13 research outputs found

    Progressive Cactus is a multiple-genome aligner for the thousand-genome era

    Get PDF
    New genome assemblies have been arriving at a rapidly increasing pace, thanks to decreases in sequencing costs and improvements in third-generation sequencing technologies(1-3). For example, the number of vertebrate genome assemblies currently in the NCBI (National Center for Biotechnology Information) database(4) increased by more than 50% to 1,485 assemblies in the year from July 2018 to July 2019. In addition to this influx of assemblies from different species, new human de novo assemblies(5) are being produced, which enable the analysis of not only small polymorphisms, but also complex, large-scale structural differences between human individuals and haplotypes. This coming era and its unprecedented amount of data offer the opportunity to uncover many insights into genome evolution but also present challenges in how to adapt current analysis methods to meet the increased scale. Cactus(6), a reference-free multiple genome alignment program, has been shown to be highly accurate, but the existing implementation scales poorly with increasing numbers of genomes, and struggles in regions of highly duplicated sequences. Here we describe progressive extensions to Cactus to create Progressive Cactus, which enables the reference-free alignment of tens to thousands of large vertebrate genomes while maintaining high alignment quality. We describe results from an alignment of more than 600 amniote genomes, which is to our knowledge the largest multiple vertebrate genome alignment created so far

