
Comparative Genomics
in Distant Taxa

Generating Total Orders of Digraphs

Der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

Doctor rerum naturalium
(Dr. rer. nat.)

im Fachgebiet

Informatik

vorgelegt von

Master of Science Informatik Fabian Gärtner (geb. Externbrink)
geboren am 08.06.1988 in Herdecke

Die Annahme der Dissertation wurde empfohlen von:

1. Prof. Dr. Peter F. Stadler, Universität Leipzig
2. Prof. Dr. Burkhard Morgenstern, Georg-August-Universität

Göttingen

Die Verleihung des akademischen Grades erfolgt mit Bestehen
der Verteidigung am 18. Februar 2020 mit dem Gesamtprädikat

magna cum laude

i

To Christiane and our children Janosch,
Mathilda, and Lioba.

You are my life.

ii

iii

Bibliographic Description

Title: Comparative Genomics in Distant Taxa
Subtitle: Generating Total Orders of Digraphs

Type: Dissertation
Author: Fabian Gärtner

Year: 2020
Professional discipline: Computer Science

Language: English
Pages in the main part: 143

Chapter in the main part: 6
Number of Figures: 59
Number of Tables: 28

Number of Appendices: 4
Number of Citations: 168

Key Words: genome assembly, supergenome, superbubble, DFS,
graph ordering, vertex ordering

This thesis is based on the following publications.

F. Gärtner, C. Höner zu Siederdissen, L. Müller, and P. F. Stadler (Sept. 2018).
“Coordinate Systems for Supergenomes”. In: Algorithms for Molecular Biology
13.1, p. 15. DOI: 10.1186/s13015-018-0133-4.

F. Gärtner, L. Müller, and P. F. Stadler (Dec. 2018). “Superbubbles revisited”. In:
Algorithms for Molecular Biology 13.1, p. 16. DOI: 10.1186/s13015-018-
0134-3.

F. Gärtner and P. F. Stadler (Apr. 2019). “Direct Superbubble Detection”. In:
Algorithms 12.4. ISSN: 1999-4893. DOI: 10.3390/a12040081.

https://doi.org/10.1186/s13015-018-0133-4
https://doi.org/10.1186/s13015-018-0134-3
https://doi.org/10.1186/s13015-018-0134-3
https://doi.org/10.3390/a12040081

iv

v

Abstract

Genome sequences and genome annotation data have become available at ever-
increasing rates in response to the rapid progress in sequencing technologies. As a
consequence, the demand for methods supporting comparative, evolutionary analysis
is also rising. In particular, adequate tools to visualize omics data simultaneously
for multiple species are sorely lacking. A first and crucial move in this direction
is the construction of a common coordinate system. Since genomes not only vary
by rearrangements but also by massive insertions, deletions, and duplications, the
use of a single reference genome is insufficient, in particular when the number of
species becomes extensive. The computational problem then becomes to define
order and orientations of optimal local alignments that are as co-linear as possible
within all the genome sequences of the alignment. This problem is identified as the
supergenome sorting problem.

The formulation of the supergenome sorting problem as a formal task is not
straight forward because the common problem definitions for creating orders are
not sufficient for the supergenome sorting problem. Furthermore, published specific
solutions of the supergenome sorting problem do not take into account distant taxa
and are insufficient for them. In this thesis, the supergenome sorting problem is
solved with a novel betweenness based approach. This NP-hard problem is named
Directed Colored Multigraph Betweenness Problem. The betweenness backbone is
very robust against the effects of distant taxa. Thus, it is the first approach that is
suitable for them.

Exact solutions are beyond reach for the problem sizes of practical interest.
Thus, the thesis uses a pipeline of advanced heuristics where each heuristic addresses
different aspects of the ordering problem. The pipeline can be decomposed in three
main steps: First, filtering is performed to reduce noise; then, a graph is created
out of the data which is transformed into an acyclic graph; the last step is then
to do a specific topological sorting on the acyclic graph to create an order. The
resulting order is further optimized in post-processing.

Real-life data ranging from bacterial to fly genome alignments are used to verify
the results. Because the ground truth is not known, benchmarking is done by
comparing the properties of the results. The results demonstrate the feasibility of
the new approach to compute sound common coordinate systems. Even for the
distant taxa in the fly genome alignments, the results are promising. Thus, it is
now for the first time possible to create a plausible common coordinate system

vi

for distant taxa which make downstream comparative, evolutionary analysis much
more accessible.

The methodic of the new approach is oriented on a related problem: the genome
assembly problem. In this well-studied problem, the task is to order small pieces
of a genome to reconstruct the whole genome. With the guidance of alignments,
a graph is constructed that connects adjacent segments of the genome. Then
this graph is ordered with the help of heuristics. It is reasonable to represent the
supergenome sorting problem as an equivalent graph. The only variation to the
genome assembly problem is how detected ambivalences are solved.

Most approaches that seek to solve the genome assembly problem utilize heuristic
simplifier. These simplifiers use local data to restrict the ordering in components of
the graph. One type of simplifiers considers bubble-like structures. A bubble-like
structure is a co-linear subgraph. These subgraphs can be transformed in linear
subgraphs. Thus they are crucial for creating a unique order.

One bubble-like structure of special interest is the superbubble. Superbubbles
are distinctive subgraphs in digraphs that are connected to their host graph by
one particular entrance and one particular exit vertex, thus allowing them to be
handled independently. This structure has many improvements over other bubble-
like structures in the genome assembly problem and especially in the supergenome
sorting problem. However, it is not well studied and the existing studies contain
some remarkable mistakes.

This thesis represents the first in-depth theoretical analyses of superbubbles. It
gathers significant results from the literature and contains numerous new results.
Especially the thesis corrects some mistakes published in literature that can lead
to the reporting of false-positive superbubbles. Furthermore, it describes a more
straightforward, space-efficient linear-time algorithm for detecting superbubbles
that only uses simple data structures.

The new approach uses in principle, a single depth-first search (DFS), provided
one can guarantee that the root of the DFS is not itself located in the interior
of a superbubble or is the exit vertex of a superbubble. A linear-time algorithm
to determine suitable roots for a DFS-forest that is guaranteed to identify the
superbubbles in a digraph correctly is described. In addition to the advantages of a
more straightforward implementation, in almost all data sets performance gain of
one order of magnitude can be observed.

The approach of detecting superbubbles is available for the scientific community
in two forms. Firstly, a reference implementation that makes it easy to understand
how the theoretical results are used to create a working program. Secondly, an
optimized program that is harder to understand but performs very well. This
program is an out of the box solution for detecting superbubbles. Both programs
are available as open-source from GitHub.

vii

Zusammenfassung

Genomsequenzen und Genomannotationsdaten sind aufgrund des raschen Fort-
schritts der Sequenzierungstechnologien mit immer höheren Raten verfügbar gewor-
den. Infolgedessen steigt auch die Nachfrage nach Methoden, die eine vergleichen-
de evolutionäre Analyse unterstützen. Insbesondere fehlen geeignete Werkzeuge,
um Omics-Daten gleichzeitig für mehrere Spezies zu visualisieren. Ein erster und
entscheidender Schritt in diese Richtung ist die Erstellung eines gemeinsamen
Koordinatensystems. Da Genome nicht nur durch Translokation, sondern auch
durch massives Einfügen, Löschen und Verdoppeln von Teilen variieren, ist die
Verwendung eines einzelnen Referenzgenoms unzureichend, insbesondere wenn die
Anzahl der Spezies umfangreich wird. Das Problem besteht dann darin, die Ordnung
und Ausrichtung optimaler lokaler Sequenzalignment zu definieren, die innerhalb
aller Genomsequenzen des Sequenzalignments so kollinear wie möglich sind. Dieses
Problem wird als das Supergenom-Sortierproblem bezeichnet.

Die Formulierung des Supergenom-Sortierproblems als formales Problem ist nicht
einfach, da die allgemeinen Problemdefinitionen zum Erstellen von Ordnungen für das
Supergenom-Sortierproblem nicht ausreichend sind. Darüber hinaus berücksichtigen
veröffentlichte spezifische Lösungen des Supergenom-Sortierproblems entfernte Taxa
nicht und sind daher für sie unzureichend. In dieser Arbeit wird das Problem der
Supergenom-Sortierung mit einem neuartigen Ansatz auf der Basis von Betweenness
gelöst. Dieses NP-harte Problem heißt “Directed Coloured Multigraph Betweenness
Problem”. Die meisten Auswirkungen entfernter Taxa haben keinen großen einfluss
auf Betweenness. Darum ist es der erste Ansatz, der für Sequenzalignments mit
entfernten Taxas geeignet ist.

Genaue Lösungen sind für Problemgrößen von praktischem Interesse unbere-
chenbar. Die Dissertation verwendet daher eine Kette fortgeschrittener Heuristiken,
bei der jede Heuristik unterschiedliche Aspekte des Ordnungsproblems behandelt.
Der Ansatz kann in drei Hauptschritte zerlegt werden: Zuerst wird eine Filterung
durchgeführt, um das Rauschen zu reduzieren. Anschließend wird aus den Daten
ein Graph erstellt, der in einen azyklisches Graph umgewandelt wird. Der letzte
Schritt ist dann, eine spezifische topologische Sortierung des azyklischen Graphen
vorzunehmen, um eine Ordnung zu erstellen. Die resultierende Ordnung wird in der
Nachbearbeitung weiter optimiert.

Zur Überprüfung der Ergebnisse werden reale Daten verwendet, deren Kom-
plexität von Bakterien- bis zu Fliegen-Sequenzalignments reicht. Da die wahre
Evolution nicht bekannt ist, erfolgt das Benchmarking durch Vergleichen der Eigen-

viii

schaften der Resultate. Die Ergebnisse zeigen die Machbarkeit solider gemeinsamer
Koordinatensysteme mit der neuen Methode. Selbst für die entfernten Taxa in
dem Fliegensequenzalignment sind die Ergebnisse vielversprechend. Damit ist es
erstmals möglich, ein plausibles gemeinsames Koordinatensystem für entfernte Taxa
zu schaffen, das die nachgelagerte vergleichende, evolutionäre Analyse wesentlich
einfacher macht.

Die Methodik des neuen Ansatzes orientiert sich an einem verwandten Problem:
dem Genom-Assemblierungs-Problem. In diesem gut untersuchten Problem besteht
die Aufgabe darin, kleine Teile eines Genoms zu ordnen, um das gesamte Genom zu
rekonstruieren. Unter Verwendung von Sequenzalignments wird ein Graph konstru-
iert, der benachbarte Teile des Genoms verbindet. Dann wird dieser Graph mit Hilfe
der Heuristik geordnet. Es ist sinnvoll, das Supergenom-Sortierproblem als äquivalen-
ten Graph darzustellen. Die einzige Änderung zum Genom-Assemblierungs-Problem
besteht darin, wie erkannte Ambivalenzen gelöst werden.

Die meisten Ansätze zur Lösung des Genom-Assemblierungs-Problems, ver-
wenden heuristische “Simplifier”. Diese Simplifier verwenden lokale Daten, um die
Ordnung in Teilen des Graphs einzuschränken. Eine Art von Simplifier betrachtet
Bubble-Strukturen. Eine Bubble-Struktur ist ein kollinearer Teilgraph. Diese Teil-
graphen können in lineare Untergraphen umgewandelt werden. Sie sind daher für
die Erstellung einer eindeutigen Ordnung von entscheidender Bedeutung.

Eine Bubble-Struktur von besonderem Interesse ist die Superbubble. Superbub-
bles sind Teilgraphen, die durch einen bestimmten Eingangs- und einen bestimmten
Ausgangsknoten mit ihrem übergeordneten Graphen verbunden sind, sodass sie
unabhängig voneinander behandelt werden können. Diese Struktur hat viele Verbes-
serungen gegenüber anderen Bubble-Strukturen im Genom-Assemblierungs-Problem
und insbesondere im Supergenom-Sortierproblem. Sie ist jedoch nicht gut untersucht
und die vorhandenen Studien enthalten einige bemerkenswerte Fehler.

Diese Arbeit ist die erste gründliche theoretische Analyse von Superbubbles. Sie
sammelt signifikante Ergebnisse aus der Literatur und enthält zahlreiche neue Er-
gebnisse. Insbesondere korrigiert sie einige in der Literatur veröffentlichte Fehler, die
zu falsch erkannten Superbubbles führen können. Darüber hinaus wird ein unkom-
plizierterer, platzsparender, linearer Algorithmus zum Erkennen von Superbubbles
beschrieben, der nur einfache Datenstrukturen verwendet.

Der neue Ansatz verwendet im Prinzip eine einzelne Tiefensuche (DFS), vor-
ausgesetzt, man kann garantieren, dass sich die Wurzel der DFS selbst nicht im
Inneren eines Superbubbles befindet oder der Ausgangsknoten eines Superbubbles
ist. Ein linearer Algorithmus zur Bestimmung geeigneter Wurzeln für einen DFS-
Wald, der die Superbubbles in einem Graphen garantiert korrekt identifiziert, wird
beschrieben. Neben den Vorteilen einer einfacheren Implementierung ist in nahezu
allen Datensätzen ein Leistungszuwachs von einer Größenordnung zu beobachten.

Der Ansatz zur Erkennung von Superbubbles ist für die wissenschaftliche Ge-
meinschaft in zwei Formen verfügbar. Erstens als Referenzimplementierung, die es
einfach macht zu verstehen, wie die theoretischen Ergebnisse umgesetzt werden
können. Zweitens als optimiertes Programm, das schwerer zu verstehen ist, aber
sehr effizient funktioniert. Beide Programme sind als Open Source bei GitHub
erhältlich.

ix

Acknowledgment

First of all, I want to thank my supervisor Peter F. Stadler for all the support and
patience that made this thesis possible. Also, I want to thank Lydia, who supported
me as a mentor on my long way to write this thesis. Overall it was the right mix of
fun and hard work that produces excellent results. A thank also goes to the people
that proofread this work and made it at least a little readable: Lydia, Sarah, Sven,
Berni, Steffi, and Tom.

I want to thank everybody of the Bioinformatics Lehrstuhl that makes this roller
coaster ride enjoyable. Especially Petra that helps to survive the German madness
of bureaucracy. Furthermore, Jens who was there to solve every problem that a
system can think about. Under my colleagues, I want to point out some that help
me in every phase of this ride: Tobi, Edith, Sarah, Milan, and Nancy. You are
terrific people, thanks for all the great moments. Without you, I would not be
considered sane anymore.

Last but not least, I want to thank my family: Christiane, Janosch, Mathilda,
and Lioba. You take the challenge to fight over my time with this project. Even
when you lost too often against it, you supported me further on my way. You give
me the power to accomplish every hard step and finish it. You are the heroes of
this story.

x

Contents xi

Contents

1 Introduction 2
1.1 Molecules of Life . 2
1.2 Evolution . 3
1.3 Genome Evolution . 6
1.4 Alignments . 8
1.5 Genome Assembly . 10
1.6 Supergenome . 11
1.7 Orders and graphs . 12
1.8 Total Ordering of a Digraph . 13

2 Total graph ordering 17
2.1 Ordering . 17
2.2 Graphs . 23
2.3 General ordering methods . 35
2.4 Genome Assembly . 41
2.5 Supergenome . 43
2.6 Graph simplifier . 45

3 Superbubbles 54
3.1 State of the Art . 54
3.2 Weak Superbubbles . 55
3.3 Properties of (Weak) Superbubbles 58
3.4 Superbubbles and SCC . 60
3.5 Superbubbles maintaining DAG 61
3.6 Superbubbles in a DAG . 66
3.7 Superbubbles and DFS . 72
3.8 Superbubbles and Cycles . 78
3.9 Linear Superbubble Detection . 95

4 Supergenome 98
4.1 Motivation . 98
4.2 Genome-wide multiple sequence alignments 99
4.3 gMSA as Graph . 100
4.4 Modeling the “Supergenome Sorting Problem” 103

xii Contents

4.5 Betweenness Problems . 105
4.6 Graph Simplification . 107
4.7 Supergenome Pipeline . 110

5 Applications 116
5.1 Superbubbles . 116
5.2 Supergenome . 126

6 Discussion and Outlook 136
6.1 Superbubbles . 136
6.2 Parallel Superbubble Detection 136
6.3 Generalization of Superbubble . 139
6.4 Other Graph Algorithms and Superbubbles 140
6.5 Supergenome . 141
6.6 Parameterized Supergenome . 142
6.7 Genome Assembly . 143

Appendices 144

A Supergenome Data Sets 147
A.1 4way Salmonella . 147
A.2 7way Yeast . 148
A.3 27way Insect . 148

B Supergenome Algorithm 151
B.1 Filter . 151
B.2 Simplifier . 153
B.3 Minimum Feedback Arc Set problem 154
B.4 Topological Sorting . 155
B.5 Optimization . 156

C Supergenome Results 157
C.1 Data distribution . 157
C.2 Graph edit statistic . 158
C.3 Graph properties . 158
C.4 Successor statistic . 159
C.5 ORF statistic . 160
C.6 Betweeness statistic . 161

D Superbubbles Results 165

List of Symbols 169

List of Abbreviations 174

Definition Index 175

Contents xiii

Bibliography 177

Curriculum Scientiae 190

Publications 193

Presentations 194

xiv Contents

Chapter 1. Introduction 1

CHAPTER 1
Introduction

Contents
1.1 Molecules of Life . 2
1.2 Evolution . 3
1.3 Genome Evolution . 6
1.4 Alignments . 8
1.5 Genome Assembly . 10
1.6 Supergenome . 11
1.7 Orders and graphs . 12
1.8 Total Ordering of a Digraph 13

2 Chapter 1. Introduction

What is life?
George Harrison

Even though George Harrison has no biological intention when he asks this great
question, biology tries to answer this question. There is no clear answer, and there
are many possible definitions. Trifonov (2011) gives an overview providing the key
point of life in a biological view:

• Life interacts with the environment

• Life is self-reproduction with variations

As far as humans know, in all life forms the same types of molecules are
responsible for those functions. Proteins and ribonucleic acid (RNA) catalyze
reactions and thus interact with the environment, where deoxyribonucleic acid
(DNA) has the potential to self-reproduce.

1.1 Molecules of Life

DNA and RNA are very similar molecules. Both combine a sugar-phosphate
backbone with different bases. This combination of sugar, phosphate, and base is
called a nucleotide. The difference already indicated by the name, is that for DNA
deoxyribose is used as a sugar and for RNA ribose. Regarding the bases, both have
four different types. In DNA the following bases are used: cytosine (C), guanine
(G), adenine (A), and thymine (T). In RNA thymine is replaced by uracil (U).

In both cases, the sugar-phosphate backbone linearly connects the bases. The
ends of the chain can distinguished by the phosphate. By convention, DNA is read
from the end with phosphate to the other. Thus simplified DNA and RNA can be
described as a sequence of bases. For this, the one letter versions of the bases are
used. An example would be “ATTC” which stands for a DNA molecule that starts
with an adenine base, then two thymine bases, and at the end a cytosine base.

Most species use DNA to store the information. This DNA storage is called the
genome. Every individual has one genome that is present in more or less every cell
of it. This genome is unchanged mostly during the whole life. The key feature is
the possibility to create copies of such a genome. This makes it possible to create
a new cell from a cell which contains a copy of the genome.

This DNA copy mechanism makes use of the DNA structure. The DNA is
not a single molecule in the cell most of the time. Two DNA molecules together
form a double helix (Watson and Crick, 1953). The bases of the two strands
(DNA molecules) interact in the double helix. Adenine matches with thymine and
cytosine with guanine. Furthermore, the reading directions is inverse between the
two strands.

The one to one relationship between the strands makes it possible to construct
a strand from a template strand. In simplification copying is done by separating

Chapter 1. Introduction 3

the strands and then reconstructing the respective missing strand. The result is
then two copies of the double helix.

From the genome, the information is transcribed into RNA. This RNA molecules
can belong to different types. Broadly the types are: non-coding RNA and mRNA.
The first type has many subtypes including, among others: tRNA, rRNA, snoRNA,
and microRNA. All of these interact with other molecules either by structures or
with sequence motives. The importance of structure has lead to advanced RNA
secondary structure prediction tools (Lorenz, Bernhart, Externbrink, et al., 2012;
Lorenz, Bernhart, Siederdissen, et al., 2011).

The second type, the mRNA, is translated into a protein. A protein is again
a chain of smaller molecules, the amino acids. In the translation the sequence of
bases determines the sequence of amino acids in the resulting protein. Proteins
and especially the subcategory of enzymes also interact with other molecules and
catalyze chemical reactions or change the shape of other molecules.

Thus life can be described by interacting with the environment by proteins and
RNA. It further can self-reproduce itself by using copyable DNA as a genome. The
associated components are shown in Figure 1 on the example of the heart.

1.2 Evolution

A last but essential part of the life definition is that the self-reproduction has
variations, i.e., it is not entirely identical. This variation is significant for life. Thus,
it can be changed and adapt to changes in the environment.

These variations are variations in genome copying process. Every time a genome
is copied, small mistakes happen. Thus two individuals of the same species most
likely do not have the same genome. Such a change in the genome is called a
mutation. The mutations that change only one base are shown in Figure 2. There
also exist mutations that change many bases at once. More details to this are given
in Section 1.3. However, this mutations lead to large differences in the genome
size.

To get this in perspective, the genome size of different species vary between less
than one megabase and 670000 megabases (McGrath and Katz, 2004). The human
genome has around 3286 megabases. The mutation rate, i.e., the probability of a
mutation per base per generation, for humans, is estimated to be 3 · 10−8 (Xue
et al., 2009). Thus, there are around 100 mutations in every generation in a human
genome.

However, these mutations make the difference between the species. The earliest
proven live is up to 4.3 billion years old (Dodd et al., 2017). Thus, there was plenty
of time to create many different species. This species creation is, in fact, a species
specification.

One species evolve into two different species if the difference between them is
so significant that they are no longer able to create fertile offspring together. Thus,
their genomes do not mix.

This definition is very vague. However, this is a consequence of the fact that
there are many different life forms, and every more detailed description would need

4 Chapter 1. Introduction

Figure 1: The concepts of life explained by the human Heart. This figure is simplified
heavily to make it understandable. Every human has a heart muscle that contracts and
keeps the blood in flow (top left). These muscle cells are connected (top center). Thus
size changes of each cell create a forceful contraction. A size change in myosin (top
right) creates the contraction. This protein creates long chains and can change its size
by using energy. The structure after Risi et al. (2018) is shown. Each of the cells has
a nucleus (bottom center). Beside many compartments (not shown) the genome, i.e.,
the DNA in the nucleus, is shown as chromosomes. The “X” like shape consists of two
sister chromosomes, where one chromosome comes from the mother, and the other comes
from the father. Chromosomes often are visualized with G-banding (middle left). This
banding shows how strong the DNA is compressed at this region (the packing of DNA
is not shown.). Beside the banding also the centromere is shown (orange). This region
connects one chromosome with its sister chromosome. The normal structure of DNA is
the double helix (bottom left). Thus every chromosome consists of two strands. This
doubling of information is used for DNA duplication (middle right). The DNA double helix
is unwound, and the strands are separated. Then for both lose strands, a complementary
second strand is synthesized. Afterwards the helices again are winded, in this way two
chromosomes are created from one. This process uses many protein complexes and other
helper molecules. However, to keep it simple, they all are not shown. The two strands
can be visualized as two complimentary strings (bottom right). Complimentary means
that every A(orange) pairs with a T(red) and every G(green) pairs with a C(blue). This
pairing is created by the molecular structure of the bases (bottom center).

Chapter 1. Introduction 5

Figure 2: Single nucleotide mutations. The three possible mutations that change one
base. The changes are shown in the strand on the top. Left one base is deleted. In the
middle one extra-base is added (a C). On the right, a G is replaced with a C.

some exceptions. For example, animals need two sexual partners to create offspring.
Thus, small changes that change mating behavior can separate to populations of
one species. The absence of mixing the genome with time create different species
that do not any longer can reproduce offspring. Such a specification is based on
sexual selection (Lande and Kirkpatrick, 1988).

On the other side, for example, bacteria create offspring by cell division. Thus
no need of a partner is given. However, the evolution of bacteria is even more
complicated because there exists horizontal gene transfer (Gogarten and Townsend,
2005). Horizontal gene transfer transfers a part of a genome from one living
individual to another living individual. Thus species definitions are more or less
impossible for bacteria.

Linné (1767) has created a system to classify the species. This system, known
today as taxonomy, orders different taxa hierarchically. One taxon could be a
species that lives today or has lived at some time on earth. These extinct species
could be described by paleontology, or they are more on a theoretical level.

These theoretical taxa are created because two living species are developed from
one common ancestor. Thus, these taxa are classified at different levels. The root
is the first level and is called Life. Other levels of the hierarchy are in order from
most general to most specific: Domain, Kingdom, Phylum, Class, Order, Family,
Genus, and Species. As an example, the human belongs to the Domain Eukaryota,
the Kingdom Animalia, the Phylum Chordata, the Class Mammalia, the Order
Primates, the Family Hominidae, the Genus Homo, and the Species Homo sapiens.
Note that of course, more than eight differentiations happened after the first life to
humans. Thus taxa exist between the here given taxa on every level.

This system may deviate from the evolution that really happen. Science only
created the system based on observable features of the living species. In the
beginning, this was done by the phenotype of the species, i.e., how they look. Now
more specific genomics data is used. Even this data is not error free. However, it is
the best representation that is known. Thus, it can change if new results are found.
Data very well support the global connections, and new technologies support them
further. Therefor it is reasonable to see the global structure of the taxonomy as
reliable.

A simple distance measure can be applied to the taxonomy. The distance
between two taxa is the number if taxa on the path from on taxon to the other in
the taxonomic tree.

6 Chapter 1. Introduction

Figure 3: Modern Taxonomy. The tax-
onomy is created from genomic data (Cic-
carelli et al., 2006). The colors belong to
the three main domains of living species:
orange is the archaea, green is the Eukary-
ota containing animals, plants, and fungi,
and blue is the bacteria.

1.3 Genome Evolution

Mutations change the genome, thus, it is advisable to look at evolution on the
genomic level. As stated before the genome is the information storage that changes
and thus evolves over time. Thus, evolution means changes in the genome.

However, not every part of the genome evolves in the same way. Thus, the
mutation rate is different for different parts of the genome. As a result, some parts
are equal in more or less every living species. To understand this, a more in-depth
look at how the storage works help.

The different mutation rate can be described with genes. The term appeared
at the beginning of the 20th century (Johannsen, 1914). A modern definition is
given by Gerstein et al. (2007) as:

A gene is an union of genomic sequences encoding a coherent set of
potentially overlapping functional products.

Thus, genes are the information that is saved in the genome. Important is that
not every part of the genome is belongs to a gene. Thus, if a gene is mutated,
some of the function is maybe changed, and if the mutation is not on a gene, the
functions are generally unchanged.

Changes in the function are dangerous for the individual. Maybe something
does not work or is less useful than before. Then the other individuals that do not
have this mutation are more fit. Thus, this individual maybe creates less offspring,
and the mutation is lost in the evolution.

Consequently, the mutation rate is higher on parts of the genome that are not
part of a gene. However, the same effect also applies within the genes because
depending on the gene, some mutation also do not influence the function.

An example of this are genes that are translated into proteins. For a protein,
three bases are transformed into one amino acid. The transformation follows a
specific code, the so-called genetic code. However, there are only 20 amino acids
but 64 possible codons. Thus, some codons create the same amino acid. Therefore,

Chapter 1. Introduction 7

a mutation in the DNA could create the same protein and does not influence the
function.

On the other side, some genes are so essential that changes on them are lethal
for the individual. Thus these parts are remarkably conserved in most species, i.e.,
mostly unchanged in the genomes. An example is the HOX-gene cluster, that is
heavily conserved. This conservation is so strong that, a fly can mostly function if a
HOX gene is replaced with the same gene form a chicken (Lutz et al., 1996). This
gives an idea why some parts of the genome change and others are comparable
between different species. Thus, every analysis of the genome must consider the
genes.

On an informatics point of view, the genes are annotations on the sequence that
represents the DNA, i.e., the base sequence. Different tools use this equality to
transfer annotations from one species to the other. Examples are BLAST (Altschul
et al., 1990) and Infernal (Nawrocki and Eddy, 2013).

These searches need tuning for every gene to create reliable results. To explain
this, a look at the structure of the genome helps. In most cases, the genome is
not one molecule. A genome consists most times of different parts. Usually, these
parts are called chromosomes.

With limited exceptions, these chromosomes are linear. The most known
exceptions are mitochondria. A mitochondrion is a cell part that exists in more
or less every eukaryote. The specialty is that every mitochondrion has a separate
genome, that is circular. However, specific annotation tools are created to consider
this circularity (Bernt et al., 2013).

In the cell, many linear molecules together create the genome. The order of
these molecules is arbitrary. However, this structure is essential because besides
the mutations that are created by the misplacement of bases in the coping process,
another type of mutation exists. Thees mutations happen on the chromosome level.
Thus, these mutations are called chromosome mutations. An overview of such
mutations is given in Figure 4.

These more general structural mutations can have a more significant influence on
the individual. If complete genes are missing or duplicated, this can have an influence
on a much broader level than a change of a single nucleotide. However, even the
rearrangements that only change the position or the direction of chromosome
regions can have a significant influence on the individual.

A rearrangement can have tremendous influence for different reasons. The
simplest is that a gene sequence is interrupted by the rearrangement and thus no
functional version of the gene exists anymore. However, even if the borders of the
rearrangement are not within any gene, there could be an effect. This effect can be
understood by the fact that some mechanism of regulation work on a local basis.

An example of this could be genes that are transcribed in a row. Usually, they
are required at the same time and thus are regulated jointly. Thus, if one gene
of the row moved somewhere else, it is no longer transcribed if the others are
transcribed. Further changes could be reached if instead another gene is placed
there and transcribed. This gene could then suddenly be more active.

These global mutations happen frequently, i.e., even if two closely related
species are compared, these mutations can be observed. A theory even assumes

8 Chapter 1. Introduction

Figure 4: Chromosome Mutations. The Deletion and Duplication create or remove
DNA where the other mutations only move the DNA to other positions. Note that in
some literature, the Translocation is not mentioned as a chromosome mutation. However,
one Translocation could be reproduced with two Insertions. Also, some literature, gather
the Inversion, Insertions, and Translocation as a Rearrangement.

that duplication has a significant influence on evolution (Peer, Maere, and Meyer,
2009). Thus, a comparison of genomes between species must consider these
mutations.

1.4 Alignments

A comparison of the genomes is based on the equivalence of the DNA sequences.
However, after mutations are present, a simple perfect matching can not be used.
Thus a matching must be computed that allow mismatches and gaps. A gap
represents a deletion in one or an insertion in the other sequence. Such a matching
is called an alignment.

Two types of alignments must be distinguished. The local alignment that
only considers single mutations and a whole genome alignment that also considers
chromosome mutations. This means, if a position i of one sequence match with
position j on the other sequence in a local alignment, then position i+ 1 can only
match with a position that is greater than j. In a whole genome alignment, this is
not guaranteed.

For the local alignments, different methods have been created. T. Smith and
M. Waterman (1981) has introduced a simple dynamic programming algorithm
to compute an alignment. Later Gotoh (1982) improve this to handle gaps more
realistically. However, every alignment method depends on the scoring matrix that
is used.

A scoring matrix, specifies how a mismatch or a match should be scored.
Furthermore, a scoring is given for the gaps. Mostly these scoring matrices are
calculated from know sequences(Dayhoff, R. Schwartz, and Orcutt, 1978; S. Henikoff
and J. G. Henikoff, 1992).

Chapter 1. Introduction 9

Figure 5: Local Alignment. From the sequence on
the top three new sequences are created. Each of them
is created with a deletion (red), an insertion (orange)
and a substitution (blue). The created sequences are
aligned (at the bottom). Note that even if the alignment
is optimal, it does not necessarily recover the ancestral
sequence.

These algorithms work well for two sequences. However, they get more complex
if more sequences are considered. In general, multiple sequence alignments (MSAs)
are NP-complete (Wang and Jiang, 1994). Kirchner, Retzlaff, and Stadler (2019)
have created an exact algorithm for MSA but it is not suited for most practical
problems. Thus, most MSA are created with heuristics. An example of a MSA is
shown in Figure 5.

An example of such a heuristic is the progressive method (Higgins and Sharp,
1988). This method starts with pairwise alignments between all sequence pairs.
This directly gives pairwise scores. This scores can be used to create a tree. Along
this guide tree the alignments are combined to create the MSA. This combining
uses the pairwise alignments to combine columns of the alignments. Thus, one
error that is created down in the tree is conserved until the root of the tree. Thus,
the progressive method works fast but stacks errors. However, it creates plausible
results like all other heuristics.

In local alignments, the decision to align two bases cuts the sequence in two
parts. Every base that is in front of the aligned base pair can only match with other
bases before the pair and vice versa for bases behind the aligned base pair. If genes
or small sequences are compared, this is reasonable, but not for whole genomes.

The problems arise from the chromosome mutations. It already appears if only
rearrangements and no other mutations are considered, i.e., the sequences consist
of the same parts, but the parts have different orders. Thus, the algorithm only
gets parts right that have the same relative order in both sequences.

The solution to this is a genome-wide multiple sequence alignment (gMSA).
The idea is straightforward: create independent local alignments, keep the best
alignments, and create alignment blocks out of them. Thus, an alignment block is
nothing else than a best local MSA. This splitting into blocks make it possible to
detect rearrangements.

Beside that now alignments can cross, another enhancement is made. In such
alignment not only one but two sequences are considered per chromosome: the two
strands of the chromosome. Thus, even inversions can be detected. Only one strand
is saved. This sense strand is enough because the other strand (antisense strand)
can directly be computed based on the sense strand. This reverse complement
is computed by reversing the reading direction and replacing every base with this
compliment, i.e., A to T, G to C, and vise versa.

In an alignment block, a sequence on the antisense strand is marked. This mark
is made in two different ways depending on the display form. Sometimes they are
overlined, and some times they are marked with a minus in front. An example of a

10 Chapter 1. Introduction

Figure 6: A gMSA. On the top a sequence with five parts is shown. Parts are indicated
by colored arrows. From this sequence three mutated sequences are created: one with
translocation of blue and green, one with an inversion of blue, green, yellow, and orange,
and one with a deletion of orange. The direction of the arrows indicate the direction of the
sequence. The gMSA is shown at the bottom. There are four alignment blocks created.
Note that the antisense strand is considered also. Thus the parts of the inverse sequence
are in the same blocks as the other sequences in the same color. In every sequence the
blue and the green part is in the same order (or reversed ordered on the reverse strand).
Thus they together form one block.

gMSA is shown in Figure 6.
gMSAs are solved with heuristics. It is simply not possible to calculate all

possible local alignments between two complete genomes. The problem becomes
even worse if more genomes are included. However, over the past two decades
several pipelines have been deployed to construct such gMSAs, most prominently the
tba/multiz pipeline (Blanchette et al., 2004; S. Schwartz et al., 2003) employed by
the UCSC genome browser and the Enredo/Pecan/Ortheus (EPO) pipeline (Paten,
Herrero, et al., 2008) featured in the ensembl system. For the ENCODE project
data, in addition alignments generated with MAVID and M-LAGAN (Bray and Pachter,
2004) have become available, see X. Chen and Tompa (2010) for a comparative
assessment.

1.5 Genome Assembly

To align any genomic data, it must exist. Genomic data is a DNA sequence of
A, T, G, and C. The genomic sequences of many species are determined using
two methods. First DNA sequencing is used, and afterwards a genome assembly
method is used.

The first method, DNA sequencing is a practical laboratory method, in which
the sequence of a part of the genome is determined. The past decade has seen
the rapid progress of sequencing technologies (Gawad, Koh, and Quake, 2016).

Chapter 1. Introduction 11

Figure 7: Genome assembly. On the top ten reads are shown. If they are assembled,
they create a genome shown in the middle. Note that two of ten reads show the orange
sequence as the center sequence. Where the other show a green sequence. Thus 4/5 show
green and 1/5 orange. Because there are much more reads with the green sequence, the
orange is seen as a sequencing error, and the finished genome contains the green sequence
in the center (at the bottom).

However, all methods have in common that only parts of the genome are sequenced
at a time. In many cases, these are only very short fragments of DNA. Such a
fragment is called a read.

Thus, this reads must be put together to a whole genome like the pieces of a
puzzle. This puzzling is done with the second method, the genome assembly. The
task of genome assembly could be formulated as to order the fragments such that
connected chromosomes are created.

However, such a formulation leaks one crucial detail. The sequencing methods
do not work perfectly. They create sequencing errors that must be filtered. This
filtering means that reads or part of reads are discarded. Thus, the problem is not
ordering, it is ordering and filtering errors at the same time. An example of such
an assembly is shown in Figure 7.

1.6 Supergenome

Another problem that is similar to the assembly problem is the supergenome
problem (Herbig et al., 2012). The supergenome problem is to determine an
universal coordinate system of all alignment blocks in a gMSA. This problem can
be solved by giving an order of the alignment blocks. Then the coordinate i of an
alignment block x is

∑
y<x(|y|) + i, i.e., the sum of the size of all blocks in front of

it plus i. The hard part is to determine an order that keeps most genomes intact.
To a certain extent, this problem is alleviated by considering the blocks arranged

w.r.t. a reference genome. For many applications, however, this does not appear
to be sufficient. For sufficiently similar genomes with only a few rearrangements
gMSA blocks are large or can at least be arranged so that large syntenic regions
can be represented as a single aligned block. Any ordering of these large syntenic
blocks then yields an informative common coordinate system.

12 Chapter 1. Introduction

Figure 8: Supergenome problem. Left are two genomes shown. If they are aligned, they
create a sequence shown in the center. Blue is at the start, and yellow at the end of the
sequence in both sequences. However, one sequence have a green sequence, and the other
an orange sequence in the center. Thus there exists an inaccuracy that must be resolved.
It is resolved simply by placing the orange sequence behind the green (right) or vise versa.

So far, this supergenome approach has been applied only to closely related
taxa. Prime examples are detailed comparative analysis of the transcriptome of
multiple isolates of Campylobacter jejuni (Dugar et al., 2013) or the reconstruction
of the phylogeny of mosses from the “nucleotide pangenome” of mitogenomic
sequences (Goryunov et al., 2015). Note that some approaches to “pangenomes”
are concerned with gMSAs of (usually large numbers of) closely related isolates;
most of this literature, however, treats pangenomes as sets of orthologous genes
(Medini et al., 2005).

The supergenome problem differs mostly to the assembly problem by the fact
that in the assembly problem alternative paths are reduced to one path wherein the
supergenome both paths are kept intact. An example is shown in Figure 8. This
equality of the problems makes it possible to transfer methods from one problem
to the other.

1.7 Orders and graphs

For a more formal view on both problems, a more in-depth look into some mathe-
matical background is done. Two mathematical concepts are of particular interest:
ordering and graphs.

Ordering is in the core of mathematics since the early days of mathematics.
Something like a number makes only sense if it can be distinguished from other
numbers. Therefore, ordering is based on a relation between a pair of elements.
Mostly this relation is interpreted as one element is greater than the other. The
relation must fulfill other properties to create specific types of ordering.

However, there many precise definitions of ordering and different types of orders.
To describe them all is way beyond the scope of this work. There even exists a
field of mathematics that only considers the order theory. Here, the focus is on the
linear or total order. This order has the property that for every pair of elements,
exactly one of the following statements is true: they are equal, or one is greater
than the other.

A graph is a mathematical construct that describes relations between objects.
Sylvester (1878) introduce the term graph. A graph is defined by two sets: the
vertices, and the edges. Here, the vertices are the elements in the graph, and the
edges connect two of these elements. Thus, an edge is a tuple of two vertices.

Chapter 1. Introduction 13

Figure 9: Genomic problems solved with
graphs. The genome assembly from Figure 7
(left) and the supergenome from Figure 8
(right) as graphs. On the top, the graphs that
are created from the inputs shown. The num-
bers on the assembly graph show how many
reads support one edge. In the middle then the
graphs after the ambiguity are resolved for the
given problem. At the bottom is the results
are shown.

The main focus of this thesis is on directed graphs or digraphs. Thus, no
symmetry is needed. One object can have a connection to another without having
a connection in the opposite direction. An example could be that one alignment
block comes behind the other in one genome which actuality permits that in a
linear genome the opposite is also correct.

1.8 Total Ordering of a Digraph

The total ordering of a digraph or the vertex ordering problem is a class of combina-
torial problems that recently has received increasing attention in computer science
(Bodlaender et al., 2011; Fellows et al., 2016; K. Li et al., 2015; Pardo, Martí, and
Duarte, 2018). In this problem, a digraph is given, and an ordering of the vertices
has to be created that keeps most of the edges valid. Here, what is valid depends
on the use case.

The total ordering of a digraph can be used to solve both the assembly and the
supergenome problem. This transformation is done in two steps: First, a fitting
graph must be created from the inputs (the reads or the gMSA). Second, the
ordering is created by solving ambiguities.

This second step is done in the genome assembly by simplifiers. Simplifiers are
tools that use local information to remove ambiguities and create a single order.
The use of local information make them relatively fast but also not perfect. Thus,
they are heuristic by nature.

The goal of this thesis is to optimize and use simplifiers known from genome
assembly to create practical solutions to the supergenome problem. For this, in
Chapter 2 an overview of the literature over total orderings of digraphs is given.
Then, Chapter 3 presents the superbubble simplifier and novel algorithm to detect
superbubbles. The theory for a pipeline to create a supergenome of distant taxa is
presented in Chapter 4. In Chapter 5 the applications of both the superbubble and
the supergenome theory is shown. Chapter 6 then discusses the results and present
an outlook on how the theory can be used further.

14 Chapter 1. Introduction

Chapter 2. Total graph ordering 15

CHAPTER 2
Total graph ordering

Contents
2.1 Ordering . 17

2.1.1 Partial Order . 17
2.1.2 Total Order . 18
2.1.3 Cycle Order . 19
2.1.4 Betweenness Order 20
2.1.5 Ordered Set . 21
2.1.6 Cyclic Set . 22
2.1.7 Sequence . 23

2.2 Graphs . 23
2.2.1 Undirected Graph 24
2.2.2 Directed Graph . 26
2.2.3 Graph Representations 29
2.2.4 Cycles . 29
2.2.5 Oriented Trees . 30
2.2.6 Colored Graph . 33
2.2.7 Multigraph . 34
2.2.8 De Bruijn Graph 34
2.2.9 A-Bruijn Graph . 34

2.3 General ordering methods 35
2.3.1 Graph traversal . 35
2.3.2 Topological sorting 38
2.3.3 Simultaneous consecutive ones and matrix banding 39
2.3.4 Hamiltonian Path 40
2.3.5 Eulerian Paths . 40

16 Chapter 2. Total graph ordering

2.4 Genome Assembly . 41
2.5 Supergenome . 43

2.5.1 Sequence graphs 44
2.5.2 Bidirected graphs 45

2.6 Graph simplifier . 45
2.6.1 Dead ends . 45
2.6.2 Consecutive Vertices 46
2.6.3 Bubbles . 46
2.6.4 Superbubbles . 48

Chapter 2. Total graph ordering 17

In this chapter, an overview of methods in the literature to create a total order
out of a graph is given. First, some basic definitions are provided. In Section 2.1,
different order types and their features are introduced. In Section 2.2, the graph
types and there basic properties are presented.

Then, different types of creating an order are given. Various ways to solve a
general ordering problem are shown in Section 2.3. After this, solutions for more
specific problems like the assembly problem (Section 2.4) and the supergenome
problem (Section 2.5) are considered.

In the last section, Section 2.6, a more in-depth observation of graph simpli-
fications is provided. These methods do not solve the ordering problem but are
used in the assembly and supergenome problem to make large graphs less complex.
However, the use of a simplifier influences the outcome of the ordering. Thus, they
are part of the solution process and before they applied they have to considered
carefully.

The thesis assumes some basic knowledge like sets, relations, basic operations
of sets. Furthermore, the reader should be familiar with runtime complexity classes
in the field of computer science. Specifically, the complexity class NP and the term
NP-completeness should be known.

2.1 Ordering

This work only considers the basic types of ordering since the complete order theory
would be beyond the scope of this thesis. Thus, only four order types are presented:
the partial, the total, the cyclic, and the betweenness order. Also, the mathematical
structure of a set is extended by these orders. Where possible the notion of Viro
et al. (2008) is used.

