from twenty independent realizations as a function of the number of labeled samples per thematic class (x- 
axis); (a) binary classification problem with encoded scale invariance; (b) binary classification problem with encoded shape invariance; (c) multiclass classification 
problem with encoded scale invariance; (d) multiclass classification problem with encoded shape invariance. 

C. Geiß et al.                                                                                                                                                                                                                                     



International Journal of Applied Earth Observation and Geoinformation 125 (2023) 103571

10

reveal least favorable performance properties. Also analogous to the 
binary classification problem, the (semi-)supervised CNN algorithms 
require a larger number of labeled samples and are not competitive in 
very small samples settings. For the scale invariance setting, a sub
stantial commission error regarding the class “fence/wall” can be 
observed (Fig. 10b), especially when relying on the SVM-multi-level 
approach. However, a substantially better tradeoff in this multiclass 
classification setting can be achieved by the other SVM/VSVM-based 

methods, especially when applying the semi-supervised models. The 
obtained maps from the scale invariance setting suggest that all methods 
except for the two newly proposed models suffer from a commission 
error w.r.t. the class “built-up”. As such, VSVM-SL-semi-labeled and 
VSVM-SL-virtual-semi-labeled simultaneously internalize a reduction of 
commission errors w.r.t. the class “built-up” and a reduction of omission 
errors regarding the class “fence/wall” compared to the baseline SVM, 
respectively, which allows for more accurate and fine-grained mapping 

Fig. 8. Classification maps obtained with the various models for the binary (a) and multiclass (b) classification problem, respectively.  
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results. To sum up, the outcomes for data set II also underline the ben
efits of the virtual samples-based semi-supervised learning techniques in 
terms of model accuracy. 

5. Conclusion and outlook 

We introduced two semi-supervised learning algorithms which are 
based on the framework of VSVM. The first model extends VSVM by 
integrating additionally constrained semi-labeled samples. Thereby, the 
model constrainment, i.e., the selection mechanism for including solely 
informative semi-labeled samples, builds upon a self-learning procedure 
composed of two active learning heuristics. The second model consec
utively deploys semi-labeled samples for generation of semi-labeled 
virtual samples by modifying the features of semi-labeled samples that 
have become a semi-labeled SV after initial model runs. The proposed 
techniques were deployed to classify two multispectral data sets with a 
sub-meter geometric resolution. Classification results highlight the ef
ficiency of the suggested techniques, which provide better accuracy 
properties in settings with very few labeled samples compared to related 
benchmark methods including SVM (single-level and multi-level), and 
VSVM with self-learning and without self-learning constraints, as well as 
(semi-)supervised CNNs, respectively. 

Future work can naturally adapt the proposed algorithms in the 

context of a collaborative learning approach, i.e., combining active 
learning with semi-supervised learning (e.g., Munoz-Mari et al., 2012; 
Pan et al., 2018), since the self-learning procedure already internalizes 
dedicated active learning heuristics for SVM. Beyond, it would be 
interesting to substitute the presented super-pixel-based invariance 
generation process with a representation learning approach (Bengio 
et al., 2013), presumably based on models that aim to generalize well in 
small sample scenarios, such as contrastive learning (Jaiswal et al., 
2021). 
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Baatz, M., Schäpe, A., 2000. Multiresolution Segmentation—An Optimization Approach 
for High Quality Multi-Scale Image Segmentation, ser. In: Strobl, J., Blaschke, T., 
Griesebner, G. (Eds.), Angewandte Geographische Informations-Verarbeitung XII. 
Herbert Wichmann Verlag, Karlsruhe, Germany, pp. 12–23. 

Bengio, Y., Courville, A., Vincent, P., 2013. Representation learning: a review and new 
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35 (8), 1798–1828. https://doi. 
org/10.1109/TPAMI.2013.50. 

Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS J. 
Photogramm. Remote Sens. 65, 2–16. https://doi.org/10.1016/j. 
isprsjprs.2009.06.004. 

Bruzzone, L., Carlin, L., 2006. A multilevel context-based system for classification of very 
high spatial resolution images. IEEE Trans. Geosci. Remote Sens. 44 (9), 2587–2600. 
https://doi.org/10.1109/TGRS.2006.875360. 

Burges, C.J.C., 1998. A tutorial on support vector machines for pattern recognition. Data 
Min. Knowl. Discov. 2, 121–167. 

Camps-Valls, G., Tuia, D., Bruzzone, L., Benediktsson, J.A., 2014. Advances in 
Hyperspectral Image Classification: Earth monitoring with statistical learning 
methods. IEEE Signal Process Mag. 31 (1), 45–54. https://doi.org/10.1109/ 
MSP.2013.2279179. 

Chen, J., Sun, B., Wang, L., Fang, B., Chang, Y., Li, Y., Zhang, J., Lyu, X., Chen, G., 2022. 
Semi-supervised semantic segmentation framework with pseudo supervisions for 
land-use/land-cover mapping in coastal areas. Int. J. Appl. Earth Obs. Geoinf. 112, 
102881 https://doi.org/10.1016/j.jag.2022.102881. 

DeCoste, D., Schölkopf, B., 2002. Training invariant support vector machines. Mach. 
Learn. 46 (1–3), 161–190. 

Demir, B., Persello, C., Bruzzone, L., 2011. Batch-Mode Active-Learning Methods for the 
Interactive Classification of Remote Sensing Images. IEEE Trans. Geosci. Remote 
Sens. 49 (3), 1014–1031. https://doi.org/10.1109/TGRS.2010.2072929. 
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Geiß, C., Klotz, M., Schmitt, A., Taubenböck, H., 2016b. Object-based Morphological 
Profiles for Classification of Remote Sensing Imagery. IEEE Trans. Geosci. Remote 
Sens. 54 (10), 5952–5963. https://doi.org/10.1109/TGRS.2016.2576978. 

Geiß, C., Aravena Pelizari, P., Schrade, H., Brenning, A., Taubenböck, H., 2017a. On the 
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