    Recombination between heterologous human acrocentric chromosomes

    Get PDF
    The short arms of the human acrocentric chromosomes 13, 14, 15, 21 and 22 (SAACs) share large homologous regions, including ribosomal DNA repeats and extended segmental duplications1,2. Although the resolution of these regions in the first complete assembly of a human genome—the Telomere-to-Telomere Consortium’s CHM13 assembly (T2T-CHM13)—provided a model of their homology3, it remained unclear whether these patterns were ancestral or maintained by ongoing recombination exchange. Here we show that acrocentric chromosomes contain pseudo-homologous regions (PHRs) indicative of recombination between non-homologous sequences. Utilizing an all-to-all comparison of the human pangenome from the Human Pangenome Reference Consortium4 (HPRC), we find that contigs from all of the SAACs form a community. A variation graph5 constructed from centromere-spanning acrocentric contigs indicates the presence of regions in which most contigs appear nearly identical between heterologous acrocentric chromosomes in T2T-CHM13. Except on chromosome 15, we observe faster decay of linkage disequilibrium in the pseudo-homologous regions than in the corresponding short and long arms, indicating higher rates of recombination6,7. The pseudo-homologous regions include sequences that have previously been shown to lie at the breakpoint of Robertsonian translocations8, and their arrangement is compatible with crossover in inverted duplications on chromosomes 13, 14 and 21. The ubiquity of signals of recombination between heterologous acrocentric chromosomes seen in the HPRC draft pangenome suggests that these shared sequences form the basis for recurrent Robertsonian translocations, providing sequence and population-based confirmation of hypotheses first developed from cytogenetic studies 50 years ago9.Our work depends on the HPRC draft human pangenome resource established in the accompanying Article4, and we thank the production and assembly groups for their efforts in establishing this resource. This work used the computational resources of the UTHSC Octopus cluster and NIH HPC Biowulf cluster. We acknowledge support in maintaining these systems that was critical to our analyses. The authors thank M. Miller for the development of a graphical synopsis of our study (Fig. 5); and R. Williams and N. Soranzo for support and guidance in the design and discussion of our work. This work was supported, in part, by National Institutes of Health/NIDA U01DA047638 (E.G.), National Institutes of Health/NIGMS R01GM123489 (E.G.), NSF PPoSS Award no. 2118709 (E.G. and C.F.), the Tennessee Governor’s Chairs programme (C.F. and E.G.), National Institutes of Health/NCI R01CA266339 (T.P., L.G.d.L. and J.L.G.), and the Intramural Research Program of the National Human Genome Research Institute, National Institutes of Health (A.R., S.K. and A.M.P.). We acknowledge support from Human Technopole (A.G.), Consiglio Nazionale delle Ricerche, Italy (S.B. and V.C.), and Stowers Institute for Medical Research (T.P., L.G.d.L., B.R. and J.L.G.).Peer Reviewed"Article signat per 13 autors/es: Andrea Guarracino, Silvia Buonaiuto, Leonardo Gomes de Lima, Tamara Potapova, Arang Rhie, Sergey Koren, Boris Rubinstein, Christian Fischer, Human Pangenome Reference Consortium, Jennifer L. Gerton, Adam M. Phillippy, Vincenza Colonna & Erik Garrison " Human Pangenome Reference Consortium: "Haley J. Abel, Lucinda L. Antonacci-Fulton, Mobin Asri, Gunjan Baid, Carl A. Baker, Anastasiya Belyaeva, Konstantinos Billis, Guillaume Bourque, Silvia Buonaiuto, Andrew Carroll, Mark J. P. Chaisson, Pi-Chuan Chang, Xian H. Chang, Haoyu Cheng, Justin Chu, Sarah Cody, Vincenza Colonna, Daniel E. Cook, Robert M. Cook-Deegan, Omar E. Cornejo, Mark Diekhans, Daniel Doerr, Peter Ebert, Jana Ebler, Evan E. Eichler, Jordan M. Eizenga, Susan Fairley, Olivier Fedrigo, Adam L. Felsenfeld, Xiaowen Feng, Christian Fischer, Paul Flicek, Giulio Formenti, Adam Frankish, Robert S. Fulton, Yan Gao, Shilpa Garg, Erik Garrison, Nanibaa’ A. Garrison, Carlos Garcia Giron, Richard E. Green, Cristian Groza, Andrea Guarracino, Leanne Haggerty, Ira Hall, William T. Harvey, Marina Haukness, David Haussler, Simon Heumos, Glenn Hickey, Kendra Hoekzema, Thibaut Hourlier, Kerstin Howe, Miten Jain, Erich D. Jarvis, Hanlee P. Ji, Eimear E. Kenny, Barbara A. Koenig, Alexey Kolesnikov, Jan O. Korbel, Jennifer Kordosky, Sergey Koren, HoJoon Lee, Alexandra P. Lewis, Heng Li, Wen-Wei Liao, Shuangjia Lu, Tsung-Yu Lu, Julian K. Lucas, Hugo Magalhães, Santiago Marco-Sola, Pierre Marijon, Charles Markello, Tobias Marschall, Fergal J. Martin, Ann McCartney, Jennifer McDaniel, Karen H. Miga, Matthew W. Mitchell, Jean Monlong, Jacquelyn Mountcastle, Katherine M. Munson, Moses Njagi Mwaniki, Maria Nattestad, Adam M. Novak, Sergey Nurk, Hugh E. Olsen, Nathan D. Olson, Benedict Paten, Trevor Pesout, Adam M. Phillippy, Alice B. Popejoy, David Porubsky, Pjotr Prins, Daniela Puiu, Mikko Rautiainen, Allison A. Regier, Arang Rhie, Samuel Sacco, Ashley D. Sanders, Valerie A. Schneider, Baergen I. Schultz, Kishwar Shafin, Jonas A. Sibbesen, Jouni Sirén, Michael W. Smith, Heidi J. Sofia, Ahmad N. Abou Tayoun, Françoise Thibaud-Nissen, Chad Tomlinson, Francesca Floriana Tricomi, Flavia Villani, Mitchell R. Vollger, Justin Wagner, Brian Walenz, Ting Wang, Jonathan M. D. Wood, Aleksey V. Zimin & Justin M. Zook"Postprint (published version

    A draft human pangenome reference

    Get PDF
    Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individual

    Graphical pangenomics

    Get PDF
    Completely sequencing genomes is expensive, and to save costs we often analyze new genomic data in the context of a reference genome. This approach distorts our image of the inferred genome, an effect which we describe as reference bias. To mitigate reference bias, I repurpose graphical models previously used in genome assembly and alignment to serve as a reference system in resequencing. To do so I formalize the concept of a variation graph to link genomes to a graphical model of their mutual alignment that is capable of representing any kind of genomic variation, both small and large. As this model combines both sequence and variation information in one structure it serves as a natural basis for resequencing. By indexing the topology, sequence space, and haplotype space of these graphs and developing generalizations of sequence alignment suitable to them, I am able to use them as reference systems in the analysis of a wide array of genomic systems, from large vertebrate genomes to microbial pangenomes. To demonstrate the utility of this approach, I use my implementation to solve resequencing and alignment problems in the context of Homo sapiens and Saccharomyces cerevisiae. I use graph visualization techniques to explore variation graphs built from a variety of sources, including diverged human haplotypes, a gut microbiome, and a freshwater viral metagenome. I find that variation aware read alignment can eliminate reference bias at known variants, and this is of particular importance in the analysis of ancient DNA, where existing approaches result in significant bias towards the reference genome and concomitant distortion of population genetics results. I validate that the variation graph model can be applied to align RNA sequencing data to a splicing graph. Finally, I show that a classical pangenomic inference problem in microbiology can be solved using a resequencing approach based on variation graphs.Wellcome Trust PhD fellowshi