All of the order types that are presented in the thesis are defined on finite sets.
The condition of the orders also work on infinite sets, but some conclusions are
not so simple on infinite sets. Furthermore, is the focus of this thesis a biological
application that exist only on finite objects. Thus, if not others mention a set is
assumed as finite.

2.1.1 Partial Order
A partial order is an order where not all elements must be comparable. An example
is the order of ancestry. If Peter has two daughters, Sarah and Nancy, then Peter
is an ancestor of them, but Sarah and Nancy have no ancestor connection. An
example of a partial order is given in Figure 10.

Definition 1. partial orderA binary relation a ≤ b on a set X is a partial order if it satisfies
the following three conditions:

• a ≤ a for any a ∈ X (Reflexivity)

• If a ≤ b and b ≤ a, then a = b for any a, b ∈ X (Antisymmetry)

• If a ≤ b and b ≤ c, then a ≤ c for any a, b, c ∈ X (Transitivity)

18 Chapter 2. Total graph ordering

In a possible combination of two partial orders, one order is placed in front of
the other. This gives the definition of the + relation on partial orders:

Definition 2. Let ≤1 and ≤2 be two partial orders on the sets X and Y . Then
the order combination ≤1 + ≤2=≤ is a partial order on X ∪ Y , where a ≤ b holds
when:

• if a, b ∈ X and a ≤1 b,

• if a, b ∈ Y and a ≤2 b, or

• if a ∈ X and b ∈ Y .

Note that even though the notation + is used, the operation is not commutative.

2.1.2 Total Order
A total order is a partial order that guarantees that every pair of elements can be
compared. An example would be the natural numbers. For every pair of natural
numbers (a, b) holds a ≤ b or b ≤ a.

Definition 3.total order A partial order a ≤ b on a set X is a total order if it satisfies the
following condition:

• a ≤ b or b ≤ a for any a, b ∈ X (Totality).

Note that the order combination (Definition 2) on partial orders also work on
total orders and if both original orders are total, the result is also total. An example
of a total order is given in Figure 10.

It is possible to create a bijection between the first n natural numbers and any
finite set with n elements by using a total order on this set. To formulate this a
definition for the set of the first n natural numbers is given as:

[n] = {i | i ∈ N ∧ i ≤ n}. (2.1)

Note that N does not include zero. Thus a total order of a finite set can be
formulated as bijection:

Definition 4. Let X be a finite set and $: X → [|X|] a bijection. Then $ defines
a total order ≤ on X in the way that:

a ≤ b←→ $(a) ≤ $(b),∀a, b ∈ X.

Such a bijection associates to every element a position or index in the total
order. Thus, it is a permutation of the elements. In this work, a bijection is used
as the notation of a total order. Total orders are the most frequently used order
thus the “total” is often discarded if terming them. Thus, if later the term “order”
is used, a total order is meant.

Chapter 2. Total graph ordering 19

It reversed orderis possible to reverse the total order of a finite set X. Let $ be the bijection
of a total order. Then the reversed total order with the bijection $ is defined as:

$(v) = |X| −$(v) + 1. (2.2)

This reversed order is again a total order.
The fact that the total order is represented by a bijection opens another

possibility to identify the element for each position. For this the inverse function of
the bijection is used. The inverse function $−1 : [|X|]→ X is defined as: inverse function

$−1(i) = x←→ $(x) = i (2.3)

where i ∈ [|X|], x ∈ X, and $ defines a total order on set X.

2.1.3 Cycle Order
The third type of orders are the cycle orders. These orders are very similar to total
orders. The difference is that a cycle order has no end or beginning but is repeating
itself. An example of this is the clock. There are only twelve hours on a clock, but
after twelve, the one of the next cycle follows.

A cycle order can not be described with only two points. For the one comes
six before twelve but for the ten, twelve comes first. The order of two elements
depends on a third element, the “viewing point”. Thus, the cycle order is a ternary
relation and not a binary relation.

Definition 5. cycle orderA ternary relation [a ≤ b ≤ c] on a set X is a cycle order if it
satisfies the following four condition:

• If [a ≤ b ≤ c], then [c ≤ a ≤ b] for any a, b, c ∈ X (Cyclicity).

• If [a ≤ b ≤ c] and [a ≤ c ≤ b], then b = c for any a, b, c ∈ X (Antisymmetry).

• If [a ≤ b ≤ c] and [b ≤ c ≤ d], then [a ≤ b ≤ d] for any a, b, c, d ∈ X
(Transitivity).

• [a ≤ b ≤ c], or [a ≤ c ≤ b], for any pairwise distinct a, b, c ∈ X (Totality).

The analogy to a total order is easy to see by comparing the conditions. However,
it is easy to transform a cycle order into a total order. A cycle order [a ≤ c ≤ b]
on X can be transformed into a total order a ≤ b on X by choosing a cut point
x ∈ X. Then the equivalence

[x ≤ a ≤ b]⇔ a ≤ b (2.4)

holds for every a, b ∈ X.
A total order can analogously be transferred into cycle order. A total order

a ≤ b on X define a cycle order [a ≤ b ≤ c] on X in the way that:

• If a ≤ b and b ≤ c, then [a ≤ b ≤ c].

20 Chapter 2. Total graph ordering

Figure 10: Order types. The left graphs shows a partial order, the center graph shows a
total order, and the right graph shows a cycle order. The arrows show the relation between
the objects. For partial and total orders, an arrow from 1 to 2 means that 1 ≤ 2. For
the cycle order, two arrows and three distinct objects are needed for the ternary relation.
The arrows from 1 to 2 and from 2 to 3 means that [1 ≤ 2 ≤ 3]. Thus, the total order is
created from the partial order by adding 2 ≤ 3 and the cycle order can be represented with
the total order. The orders are unique with the black edges but to fulfill the transitivity,
also the blue edges are required.

• If a ≤ b and c ≤ a, then [a ≤ b ≤ c].

• If b ≤ a and b ≤ c and c ≤ a, then [a ≤ b ≤ c].

Note that more than one total order defines the same cycle order.
A cycle order can also be regarded as bijection. This follows directly from the

fact that it can be represented as total order and a total order can be presented as
bijection. Note that the cycle order can also be reversed and an inverse function
exists. Both follows directly from the representation as bijection. For readability,
a bijection is used as the notation for cycle orders in this work. An example of a
cycle order is given in Figure 10.

2.1.4 Betweenness Order
Another version of an order is the betweenness relation. Such a relation is in some
way the generalization of the cycle relation. It is a ternary relation where [a><c]
means that b is between a and c. The main difference to the previous orders is the
loss of direction.

Definition 6.betweenness relation A ternary relation [a><c] on a set X is a betweenness relation if
it satisfies the following condition:

• If [a><c], then [c><a] for any a, b, c ∈ X (Directionless).

This condition directly contradicts the assumptions of the other orders. However,
another way to formulate the same condition is to set both directions equivalent.

[a><c] ≡ [c><a] (2.5)

With this in mind, it could be possible to define a total order that fulfills a
betweenness relation. In the way that:

[a><c]→ a ≤ b ≤ c ∨ c ≤ b ≤ a. (2.6)

Chapter 2. Total graph ordering 21

Figure 11: Betweenness Order. The ternary betweenness
relation is shown with two arrows of the same color, similar
to the cyclic order in Figure 10. For example, the arrows 1
to 2 and 2 to 3 mean that [1>

<2>
<3].

Thus, if a total order fulfills the betweenness relation, the reverse total order must
also accomplish it.

However, not every betweenness relation can be fulfilled by a total order, only a
subset can. In the literature, one can find many sets of axioms that must be met
by a betweenness relation such that a total order can fulfill it. An overview can be
found at Fishburn (1971). A betweenness relation that can be fulfilled by a total
order is termed a betweenness order.

Definition 7. betweenness orderA betweenness relation [a><c] on a set X is a betweenness order
if it satisfies the following conditions:

• If [a><c] and [a><c><b], then b = c for any a, b, c ∈ X (Antisymmetry).

• [a><c], [b><a><c], or [a><c><b], for any pairwise distinct a, b, c ∈ X (Totality).

• If [a><c] and d 6= b, then [a><d] or [d><c] for any a, b, c, d ∈ X (Transi-
tivity).

Note that a cycle order also fulfills all three conditions. To be more precise if the
directionless condition is replaced with the cyclicity condition, an equivalent cycle
order definition is given. An example of a betweenness order is given in Figure 11.

Opatrny (1979) betweenness problemhas shown that the betweenness problem, i.e., the problem
to determine for an arbitrary betweenness relation if it can be fulfilled by a total
order is NP-complete. Later Chvátal and Wu (2011) have demonstrated that this
holds even if a betweenness relation fulfills the antisymmetry condition and another
transitivity condition, namely:

• If [a><c] and [a><d><b], then is [a><d><c] for any pairwise distinct a, b, c, d ∈ X.

2.1.5 Ordered Set
A set is by definition an unordered structure. However, the combination of a set
with a total order creates a construct termed ordered set. These ordered sets
combine the features of the set with a total order. The notion is (X,$) for an
ordered set. Where X is a finite set and $: X → [|X|] is the bijection that donates
an order. ordered set

Beside this notation, this thesis uses a compact representation of an ordered
set. X = {x1, x2, . . . , xn} donates an ordered set (X,$) with n elements. The
order bijection is than $: X → [|X|], xi −→ i.

Since an ordered set is a set, the set operations do work on them. However,
these operations do not consider the order. Thus, the result has no well-defined

22 Chapter 2. Total graph ordering

order. The problem is addressed by defining the result as a regular set, i.e., an
ordered set is for a set operation a set, and the order is ignored. Note that this
makes it further possible to use an ordered set as one operand and a set as the
other.

Besides the possibility to combine different ordered sets, it is possible to restrict
an ordered set to a subset. This restriction can be done by giving the indices
of the ordered subset. To be more precise, the limits, i.e., the smallest and the
largest included indices is sufficient, if everything between them is also included.
An ordered subset created this way is called an interval. Let (X,$) be an ordered
set then an interval is defined as:interval

$[i :j] = ({x | x ∈ X ∧ i ≤ $(x) ≤ j}, $′) (2.7)

where $′ stands for the order $ that is restricted to the new set. Which means
that the domain of $′ only contains the elements of the new set, and the function
$′ is defined as:

$′(x) = $(x) + 1− i. (2.8)

It exists a second type of interval, the open interval. The difference is that the
open interval does not include the limits. Let (X,$) be an ordered set then an
open interval is defined as:

$(i :j) = ({x | x ∈ X ∧ i < $(x) < j}, $′′) (2.9)

where $′′ again stands for $ with restricted domain and the function $′′ is changed
to:

$′′(x) = $(x)− i. (2.10)

There is no set operation that uses an equivalent notion. Thus, it is possible to
shorthand the notation. If

X = {x1, . . . , xn} → (X,$) (2.11)

then X[xi :xj] = $[i :j] and X(xi :xj) = $(i :j). Note that elements of X are
used. The indirect assumption by this equivalences is $(xi) = i and $(xj) = j.

As special case consider that $ is the identity function of the natural numbers,
i.e., $: N → N, x −→ x. An interval on $ is then simply the natural numbers
between i and j. Thus, in this case, $ can be omitted:

[i :j] = {x | i ≤ x ≤ j} (2.12)

2.1.6 Cyclic Set
Acyclic set cyclic set is the combination of a set and a cycle order. The nomenclature (X,$)
is similar to ordered sets. Again a bijection that represents the cycle order is used
to define the cyclic set. The distinction of an ordered set and a cyclic set should be
made by context. However, the short notation xc1, . . . , ck

x

is unique for a cyclic
set. Note that more than one short notation represents the same cyclic set.

Chapter 2. Total graph ordering 23

An interval of a cyclic set is then called a cycle interval. The definition must
be changed to reflect the cyclic nature of the order. However, the cycle interval
looses as subset the cycle properties and is an ordered set. Let (X,$) be a cyclic
set then a cycle interval and an open cycle interval is defined as: cycle interval

$[i :j] =
{

({x | x ∈ X ∧ i ≤ $(x) ≤ j}, $′) if i < j

({x | x ∈ X ∧ i ≤ $(x) ∨$(x) ≤ j}, $∗) otherwise
(2.13)

$(i :j) =
{

({x | x ∈ X ∧ i < $(x) < j}, $′′) if i < j

({x | x ∈ X ∧ i < $(x) ∨$(x) < j}, $∗∗) otherwise
(2.14)

where $′ and $′′ is defined as in Equation 2.8 and Equation 2.10. Further $∗ is
defined as

$∗(x) =
{
$(x) + 1 + |X| − i if $(x) ≤ j
$(x) + 1− i otherwise

(2.15)

and $∗∗ as

$∗∗(x) =
{
$(x) + |X| − i if $(x) < j

$(x)− i otherwise.
(2.16)

For cyclic sets a similar shorthand notation as for ordered sets can be used:

X = xx1, . . . , xn

x

→ (X,$) (2.17)

then is X[xi :xj] = $[i :j] and X(xi :xj) = $(i :j).

2.1.7 Sequence

A sequencesequence is a structure that is similar to a totally ordered set. The difference
is that it is not a set. Therefore, elements can be contained multiple times. As
a sequence only exists with an order, these multiple appearances have different
indexes. An example would be the Fibonacci sequence where the natural number 1
appears twice. The sequence (1, 2 . . . , 100) would be a sequence with the natural
numbers [1 :100] where every value is equal to its index.

2.2 Graphs

In this section, different graph types are presented. All graph types have to fulfill
specific properties. This thesis only considers finite graphs. Many of the results can
be identically applied to infinite graphs. However, not every result can be directly
transferred, and infinite graphs have a more theoretical character. Furthermore,
they are unrelated to the given biological background.

24 Chapter 2. Total graph ordering

2.2.1 Undirected Graph
This work uses a definition of undirected graphs as follows:

Definition 8.undirected graph G is called an undirected graph if:

• V (G) is a set of vertices and

• E(G) is a set of edges such that E(G) ⊆ V (G)2.

This definition describes the structure of an undirected graph. Note that even
though edges are considered to be order pairs, it is not differentiated here between
an edge (v, u) and (u, v). The following properties are needed to explore it. They
follow directly from the structure:

Definition 9. Let G be an undirected graph. For every vertex v ∈ V (G) the
following attribute is defined:

• The neighbor of a vertex:
neighbor(v) = {u | (v, u) ∈ E(G)} ∪ {u | (u, v) ∈ E(G)}

For every edge e = (v, u) ∈ E(G) the following attribute is defined:

• The vertices of an edge:
V (e) = {v, u}

With this definition, it is possible to traverse the graph, i.e., the connections
between the objects in the graph. However, graphs represent information. Hence,
the elements in the graph must represent some information. The information is
saved in properties of the edges and vertices. Furthermore, any element can have
more than one property. Thus, every property has two parts a key under which the
property is saved and a value which contains the information.property graph

property(v, k) Is the property with key k on vertex v
property(e, k) Is the property with key k on edge e

(2.18)

A graph that has properties is called a property graph. However, every graph
can be treated as property graph if considering vertex labels as properties. As
an example, Sylvester (1878) uses the graph in chemical networks and labels the
vertices with atom names. Thus, every graph in this thesis is implicitly a property
graph.

The edges connect the vertices. This concept can be extended to a transitive
relation.

Definition 10.connected relation Let G be a graph. Then the vertices v, u ∈ V (G) are connected,
notated as u ∼ v, if

• the edge (u, v) or the edge (v, u) is in E(G) or

• it exists w ∈ V (G) such that u ∼ w and w ∼ v.

Chapter 2. Total graph ordering 25

Note that this connected relation is an equivalence relation.
One equivalence class of the connected relation is called a connected component. connected component

If every vertex is connected to every other vertex only one connected component
exists that includes every vertex. In this case, the graph is called connected.

Subgraphs

A graph consists of two sets. Thus, it is natural to extend the definition of subsets
to graphs, i.e., a subgraph. However, the subgraph must also fulfill the graph
condition. The notion of H ⊆ G is used for the subgraph relation.

Definition 11. subgraphLet G be a graph. Then H is a subgraph of G if and only if:

• The vertex set is a subset:
V (H) ⊆ V (G).

• The edge set is a subset:
E(H) ⊆ E(G).

• H is a graph:
E(H) ⊆ V (H)2.

A special case of subgraphs is the induced subgraph. An induced subgraph is
determined only by its vertex set. The subgraph contains all edges of the original
graph that connect vertices of the given vertex set. The notion G[U] is used for
the induced subgraph of G with the vertex set U .

Definition 12. induced subgraphLet G be a graph. Then H = G[U] is the induced subgraph of G
with the vertex set U if:

• The vertex set is a subset:
V (H) = U ⊆ V (G).

• The edge set is a maximal subset:
E(H) = {e | e ∈ E(G) ∧ V (e) ⊆ U}.

Subgraphs are one way to create a new graph from another graph. A different
possibility is to manipulate the vertex and edge set directly. Thus it is possible
to add and remove edges from the edge set or to add vertices to the vertex set.
Note that removing vertices would mean that also the corresponding edges must be
removed, which is the same as creating an induced subgraph. Thus this operation
is not listed here.

These graph-set operationsoperations are equivalent to set operations (union, intersection, and
difference on the edge set, and the union on the vertex set). This graph operations
use the same notation as the regular set operations with the difference that the
first element of the operation is a graph. Let G be a graph and E a set of edges
and V a set of vertices then the following operations are defined as:

G ∪ E = H where V (H) = V (G);E(H) = E(G) ∪ E

26 Chapter 2. Total graph ordering

G ∩ E = H where V (H) = V (G);E(H) = E(G) ∩ E

G \ E = H where V (H) = V (G);E(H) = E(G) \ E

G ∪ V = H where V (H) = V (G) ∪ V ;E(H) = E(G)

Note that G ∪ E is only allowed if ∀(v, u) ∈ E : v, u ∈ V (G).
Thisgraph operations simple nomenclature is possible because two sets define the graph, and an

edge set can be distinguished from a vertex set. However, with the same arguments,
the operations are not only possible between a graph and a set, but it is also possible
between two graphs. Let G1 and G2 be two graphs. Then the graph operations
are defined as:

G1 ∪G2 = H where V (H) = V (G1) ∪ V (G2);E(H) = E(G1) ∪ E(G2)

G1 ∩G2 = G1[V (G1) ∩ V (G2)]

G1 \G2 = G1[V (G1) \ V (G2)]

Note that the intersection and difference operations use an induced subgraph. Thus,
these operations work with every pair of graphs. Therefore, V (G1) ∩ V (G2) = ∅,
thenG1∩G2 is an empty graph andG1\G2 = G1. Respectively, if V (G1)∩V (G2) =
V (G1), then it is vice versa.

2.2.2 Directed Graph
A directed graph or digraph is the same structure as an undirected graph. The
difference is the interpretation of the structure. In an undirected graph, an edge
(u, v) is similar to an edge (v, u). In a direct graph, they are different. Thus, the
edges have a direction. All graph definitions apply to a digraph, but additional
definitions make only sense on a digraph:

Definition 13.digraph Let G be a digraph. For every vertex v ∈ V (G) the following
attributes are defined:

• The predecessor of v:
pre(v) = {u | (u, v) ∈ E(G)}

• The successor of v:
suc(v) = {u | (v, u) ∈ E(G)}

• The in-degree of v, i.e., the number of incoming edges:
indeg(v) = |{(u, v) | (u, v) ∈ E(G)}|

• The out-degree of v, i.e., the number of outgoing edges:
outdeg(v) = |{(v, u) | (v, u) ∈ E(G)}|

For every edge e = (v, u) ∈ E(G) the following attributes are defined:

• The tail of e:
tail(e) = {v}

Chapter 2. Total graph ordering 27

• The head of e:
head(e) = {u}

From the edges, a relation can be derived. The reachability relation (notated
as) links two vertices that are reachable one from the other.

Definition 14. reachabilityLet G be a graph. Then the vertex v ∈ V (G) reach u ∈ V (G)
(v u) if:

• (v, u) ∈ E(G) or

• it exists w ∈ V (G) such that u w and w v.

In this way, it is a transitive closure of the edge relation. Another way of stating
the same property is:

v u⇔ ∃n ≥ 0∃x1, . . . , xn ∈ V (G) : (v, x1), (x1, x2), . . . , (xn, u) ∈ E(G)
(2.19)

Note that if n = 0 no xi exist and only the edge (v, u) is in E(G). Thus, if v
reach u a sequence of vertices (v, x1, . . . , xn, u) exists, where xi is defined as in
Equation 2.19. This sequence of vertices is termed a walk.

If a walk from v to u exists then also two other structures exist. First, a trail trail
of digraph G is an ordered set (X,$) = {e1, . . . , en} with X ⊆ E(G) such that
tail(e1) = v and head(en) = u and every edge has head(ei) = tail(ei+1). Note
that because a trail is an ordered set every edge can only be contained once in a
trail.

The second structure is a path path, an ordered set of vertices that is also a walk (as
a sequence). Here again, every vertex is only contained once in a path. Thus, not
for every walk exists a path. Note that for every path a trail exists that represents
precisely the edges that are between the vertices of the path. A path from v to u
is notated as v → u.

It exists an equivalence between the reachability and the order of a path: Let
H be a subgraph of G that has a path p in G as vertex set and the corresponding
trail as edge set. Then the reachability relation of H is equivalent to the order
relation of p.

A path can give an alternative definition of reachability:

v u←→ a path v → u exists.

If reachability is defined in such a way, it can be extended to different forms. First,
it can be extended in the way that two paths are demanded. These paths should
be vertex-independent. Two paths are vertex-independent if they share no internal
vertex, therefore they are edge-disjoint. Because they must only differ in the internal
vertices, it is possible that they have the same start and end vertex. If the vertex
v has at least two vertex-independent paths to u then v 2-reaches u or notate as
v u. 2-reachabilityThe name of the relation follows from the fact that at least two vertices
must be removed until v cannot reach u anymore. This idea comes from Menger
(1927). This can be formulated more formally as:

v u←→ ∃p1 = v → u, p2 = v → u : p1 6= p2 ∧ p1 ∩ p2 = {v, u}. (2.20)

28 Chapter 2. Total graph ordering

Figure 12: Different Reachable Sets. Every red ver-
tex belongs to [4, 8] and every yellow vertex belongs
to [8, 4] . The vertices that are red and yellow belong
to [4, 8] ∩ [8, 4] , i.e., the paths from 4 to 8. All
blue vertices belongs to [1] .

The second extension is done by giving the path more constraints, i.e., give the
relation more constraints. The constraint is that a specific vertex is not included in
the path. If v can reach u without visiting x then the symbol v x

 u is used.constrained reachability

v x
 u←→ a path p = v → u with p ∩ {x} = ∅ exists (2.21)

This relation can simply be extended to a set of vertices (X):

v X
 u←→ a path p = v → u with p ∩X = ∅ exists (2.22)

Reachability also has another aspect that can be interesting. This aspect is to
get every vertex that can be reached from a specific vertex. The reflexive reachable
setreachable set of v on the digraph G is defined as:

[v] = {x | x ∈ V (G) ∧ v x} ∪ {v} (2.23)

Note that v is also part of the reachable set even if v 6 v. Another way to
formulate this is that a vertex x is in [v] if and only if x = v or a path v → x
exists.

It makes sense to define also reachable sets for the constraint reachability
relation. Thus, the set of all vertices that can be reached from v without passing
thorough u is defined as:constraint reachable set

[v, u] =
{
{x | x ∈ V (G) ∧ v u

 x} ∪ {v, u} if v u

{x | x ∈ V (G) ∧ v u
 x} ∪ {v} otherwise

(2.24)

Note that if not v u, then the set is equivalent to [v] .
Such a set can also be constructed in the other direction, i.e., every vertex that

can reach v without passing through u. This set is defined as:

[v, u] =
{
{x | x ∈ V (G) ∧ x u

 v} ∪ {v, u} if u v

{x | x ∈ V (G) ∧ x u
 v} ∪ {v} otherwise

(2.25)

Note that [v, u] ∩ [u, v] is equivalent to the union of all paths that start at v
and ends at u. An example for different reachable sets is shown in Figure 12.

Chapter 2. Total graph ordering 29

2.2.3 Graph Representations
A graph can be represented in many different ways. Most common are the edge
list, the adjacency matrix, and the incidence matrix. An edge list is simply a list of
all edges as vertex pairs. An adjacency matrix M is a matrix where every row and
column stand for a vertex. If an edge (v, u) exists, than there is an one in row v
and column u. Otherwise, the field is zero.

M(v, u) =
{

1 if (v, u) ∈ E(G)
0 otherwise

(2.26)

A incidence matrixlittle more complex is the incidence matrix. For the incidence matrix the
symbol A is used. Here the rows are the vertices, and the columns are the edges.
If an edge e = (v, u) exists, then there is a minus one in the column from edge e in
the row of v and an one in the row of u. All other fields in the column are zero.

A(x, e = (v, u)) =


−1 if x = v

1 if x = u

0 otherwise
(2.27)

2.2.4 Cycles
Another structure is of special interest for directed graphs. It is also based on paths,
i.e., a path where an edge from the last to the first vertex exists. Thus a cylce
order is created. This structure is called cycle cycle. If the cycle C is created with the
path (v = c1, . . . , cn = u) then the cyclic set xv, . . . , u

x

defines the cycle. The
cycle edges (denoted by E(C)) are {(c1, c2), . . . , (cn−1, cn), (cn, c1)} and the cycle
vertices are given directly by the cyclic set xv, . . . , u

x

. Note that the order of the
path represents the cycle order as shown in Subsection 2.1.3.

These cycles are important because the existence or absence of them make
many problems hard or simple. Under these simple solvable problems in acyclic
graphs belongs the vertex ordering problem (compare Subsection 2.3.2). Thus,
directed graphs can be divided into two subtypes: the cyclic graphs and directed
acyclic graph (DAG), where the latter contains no cycle. The absence of cycles
means that the graph is a combination of non-contradicting paths. Since every
path has a total order, the whole graph has a partial order. This partial order
corresponds to the reachability relation of the DAG.

By definition, the vertices ci are pairwise distinct and indexed consecutively
along C. Recall, open cycle intervals (C(ci :cj)) contain only the interior of the
unique path in C connecting the defining endpoints ci and cj . Thus, C(c1 :c2) = ∅
if (c1, c2) ∈ E(C) and C(v :v) = C \ {v} for all v ∈ C. The cycle-distance
(denoted by dC(ci, cj)) of two vertices ci and cj along a cycle C is the length of
the directed path, i.e., the number of edges, from ci to cj . More explicitly,

dC(ci, cj) :=
{
j − i if i < j

j + |C| − i if i ≥ j
= |C(ci :cj)|+ 1 (2.28)

30 Chapter 2. Total graph ordering

since the number of inner vertices is one less than the number of edges. In particular,
dC(v, v) = |C| for all v ∈ C. The cycle-distance dC(., .) is not symmetric. Instead,
the equality dC(u, v)+dC(v, u) = |C| holds for all two vertices u 6= v ∈ C. Another
useful consequence of the definition of dC(., .) is:

dC(v, w) < dC(v, u) =⇒ dC(w, u) = dC(v, u)− dC(v, w) (2.29)

Two overlapping cycles do not necessarily create a larger cycle because maybe
the vertices are not longer pairwise distinct. Never the less such overlapping cycle
complexes are of interest. However, they are described differently by using the
reachability relation. This relation is not an equivalence relation. It is neither
reflexive nor symmetric. However, it can be used to create an equivalence relation.
A vertex v is strongly connected to a vertex u if [v] = [u] . This relation is an
equivalence relation. An equivalence class of this is called a strongly connected
component (SCC).SCC

Every vertex of a cycle is in the same equivalence class. Furthermore, note
that every vertex that is not part of a cycle is in its own equivalence class. This
equivalence class with only one element, that has no loop (i.e., an edge to itself),
is called a singleton SCC. The set of all non-singleton SCC is defined as:

SG = {S | S is a non-singleton SCC of G}. (2.30)

Another handy definition is the acyclic component of a digraph G.acyclic component The acyclic
component is the set of all vertices that are part of a singleton SCC. The acyclic
component is defined as:

AG = {v | v ∈ V (G) and {v} is in a singelton SCC }. (2.31)

By construction, the induced subgraph of the acyclic component includes no cycles
and every vertex that is not part of a cycle. Note that besides the name, the acyclic
component must not be connected. Thus, the induced subgraph could consist of
many connected components, even if the initial digraph has only one connected
component.

Every vertex v ∈ V (G) belongs by definition exactly to one SCC (S). Either
is S singelton and thus v ∈ AG or S ∈ SG. Thus, SG and AG together are a
partition of V (G). This partition is defined as:

PG = SG ∪ {AG} (2.32)

Examples of different graph types are shown in Figure 13. The figure includes
undirected and directed graphs. However, also some subtypes of the directed graph
are shown. The subtypes are DAG, cyclic graph, and tree (see next section).

2.2.5 Oriented Trees
tree An oriented tree T is a connected DAG in which there is a single vertex, called the

root, denoted as root(T), with in-degree zero, and every other vertex has in-degree
one. The vertices with out-degree zero are the leaves. Given an edge (u, v) ∈ E(T),

Chapter 2. Total graph ordering 31

Figure 13: Basic graph types. The shown graph types are (from left to right) undirected
graph, cyclic graph, DAG, and tree. The last three types are subtypes of the directed graph
type. In the undirected graph, the edges have no direction. Thus, they are represented
as lines. In the directed graphs, the edges have a direction. Thus, they are displayed
as arrows. The arrowhead of an edge e points to the vertex head(e). A directed graph
has either a cycle and is a cyclic graph, or it has no cycle and is a DAG. Therefore, this
definition partitions the directed graphs. Thus, a tree is also a DAG.

u is the parent of v, denoted as u = parent(v), while v is a child of u. By definition,
there is an unique directed path pT (v) from root(T) to v ∈ V (T). The ancestor
partial order ≺ on V (T) is defined by u ≺ v if and only if v ∈ pT (u) \ {u}. The
least common ancestor (lca(x, y)) of two vertices x, y ∈ V (T) is the ≺-minimal
vertex in pT (x)∩pT (y). subtreeThe subtree rooted in v T (v) is the subgraph of T induced
by the vertex set {x | x ∈ V (T)∧x ≺ v}∪{v}, i.e., those that are reachable along
a directed path from v.

Let assume that T is endowed with an arbitrary order of successors for each
v ∈ V (T). A subtree T (u) is a prior subtree of T (v) if u and v are both children of
a common parent w = parent(u) = parent(v) and u comes before v in the local
ordering of the successors of w. Now, consider two vertices u and v such that u
and v are incomparable w.r.t. to the ancestor order and set w = lca(u, v). Note
that u, v, and w are pairwise distinct. Let x and y be the children of w such that
u ∈ T (x) and v ∈ T (y). Then u is prior to v, notated as u / v, if T (x) is a prior
subtree of T (y), i.e., x comes before y in the local ordering of the successor set of
w. The relation / is a partial order known as the sibling partial order of T .

Corollary 1. The ancestor and the sibling orders of an oriented tree are orthogonal,
i.e., for any pair of vertices exactly one of the relation x = y, x ≺ y, y ≺ x, x / y,
or y / x is true.

It is well known that the two fundamental traversal orders of trees are obtained
as the two natural compositions of the ancestor and the sibling partial orders. A
traversal reports the vertices of the tree in a specific order. Two different types
of traversal can be distinguished: either the root of a subtree is reported before
the subtree (preorder) or after the subtree (postorder). Denote by ρ and π the
bijections of the preorder and the postorder, respectively. preorder and postorder

ρ(x) < ρ(y) iff x / y or y ≺ x
π(x) < π(y) iff x / y or x ≺ y

(2.33)

It follows immediately that preorder and postorder together determine the ancestor

32 Chapter 2. Total graph ordering

Figure 14: Tree Edge Types. On the left a
graph is shown for which a search tree rooted
at 1 is created. The order of the labels gives
the sibling order. On the right, the edges are
colored after their type w.r.t. the tree. Black:
tree edge (forward edge); green: forward edge;
yellow: right cross edge; blue: left cross edge;
and red: back edge.

and sibling order:

x / y iff ρ(x) < ρ(y) and π(x) < π(y)
x ≺ y iff ρ(x) > ρ(y) and π(x) < π(y)

(2.34)

It is possible to create trees from arbitrary digraphs. These trees are of interest
because they give a special perspective on the graphs. To construct such trees
recallsearch tree that for every vertex beside r in the set [r] of the digraph G a path from r
exists. These paths can be chosen such that every x ∈ [r] is reachable from r
along a unique path, and hence there is an oriented tree T with V (T) = [r] that
is a subgraph of G. An oriented tree T with root r ∈ V (G) is a search tree on G if
there is no directed edge (x, y) ∈ E(G) with x ∈ V (T) and y /∈ V (T). An ordered
tree T is a search tree if and only V (T) = [r] because a vertex y ∈ V (G) \ V (T)
by definition cannot be reached from anywhere in V (T), and thus also not from
the root, while every y ∈ V (T) is by definition reachable from the root r.

The induced subgraph G[V (T)] can have more edges than the search tree T
rooted at r. However, it is possible to classify every edge by T .

Definition 15.edge types Let G be a digraph, and T a search tree. If (v, u) ∈ E(G[V (T)])
then (v, u) is a

(i) forward edge iff u ≺ v, i.e., ρ(v) < ρ(u) and π(v) > π(u);

(ii) backward edge iff v = u or v ≺ u, i.e., ρ(v) ≥ ρ(u) and π(v) ≤ π(u);

(iii) left cross edge iff u / v, i.e., ρ(v) > ρ(u) and π(v) > π(u);

(iv) right cross edge iff v / u, i.e., ρ(v) < ρ(u) and π(v) < π(u).

Note that every tree edge (e ∈ E(T)) is a forward edge. The backward edge is in
this thesis shortened to back edge. Examples of the different types are shown in
Figure 14.

A forest Fforest is an extension of a tree. A forest consists of a finite ordered set of
roots {r1, . . . , rk} and for every root ri a tree Ti. These trees are constructed in
the way that every vertex is only in one tree. This unambiguity is archived with the
order of the roots:

V (Tri) = [ri] \
⋃
j<i

V (rj). (2.35)

Chapter 2. Total graph ordering 33

Figure 15: Search Forest. On the left
side a graph is shown that can be covered
with the search forest shown on the right
side. The roots of the forest are 1 and 2.
The tree on the first root is also a search
tree. The other tree is not because the
first tree already covers the vertices 6 and
3.

This can expressed as: every vertex that can be reached from a ri is in the tree Ti
unless it can be reached from a rj with rj < ri where < is the order of the ordered
root set. This construction creates an important implication:

(v, u) ∈ E(G) ∧ v ∈ V (Ti) ∧ u ∈ V (Tj)→ rj < ri. (2.36)

This construction makes it possible to see the forest as a tree with an artificial
root r that is the parent of the real roots {r1, . . . , rk} where the order of the real
roots is the sibling order. After Equation 2.36 is every edge between subtrees of r
a left cross edges. The construct directly gives the preorder and the postorder of
the forest. Let ρi be the preorder of the tree Ti. Than the preorder ρ of the forest
is defined with the help of the order combination (Definition 2 (Page 18)) as:

ρ =
∑

i∈[1 :k]

ρi. (2.37)

Analogously is the postorder π of the forest is defined as:

π =
∑

i∈[1 :k]

πi. (2.38)

Note that the sum here means a chain of order combination. For the results it is
important that this chain follow the order of the ordered root set. This is essential
because the order combination is not communicative.

A forest that fulfill Equation 2.35 also fulfills⋃
i∈[1 :k]

[ri] = V (F). (2.39)

Therefore, the tree with the artificial root r would be a search tree. Thus, is the
forest with this construction is called a search forest. An example of a search forest
is shown in Figure 15.

2.2.6 Colored Graph
A colored graph is in some way only a property graph with a specific property. Thus,
all previous defined graph types exist also as a colored version. The colored graphs
have two sub types: The edge colored graphs and the vertex colored graphs. In

34 Chapter 2. Total graph ordering

edge colored graphs, every edge has a color property. Thus every edge belongs to a
specific type of edges. In vertex colored graphs, the vertices have the color property.
A graph can be both vertex and edge colored.

This property stands out of the other properties because it is often used in
many different ways: to divide edge types, to mark edges or vertices, or in problem
definitions (Burr, 1984).

2.2.7 Multigraph
In the here used definition of a graph G the edge set E(G) is a set. Thus, every
edge can be contained only once. In a multigraph this restriction is not present. It
can have multiple edges between the same vertices.

However, for simplicity, in this work, it is assumed that for multigraphs all graph
functions work exactly the same as for normal graphs. This could be implemented
by giving every edge a hidden id. Thus, two edges (v, u) look the same but can
distinguished if necessary.

This modification only apply to the edges. Thus, the neighbor set (neighbor(v)),
and the successor set (suc(v)) of a vertex v are independent from the number of
edges (v, u). Note that this is not true for outdeg(v), and indeg(u).

2.2.8 De Bruijn Graph
A specially labeled directed graph is a de Bruijn graph. This structure is introduced
by De Bruijn (1946) without using the term graph. The idea is that every vertex is
labeled with a sequence of letters from a defined alphabet. All sequences have the
same length k. Thus they are called k-mers. An edge from a vertex v to a vertex
u exists if the k-mer of v have a suffix of length k − 1 that is a prefix of the k-mer
of u. If all these k-mers and edges are present, the graph is called a complete de
Bruijn graph.

Idury and M. S. Waterman (1995) utilize the idea of a de Bruijn graph, in a
way that does not use the complete de Bruijn graph but subgraphs of it. These
subgraphs are created by using a more extended sequence of the same alphabet
or many of these longer sequences. The graphs then only contain these k-mers
that are subsequences of the longer sequences. Furthermore, it only contains these
edges where instances of this k-mers share the suffix (i.e., the prefix) in the longer
sequences. For more details, how such a graph is used view Section 2.4. An example
of a de Bruijn graph is given in Figure 16.

2.2.9 A-Bruijn Graph
A de Bruijn graph could be seen as a graph where the vertices represent an alignment,
where every vertex aligns precisely one letter. The first (or last) letter of the k-mer.
This letter is aligned with the rest of the k-mer as context. Thus, every time the
same letter with the same context appears in the longer sequences (i.e., the same
k-mer appears) this is gathered in this one vertex. This gathering is the same as
creating an alignment.

Chapter 2. Total graph ordering 35

Figure 16: Bruijn graphs. Left, two sequences (top) and a plausible alignment of this
sequence (bottom) are shown. In the center, the corresponding de Bruijn graph with
two-mers is shown. On the right the A-Bruijn graph of the alignment is shown. Note
that if consecutive vertices of the de Bruijn graph have been merged, a graph with four
vertices is the result.

In this interpretation an edge from one aligned letter to the next aligned letter is
then given if this letter directly follows it in the longer sequences. Thus, it connects
adjacent alignments of the longer sequences.

This concept describes an A-Bruijn graph. The vertices are alignments, and the
edges connect adjacents alignments. Thus, a de Bruijn graph is an A-Bruijn graph,
but other alignments are possible. An example of an A-Bruijn graph is given in
Figure 16. A simple practical example is a de Bruijn graphs that have different k
sizes in it. Such a graph is technical not a de Bruijn graph, but an A-Bruijn graph.

Another example is something that already Idury and M. S. Waterman (1995)
suggested. If one k-mer follows another k-mer and no other outgoing edge exist
from this k-mer, then the graph can be simplified by merging this both vertices
together without losing information (compare Subsection 2.6.2). However, if this is
done, the graph is not any longer a de Bruijn graph but an A-Bruijn graph.

2.3 General ordering methods

One can find many methods of ordering something in the literate. The focus
here is on the ordering of graphs or techniques that can directly be applied to a
graph representation. Thus many practices of order theory are not presented here.
However, such a full survey would be beyond the scope of this work.

In this section, the focus is on known methods to create a total order of graph
vertices without any more in-depth knowledge of the graph and what the vertices
represent. Thus, these methods are general graph methods that can be applied to
any digraph.

2.3.1 Graph traversal

A graph traversal starts on a specific vertex or a set of vertices and traverses the
graph by following the edges. If every vertex is only visited once the traversal
creates a search forest of oriented trees. This search forest represents the edges
that are used by the traversal. The literature describes two main types of graph
traversal: the breadth-first search (BFS) and the depth-first search (DFS).

36 Chapter 2. Total graph ordering

Depth-First Search

DFS traverses a digraph G from a root r ∈ V (G) in the following manner: start
the recursive traversal at r; (i) recursively, at v ∈ V (G), proceed to the smallest
(with respect to the sibling partial order /), previously-unvisited successor of v;
(ii) if v has no more unvisited successor, return to (i) of its “parent”, i.e., the
vertex parent(v) from which v is initially reached (R. Tarjan, 1972). Clearly, DFS
generates a rooted tree T with directed edges (parent(v), v), which are known as
the DFS-tree.

Lemma 1. Let T be the ordered tree generated by DFS on a digraph G, and
let (v, u) ∈ E(G) with v ∈ V (T). Then, u ∈ V (T) and either u = v, u ≺ v
(including (v, u) ∈ E(T)), v ≺ u, or u / v. In particular, T is a search tree on G.
Furthermore, no edge (v, u) ∈ E(G) exists such that v / u.

Proof. Consider a DFS reaching v. The search returns to parent(v) only after
exhausting all successors of v; hence, any edge (v, u) either has been visited before
by the DFS process or, otherwise, it is included as an edge as DFS continues into
the subtree of v rooted in u. If u has been accessed before, then either u = v,
u ≺ v (i.e., v has a succesor x with x / u, u is traversed from x), v ≺ u (i.e.,
v is traversed from u), or v and u are incomparable w.r.t. ≺. In the latter case,
there are distinct children x and y of lca(v, u) such that v ∈ T (x) and u ∈ T (y).
In a DFS, T (y) is traversed before T (x) if y comes before x in the successor order
of lca(v, u), and thus, u / v.

By the construction of DFS, x ∈ V (T) is reachable from the root r = root(T)
along a path in G; hence, V (T) ⊆ [r] . Suppose there is x ∈ [r] \ V (T). Along
a path p from r to x, let x′ be the first vertex not reachable from V (T), i.e., there
is an edge (u, x′) ∈ E(G) with u ∈ V (T) and x′ /∈ V (T), contradicting the first
assertion of the lemma.

The fact that no edge (v, u) ∈ E(G) exists with v / u follows directly from the
first part of the lemma and Corollary 1 (Page 31).

Therefore, the following simple characterization of DFS-trees is obtained:DFS-tree

Corollary 2. A search tree T on G is a DFS-tree if and only if no edge (v, u) ∈
E(G[V (T)]) is a right cross edge, i.e., v / u.

The DFS proceeds on [r] in such a way that the preorder ρ of the DFS-tree
T rooted at r corresponds to the order in which the vertices are discovered, while
the postorder π describes the order in which vertices are completed, i.e., “left”, by
ascending back to their parent. To see this, denote by ρ′ and π′ the order in which
vertices are discovered and completed by DFS started at r. By construction, DFS
accesses the successors of v in /-order and completes the traversal of a subtree
rooted at a child v′ of v before proceeding to the subtree of another child. Thus, if
u and v are incomparable w.r.t. ≺ in T , then ρ′(u) < ρ′(v) and π′(u) < π′(v) if
and only if u / v in the sibling order. It also follows directly from the definition
of DFS that ρ′(u) < ρ′(v) if v ≺ u and π′(u) < π′(v) if u ≺ v. Hence, ρ′ and
π′ indeed coincide with the preorder ρ and the postorder π for the traversal of

Chapter 2. Total graph ordering 37

Figure 17: DFS- and BFS-Trees. On the left a graph is shown from which a DFS-tree
(middle) and a BFS-tree (right) are created. The siblings are visited in the order of their
labels. The edges are colored after their type w.r.t. the tree as in Figure 14 (Page 32).
Note that the DFS-tree has no right cross edge and the BFS-tree has no forward edge
beside the tree edges.

DFS-tree T. DFS on a graph G is therefore completely described by the oriented
DFS-tree T , i.e., the sibling and ancestor order on [r] , and coincides with DFS
on T itself.

Hence, the condition that v has been accessed before u can be expressed simply
as ρ(v) < ρ(u). If u and v are comparable on T , their relative order is determined
by Equation 2.34 (Page 32). An example of a DFS-tree is shown in Figure 17.

It is possible to create a DFS-forest DFS-forestby having a forest where all trees are
DFS-trees. As shown in Subsection 2.2.5 the edges between the trees are all left
cross edges. Thus, the DFS-forest has the same properties as a DFS-tree.

Breadth-First Search

BFS BFStraverses a digraph G from a root r ∈ V (G) in the following manner: put r in
an empty list; (i) visit the first unvisited vertex v on the list; (ii) add the successors
of v in sibling partial order / to the end of the list; if an unvisited vertex in the list
exist proceed with step (i). Clearly, BFS generates a rooted tree T with directed
edges (parent(v), v), where parent(v) is the vertex that put v in the list. Such a
tree is known as the BFS-tree.

Lemma 2. Let T be the ordered tree generated by BFS on a digraph G, and let
(v, u) ∈ E(G) with v ∈ V (T). Then, u ∈ V (T) and only if (v, u) ∈ E(T) is u ≺ v.
In particular, T is a search tree on G.

Proof. Consider v is the first unvisited vertex on the list. Then two possibilities
exists. If u is not already in the list then the first appearance is put in the list from
v, i.e., (v, u) is a tree edge. If u is already in the list then v′ exists in front of v
in the list such that (v′, u) is a tree edge. However, as v′ is in front of v, v can
not be an ancestor of v′. This follows because v′ is by assumption visited and thus
already in the tree but v is just added now to the tree. Thus, if u is already in
the list u ≺ v cannot be true. By the same arguments as for DFS in the proof of
Lemma 1, T is a search tree.

38 Chapter 2. Total graph ordering

It is possible to give a simple definition of a BFS-tree that is similar to the
definition of a DFS-tree:BFS-tree

Corollary 3. A search tree T on G is a BFS-tree if and only if every forward edge
(v, u) ∈ E(G[V (T)]) (i.e., u ≺ v) is a tree edge (i.e., (v, u) ∈ E(T)).

A BFS on the BFS-tree is equivalent to a BFS on G that starts at the root of
the tree. However, the order in which the BFS visits the vertices is different from
the preorder and postorder of the BFS-tree. An example of a BFS-tree is shown in
Figure 17.

It is possible to create a BFS-forestBFS-forest by having a forest where all trees are
BFS-trees. As shown in Subsection 2.2.5 the edges between the trees are all left
cross edges. Thus, the BFS-forest has the same properties as a BFS-tree.

2.3.2 Topological sorting

Remembertopological sorting that if a directed acyclic graph (DAG) is given, the reachability relation
is a partial order. The extension of this partial order into a total order is called
topological sorting. Assume that in the partial order i and j incomparable then this
missing information is added. If i ≤ j or j ≤ i is irrelevant as long the transitivity
is fulfilled. Thus, one partial order can have many extension to total orders.

Different types of algorithms perform topological sorting. Kahn (1962) presented
the first efficient algorithm. However, as R. E. Tarjan (1976) has shown, it is possible
to use a DFS for this. If F is a DFS-forest that uses the sources as roots, then the
reverse postorder (π) of F is a topological sorting of the DAG.DFS-topological sorting In such a case π is
called a DFS-topological sorting.

Not every graph is a DAG. The solution to this problem is first to extract
a maximum acyclic subgraph and then to compute a topological sorting of this
subgraph. An equivalent formulation asks for the removal of a minimum set of
edges that close cycles. This Maximum Acyclic Subgraph or minimum feedback arc
set problem (MFAS) is well-known to be NP-hard (Karp, 1972). Nevertheless fast,
practicable heuristics have been devised, see e.g., Eades, X. Lin, and Smyth (1993)
and Saab (2001). An example of a graph where MFAS and topological sorting is
used to create an order is shown in Figure 18.

A closely related approach is the Linear Ordering Problem (LOP): Given a
complete weighted directed graph, find a tournament with maximum total edge
weights (Martí and Reinelt, 2011). It yields essentially the same model since LOP
and MFAS can be transformed into each other quite easily (Grötschel, Jünger,
and Reinelt, 1984). Cost functions designed to define consensus orderings for
sets of total and partial orders have been considered in different fields starting
with the work of Spearman (1904) and Kendall (1938), see also e.g. Collier and
Konagurthu (2014), Fagin, Kumar, and Sivakumar (2003), and Fried et al. (2004).
The reconciliation of partial orders is investigated in detail, e.g., in D. Bertrand,
Blanchette, and El-Mabrouk (2009).

Chapter 2. Total graph ordering 39

Figure 18: MFAS and Topological Sorting. Left, a graph is shown that has two cycles
(x1, 3, 4, 2

x

and x3, 4, 6, 5

x

). If the orange edges are removed, the graph is acyclic. However,
this is not a valid solution for MFAS. Since removing the green edge can also make the
graph acyclic and one edge less is removed. If the graph is acyclic after removing the
green edge, it can be topological sorted. All six valid topological sortings are shown on
the right. The red topological sorting are DFS-topological sortings.

2.3.3 Simultaneous consecutive ones and matrix banding

Instead of edges the incidence matrix A of the digraph G is considered. Then an
approach to solve the problem is to sort both the vertices and their edges in such a
way that, to the extent that this is possible, (i) adjacent vertices are consecutive
and (ii) edges that have a vertex in common are consecutive. In more formal terms,
the goal is to sort both the rows (vertices) and columns (edges) of the incidence
matrix in such a way that rows and columns show all non-zero entries consecutively.
A rectangular matrix A that admits such a pair of row and column permutations
is said to have the simultaneous consecutive ones property (C1S) (Oswald and
Reinelt, 2009). This is possible if G is an union of disjoint paths. Note that instead
of edges one could also cover the graph with short paths ℘k. In this case, column
k identifies the vertices incident with path k. Again, if G is an union of paths, the
path-incidence matrix satisfies C1S. It is not difficult to see that A satisfies C1S if
and only if A has the well-studied consecutive ones property (Booth and Lueker,
1976; Meidanis, Porto, and Telles, 1998; Oswald and Reinelt, 2009) for both its
rows and columns. Thus C1S can be checked in linear time (Booth and Lueker,
1976). Furthermore, Tucker (1972) characterization of C1S in terms of forbidden
sub-matrices also carries over. Some direct connection between the consecutive
ones property and the Betweenness Problem, are discussed in Christof, Oswald, and
Reinelt (1998).

In general, A have not the consecutive ones property. The problem of identifying
a minimal number of columns (edges) whose removal leaves a C1S matrix is NP-
complete (Oswald and Reinelt, 2009). In practice, it may be desirable to quantify
the extent of the violation of C1S in terms of intervals of consecutive zeros enclosed
by two non-zeros. For instance, one may want to use ω =

∑
i hi, where the sum

runs over all intervals i of consecutive zeros enclosed by two non-zeros, and hi ≥ 0
is some contribution that monotonically grows with the length of the zero-interval.
For a given ordering of the rows and columns, the total violation is quantified as
the sum of the ω values. It should be noted, however, that C1S does not imply G
is an union of disjoint paths.

A related set of optimization problems is concerned with reducing the bandwidth

40 Chapter 2. Total graph ordering

of matrices, i.e., the maximal distance of non-zero entries from the diagonal (in a
symmetric case) or the parameter min(l, u) + l+ u (for rectangular matrices); here
u = max({i − j | Aij 6= 0}) and l = max({j − i | Aij 6= 0}) (Reid and Scott,
2006). In the symmetric case, several good heuristics are known, starting with the
Cuthill and McKee (1969) and Gibbs, Poole, and Stockmeyer (1976) algorithms
even though the problem is NP-hard (Feige, 2000), while the general case has
received much less attention (Reid and Scott, 2006). Bandwidth reduction methods
do not eliminate “bad” edges that eventually determine bandwidth. The resulting
ordering of rows and columns thus may be very inaccurate locally.

2.3.4 Hamiltonian Path
A Hamiltonian path is a path that visits every vertex exactly once. It is similar to a
Hamiltonian cycle, i.e., a cycle that visits every vertex, beside the start/end vertex,
exactly once. Both can be transformed with a polynomial reduction into each
other. Kirkman and Cayley (1856) and Hamilton (1856) independently described
the concept of such a cycle. Later Karp (1972) shows that finding a Hamiltonian
cycle and thus a Hamiltonian path is NP-complete. An example of such a cycle is
shown in Figure 19.

A Hamiltonian path, as an ordered set, defines a total order of the vertices
directly. Thus it can be used to create an order of vertices in graphs if one exists.
An example where a Hamiltonian path is used this way is to determine a genome
assembly based on an overlap graph (See Section 2.4). Another example would be
the evolution of gene clusters described by Prohaska et al. (2017).

2.3.5 Eulerian Paths
The Eulerian path problem differs in many aspects from the other problems presented
here. It goes back to Euler (1741). It tries to find a trail that contains every edge
exactly once. Note that the term Eulerian path is historically given even if in the
modern notion, the result is not necessarily a path. Comparable to the Hamiltonian
path a cycle version is given: An Eulerian cycle is an Eulerian path that starts and
ends in the same vertex. An example of such a cycle is shown in Figure 19.

Thus the result of the Eulerian path is a total order on the edges, not the
vertices. An edge ordering can contain every vertex many times thus it does not
correspond to an unique vertex ordering. On the other side a vertex ordering does
not consider every edge and thus it also does not correspond to an unique edge
ordering. However, depending on the problem, it may be possible to formulate an
ordering problem in both ways, as edge ordering or vertex ordering. An example of
this is the genome assembly problem (See Section 2.4).

Except the most of the other problems the Eulerian path problem can relatively
simply be solved. Determining if an Eulerian cycle exists and the construction of
it can be done in linear time (Hierholzer and Wiener, 1873). The critical point is
that an Eulerian cycle exists exactly if the graph can be decomposed into edge-
disjoint cycles (and is connected). Thus, every vertex has the same in-degree and
out-degree.

Chapter 2. Total graph ordering 41

Figure 19: The Hamiltonian cycle and an Eulerian cycle. A
graph is shown that has a hamiltonian cycle x1, 2, 3, 4, 5, 6, 7

x

and
am eulerian cycle x1, 2, 3, 4, 5, 6, 7, 1, 7, 5, 3

x

. For both cycles, 1 is
used as the start. Note that every other vertex would also work
because they are cycles.

However, generating a graph having an Eulerian path from a graph without a
Eulerian path is complex. For this task methods like discarding edges if in- and
out-degree are unequal or discarding sources and sinks until only one of each is left
are used. Examples of this can be found in Section 2.4.

2.4 Genome Assembly

The genome assembly problem arose when genome sequencing arrived as widely used
technology in the laboratories. The problem is that sequencing produces relative
short sequence fragments (called reads), but scientists are interested in the complete
genome sequence, which is much larger. Thus, the task is to reconstruct a longer
sequence from short pieces. It is possible to solve this because the genomes are over-
sampled, i.e., the fragments overlap, and thus, relative positions can be determined.
A genome assembler is a program that addresses this problem. However, this task
is difficult because sequencing works not errorless, and many genomes have repeats
in the sequence. Thus, the genome assembly problem is NP-hard (Nagarajan and
Pop, 2009).

The naive solution can be summed up to the overlap–layout–consensus
paradigm. This paradigm is used in the first assemblers, like the Genome As-
sembly Program (GAP) (Bonfield, K. F. Smith, and Staden, 1995). In the overlap
phase, the assemblers calculate overlaps between all reads. In the layout phase, the
relative order is used to create a total order. The consensus phase then transforms
the total order in a consensus sequence. This sequence is the genome assembly.
Like GAP most of the assemblers that use this paradigm need human interaction in
at least the layout step. The reader can find an overview of this type of assemblers
at J. R. Miller, Koren, and Sutton (2010).

This idea later is enhanced by using graphs in the layout steps. Then creating
a layout is equivalent to finding a Hamiltonian path in such an overlap graph.
However, the computation of all overlaps is time consuming because every read
must be compared with any other read. Thus the application of such graphs is
limited. Pevzner, Tang, and M. S. Waterman (2001) paraphrase this circumstance
graphically:

Children like puzzles, and they usually assemble them by trying all pos-
sible pairs of pieces and putting together pieces that match. Biologists
assemble genomes in a surprisingly similar way, the major difference
being that the number of pieces is larger.

42 Chapter 2. Total graph ordering

Idury and M. S. Waterman (1995) propose a new approach that use de Bruijn
graphs as the data structure to overcome the pairwise comparison. The construction
of the de Bruijn graphs begins with the transformation of the reads in smaller
fragments of size k. Such a fragment is termed a k-mer. In the de Bruijn graph,
a k-mer is a vertex. The edges are created by connecting two overlapping k-mers
following the de Bruijn graph definition (Subsection 2.2.8).

The genome assembly problem can be solved effectively with a de Bruijn graph.
Idury and M. S. Waterman (1995) further show that addressing the genome assembly
problem is similar to finding an Eulerian path in the graph. However,graph simplifier the size of the
problem is too large for direct solving. The solution to this problem is reducing the
size and complexity of the graph. Graph simplifications reach this reduction. Their
characteristic is to address a local graph structure and to replace it with a more
straightforward structure.

The first and most trivial of this simplifiers is the "elimination of single-
tons" (Idury and M. S. Waterman, 1995). A singleton is a vertex that has precisely
one predecessor and one successor. Such a vertex adds no variants in the Eulerian
path determination. Thus, it is replaced by an edge from the predecessor to the
successor. The simplifier reduces the number of vertices in the graph but does not
change any topological properties of it.

However, to effectively solve the Eulerian path problem, the topological features
must be reduced. Two other simplifiers are addressing the topology of the graph.
The first one is "elimination of forks" (Idury and M. S. Waterman, 1995). A fork
is a vertex that has one incoming (outgoing) edge and more than one outgoing
(incoming) edge. Such a vertex can exists only once in the Eulerian path. Otherwise,
extra incoming (outgoing) edges would be needed. Thus, the simplifier discards all
outgoing (incoming) edges beside one.

The second topology simplifier is "elimination of crosses" (Idury and M. S.
Waterman, 1995). A cross is a vertex with more than one incoming and outgoing
edge. Such a vertex can and should be more than once in the Eulerian path. The
solution here is that a pair of an incoming and an outgoing edge are combined. This
combination creates (like the Elimination of singletons) a new edge and removes
the edges from the cross.

Both topology simplifier need to have a local heuristic that prefers one edge
respectively pair of edges over others. In Idury and M. S. Waterman (1995) the
more supported edge (pair of edges) is used. More supported means in this context
that it appears in more reads. However, on a theoretical point of view, this heuristic
could be replaced by any local decidable heuristic that is further optimized.

Every applied simplifier creates the possibility of further simplification. Thus,
the simplifiers are repeated on the graph until no new changes happen. If the
heuristics work correctly, the result is a graph with one edge that contains all data.
However, Idury and M. S. Waterman (1995) already show a limitation of their
heuristic. It cannot solve the repeats that are larger than k. Thus, the result of
real data is not one edge but a small graph of cycles.

Further heuristics are applied until these repeats are solved and the graph
reduces to one edge. This one edge then contains all information about the order
of the genome assembly. This order is then transformed into an assembly using

Chapter 2. Total graph ordering 43

alignments. In other words, the genome assembly follows directly from the ordering
of the graph, and this ordering is created only by local heuristics.

This idea later is used to build the first de Bruijn graph-based assembler. The
assembler is named after the Eulerian path "Euler" (Pevzner, Tang, and M. S.
Waterman, 2001). It uses the above-described techniques combined with a preluded
error correction. This error correction simplifies the graph and pushes the quality
of the result. Thus, Euler superseded the overlap–layout–consensus assemblers.

Velvet (Zerbino and Birney, 2008) is another genome assembler that utilizes de
Bruijn graphs. It uses different graph simplifications than Euler. First, like in Euler,
the singletons are simplified. Then in Velvet two simplifiers exists that use the
graph topology. First, "tips" are removed. A "tip" is a sink or source that connect
only to one other vertex. Secondly, bubbles are reduced. Two independent paths
that start and end in the same vertices form a bubble. A bubble is a colinear part
of the graph with at least two alternative paths. An exact definition is given later
in Subsection 2.6.3.

The bubble detection and simplification is the essential approach of Velvet.
However, it takes too much time to compute all bubbles precisely. Thus, Velvet
applies a heuristic that constrains the bubble detection. The idea is that the
alternative paths in bubbles result from sequencing errors. Therefore, these paths
are merged by alignments into one path.

Velvet further reduces graph complexity by discarding low supported edges.
Again supported means that it is not present in many reads. This discarding step
can introduce errors if some sequences of the genome are underrepresented in the
reads. Thus this step is applied after the bubble simplification.

The last step in Velvet’s pipeline contains the decomposition of cycles, i.e.,
repeats on the genome. Velvet uses data that is not present in the de Bruijn graph.
Such data includes the full reads, mate pairs, and apriori statistics. Then the
pipeline starts over and tries to simplify the graph further until only one vertex is
left.

Many other genome assemblers use this approach with little variations. The
basic ideas of filtering and correction of the reads, building the de Bruijn graph,
simplify the graph and solve the repeats is the same in most de Bruijn graph
assemblers. Many assemblers also use the three simplifier ideas: merge singletons,
remove tips, and solve bubbles. The reader can find an overview of assemblers in
El-Metwally et al. (2013).

2.5 Supergenome

Coordinatization of supergenomes is answering how multiple sequence alignment
(MSA)-blocks of a genome-wide multiple sequence alignment (gMSA) can be
ordered in a way that facilitates comparative studies of genome annotation data.
To be more general, a particular interest is in large animal and plant genomes and
large phylogenetic ranges. Therefore, short MSA-blocks and abundant genome
rearrangements, leaving only short sequences of MSA-blocks that are perfectly
syntenic between all genomes involved, can be assumed. The problem of optimally

44 Chapter 2. Total graph ordering

sorting the MSA-blocks can be regarded as a quite particular variant of a vertex
ordering problem. In the computational biology literature, furthermore, several
graph-based methods have been proposed to solve the problem of sorting MSA-
blocks for supergenomes, see e.g. Haussler et al. (2018), Kececioglu (1993), Nguyen,
Hickey, Zerbino, et al. (2015), Paten, Earl, et al. (2011), Paten, Herrero, et al.
(2008), and Pevzner, Tang, and Tesler (2004).

Several specialized graph structures have been introduced recently to tackle
the problem of ordering sequence blocks, which is a problem very similar to the
coordinatization of supergenomes. Among these constructions are A-Bruijn graphs,
Enredo graphs, and Cactus graphs (see Kehr et al. (2014) for a review). A key
insight of Kehr et al. (2014) is that these graph representations are equivalent in
the sense that they can be transformed into each other. They differ, however, in
additional information extracted from the input alignment that is stored as vertex
and edge labels. In the following two models are explained: the sequence graphs
and the bidirected graphs.

2.5.1 Sequence graphs

The sequence graphs of Haussler et al. (2018) are related closely to the A-Bruijn
graphs. The critical difference is that the orientation of the sequences in MSA-
blocks is used to determine the direction of the edge. Two adjacent intervals
with negative orientation thus imply an edge that is reversed compared to the
A-Bruijn graph. This situation is problematic in the case where the orientation of
the intervals is switched. In Haussler et al. (2018), a preprocessing step is performed
to minimize the number of such edges. The sequence graph approach is designed
for the comparison of human genomes of different individuals. In such a scenario,
the resulting information loss is small and does not present a practical problem.

The natural formulation of the total ordering problem on a sequence graph is
to find a vertex ordering that minimizes weighted feedback edges and the average
cut width. These optimization criteria ensure that the successor relations are kept
mostly intact and at the same time, successors are placed close to each other
in the solution. Both problems, the Minimum Feedback Arc Set Problem (Karp,
1972) and the Average Cut-Width Minimization Problem (Gavril, 1977; Makedon,
Papadimitriou, and Sudborough, 1985; Martí, Pantrigo, et al., 2013), are known
to be NP-hard. Cut-width minimization problems ask for a linear ordering of the
vertices of a graph such that the average or the maximum number of edges spanning
across the gap between a pair of consecutive vertices is minimized. Conceptually,
cut-width problems are quite similar to bandwidth problems (Barth et al., 1995).
In Haussler et al. (2018) a heuristic is presented that first extracts a totally ordered
“backbone” and then inserts the remaining vertices into the backbone order that is
kept intact in the process. While the presence of a global common backbone order
is a well-founded assumption for pangenomes of a single or very closely related
species, it is violated in general graphs.

Chapter 2. Total graph ordering 45

2.5.2 Bidirected graphs

The bidirected graphs of Nguyen, Hickey, Zerbino, et al. (2015) have the same
underlying graph as an A-Bruijn graph. While the A-Bruijn graph uses a standard
directed graph structure, bidirected graphs encode directional information inde-
pendently in the endpoints of each edge, distinguishing three cases: (i) adjacent
MSA-blocks have the same orientation, (ii) the connected MSA-blocks switch from
minus to plus orientation, or (iii) vice versa. The latter two cases indicate a change
of orientation between two changes. In Nguyen, Hickey, Zerbino, et al. (2015),
this basic structure is extended by additional transitive edges given by a legal path
through the graph with an exponential weight function. Then the task is to find
a consistent (non-conflicting) set of edges with maximal weight, i.e., such that a
Hamiltonian path along or with support of this edges exist. This form of the weight
function takes the biological background into account. Due to the genetic linkage,
close MSA-blocks are rarely separated. This gives higher weight to locally correct
MSA-block positions and orientations. In general, this problem is NP-hard. While
this sorting problem is NP-hard (Nguyen, Hickey, Zerbino, et al., 2015) in general,
for a set of closely related genomes, the effort is particularly suitable.

2.6 Graph simplifier

The simplifier is a concept that originated in the genome assembly. More or less
every graph-based assembler has its simplifier or modifies an already existing one.
Here are the ground ideas of the basic types given and explained. These basic
types are dead end simplifier, linear simplifier, bubble simplifier, and superbubble
simplifier.

2.6.1 Dead ends

This type of simplifier origins directly from Idury and M. S. Waterman (1995) which
is the first work that uses de Bruijn graphs. The idea is that in a genome assembly,
many dead ends can be produced by false reads where only a small number of real
ends exists. For every chromosome exists one source and one sink, every additional
sink or source is a sequencing error.

Thus these dead ends are removed, if they are not sufficiently supported. What
sufficiently supported means depends on the assembler. It must especially be
prevented that real ends are discarded, i.e., the chromosomes are shortened every
time. However, most of them use such a simplifier. How an end is qualified also
depends on the environment.

Three types can be distinguished. The ones that are connected only to one
vertex. The second type includes ends that connect to more than one vertex but
an order is given of the other vertices. The last type are ends that connect to more
vertices with an unclear order. This unclear order could be created by cycles or if
the vertices cannot be compared by reachability. Examples of the three types are
shown in Figure 20.

46 Chapter 2. Total graph ordering

Figure 20: Different End Types. Different types of sinks (left) and sources (right) are
shown. Both can be differentiated into three types. The ends that are connected only to
one other vertex (vertex 2 in both graphs). The second type comprises the ends that are
connected to more than one vertex, but these vertices have a specific order (vertex 3 in
both graphs). The last type comprises the ends that connected to more than one vertex
with unclear order (vertex 7 in both graphs).

Ends that connect only to one vertex can be removed or collapsed with this
vertex. The ends that have more than one predecessor are more complex. If an
order exists, they can be handled like an end that is only connected with the last
neighbor in the order. However, if such an order does not exist, the end cannot be
classified as a dead end or real end. Depending on how the order is determined, it
may be the one or the other.

2.6.2 Consecutive Vertices
The concept of consecutive vertices has already present be presented in Idury and
M. S. Waterman (1995). If a vertex v has only vertex u as successor and v is the
only predecessor of u then these two vertices are called consecutive vertices. More
formal this means that the following equation holds:

[v, u] = [u, v] = {v, u}. (2.40)

This forms a linear part in the graph, and the two vertices can be merged without
loss of information.

Some assemblers do this as a preprocessing and not as a simplification step (Zerbino
and Birney, 2008). However, this form of preprocessing cannot help if other simpli-
fiers create new consecutive vertices. Thus, in most cases, it is more effective for
simplification to repeat this process. However, it is also more time-consuming.

The simplicity of the structure makes this process valid for every graph ordering,
completely independent of the optimization function. Thus, it is present in every
genome assembler. For supergenomes, it is in some cases ignored because by
definition every MSA-block has more than one successor. However, this can change
by other simplifier or by filtering on the alignment. Thus, consecutive vertices
should be considered.

2.6.3 Bubbles
Bubbles or colinear parts of the graph are considered already in Idury and M. S.
Waterman (1995). However, the name bubble first is used in Zerbino and Birney
(2008) for genome assembly. Bubble structures in a digraph have become the focus

Chapter 2. Total graph ordering 47

Figure 21: Quadratic number of bubbles. An artificial graph that consists of a directed
cycle with n vertices (x1, . . . , n

x

) and two extra vertices X1 and X2 is shown on the
left. Every vertex of the cycle has besides the cycle edge an outgoing edge to both extra
vertices and an incoming edge from both. Thus the graph has n+ 2 vertices and 5n edges
(n cycle edges, 2n edges to the extra vertices, and 2n edges from the extra vertices).
However, every pair of none extra vertices creates a bubble. Two simple paths would be
from the entrance to X1 or X2 then to the exit (shown in the center). Thus, there are
n2 bubbles. Each of these bubbles contains the complete graph. The reason for this is
that, a Hamilton path from every vertex to every other vertex exist. Such a Hamilton
path from i to j can be constructed in the following way: Starting by i following the cycle
until j − 1, follow the edges (j − 1, X1) and (X1, j + 1) (skiping j on the cycle), follow
again the cycle until i− 1, and follow the edges (i− 1, X2) and (X2, j). In this way every
vertex is visited once. An example of such a Hamilton path is shown on the right, the
path consist out of the red edges.

of a growing interest of research because of their role in genome assembly and
related topics; see, e.g., Paten, J. M. Eizenga, et al. (2018) and the references
therein. See Acuña et al. (2017) for a formal analysis. A bubble is defined as:

Definition 16. bubbleLet G be a digraph and let (s, t) be an ordered pair of distinct
vertices with the set U = [s, t] ∩ [t, s] .Then the induced subgraph G[U] is a
bubble in G if and only if s t. Then s, t, and U \ {s, t} are called the entrance,
exit, and interior of the bubble. The induced subgraph G[U] is denoted by ≺s, t� if
it is a bubble with entrance s and exit t.

If such a bubble is found the different paths in them can be unified until only
one path is left. How this is done depends then again on the assembler. However,
this simple definition of a bubble hides complex problems.

The first problem that appears is that the detection of a bubble is not possible
in linear time. The simple reason for this is that there are quadratic possibilities
of bubbles (compare Figure 21). Thus, the detection can be time-consuming on
large graphs. To overcome this some assembler gives limits to the bubble detection
(Zerbino and Birney, 2008). That creates a linear algorithm with a constant factor
that misses some bubbles.

The second problem is that bubbles can substantially overlap (compare Fig-
ure 21). Graphs exist where every bubble contains the complete graph. If this

48 Chapter 2. Total graph ordering

is the case, bubble structures give more or less no information about the local
structure. As a consequence, even if the entrance and the exit of the bubble are
known, the computation of the interior of the bubble is time-consuming. Thus,
again assemblers work with constant limits. However, this means that maybe not
the complete bubble is found and a path that should also be unified is ignored.

The last problem is, that over the interior of the bubble nothing is known.
There could exist cycles or other complex structures that cannot be unified. Thus,
the complete effort to detect a bubble and get every vertex in it could be useless
because a contained cycle makes the unification of the bubble impossible.

The assembler tries to solve the problems with sophisticated heuristics that
produce excellent results for the assembly problem. Such an approach works
relatively well because de Bruijn graphs are well formatted and have limits for every
neighborhood even if they are complete. Thus, a worst case graph like the one
in Figure 21 is not possible as a de Bruijn graph. However, this is not helpful
for the ordering of arbitrary digraphs or the supergenome problem. Thus another
bubble-like structure is more interesting: the superbubble.

Before a more in-depth look into superbubbles, it makes sense in the scope of
this work to define a supertype of a bubble. Such a bubble-like subgraph is called
bubbloid and is defined as:

Definition 17.bubbloid Let G be a digraph and let (s, t) be an ordered pair of distinct
vertices with the set U = [s, t] ∩ [t, s] .Then the induced subgraph G[U] is a
bubbloid in G if and only if s t. Then s, t, and U \{s, t} are called the entrance,
exit, and interior of the bubbloid. The induced subgraph G[U] is denoted by ≺s, t�
if it is a bubbloid with entrance s and exit t.

Clearly, every bubble is also a bubbloid. Furthermore, also, consecutive vertices
are bubbloids. On one side, this definition is so vague that there is no benefit in
calculating any bubbloid. On the other side, the general structure makes it the
superclass of different bubble-like structures, including superbubbles.

2.6.4 Superbubbles
Superbubbles are another type of bubble-like structures. They are introduced by
Onodera, Sadakane, and Shibuya (2013) as an extension of bubbles. However,
bubbles are not the supertype of superbubbles. There exist bubbles that are not
superbubbles and vice versa. An example for both is shown in Figure 22. However,
both are subtypes of bubbloids.

Here the definition of Gärtner, Höner zu Siederdissen, et al. (2018) is used that
is a simple rephrasing of the language used in Onodera, Sadakane, and Shibuya
(2013). This rephrasing is done by first considering a more general class of structure
which are obtained by omitting the minimality criterion:

Definition 18.superbubbloid Let G be a digraph, (s, t) be an ordered pair of distinct vertices,
and U ⊆ V (G). Then the induced subgraph G[U] is a superbubbloid in G if the
following three conditions are satisfied:

Chapter 2. Total graph ordering 49

Figure 22: Comparison of Bubbles and Superbubbles. In the graph, the bubbles are
marked blue, and the superbubbles are marked red. The bubble ≺1, 4� is not a superbubble
because the edge (1, 5) exists. The superbubble 〈5, 6〉 corresponds to consecutive vertices
and is not a bubble because 5 6 6. However, the superbubble 〈1, 7〉 is also a bubble
≺1, 7�. Furthermore, besides the mini superbubbles (like 〈5, 6〉), every superbubble is also
a bubble.

(S1) s t (Reachability condition).

(S2) U = [s, t] = [t, s] (Matching condition).

(S3) G[U] is acyclic (Acyclicity condition).

Then s, t, and U \ {s, t} are called the entrance, exit, and interior of the super-
bubbloid. The induced subgraph G[U] is denoted by 〈s, t〉 if it is a superbubbloid
with entrance s and exit t.

Note that the reachability condition is redundant. If the matching condition
is fulfilled, the reachability condition is also fulfilled. However, in the work of
Onodera, Sadakane, and Shibuya (2013), the definition is not formal, and thus,
both conditions are given. In this work, the reachability condition is kept to be
consistent with the previous works.

A superbubble is a superbubbloid that is minimal in the following sense:

Definition 19. superbubbleA superbubbloid 〈s, t〉 is a superbubble if there is no s′ ∈ [s, t] \
{s} such that 〈s′, t〉 is a superbubbloid (Minimality condition).

The conditions are represented graphically in Figure 23.
Even mini superbubblesif bubbles are not the supertype of superbubbles, most of the superbubbles

are also bubbles with only one class of exception. This class is called the mini
superbubbles and have the property of an empty interior, i.e., they only consist
of two vertices: the entrance and the exit. However, such a mini superbubble
corresponds to two consecutive vertices. Thus, a sub-relation can be created by
defining the superbubbles as a subset of the union of all consecutive vertex pairs
and bubbles (compare Figure 22).

Superbubbles are an important class of subgraphs in the context of assembly for
many reasons. Beside the fact that they remove the need of a distinct consecutive
vertices simplifier, they also tackle most of the drawbacks of bubbles. This is done for
the cost of reducing the number of found subgraphs that can be handled. However,

50 Chapter 2. Total graph ordering

Figure 23: Superbubble Conditions. In the middle, a graph with the superbubble 〈1, 4〉
is shown. Every vertex that is in [1, 4] is marked red and all vertices in [4, 1] are marked
blue. In the corners, transformations of this superbubble are shown that violate each a
superbubble condition. The top left violates the reachability condition because 1 cannot
reach 4. The top right violates the matching condition because 5 can be reached from 1
but cannot reach 4. The acyclicity condition is violated in the bottom left because a cycle
with 2 and 3 exists. The minimality condition is violated in the bottom right because
〈1, 4〉 is a superbubbloid but 〈5, 4〉 (yellow marked) is also a superbubbloid. Thus, 〈1, 4〉
is not a superbubble.

as already Onodera, Sadakane, and Shibuya (2013) have shown, superbubbles, in
assembly graphs, help to simplify the graphs. Furthermore, a portion of the missed
bubbles is not usable for simplification because of there structure.

The first treated drawback is that there are only linear superbubbles in the
graph. This follows directly from the fact that every vertex can at most be the exit
of one superbubble. Thus, linear time detection is possible, and in fact, linear time
detection algorithms exist. Since the definition of superbubbles is entirely based on
reachability, multiple edges are irrelevant and can be omitted altogether. Hence,
only simple digraphs are considered.

Onodera, Sadakane, and Shibuya (2013) proposed a simple O(|V (G)|(|E(G)|+
|V (G)|))-time algorithm that, for each candidate entrance s, explicitly retrieves all
superbubbles 〈s, t〉 in G.

The combination of the work of Sung et al. (2015) with the improvement of
Brankovic et al. (2016) results in the state of the art O(|E(G)| + |V (G)|)-time
algorithm. The concept of a superbubble is extended to bi-directed and bi-edged
graphs, called ultrabubble in Paten, J. M. Eizenga, et al. (2018) and Rosen, J.
Eizenga, and Paten (2017). The enumeration algorithm for ultrabubbles in Paten,
J. M. Eizenga, et al. (2018) has a worst case complexity of O(|E(G)| · |V (G)|),
and hence does not provide an alternative for directed graphs.

The second treated drawback are overlaps. Superbubbles can only overlap in
two ways. Either is one of the overlapping superbubbles included in the other, or
the exit of one superbubble is an entrance of the other superbubble. The second

Chapter 2. Total graph ordering 51

case is not a relevant overlap. Thus, such overlaps can be ignored. The first case
is also not problematic. Depending on the solving algorithm, it could be possible to
ignore the inner vertices or solve first the inner and then the outer.

The last treated drawback is that the bubbles can contain cycles and thus
are hard to solve. A superbubble cannot contain any cycles by definition. Thus,
a superbubble is a directed acyclic graph (DAG), which means that every found
superbubble can be used.

Beside the usability in assembly, superbubbles can be used for any ordering
method that is presented in Section 2.3. For graph traversals, topological sorting,
and simultaneous consecutive ones property (C1S), a superbubble can be seen as
an atomic unit. Thus, the optimal solution of a superbubble can be precomputed
and then handled as one entry. Such an approach can help to calculate a faster
result for the complex problems.

It is a little different if the Hamiltonian and the Eulerian paths are considered.
The existence of a non-mini superbubble means that the solution may be impossible.
For a Hamiltonian path, this directly follows because multiple paths exist, but the
entrance and exit can only be visited once. For an Eulerian path, the entrance and
exit can be visited more often. However, the superbubble must completely consist
of x edge independent paths. The entrance must have x incoming edges, and the
exit must have x outgoing edges. Otherwise, no Eulerian path can exist.

Thus, a modified superbubble simplifier can be used in every ordering prob-
lem, including the supergenome problem. More details on how it is used in the
supergenome problem can be found at Chapter 4. However, first, a more in-depth
look into the theory of superbubbles is given in Chapter 3. Chapter 3 also presents
two novel detection algorithms that have benefits over the existent ones.

52 Chapter 2. Total graph ordering

Chapter 3. Superbubbles 53

CHAPTER 3
Superbubbles

Contents
3.1 State of the Art . 54
3.2 Weak Superbubbles . 55
3.3 Properties of (Weak) Superbubbles 58
3.4 Superbubbles and SCC . 60
3.5 Superbubbles maintaining DAG 61
3.6 Superbubbles in a DAG . 66
3.7 Superbubbles and DFS . 72
3.8 Superbubbles and Cycles 78

3.8.1 C
 -Covers and C

 -Cuts 79
3.8.2 Legitimate Roots from C

 -Cover and C
 -Cuts 83

3.8.3 Finding start cycles 87
3.8.4 Identification of Quasi-Legitimate Roots 88

3.9 Linear Superbubble Detection 95

54 Chapter 3. Superbubbles

In this chapter the properties of superbubbles are analyzed in detail. The first part
is based on Gärtner, Müller, and Stadler (2018). Section 3.7 and following are
based on Gärtner and Stadler (2019). This two works jointly create a novel state
of the art detection algorithm for superbubbles.

3.1 State of the Art

The state of the art algorithm for detecting superbubbles is the combination of two
works: Sung et al. (2015) and Brankovic et al. (2016). However, the algorithm
has some missing details that lead to false positive reports of superbubbles. An
in-depth analysis of the algorithm give a deeper understanding of its pitfalls.

Recall that the vertex set of a graph (G) has a partition PG (Equation 2.32
(Page 30)), which consist of the non-singleton strongly connected components
(SCCs) and the acyclic component. The key observation of Sung et al. (2015) can
be stated as

Proposition 1. Every superbubble 〈s, t〉 in G is an induced subgraph of G[S] for
some S ∈ PG.

It ensures that it is sufficient to search separately for superbubbles within G[S]
for S ∈ PG. However, these induced subgraphs may contain additional superbubbles
that are created by omitting the edges between different components. In order to
preserve this information, the individual components S are augmented by artificial
vertices (Sung et al., 2015). The augmented component S is then converted into
a DAG. Within each DAG the superbubbles can be enumerated efficiently. With
the approach of Sung et al. (2015), this yields an overall O(|E(G)| · log(|E(G)|))-
time algorithm, the complexity of which is determined by the extraction of the
superbubbles from the component DAGs. The partitioning of G into the components
G[S] for S ∈ PG and the transformation into DAGs can be achieved in O(|E(G)|+
|V (G)|)-time. Recently, Brankovic et al. (2016) showed that superbubbles can
be found in linear time within a DAG. Their improvement uses the fact that the
DAG can always be topologically sorted in such a way that superbubbles appear as
contiguous blocks. In this ordering, furthermore, the candidates for entrance and
exit vertices can be narrowed down considerably. For each pair of entrance and
exit candidates (s, t), it can then be decided in constant time whether G[[s, t]] is
indeed a superbubble. Using additional properties of superbubbles to further prune
the candidate list of (s, t) pairs results in O(|E(G)|+ |V (G)|)-time complexity.

A careful analysis showed that the conversion into a DAG is erroneous. Sung
et al. (2015) proposed the construction of an auxiliary DAG H that not only
retains the superbubbles of G[S] but also introduces additional ones. By the unique
structure of H, these additional superbubbles can be filtered.

Definition 20 (Sung graph).sung graph Let G be a strongly connected digraph with a search
tree T with root x. The vertex set V (H) = V ′ ∪ V ′′ ∪ {a, b} consists of two
copies v′ ∈ V ′ and v′′ ∈ V ′′ of each vertex v ∈ V (G), an artificial source a, and
an artificial sink b. The edge set of H comprises four classes of edges: (i) edges

Chapter 3. Superbubbles 55

Figure 24: False-positive superbubble re-
turned by Sung et al. (2015). On the top
left a SCC is shown that is also a connected
component. On the top right a similar SCC
is shown with the difference that the artificial
vertex a is connected to 1. In the search trees
of the graphs rooted by 1 and a the red edge
is the only back edge. Both graphs create the
same Sung graph (bottom). Then among oth-
ers the superbubble 〈3, 1〉 is reported, which
is correct for the first graph but an error for
the second.

(u′, v′) and (u′′, v′′) whenever (u, v) is a forward edge in G w.r.t. T . (ii) edges
(u′, v′′) whenever (u, v) is a back edge in G. (iii) edges (a, v′) whenever (a, v) is
an edge in G and (iv) edges (v′′, b) whenever (v, b) is an edge in G.

The Sung graph H is a connected DAG since all back edges are removed within
each copy of V (G) and only edges from the first copy to the second exists. Further
details can be found at Sung et al. (2015).

The errors appear if two graphs (with different sets of superbubbles) create the
same Sung graph, see Figure 24. These do not constitute a fatal problem because
they can be recognized easily in linear total time simply by checking the tails of
incoming and heads of outgoing edges. It is nevertheless worthwhile to analyze the
issue and to seek a direct remedy.

3.2 Weak Superbubbles

The main aim of this section is to prove moderate generalizations of the main
results of Sung et al. (2015) and Onodera, Sadakane, and Shibuya (2013). To this
end, it is convenient to rephrase some parts of the superbubbloid (Definition 18
(Page 48)) and the superbubble (Definition 19 (Page 49)) definition. The rephrase
is on the reachability (S1) and matching conditions (S2) for the vertex set U of
superbubbloid with entrance s and exit t.

Lemma 3. Let G be a digraph, U ⊂ V (G) and s, t ∈ U . Then (S1) and (S2) (of
Definition 18) hold for U if and only if the following four conditions are satisfied

(S.i) Every u ∈ U is reachable from s.

(S.ii) t is reachable from every u ∈ U .

(S.iii) If u ∈ U and w /∈ U then every w → u path contains s.

(S.iv) If u ∈ U and w /∈ U then every u→ w path contains t.

Proof. Suppose (S1) and (S2) are true. By (S2) is U := [s, t] = [t, s] . Then
u ∈ [s, t] and u ∈ [t, s] implies, by definition of the reachable sets, that (S.i)

56 Chapter 3. Superbubbles

and (S.ii) hold. If w /∈ U it is not reachable from s without passing through t.
Since every u is reachable from s without passing through t, it would be w ∈ U
if w is reachable from any u ∈ U on a path not containing t, hence (S.iv) holds.
Similarly, since t is reachable from u without passing through s, it would be w ∈ U
if v could be reached from w along a path that does not contain s, i.e. (S.iii) holds.

Now suppose (S.i), (S.ii), (S.iii), and (S.iv) hold. Clearly, both (S.i) and (S.ii)
already imply (S1). Since u ∈ U is reachable from s by (S.ii) and every path
reaching w /∈ U passes through t by (S.iii), it is U = [s, t] . By (S.i), t is reachable
from every u ∈ U and by (S.iv) t can by reached from w /∈ U only be passing
through s, i.e., U = [t, s] , i.e., [s, t] = [t, s] .

Corollary 4. Suppose U , s, and t satisfy (S.i), (S.ii), (S.iii), and (S.iv). Then
every path connecting s to u ∈ U and u to t is contained within U .

Proof. Assume, for contradiction, that there exists an u → t path containing a
vertex w /∈ 〈s, t〉. By definition of the set [s, t] , w /∈ [s, t] is not reachable from
u ∈ [s, t] without passing through t first, i.e., w cannot be part of an u → t
path.

Corollary 4 shows subgraphs satisfying (S1) and (S2) related to reachability
structures. This structures are explored in some detail in Ronse (2014) and
Tankyevych, Talbot, and Passat (2013). In the following it is useful to consider:

(S.v) If (u, v) is an edge in U then every v → u path in G contains both t and s.

In the following, it is shown that (S.v) acts as a slight relaxation of the acyclicity
condition (S3) of Definition 18 (Page 48).

Lemma 4. Let G be a digraph, U ⊆ V (G) and s, t ∈ U . If U is the vertex set of
the superbubbloid 〈s, t〉, it satisfies (S.v). If U satisfies (S.i), (S.ii), (S.iii), (S.iv),
and (S.v), then G[U] \ {(s, t)}, the subgraph induced by U without the potential
edge from t to s, is acyclic.

Proof. Suppose U is the vertex set of a superbubbloid with entrance s and exit t.
If (u, v) is an edge in U , then v 6= s by (S3). Since v is reachable from s within
U , no v → s path can exist within U , since otherwise there would be a cycle,
contradicting (S3), that any v → s path passes through t. There are two cases:
If there exists (t, s) ∈ E(G), any path containing this edge trivially contains both
s and t. The existence of the edge (t, s) contradicts (S3). Otherwise, any t→ s
path contains at least one vertex x /∈ U . By (S.iii) and (S.iv) every v → x path
contains t and every x → u path contains s and t, respectively. Hence the first
statement holds.

Conversely, suppose (S.v) holds, i.e., every directed cycle Z within U contains
s and t. Suppose (t, s) is not contained in Z, i.e., there is vertex u ∈ U \ {s, t}
such that (t, u) ∈ E. By (S.ii), t is reachable from u without passing through s,
and every u→ t path is contained in U by Corollary 4. Thus there is a directed
cycle within U that contains u and t but not s, contradicting (S.v). Removing the
edge (t, s) thus cuts every directed cycle within U , and hence G[U] \ {(s, t)} is
acyclic.