    A draft human pangenome reference

    Get PDF
    Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample

    New Algorithms for Fast and Economic Assembly: Advances in Transcriptome and Genome Assembly

    Get PDF
    Great efforts have been devoted to decipher the sequence composition of the genomes and transcriptomes of diverse organisms. Continuing advances in high-throughput sequencing technologies have led to a decline in associated costs, facilitating a rapid increase in the amount of available genetic data. In particular genome studies have undergone a fundamental paradigm shift where genome projects are no longer limited by sequencing costs, but rather by computational problems associated with assembly. There is an urgent demand for more efficient and more accurate methods. Most recently, “hybrid” methods that integrate short- and long-read data have been devised to address this need. LazyB is a new, low-cost hybrid genome assembler. It starts from a bipartite overlap graph between long reads and restrictively filtered short-read unitigs. This graph is translated into a long-read overlap graph. By design, unitigs are both unique and almost free of assembly errors. As a consequence, only few spurious overlaps are introduced into the graph. Instead of the more conventional approach of removing tips, bubbles, and other local features, LazyB extracts subgraphs whose global properties approach a disjoint union of paths in multiple steps, utilizing properties of proper interval graphs. A prototype implementation of LazyB, entirely written in Python, not only yields significantly more accurate assemblies of the yeast, fruit fly, and human genomes compared to state-of-the-art pipelines, but also requires much less computational effort. An optimized C++ implementation dubbed MuCHSALSA further significantly reduces resource demands. Advances in RNA-seq have facilitated tremendous insights into the role of both coding and non-coding transcripts. Yet, the complete and accurate annotation of the transciptomes of even model organisms has remained elusive. RNA-seq produces reads significantly shorter than the average distance between related splice events and presents high noise levels and other biases The computational reconstruction remains a critical bottleneck. Ryūtō implements an extension of common splice graphs facilitating the integration of reads spanning multiple splice sites and paired-end reads bridging distant transcript parts. The decomposition of read coverage patterns is modeled as a minimum-cost flow problem. Using phasing information from multi-splice and paired-end reads, nodes with uncertain connections are decomposed step-wise via Linear Programming. Ryūtōs performance compares favorably with state-of-the-art methods on both simulated and real-life datasets. Despite ongoing research and our own contributions, progress on traditional single sample assembly has brought no major breakthrough. Multi-sample RNA-Seq experiments provide more information which, however, is challenging to utilize due to the large amount of accumulating errors. An extension to Ryūtō enables the reconstruction of consensus transcriptomes from multiple RNA-seq data sets, incorporating consensus calling at low level features. Benchmarks show stable improvements already at 3 replicates. Ryūtō outperforms competing approaches, providing a better and user-adjustable sensitivity-precision trade-off. Ryūtō consistently improves assembly on replicates, demonstrable also when mixing conditions or time series and for differential expression analysis. Ryūtōs approach towards guided assembly is equally unique. It allows users to adjust results based on the quality of the guide, even for multi-sample assembly.:1 Preface 1.1 Assembly: A vast and fast evolving field 1.2 Structure of this Work 1.3 Available 2 Introduction 2.1 Mathematical Background 2.2 High-Throughput Sequencing 2.3 Assembly 2.4 Transcriptome Expression 3 From LazyB to MuCHSALSA - Fast and Cheap Genome Assembly 3.1 Background 3.2 Strategy 3.3 Data preprocessing 3.4 Processing of the overlap graph 3.5 Post Processing of the Path Decomposition 3.6 Benchmarking 3.7 MuCHSALSA – Moving towards the future 4 Ryūtō - Versatile, Fast, and Effective Transcript Assembly 4.1 Background 4.2 Strategy 4.3 The Ryūtō core algorithm 4.4 Improved Multi-sample transcript assembly with Ryūtō 5 Conclusion & Future Work 5.1 Discussion and Outlook 5.2 Summary and Conclusio
    corecore