Chapter 3. Superbubbles 57

Figure 25: Overview of the different superbubbloid types. (Left) Hierarchy of the
superbubbloid types. The arrows show a subset relation between the sets of the bubble-
like structures. Thus, every weak superbubble and every superbubbloid are also weak
superbubbloids. However, not every superbubbloid is a weak superbubble or vice versa.
A superbubble on the other side is also a weak superbubble and a superbubbloid (and
a weak superbubbloid). On the right is a graph including all types of superbubbloids.
The bubble-like structures are shown with the same coding as in the hierarchy, i.e., weak
bubble-like structures are blue, and none weak structures are red. Furthermore, bubbloids
are marked with a rectangle and bubbles with a circle. The representation is based on
the hierarchy. Thus, if a superbubble is marked, it is not marked as weak superbubble or
superbubbloid. Note that every superbubbloid in the weak superbubbloid 〈1, 6〉 is either a
superbubbloid or a superbubble (compare Lemma 5 and Corollary 8).

Although the definition of Onodera, Sadakane, and Shibuya (2013) (our Defini-
tion 19 (Page 49)) is also used in Sung et al. (2015), the notion of a superbubble
is tacitly relaxed in Sung et al. (2015) by allowing an edge (t, s) from exit to en-
trance, which contradicts the acyclicity condition (S3). This suggests the following
definition:

Definition 21 (Weak Superbubbloid). weak superbubbloidLet G be a digraph, U ⊆ V (G) and
s, t ∈ U . The subgraph G[U] induced by U is a weak superbubbloid if U satisfies
(S.i), (S.ii), (S.iii), (S.iv), and (S.v).

A weak superbubbloids with entrance s and exit t is denoted by 〈s, t〉 and
write [s, t] for its vertex set. As an immediate consequence of Definition 21 and
Lemma 4 it is:

Corollary 5. A weak superbubbloid 〈s, t〉 is a superbubbloid in G if and only if
(t, s) /∈ E(G).

The possibility of an edge connecting t to s plays a role below, hence the focus
is on weak superbubbloids in this contribution.

Definition 22. weak superbubbleA weak superbubbloid 〈s, t〉 is a weak superbubble if there is no
interior vertex s′ in 〈s, t〉 such that 〈s′, t〉 is a weak superbubbloid.

Figure 25 shows a graph in which all (weak) superbubbloids and superbubbles
are indicated.

58 Chapter 3. Superbubbles

3.3 Properties of (Weak) Superbubbles

In this section the theory of superbubbles in digraphs is revisited in some more detail.
Although some of the statements below have appeared similarly in the literature
(Brankovic et al., 2016; Onodera, Sadakane, and Shibuya, 2013; Sung et al., 2015),
this thesis gives concise proofs and takes care to disentangle properties that depend
on minimality from those that hold more generally.

First it is observed that a weak superbubbloid contained within another weak
superbubbloid must be a superbubbloid because the existence of an edge from exit
to entrance contradicts (S.v) for the surrounding weak superbubbloid. This fact is
recorded as

Lemma 5. If 〈s, t〉 and 〈s′, t′〉 are weak superbubbloids with s′, t′ ∈ V (〈s, t〉) and
{s′, t′} 6= {s, t}, then 〈s′, t′〉 is a superbubbloid.

The result is important in the context of minimal (weak) superbubbloids below.
Another immediate consequence of Lemma 4 is

Corollary 6. Let 〈s, t〉 be a weak superbubbloid in G. If there is an edge (u, v) in
〈s, t〉 that is contained in a cycle, then every edge in 〈s, t〉 is contained in a cycle
containing s and t.

Proof. By (S.v) there is a cycle running through s and t. Let (u, v) be an edge
in 〈s, t〉. Since u is reachable from s and v reaches t within U , there is a cycle
containing s, t, and the edge (u, v).

Next a few technical results are derived that set the stage for considering
minimality among weak superbubbloids.

Lemma 6. Assume that 〈s, t〉 is a weak superbubbloid and let u be an interior
vertex of 〈s, t〉. Then 〈s, u〉 is a superbubbloid if and only if 〈u, t〉 is a superbubbloid.

Proof. Suppose〈s, u〉 is a weak superbubbloid. Set Wut := ([s, t] \ [s, u])∪{u}
and consider w ∈Wut. The subgraph induced by Wut is an induced subgraph of
〈s, t〉 \ {(t, s)}. Hence it is acyclic and in particular (t, u) /∈ E(G), i.e., (S.v) and
even (S3) holds. Since t /∈ [s, u] every path from s to t runs through u. Since
w is reachable from s there is a path from s through u to w, i.e., w is reachable
from u. Thus (S.i) holds. (S.ii) holds by assumption since t is reachable from w.
Now suppose v /∈Wut and w ∈Wut. If v /∈ [s, t] , then every v → w path passes
through s and then through u, the exit of 〈s, u〉 before reaching w. If v ∈ [s, t] ,
then v ∈ [s, u] \ {u} and thus every v → w path passes through u as the exit
of 〈s, u〉. Hence Wut satisfies (S.iii). If v ∈ [s, t] , then v ∈ [s, u] \ {u} and
thus every w → v path passes through s. By (S.v) there is no w → s path within
〈s, t〉 \ {(t, s)}, and thus any w → v includes (t, s) or a vertex y /∈ [s, t] . By
construction, all w → y paths contain t, and thus all w → v paths also pass
through t and Wut also satisfies (S.iv).

Chapter 3. Superbubbles 59

Conversely suppose 〈u, t〉 is a superbubbloid. It must be shown that Wsu :=
([s, t] \ [u, t]) ∪ {u} induces a superbubbloid. The proof strategy is very similar.
As above is observed that (S.v), (S.i), and (S.ii) are satisfied. Now consider
v /∈Wsu and w ∈Wsu. If v /∈ [s, t] then every v → w path contains s; otherwise
v ∈ [u, t] \{u} and v → w passes through t and thus also through s by Corollary 4,
thus (S.iii) holds. If v ∈ [s, t] , then v ∈ [u, t] \ {u}, in which case every w → v
path passes through u. Otherwise v /∈ [s, t] then every w → v runs through
t ∈ [s, t] and thus in particular also through u. Hence (S.iv) holds.

Lemma 7. Let 〈w, u〉 and 〈s, t〉 be two weak superbubbloids such that u is an
interior vertex of 〈s, t〉, s is an interior vertex of 〈w, u〉, w is not contained in 〈s, t〉
and t is not contained in 〈w, u〉. Then the intersection 〈s, u〉 = 〈w, u〉 ∩ 〈s, t〉 is
also a superbubbloid.

Proof. First consider the intersection 〈s, u〉. u ∈ V (〈s, t〉) is reachable from s,
hence (S1) holds. Furthermore 〈s, u〉 is an induced subgraph of 〈s, t〉 \ {(t, s)}
and hence again acyclic (S3). Set Wsu := [w, u] ∩ [s, t] and consider v ∈Wsu.
First, note that v is reachable from s by definition of 〈s, t〉 and u is reachable from
v by definition of 〈w, u〉. Let x /∈ Wsu and v ∈ Wsu. If x /∈ [s, t] then every
x → v path passes through s; if x ∈ [s, t] then x /∈ [w, u] (and v ∈ [w, u])
and thus every x→ v path passes through w. Since w /∈ [s, t] , every x→ v path
contains s. If x /∈ [w, u] , then every v → x path passes through u; otherwise
x ∈ [w, u] but x /∈ [s, t] , thus every v → x path passes through t /∈ [w, u]
and hence also through u. Thus Wsu is a superbubbloid.

The following results are included for completeness, although it is irrelevant for
the algorithmic considerations below.

Lemma 8. Let 〈w, u〉 and 〈s, t〉 be defined as in Lemma 7. Then the union
〈w, t〉 = 〈w, u〉 ∪ 〈s, t〉 is superbubbloid if and only if the induced subgraph 〈w, t〉
satisfies (S.v).

Proof. Since 〈w, s〉, 〈s, u〉, 〈u, t〉 are superbubbloids, t is reachable from w, i.e.,
(S1) holds. By the same token, every v ∈ Wwt := [w, u] ∪ [s, t] is reachable
from w or s and reaches u or t. Since s is reachable from w and t is reachable
from u, every v ∈Wwt is reachable from w and reaches t. Now consider x /∈Wwt

and v ∈ Wwt. If v ∈ [w, u] every x → v path passes through w; if v ∈ [s, t] ,
it passes through s ∈ [w, u] and thus also through w. If v ∈ [s, t] , then every
v → x path passes through t. If v ∈ [w, u] it passes through u ∈ [s, t] and thus
also through t. Thus Wwt satisfies (S2). Thus 〈w, t〉 is a weak superbubbloid if
and only if (S.v) holds.

Lemma 9. Let 〈s, t〉 be a weak superbubbloid in G with vertex set [s, t] . Then
〈s, t〉 is a weak superbubbloid in the induced subgraph G[W] whenever [s, t] ⊆W .

Proof. Conditions (S.i), (S.ii), and (S.v) are conserved if G is restricted to G[W].
Since every w → u and u→ w path with u ∈ [s, t] and w /∈ [s, t] within W is

60 Chapter 3. Superbubbles

also such a path in V (G), it is concluded that (S.iii) and (S.iv) are satisfied w.r.t.
W whenever they are true w.r.t. the larger set V (G).

The converse is not true. The restriction to induced subgraphs thus can introduce
additional (weak) superbubbloids. As the examples in Figure 24 (Page 55) show, it
is also possible to generate additional superbubbles.

The “non-symmetric” phrasing of the minimality condition in Definition 19
(Page 49) and Definition 22 (Brankovic et al., 2016; Onodera, Sadakane, and
Shibuya, 2013; Sung et al., 2015) is justified by Lemma 6: If 〈s, t〉 and 〈s, t′〉 with
t′ ∈ V (〈s, t〉) are superbubbloids, then 〈t′, t〉 is also a superbubbloid, and thus 〈s, t〉
is not a superbubble. As a direct consequence of Lemma 5, furthermore, it is:

Corollary 7. Every superbubble is also a weak superbubble.

Lemma 6 also implies that every weak superbubbloid, which is not a superbubble
itself, can be decomposed into consecutive superbubbles:

Corollary 8. If 〈s, t〉 is a weak superbubbloid, then it is either a weak superbubble
or there is a sequence of vertices vk with s = v1, . . . , vk = t, k ≥ 3, such that
〈vi, vi+1〉 is a superbubble for all i ∈ {1, . . . , k − 1}.

A useful consequence of Lemma 7, furthermore, is that superbubbles cannot
overlap at interior vertices since their intersection is again a superbubbloid and
thus neither of them could have been minimal (compare Definition 19 (Page 49)).
Furthermore, Lemma 6 immediately implies that 〈w, s〉 and 〈u, t〉 are also su-
perbubbloids, i.e., neither 〈w, u〉 nor 〈s, t〉 is a superbubble in the situation of
Lemma 7.

3.4 Superbubbles and SCC

Theorem 1. Every weak superbubbloid 〈s, t〉 in G is an induced subgraph of G[S]
for some S ∈ PG.

Proof. First assume that 〈s, t〉 contains an edge (u, v) that is contained in a cycle.
Then by (S.v), there is a cycle through s and t and thus in particular a t→ s path.
For every u ∈ U , there is a path within U from s to t through u by (S.i), (S.ii),
and Corollary 4 (Page 56). Thus 〈s, t〉 is contained as an induced subgraph in a
strongly connected component (SCC) G[S] of G. If there is no edge in 〈s, t〉 that
is contained in a cycle, then every vertex in 〈s, t〉 is a SCC on its own. 〈s, t〉 is
therefore an induced subgraph of the acyclic component G[AG].

Theorem 1 establishes Proposition 1 (Page 54), the key result of Sung et al.
(2015), in sufficient generality. It guarantees that every weak superbubbloid and
thus every superbubble in G is completely contained within one of the induced
subgraphs G[S], S ∈ PG. It does not guarantee, however, that a superbubble in
G[S] is also a superbubble in G. This is already noted in Sung et al. (2015). This
fact leads to augmenting the induced subgraph G[S] of G by an artificial source a
and an artificial sink b.

Chapter 3. Superbubbles 61

Definition 23. augmented graph (SCC)The augmented graph G̃S is constructed from G[S] by adding the
artificial source a and the artificial sink b. There is an edge (a, x) in G̃S whenever
x ∈ S has an incoming edge from another component in G and there is an edge
(x, b) whenever x ∈ S has an outgoing edge to another component of G.

Since G[AG] is acyclic, a has only outgoing edges and b only incoming ones, it
follows that the augmented graph G̃AG

is also acyclic.

Lemma 10. 〈s, t〉 is a weak superbubbloid in G if and only if it is a weak superbubbl-
oid of G̃S for S ∈ PG that does not contain an auxiliary source a or an auxiliary
sink b.

Proof. First assume that 〈s, t〉 is an induced subgraph of the SCC G[S] of G. By
construction, G[S] is also a SCC of G̃S . Thus reachability within S is the same
w.r.t. G and G̃S . Also by construction, a vertex w /∈ S is reachable from x ∈ S
in G if and only if b is reachable from x in G̃S . Similarly, a vertex x ∈ S is
reachable from w /∈ S if and only if x is reachable from a. Hence 〈s, t〉 is a (weak)
superbubbloid w.r.t. G if and only if it is a weak superbubbloid w.r.t. G̃S . For the
special case that 〈s, t〉 is an induced subgraph of the acyclic component G̃AG

it
can be argued in exactly the same manner.

For SCC S, the graph G̃S contains exactly three SCC whose vertex sets are S
and the singletons ({a} and {b}). Since (a, b) is not an edge in G̃S , every weak
supperbubbloid in G̃S is contained in G[S] and hence contains neither a nor b.
Superbubbloids containing a or b cannot be excluded for the acyclic component
G̃AG

, however.

It is possible, therefore, to find the weak superbubbloids of G by computing
the weak superbubbloids not containing an artifical source or sink vertex in the
augmented graphs.

3.5 Superbubbles maintaining DAG

This section utilizes search trees. Thus, a small recap of the properties of a search
trees is given. For more details see Subsection 2.2.5. A search tree T of the digraph
G is defined by its root r. The tree is then the combination of paths r → v (pT (v))
for every v ∈ [r] . An edge (v, w) is a back edge if w ∈ pT (v).

Lemma 11. Let G be a strongly connected digraph, 〈s, t〉 be a weak superbubbloid
in G, r /∈ V (〈s, t〉), and T a search tree rooted at r. Then the induced subgraph
〈s, t〉 of G contains no back edge w.r.t. T except possibly (t, s).

Proof. By (S.iii) it is clear that every path pT (v) with v ∈ V (〈s, t〉) contains s.
Thus, a subtree T (s) contains every vertex of 〈s, t〉. Thus, a back edge (v, u) with
v ∈ V (〈s, t〉) has two possibilities either u ∈ pT (s) \ {s} or u ∈ s→ v. In the first
case u /∈ V (〈s, t〉). If v = t then the edge (v, u) is not part of 〈s, t〉. If v 6= t the
edge (v, u) contradicts (S.iv). Thus, 〈s, t〉 is not a weak superbubbloid.

62 Chapter 3. Superbubbles

The second case u ∈ s → v means that u ∈ V (〈s, t〉). If v = t and u = s
the back edge represents the given exception of (t, s). If v 6= t or u 6= s then the
back edge (v, u) creates a cycle with u→ v ⊆ s→ v. Note that this cycle does
not contain t if v 6= t or does not contain s if u 6= s. Therefore, this contradicts
(S.v) and 〈s, t〉 can not be a weak superbubbloid. Thus, there are no back-edges in
〈s, t〉 \ {(t, s)}.

Note that the main point of the proof is that the complete superbubble is in a
subtree of s. This is also true if s is the root of T .

Lemma 11 is the key prerequisite for constructing an acyclic graph that contains
all weak superbubbles of G̃S . Similar to the arguments above, the back edges
cannot simply be ignored. Instead, again edges are added to the artificial source
and sink vertices.

Definition 24.auxiliary graph (DAG) Given a search tree T with a root r that is neither an interior
vertex nor the exit of a weak superbubbloid of G̃S , the auxiliary graph ĜS is
obtained from G̃S by replacing every back edge (v, u) with respect to T in G̃S
with both an edge (a, u) and an edge (v, b).

Note that Definition 24 implies that all back edges (v, u) of G̃S are removed
in ĜS . As a consequence, ĜS is acyclic. The construction of ĜS is illustrated in
Figure 26.

Lemma 12. Let S be a SCC of G and let T be a search tree on G̃S with a root
that is neither an interior vertex nor the exit of a weak superbubbloid of G. If ĜS
is constructed with T from G̃S then 〈s, t〉 with s, t ∈ S is a weak superbubble of G
contained in G̃S if and only if 〈s, t〉 is a superbubble in ĜS that does not contain
the auxiliary source a or the auxiliary sink b.

Proof. Assume that 〈s, t〉 is a weak superbubble in G̃S that does not contain a or
b. Lemma 10 ensures that this is equivalent to 〈s, t〉 being a weak superbubble of
G. By Lemma 11, 〈s, t〉 contains no back edges in G̃S , with the possible exception
of the edge (t, s). Since G̃S and ĜS by construction differ only in the back edges,
the only difference affecting 〈s, t〉 is the possible insertion of edges from a to s or
from t to b. Neither affects a weak superbubble, however, and hence 〈s, t〉 is a
(weak) superbubble in ĜS .

Now assume that 〈s, t〉 is a superbubble in ĜS with vertex set U and a, b /∈ U .
Since ĜS is constructed from G̃S , reachability w.r.t. to ĜS implies reachability
w.r.t. G̃S . Therefore U satisfies (S.i) and (S.ii) also w.r.t. G̃S . Therefore, if 〈s, t〉 is
not a weak superbubble in G̃S then there must be a back edge (x, v) or a back edge
(x, v) with v in the interior of 〈s, t〉. The construction of ĜS , however, ensures
that ĜS then contains an edge (a, v) or (v, b), respectively, which would contradict
(S.iii), (S.iv), or acyclicity (in case x ∈ U) and hence (S.v). Therefore, 〈s, t〉 is a
weak superbubble in G̃S .

The remaining difficulty is to find a vertex w that can safely be used as root for
the search tree T . In most cases, one can simply set a as root since Lemma 10

Chapter 3. Superbubbles 63

Figure 26: Example for the construction of ĜS. On the top the starting graph G is
shown. The graph G has two non-singleton SCCs (indicated by the green and white
vertices, respectively). Also, there are two singleton SCCs (red vertices) from which G̃AG

is constructed. However, as these two vertices are not connected, the trivial G̃
AG

is not
shown. The middle panel shows the graphs G̃S . Each is obtained by adding the artificial
source and sink vertices a and b (blue vertices). The edges (11, 1), (5, 6) and (9, 12) in G
form connections between the SCCs and the acyclic component, respectively. Hence they
are replaced by corresponding edges from an artificial source a or to an artificial sink b
according to Definition 23. The bottom panel shows the graphs ĜS obtained with the
help of search trees rooted at a. The back edges (red edges) (5, 1), (9, 6), and (10, 9) are
replaced with the corresponding edge from a and to b as described by Definition 24. The
ĜS graphs have the same weak superbubbles as G. Thus, the weak superbubble 〈1, 5〉 is
reported. Note that in ĜS no discrimination between week superbubbles and superbubbles
are possible thus the 〈1, 5〉 must be filtered after the detection.

ensures that a is not part of a weak superbubbloid of G. However, there is no
guarantee that an edge of the form (a,w) exists, in which case G̃S is not connected.
Thus, another root for the search tree must be chosen. A closer inspection shows
that three cases have to be distinguished:

(A) a has an out-edge. In this case a is chosen as the root of the search tree.

(B) a has no edge, but b has an in-edge. In this case it is possible to identify
vertices that can only be entrances of a superbubble. These can then be
connected with the artificial source vertex without destroying a superbubble.

(C) Neither a nor b have edges. The case requires special treatment, as explained
below.

64 Chapter 3. Superbubbles

In order to handle case (B), the following is used:

Lemma 13. Let a and b be the artificial source and sink of G̃S . Let a′ and b′ be
a successor of a and a predecessor of b, respectively. Then

i) a′ is neither an interior vertex nor the exit of a superbubble.

ii) A predecessor a′′ of a′ is neither an interior vertex nor an entrance of a
superbubble.

iii) b′ is neither an interior vertex nor the entrance of a superbubble.

iv) A successor b′′ of b′ is neither an interior vertex nor an exit of a superbubble.

Proof. If a′ is contained in a superbubble, it must be the entrance, since otherwise
its predecessor, the artificial vertex a would belong to the same superbubble. If a′′
is in the interior of an entrance, the a′ would be an interior vertex of a superbubble,
which is impossible by (i). The statements for b follow analogously.

Corollary 9. If b has an in-edge in G̃S , then every successor b′′ 6= b of every
predecessor b′ of b can be used as a root of the search tree. At least one such
vertex exists.

Proof. By assumption, b has at least one predecessor b′. Since G[S] is strongly
connected, b′ has at least one successor b′′ 6= b, which by Lemma 13(iv) is either
not contained in a superbubble or is the entrance of a superbubble.

The approach sketched above fails in case (C) because there is no efficient way
to find a root for the search tree that is guaranteed not to be an interior vertex
or the exit of a (weak) superbubbloid presented yet. This is done in Section 3.8.
However, for the moment the construction of Sung et al. (2015) is used.

The Sung graph (Definition 20 (Page 54)) H contains two types of weak
superbubbloids: those that contain no back edges w.r.t. T , and those that contain
back edges. Members of the first class do not contain the root of T by Lemma 11
and hence are also superbubbles in G. Every weak superbubble of this type is
present (and is detected) in both V ′ and V ′′. A weak superbubble with back edge
has a “front part” in V ′ and a “back part” in V ′′ and appears exactly once in H.
The vertex sets V ′ and V ′′ are disjoint. It is possible that H contains superbubbles
that have duplicated vertices, i.e., vertices v′ and v′′ deriving from the same vertex
in V . These candidates are removed together with one of the copies of superbubbles
appearing in both V ′ and V ′′. This filtering step is referred to as Sung filtering as
it is proposed in Sung et al. (2015).

This construction is correct in case (C) if there are no other edges connecting
G[S] within G. The additional connections to a and b introduced to account for
edges that connect G[S] to other vertices in G, may fail. To see this, consider an
interior vertex v′ in a superbubble 〈s, t〉 with a back edge. It is possible that its
original has an external out edge and thus b should be connected to v′. This is not
accounted for in the construction of H, which required that V ′ is connected to a

Chapter 3. Superbubbles 65

Algorithm 1: Top level organization of the computation of superbubbles in a digraph
G. It reduces the problem to the problem of identifying all superbubbles in a collection
of directed acyclic graphs (DAGs). For the identification of superbubbles in a DAG the
algorithm DAGsuperbubble is used. This is presented in Section 3.6. However, the same
result can be created by using the algorithm from Brankovic et al. (2016).

Require: digraph G
compute all SCC S and the acyclic component AG of G.
for all S do
if G[S] is a connected component of G then
choose arbitrary root x in G[S]
construct search tree T with root x
construct Sung graph H(S)
construct DFS-topological sorting π for H(S)
DAGsuperbubble (H(S), π)
filter superbubbles with Sung filter

else
construct auxiliary graph G̃S
choose a or b′′ as root x
construct search tree T with root x
construct ĜS
construct DFS-topological sorting π for ĜS
DAGsuperbubble (ĜS , π)

construct auxiliary graph G̃AG

construct DFS-topological sorting π for G̃AG

DAGsuperbubble (G̃AG
, π)

only, and V ′′ is connected to b only. These ”missing” edges may introduce false
positive superbubbles as shown in Figure 24 (Page 55).

This is not a dramatic problem because it is easy to identify the false positives:
it suffices to check whether there is an edge (x,w) or (w, y) with w /∈ [s, t] ,
x ∈ [s, t] \ {t} and y ∈ [s, t] \ {s}. Clearly, this can be achieved in linear total
time for all superbubble candidates [s, t] , providing an easy completion for the
algorithm of Sung et al. (2015).The alternative construction eliminates the need
for this additional filtering step.

Lemma 14. The (weak) superbubbles in a digraph G can be identified in
O(|V (G)|+ |E(G)|) time using Algorithm 1 provided the (weak) superbubbles in
a DAG can be found in linear time.

Proof. The correctness of Algorithm 1 is an immediate consequence of the discussion
above. Let us briefly consider its running time. The SCCs of G can be computed
in linear, i.e., O(|V (G)| + |E(G)|) time (Nuutila and Soisalon-Soininen, 1994;
Pearce, 2016; R. Tarjan, 1972). The acyclic component AG as well as its connected
components (Hopcroft and R. Tarjan, 1973) are obtained in linear time. The

66 Chapter 3. Superbubbles

construction of directed (to construct search tree T) or undirected depth-first
search (DFS) (to construct a DFS-topological sorting) also require only linear time
(R. Tarjan, 1972; R. E. Tarjan, 1976), as does the classification of forward and back
edges. The construction of the auxiliary DAGs ĜS and H(S) and the determination
of the root for the DFS is then also linear in time. Since the vertex sets considered
in the auxiliary DAGs are disjoint in G, it is concluded that the superbubbles can
be identified in linear time in arbitrary digraphs if the problem can be solved in
linear time in a DAG.

The algorithm of Brankovic et al. (2016) shows that this is indeed the case.

Corollary 10. The (weak) superbubbles in a digraph G can be identified in
O(|V (G)|+ |E(G)|) time using Algorithm 1.

In the following section, a different linear time algorithm for superbubble finding
is presented that may be more straightforward than the approach in Brankovic et al.
(2016), which heavily relies on range queries.

3.6 Superbubbles in a DAG

The identification of (weak) superbubbles is drastically simplified in DAGs since
acyclicity, i.e., (S3), and thus (S.v), can be taken for granted. In particular, therefore,
every weak superbubbloid is a superbubbloid. A key result of Brankovic et al. (2016)
is the fact that there are vertex orders for DAGs in which all superbubbles appear
as intervals. The proof of Proposition 2 does not make use of the minimality
condition hence it can be stated the result here more generally for superbubbloids
and arbitrary DFS-topological sorting on G:

Proposition 2 (Brankovic et al. (2016)). Let G be a DAG and let π be a DFS-
topological sorting of G. Suppose 〈s, t〉 is a superbubbloid in G. Then

i) Every interior vertex u of 〈s, t〉 satisfies π(s) < π(u) < π(t).

ii) If w 6∈ 〈s, t〉 then either π(w) < π(s) or π(t) < π(w).

The following two functions are introduced also in Brankovic et al. (2016):OutParent (DAG) and
OutChild (DAG)

OutParent(v) :=
{
−1 if no (u, v) ∈ E(G) exists,
min({π(u) | (u, v) ∈ E(G)}) otherwise.

OutChild(v) :=
{
∞ if no (v, u) ∈ E(G) exists,
max({π(u) | (v, u) ∈ E(G)}) otherwise.

(3.1)

The definition is slightly modified here to assign values also to the sink and source
vertices of the DAG G. The functions return the predecessor and successor of

Chapter 3. Superbubbles 67

v that is furthest away from v in terms of the DFS-topological sorting π. It is
convenient to extend this definition to intervals by setting

OutParent([i :j]) := min({OutParent(v) | v ∈ π[i :j]})
OutChild([i :j]) := max({OutChild(v) | v ∈ π[i :j]})

(3.2)

A main result of this section is that superbubbles are characterized completely by
these two functions, resulting in an alternative linear-time algorithm for recognizing
superbubbles in DAGs that also admits a simple proof of correctness. To this end few
simple properties of the OutParent(.) and OutChild(.) functions for intervals
are needed. The first observation is that [k : l] ⊆ [i :j] implies the inequalities

OutParent([k : l]) ≥ OutParent([i :j])
OutChild([k : l]) ≤ OutChild([i :j])

(3.3)

A key observation is the following

Lemma 15. If OutChild([i :j − 1]) ≤ j <∞ then

i) π−1(j) is the only successor of π−1(j − 1);

ii) π−1(j) is reachable from every vertex v ∈ π[i :j − 1];

iii) every path from some v ∈ π[i :j − 1] to a vertex w /∈ π[i :j − 1] contains
π−1(j).

Proof. (i) By definition π−1(j − 1) has at least one successor (otherwise
OutChild([i :j − 1]) = ∞). On the other hand, all successors of vertices in
π[i :j − 1] are by definition not later than j. Hence π−1(j) is the only possibility.

(ii) It is proven by induction w.r.t. the length of the interval [i :j − 1]. If
i = j − 1, i.e., a single vertex, the assertion (ii) is obviously true. Now assume
that the assertion is true for [i+ 1:j − 1]. By definition of OutChild(.), i has a
successor in π[i+ 1:j], from which π−1(j) is reachable.

(iii) Again, it is proven by induction. The assertion holds trivially for single
vertices. Assume that the assertion is true for [i + 1:j − 1]. By definition of
OutChild(.), every successor u of π−1(i) is contained in π[i+ 1:j]. By induction
hypothesis, every path from u to a vertex w /∈ π[i+ 1:j] contains π−1(j), and also
all paths from π−1(i) to w /∈ π[i :j] run through π−1(j).

It is important to notice that Lemma 15 depends crucially on the fact that π,
by construction, is a DFS-topological sorting. It does not generalize to arbitrary
topological sortings.

Replacing successor by predecessor in the proof of Lemma 15 it is obtained:

Lemma 16. If OutParent([i+ 1:j]) ≥ i > −1 then

i) π−1(i) is the only predecessor of π−1(i+ 1);

ii) every vertex v ∈ π[i+ 1:j] is reachable from π−1(i);

68 Chapter 3. Superbubbles

iii) every path from w /∈ π[i+ 1:j] to a vertex v ∈ π[i+ 1:j] contains π−1(i).

The functions OutParent(.) and OutChild(.) have also interesting properties
if they are considered for an individual vertex of a superbubbloid.

Lemma 17. Let 〈s, t〉 be a superbubbloid in a DAG G, v is an interior vertex of
〈s, t〉, and w a vertex not in 〈s, t〉. Then

i) π(s) ≤ OutParent(v) and OutChild(v) ≤ π(t).

ii) π(s) ≤ OutParent(t) and OutChild(s) ≤ π(t).

iii) OutParent(w) < π(s) or OutParent(w) ≥ π(t), and OutChild(w)) ≤
π(s) or OutChild(w) > π(t).

Proof. (i) The matching property (S2) implies that for every successor x and
predecessor y of an interior vertex v there is a path within the superbubble from s
to x and from y to t, respectively. The statement now follows directly from the
definition.
(ii) The argument of (i) applies to the successors of s and the predecessors of t.
(iii) Assume, for contradiction, that π(s) ≤ OutParent(w) < π(t) or π(s) <
OutChild(w) ≤ π(t). Then Proposition 2 implies that w has a predecessor v′
or successor v′′ in the interior of the superbubble. But then v′ has a successor
(namely w) outside the superbubble, or v′′ has a predecessor (namely w) inside the
superbubble. This contradicts the matching condition (S2).

Theorem 2.superbubbloid (DAG) Let G be a DAG and let π be a DFS-topological sorting on G. Then
〈s, t〉 is a superbubbloid if and only if the following conditions are satisfied:

(D1) OutParent([π(s) + 1:π(t)]) = π(s) (predecessor property)

(D2) OutChild([π(s) :π(t)− 1]) = π(t) (successor property)

Proof. Suppose OutParent([π(s) + 1:π(t)]) and OutChild([π(s) :π(t) − 1])
satisfy (D1) and (D2). By (D1) and Lemma 15(ii) t is reachable from every vertex
in v with π(s) ≤ π(v) < π(t). Thus the reachability condition (S1) is satisfied.
Lemma 15(iii) implies that any vertex w with π(w) < π(s) or π(w) > π(t) is
reachable from v only through a path that runs through t. The topological sorting
then implies that w with π(w) < π(s) is not reachable from s at all since w is not
reachable from t. Hence [s, t] = π[π(s) :π(t)]. By (D2) and Lemma 16(ii) every
vertex v with π(s) < π(v) ≤ π(t), i.e., is reachable from s. Lemma 16(ii) implies
that v is reachable from a vertex w with π(w) < π(s) or π(w) > π(t) only through
paths that contain s. The latter are not reachable at all since s is not reachable
from w with π(w) > π(t) in a DAG. Thus [t, s] = π[π(s) :π(t)] = [s, t] , i.e.,
the matching condition (S2) is satisfied.

Now suppose (S1) and (S2) hold. Lemma 17 implies that OutParent([π(s) +
1:π(t)]) ≥ π(s). Since some vertex v′ ∈ V (〈s, t〉) must have s as its predecessor
is OutParent([π(s) + 1:π(t)]) = π(s), i.e., (D1) holds. Analogously, Lemma 17
implies OutChild([π(s) :π(t)−1]) ≤ π(t). Since there must be some v′ ∈ V (〈s, t〉)
that has t as its successor, is OutChild([π(s) :π(t)−1]) = π(t), i.e. (D2) holds.

Chapter 3. Superbubbles 69

Figure 27: Superbubble representation with a DFS-topological sorting. On the top,
two DAGs are shown (Compare Figure 26 (Page 63)). Below the DAGs is the DFS-
topological sorting. First line of the table is the position (π(v)) of the column in the
DFS-topological sorting. Second line is the vertex (v) on this position. Third line is the
OutParent(v) value. Last line is the OutChild(v) value. Intervals that together fulfill
(D1) and (D2), thus create a superbubble are marked in the same color (not black). The
same colors are used to mark the superbubbles in the graph. Note that because (D1)
uses π(s) + 1 and (D2) uses π(t) − 1 the intervals are shifted by one. Note that the
superbubble 〈1, 5〉 is the only weak superbubble that contains no artificial vertex (a and
b).

An example that shows such intervals along the corresponding DAG can be
found in Figure 27.

In the following it is proven that the possible superbubbloids and superbubbles
can be found efficiently, i.e., in linear time using only a DFS-topological sorting and
the corresponding functions OutChild(.) and OutParent(.). As an immediate
consequence of (D2) and Lemma 15, the following necessary condition for exits
exists:

Corollary 11. The exit t of superbubbloid 〈s, t〉 satisfies OutChild(π−1(π(t)−
1)) = π(t).

The minimality condition of Definition 19 (Page 49) is used to identify the
superbubbles among the superbubbloids.

Lemma 18. If t is the exit of a superbubbloid, then there is also the exit of
a superbubble 〈s, t〉 whose entrance s is the vertex with the largest value of
π(s) < π(t) such that (D1) and (D2) are satisfied.

Proof. Let 〈s, t〉 be a superbubbloid. According to Definition 19 (Page 49), 〈s, t〉
is a superbubble if there is no superbubbloid 〈s′, t〉 with π(s) < π(s′) < π(t), i.e.,
there is no vertex s′ with π(s′) > π(s) such that (D1) and (D2) are satisfied.

Lemma 19. Suppose π(s) ≤ π(v) < π(t) and OutChild(v) > π(t). Then there
is no superbubbloid with entrance s and exit t.

70 Chapter 3. Superbubbles

Proof. Suppose 〈s, t〉 is a superbubbloid. By construction, OutChild([π(s) :π(t)−
1]) ≥ OutChild(v) > π(t), contradicting (D2).

Corollary 12. If 〈s, t〉 is a superbubble, then there is no superbubbloid 〈s′, t′〉 with
exit t′ ∈ π[π(s) + 1:π(t)− 1] and entrance s′ with π(s′) < π(s).

Proof. This is an immediate consequence of Lemma 7 (Page 59), which shows that
the intersection 〈s, t〉 ∩ 〈s′, t′〉 would be a superbubbloid, contradicting minimality
of 〈s, t〉.

Corollary 13. If 〈s, t〉 and 〈s′, t′〉 are two superbubbles with π(t′) < π(t) then
either π(s′) < π(t′) ≤ π(s) < π(t), or π(s) < π(s′) < π(t′) < π(t).

Thus superbubbles are either nested or placed next to each other, as already
noted in Onodera, Sadakane, and Shibuya (2013). Finally, it is considered how to
identify false exit candidates, i.e., vertices that satisfy the condition of Corollary 11
but have no matching entrance s.

Lemma 20. Let 〈s, t〉 be a superbubble and suppose t′ is an interior vertex of 〈s, t〉.
Then there is a vertex v with π(s) ≤ π(v) < π(t′) such that OutChild(v) > π(t′).

Proof. Suppose, for contradiction, that no such vertex v exists. Since 〈s, t〉
is superbubble by assumption, it follows that OutParent([π(s) + 1:π(t′)]) =
π(s) is correct and so (D1) satisfied for 〈s, t′〉. After no such v exists also
OutChild([π(s) :π(t′) − 1]) ≤ π(t′) is correct and so (D2) is satisfied. Thus
〈s, t′〉 is superbubbloid. By Lemma 6 (Page 58) 〈t′, t〉 is also a superbubbloid,
contradicting the assumption.

Taken together, these observations suggest to organize the search by scanning
the vertex set for candidate exit vertices t in reverse order. For every such t, one
would then search for the corresponding entrance s such that the pair s, t fulfills (D1)
and (D2) from Theorem 2. Using Equation 3.3 one can test (D2) independently
for each v by checking whether OutChild(v) ≤ π(t). Checking for (D1) requires
that the interval [π(s) + 1:π(t)] is considered. The value of its OutParent(.)
function can be obtained incrementally as the minimum of OutParent(v) and
the OutParent(.) interval of the previous step:

OutParent([π(v) :π(t)]) = (3.4)
min(OutParent(v),OutParent([π(v) + 1:π(t)]))

By Lemma 18, the nearest entrance s to the exit t completes the superbubble. The
tricky part is to identify all superbubbles in a single scan. Lemma 19 ensures that
no valid entrance can be found for exit t′ if a vertex v with OutChild(v) > π(t′)
is encountered. In this case t′ can be discarded. Lemma 20 ensures that a false exit
candidate t′ within a superbubble 〈s, t〉 candidate cannot “mask” the entrance s
belonging to t, i.e., there is necessarily a vertex v satisfying OutChild(v) > π(t′)
with π(s) < π(v).

Chapter 3. Superbubbles 71

Algorithm 2: Detecting superbubbles in a DAG DAGsuperbubble
(Algorithm)

The DAGsuperbubble algorithm. It
utilizes the helper functions OutChild(.) and OutParent(v) as defined in Equation 3.1
(Page 66). The values of different OutParent(.) must be saved dependent on the exit
candidate. Thus the value is saved in the map outmap.

Require: DAG G with DFS-topological sorting π
empty stack S
empty map outmap
for k = n...1 do
v = π−1(k)
child← OutChild(v)
if child = k + 1 then
push π−1(k + 1) onto S

else
while child > π(TOP(S)) do
t← POP(S)
outmap[TOP(S)]← min (outmap[t], outmap[TOP(S)])

if outmap[TOP(S)] = k then
report 〈v,TOP(S)〉
POP(S)

outmap[v]← OutParent(v)
outmap[TOP(S)]← min (outmap[TOP(S)], outmap[v])

It is natural therefore to use a stack S to hold the exit candidates. Since
the OutParent(.) interval explicitly refers to an exit candidate t, it must be
re-initialized whenever a superbubble is completed or the candidate exit is rejected.
More precisely, the OutParent(.) interval of the previous exit candidate t must
be updated. This is achieved by computing

OutParent([π(v) :π(t)]) = (3.5)
min(OutParent([π(v) :π(t′)]),OutParent([π(t′) + 1:π(t)]))

To this end, the value OutParent([π(t′) + 1:π(t)]) is associated with t when t′ is
pushed onto the stack. The values of OutParent(.) intervals are not required for ar-
bitrary intervals. Instead, only intervals are needed of the form OutParent([π(t′)+
1:π(t)]) with consecutive exit candidates t′ and t. Hence a single integer associated
with each candidate t suffices. This integer is initialized with OutParent(t) and
is then advanced as described above to OutParent([π(v) :π(t)]).

Algorithm 2 presents this idea in a more formal way. An example of the process
of Algorithm 2 is shown in Figure 28.

Lemma 21. Algorithm 2 identifies the superbubbles in a DAG G.

Proof. Every reported candidate satisfies (D1) since OutParent([π(s)+1:π(t)]) =
π(s) is used to identify the entrance for the current t. Since v ∈ π[π(s) :π(t)−1] is
checked for every OutChild(v) ≤ π(t), (D2) holds due to Equation 3.3 (Page 67)

72 Chapter 3. Superbubbles

since by Lemma 15 (Page 67) this is equal to test the interval. Hence every
reported candidate is a superbubbloid. By Lemma 18 〈s, t〉 is minimal and thus a
superbubble. Lemma 20 ensures that the corresponding entrance is identified for
every valid exit t, i.e., that all false candidate exits are rejected before the next
valid entrance is encountered.

Lemma 22. Algorithm 2 has time complexity O(|V (G)|+ |E(G)|).

Proof. Given the DFS-topological sorting π, the for loop processes every vertex
exactly once. All computations except OutChild(v), OutParent(v), and the
while loop take constant time. This explicitly includes the calculation of the
minimum of two integer values that are needed to update the intervals. The values
of OutChild(v) and OutParent(v) are obtained by iterating over the outgoing
or incoming edges of v, respectively, hence the total effort is O(|V (G)|+ |E(G)|).
Every iteration of the while loop removes one vertex from the stack S. Since
each vertex is pushed on S at most once, the total effort for the while loop is
O(|V (G)|). The total running time therefore is O(|V (G)|+ |E(G)|).

Recalling the DFS-topological sorting π can also be obtained in O(|V (G)|+
|E(G)|) it directly follows:

Corollary 14 (Brankovic et al. (2016)). The superbubbles in a DAG can be identified
in linear time.

3.7 Superbubbles and DFS

The combination of Algorithm 1 (Page 65) and Algorithm 2 creates a new linear
time approach for detecting superbubbles. This approach is published in Gärtner,
Müller, and Stadler (2018). However, the creation of ĜS depends on a search tree
and the detection of the superbubbles in a DAG depends on a depth-first search
(DFS)-topological sorting. Such sorting is a reversed post order of a DFS-forest,
which is a search forest. Thus, the question arises if the creation of ĜS is necessary
or if one single DFS-forest that combines both ideas is enough. In this section, it is
shown that one DFS-forest is enough.

The following observation, which slightly generalizes the previous analysis in
Section 3.5 and Section 3.6, forms the basis of the direct superbubble detection in
arbitrary digraphs. The key ingredient are DFS-trees.

Lemma 23. Let G be a digraph and [s, t] the vertex set of a weak superbubbloid
〈s, t〉 in G, and suppose r is not an interior vertex or the exit of 〈s, t〉. Then, either
[r] ∩ [s, t] = ∅ or [s, t] ⊆ [r] .

Proof. (i) Every digraph can be decomposed into strongly connected components
(SCCs) and acyclic components. If x ∈ [r] , then every vertex reachable from x is
also contained in [r] . Thus, in particular, every SCC of G is either contained in
[r] or disjoint from [r] . Theorem 1 (Page 60) ensures that every superbubbloid
is either contained in a SCC S or the acyclic component AG of G. Now, suppose

Chapter 3. Superbubbles 73

Figure 28: An example of Algorithm 2 applied to a DAG with six vertices. Every line
shows one step of the for loop. On the left the DAG is shown where the current vertex
(v) is marked red. The position of a vertex in the DFS-topological sorting corresponds to
its label. In each step, values for OutChild(v) and OutParent(v) are calculated.
In the first step only the value of 6 is set. In the second step 6 is pushed on the stack,
and the value of 5 is set. In the third step 5 is pushed on the stack, the value of 4 is set,
and the value of 5 is updated. The fourth step discards 5 from the stack and updates
thus the value of 6. Also, the value of 3 is set. In the fifth step 3 is pushed on the stack.
Then the superbubble 〈2, 3〉 is reported and thus 3 promptly removed again. Furthermore,
the value of 2 is set. In the last step, the superbubble 〈1, 6〉 is reported.

74 Chapter 3. Superbubbles

[r] ∩ [s, t] 6= ∅, and let x ∈ [s, t] be the first vertex of the DFS in 〈s, t〉.
By definition (of weak superbubbloids) x = s, since no other vertex in [s, t]
is reachable from outside [s, t] , and the DFS assumption does not start at an
interior vertex or the exit of 〈s, t〉. The reachability axiom (S.ii) ensures that every
u ∈ [s, t] is reached by the DFS whenever s ∈ [r] , i.e., [s, t] ⊆ [r] .

Lemma 23 can be seen as a variant of Theorem 1 (Page 60).

Corollary 15. Let G be a digraph and [s, t] the vertex set of a weak superbubbloid
〈s, t〉 in G. Let r1, . . . , rk ∈ V (G) be such that none of the ri are an interior or an
exit vertex of 〈s, t〉. Set Wj := [rj] \

⋃j−1
i=1 [ri] . Then, either [s, t] ∩Wj = ∅

or [s, t] ⊆Wj .

Proof. By Lemma 23, [s, t] is either contained in the intersection of two or more
reachable sets [rj] or is disjoint from it. As an immediate consequence, it is also
either contained in the difference of two reachable sets or disjoint from it.

Corollary 16. Let G be a digraph and [s, t] the vertex set of a weak superbubbloid
〈s, t〉 in G. Let F be a search forest with the root set {r1, . . . , rk} that is created
form the trees Ti. If none of the ri are an interior or an exit vertex of 〈s, t〉 then
[s, t] ⊆ V (Ti) for one Ti.

Proof. This follows directly from Corollary 15 and the definition of a search forest
(see Subsection 2.2.5).

Lemma 24. LetG be a digraph; let [s, t] be the vertex set of a weak superbubbloid
〈s, t〉 in G; let T be a DFS-tree on G with root r /∈ [s, t] \ {s}; and let π be the
postorder w.r.t. T . Then:

(i) The induced subgraph G[[s, t]] contains no back edges w.r.t. T , except
possibly (t, s).

(ii) If [s, t] ⊆ V (T), then {π(u) | u ∈ [s, t] } = [π(t) :π(s)] is an interval
w.r.t. to π.

Proof. (i) The statement is trivial if 〈s, t〉 is not contained in T . If 〈s, t〉 resides
in the acyclic component AG of G, there are no back edges because AG cannot
contain back edges by acyclicity. If 〈s, t〉 is contained in a SCC S, the proof of
Lemma 11 (Page 61) also implies assertion (i) because the DFS-tree T , in particular,
contains a search tree of S as a subtree and back edges in G can only be located
within a SCC.

(ii) Since the DFS generating T enters 〈s, t〉 through s and leaves it through
t, the preorder ρ of T satisfies ρ(s) < ρ(t). Since t is reachable from every
u ∈ [s, t] , any DFS reaches t before completing any u ∈ [s, t] ; hence, t precedes
any other u ∈ [s, t] in postorder, i.e., π(u) > π(t). Since u ∈ [s, t] is not
reachable without passing through s, every other vertex in u ∈ [s, t] precedes
s in postorder, i.e., π(s) > π(u). Now, suppose there is some w /∈ [s, t] with
π(s) > π(w) > π(t). Then, w must be reachable from s along a directed path that

Chapter 3. Superbubbles 75

does not pass through t, a contradiction to the definition of weak superbubbloids.
Hence, the vertices of a superbubbloid form an interval in postorder of the DFS-tree
T .

Statement (ii) rephrases Proposition 2 (Page 66), although it is not assumed
that G is a DAG. Conceptually, Lemma 24 suggests that it might not be necessary
to first identify the SCCs of G or the construct acyclic auxiliary digraphs in order
to find all weak superbubbles. Corollary 16 then ensures that a single DFS-forest is
sufficient.

Next it is shown how to retrieve all weak superbubbles of a digraph G that
are located within the induced subgraph G[[r]] of G. To this end, a slightly
modified version of the algorithm DAGsuperbubble (Algorithm 2 (Page 71)) is
used. It is originally designed to operate on acyclic auxiliary graphs with a single
source. Thus, it could be assumed that a DFS-tree rooted on this source reached
all vertices. Here, it is intended to apply it to the unmodified input graph, which
is neither acyclic, nor guaranteed to have a single source. It, therefore, needs to
be modified to deal appropriately with back edges within the DFS-tree and the
existence of vertices outside the DFS-tree. To this end, vertices in [r] that cannot
be contained in a superbubble have to be identified. By Lemma 24, there are two
possible obstructions for a vertex u: (i) u has an edge that is a back edge w.r.t.
the DFS-tree; (ii) u is incident to an edge (x, u) or (u, x) where x /∈ [r] .

The basic idea of DAGsuperbubble is to identify minimal intervals in reverse
postorder π of the DFS-tree T that satisfy conditions equivalent to membership
in a superbubbloid. These conditions are expressed in terms of a pair of helper
functions with the help of reverse postorder π. As in Section 3.6, OutParent(v)
denotes the first vertex (w.r.t. reverse postorder) in T from which v can be reached.
Similarly, OutChild(v) is the last child vertex reachable from v. OutParent (DFS) and

OutChild (DFS)

OutParent(v) :=


−1 if no (u, v) ∈ E(G) exists
−1 if (u, v) ∈ E(G) ∧ u 6∈ [r]
−1 if a back edge (u, v) exists
min({π(u)|(u, v) ∈ E(G)}) otherwise

OutChild(v) :=


∞ if no (v, u) ∈ E(G) exists
∞ if (v, u) ∈ E(G) ∧ u 6∈ [r]
∞ if a back edge (v, u) exists
max({π(u)|(v, u) ∈ E(G)}) otherwise

(3.6)

Compared to the original functions on DAGs in Equation 3.1 (Page 66) more corner
cases exist. The functions can be extended to intervals as shown in Equation 3.2
(Page 67).

Theorem 2 (Page 68) derives a characterization of weak superbubbloids in terms
of OutParent([π(s) + 1:π(t)]) and OutChild([π(s) :π(t)− 1]) for the case of
acyclic digraphs. Here, this condition is generalized to general graphs using the

76 Chapter 3. Superbubbles

modified definition of OutParent(v) and OutChild(v). The difference is that
back edges and edges connecting to the outside of the DFS-tree are considered.
In either case, the corresponding vertices are marked by −1 or ∞, respectively, to
indicate that they cannot be part of superbubbloids.

Theorem 3.superbubbloid (DFS) Let G be a digraph; let T be a DFS-tree on G with root r that is
not an interior vertex or exit of a weak superbubbloid; and denote by π the reverse
postorder on T . Then, 〈s, t〉 is a weak superbubbloid in G whose vertex set [s, t]
satisfies [s, t] ∩ [r] 6= ∅ if and only if the following conditions are satisfied:

(F1) OutParent([π(s) + 1:π(t)]) = π(s) (predecessor property)

(F2) OutChild([π(s) :π(t)− 1]) = π(t) (successor property)

Proof. It is shown in Theorem 2 (Page 68) that the statement is true for DAGs.
First note that by Lemma 23 (Page 72), every weak superbubbloid intersecting
[r] is contained in [r] , i.e., in V (T). For the purpose of the proof, consider
the auxiliary graph Ĝ[V (T)] with edge set E(Ĝ[V (T)]) = E(G[V (T)]) \ {e |
e is a back edge w.r.t. T}. By construction, Ĝ[V (T)] is acyclic, and every vertex
is in T . Thus, every superbubbloid 〈s, t〉 (with vertex set [s, t]) in Ĝ[V (T)]
is characterized by conditions (D1) and (D2) from Theorem 2 (Page 68). It is,
furthermore, a weak superbubbloid in G if and only if the following conditions hold:

(i) For every u ∈ [s, t] \ {s}, there is no edge (x, u) ∈ E(G) such that
x /∈ [s, t] ;

(ii) For every v ∈ [s, t] \ {t}, there is no edge (c, x) ∈ E(G) such that
x /∈ [s, t] ; and

(iii) G[[s, t]] is without the possible edge (t, s) acyclic.

Only edges not contained in Ĝ[V (T)] need to be considered for conditions (i)
and (ii), because no such edges exist within Ĝ[V (T)] due to the assumption that
[s, t] is a weak superbubbloid in Ĝ[V (T)]. For (iii), only the back edges are of
interest. By definition, a back edge creates a cycle in Ĝ[V (T)]. A back edge (v′, u′)
with u′ ∈ [s, t] would violate (iii) if v′ ∈ [s, t] or (i) if v′ /∈ [s, t] . Analogously,
if v′ ∈ [s, t] and u′ /∈ [s, t] , then (ii) is violated. Thus, a weak superbubbloid
cannot contain the head or tail of a back edge. Only for condition (i), it is needed
to consider the case that x /∈ V (T).

(F1) can be satisfied only if OutParent(u) > −1 for every u ∈ [s, t] \ {s}.
Analogously, (F2) can only be true if OutChild(u) <∞ for all u ∈ [s, t] \ {t}.
Hence, it suffices to rule out false positive weak superbubbloids in G by ensuring
that every vertex u that violates one of the three conditions also violates (F1) or
(F2). This is achieved by setting OutParent(u) = −1 for a vertex u if there
is an edge (x, u) such that x /∈ V (T) or (x, u) is a back edge; analogously, is
OutChild(v) =∞ for all v with an incident edge (v, x) such that x /∈ V (T) or
(v, x) is a back edge. Equation 3.6 implements exactly these conditions. Thus, only
weak superbubbloids fulfill (F1) and (F2).

Chapter 3. Superbubbles 77

Conversely, it suffices to note that by Lemma 24(ii), every weak superbubbloid
forms a contiguous interval w.r.t. the postorder π of T and, thus, also w.r.t. the
reverse postorder π of T .

Let Superbubble Superbubble (Algorithm)be the algorithm DAGsuperbubble with the modified func-
tions OutParent(.) and OutChild(.) as described above. By construction,
Superbubble identifies minimal intervals of π that satisfy (F1) and (F2); see
Figure 29 for an illustration. Since the modification of OutParent(.) and
OutChild(.) only amounts to setting additional entries to −1 or ∞, respec-
tively, the performance remains unaffected. According to Theorem 3, the minimal
intervals satisfying (F1) and (F2) are exactly the minimal weak superbubbloids and,
thus, by definition, the weak superbubbles.

Corollary 17. Let G be a digraph, and let T be a DFS-tree on G with a root r
that is not an interior vertex or exit of a weak superbubble. Then, Superbubble
correctly identifies exactly the weak superbubbles 〈s, t〉 in G whose vertex set
satisfies [s, t] ∩ [r] 6= ∅.

It is straightforward to extend this result to a DFS-forest that covers V (G)
entirely.

Corollary 18. Let G be a digraph, and let F be a DFS-forest on G comprising
DFS-trees Ti with roots ri, 1 ≤ i ≤ k, none of which is an interior vertex or exit of
a weak superbubble. Let π be the reverse postorder on F . Then, Superbubble
correctly identifies exactly the weak superbubbles 〈s, t〉 in G. Furthermore, given
the roots ri, Superbubble has a running time of O(|E(G)|+ |V (G)|).

Proof. Correctness follows immediately from Corollary 17, the construction of the
forest, and Corollary 16. During the DFS, each out-edge is considered exactly
once, and each vertex is traversed twice. The number k of required roots is
limited by |V (G)|. For each vertex v, checking whether OutParent(v) = −1 or
OutChild(v) =∞ requires checking all neighbors only; hence, the total effort is
no more than O(|E(G)|+|V (G)|). The linear time complexity of DAGsuperbubble,
finally, is proven in Lemma 22 (Page 72).

It is important to note the correctness of Superbubble, Corollary 17, crucially
depends on the correct choice of the roots ri of the DFS-forest. The remaining
problem thus is to find a suitable sequence of roots r1, . . . , rk.

Definition 25. legitimate rootA vertex r ∈ V (G) is a legitimate root if for every weak superbubble
〈s, t〉 in G with vertex set [s, t] , either is [s, t] ⊆ [r] and t ≺ s (in the ancestor
order of a search tree with root r), or [s, t] ∩ [r] = ∅.

The discussion can be summarized in the following form:

Corollary 19. The algorithm Superbubble detects all weak superbubbles in G if
and only if there is a set {r1, . . . , rk} of legitimate roots such that the DFS-forest
F with the roots {r1, . . . , rk} covers V (G).

78 Chapter 3. Superbubbles

Figure 29: Illustration of the algorithm Superbubble on a digraph G with cycles. The
top panel shows the input digraph. The DFS-tree T is rooted at 11 and covers [r] =
V (G). The table below gives the values of OutParent(v) and OutChild(v) as a
function of the reverse postorder π of T . The colored intervals corresponds to the intervals
that fulfill (F1) and (F2). The weak superbubble 〈2, 5〉 is the only weak superbubble.
Compare Figure 27 (Page 69).

Corollary 20. A vertex r ∈ V (G) is a legitimate root if and only if r is neither an
interior nor an exit of a weak superbubble.

Proof. By Corollary 18, a root is legitimate if it is not the exit or an interior vertex
of a weak superbubble. Conversely, if r is an interior vertex or the exit of 〈s, t〉,
then a DFS-tree rooted in r reaches the entrance s either not at all or there is no
search tree with root r such that t ≺ s, since by definition of a weak superbubble,
the exit t is found before s along every path from r to s.

Lemma 25. Let G be a digraph and v ∈ V (G) a source, i.e., a vertex with
in-degree zero. Then, v is a legitimate root.

Proof. Since v is not reachable from any other vertex, it is only reachable by DFS
if the traversal starts in v. By the same argument, v is neither an interior vertex,
nor the exit of a weak superbubble and, thus, is a legitimate root.

Unfortunately, there is no guarantee that a digraph G has source vertices, and
even if they exist, not every vertex of G is necessarily reachable from them.

3.8 Superbubbles and Cycles

Every vertex in a digraph G that is not reachable from a source in G must be
reachable from a cycle in G. Thus identifying legitimate roots in arbitrary cycles
leads directly to a root set for the DFS-forest. Thus, a matching between cycle
properties and superbubbles can be created.

This matching use one key observation that is independent of cycles. It connects
the 2-reach relation in Equation 2.20 (Page 27) with superbubbles:

Chapter 3. Superbubbles 79

Corollary 21. Let G be a digraph, 〈s, t〉 a weak superbubble in G, and let v ∈
V (〈s, t〉) \ {t}. If v u then u ∈ V (〈s, t〉).

Proof. Recall that v u if at least two vertex-independent paths v → u exists.
Assume for contradiction u /∈ V (〈s, t〉). After the paths are vertex-independent, t
could only be on one of the paths which contradicts that 〈s, t〉 is a weak superbubble.

3.8.1 C
 -Covers and C

 -Cuts
As “consequence” of Corollary 21, it is useful to know whether two vertices on a
cycle C are reachable also via a directed path that is disjoint from C. This idea
can be formalized as a binary relation on C.

Definition 26. C-reachableLet G be a digraph and C a cycle in G and v, u ∈ V (G). Then, u
is C-reachable from v, in symbols v C

 u, if there is a path p = {v = v0, . . . vh = u}
such that h ≥ 1 and vi /∈ C for 0 < i < h.

Note that this definition is a special case of the constrained reach definition
in Equation 2.22 (Page 28). C-reachability is defined not only for vertices in the
“reference cycle” C. It satisfies a restricted transitivity property: If w ∈ V (G) \ C,
v C
 w, and w C

 u, then v C
 u. Another interesting observation is that v C

 v
implies that there is a directed cycle C ′ such that C ∩ C ′ = {s}. As an immediate
consequence of Definition 26, it follows:

Lemma 26. Let G be a digraph, C a cycle in G, c1, c2 ∈ C such that c1
C
 c2,

and dC(c1, c2) > 1. Then, c1 c2, i.e., c1 and c2 are connected by (at least) two
edge-disjoint directed paths. In particular, {(v1, vi+1) | 0 ≤ i < h} ∩ E(C) = ∅.

Definition 27. C
 -coveredLet C be a cycle in the digraph G and v, u ∈ C. Then, C(v :u) is

C
 -covered if v C

 u.

The open interval C(v :u) based on the cyclic set C is termed C-interval in
the following. C-intervalAs an immediate consequence of the definition, v C

 v implies that
C \ {v} is covered, while nothing is covered if (v, u) ∈ E(C).

Definition 28. Let C be a cycle in the digraph G, and C(v :u) and C(x :y) two
C-intervals on C. Then:

(i) C(v :u) is included in C(x :y) if C(v :u) (C(x :y),

(ii) C(v :u) and C(x :y) are disjoint if C(v :u) ∩ C(x :y) = ∅, and

(iii) C(x :y) extends C(v :u) if dC(x, u) < dC(v, u) and dC(x, u) < dC(x, y).

In particular, if C(x :y) extends C(v :u), then x ∈ C(v :u), since the interval
boundaries themselves are not considered part of the C-intervals. For each pair
of distinct C-intervals, thus exactly one of the following four statements is true:
(a) the C-intervals are disjoint; (b) one C-interval is contained in (i.e., a proper

80 Chapter 3. Superbubbles

Figure 30: Relationships of distinct C-intervals. The four possibilities for the relative
location of two distinct C-intervals (red arrows) are shown on a cycle C with five vertices
(1, 2, 3, 4, 5). From left to right: the C-intervals C(1 :3) and C(3 :5) are disjoint; C(1 :5)
includes C(2 :4); C(2 :4) extends C(1 :3), but not vice versa; C(1 :5) and C(4 :2) extend
each other. Together, the two C-intervals cover C.

subset of) the other one; (c) one C-interval, say C(x :y), extends the other one,
but not vice versa, i.e., x ∈ C(v :u) and y /∈ C(v :u); (d) both C-intervals extend
each other, i.e., x, y ∈ C(v :u). Note that in case (c), the interval boundaries
are arranged in the order v − x − u − y − v along the cycle, while in case (d),
the arrangement is v − y − x− u− v along C. Figure 30 illustrates the four cases.

In the following, two notations are used:

Q(C) := {C(u :v) | u C
 v, u, v ∈ C}

Q(C) :=
⋃

B∈Q(C)

B = {w | ∃B ∈ Q(C) : w ∈ B} (3.7)

for the set of all C -covered intervals and the set of all C -covered vertices of C,
respectively. Note that ∅ ∈ Q(C) since v C

 u holds for (v, u) ∈ E(C). By the
same argument, there is at least one interval C(v :u) ∈ Q(C) for each u ∈ C,
albeit some or even all of these may be empty.

Definition 29.C
 -cover A subset B ⊆ Q(C) is a C

 -cover of C if
⋃
B∈BB = Q(C), and

B is a total C
 -cover of C if

⋃
B∈BB = C. C is totally C

 -covered if C has a
total C -cover.total C

 -cover

Note that C is totally C
 -covered if and only if Q(C) = C. An example of a

total cover is shown in Figure 31.

Definition 30.C
 -cut vertex A vertex in v ∈ K(C) := C \Q(C) is a C

 -cut vertex.

An example of a C
 -cut vertex is shown in Figure 32. Obviously, C is either

totally C
 -covered or it has a non-empty set K(C) of C

 -cut vertices.

Definition 31.clean C
 -cover Let C be a cycle in the digraph G. A C

 -cover B of C is clean if
B ∈ B and B′ (B implies B′ /∈ B.

Chapter 3. Superbubbles 81

Figure 31: An example of a total C
 -cover.

On the left is a graph with a cycle (green
vertices). On the right, C

 -covered intervals
are shown with colored edges. The vertices in
the intervals have the same color. After every
vertex is covered the cover is a total cover.

Figure 32: An example of a total C
 -cut

vertex. On the left a graph with a cycle (green
vertices) is shown. On the right, C

 -covered
intervals are shown with colored edges. The
vertices in the intervals have the same color.
As the vertex 5 is not covered, it is a C

 -cut
vertex.

In other words, in a clean C
 -cover, no C

 -covered interval is contained within
another one.

Corollary 22. Let C be a cycle in the digraph G, and let B be a clean C
 -cover.

Then, either B = {∅} or, for every C(v :u) ∈ B, dC(v, u) > 1.

Proof. Recall that C(v :u) = ∅ if and only if dC(v, u) = 1. Thus, Q(C) = {∅}
if and only if there is no C(v :u) ∈ B with dC(v, u) > 1. Since the empty
set is a subset of every other set, dC(v, u) > 1 for every C(v :u) ∈ B unless
B = Q(C) = {∅}.

Lemma 27. Let C be a cycle in the digraph G. Then, Q(C) contains a clean
C
 -cover B.

Proof. Let B ⊆ Q(C) be a set of C
 -covered intervals that together C

 -cover
Q(C). Suppose B is not clean. Then, there are two intervals C(p :q) ∈ B and
C(v :u) ∈ B such that C(p :q) (C(v :u). Then, B′ = B\{C(p :q)} still C -cover
Q(C). The removal of such redundant intervals can be repeated until no further
removable interval can be found. By Definition 31, the remaining C

 -cover is
clean.

Definition 32. Let C be a cycle in a digraph G. Then:

L(C) = {C(v :u) ∈ Q(C) | ∀C(v :u′) ∈ Q(C) : dC(v, u′) ≤ dC(v, u)}

By definition, L(C) consists of all C -covered intervals for which there is no larger
C
 -covered interval with the same starting point. Since every C(p :q) ∈ Q(C)\L(C)
is contained in a interval with the same starting point, L(C) is a C

 -cover of C.
Thus, Lemma 27 implies:

82 Chapter 3. Superbubbles

Corollary 23. Let C be a cycle in a digraph G. Then, there is clean cover
B ⊆ L(C).

Lemma 28. Let C be a cycle in the digraph G. A clean C
 -cover B of C is total

if and only if every B ∈ B is extended by at least one B′ ∈ B.

Proof. Suppose, for contradiction, that C(v :u) ∈ B is not extended by any
B ∈ B. Then, any interval B′ ∈ B C

 -covering u would have to contain C(v :u),
contradicting the assumption that B is clean. Thus, u is a C

 -cut vertex, and
hence, B is not total. If B, therefore it is non-empty, and every B ∈ B is extended
by some B′ ∈ B.

Conversely, suppose c is a C
 -cut vertex of C. If C(v :c) ∈ B for some v, then

the first part of the proof implies that C(v :c) is not extended by any B′ ∈ B. If
B contains no interval C(v :c), then consider the vertex u such that C(v :u) ∈ B

for which dC(u, c) is minimal. Since c is a C
 -cut vertex, there is no extension

of C(v :u), since any such extension B′ would either contradict the minimality of
dC(u, c) or C

 -cover c, thereby contradicting the assumption that c is a C
 -cut

vertex. Thus, u is again a C
 -cut vertex. As shown in the first part of the proof,

C(v :u); therefore, it is not extended by any B ∈ B. To concluded: unless B is a
total C(v :u)-cover, there is an interval B ∈ B without an extension.

Another interesting type of C
 -cover is the minimal cover. Even if they are not

useful for the superbubble detection, an analysis is given in the following.

Definition 33.minimal C
 -cover Let C be a cycle in C. A C

 -cover B is minimal if

(i) B is clean,

(ii) every C
 -covered interval B ∈ B is extended by at most one B′ ∈ B.

Lemma 29. Let C be a cycle in G. Then Q(C) contains a minimal C -cover B.

Proof. That a clean cover B ⊆ Q(C) exists is shown in Lemma 27. Suppose
C(v :u) is extended by both C(p :q) ∈ B and C(p′ :q′) ∈ B, i.e., p, p′ ∈ C(v :u)
and w.l.o.g., assume dC(v, q) ≤ dC(v, q′). Thus C(v :u) and C(p :q) together
C
 -cover a subset of the vertices C

 -covered by the union of C(v :u) and C(p′ :q′).
Therefore, C(p :q) can be omitted from B without affecting the set of C

 -covered
vertices.

Corollary 24. Let C be a cycle in G. A minimal C -cover B of C is total if and
only if every B ∈ B is extended by exactly one B′ ∈ B.

Proof. The correctness follows directly from Lemma 28 and Definition 33.

Examples of a clean and a minimal C -cover are shown in Figure 33.
The following lemma provides us with a convenient way to obtain a total

C
 -cover.

Chapter 3. Superbubbles 83

Figure 33: An example of a clean and a minimal
C
 -cover. A cycle with eight vertices is shown. The
colored edges create C

 -covered intervals. The blue C
 -

covered intervals together create a clean and minimal
C
 -cover. The blue C

 -covered intervals and the red C
 -

covered interval together are still a clean C
 -cover but not

minimal. Note that the red C
 -covered interval has the

maximal number of elements of all C
 -covered intervals.

Figure 34: An example of a single-vertex
C
 -cover. On the left a graph with a green
highlighted cycle is shown. On the right the
single-vertex C

 -cover is shown. It consists of
two C
 -covered intervals that are created by

the paths {3, 6, 1} (red) and {5, 6, 4} (blue).

Lemma 30. Let C be a cycle in digraph G, v 6∈ C, and c1, c2, c3, c4 ∈ C with
dC(c1, c3) ≤ dC(c1, c2) < dC(c1, c4). Then, c1

C
 v, c2

C
 v, v C

 c3, and v C
 c4

imply that B := {C(c1 :c4), C(c2 :c3)} is a total clean (minimal) C
 -cover of C.

Proof. By construction, C(c1 :c4) and C(c2 :c3) are C
 -covered intervals. By defi-

nition, c2 ∈ C(c1 :c4), and C(c2 :c3) extends C(c1 :c4). Since c3 ∈ C(c1 :c4), the
two intervals cover all of C. Furthermore, the cover B consists of only two intervals
that are not subsets of each other; thus, it is clean and minimal.

single-vertex C
 -coverThis type of total clean C

 -cover is referred to as a single-vertex C
 -cover of

C. An example is shown in Figure 34.

3.8.2 Legitimate Roots from C
 -Cover and C

 -Cuts
Recall that after Theorem 1 (Page 60) every superbubble is either contained in a
strongly connected component (SCC) or disjoint of any non-singelton SCC. The
following results on the interaction of cycles and superbubbles are a generalization of
this observation. The acyclicity condition (S.v) can be restated in the following way:

Lemma 31. Let 〈s, t〉 be a weak superbubbloid in the digraph G and u ∈ V (〈s, t〉).
Then, every cycle containing u also contains s and t.

Proof. If u 6= s, then all predecessors of u are contained in 〈s, t〉. Similarly, if
u 6= t, then all successors of u are contained in 〈s, t〉. Since every cycle through u
contains both in- and successors of u, it, in particular, contains an edge e in 〈s, t〉.
(S.v) now implies any cycle through e contains both s and t.

84 Chapter 3. Superbubbles

Lemma 32. Let C be a cycle in the digraph G, and let B be a total clean C
 -

cover of C. If C(v :u) ∈ B, then u is neither an interior, nor an exit of a weak
superbubble, i.e., u is a legitimate root.

Proof. Assume, for contradiction, that u is an interior or the exit of the superbubble
〈s, t〉. Since C is totally C

 -covered by assumption, Corollary 22 implies dC(v, u) >
1. Thus, by Lemma 26 (Page 79), v u. Therefore, Corollary 21 (Page 79) implies
〈s, t〉 contains C(v :u).

Since B is a total clean C
 -cover of C, there is an interval C(p :q) ∈ B that

extends C(v :u), i.e., p ∈ C(v :u), and hence, p is an inner vertex of 〈s, t〉. Therefore,
〈s, t〉 contains C(p :q), and it again has an extending C

 -interval. Repeating the
argument, it is concluded that every vertex of Q(C) is an inner vertex of 〈s, t〉.
Since the cover B is total, Q(C) = C, i.e., the cycle C consists entirely of interior
vertices of 〈s, t〉, i.e., C is a proper subset of 〈s, t〉. This contradicts the acyclicity
condition (S.v).

Corollary 25. Let C be a cycle in the digraph G. Suppose C is totally C
 -covered,

and let C(v :u) ∈ L(C) such that dC(v′, u′) ≤ dC(v, u) for all C(v′ :u′) ∈ L(C).
Then, u is a legitimate root.

Proof. The longest C
 -interval C(v :u) ∈ L(C) by construction cannot be contained

within another C
 -interval. Therefore, C(v :u) is contained in the clean cover

B ⊆ L(C) of Corollary 23. By Lemma 32, its endpoint u is a legitimate root.

Note that the C(v :u) interval from Corollary 25, i.e., the interval with the
maximal number of elements must not be contained in a minimal C -cover (compare
Figure 33).

Let us now turn to cycles with C
 -cut vertices:

Lemma 33. Let C be a cycle of the digraph G, and let c be a C
 -cut point of C,

i.e., c ∈ K(C). Then, c is not an interior vertex of any weak superbubble.

Proof. Assume, for contradiction, that c is an interior vertex of a weak superbubble
〈s, t〉. Then, there is a path p from s to t not passing through c. Otherwise, 〈s, c〉
is a superbubbloid, contradicting the assumption that 〈s, t〉 is a weak superbubble;
see Lemma 6 (Page 58). Along p, let u be the last vertex on C before c, and let
v be the first vertex on C after c. Thus, u C

 v. Therefore, c is C
 -covered in C,

a contradiction.

The example in Figure 35 shows that it is possible that every entrance of a
superbubble is at the same time the exit of another superbubble. Such graphs do
not have any legitimate root. Nevertheless, it is easily possible to obtain all the
superbubbles. To this end, fix a C

 -cut vertex c for some cycle C in G, and consider
the auxiliary digraph G# obtained from G by splitting c into two vertices c′ and c′′
so that c′ retains only the in-edges and c′′ retains only the out-edges.

Chapter 3. Superbubbles 85

Figure 35: A digraph G without any legitimate root. In
G are 16 isomorphic cycles containing eight of the 12 vertices,
all of which contain {1, 4, 7, 10}. The superbubbles 〈1, 4〉
(red),〈4, 7〉 (orange), 〈7, 10〉 (blue), and 〈10, 1〉 (green) cover
G entirely, i.e., every entrance of a superbubble is also the
exit of another one, and all other vertices are interior vertices
of a superbubble.

Lemma 34. Let C be a cycle in the digraph G, c ∈ C a C
 -cut vertex, and G#

the digraph obtained from G by splitting c. If 〈s, t〉 is a weak superbubble in G,
then it is also a weak superbubble in G#, where c as an entrance in G corresponds
to c′ in G# and c as an exit in G corresponds to c′′ in G#. Conversely, every weak
superbubble 〈s, t〉 with {s, t} 6= {c′′, c′} in G# is also a weak superbubble in G.

Proof. For the proof, consider the auxiliary graph G̃# that is constructed by
inserting the edge (c′, c′′) into G# (compare Figure 36). Then, there is an one to
one relationship between the set of paths in G and the set of paths that do not
start or end with the edge (c′, c′′) in G̃#, which is constructed as follows: If p starts
at c in G, it starts in c′′ in G̃#; if p ends at c in G, it ends at c′′ in G̃#; and if p
runs through c in G, then it runs through the edge (c′, c′′) in G̃#. The one to one
correspondence of weak superbubbles now follows immediately from the equivalence
of the path systems in G and G̃# since reachability is the same for every pair u, v,
with c as the starting point corresponding to c′′ and c as the endpoint corresponding
to c′. Thus, G and G̃# have the same superbubbles, except possibly for the ones
with {s, t} = {c′′, c′} in G̃#. Now, consider a depth-first search (DFS)-tree on G#

rooted in c′′. The edge (c′, c′′) is not a tree edge and necessarily appears as a back
edge. Since c is a C

 -cut vertex, c′ and c′′ are not interior vertices of any weak
superbubble in G̃#. Thus, the edge (c′, c′′) does not affect any weak superbubble
of G̃#, and thus, G# and G̃# have the same weaksuperbubbles, except possibly
the ones with {s, t} = {c′, c′′}.

The only potential difference between the weak superbubbles of G and G#

is, therefore, the possibility that G# contains 〈c′, c′′〉 or 〈c′′, c′〉 as an additional
weak superbubble. Of course, it is easy to detect and remove the additional weak
superbubble. Since c′′ is a source in G#, Superbubble can be applied to G#

and remove the possible spurious weak superbubble 〈c′′, c′〉 in order to obtain
the correct set of weak superbubbles of G. In contrast to the auxiliary digraph
constructions suggested in Sung et al. (2015), G# contains only a single extra
vertex instead of doubling the size. More importantly, however, it is not necessary
to construct G# explicitly. Instead, one can modify the DFS starting at c in G
in the following manner: if c is encountered for the first time as a successor of a
tree vertex u, then c′′ is inserted with parent u and no further successors, with
only a constant overhead. The algorithm Superbubble applied to G# extracts
the minimal intervals satisfying (F1) and (F2) from Theorem 3 (Page 76) w.r.t.

86 Chapter 3. Superbubbles

Figure 36: Relationships of G, G̃#, and G#. On the top are shown from left to right:
G, G̃#, and G#. G contains a cycle C = x1, 9, 8, 7, 2

x

. On this cycle is 1 a C
 -cut

vertex. Furthermore, G contains two superbubbles: 〈1, 2〉 (red vertices) and 〈2, 1〉 (yellow
vertices). Every path in G also exists in G̃# by replacing 1 in a path by the two vertices 1′

and 1′′. Thus, G̃# has the same superbubbloids as G except for the superbubble 〈1′′, 1′〉
(blue vertices) and the superbubbloid 〈1′, 1′′〉. In G# the edge (1′′, 1′) is missing which
destroys the paths that contain 1 as an internal vertex. However, as 1 is a C

 -cut vertex
such a path can not be included in a superbubbloid of G. Thus, G# contains the same
superbubbloids as G except 〈1′, 1′′〉. In G# is 1′ a legitimate root and thus a DFS-tree
rooted in 1′ can be used for superbubble detection. The postorder of such a tree is shown
at the bottom. Note that the same postorder is created in G with a modified DFS-tree of
Superbubble# rooted in 1.

the reverse postorder π of the DFS-tree rooted as c′, and thus correctly identifies
the weak superbubbles of G#. The modified DFS on G rooted at c by construction
yields the same DFS-tree on G#, and thus the same reverse postorder. Together
with setting OutChild(c′′) = OutChild(c), OutParent(c′) = OutParent(c),
OutChild(c′) = ∞, and OutParent(c′′) = −1, Superbubble operatingSuperbubble#

(Algorithm)
on

the modified DFS-tree thus correctly identifies the weak superbubbles in G#.
This algorithm, which is equivalent to applying Superbubble to G#, is named
Superbubble#. An example of postorder created with such a modified DFS-tree is
shown in Figure 36.

Definition 34.quasi-legitimate root Let G be a digraph. Then, r ∈ V (G) is a quasi-legitimate root if
either:

(i) r is source in G,

(ii) r is the end point of an interval C(v :r) ∈ B of a total clean C
 -cover of

some cycle C in G, or

(iii) r is C
 -cut vertex of some cycle C in G.

Our discussion so far can be summarized as:

Corollary 26. Algorithm Superbubble# correctly identifies the superbubbles in
G[[r]] if and only if r is a quasi-legitimate root.

Chapter 3. Superbubbles 87

As an immediate consequence of Lemma 32 and Lemma 33, every cycle contains
a quasi-legitimate root. Recalling that every vertex in the digraph G can be reached
either from a source vertex or from a cycle, it finally can be obtained:

Theorem 4. Every digraph G contains a set of quasi-legitimate roots {r1, . . . , rk}.
Given these roots, the algorithm Superbubble# correctly identifies all superbubbles
of G in linear time.

It remains to show, therefore, that a suitable set of roots can be identified in
linear time. Clearly, this is possible for the sources. For superbubbles that cannot
be reached from a source vertex, a suitable set of cycles needs to be identified.

3.8.3 Finding start cycles
First an overview of the connection between DFS and cycles is given.

Lemma 35. Let F be an arbitrary DFS-forest of the digraph G with the root set
{r1, . . . , rk} that is created from the trees Ti, and let C be a cycle in G. Then,
C ∩ V (Ti) 6= ∅ implies C ⊆ V (Ti), and there is a v ∈ C such that C ⊆ V (Ti(v)).

Proof. Let ri be the first root of F that can reach any vertex of C. Then, by
definition of a cycle, C ⊆ [ri] . Thus, C ⊆ V (Ti). Furthermore, let v be the first
vertex that is reached from ri in the DFS. Then, every other vertex of C is reached
from v in the DFS. Thus, C ⊆ V (Ti(v)).

The same is true for strongly connected components (SCCs):

Lemma 36. R. Tarjan (1972) (corollary 11)
Let S be a SCC in G, and let T be a DFS-tree with S ⊆ V (T). Then, there is a
vertex v ∈ S such that S ⊆ V (T (v)). Then is v the root of the SCC S in T .

Our aim is now to find a set of “start cycles” such that every cycle C is reachable
from at least one of these start cycles.

Lemma 37. Let T be a DFS-tree on the digraph G rooted in r, and let W be
the set of ≺-maximal vertices w that have an incoming back edge (v, w). Then,
(i) w ∈ W is contained in a cycle, and (ii) every cycle C ⊆ V (T) is satisfied
C ⊆ V (T (w)) for some w ∈W .

Proof. Property (i) is an immediate consequence of the definition of DFS. Now,
suppose v /∈ V (T (w)) for some w ∈ W . Then, by construction, none of the
vertices along the path from the root r to v have an incoming back edge, and thus,
neither v, nor one of its ancestors are contained in a cycle. Thus, if x ∈ C for
some cycle C ⊆ V (T), then a vertex w ∈W exists such that x ∈ V (T (w)), and
thus,C ⊆ V (T (w)).

Note that W = ∅ if T does not contain a cycle. Since the vertex set of every
cycle in the digraph G is necessarily contained in one of the constituent trees of a
DFS-forest, it can be immediately obtained:

88 Chapter 3. Superbubbles

Figure 37: An example of cycle detection with a
DFS-forest. The DFS-forest contains three trees and
the ordered root set consist of: 5 (blue tree), 3 (green
tree), and 1 (orange tree). The reported cycles are

x6, 7

x

and x1, 2

x

. They are identified by the red back
edges. Note that the cycle x7, 12, 11

x

is never reported
but this is fine because it is reachable from x6, 7

x

.

Corollary 27. Let F be a DFS-forest on the digraph G, and let W by the set of
≺-maximal vertices w that have an incoming back edge (v, w). Then, (i) w ∈W
is contained in a cycle, and (ii) every cycle C in G is satisfied C ⊆ V (T (w)) for
some w ∈W and some T ∈ F .

An example of such a forest and the reported cycles are shown in Figure 37.

Lemma 38. A set of cycles {C1, . . . , Cn} from which all cycles in G are reachable
can be constructed in O(|E(G)|+ |V (G)|) time.

Proof. The DFS-forest F on the digraph G is obtained in O(|E(G)|+ |V (G)|) time.
The set W is easily identified by a preorder traversal of F omitting a subtree as
soon as a vertex w has an incoming back edge. The worst-case effort is O(|V (G)|)
since only the forest is traversed, not the entire digraph G. Given W and the
associated back edges (vk, wk) identified in the previous steps for each wk ∈ W ,
the cycle Ck is explicitly retrieved by following the parent links of F from vk back
to wk in O(|V (G)|) time.

Lemma 38 ensures that a sufficient set of cycles can be found in linear time.
More precisely, using the sources of G and a quasi-legitimate root ri in each cycle
Gi as roots, the algorithm Superbubble# correctly identifies all superbubbles in
G in linear time. It remains to show that a quasi-legitimate root can be identified
in a cycle Ci.

3.8.4 Identification of Quasi-Legitimate Roots
The obvious approach to identify quasi-legitimate roots is to construct a clean
C
 -cover. The obvious starting point is L(C) (Definition 32 (Page 81)) since it
requires the construction of no more than the |C| C -path. This can be achieved in
polynomial time, e.g., using an independent DFS-tree rooted at c ∈ C that ignores
the edges of C. This naive approach, however, exceeds linear time even for a single
cycle.

For c ∈ C, a modified DFS-tree Tc is constructed by excluding all other vertices
of C from G. By construction, u ∈ C is C

 -reachable from c if and only if
Tc contains an predecessor u′ of u, i.e., there is an edge (u′, u) ∈ E(G) with
u′ ∈ V (Tc).

Chapter 3. Superbubbles 89

For each v ∈ V (Tc), the vertices minc(v) and maxc(v) are of interest. Both are
vertices in C such that they are C

 -reachable from v. They minimize (maximize)
dC(c, .) for all vertices that are C

 -reachable from v. These can be recursively
computed on Tc by traversing Tc in postorder. For each v ∈ V (Tc), minc(v)
and maxc(v) are obtained by comparing the minc(u) and maxc(u) values for the
successor (u) of v along T , and the vertices reachable directly from v. More
precisely, at each leaf v of Tc, maxc(v) is initialized by the vertex c′ ∈ C such
that (v, c′) ∈ E(G) and c′ maximizes dC(c, c′). At each inner vertex v of Tc,
maxc(v) is computed as the vertex c′ maximizes dC(c, c′) from the following set of
candidates: {maxc(u) | (v, u) ∈ E(Tc)} ∪ {u ∈ C | (v, u) ∈ E(G)}. The vertex
(c′) C
 -reachable from c with the maximal value of dC(c, c′) is thus maxc(c). The

same computations are used for minc(v), except that dC(c, c′) is minimized instead
of maximized. The computations of Tc and values of minc(v) and maxc(v) clearly
can be performed in linear time. Repeating this for each c ∈ C, however, in general,
it exceeds linear time since the length |C| is not bounded in general.

Most of the information stored in Tc can be reused. However, before this is
proven, a small corollary is given that is very helpful for this:

Corollary 28. Let G be a digraph; let C a cycle in G; and let c1, c2, c3 ∈ C. Then,
dC(c1, c2) ≤ dC(c1, c3) if and only if c1 ∈ C(c3 :c2) ∪ {c3}.

Proof. If c1, c2, and c3 are pairwise distinct, the l.h.s. is true if the path from
c1 to c2 is a subpath of the path from c1 to c3, i.e., c1 /∈ C(c2 :c3) and, thus,
c1 ∈ C(c3 :c2)∪{c3}. The converse is obvious. The statement is trivial for c1 = c3.
If c2 = c3, the l.h.s. is always true, while on the r.h.s., C(c2 :c2) ∪ {c2} = C 3 c1.
For c1 = c2, both the l.h.s. and the r.h.s. are satisfied only if c2 = c3.

The crucial observation is the following:

Lemma 39. Let C be a cycle of the digraph G; consider two distinct cycle vertices
c1, c2 ∈ C; and let v /∈ C with c1

C
 v and c2

C
 v. If dC(c2,minc1(v)) ≤

dC(c2,maxc1(v)), then minc2(v) = minc1(v) and maxc2(v) = maxc1(v). Other-
wise, B = {C(c1 : maxc1(v)), C(c2 : minc1(v))} forms a single-vertex C

 -cover.

Proof. For simplicity, set c3 = minc1(v) and c4 = maxc1(v). By definition of
minc1(.) and maxc1(.), (1) dC(c1, c3) ≤ dC(c1, c4), and (2) for every c ∈ C

satisfying v C
 c, c ∈ C(c3 :c4) ∪ {c3, c4}. Starting from Property (1), Corollary 28

implies c1 ∈ C(c4 :c3) ∪ {c4}. As a consequence, for every c ∈ C(c3 :c4) ∪ {c4},
dC(c1, c) = dC(c1, c3) + dC(c3, c). Since dC(c1, c3) is just a constant, dC(c1, a) ≤
dC(c1, b) implies dC(c3, a) ≤ dC(c3, b) for all a, b ∈ dC(c3, c4) ∪ {c4}.

First, assume dC(c2, c3) ≤ dC(c2, c4). Then, Corollary 28 implies c2 ∈
C(c4 :c3) ∪ {c4}. The same arguments as for c1 show that dC(c2, a) ≤ dC(c2, b)
implies dC(c3, a) ≤ dC(c3, b), which in turn implies dC(c2, a) ≤ dC(c1, b) for all
a, b ∈ C(c3 :c4)∪{c4}. Because of property (2), this implication can be used in par-
ticular for every c ∈ C for which v C

 c might hold. Therefore, the same two vertices

90 Chapter 3. Superbubbles

minimize and maximize dC(c1, v) and dC(c2, v), and thus, minc2(v) = minc1(v)
and maxc2(v) = maxc1(v).

Now, suppose dC(c2, c4) < dC(c2, c3). Then, c3 6= c4 (otherwise, the distances
would be equal), and Corollary 28 implies c2 ∈ C(c3 :c4) ∪ {c3}. Since c1 ∈
C(c4 :c3)∪{c4}, is dC(c1, c3) ≤ dC(c1, c2) < dC(c1, c4). By Lemma 30 (Page 83),
B := {C(c1 :c4), C(c2 :c3)} is a single-vertex cover of C.

The use of Lemma 39 is that it allows either to use the minci(v) and maxci(v)
values also for c2, or a single-vertex C

 -cover is obtained, which immediately
provides us with a legitimate root according to Lemma 32 (Page 84). Thus,
the computation of minci

(v) and maxci
(v) can be stopped when a single-vertex

cover is encountered. Up to this point, the values of minci(v) and maxci(v) are
independent of ci by Lemma 39.

The difficulty is to compute the minc1(v) and maxc1(v) for all v ∈ V (Tc)
correctly. How to handle tree edges is already explained above. Forward edges
in Tc do not effectively contribute, because the same information (minimization
or maximization over values of dC(c, .)) is also propagated stepwise along the
tree-edges. Cross edges, on the other hand, could add information. Postorder
traversal ensures, however, that the pertinent information at their starting points
is already computed in time to include them to compute the correct value, i.e.,
include the cross-edges in the minimization/maximization step.

Back edges are problematic if they belong to the same SCC S as C (C. In this
case, they can be reached from a cycle vertex c ∈ C and they reach a cycle vertex
u ∈ C. Such back edges, therefore, influence which cycle vertices are reachable.
To handle this information, S is split into parts that are SCCs under the use of
C
 -reachability. More precisely, define a C

 -SCC as a SCC on the induced subgraph
G[V (G) \ C].

Consider the auxiliary graph Gc with vertex set (V (G) \C) ∪ {c} and all edges
of G[V (G) \ C], as well as all edges (c, u) with u ∈ V (G) \ C. Then, the SCCs
of Gc are exactly the C

 -SCCs and the single vertex c. By construction, Tc is
also a DFS-tree for Gc. Thus, Tarjan’s DFS-based SCC-detection algorithm (see
Lemma 36) on Tc identifies the C

 -SCC as the SCC of Gc. To mimic the traversal
on Gc instead on G[(V (G) \C)∪ {c}], the graph on which Tc is originally defined,
it suffices to ignore the back edge leading to the root, i.e., edges of the form (u, c)
for u ∈ V (G) \ C. It is thus not necessary to construct the graph Gc explicitly.

The definitions of minc(.) and maxc(.) imply:

Corollary 29. Let C be a cycle in the digraph G; let Tc be a modified DFS-tree
rooted at c ∈ C; and let S be a C

 -SCC with S ⊆ V (Tc). Then, minc(v) and
maxc(v) are independent of v for every v ∈ S.

This begs the question of whether the v-independent values of minc(v) and
maxc(v) can be obtained while traversing G. A partial answer is provided by:

Corollary 30. Let C be a cycle in the digraph G; let Tc be a modified DFS-tree
rooted at c ∈ C; and let v be the root of a C

 -SCC. Suppose the values of minc(w)

Chapter 3. Superbubbles 91

and maxc(w) are known for w /∈ V (Tc(v)). Then, minc(v) and maxc(v) are
obtained correctly by postorder traversal of Tc considering all tree and cross edges.

Proof. The only missing information could be a back edge (u,w) with u ∈ V (Tc(v))
and v ≺ w. Such a back edge cannot exist because v is by assumption the root of
a C
 -SCC, and thus, there is no cycle including u, v, and w ∈ G[V (G) \ C].

This observation yields a simple solution to obtain the correct entries for
minci

(v′) and maxci
(v′) for every v′ ∈ S: determine the C

 -SCC and its root v,
and set minc(v′)← minc(v) and maxc(v′)← maxc(v).

R. Tarjan (1972) showed that SCC can be found efficiently by DFS. Below, the
approach is slightly modified to operate on a given DFS-tree. Therefore, Tarjan’s
SCC algorithm is briefly outlined; for full details, look at R. Tarjan (1972): First,
the vertices are enumerated in preorder. Then, a postorder traversal is used to
compute, for each v, the lowlink `(v), which is recursively defined as:

`(v) := min
(
{`(w) | (v, w) is a tree- or unfinished cross-edge}∪
{ρ(w) | (v, w) is a back edge} ∪ {ρ(v)}

) (3.8)

A cross edge is only included if it is “unfinished”, i.e., if its endpoint w has not
been reported as part of a previously-completed SCC. A vertex v is the root of a
SCC if `(v) = ρ(v). Tarjan’s SCC algorithm now uses a stack to iterate over every
vertex of the SCC S to mark them as finished. This cannot be done in the same
way in a predefined DFS-tree.

The stack can be replaced, however, by an equally-efficient iterative method:
Starting from v with `(v) = ρ(v), simple traverse Tc(v) starting at v; report all
“unfinished” vertices as members of the SCC; and omit every subtree rooted in
a “finished” vertex. To see that this is correct, note that `(w) 6= ρ(w) for all
w ∈ S \ {v}, and hence, w is “unfinished” when the postorder traversal encounters
v. Lemma 36 (Page 87) implies that there is a path {v, w1, . . . wh = w} from
v to w in Tc, with wi ∈ S and thus also “unfinished”. Thus, if u is “finished”,
so are all its descendants, and the subtree Tc(u) does not need to be considered.
The only difference from Tarjan’s SCC algorithm tree traversal is to retrieve S,
which considers every edge of T once and thus runs in a total time of O(|V (G)|).
The discussion is summarized as:

Lemma 40. The modified version of Tarjan’s SCC algorithm correctly identifies all
SCCs in T in O(|E(G)|+ |V (G)|) time.

Since the correct values of minc(u) and maxc(u) are computed by postorder
traversal of Tc, they are already available when the root v of a C

 -SCC is encountered.
Thus, identification of the C

 -SCC and the computation of minc(u) and maxc(u)
can be combined in the same tree traversal. The same tree traversal also guarantees
that for every cross edge (u,w), either (i) u and w are in the same C

 -SCC or (ii)
the values of minc(w) and maxc(w) are computed correctly.

Now, consider the vertex cj along C, and suppose it is not encountered a
single-vertex C

 -cover so far. Let Tj be the DFS-tree rooted in cj that ignores all

92 Chapter 3. Superbubbles

Figure 38: An example of the calculation of L(C). On the left a graph is shown with
a cycle C = x1, 2, 3, 4, 5

x

(yellow vertices). For every cycle vertex c in C, a modified
DFS-tree Tc is constructed. The processing sequence is clock-wise starting with 1. Every
vertex belongs only to the tree of the cycle vertex with the same color. Note that the
trees of 4 (blue) and 5 (purple) only contain the cycle vertex. In the table values of the
vertices are given that are calculated in the creation of L(C). The values are: the vertex
(v), the cycle vertex from which it is first reach (c), the calculated minc(v), the calculated
maxc(v), the position in the postorder of Tc (π), the position in the preorder of Tc (ρ),
and the lowlink value for SCC detection (`(v)). The vertices are given in the order in which
they are finished. If no SCC is present the order corresponds to π. However, if a SCC
is detected, the vertex is finished after the root of the SCC (like vertex 7). The vertices
have the background color of the tree they belong to (Tc), the color corresponds to c. On
the right the resulting L(C) is shown, with the colored edges (color of c) that correspond
to the C

 -interval C(c : maxc(c)). The vertices that are contained in the C
 -interval have

the same color as the edge. Here, 5 ia a C
 -cut vertex and thus a quasi-legitimate root.

vertices already included in a previous DFS-tree. As for ci, mincj
(v) and maxcj

(v)
with v ∈ Tj can be compute along this tree. Then, mincj

(v) either equals mincj
(v)

computed on Tj or minci
(u) for some u such that (v, u) ∈ E(G), depending on

which has the smaller value of dC(cj , .), and maxcj
(v) either equals maxcj

(v)
computed on Tj or maxci(j), depending on which has the larger value of dC(cj , .).
Note that minci(v) and maxci(v) do not actually depend on i. In a practical
implementation, it is simply stored in dependence of v. The index ci only is used
to keep track of the individual, disjoint DFS-trees Ti rooted in ci in the arguments.

After processing all vertices of C,either a single-vertex C
 -cover of C is found,

or for every cj ∈ C, the largest C
 -covered interval C(cj : maxcj

(cj)) is known.
Thus, it is directly concluded:

L(C) := {C(cj : maxcj
(cj)) | cj ∈ C} (3.9)

In particular, it is shown that for each C, L(C) or a single-vertex cover can be
constructed in linear time. An example of such a calculation is given in Figure 38.

To detect a quasi-legitimate root, it is necessary to first decide whether C has
a total C -cover or a non-empty set K(C) of C

 -cut vertices exists. To this end,
a clean C

 -cover B can be used efficiently. Recall that by Lemma 28 (Page 82),

Chapter 3. Superbubbles 93

every interval in a clean C
 -cover is extended by at least one other interval from the

C
 -cover. Since a clean C

 -cover contains at most |C| intervals, it is easy to check in
linear time whether a C

 -cut vertex exists: starting from an arbitrary C(v :u) ∈ B,
the upper bound of the C

 -covered part of C that starts at the successor of v is
initialized by x := dC(v, u). For every C(v′ :u′) ∈ B with dC(v, v′) < x, it is
checked whether dC(v, v′) > dC(v, u′), in which case a total cover is found, and
otherwise, x is updated with max(x, dC(v, u′))). If no total cover is found when
the intervals are exhausted, then x is a C

 -cut vertex (see the proof of Lemma 28
(Page 82)). With the C(cj : maxv(u)) stored, e.g., as array a[v], a total cover or
the C
 -cut vertex x is found in O(|C|) operations.
In practice, however, there is no clean C

 -cover computed yet. However, L(C)
can be computed in linear time. By Corollary 23 (Page 82), there is a clean C

 -cover
B ⊂ L(C). Thus, the same procedure is used. The redundant intervals in L(C)
are contained, by definition, within intervals belonging to B, and thus, they do
not change the results provided the initial interval C(v :u) is contained in the
clean cover B. By Corollary 25 (Page 84), this is true for the longest interval
C(v :u) ∈ L(C). Since L(C) contains at most |C| intervals, the longest interval
and a cut point or the validation of a total cover can be computed in O(|C|). If
L(C) is a total C -cover, the longest interval C(v :u) is contained in a total clean
cover, and thus, u is a legitimate root by Corollary 25 (Page 84). An example
of the calculation of a total cover or cut vertex is shown in Figure 39. Thus, a
quasi-legitimate root u can be retrieved in O(|C|) time. The entire procedure is
summarized in Algorithm 3.

Lemma 41. Given a cycle C in the digraph G, Algorithm 3 identifies a quasi-
legitimate root in C in linear time w.r.t. the size of G[[c]] for a c ∈ C, the induced
subgraph of G reachable from C.

Proof. The correctness of the algorithm follows from the discussion in the previous
paragraphs. The construction of DFS-trees Tj together is linear in the size of
G[[c]] for a c ∈ C since each edge in G[[c]] is considered once. The recursive
computation along each Tj is also linear. Since the Tj are disjoint, the total effort
is still linear.

Finally, note that by construction, no vertex in G[[c]] for any c ∈ C reaches
any cycle C ′ disjoint from G[[c]]. Hence, when processing the next cycle C ′, the
vertices (and edges) already visited in the context of processing C are irrelevant,
and thus, G[[c]] can be disregarded. In other words, the DFS for the next cycle
can be performed in the same digraph G, with all previously processed induced
subgraphs marked as finished. This ensures an overall linear running time for the
identification of starting points for all cycles Ci as in Lemma 38 (Page 88).

94 Chapter 3. Superbubbles

Algorithm 3: Computing a quasi-legitimate root. The get_root algorithm. In the
first part it computes L(C) or a single-vertex C

 -cover. Then is L(C) used to determine
that C

 -cut vertex or that a total C
 -cover exists. If a total C

 -cover (including single-vertex
C
 -cover) exists a legitimate root is returned otherwise a C

 -cut vertex as a quasi-legitimate
root is returned.

Require: digraph G and cycle C
for c ∈ C do
create DFS-tree Tc with root c by ignoring finished and cycle vertices with
preorder ρ.
while v traverses Tc in postorder do
`(v)← ρ(v)
for (v, u) ∈ E(G) do
if u ∈ C then
Update minc(v) with u
Update maxc(v) with u

else if (v, u) is a back edge then
Update `(v) with ρ(u)

else
if dC(c,minc(v)) > dC(c,maxc(v)) then
return legitimate root minc(v)

Update minc(v) with minc(u)
Update maxc(v) with maxc(u)
if u is unfinished then
Update `(v) with `(u)

if `(v) = ρ(v) then
for u in C

 -SCC with root v do
minc(u)← minc(v)
maxc(u)← maxc(v)
Set u as finished

Set u ∈ C such that dC(c,maxc(c)) ≤ dC(c,maxu(u)) for every c ∈ C
x = dC(c,maxu(u))
for c ∈ C in cycle order starting from the successor of u do
if dC(u, c) = x then
return quasi-legitimate root c

if dC(u, c) > dC(u,maxc(c)) then
return legitimate root maxu(u)

x = max(x, dC(u,maxc(c)))

Chapter 3. Superbubbles 95

Figure 39: An example of the calculation of a total C
 -cover or C

 -cut vertex. On
the left a graph is shown with the cycle C = x1, 2, 3, 4, 5

x

. The red edges connect
c ∈ C with maxc(c) and thus represent the C

 -intervals of L(C). The first step is to
determine the interval with the maximal value of dC(c,maxc(c)). The values for every
c are shown in the table in the center. The maximum is the interval C(1 :4). The next
step processes the cycle vertices c clock-wise starting from the successor of 1, which is
2. The processing is shown in the right table. For every vertex it is first checked if the
distance dC(1, c) is smaller than x, otherwise a cut vertex is found. Secondly, it is checked
if dC(1, c) < dC(1,maxc(c)), otherwise a total cover is found. After the checks, x is
updated with the maximum of x and dC(1,maxc(c)). This makes it possible to check
every already covered vertex. When c = 5 a total cover is found, and thus max1(1) = 4 is
reported as quasi-legitimate root. Note that the C

 -interval C(2 :3) is not part of a clean
C
 -cover but have no influence on the calculation.

3.9 Linear Superbubble Detection

With this, a simple linear time and space superbubble detection algorithm is
presented.

Theorem 5. Algorithm 4 correctly identifies the superbubbles of a digraph G in
linear time.

Proof. Theorem 4 (Page 87) ensures that for every digraph G, there is a set R of
quasi-legitimate roots such that, given R, the algorithm Superbubble# identifies
all superbubbles of G in linear time. Every vertex in V (G) is reachable from a
source or a cycle in G. By Lemma 25 (Page 78), all sources are legitimate roots.
Thus, all superbubbles that overlap with the vertex set S =

⋃
s is a source[s] can

be detected. Lemma 38 (Page 88) shows that a set of cycles can be constructed in
linear time from which all vertices in V (G) \S can be reached by DFS. Algorithm 3
identifies a quasi-legitimate root in a cycle (Lemma 41). As discussed in the
text following Lemma 41, the effort for this step is again linear in size of G.
Algorithm 4 therefore correctly identifies the superbubbles of a digraph G and does
so in O(|V (G)|+ |E(G)|) time.

The constant factor is small for Algorithm 4. In the worst case every vertex is
contained in three DFSs and is also visited by the traversal on the corresponding
DFS-trees. The cycle detection traverses a vertex at most two times, for the root

96 Chapter 3. Superbubbles

Algorithm 4: Identification of all superbubbles in an arbitrary digraph G. The algo-
rithm uses get_root (Algorithm 3) to compute a quasi-legitimate root for any used cycle.
Furthermore, it utilizes Superbubble# to identify superbubbles. Note that there is no
difference if Superbubble# is applied to F or to the tress of F independent of each other.

Require: Digraph G
R← all sources in G
generate a random DFS-forest F̂
find set W of ≺-maximal vertices with a back edge in F̂
generate set C of cycles from W with F̂
for all cycles Ck ∈ C do
run get_root(Ck, G) to identify quasi-legitimate root rk
add rk to R

generate DFS-forest F with root set R
run Superbubble# on F

generation in a cycle again two times, and for Superbubble# only one time. Thus,
there is not much space for optimization left.

Chapter 4. Supergenome 97

CHAPTER 4
Supergenome

Contents
4.1 Motivation . 98
4.2 Genome-wide multiple sequence alignments 99
4.3 gMSA as Graph . 100
4.4 Modeling the “Supergenome Sorting Problem” 103

4.4.1 Hamiltonian Paths 103
4.4.2 Feedback Arc Sets and Topological Sorting 104
4.4.3 Simultaneous Consecutive Ones and Matrix Banding 104
4.4.4 Bidirected Graphs 105
4.4.5 Sequence Graphs 105

4.5 Betweenness Problems . 105
4.5.1 Seriation . 107

4.6 Graph Simplification . 107
4.7 Supergenome Pipeline . 110

4.7.1 Curation of input data sets 110
4.7.2 Graph simplification and DAG construction 113
4.7.3 Seriation . 114

98 Chapter 4. Supergenome

This chapter is based on Gärtner, Höner zu Siederdissen, et al. (2018). First a
motivation is given to solve the supergenome problem. After this an in-depth analysis
of the concept of the supergenome and its relationship to genome-wide multiple
sequence alignments (gMSAs) is shown. The next section then combinatorial
optimization problems, from Chapter 2, are reviewed that are related closely to
the “supergenome sorting problem”, and argue that the most appropriate modeling
leads to a special type of the betweenness ordering problem. Furthermore, a novel
heuristic solution is introduced, that is geared towards very large input alignments
and proceeds by step-wise simplification of the supergenome multigraph.

4.1 Motivation

The dramatic decrease of sequencing costs has enabled an ever-accelerating flood of
genomic and transcriptomic data (1000 Genomes Project Consortium, 2015) that in
turn have lead to the development of a variety of methods for data analysis. Despite
recent efforts to study transcriptome evolution at large scales (Hezroni et al., 2015; S.
Lin et al., 2014; Necsulea and Kaessmann, 2014; Neme and Tautz, 2016; Washietl,
Kellis, and Garber, 2014) the capability to analyze and integrate -omics data in large-
scale phylogenetic comparisons lags far behind data generation. One key aspect of
this shortcoming is the current lack of powerful tools for visualizing comparative
-omics data. Available tools such as hal2AssemblyHub (Nguyen, Hickey, Raney,
et al., 2014b) or progressiveMauve (Darling, Mau, and Perna, 2010) have been
designed with closely related species or strains in mind. The visualizations become
difficult to interpret for multiple species and larger evolutionary distances, where
homologous genomic regions may differ substantially in their lengths, an issue
that becomes more pressing the larger the regions of interest become. A common
coordinate system for multiple genomes is not only a convenience for graphical
representations of -omics data. It would also greatly facilitate the systematic
analysis of all genomic features that are not sufficiently local, to be completely
contained within individual multiple sequence alignment (MSA)-blocks of a gMSA.

Still, gMSAs are the natural starting point. A common feature of gMSAs is
that they are composed of a large number of MSA-blocks. At least in the case of
MSAs of higher animals and plants the individual MSA-blocks are typically (much)
smaller than individual genes. As a consequence, they are not ready-to-use for
detailed comparative studies, e.g. of transcriptome or epigenome (Xiao, Cao, and
Zhong, 2014) structure. In the gMSA-based splice site maps of Nitsche et al.
(2015), for example, it is easy to follow the evolution of individual splice junctions
as they are localized within a MSA-block. At the same time it is difficult to
collate the global differences of extended transcripts, which may span hundreds
of MSA-blocks. Further it is hard to relate changes in transcript structure with
genomic rearrangements, insertions of repetitive elements or deletion of chunks of
sequence.

This chapter concerned with the coordinatization of supergenomes, i.e., the
question how MSA-blocks of a gMSA can be ordered in a way that facilitates
comparative studies of genome annotation data. In contrast to previous work on

Chapter 4. Supergenome 99

supergenomes this work is particularly interested in large animal and plant genomes
and in wide phylogenetic ranges. Therefore it is assumed that the alignment consist
of short MSA-blocks and abundant genome rearrangements, leaving only short
sequences of MSA-blocks that are perfectly syntenic between all genomes involved.

4.2 Genome-wide multiple sequence alignments

In this work an assembly is simply a set of sequences representing chromosomes,
scaffolds, reftigs, contigs, etc. In the following, contig is used to refer to any
of such genomic sequences. For each of these constituent sequences, the usual
coordinate system defining sequence positions is used. Since deoxyribonucleic acid
(DNA) is double stranded, a piece of genomic sequence either is contained directly
(σ = +1) in the assembly or is represented by its reverse complement (σ = −1).
The quintuple (G, c, i, j, σ) identifies the sequence interval from positions i to j on
contig c of genome assembly G with reading direction σ, where w.l.o.g., i ≤ j.

Most comparative methods require gMSAs as input. A gMSA A is composed
of MSA-blocks MSA-block, each of which consists of a MSA of sequence intervals. For the
purposes of this thesis it its sufficient to characterize a MSA-block by the coordinates
of its constituent sequence intervals. That is, a MSA-block B ∈ A has the form
B = {(Gu, cu, iu, ju, σu) | u ∈ rows of B} where the index u runs over all rows of
the MSA-block. It is convenient to allow MSA-blocks also to consist of a single
interval only, thus referring to a piece of sequence that has not been aligned. Note
that at this stage, it is not assumed that a MSA-block contains only one interval
from each assembly.

The projection τG(B) extracts from a MSA-block B the union of its constituent
sequence intervals belonging to assembly G. If the assembly G is not represented
in the MSA-block B, is τG(B) = ∅. The projection operation collapses pairs
of overlapping sequence intervals α = (G, c, i, j, σ) and β = (G, c, i′, j′, σ′) with
i ≤ i′ ≤ j ≤ j′ into a single interval: α∪ β = (G, c, i, j′,+1) without regard of the
orientation, which is set to +1 and has no impact on the algorithms of this chapter.

The projection τG(A) of A onto one of its constituent assemblies G is the
union of the sequence intervals from G that are contained in its MSA-blocks, i.e.,
τG(A) =

⋃
B∈A τG(B).

Definition 35. genome-wide multiple
sequence alignments

Let A be a gMSA.

(i) A is complete if τG(A) = G, i.e., if each position in each assembly is represented
in at least one MSA-block.

(ii) A is irredundant if τG(B′) ∩ τG(B′′) = ∅ for any two distinct MSA-blocks B′
and B′′ of A, i.e., if every sequence interval from assembly G is contained in
at most one MSA-block.

(iii) A is injective if no MSA-block comprises more than one interval from each of
its constituent assemblies.

100 Chapter 4. Supergenome

Clearly, every given gMSA can be completed by simply adding all unaligned
sequence intervals as additional MSA-blocks.

Just like a contig c in a genome assembly G, each MSA-block B ∈ A has
an internal coordinate system defined by its columns. The used notation is B[k]
for column k in MSA-block B, columns(B) for a set of all columns of B, and
| columns(B)| for the number of columns in B. If A is irredundant, then there are
functions fG,c that map position i within (G, c) to a corresponding gMSA coordinate
B[k]. If A is complete, the individual fG,c can be combined to a single function
f : (G, c, i) 7→ B[k]. Completeness implies that every position (G, c, i) is represented
in the gMSA, and irredundancy guarantees that the relation between assembly and
alignment coordinates is a function by ensuring that (G, c, i) corresponds to at
most one alignment column. The following definition is therefore equivalent to the
notion of a supergenome introduced in Herbig et al. (2012).

Definition 36.supergenome A gMSA A is a supergenome if and only if it is complete, irredun-
dant, and injective.

The most commonly used gMSAs cannot be completed to supergenomes. The
MSAs produced by the multiz pipeline are usually not irredundant: different
intervals of the “reference sequence” may be aligned to the same interval of another
assembly. While multiz (Blanchette et al., 2004) alignments are injective this is
in general not the case with the EPO (Paten, Herrero, et al., 2008) alignments. In
these, multiple paralogous sequences from the same genome may appear in one
MSA-block.

Now consider a gMSA A and an arbitrary total order ≤ of the MSA-blocks of
A. Then there is an unique function φ that maps the column B[k] injectively to
the interval [1 :n], where n =

∑
B∈A | columns(B)| is the total number of columns

in A such that φ(B[k]) < φ(B′[k′]) whenever B < B′ or B = B′ ∧ k < k′. If A is
a supergenome, then the composition φ(f) is clearly an injective function from a
genome assembly G to [1 :n]. Then is φ(f(G, c, i)) the coordinate of position i of
contig c of assembly G in the ordered supergenome (A,≤).

As pointed out in Herbig et al. (2012), the existence of a coordinate system
for the supergenome A is independent of the MSA-block order ≤. However, the
order ≤ is crucial for the practical use of the coordinate system. An example of the
composition φ(f) is shown in Figure 40.

4.3 gMSA as Graph

The natural starting point for considering adjacency and betweenness of MSA-
blocks are their constituent intervals (G, c, i, j, σ) on a fixed assembly G and contig
c. Intervals have a natural partial order defined by (G, c, i, j, σ) < (G, c, k, l, σ)
whenever i < k and j < l. Two intervals are incomparable in this interval order
if and only if one is contained in the other. Note that the interval order allows
comparable intervals to overlap. Further intervals are incomparable if they belong
to different contigs and/or assemblies.

Chapter 4. Supergenome 101

Figure 40: Example of the composition φ(f). On the top,
two contigs are shown. The contigs compose of three different
MSA-blocks. Which sequence interval (arrow) belongs to which
MSA-block is indicated by the number. For simplicity is assumed
that every MSA-block has length ten and contains no gaps. The
function f maps every position in a contig on a position of a
MSA-block. In the middle, the MSA-blocks are shown. The
function φ then maps every position in a MSA-block on a
position of the ordered supergenome(shown at the bottom).
φ uses an order of the MSA-blocks. However, the existence
of φ is independent of the meaningfulness of the order. The
composition φ(f) maps every position of a contig to a position
of the ordered supergenome. For example, position 15 of the
blue contig maps to position 5 of the ordered supergenome.

Given three intervals α = (G, c, i′, j′, σ′), β = (G, c, i′′, j′′, σ′′), and γ =
(G, c, i, j, σ) (on the same genome assembly and contig), then γ is between the two
distinct intervals α and β if α < γ < β or β < γ < α.

Given a collection of intervals on the same assembly G and contig c, then
α = (G, c, i′, j′, σ′) and β = (G, c, i′′, j′′, σ′′) are adjacent if there is no interval γ
between α and β. Then α is a predecessor of β if α and β are adjacent and α < β.
Analogously, α is a successor of β if α and β are adjacent and β < α. This can be
used on properties of a supergenome.

Lemma 42. Let A be a supergenome and consider the the collection {τG(B) | B ∈
A} of intervals on a given G. Then (i) no two intervals overlap, (ii) the interval
order < is a total order on every contig c, (iii) every interval has at most one
predecessor and one successor, and hence is adjacent to at most two intervals, and
(iv) if γ is adjacent to both α and β, then γ is between α and β.

Proof. Property (i) follows directly from the supergenome conditions. As a conse-
quence, any two intervals on a fixed contig c are comparable, i.e., the restriction of
interval order < to c is a total order, hence (ii) follows. Since only intervals on the
same contig can be adjacent, (iii) is an immediate consequence of (ii) and the fact
that the number intervals is finite. Property (iv) is now a trivial consequence of
the fact that by (iii) α and β must be the predecessor and successor of γ.

A key construction in this contribution is the notion of betweenness relations
for MSA-blocks.

Definition 37. betweenness (alignment)Given three MSA-blocks A,B,C ∈ A, then C is between A and
B with respect to G if τG(C) is between τG(A) and τG(B). The ternary relation
C (A) is defined by [A><C><B] ∈ C (A) whenever C is between A and B for some
assembly G in A.

Note that contradicting betweenness relations resulting from different genome
assemblies G are expected, i.e., the relation C (A) in general do not satisfy the
properties of a betweenness relation. This issue is discussed below.

102 Chapter 4. Supergenome

Figure 41: An example of the projection of an artificial gMSA to a supergenome
graph. On the left a gMSA A is shown, which comprises five MSA-blocks 1, . . . , 5,
each consisting of up to four intervals from the four genome assemblies (distinguished by
colors). Note that the intervals that are shown as arrows represents respective the position
in the genome assemblies (not shown). Thus the order of the intervals in the genome
assembly can be reconstructed. This reconstruction is shown in the center. The interval
order implies that a path with this order exists in the supergenome graph. Alternatively,
more formally it implies a separate predecessor relation among MSA-blocks, with a colored
arrow from 1 to 2 in the supergenome graph implying that 1 is a predecessor of 2 w.r.t.
the assembly indicated by the color. Γ(A) has all MSA-blocks of A as its vertices. The
predecessor relations among the MSA-blocks define the colored, directed edges. The
resulting supergenome graph is shown right.

Definition 38. Two MSA-blocks A,B ∈ A are adjacent if there is an assembly G
such that τG(A) and τG(B) are adjacent w.r.t. {τG(C) | C ∈ A}.

It is useful to regard A with its adjacency relation as a graph. In order to keep
track of the individual contigs, an edge-colored multigraph is used, with G serving
as edge color.

Definition 39.supergenome graph The supergenome graph Γ(A) of a gMSA A is the directed, edge-
colored multigraph whose vertices are the MSA-blocks of A and whose directed
edges (A,B) connect a MSA-block A to a MSA-block B with color G whenever
the sequence interval α ∈ A is a predecessor of the sequence interval β ∈ B in
assembly G.

An example of the projection Γ(A) of a gMSA A is illustrated in Figure 41.
The projection of Γ(A) to a constituent assembly G is a (not necessarily induced)
subgraph. As an immediate consequence of Lemma 42, each projection is a disjoint
union of directed paths, each of which represents a contig. Conversely, every colored
directed multigraph whose restriction to a single color is a set of vertex-disjoint
directed paths is a supergenome graph. It therefore makes sense to talk about
a supergenome graph Γ without explicit reference to an underlying alignment A.
Note that Γ is only a colored version of an A-Bruijn graph (Subsection 2.2.9).

The structure of the supergenome graph strongly depends on the evolutionary
history of the genomes that it represents. In the absence of genome rearrangements
(i.e., if the only genetic changes are substitutions, insertions (including duplications),
and deletions) then all genomes remain colinear with their common ancestor. In

Chapter 4. Supergenome 103

other words, a single, canonical global alignment (Giegerich, 2000) describes a
common coordinate system that is unique up to the (arbitrary) order of contigs and
each trace of insertions and deletions (Sankoff, 1983). In terms of the MSA-block
adjacency relation, each MSA-block has at most two adjacent neighbors in this
scenario.

Genome rearrangements are by no means infrequent events (Belda, Moya, and
Silva, 2005; Drillon and Fischer, 2011; Fischer et al., 2006; Friedberg, Darling, and
Yancopoulos, 2008), and thus cannot be neglected. Every breakpoint introduced
by a genome rearrangement operation, be it a local reversal or a cut-and-join type
dislocation, introduces an ambiguous adjacency, i.e., a MSA-block that has two or
more predecessors or successors. The task of identifying an appropriate ordering of
the MSA-blocks therefore is a non-trivial one for realistic data, even in the absence
of alignment errors.

4.4 Modeling the “Supergenome Sorting Problem”

Informally, consider the supergenome sorting problem (SSP) as the task of finding
an order ≤ (or, equivalently, a permutation) of the MSA-blocks of A such that the
orders of the constituent assemblies are preserved as much as possible. Somewhat
more precisely, to find an order ≤ on the vertex set of the supergenome graph
Γ(A) that as many of its directed edges as possible are “consistent” with the
order ≤. It is not clear from the outset, however, how “consistency” should be
defined for the application. A large number of related models have been proposed
and analyzed in the literature that make this condition precise in different ways,
leading to different combinatorial optimization problems. A brief review of some
paradigmatic approaches can be found at Section 2.3. Here is discussed how fitting
they are for the SSP.

4.4.1 Hamiltonian Paths

A plausible attempt is to view the SSP as a variant of the Hamiltonian path problem
on the supergenome graph Γ. A Hamiltonian path defines a total order of the
vertices and therefore a solution to the SSP. This is idea is similar to the use of
Hamiltonian graphs for genome assembly from read overlap graphs (El-Metwally
et al., 2013). There are several quite obvious difficulties, however. First, it is
not sufficient to consider only paths that are entirely confined to pass through
the adjacencies. The simplest counterexample consists of only four MSA-blocks
B1, B2, B3 ,B4 and three assemblies G1, G2, G3. Given eight sequence intervals
βk,l = (Gl, ck,l, ik,l, jk,l,+1) ∈ Bk the following alignment is constructed:

B1 B2 B3 B4
g1= β1,1 β4,1
g2= β1,2 β2,2 β4,2
g3= β1,3 β3,3 β4,3

104 Chapter 4. Supergenome

Figure 42: MFAS creating a suboptimal solution to the SSP. Due to the arbitrariness
of the orientation of the edges, the best solution of the SSP may contain cycles, which by
definition is excluded in MFAS. Top: supergenome graph representation of an artificial
alignment. Bottom: Simplified solution of the (uniformly weighted) MFAS. To turn the
graph into a DAG must at least six edges deleted Two such solutions exist, differing only
by the orientation of the orange arrow. The corresponding topological sorting breaks the
genome into two distinct colinear pieces with opposite orientation. There is, however,
a consistent order of the entire graph – the linear left-to-right or right-to-left order is
consistent.

This situation arises in practice e.g. if B2 and B3 are two independent, unrelated
inserts between B1 and B4. The MSA-block adjacency graph is the graph

B2 −B1 −B4 −B3,

which violates the desired betweenness relation [β1,3><β3,3><β4,3].
In this case there are only two biologically correct solutions: B1 < B2 < B3 <

B4 (or the inverse order) and B1 < B3 < B2 < B4 (or its inverse). In either
case, the solution contains two consecutive MSA-blocks (B2 and B3) that are
not adjacent in the MSA-block graph. This example also serves to demonstrate
that the MSA-block graph alone does not contain the complete information on
the supergenome. It appears that in addition the betweenness relation among the
MSA-blocks (i.e., that both B2 and B3 are between B1 and B4) is needed.

4.4.2 Feedback Arc Sets and Topological Sorting
An other possibility to determine a well-defined order of the vertices of the su-
pergenome graph Γ is to first solve minimum feedback arc set problem (MFAS)
and then to compute a topological sorting of this subgraph.

The key problem of modeling the SSP in terms of MFAS is highlighted in
Figure 42. It shows that even if undirected adjacencies would allow for a perfect
solution, it may not be uncovered directly by the MFAS approach.

4.4.3 Simultaneous Consecutive Ones and Matrix Banding
The simultaneous consecutive ones property (C1S) could also be applied to Γ to
create an order. However, this have some problems. First, recover that this does
not imply Γ is an union of disjoint paths, i.e., that Γ is a valid supergenome graph.
Secondly, the solution is very inaccurate locally. Which means that even if a global
ordering is for the interesting detail level no satisfying solution is found.

Chapter 4. Supergenome 105

4.4.4 Bidirected Graphs
The sets of genomes considered by Nguyen, Hickey, Zerbino, et al. (2015) are
particularly suitable for this kind of calculations. The genomes that are considered
for pangenome construction typically are related closely , or even of the same
species. Thus one can expect many paths with high weights of the conserved
consensus (Haussler et al., 2018). This approach also fits well to the analysis of
genomic regions that are under constraint to maintain syntenic order for functional
reasons, such as the MHC locus used as an example in Nguyen, Hickey, Zerbino,
et al. (2015). In distantly related genomes, however, synteny tends not to be well
preserved. In addition, this work is interested in particular in data sets that contain
genomes in preliminary draft forms, i.e., linkage information that is at least partially
limited to short contigs or scaffolds. As a consequence there is less confidence in
linkage and orientation information than one can expect in a typical pangenome
scenario.

4.4.5 Sequence Graphs
The sequence graphs after Haussler et al. (2018) have two main issues. First the
information lost that is given if to adjacent intervals change the orientation. It is
likely to become an issue, for large phylogenetic distances with frequent genome
rearrangements. The second issue is that a common backbone order is assumed.
The presence of such a backbone is violated substantially for phylogenetically diverse
data.

4.5 Betweenness Problems

In this work the SSP is interpreted as a betweenness (ordering) problem rather than
a vertex ordering problem on a directed graph. Instead of (oriented) adjacencies,
which are defined on pairs of MSA-blocks, one considers the relative order of three
MSA-blocks. Recall the betweenness problem:
Betweenness Problem (Chor and Sudan, 1998; Opatrny, 1979): Given a finite set
X and a collection C (X) of betweenness triples from X, is there a total order on
X such that ∀[i><j><k] ∈ C (X) either i < j < k or i > j > k?

The Betweenness Problem can be adapted to model the SSP by means of a
suitable cost function b designed to penalize violations of the betweenness relation.
Consider a total order γ used to coordinatize the supergenome. Therefore, γ is a
bijective function that represents this order.

For i < j < k set bγ,G(i, j, k) = 1 if the projections of the three MSA-blocks
γ(i), γ(j), and γ(k) exist and violate the betweenness relation for a given assembly G,
i.e., if τG(γ(i)), τG(γ(j)) and τG(γ(k)) are located on the same contig and τG(γ(j))
is not located between τG(γ(i)) and τG(γ(k)). Otherwise set bγ,G(i, j, k) = 0. A
natural cost function is now the total number of betweenness violations betweenness violation

b(γ) :=
∑
G∈G(A)

∑
i<j<k

bγ,G(i, j, k) , (4.1)

106 Chapter 4. Supergenome

where G(A) is the set of genome assemblies that are contained in A. If genome
evolution preserve gene order, i.e., only local duplications and deletions are allowed,
the betweenness relation of the ancestral state would be preserved, guaranteeing a
perfect solution γ with b(γ) = 0.

Since this decision problem is NP-complete (Chor and Sudan, 1998; Opatrny,
1979), so is the problem of optimizing b(γ) NP-hard. The cost function b(γ)
involves the sum over all triples of MSA-blocks and thus is fairly expensive to
evaluate. It is interesting in practice, therefore, to consider a modified cost function
that restricts the sum in Equation 4.1 to local information. This idea leads us to
the rather natural extension of the betweenness problem to colored multigraphs.

Definition 40.betweenness (graph) Given a directed colored multigraph Γ, the triple [i><j><k] is part
of the collection C (Γ), iff there are edges (i, j) ∈ E(Γ) and (j, k) ∈ E(Γ) with
color G.

Directed Colored Multigraph Betweenness Decision Problem: Given the directed
colored multigraph Γ, is there a total order on V (Γ) such that ∀[i><j><k] ∈ C (Γ)
either i < j < k or i > j > k?

The reformulation as an optimization problem that maximizes the number of
edges is straightforward:
Directed Colored Multigraph Betweenness Problem:directed colored

multigraph betweenness
problem

Given a directed colored
multigraph Γ, find a total order on V such that E∗ ⊆ E(Γ) is maximal under the
condition that ∀[i><j><k] ∈ C (V (Γ), E∗) either i < j < k or i > j > k.

This problem can be viewed as an analog of the Minimum Feedback Arc Set
problem (Eades, X. Lin, and Smyth, 1993) for betweenness data. It has not be
studied so far.

Lemma 43. The (decision version of the) Directed Colored Multigraph Betweenness
Problem is NP-complete.

Proof. Every set C (Γ) of triples can be obtained from an edge-colored multigraph
Γ (with vertices corresponding to MSA-blocks and colored edges corresponding to
adjacencies deriving from a genome identified by the color). Thus, the total order
on the vertices of Γ is a solution of the Directed Colored Multigraph Betweenness
Problem if and only if the answer to the NP-complete Betweenness Problem is
positive.

In the example of Figure 42 the optimal solution of the Directed Colored
Multigraph Betweenness Problem retains all adjacencies and creates an unique
coordinatization (up to orientation) that leaves all MSA-blocks ordered as drawn.

Note that here a direct graph is used as the backbone. It could also be used
an undirect graph. In fact, the irrelevance of direction is an important feature of
betweenness. The undirected version (Colored Multigraph Betweenness Problem)
is equivalently formulated. The difference is the definition of C (Γ) for undirected
graphs that ignores the direction. Thus, even Lemma 43 can be applied with the
same proof to the undirected version.

Chapter 4. Supergenome 107

Even if the undirected solution is in some way more natural, the directed version
is used because the supergenome graph is directed. However, after it is constructed
from paths, the solution is independent of the version used.

4.5.1 Seriation
An alternative framework for solving the SSP by construction of a preferred ordering
is seriation. The Robinson seriation problem (Robinson, 1951) starts from a dissim-
ilarity measure d : X ×X → R, and seeks a total order γ on X that satisfies the
inequality Robinsonian

dissimilaritiesmax{d(γ(i), γ(j)), d(γ(j), γ(k))} ≤ d(γ(i), γ(k)) . (4.2)
A dissimilarity d for which an ordering γ exists that satisfies Equation 4.2 for all
γ(i) < γ(j) < γ(k) is called Robinsonian. It is worth noting that Robinsonian
dissimilarities are intimately related with pyramidal clustering problems (P. Bertrand,
2008; P. Bertrand and Diatta, 2017).

The seriation problem (Liiv, 2010; Robinson, 1951) consists of finding a total
order for which the given pairwise distances violates the Robinson conditions as little
as possible. To link this seriation problem with the Directed Colored Multigraph
Betweenness Problem or Betweenness Problem a collections C (X) of triples is
considered such that

[i><j><k] ∈ C (X) −→ max{d(γ(i), γ(j)), d(γ(j), γ(k))} < d(γ(i), γ(k)) (4.3)

Clearly, if the dissimilarity is Robinsonian, then γ defines a total order on X that
solves the Betweenness Problem for (X,C (X)).

The relevant optimization task in this context is to minimize the number of
ordered triples that violate Equation 4.2. A variety of heuristics for this problem
have been developed, see e.g. Hahsler, Hornik, and Buchta (2008). It is important
to note, however, that in the setting the distance between MSA-blocks is not
defined directly. In order to obtain a seriation problem that approximates the SSP
a heuristic is needed that summarizes the distances between two MSA-blocks in all
genomes and reflects the betweenness relationships. For pangenome-like models,
the cost function advocated in Nguyen, Hickey, Zerbino, et al. (2015) is a very
plausible choice.

4.6 Graph Simplification

Each of the plausible models for the “Supergenome Sorting Problem” discussed in
the previous sections leads to NP-hard computational problems. The size of typical
genome-wide alignments by far exceeds the range where exact solutions can be
hoped for, except possibly for the smallest and most benign examples such as the
ones used as examples in Herbig et al. (2012). Therefore, only fast heuristics can
be used. This section focus on the conceptual ideas behind the simplification steps.
More detailed implementation details are given in Section 4.7.

Nevertheless it is possible to isolate certain sub-problems that can be solved
exactly and independently of the remainder of the input graph. Since “linearized”

108 Chapter 4. Supergenome

portions of the vertex set can be contracted to a single vertex set, this leads to a
reduction of problem size.

Lemma 44. If the supergenome graph Γ is a directed acyclic graph (DAG) then
topological sorting of Γ solves the Directed Colored Multigraph Betweenness Prob-
lem.

Proof. In this case betweenness is established exactly by the directed paths in the
DAG. Hence any topological sorting preserves all betweenness triples of Γ and
thus presents a perfect solution to the Directed Colored Multigraph Betweenness
Problem as well.

This simple observation suggests to identify subgraphs with DAG structure and
to replace them with a representative for each replaced DAG. These can later be
replaced by the solution that is created with topological sorting. Note that this does
not necessarily preserve optimality. It is conceivable that a local DAG structure has
to be broken up into two disjoint subsets that are integrated in larger surrounding
structures in a way that requires reversal of the edge directions in one or even both
parts. Nevertheless, if the local DAG structures are sufficiently isolated they are
likely to be part of the optimal solution as an unit. The motif that describes such a
local DAG structure is a superbubble. Thus, a superbubble simplifier is applied to
the supergenome graph.

An other applied simplifer is a dead end simplifier. To recap a dead end is a
source or sink vertice v in the supergenome graph with only a single neighbor u.
These can be sorted together with their unique neighbor u. Γ is thus simplified
by contracting v and u, i.e., placing the source v immediately before u and sink v
immediately after u.

In some cases it is helpful to reverse the direction of the coordinate system
of a single species. This is in particular the case if a single genome is reversed
compared to all others. The inversion of an entire path does not change the solution
of the Directed Colored Multigraph Betweenness Problem but can make it easier
to apply some of the reduction heuristics discussed above. In particular, if the
relative orientation of the coordinatizations could be fixed in an optimal manner,
the betweenness problem reduces to a much easier topological sorting problem.
Finding this optimum, however, is equivalent to the Betweenness Problem, which is
a NP-hard. Hence, again a local heuristics is used.

Definition 41.mini-cycle Let Γ be a supergenome graph. A pair of vertices v, w ∈ V (Γ)
such that there are edges (v, w) and (w, v) in E(Γ) is a mini-cycle.

Mini-cycles naturally are removed by removing one of the two edge directions
between v and w. More precisely, the less supported direction of an edge is dropped.
The estimate for support is evaluated in a region around a mini-cycle since adjacent
mini-cycles may yield contradictory majority votes.

Definition 42.mini-cycle complex Two mini-cycles are connected with each other if they share a
vertex. A mini-cycle complex C is a maximal connected set of mini-cycles.

Chapter 4. Supergenome 109

Figure 43: Step-wise resolution of a complex of mini-cycles. (i): Starting point. (ii):
The mini-cycle complex is highlighted. The complex is created from the mini-cycles x1, 2

x

,

x2, 3

x

, and x2, 5

x

. Note that the edges (1, 3) and (5, 3) are not contained in the complex.
The best supported directions are between (1, 2). (iii): This direction between (1, 2) is
set. The orange edges are reversed (marked by dashed lines). The adjacency {1, 2} is
decided and is no longer considered (marked with dark grey). (iv): In this step the best
supported direction is (2, 3) and the graph is updated correspondingly. (v): Adjacency
{2, 5} is left. No direction is superior. Since vertex 2 is solved previously it is used. This
leads to direction (2, 5). (vi): Then the completed complex is decided and the edges that
contradict with the decisions are removed. Note that the circle x3, 4, 5, 3

x

that is not part
of the complex is not removed.

Lemma 45. The mini-cycle complexes of a supergenome graph Γ form a unique
partition of the set of all mini-cycles. Any two classes of this partition are vertex
and edge disjoint.

Proof. Consider the the graph H whose vertices are the mini-cycles, and there are
edges between any two mini-cycles that share at least one vertex. Then every mini-
cycle complex C is a connected component of H. Since the connected components
of a graph are uniquely defined, disjoint, and form a cover, they partition the vertex
set of H. Every mini-cycle, furthermore, forms a connected subgraph of Γ by
construction. Since any two mini-cycles that contain a common vertex belong to
the same mini-cycle complex, two mini-cycle complexes cannot have a vertex in
common. This implies that they are also edge disjoint.

The mini-cycle complexes therefore can be resolved independently of each other.
The target is to remove edges that create cycles in order to obtain a DAG that
can then be subjected to topological sorting. However, this topological sorting is a
solution of the Directed Colored Multigraph Betweenness Problem for a subgraph.
This is still a hard problem, so that a heuristic approach is again utilized. This step
only attempt to remove mini-cycles. Cycles that connect mini-cycle complexes with
each other or with other vertices in the graph are untouched and have to be dealt
with in a subsequent step.

The local sorting within a complex C is achieved by considering adjacencies. To
this end each adjacency is annotated with the number of edges and the ratio of the
edges in the two directions. The best supported edges are identified as those with a

110 Chapter 4. Supergenome

high multiplicity and a strong bias for one direction over the other. This choice of
a direction is propagated. If a directed edge has more than one possible successor,
first propagate along the one with the largest support for the proposed direction.
The issue now is when exactly to stop propagating this information. Clearly, it is
forbidden to orient an edge that would close a directed cycle. Any such edge is
instead seeded with the reverse directional information.

As result of this procedure it is possible that parts of a directed path from
a given genome received contradictory orientations in different regions. If this is
the case, the edge crossing the boundary between the differently oriented regions
must be removed. Finally, the heuristic may terminate and still leave some edges
unoriented. This indicates that the orientations are contradictory and need to
be reversed. An example of the mini-cycle resolution process is shown in Figure
Figure 43.

4.7 Supergenome Pipeline

The complete pipeline to create the supergenome can be divided into five parts:

i) Curation of input data sets

ii) Graph simplification one

iii) DAG construction

iv) Graph simplification two

v) Seriation

(i) is described in Subsection 4.7.1, (ii-iv) is described in Subsection 4.7.2, and
(v) is described in Subsection 4.7.3. A more detailed overview in form of a flow
diagram is given at Figure 44.

4.7.1 Curation of input data sets
Three genome-wide multiple sequence alignments (gMSAs) are investigated here.
The smallest set, referred to as B (bacteria) below, is an alignment of four
Salmonella enterica serovars. This alignment is produced with Cactus (Paten,
Earl, et al., 2011) using the Salmonella enterica Newport genome as reference
and comprises 13 416 MSA-blocks, 50 932 sequence fragments, and 18 047 456
nucleotides. The medium-size set, termed Y (yeast), is an alignment of seven
yeast species that uses the Saccharomyces cerevisiae genome as references. It
comprises 49 795 MSA-blocks composed of 275 484 sequences fragments that
contains 71 517 259 nucleotides. The third, much larger set F (fly) is an alignment
of 27 insect species that uses the Drosophila melanogaster genome as references.
It comprises 2 112 962 MSA-blocks composed of 36 139 620 sequence fragments
hat contains 2 172 959 429 nucleotides. More detailed information of the data sets
are given in Appendix A.

Chapter 4. Supergenome 111

Figure 44: Flow diagram of the complete supergenome pipeline. The pipeline can
be divided into five steps: First the input data is filtered (orange), secondly the first
round of simplifier is applied to the supergenome graph (dark green), thirdly all cycles
are removed (pink), fourth the second round of simplifier is applied (bright green), and
the last step is the seriation of the supergenome (blue). Note that after every step an
observable data set exists. They are used for the analysis of the pipeline (Chapter 5).

112 Chapter 4. Supergenome

The two large gMSAs are produced by the multiz pipeline and are downloaded
from the UCSC genome browser (Kent et al., 2002). They are, as discussed above,
injective but not irredundant. In order to remove spurious MSA-blocks the input
MSA-blocks are filtered with respect to first length, then score, and finally mutual
overlap. Very short MSA-blocks are almost certainly either spurious matches or
they are inserted to bridge gaps between larger MSA-blocks. Consequently, they
convey little or no useful information. Therefore, all MSA-blocks are removed with
a length ≤ 10 nt.

Since gMSAs tend to contain also very poorly aligned regions a minimum
similarity is required, expressed here in the form of sum-of-pairs blastz scores
(Chiaromonte, Yap, and W. Miller, 2001). Since these scale linearly with the number
of columns | columns(B)| of the MSA-block B and the number

(
r
2
)
of pairwise

alignments formed by the r rows in B, is normalized with
(
r
2
)
`(B) to obtain a

similarity measure that is independent of the size of the MSA-block. Based on
the parametrization of blastz, the threshold is set to a normalized score of −30,
which corresponds to the gap extension penalty.

The coordinatization of supergenomes depend on the uniqueness of coordinate
projections. Three major reasons are observed for overlaps, i.e., genomic regions
that appear in more than one alignment: (i) the sequence is duplicated in some
species. Then multiz tends to align the corresponding unduplicated sequence to
both duplicates. (ii) Spurious similarities in particular in poorly conserved regions
may lead to alignments containing a sequence element twice at the expense of
the second copy. (iii) Short overlaps at the end of MSA-blocks may appear due
to difficulties in determining the exact ends of alignable regions. The first two
causes introduce undesirable noise and uncertainties. Therefore, all such overlapping
MSA-blocks are removed. Since there is no easy way to determine which one of
two overlapping MSA-blocks is correct, both copies are removed. The third case,
in contrast, does not disturb the relative order of MSA-blocks and thus can be
ignored. The overlap filter is applied after low quality alignments already have been
removed from the data set.

An overlap of 20 nt is tolerated at the borders of MSA-blocks. This cutoff is
designed to remove ambiguous alignments, while avoiding the removal of MSA-
blocks that overlap by a few nucleotides owing to overlapping extensions of local
blastz seeds. In addition sequences that completely overlap other sequences are
removed regardless of their size to further reduce the noise introduced by spurious
alignments. A stringent procedure is applied and all MSA-blocks are removed that
contain sequences tagged for removal. In practice, this step removes only a tiny
fraction of the MSA-blocks and thus does not significantly influence the coverage
of the retained data.

The initial data filtering steps removed almost 35% (40%, 30%) of the MSA-
blocks from data set F (Y, B). The majority are eliminated because of their
minimal length. About 8.5% (27%, 0%) of the MSA-blocks are removed because
they contained non-unique sequences. The sequences in the MSA-blocks that are
removed with all filters contain less then 15% (26%, 0.4%) of the nucleotides in
the alignment. Hence more than 85% (74%, 99%) of the sequence information of

Chapter 4. Supergenome 113

the alignment is intact and the quality of the data is significant better. A more
detailed summary of the filtering is compiled in Appendix B.

4.7.2 Graph simplification and DAG construction

The algorithmic ideas and their justifications for the graph reduction steps have
already been discussed in Section 4.6. This section briefly address implementation
issues as well as particular choices of cost functions and parameters that are
discussed in a more general setting above.

The filtered data is used to create an initial supergenome graph. Then the
three different graph simplifiers are iterated until no further reduction steps can
be applied: the mini-cycle remover, the dead end simplifier, and the superbubble
simplifier. The individual simplifiers are straightforward implementations of the
basic ideas outlined above. The mini-cycle remover first identifies the mini-cycles,
aggregates them into non-overlapping complexes, and then proceeds to remove
contradictory edges in a greedy manner. The dead end simplifiers first check for
each vertex in the input graph whether it is a valid sink or source. If a vertex is valid,
it is merged with the neighbor. The superbubble simplifiers detect superbubbles
with the algorithm Superbubble# described in Chapter 3. Then it merge the
superbubbles to one vertex. A more detailed description of the simplifiers is given
in Section B.2.

The mini-cycle remover works more effectively on a single big complex than
on many small ones separated by narrow gaps. The other two simplifiers therefore
are applied until a fixed point is reached to close some of these gaps. The entire
procedure is iterated until the mini-cycle remover cannot change the graph any
further.

Once a fixed point is reached directed cycles are removed. This amounts to
solving the minimum feedback arc set problem (MFAS), which is known to be
NP-hard (Karp, 1972). Given the size of the input graphs, the approach is bounded
to linear-time heuristics. Here Algorithm GR (Eades, X. Lin, and Smyth, 1993) is
used because it is known to work particularly well on sparse graphs. Cycle removal
typically creates new possibilities to simplify the graph. For instance, a sink is
created whenever the last outgoing edge of a vertex is removed. The new dead end
can then be simplified further. The graph simplifiers are applied again after the
cycle removal step.

The mini-cycle remover is not used in this second phase because it is not
applicable to directed acyclic graphs (DAGs) by construction. Instead, a generalized
version of the dead end simplifier is used in which a source s may have more
than a single successor v, provided v is a predecessor of all other successors of
s. The position of source s in the DAG is determined by v and thus s can be
placed immediately before v. The corresponding arrangements for a sink and its
predecessor is treated analogously.

114 Chapter 4. Supergenome

4.7.3 Seriation
Finally, the common coordinate system is created by seriation of the DAG. The
resulting supergenome, i.e. linear order of the vertices of the graphs corresponds to
a linear order of all MSA-blocks. In particular, vertices resulting from a simplifier
may contain more than one MSA-block. Those MSA-blocks are sorted already and
thus are inserted as a single block. Seriation is naturally divided into two steps.
First, topological sorting is used to calculate an initial linear ordering from the
DAG. It is desirable that, if possible, two nodes v and w are placed consecutively
whenever there is an edge (v, w) in the final DAG. This can be archived in with a
DFS-topological sorting. Furthermore, the sibling order follows the support of the
successors. In the way that the less supported successor comes first and the best
supported successor the last.

The order obtained in this manner may not be optimal w.r.t. its agreement
with the order of the blocks in the genomes. It provides a good starting point,
however, for the final optimization step, which iw phrased as minimizing the number
of triplets (i, j, k) for which the Robinson condition, Equation 4.2 (Page 107), is
violated. The following distance measure is used:

d(i, k) =


1

|(i,k)| if an edge (i, k) exists,
mini<j<k{d(i, j) + d(j, k)} if a path from i to k through j exists,
∞ if no path from i to k exists,

(4.4)
where |(i, k)| is the number of edges from i to k. Since d is a good measure of
co-linearity only for short distances, the path length is limited in Equation 4.4 to a
small number of l edges. Here l is set to 10 in the implementation. In addition this
reduces the effort of computing the distances from O(|V (Γ)|2) to O(|V (Γ)|) as a
consequence of the sparsity of the input graph Γ.

A gradient descent-like optimization algorithm is used to minimize the number
of triplets for which the Robinson condition, is violated. Two nodes are siblings if
they either share a predecessor in the DAG or if they are both sources. The move
set for the gradient descent consists of swaps of siblings only. In addition, it is
allowed to move a node directly in front of its sibling. The gradient descent is
computed exhaustively by generating and evaluating each potential move. Since
non-overlapping swaps do not influence each other, greedily a maximal set of
non-overlapping swaps is execute in a single optimization step.

Chapter 5. Applications 115

CHAPTER 5
Applications

Contents
5.1 Superbubbles . 116

5.1.1 Implementation 116
5.1.2 Runtime . 118
5.1.3 Appearance of Superbubbles 118
5.1.4 Simulate Supergenome Distribution 122

5.2 Supergenome . 126
5.2.1 Performance of individual components 127
5.2.2 Assessment of the quality of supergenomes 128
5.2.3 Quality of supergenome coordinate systems 130
5.2.4 Yeast Tricaboxylic Acid Cycle 132

116 Chapter 5. Applications

In this chapter, applications are presented that use the theory of the previous
chapters. First, in Section 5.1 applications of Chapter 3 is shown. Secondly, in
Section 5.2 applications of Chapter 4 is demonstrated.

5.1 Superbubbles

The theory of superbubbles has two main applications. On one side, the new
detection algorithm and its performance gain over the previous algorithm. On the
other side, superbubbles can be used as graph properties. Both are discussed in
this section.

5.1.1 Implementation
The novel detection algorithm from Algorithm 1 (Page 65) and Algorithm 4 (Page 96)
are implemented in Python and are available as Linear Superbubble Detector (LSD).
LSD can be installed using pip1. The source code is available on GitHub2. It is
intended as a reference implementation emphasizing easy understanding rather than
a performance-optimized production tool. The underlying graph structures make
use of NetworkX (Hagberg, Schult, and Swart, 2008), which has the benefit that
many input formats can be parsed.

SUPBUB3 (Brankovic et al., 2016) is the only other publicly available imple-
mentation of a superbubble detector. Unfortunately, it has some bugs e.g., in the
handling of successors in the depth-first search (DFS) tree that leads to problems
with superbubbles with a back edge. Furthermore, an analysis of the code shows,
that the construction of the auxiliary graphs strictly follows Sung et al. (2015).
Hence it cannot serve as a reference implementation.

In order to compare the new approach to the state-of-the-art algorithm, the
workflow of Sung et al. (2015) and Brankovic et al. (2016) is re-implemented
using the same python libraries. This allows a direct comparison that focuses on
the algorithms rather than the differences between programming languages and
compilers. The partitioning workflow can be subdivided into two separate tasks:
(1) the construction of the DAGs, and (2) the recognition of superbubbles within
the DAG. For the first task, the new approach and the algorithm of Sung et al.
(2015) (augmented by a simple linear-time filter to detect the false positives) are
compared. For the second part, the new stack-based approach is compared with
the range-query method of Brankovic et al. (2016).

This gives four algorithm combinations that are based on the partitioning
workflow: Algorithm 1 (Page 65) and Algorithm 2 (Page 71) (LSD), Sung et al.
(2015) approach (with extra filtering) and Algorithm 2 (Page 71) (S + LSD),
Algorithm 1 (Page 65) and Brankovic et al. (2016) approach (LSD + B), and Sung
et al. (2015) approach (with extra filtering) and Brankovic et al. (2016) approach
(S + B). The last one is the state-of-the-art algorithm.

1https://pypi.org/project/LSD-Bubble/
2https://github.com/Fabianexe/Superbubble
3https://github.com/Ritu-Kundu/Superbubbles

https://pypi.org/project/LSD-Bubble/
https://github.com/Fabianexe/Superbubble
https://github.com/Ritu-Kundu/Superbubbles

Chapter 5. Applications 117

Figure 45: Component Diagram of Linear Superbubble Detector. The task to detect
superbubbles (yellow) has a graph as input and superbubbles as output. There are to
different approaches to do this: a direct approach (blue) and the partitioning workflow
(green). The later uses two subcomponents: First, the graph is transformed into DAGs,
and then the superbubbles are detected on this DAGs. The state-of-the-art algorithm
(red) consists of two components from the literature. For each, a novel component is
presented (orange). Since the subcomponents are interchangeable, four combinations in
the partitioning workflow exist. Thus, five different approaches can be used to detect
superbubbles.

Beside this in Algorithm 4 (Page 96) a third new approach is presented. This
approach does not need the extra partitioning. This approach is called Directbubble
afterwards. An overview as component diagram is shown in Figure 45.

The implementation of Directbubble deviate from the presentation in Chapter 3
in two minor details. First, instead of using the reverse postorder of the DFS-tree,
directly the postorder is used. Further the corresponding (trivial) redefinitions
of the helper functions OutChild(.) and OutParent(.) is used. Second, the
determination of the cycles, the identification of the roots, and the identification of
the superbubbles is not completely separated. Instead, cycle search, root detection,
and superbubble identification is immediately performed for each DFS-tree. Since
cycles and superbubbles necessarily completely are contained within the DFS-trees,
this does not affect the correctness of the algorithm. As a by-product, a speedup is
obtained by a constant factor because cycles reachable within a given DFS-tree are
marked as “already processed” in the superbubble detection step and hence are not
(superfluously) considered as candidate additional roots.

LSD is used as reference implementation and to benchmark the runtime (See
Subsection 5.1.2). It is not useful for a productive implementation. To fill this
gap a second implementation in C++ is created. This version implements only
Directbubble and is called CLSD4. It is optimized to work fast and memory efficient.
Additional, a third implementation of Directbubble in Java exists as part of the
supergenome pipeline.

4https://github.com/Fabianexe/clsd

https://github.com/Fabianexe/clsd

118 Chapter 5. Applications

5.1.2 Runtime

Table 1 summarized the empirical results for test data of different sizes taken from
the Stanford Large Network Dataset Collection (Leskovec and Krevl, 2014). Also
the unsimplified supergenome graph of data set Y is tested. Although the running
times are comparable, is LSD consistently performs better than the alternative in
the partitioning scheme for both tasks. The combined improvement of LSD is at
least a factor of two in the examples tested here.

For most data sets, an approximately three-fold speedup of Directbubble
compared to LSD is observed. The exception is the Slashdot data set for which no
performance gain is observed.

To understand this outlier, it is necessary to understand the source of the
speedup in the other test cases. In a typical case, both Directbubble and LSD
performed three depth-first searches: in LSD, they are used to determine strongly
connected components (SCCs), create auxiliary graphs, and detect superbubbles.
Directbubble uses them to identify the cycles, quasi-legitimate roots, and finally
the superbubbles. Both need to handle exceptional cases. LSD requires the
construction of the Sung graph if a SCC coincides with a connected component of
the input graph (rather than being just part of it). Since the Sung graph is twice
the size of the SCC, this roughly doubles the running time. Directbubble behaves
exceptionally for vertices that are reachable from a source. In this case, the detection
of cycles and quasi-legitimate roots in cycles is skipped, incurring a substantial
speedup. If a graph has neither a SCC that is also a connected component, nor
large subgraphs reachable from a source, then LSD and Directbubble essentially
performed the same computations and thus performed very similarly. The Slashdot
data set is such a case. Typically, however, directed graphs have some sources
so that Directbubble outperforms its competitors on most real-life graphs. All
results and methods are available in the git repository5.

This performance study shows Directbubble to be the new best algorithm
for detection superbubbles. With the data sets used here, it gives a best speedup
of twelve (Amazon) and a worst case speedup of two (Slashdot) discussed above.
Thus, is the the predicted speedup on the most graphs higher then two.

5.1.3 Appearance of Superbubbles

The search for superbubbles only makes sense if superbubbles exist. Thus, a
significant result are graph types containing superbubbles and graph simulation
models containing superbubbles.

Onodera, Sadakane, and Shibuya (2013) stated the existence of superbubbles in
assembly graphs. In supergenome graphs, a quantity statement on a broad base is
missing. That superbubbles may exist in social networks is hinted by Table 1, where
superbubbles are detected in some social networks. This assumption is verified with
an evaluation of a more extensive set of graphs from the Stanford Large Network
Dataset Collection (Leskovec and Krevl, 2014).

5https://github.com/Fabianexe/Superbubble

https://github.com/Fabianexe/Superbubble

Chapter 5. Applications 119

Table 1: Comparison of running times. The following five combinations of algorithms
are: Db (Directbubble) refers to the new approach described in Algorithm 4 (Page 96).
LSD (using the auxiliary graphs ĜC and the stack-based superbubble detector). S + LSD
combines the Sung graphs as auxiliary graphs (Sung et al., 2015) with LSD stack-based
detector plus a post-filter for the false positives. LSD + B uses the LSD graph construction
with the range-query-based detector of (Brankovic et al., 2016), and S + B uses Sung
graphs together with the range-query-based detector, as well as the necessary post-filters.
All computations are performed on a 2.5-GHz quad-core Intel Core i7 processor (Turbo
Boost up to 3.7 GHz) with 6-MB shared L3 cache and 16 GB of 1600-MHz DDR3L
onboard memory. Test data sets are taken from the Stanford Large Network Dataset
Collection (Leskovec and Krevl, 2014) and the supergenome graph Y. For each tested
graph, the number of vertices N , the numbers of edges M , and the number S of
superbubbles is listed.

Data N M S
Running Times (s)

Db LSD S+LSD LSD+B S+B
Y 49,795 130,993 325 1 3 4 5 9
EU Mail 265,214 420,045 13,285 5 14 16 30 32
Slashdot 82,168 948,464 0 16 16 30 22 37
Amazon 403,394 3,387,388 3 13 59 93 84 159
Google 875,713 5,105,039 6,477 26 95 147 152 255
Wikipedia 2,394,385 5,021,410 4,737 52 160 164 382 418

For the simulation models, the expectation is that they do not reflect the results
of real data sets. This expectation is based on the fact that the models are created
without considering superbubbles.

The absolute number of superbubbles are not significant. The size of a super-
bubble must also be considered. A large superbubble is more interesting than a
mini superbubble. Thus, the number of vertices that are covered by a superbubble
is used instead of the number of superbubbles.

However, different graphs have different numbers of vertices. Thus the number
must be normalized by the number of vertices. Since every vertex can only be
either covered by a superbubble or not, a value between zero and one is the result.

It makes further sense to determine the vertices that are covered by non-
trivial superbubbles, i.e., none mini superbubbles. The reason for this is that mini
superbubbles have less structure then non-trivial superbubbles. However, even the
largest graph can have no superbubbles. Thus special attention is given if at least
one superbubble exists in the graph.

First, some supergenome data sets are considered. For this, eight data sets
from the UCSC website (other than the three used in Chapter 4) are downloaded.
Then the alignments are filtered, and the original graph is created following the
procedure in Figure 44 (Page 111). The results of these eight data sets are shown
in Figure 46.

Each of the eight data sets contains mini superbubbles and non-trivial super-
bubbles. In every graph, the number of vertices that are covered by non-trivial
superbubbles is higher than the number of vertices that are covered only by mini

120 Chapter 5. Applications

Figure 46: The superbubbles in different super-
genome graphs. The data sets and the exact values are
described in Appendix D. The number of superbubbles
is normalized by the number of the vertices. The black
symbols are all superbubbles, and the red symbols are
the non-trivial superbubbles. The data sets are ordered
by the normalized number of superbubbles.

Figure 47: The superbubbles in different graphs of
the Stanford Large Network Dataset Collection. The
data sets and the exact values are described in Ap-
pendix D. The number of superbubbles is normalized
by the number of the vertices. The black symbols are
all superbubbles, and the red symbols are the non-trivial
superbubbles. The data sets are ordered by the normal-
ized number of superbubbles. If a value is zero a + is
used as the symbol and otherwise a ◦.

superbubbles.
The last three data sets have significantly more species than the first five data

sets. In the first five data sets, are three to seven species and in the last three data
sets 20 or 30 species. The superbubble reduction in the last three data sets hints
that the fraction of covered vertices decrease if more species are included in the
data set. In fact, except for the sixth data set, this rule holds.

However, even in the last data set more then sixty thousand superbubbles exists,
and the largest contains over a hundred vertices. Thus, it makes sense to assume
that in every supergenome data set, superbubbles exist. Where in more complex
data sets, the relative number is reduced.

Now, since the existences of superbubbles in supergenome graphs are shown,
other graph types are considered. The Stanford Large Network Dataset Collec-
tion (Leskovec and Krevl, 2014) is used as the source of other real graphs. Thirty-
seven different data sets are downloaded from there website, and superbubbles are
detected in them. The results are shown in Figure 47.

These graphs contains significantly fewer vertices covered by superbubbles.
Besides the first two data sets, each data set has less than three percent of
the vertices covered by superbubbles. In only eleven of the data sets non-trivial
superbubbles exists. Furthermore, if non-trivial superbubbles exist, they only cover
a tiny fraction of the vertices.

However, in only four data sets, it is impossible to detect any superbubble.
Thus, the majority of graphs contains superbubbles. Therefore, it is plausible that
simulated graphs of this type should contain a small fraction of superbubbles, and
even a smaller fraction of non-trivial superbubbles should also be included.

Chapter 5. Applications 121

Figure 48: The superbubbles in different graphs of
the LDBC Graphalytics. The data sets and the exact
values are described in Appendix D. The number of
superbubbles is normalized by the number of the vertices.
The black symbols are all superbubbles, and the red
symbols are the non-trivial superbubbles. The data sets
are ordered by the normalized number of superbubbles.
If a value is zero a + is used as the symbol and otherwise
a ◦. Three different models are used. The models are
indicated in blue under the data sets.

The next step is to check if simulated data can reproduce this results. First,
are published simulated data is used. The LDBC Graphalytics benchmark (Capotă
et al., 2015) has created a default set of simulated data on which graph algorithms
can be tested. They use three different models. The first model is an old model
(g500) that is from another benchmark: the graph500 benchmark (Murphy et al.,
2010). The second model is the facebook model (fb) that is the initial model of the
benchmark (Capotă et al., 2015). Both models work by scaling up a specific graph
that is observed in reality. The last model (zf) is a graph that has a Zipf distribution
as degree distribution (Metcalf and Casey, 2016). All these generate undirected
graphs for the benchmark. However, to use the graphs, the downloadable edge list
is interpreted as directed graphs. The results of some of these data sets are shown
in Figure 48.

The data sets have three distinct types of results: First, one type has 5− 6%
of the vertices covered by superbubbles. This type also has a small fraction of
non-trivial superbubbles. The second type has around 0.3% covered and no non-
trivial superbubbles. The remaining data sets have no superbubbles or almost no
superbubbles.

These types correspond to the different models, where zf have most superbubbles,
g500 have some and fb no superbubbles. All models have fewer superbubbles than
the supergenome graphs. Thus, these cannot be used as models for such graphs.
However, the zf and the g500 model have comparable results to the Stanford Large
Network Dataset Collection. Thus, these models are suitable to simulate data for
such graphs.

The literature also knows other graph models that are not part of the LDBC
Graphalytics benchmark. Thus, simulated graphs are created by using some of the
models. The first model (BA) is the model of Barabási and Albert (1999) that
uses the preferential attachment method to create graphs. The second model (ER)
is the model of Erdös and Rényi (1959). In this model, every edge has the same
probability to exists. The model of Watts and Strogatz (1998) is used as the last
model (WS). It produces graphs with short average path lengths and high clustering
coefficient. The results are shown in Figure 49.

An accidental resemblance by low vertex numbers is prevented by fixing the
number of vertices to 100.000, and repeating each parameter combination three
times. Furthermore, for the ER model, different edge probabilities are tested, and

122 Chapter 5. Applications

Figure 49: The superbubbles in different simulated
graphs. The data sets and the exact values are de-
scribed in Appendix D. The number of superbubbles is
normalized by the number of the vertices. The black
symbols are all superbubbles, and the red symbols are
the non-trivial superbubbles. The data sets are ordered
by the normalized number of superbubbles. If a value is
zero a + is used as the symbol and otherwise a ◦. Three
different models are used. The models are indicated in
blue under the data sets.

for the WS model, different rewiring probabilities are tested. Thus, altogether 21
data sets are tested. However, only the BA model create any superbubble but no
non-trivial superbubbles.

Thus, concerning superbubbles, the BA model looks suitable for social graphs,
but the ER and WS model does not cover any real-world graph class. Of course, all
models have more parameters as here are tested; thus, maybe in different settings,
more superbubbles can be created.

However, none of the three models should be fitting to create any non-trivial
superbubble. Only a rear random event could create small non-trivial superbubble.
Thus, these models also are not fitting for the supergenome graphs.

5.1.4 Simulate Supergenome Distribution
As shown before the literature leaks a graph simulation model that creates super-
bubble distributions comparable to supergenome graphs. Thus, it makes sense to
take a more in-depth look at how such distributions can be created.

Supergenome graphs represent, in some way the evolution of the species in
the background genome-wide multiple sequence alignment (gMSA). Thus, it is
possible to use a genome simulation tool like simuG (Yue and Liti, 2019) to generate
genomes and create a gMSA afterward from this simulated genomes. However, this
creates computational overhead for simulating a graph. Furthermore, the indirect
control over the graph makes it hard to adjust it to conform basic properties of the
graph like vertex count.

Thus, a more abstract method is chosen to simulate this data. Every genome
represents an order of the multiple sequence alignment (MSA)-blocks which must
not contain every MSA-block. Note that this ignores the existence of chromosomes
or contigs, but this is a possible simplification. Thus, a supergenome graph is
constructed from a small number of paths.

These paths are not constructed entirely randomly. They evolve from one
original order by mutations and specifications. Thus, this evolution is represented in
a tree of orders. The root represents a simple identity order of a specific size. Then
this order creates two new order by appealing two independent sets of mutations.
This process can be repeated on the resulting two children and on this way a full
binary tree of a given height can be constructed.

Chapter 5. Applications 123

The tree leaves are then used in the graph as paths. Thus a tree of height
three creates a graph with eight paths. By this process, a simplified evolution is
simulated. The open questions are: which mutations should be considered and how
these mutations are applied.

If mutations are ignored, the result would be a graph that corresponds to one
path because all orders would be equivalent. Mini superbubbles would completely
cover such a graph. Thus, to recover real data mutations should generate non-trivial
superbubbles and reduce mini superbubbles. Two types of mutations are considered
independently: the single nucleotide mutations and the chromosome mutations.

First, chromosome mutations are considered. Recap that four chromosome
mutations exist: A deletion that removes some MSA-blocks, an inversion that
inverse the order of some MSA-blocks, the insertion that moves one MSA-block to
another position, and the translocation that interchange two MSA-blocks. Note
that the term MSA-block is used here. In general the mutations are defined over
parts of the genome but in the simulation mutated parts are restricted to the size
of MSA-blocks. This is a valid simplification because only mutations can create
MSA-blocks.

An overview of these mutations and their consequences in the supergenome
graph are shown in Figure 50. The only mutations that result in graphs with
superbubbles are the deletion and the insertion. However, in the case of the
insertion, it is a mini superbubble that would also exist without any mutation.
Thus, the only chromosome mutation that can create a non-trivial superbubble
is a deletion. Note that the other mutations could create superbubbles if, in
every sequence, a chromosome mutation happen. However, this needs a specific
combination of mutations and thus are not very likely.

Furthermore, such mutations could quickly destroy non-trivial superbubbles by
creating a cycle. Thus, it is a valid assumption that chromosome mutations are
more likely reducing the number of superbubbles and not creating more non-trivial
superbubbles. A result of this observation is that the non-trivial superbubbles must
be mostly create by single nucleotide mutations.

The first question is how these mutations can influence the graph at all. A
single mutation in a MSA-block should not influence at all. This one change is
reflected in the MSA but nothing else changes. However, if many of the mutations
appear in one MSA-block, the gMSA does not any longer represent the sequence
as one MSA-block but two different MSA-blocks.

Thus, the single nucleotide mutations can be observed as the change of the
MSA-block to a new MSA-block. Alternative a sequence could be not characterized
as a new MSA-block but as an already existing MSA-block. This characterization
can happen if, by chance, the mutations create a sequence that is similar to an
already existing sequence.

Note that if a mutation creates a new MSA-block, the number of vertices
is incremented by one. On the other side, mutating the last appearance of a
MSA-block reduces the number of vertices by one. With other words, the resulting
number of vertices differ from the number of MSA-blocks in the root of the tree. If
every mutated MSA-block characterize as an existing MSA-block, the extreme case
would be that all orders consist only out of one MSA-block. However, this is not

124 Chapter 5. Applications

Figure 50: The different chromosome mutations and the resulting supergenome
graphs. For every chromosome mutation beside the duplication an example is shown. On
the top the starting sequence is given then the sequence that is created by the mutation.
At the button than the created supergenome graph is shown that contains both sequences.
This graphs shows for simplicity no multi edges. Note that only the graph of the deletion
contain a non-trivial superbubble. The duplication is not shown because it would only add
one edge (from the end to the beginning of the duplication) that creates a cycle in the
graph.

very likely. On the other side, if only new MSA-blocks are created, the extreme
would by that all orders do not share any MSA-block. Thus the graph consists of
independent paths and is entirely covered by mini superbubbles.

To show that this model is capable of generating enough non-trivial superbubbles,
graphs are simulated by using it. The simulation has four parameters. The number of
vertices at the start, this number is fixed to 100, 000 like in the previous simulations.
The second parameter is the number of generated orders, i.e., the three height.
The parameter values 4, 8, 16, and 32 are tested. This span includes the values of
the given real data sets. The third parameter is then the ratio of newly created
MSA-blocks by every mutation. For this parameter are three values tested: 0%
thus only old MSA-blocks are used, 90% thus every tens mutation matches an
already existing MSA-block, and 99% thus one in hundred mutations match an
existing MSA-block. The last parameter is then the mutation rate, i.e., how many
of the MSA-blocks in the order are changed. For this 1%′ to 20% is used. Which
means that from 100 MSA-blocks one or up to 20 MSA-blocks change. The results
are shown in Figure 51.

This simulation shows that single nucleotide mutations can create graphs that
are mostly covered by non-trivial superbubbles. Thus, this explains where such a
large number of non-trivial superbubbles arises from in the supergenome graphs.

To look in more detail in the results, first the fraction of newly created MSA-
blocks is analyzed. If no new MSA-blocks are created, no non-trivial superbubbles
appear at all. This result is not surprising since every mutation creates a cycle in
the graph. For the other two percentage, the larger percentage creates equal or

Chapter 5. Applications 125

Figure 51: The superbubbles in different simulated mutation graphs. The simulation
results for single nucleotide mutations. Each graphic shows for a fixed number of orders
and new MSA-block creation fraction the results for mutation rates from 1 to 20. The
mutation rate is shown on the x-axis, and the y-axis shows the fraction of vertices covered
by superbubbles. The black line corresponds to vertices covered by all superbubbles and
the red line corresponds to vertices covered by non-trivial superbubbles. Each row uses the
percentage given in front of the row for newly created MSA-blocks in a mutation event.
Every column uses the number of orders shown on the top.

126 Chapter 5. Applications

more superbubbles and non-trivial superbubbles than the other. This result can
again be explained with the lower number of created cycles.

Note that the percentage of one percent to randomly reassemble another MSA-
block is still very high compared for real data. Since real data is created with
alignments and alignment tools, try to prevent this reassemble. However, in reality,
similar effects could be created by a combination of duplication events and single
nucleotide mutations.

The second parameter is the number of orders. The result here is that higher
numbers create fewer superbubbles than lower numbers with fixed other parameters.
This result reassembles the same observation in real data sets. It can be explained
with the reflection that the larger tree stacks more mutations and thus has the same
effect as a higher mutation rate. On the other side, more genomes also mean that
the more edges are in the graph. Thus, by the same number of vertices, they have
a higher degree. A higher degree reduces the chances for non-trivial superbubbles.

The last parameter is the mutation rate. Here the behavior is more complicated.
After the simulation of only old MSA-blocks simply losing all superbubbles, they
are not considered in the following. Too low mutation rates create non-trivial
superbubbles but not enough to mimic the real data sets. However, the number
rises with greater mutation rate. This fast reaches a maximum and then the number
of covered vertices fast decrease. As mentioned before the number of genomes
works as a multiplier for the number of mutations. Thus the described effect can
be seen by lower mutation rates for larger numbers of genomes.

For the more massive data sets of 16 and 32 genomes and high mutations rate
the effect is such strong that new mini superbubbles are created. This behavior is
the result of the above describe separation of the paths. If every path is independent
of the other paths, the graph is covered with mini superbubbles, but no non-trivial
superbubble exists.

The simulation shows that single nucleotide mutations can create non-trivial
superbubbles, and they cover more of the graph than the real data sets. That more
superbubbles are created makes sense because the chromosome mutations that
can destroy some of the superbubbles are missing in this simulation. Furthermore,
it shows that in more massive data sets, it can be expected that the fraction of
covered vertices is small.

After all, the chromosome mutations are permutations on the orders. They can
be added to the given simulation. Adding this aspect could create a more precise
supergenome graph generator. However, it is not directly clear how such a permu-
tation must look like to simulate realistic chromosome mutations. Furthermore, it
is hard to validate which ratio chromosome and single nucleotide mutations on a
MSA-block-level must have.

5.2 Supergenome

In this thesis a new heuristic algorithm to extract a common coordinate system for
a supergenome from a genome-wide multiple sequence alignment is devised. The
procedure has been tested on three alignments of very different size and difficulty:

Chapter 5. Applications 127

time in s

#
in
gr
ap
h

0.0 0.2 0.4 0.6 0.8 1.0

0
20
00

40
00

60
00

80
00

10
00
0

General Dead-End Simplifier
Superbubble Simplifier
MFAS
Mini-Cycle Remover
Dead-End Simplifier

Edges
Vertices

Figure 52: Simplification process for data set B. The size of the graph (number of edges
and vertices in the graph) is shown while the simplifier and the MFAS are applied. The
running time is computed on an Intel(R) Xeon(R) CPU E7-8860 processor with 32 Gb
RAM. At the bottom, the different processes are shown as color-coded bars.

an easy instance comprising four closely related bacterial species, an intermediate
size problem composed of seven yeast genomes, and the alignment of 27 insect
genomes as the most difficult instance.

5.2.1 Performance of individual components

The heuristic algorithm outlined above is composed of several largely independent
components. It is of interest, therefore to consider their relative impact on the
final results. Most edges are removed by the mini-cycle remover, with a small
contribution of Algorithm GR. On the other hand, the largest reduction of the
vertex set is due to the merges identified by the superbubble simplifier. More
quantitative information is compiled in Figure 52, Figure 53, Figure 54 and in
Appendix C. The simplifiers reduce the graph size by about an order of magnitude
in both the number of vertices and edges, reducing it in size and complexity to a
point where the seriation heuristic operates efficiently. The relative improvement is
smallest for the bacterial data set.

Since the Directed Colored Multigraph Betweenness Problem cannot be solved
exactly in reasonable time for instances with sizes that are of interest for the
application at hand, it is impossible to measure performance relative to the exact
solution. The multigraphs obtained from real-life alignments contain a large number
of conflicting edges. In the most difficult data set, F, for instance, the final order
keeps more than 95% of the initial edges.

128 Chapter 5. Applications

0 1 2 3 4

0
50
00
0

10
00
00

15
00
00

time in s

#
in
gr
ap
h

Edges
Vertices

General Dead-End Simplifier
Superbubble Simplifier
MFAS
Mini-Cycle Remover
Dead-End Simplifier

Figure 53: Simplification process for data set Y. The size of the graph (number of edges
and vertices in the graph) is shown while the simplifier is applied and the MFAS are solved.
The running time is computed on am Intel(R) Xeon(R) CPU E7-8860 processor with 32Gb
RAM. At the bottom, the different processes are shown as color-coded bars.

5.2.2 Assessment of the quality of supergenomes

Since no ground truth is available for this problem and the construction of simulated
benchmarks for genome wide multiple sequence alignments would be a research
project in its own right, here it is resort to measuring quantities that are informative
about the final choice of the coordinate system.

A straightforward measure is the distribution of distances in the output coor-
dinate system of MSA-blocks that are contiguous in at least one input genome.
Since the length of MSA-blocks is not from interest, distance is measured here
not in terms of sequence length but in terms of the number of MSA-blocks, so
that adjacent MSA-blocks have distance 0. It is important here to keep track of
the reading directions: contiguity with the same reading direction corresponds to
preservation of the original genomic coordinates, while a change in reading direction
indicates change of the order. Thus preserved and inverted reading direction are
distinguished in the quantitative analysis.

Among the best-conserved features in the genome are open reading frames
(ORFs), due to the strong selection pressures acting to preserve the corresponding
proteins. As an immediate consequence it is expected that ORFs almost always
are preserved. This should be reflected also by the supergenome coordinates, i.e.,
MSA-blocks belonging to the same ORF should have only a small number (smaller
then five) of other MSA-blocks between them and retain their relative order. For
higher eukaryotes, near perfect adjacency of coding blocks is not expected, however,
because larger introns are subject to local rearrangements. To quantify the proximity
of MSA-blocks of an ORF, the distances between all adjacent MSA-blocks are

Chapter 5. Applications 129

time in s
7900 8000 8100 8200

0
20
00
00
0
40
00
00
0
60
00
00
0
80
00
00
01
00
00
00
0 1
20
00
00
0

#
in
gr
ap
h

0 2000 4000 6000 8000
time in s

0
50
00
00
0

10
00
00
00

15
00
00
00

20
00
00
00

25
00
00
00

#
in
gr
ap
h

General Dead-End Simplifier
Superbubble Simplifier
MFAS
Mini-Cycle Remover
Dead-End Simplifier

Edges
Vertices

Figure 54: Simplification process for data set F. The size of the graph (number of edges
and vertices in the graph) is shown while the simplifier is applied and the MFAS is solved.
The running time is computed on an Intel(R) Xeon(R) CPU E7-8860 processor with 32gb
ram. At the bottom, the different processes are shown as color-coded bars.

130 Chapter 5. Applications

C B A
- +

A B C

0
50
00

15
00
0

25
00
0

C B A
-

A B C

0
50
00
0

10
00
00

15
00
00

+
C B A

-
A B C

0
50
00
00
0

15
00
00
00

+
B Y F

Figure 55: Distribution of MSA-block-wise distances of consecutive MSA-blocks in the
original genomes. Data are shown separated for inverted (-) and preserved (+) orientation
of consecutive MSA-blocks (light gray). As expected, the number of inverted MSA-blocks
increases with the difficulty of the input alignment. In particular, there is a substantial
number of local inversions in the insect data set F. Both the inverted (-) and preserved
(+) bin are subdivided further into a bin of adjacent MSA-blocks (A), MSA-blocks with
a distance of 1-5 MSA-blocks (B), and more distantly placed MSA-blocks (C), in the
supergenome.

determined as described above and their absolute values are added up to yield a
single characteristic value. In addition the number of exons that are “broken up”
in the sense that consecutive pieces do not have consecutive coordinates or are
placed in reverse order in the supergenome is counted. Coding genes and exons
are taken as annotated for the corresponding genomes. Note that in particular for
large, intron-rich genomes such as the insect data set F this is an additional source
of errors.

5.2.3 Quality of supergenome coordinate systems
The quality of the coordinate systems strongly depends on the quality of the input
alignments. A detailed discussion of issues with the input alignments can be found
in Appendix C. Here, the focus is on an assessment of the coordinate systems
themselves.

In order to check the overall quality of the solution a betweenness graph is
computed from the supergenome coordinate systems. This is done by starting with
a graph without edges. First, all edges that are supported by the total order of the
supergenome are added. This is followed by edges that contradict the total order
but do not create contradicting betweenness triples. Note that this graph is not
necessary optimal but a good approximation that can easily be computed. The edge
set of this graph is compared to the edge set of the initial graph. Good solutions
are expected to retain most of the edges. For the three data sets are 95.3%, 97.5%,
and 99.4% of the edges are retained in data sets B, Y, and F, respectively.

The distribution of MSA-block-wise distances in the supergenome of MSA-blocks

Chapter 5. Applications 131

A B C

0
2
0
0
0

4
0
0
0

A B C

0
2
0
0
0

4
0
0
0

A B C

0
5
0
0
0
0

1
5
0
0
0
0

B Y F

Figure 56: Distribution of MSA-block-wise distances between MSA-blocks that contain
ORFs for the bacteria and yeast data set. For the insect data individual exons are considered
since rearrangements as well as alignment errors within introns are not infrequent. The
black bar indicates the number of broken ORFs/exons. The data is binned in three distance
ranges: a distance of 0 (A), a distance of 1− 100 (B), and a distance larger than 100 (C).

that are consecutive in the original genome serves as a simple measure of preserved
synteny. The results are summarized in Figure 55 and presented in full detail in
Appendix C. Another measure is how many of the input orders are preserved.
To measure this consider every MSA-block and all successors from the different
genomes. For the bacterial data set B 89% of the successors preserve the order and
80% also preserve the adjacency. For the yeast data set Y it is observed that 93%
of the successors preserve the order and 84% also preserve adjacency. This is a very
encouraging result, taking in mind that every true genome rearrangement necessarily
introduces at least one non-adjacency. Even in the much larger and more difficult fly
set F 70% of the successors are preserved the order and 66% also preserve adjacency.
The overwhelming majority of non-contiguous successors are placed in the adjacent
but order-reversed position, reflecting the level of local rearrangements in the insect
data set. This is entirely reasonable given the much larger number of species and
their larger phylogenetic depth compared to the yeast data. Taken together, these
numbers already indicate that the supergenome coordinates are meaningful and
indeed are likely an useful starting point for large-scale multi-genome comparisons.

Restricting the attention to coding sequences yields a more stringent quality
measure. As bacteria have essentially no introns, it is expected that nearly all
MSA-blocks belonging to the same ORF retain both adjacency and order. In the
bacterial data set B 96% of the ORFs are in one stretch with no interruption and
less then 1% of the ORF are broken. Since yeasts have few and short introns
(Spingola et al., 1999) it is expected that data set Y is also very well-behaved
in this respect. It contains 6 062 ORFs annotated for Saccharomyces cerevisiae.
Of these, 5 474, i.e., 90%, are consistently represented in the coordinate system.
An additional 272 ORFs, about 5%, have a distance of less then 100 MSA-blocks
between them. Only 73, i.e., a bit more than 1% of the ORFs are broken. For
Drosophila melanogaster are 167 051 exons annotated, and part of the alignment F.
Due to large and abundant introns the analysis is based on individual exons rather

132 Chapter 5. Applications

than complete ORFs for set F. 95% of the exons are consistently represented. Only
779, about 0.5%, are broken. Overall, thus, the supergenome coordinates behave
very well for all three data sets.

5.2.4 Yeast Tricaboxylic Acid Cycle
As an example for a comparative genomics analysis the genes of the tricaboxylic
acid (TCA) cycle of the yeast species used. The TCA cycle for aerobic respiration
is well studied and discussed in yeast (e.g. Krebs, Gurin, and Eggleston (1952)). In
S. cerevisiae, 20 genes belong to the TCA cycle (Haselbeck and McAlister-Henn,
1993; Oyedotun and Lemire, 1997; Saccharomyces Genome Database Community,
n.d.; Yasutake et al., 2003). All of them are part of the initial set of MSA-blocks
in the yeast data set (Y). The TCA cycle is at least for S. cerevisiae essential.
Consequently, it is expected that the genes of TCA cycle are conserved in all yeast
species in the yeast data set.

All genes are distributed over at least two MSA-blocks in S. cerevisiae. For
all genes, evidences is found that they are contained in the initial alignment also
for the other species. Note that BLAST is used to search the protein sequences in
the genome assembly since there is no annotation data available. Many genes of
the TCA cycle are conservered in large parts or completely in all species i.e. the
sequences from different species belongs to the same MSA-block. Nevertheless,
there are several cases with low conservation for one species. For example, SDH1 in
S. kudriavzevii and S. cerevisiae do not share any nucleotide between the annotations
(based on BLAST) but in the MSA-blocks for SDH1 in S. cerevisiae, a sequence
for S. kudriavzevii can be found. However, all those issues are likely artifacts from
the assemblies and alignment procedure.

After filtering some MSA-blocks are lost. Five genes of all genes loose one
MSA-block each due to the length and score filter. However, the information loss
is negligible since in each case less than 1% of the gene is lost. The overlap filter
discards MSA-blocks of 11 genes such that large parts or almost complete genes
are lost. Those cases are investigated more deeply with the result that those genes
exhibit a high resemblance to either other genes in the TCA cycle or pseudogenes
that result from whole genome duplications (Byrne and Wolfe, 2005). Except S.
cerevisiae, all genome assemblies in the yeast data set consists of contigs and thus
have a rather low quality. Thus, very similar nucleotide sequences might be merged
into one sequence. As a result very similar (part of) genes may are not assembled
as separate genes but occur only one time in the assembly. A reliable assignment
of those misassemblies to genes is therefore difficult.

In the following cases, the overlap filters discards parts or complete genes. Large
parts of IDH1 are lost in most of the species due to high similarity to IDH2. Also
a fifth of IDH2 is lost due to this similiarity. The same hold for CIT1 and CIT3
where CIT1 is lost in most of the species and a fifth of CIT3. PYC1 and PYC2
are very similar in sequence. After filtering almost all MSA-blocks for those genes
are discarded. After filtering, at least 50% of ACO1 is lost due to the similarity to
ACO2. Two species loosing ACO1 completely. Large parts of AC02 are retained.
SDH1 and its homolog YJL045W is lost almost completely in all species due to

Chapter 5. Applications 133

there homology. Also SDH3 has a homolog that is a pseudogene: SHH3. This leads
to loss of large parts or the complete loss of SDH3 after filtering. The MDH1 gene
is another gene where a part of the gene is filtered. The filtered part overlap with
the MDH3 gene. The MDH3 is a very similar gene that has a comparable function
as the MDH1 gene in the glyoxylate cycle an other variation of the TCA cycle.

To summarize the results after filtering, the low assembly quality and the
alignment method for the whole genome alignment causes the removal of MSA-
blocks for eleven genes. For further analysis, only the nine genes which are kept
completely after filtering are used. These nine genes are almost complete in the
same MSA-blocks for all species. For seven genes, the MSA-blocks of the gene
are placed as successive MSA-blocks with successive genomic coordinates in the
optimized order. The MSA-block for KGD2 as well as the MSA-block for SDH2
are broken apart by the minimum feedback arc set problem (MFAS) heuristic.
Since the information that they should be successive is lost, they are places in
different locations in the optimized order. However, at least within the two parts,
MSA-blocks and genomic coordinates are successive.

To summarize, the common coordinate system for yeast shows the conservation
of nine of the 20 genes in TCA cycle. Filtering statistics indicate that the remaining
eleven genes can not be analyzed with respect to conservation. They have homologs
or share sequence similarity with other genes such that it is unclear if the sequence
is conserved or not. The raw multiple alignments used as input thus suggest
conservation which is questionable. For conserved genes, the method mostly creates
the correct order of the MSA-blocks allowing to easily access the corresponding
alignment parts for comparative analysis.

134 Chapter 5. Applications

Chapter 6. Discussion and Outlook 135

CHAPTER 6
Discussion and Outlook

Contents
6.1 Superbubbles . 136
6.2 Parallel Superbubble Detection 136
6.3 Generalization of Superbubble 139

6.3.1 Cyclebubble . 139
6.3.2 Distance Bubbles 140

6.4 Other Graph Algorithms and Superbubbles 140
6.5 Supergenome . 141
6.6 Parameterized Supergenome 142
6.7 Genome Assembly . 143

136 Chapter 6. Discussion and Outlook

6.1 Superbubbles

In this thesis has re-investigated the mathematical properties of superbubbles
and their obvious generalization, the weak superbubbloids. It not only re-derive
fundamental results, in particular Proposition 1 (Page 54) and Proposition 2
(Page 66) in a more concise way, it also identify problems with auxiliary graphs
propose in Sung et al. (2015) that lead to false positive superbubbles. Although
these are not a fatal problem and can be recognized in a post-processing step
without affecting the overall time-complexity, the issue can be avoided by using
a different, in fact simpler, auxiliary graph that is acyclic. Based on the fact that
the superbubbles in a directed acyclic graph (DAG) can be listed in linear time
(Brankovic et al., 2016), the problem of listing all superbubbles in an arbitrary
digraph can indeed be solved in linear time. For the DAG case a conceptually
simpler replacement for the algorithm of Brankovic et al. (2016) is presented that
also has linear running time.

Furthermore, the observation that in principle, all superbubbles in G can be
identified in linear time in a single depth-first search (DFS), motivate another
extension. However, the roots of the individual DFS-trees must be known beforehand.
The main result is here that a suitable set of starting points, called quasi-legitimate
roots, (1) always exists in every given digraph and (2) can be identified in linear
time, using two additional DFSs. In the first pass, a suitable set of cycles is
constructed such that every node in G is reachable from a source vertex of one of
these cycles. In the second pass, a particular structure of “detours” in a cycle C is
used to identify quasi-legitimate roots in a given cycle. To this end, a notion of
C
 -reachability is defined that may also be interesting to characterize (short) cycles.

A comparison of running times of Directbubble and previous approaches
shows that practically useful performance gains are obtained essentially from two
sources: (1) dispensing the construction of auxiliary graphs and (2) avoiding most
of the processing for all vertices reachable from a source in G. In practice, a
speedup of about a factor of eight on most, but not all, benchmark cases. In all
cases, Directbubble perform at least as good as all competing algorithms for
superbubble detection.

With LSD, a reference implementation in python is provided, and with CLSD,a
stand-alone performance-oriented implementation is provided. Thus, the research
area of superbubbles is uncovered to a variety of people. Researchers can take
the reference implementation as template and implement the detection algorithm
quickly in their tool. Alternatively, they can create a pipeline that uses the already
implemented optimize solution.

6.2 Parallel Superbubble Detection

Even if this is not the focus of this work, the previous discussion gives also hints
about superbubble detecting with a parallel computing model. The literature knows
three ways of detecting superbubble: brute force (Onodera, Sadakane, and Shibuya,
2013), vertex merge (Sung et al., 2015), and DFS based (Brankovic et al., 2016;

Chapter 6. Discussion and Outlook 137

Gärtner, Müller, and Stadler, 2018; Gärtner and Stadler, 2019). As shown before
the DFS based algorithm creates the best linear results. However, the others have
large independent parts in the algorithm. Thus, all three are valid candidates for a
suitable parallel algorithm.

For the parallel algorithm, the pregel model (Malewicz et al., 2009) is used.
In short, this model assumes that every vertex is a compute unit which only knows
its direct neighborhood. A vertex can send messages to another arbitrary vertex.
The algorithm divided into steps where every message sent in one step is received
at the beginning of the next step. The number of required steps determines the
effectiveness of the algorithm. Thus many parallel computations are possible so long
as only local information is used. This model is chosen because it can effectively
be implemented in many architectures, including shared-nothing compute clusters.
Thus, an effective algorithm with this model could scale to more or less arbitrary
large graphs.

A superbubble detection needs to propagate information from the exit t to the
entrance s of the superbubble 〈s, t〉 or vice versa. In pregel, this propagation needs
log(|s → t|) time because only local information is given. Therefore, the lower
complexity bound is log(|s→ t|) where s→ t is the longest path in a superbubble
of the graph G. Note that the complete graph could be a path in superbubble;
thus, the worst-case lower bound is log(|V (G)|).

Clearly, for an arbitrary graph, the lower bound cannot hold. A simple contra-
diction is a graph without any superbubble. On such a graph, the bound would
mean that the algorithm terminates after a fixed number of steps. Thus, only a
fixed number of local information can be used. However, if the complete graph is a
weak superbubble, this is impossible. The weak superbubble can only be discarded
in the last step. Thus the detection takes log(|V (G)|).

First, the DFS approach is checked on parallel compatibility. The first and
extensive drawback is that no effective way of doing a DFS in pregel is known.
The default method is to use a token indicating which vertex is the active vertex at
the moment. Thus it needs linear time regarding the number of vertices that the
DFS visit.

The algorithm still can be optimized for parallel computation. The essential
detail here is that many DFS can be started on legitimate roots at the same time
as long as every vertex belongs to precisely one DFS at the end. Note that this
does not create DFS-forests, but every superbubble is completely within a subtree
of one DFS-tree. Thus, the detection works as before.

If more legitimate roots are used, the approach is more effective. More legitimate
roots can be found by adopting Lemma 13 (Page 64): if v is in a (finished) DFS-tree
T , and w is a sibling of v but not in T then w is a legitimate root. Thus, when a
DFS-tree is finished, it can be scanned for new legitimate roots to start new DFSs.

However, this gives a lower bound for the algorithm in the way that it takes at
least linear time concerning the largest connected subgraph of vertices that can
only be reached by one DFS started from a legitimate root. This must equal or
larger than the largest weak superbubbloid.

Before describing a parallel algorithm based on the vertex merging approach of
Sung et al. (2015), the algorithm is recapped. The idea is based on the observation

138 Chapter 6. Discussion and Outlook

of Corollary 11 (Page 69). It stated that for every exit a predecessor exists with
only one successor. Sung et al. (2015) have proven that when this predecessor is
merged in the sink, again at least one predecessor exists that has only one successor
(the sink). The merging can be repeated until the superbubble is reduced to a mini
superbubble. Therefore, only mini superbubbles must be detected.

Every vertex that has only one successor can be merged with this successor. If
this is the only predecessor of this successor is a superbubble is reported prior to
merging. This mergings are mostly independent of each other. It is crucial to keep
track in which vertex a source is merged. A vertex in which a source is merged
cannot be the exit of a superbubble.

However, to report all superbubbles, there is an exception of this independent
merging. A path of vertices that all have only one successor. If such a path exists,
only the first vertex can be merged because every other vertex in the path could be
an exit of a superbubble and can only be merged after this superbubble is reported.
Sung et al. (2015) initially handled this problem by using this algorithm only on
a DAG and processing in topological order. Note that theoretically, a cycle could
exist where every vertex has only one successor. However, if the cycle has two
vertices, no superbubble exist, and in the other cases, each vertex pair creates mini
superbubbles. They can be reported all at once if such a cycle is detected.

Thus, the algorithm needs as many steps as the length of the longest path where
every vertex has only one successor. This bound can be larger or smaller than the
largest weak superbubbloid. Thus, compared to the DFS based approach, graphs
exists where this approach performed better and also where the other approach
performed better.

The last method is the brute force method after Onodera, Sadakane, and
Shibuya (2013). This approach can easily be transformed into a parallel algorithm
because the structure is already parallel. It assumes every vertex is a superbubble
entrance and extends the superbubble until a contradiction or valid exit is found.
The only change to the linear algorithm is that this starts every vertex at the same
time.

Thererfore, the run time resembles the largest number of vertices that can be
included in a superbubble until a contradiction, or a valid exit is found. This largest
extended superbubble has at least the size of the largest weak superbubble in the
graph. Thus, it is linear concerning the number of vertices in the largest weak
superbubble. Note that this bound equals or is less than the bound of the DFS
approach in any case. This follows because every added vertex has only already
added predecessors. Thus, no legitimate root is added, and every added vertex can
only be reached from the start vertex or through the start vertex. However, again,
graphs exist that perform better for the merging approach. An example of this is
given in Figure 57.

To conclude this section, there exist two different parallel algorithms that have
different best and worst cases. None of this parallel algorithms is the best linear
solution. The merging approach works best in broad star like graphs, while the
brute force graph works best in colinear graphs with only local edges.

Chapter 6. Discussion and Outlook 139

Figure 57: Worst and best cases of parallel superbubble de-
tection. On the top, a graph is shown that is the worst case
for the brute force algorithm (O(n) steps) and the best case for
merging algorithm (O(1) steps). This is due to the fact that
the brute force algorithm adds all vertices after each other and
the merging algorithm merges all 1 to n vertices in one step
in t. On the bottom, a graph is shown where the opposite is
true: the brute force algorithm needs O(1) steps and the merging
algorithm O(n) steps. Here n− 1 mini superbubbles exist, which
the brute force algorithm detects in one step, and a path of n
vertices exists that have precisely one successor, so the merging
algorithm can only reduce this path by one each step.

6.3 Generalization of Superbubble

The mathematical analysis of superbubbles suggests considering generalizations by
relaxing some of the properties.

6.3.1 Cyclebubble

The first generalizations allow possibly restricted sets of cycles within the “bubble”
but retain the idea of an induced subgraph that cannot be traversed without passing
through the entrance and the exit. For instance, one might relax (S.v) and require
only that an interior vertex v cannot be reached from t without passing through s
and cannot reach s without passing through t.

Such a generalization should also be detectable in linear time by adopting the
Directbubble algorithm to handle back edges in more detail. More precisely
two new helper functions like OutChild(v) and OutParent(v) would be needed
that only consider back edges. With these, two new intervals must be considered
such that the outgoing back edges end after s and the incoming back edges start
before t with respect to the reversed postorder of the DFS. This modification adds
only constant effort for every vertex thus does not change that it is a linear time
approach.

However, the set of bubble structures that contain cycles detectable in linear
time is a small set. Apparently the case that a strongly connected component
(SCC) is also a connected component produces worst case scenarios that can not be
handled in linear time anymore. As an example, removing the acyclicity condition
without substitution, the resulting structures would not be unique anymore. An
example of such a graph is shown in Figure 58. Note that such a structure is still a
real subclass of the bubbloids.

The false positives generated by the approach of Sung et al. (2015) may also
be considered as the prototype of a broader class of superbubble-like structures.
It does not seem obvious, however, to characterize them beyond being induced
acyclic subgraphs with a single source and a single sink vertex. A related structure
that also generalizes superbubbles are maximal connected convex acyclic induced

140 Chapter 6. Discussion and Outlook

Figure 58: The ambiguous without acyclicity condition. A
complete graph G with four vertices (K4) is shown. If considering
a structure of a superbubbloid without the acyclicity condition,
every vertex could be the entrance and every other vertex the
exit of such a structure. The two remaining vertices would be the
interior. This follows directly from [s, t] = V (G) = [t, s] for
every s, t ∈ V (G). Thus, such a structure is ambiguous on this
graphs. Note that the minimality condition cannot be fulfilled by
any of the structures.

Figure 59: An example of a distance bubble. A graph with five
vertices is shown. The red numbers on the edges represent distances.
The graph contains no superbubble. However, the edge (2, 5) has
a much higher distance than the other edges. Thus, it could make
sense to create a distance bubble 〈1, 4〉 that excludes 5.

subgraphs (Balister et al., 2009). Here, the vertex set U has the property that no
two vertices x, y ∈ U are connected by paths that are not entirely contained in U .

6.3.2 Distance Bubbles

An other generalization of a superbubble could be created in a distance graph. This
is a property graph where every edge has a distance property. This property can be
used for a modified version of the reach relation. This modification is a specific
distance value t as second input and states that a vertex u can be reached from v
if a path v → u exists and the sum of the distances of this path is less or equal
than t.

This new reachable relation could be used in the reachability and matching
condition of a superbubbloid. The resulting structure depends on the value of t. It
could be called a t-distance superbubble. For a constant t the superbubbles can be
detected in linear time with the algorithm given here by ignoring too long edges.
However, different t values could create different superbubble sets. An example of
such a distance superbubble is shown in Figure 59.

This special version could be handy in distance based graphs (compare Sec-
tion 6.4). For example, in some cases not really existing edges are present in the
graph but marked with a high distance. In such a graph a distance superbubble
makes more sense then a superbubble. Note that this idea could be further extended
to edge types.

6.4 Other Graph Algorithms and Superbubbles

It is already be shown that superbubbles are useful in most graph linearization
algorithms. However, they can also be useful in other algorithms. Basically every
algorithm that utilize distance or reachability data can profit from superbubbles as
a precalculation. As an example the Dijkstra’s algorithm is considered.

Chapter 6. Discussion and Outlook 141

The Dijkstra algorithm detects from one start vertex the distances to every
reachable vertex. A superbubble could be precomputed in this approach if the
start vertex is outside of the superbubble. Since the interior and the exit of
the superbubble can be only reached through the entrance, the values can be
precomputed as reference to the entrance. Then if the minimal distance of the
entrance is known the other distances are directly given.

However, the Dijkstra algorithm runs in linear time. Furthermore, the super-
bubble must be detected in linear time and for every superbubble a Dijkstra run
from the entrance must be started. Thus, for a single run of the Dijkstra algorithm
the overhead of the precomputation is larger then the reduction of run time. This
change if many Dijkstra searches are done. The overhead is the same and the
reduction accumulates. For example this is the case in navigation software or in
centrality indexes.

This finding can be generalized of every reachable based algorithm. Other
examples could be Floyd–Warshall algorithm, flow networks, connected component
detection or SCC detection. Beside this, many domain specific algorithms that are
based on reachability may profit from superbubbles.

6.5 Supergenome

This thesis proof that the problem of computing a common coordinate system
for supergenomes with the Directed Colored Multigraph Betweenness Problem is
NP-hard. It belongs to a class of relatively poorly studied betweenness problems for
which few efficient heuristics have been developed so far. Several local simplification
rules are introduced that can be applied iteratively to reduce the problem. It is
important to note these reduction steps are only heuristics and do not guarantee
optimal solutions. In conjunction with a simple serialization approach for the
residual graph, they nevertheless yield practically useful results with acceptable
computational efforts.

The most immediate application of the supergenome sorting problem is the direct
comparison of genome annotations for multiple genomes. Hence it constitutes a
prerequisite for comparative genome browsers. The approach is applied to three real-
life data sets of different sizes and difficulties. The results indicate that practically
useful coordinatizations can be computed. The computational requirement of the
method scales favorably so that in principle even the largest genome-wide multiple
sequence alignments could be processed.

The present study, however, also highlights the shortcomings of currently
available genome-wide multiple sequence alignments (Earl et al., 2014; Ezawa,
2016). The issue is not only the relatively moderate coverage with multiple
sequence alignment (MSA)-blocks that contain at least most of the species under
consideration, but also the substantial fractions of MSA-blocks that have been
removed from the data set due to likely artifactual sequences. No attempts to
analyze the UCSC 100-way vertebrate alignments are done, since these data are
even more complex than the fly data set due to the very large number of paralogs
introduced by genome duplications.

142 Chapter 6. Discussion and Outlook

Synteny, i.e., the preservation of relative genome order, is in general a good
predictor for homology. This fact suggests to use the common coordinate system
to identify likely homologous regions that are not included in the initial MSA-
blocks. These could then be (re)aligned at sequence level and included in a revised
multiple sequence alignment. This, in turn, could yield an improved common
coordinate system. The systematic improvement of genome-wide alignments, albeit
an interesting and extremely useful endeavor, is beyond the scope of this thesis.

Possible improvements of the approach taken here are conceivable in at least
two directions. First, one may consider a hybrid algorithm that solves subgraphs
with a dominant backbone using the method discussed in Haussler et al. (2018).
As discussed, it is assumed that large parts of the global graph structure are
not amenable to such a solution, but it is also reasonable to assume that gene
regions under strong conservation pressures can be solved fairly easily using a
local backbone-based approach. A second venue of research is concerned with the
determination of the final backbone order. Depending on the phylogenetic range
under investigation, the ancestral gene order would provide an useful backbone
based on the phylogeny of the species involved in the alignment.

6.6 Parameterized Supergenome

The supergenome creation as shown in this work has only basic parameters to adjust
the results. For example the maximal path length in the seriation. However, there
exists a simple background model that can be modified. This model follows directly
from the definition of the Directed Colored Multigraph Betweenness Problem. It
tries to maximize the number of valid edges. This background model is used in
the three main components: the mini-cycle remover, minimum feedback arc set
problem (MFAS), and the seriation. The model decide which connections are kept
intact and which are discarded.

However, this model can be modified by defining a weighted version:
Directed Weighted Colored Multigraph Betweenness Problem: Given a directed
colored multigraph Γ and a weight function w : E(Γ) → R, find a total order
on V such that E∗ ⊆ E(Γ) maximize

∑
e∈E∗ w(e) under the condition that

∀[i><j><k] ∈ C (V (Γ), E∗) either i < j < k or i > j > k.

The introduction of a weight function opens many possibilities of modifications.
A biologically meaningful weight function could be to use one species as backbone.
Thus the edges with the color of this species get a much higher weight. This simple
solution already creates other orders, i.e., supergenomes. However, one could use
even more complex weight functions. The weights could be depending on the
taxonomy. Such approach could be used to create results that are more like the
ancestral sequence then the normal supergenome.

This alternative supergenomes are called “parameterized supergenomes”. They,
can also computed with the framework given here. Only three things must be
changed. The mini-cycle remover must use the weight function to decide which
direction is kept. Furthermore, for MFAS the weighted version is used, which is

Chapter 6. Discussion and Outlook 143

well known in the literature (Flood, 1990). The last change is then the adoption of
the seriation distance functions to use the weights in the calculation.

The analysis of such parameterized supergenomes and which weighting functions
perform best is a topic of further research. However, it must be seen in the contrast
to other works in the topic of supergenomes. For example the here presented work
of Haussler et al. (2018) and Nguyen, Hickey, Zerbino, et al. (2015), could be
represented as parameterized supergenomes with specific designed weight functions.

6.7 Genome Assembly

Minimap2 (H. Li, 2016, 2018) is the only genome assembler that use superbubbles
directly. They use the approach from Onodera, Sadakane, and Shibuya (2013)
(as stated independently developed) with a distance limitation to guaranty linear
run time. However, there exist several assemblers that uses various similar bubble
definitions (Garg, Aach, et al., 2019; Garg, Rautiainen, et al., 2018; Haussler et al.,
2018; Minkin and Medvedev, 2019).

Therefore, it is maybe interesting to invest the possibilities to use the novel
superbubble detection algorithm in a novel assembler. A superbubble simplifier
together with a dead end simplifier creates already a powerful graph simplification
tool kit.

Since long error prone reads instead of short high quality reads becomes more
default with the new sequencing technologies (Jain et al., 2016; Rhoads and Au,
2015), the de Bruin graph is not well fitting anymore. An alternative for the graph
construction could be minimizers (Roberts et al., 2004; Schleimer, Wilkerson, and
Aiken, 2003). The idea behind this is using only parts of the reads to create an
A-Bruin graph. This graph is used to construct the global structure and solving
local errors later in the alignment steps. Note that this idea is similar to H. Li
(2016).

If this graph approach is surrounded with powerful filtering, correction, and
alignment tools a potent assembly tool can be created. After alignment is mostly
used locally to verify the local sequence, a slower but more precise aligner like
Kirchner, Retzlaff, and Stadler (2019) could be used. Furthermore, such an exact
aligner could use the sequencing quality. Most of the assemblers do not utilize
this information. However, considering this in the alignments could dramatically
increase the quality of results.

144 Chapter 6. Discussion and Outlook

Chapter 6. Discussion and Outlook 145

Appendices

Appendix A. Supergenome Data Sets 147

APPENDIX A
Supergenome Data Sets

A small data set of different Salmonella strains is created with Cactus (Paten,
Earl, et al., 2011). Two larger data sets are downloaded from the UCSC genome
browser website. They can be found here: http://hgdownload.soe.ucsc.edu/
downloads.html

A.1 4way Salmonella

The B data set is created with Cactus (Paten, Earl, et al., 2011). The genomes
of four Salmonella strains are aligned. They are described in Table 2. Salmonella
enterica Newport SL254 is used as reference genome for the alignment.

Table 2: An overview of the sequence data in the Salmonella alignment. In the table the
abbreviation “S.e.s.” stands “for Salmonella enterica serovar”.

Name Abbreviation URL Size N50
S.e.s. Agona SL483 SenAgo SenAgo 4836638 4798660
S.e.s. Dublin CT_02021853 SenDub SenDub 4917459 4842908
S.e.s. Heidelberg SL476 SenHei SenHei 4983515 4888768
S.e.s. Newport SL254 SenNew SenNew 5007719 4827641

The Salmonella alignment has 13, 416 blocks. Those blocks contain 50, 932
sequences with a combined total length of 18, 047, 456 nucleotides. This corresponds
to 91% of the combined genome length of the genomes in the alignment.

The filters described in Section B.1 are applied to the alignment. Statistical
results are shown in Table 3. The result are significant different from the other
data set due to the alignment method used for this data set. Cactus create no
overlap and gives the blocks no score so that this two filters have no effect. On the
other hand, cactus creates many small blocks. Thus, the length filter discards 30%

http://hgdownload.soe.ucsc.edu/downloads.html
http://hgdownload.soe.ucsc.edu/downloads.html
https://www.ncbi.nlm.nih.gov/assembly/GCF_000020885.1/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000020925.1/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000020705.1/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000016045.1/

148 Appendix A. Supergenome Data Sets

of all blocks. However, the length of the discarded blocks sum up to only 0.4% of
the nucletides in the alignment.

Table 3: An overview of the filters for the Salmonella alignment. In the table the
abbreviations b for blocks, f for sequence fragments, and n for nucleotides are used.

Filter b f n b % f % n %
none 13416 50932 18047456 100 100 100
length 3986 15080 68141 30 30 0.4
score 0 0 0 0 0 0
overlap 0 0 0 0 0 0

all 3986 15080 68141 30 30 0.4

A.2 7way Yeast

The Y data set can be found here: http://hgdownload.soe.ucsc.edu/goldenPath/
sacCer3/multiz7way. It consists of genome assemblies of seven yeast species.
They are described in Table 4. S. cerevisiae is used as reference genome for the
alignment.

Table 4: An overview of the sequence data in the yeast alignment.

Name Abbreviation URL Size N50
S. cerevisiae sacCer3 sacCer3 12157105 813184
S. paradoxus sacPar sacPar 11872617 46034
S. mikatae sacMik sacMik 11470251 19428
S. kudriavzevii sacKud sacKud 11132834 11253
S. bayanus sacBay sacBay 11477549 24596
S. castelli sacCas sacCas 11242286 59644
S. kluyveri sacKlu sacKlu 10992590 8690

The yeast alignment has 49, 795 blocks. Those blocks contain 275, 484 sequences
with a combined total length of 71, 517, 259 nucleotides. This corresponds to 89.01%
of the combined genome length of the genomes in the alignment.

The filters described in Section B.1 are applied to the alignment. Statistical
results are shown in Table 5.

A.3 27way Insect

The F data sets can be found here: http://hgdownload.soe.ucsc.edu/goldenPath/
dm6/multiz27way/. It consists of 27 assemblies of insect species. They are de-
scribed in Table 6. D. melanogaster is used as reference genome for the alignment.

The insect alignment has 2, 112, 962 blocks which contain 36, 139, 620 sequences.
They have a combined length of 2, 172, 959, 429 nucleotides which correspond to
38.45% of the combined genome length of the genomes in the alignment.

http://hgdownload.soe.ucsc.edu/goldenPath/sacCer3/multiz7way
http://hgdownload.soe.ucsc.edu/goldenPath/sacCer3/multiz7way
http://hgdownload.soe.ucsc.edu/goldenPath/sacCer3/bigZips/chromFa.tar.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/166/955/GCA_000166955.1_ASM16695v1/GCA_000166955.1_ASM16695v1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/166/975/GCA_000166975.1_ASM16697v1//GCA_000166975.1_ASM16697v1_genomic.fna.gz
http://hgdownload.soe.ucsc.edu/goldenPath/sacCer3/multiz7way/fasta/sacKud/YM6553.fsa
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/166/995/GCA_000166995.1_ASM16699v1/GCA_000166995.1_ASM16699v1_genomic.fna.gz
http://hgdownload.soe.ucsc.edu/goldenPath/sacCer3/multiz7way/fasta/sacCas/YM476.fsa
http://hgdownload.soe.ucsc.edu/goldenPath/sacCer3/multiz7way/fasta/sacKlu/YM479.fsa
http://hgdownload.soe.ucsc.edu/goldenPath/dm6/multiz27way/
http://hgdownload.soe.ucsc.edu/goldenPath/dm6/multiz27way/

Appendix A. Supergenome Data Sets 149

Table 5: An overview of the filters for the yeast alignment. In the table the abbreviations
b for blocks, f for sequence fragments, and n for nucleotides are used.

Filter b f n b % f % n %
none 49795 275484 71517259 100 100 100
length 6190 31423 134881 12 11 0
score 110 492 6311 0 0 0
overlap 13458 76141 18446796 27 28 26

all 19758 108056 18587988 40 39 26

The filters described in Section B.1 are applied to the alignments. The statistical
result are shown in Table 7.

150 Appendix A. Supergenome Data Sets

Table 6: An overview of the sequence data in the Insect alignment. Some of the genomes
are in 2bit format for details see here.

Name Abbreviation URL Size N50
D. melanogaster dm6 dm6 143726002 25286936
D. simulans droSim1 droSim1 142420719 22036055
D. sechellia droSec1 droSec1 166577145 2123299
D. yakuba droYak3 droYak3 165709965 21770863
D. erecta droEre2 droEre2 152712140 18748788
D. biarmipes droBia2 droBia2 169378599 3386121
D. suzukii droSuz1 droSuz1 232923092 388966
D. ananassae droAna3 droAna3 230993012 4599533
D. bipectinata droBip2 droBip2 167263958 663995
D. eugracilis droEug2 droEug2 156942009 976885
D. elegans droEle2 droEle2 171267669 1714184
D. kikkawai droKik2 droKik2 164292578 903682
D. takahashii droTak2 droTak2 182106768 387676
D. rhopaloa droRho2 droRho2 197375704 45514
D. ficusphila droFic2 droFic2 152439475 1050541
D. pseudoobscura droPse3 droPse3 152696384 12541198
D. persimilis droPer1 droPer1 188374079 1869541
D. miranda droMir2 droMir2 136728780 28826359
D. willistoni droWil2 droWil2 235516348 4511350
D. virilis droVir3 droVir3 206026697 10161210
D. mojavensis droMoj3 droMoj3 193826310 24764193
D. albomicans droAlb1 droAlb1 253560284 23589
D. grimshawi droGri2 droGri2 200467819 8399593
Musca domestica musDom2 musDom2 200467819 8399593
Anopheles gambiae anoGam1 anoGam1 287805703 53272125
Apis mellifera apiMel4 apiMel4 250287000 13219345
Tribolium castaneum triCas2 triCas2 199682416 13894384

Table 7: An overview of the filters for the Insect alignment. In the table the abbreviations
b for blocks, f for sequence fragments, and n for nucleotides are used.

Filter b f n b % f % n %
none 2112962 36139620 2172959429 100 100 100
length 531676 8362669 30024535 25 23 1
score 25557 384853 4074333 1 1 0
overlap 178882 3134544 285684545 8 9 13

all 736115 11882066 319783413 35 33 15

https://genome.ucsc.edu/goldenpath/help/twoBit.html
http://hgdownload.soe.ucsc.edu/goldenPath/dm6/bigZips/dm6.fa.gz
http://hgdownload.soe.ucsc.edu/goldenPath/droSim1/bigZips/droSim1.2bit
http://hgdownload.soe.ucsc.edu/goldenPath/droSec1/bigZips/droSec1.2bit
http://hgdownload-test.soe.ucsc.edu/goldenPath/droYak3/bigZips/droYak3.2bit
http://hgdownload.soe.ucsc.edu/goldenPath/droEre2/bigZips/droEre2.fa.gz
http://hgdownload.soe.ucsc.edu/gbdb/droBia2/droBia2.2bit
http://hgdownload.soe.ucsc.edu/gbdb/droSuz1/droSuz1.2bit
http://hgdownload.soe.ucsc.edu/goldenPath/droAna3/bigZips/droAna3.fa.gz
http://hgdownload.soe.ucsc.edu/gbdb/droBip2/droBip2.2bit
http://hgdownload.soe.ucsc.edu/gbdb/droEug2/droEug2.2bit
http://hgdownload.soe.ucsc.edu/gbdb/droEle2/droEle2.2bit
http://hgdownload.soe.ucsc.edu/gbdb/droKik2/droKik2.2bit
http://hgdownload.soe.ucsc.edu/gbdb/droTak2/droTak2.2bit
http://hgdownload.soe.ucsc.edu/gbdb/droRho2/droRho2.2bit
http://hgdownload.soe.ucsc.edu/gbdb/droFic2/droFic2.2bit
http://hgdownload.soe.ucsc.edu/gbdb/droPse3/droPse3.2bit
http://hgdownload.soe.ucsc.edu/goldenPath/droPer1/bigZips/droPer1.2bit
http://hgdownload.soe.ucsc.edu/gbdb/droMir2/droMir2.2bit
http://hgdownload.soe.ucsc.edu/gbdb/droWil2/droWil2.2bit
http://hgdownload.soe.ucsc.edu/goldenPath/droVir3/bigZips/droVir3.fa.gz
http://hgdownload.soe.ucsc.edu/goldenPath/droMoj3/bigZips/droMoj3.fa.gz
http://hgdownload.soe.ucsc.edu/gbdb/droAlb1/droAlb1.2bit
http://hgdownload.soe.ucsc.edu/goldenPath/droGri2/bigZips/droGri2.fa.gz
http://hgdownload.soe.ucsc.edu/gbdb/musDom2/musDom2.2bit
http://hgdownload.soe.ucsc.edu/goldenPath/anoGam1/bigZips/anoGam1.2bit
http://hgdownload.soe.ucsc.edu/gbdb/apiMel4/apiMel4.2bit
http://hgdownload.soe.ucsc.edu/goldenPath/triCas2/bigZips/triCas2.fa.gz

Appendix B. Supergenome Algorithm 151

APPENDIX B
Supergenome Algorithm

B.1 Filter

Noisy data and the alignment procedure make it necessary to curate the input data
before calculating the common coordinate system. As part of the curation of input
data sets some blocks are filtered out. Here, a more detailed description is given
of the three filters already described in the main manuscript. Additionally, some
results that explain the chosen parameters is shown.

The filters are used to reduce the noise in the data. The noise has three main
sources. Firstly, sequences may align by pure chance on each other. Secondly,
multiz may produces small blocks that have no or almost no information in it.
Thirdly, duplication events lead to sequences which are not different enough to
align them unambigous and thus, lead to multiple alignments containing the same
sequence for at least one species.

Filters do not discard blocks completely but mark the corresponding blocks and
sequences as thrown out. The graph generation algorithms and simplifiers (see
below) check the thrown out flag. Blocks and sequences for which the flag is set
are skipped.

B.1.1 Length Filter

This filter targets the first and the second source for noisy data. Short blocks
created by the aligner can be a result of random sequences. Blocks with a length of
at most 10 nucleotides are filtered. This size is used to discard random alignments
but no useful information. Since the DNA consists of 4 nucleotides, there are 410

possible sequences of length 10. This are 1.048.576 possibilities. Even the small
yeast data set is 77 times longer than this number. Thus, it is clear that it is very
likely that this sequences are the result of random alignments.

152 Appendix B. Supergenome Algorithm

Each block has an attribute that shows the length of the corresponding alignment.
Each sequence in this block is at most as long as the alignment itself. Sequences
might be shorter due to alignment gaps.

B.1.2 Score Filter
Multiz may create alignments with bad scores as a side effect of the way how the
blocks borders are determined. They likely contain no or not trustworthy information
for the common coordinate system. The bad scored blocks are removed with the
score filter. In the current implementation, scores are normalized by alignment
length and number of aligned sequences. A score of −30 is used as threshold for
the filtering out a block.

The alignments scores that are given by the UCSC alignments are calculated
on base of the BlastZ scoring scheme. So that the score filter is created with this
scheme in mind. If another scheme is used, the constants has to adapted or the
scores has to recalculated using the BlastZ scoring scheme.

Table 8: The HOXD70 scoring scheme after Chiaromonte, Yap, and W. Miller (2001). In
the BlastZ score this used with affine gap scores where the opening penalty are 400 and
the extension penalty is 30.

A C G T
A 91 −114 −31 −123
C −114 100 −125 −31
G −31 −125 100 −114
T −123 −31 −114 91

The BlastZ scoring scheme is based on the HOXD70 scoring matrix (Chiaromonte,
Yap, and W. Miller, 2001) with affine gap scores. The scoring scheme is shown
in Table 8. The gap opening penalty is 400 and gap extension penalty is 30. It
is used to compute all pairwise alignment scores. For the scoring of the multiple
alignments of the MAF-blocks, the sum-of-pair score is applied, i.e. all pairwise
scores are computed and then summed up to form the MAF-Block score.

The pairwise alignment that contains no information is the alignment where
both sequences are aligned completely to gaps. The score of such alignment with
sequence length n and m would be:

− 400− 30 · (n− 1)− 400− 30(m− 1)
=− 370− 30 · (n)− 370− 30(m)
=− 740− 30 · (n+m)

(B.1)

The alignment length then is n+m. This means that the normalized score of this
is:

−740− 30 · (n+m)
n+m

= −740
n+m

− 30
(B.2)

Appendix B. Supergenome Algorithm 153

It is easy to see that for long sequences such an alignment would have a normalized
score of around −30. These is the reason why every block with a score less then
−30 most likely contain no useful information. Thus, blocks with a normalized
score of at most −30 are discarded.

B.1.3 Overlap Filter
One assumption of the supergenome is that the alignment is injective. However,
multiz alignments are not injetive. Thus, this feature has to be actively created.
This is done by filtering all overlapping sequences. Again, random alignments can
be a problem. Especially, the exact start and stop position of an alignment on a
genome is often not clear. Therefore, a small number of nucleotides may be used
in two alignments. Discarding all overlaps would thus mean a big data loss. In
particular, small overlaps are not a problem for the general idea and thus should be
kept.

To allow this short overlapping ends, a overlap from up to 20 nucleotides is
allowed on both ends. The explanation for this cutoff is again the combiantorical
argument. There are 420 possible sequences with 20 nucleotides. This number is
larger then the size of the whole insect alignment. Thus, overlaps larger than 20
nucleotides indicate truly duplicated sequences.

Note that sequences in blocks shorter than 20 nucleotides may still overlap
completely with other sequences without being filtered out. To avoid this, sequences
completly overlapped by other sequences are filtered out. Hereby, sequences may
be completely covered by the sequence from the previous block, the next block, or
by the previous and next block.

Due to the fact that the sequences on one chromosomes are sorted by their start
positions, the calculation of the overlap is a local problem. Overlaps with blocks
before the current block and after the current block are calculated independently.
The overlap filter marks the sequences as overlapping but not as thrown out to be
able to distinguish them from sequences thrown out by previous filtering steps. In
a later step, the marked sequences are thrown out.

B.2 Simplifier

B.2.1 Superbubble Simplifier
The superbubble simplifier detect the superbubble as described in Chapter 3.
However, the depth-first search (DFS) that is used to create the postorder for the
detection is manipulated as stated in Section B.4. This keep a valid DFS postorder
but it can directly reused as a topological sorting of the superbubble.

The topological sorting is used to collapse the complete superbubble into one
vertex. Where the blocks are ordered after the topological sorting. Therefore, the
graph is mutated. Reconsidering that superbubbles can be nested this mutation must
be done ordered. With the postorder it is possible to determine the superbubbles
that are not nested into an other superbubble. Thus, only these superbubbles are
simplified.

154 Appendix B. Supergenome Algorithm

B.2.2 Dead End Simplifier
The optimal position of sinks and source are behind and before the predecessor and
successor, respectively. Since only sinks and sources with one neighbor considered,
the simplifier can determine in constant time if a vertex is a dead end. Thus, simply
every vertex is checked.

B.2.3 Mini-Cycle Complex Remover
The mini-cycle complex remover work in four steps. In the first one, all mini-cycles
are detected. This is relative simple task because for every neighbor pair, it only
must be checked if edges in both directions exist. The second step is then to
connect this pairs to complexes. This can be accomplished in linear time by using
effective indices. Namely to make it possible to access for every vertex the pairs
that contain this vertex in constant time.

The third step is by far the most complex part. The solving of the complex,
means to determine for every pair a direction. This is describe in more detail below.
The fourth step is then to remove every edge that contradicts the partial order that
represents the before determined directions.

Determining the direction is a greedy approach where in every step one pair is
solved. If the direction for one pair is decided the orientation of the contradiction
parts are reversed. This make sure that the result is as far as possible consistent
w.r.t. directions. Thus, one decision influence the other decisions.

Therefore, the starting point is important. The first pair that is used is the
pair with the highest support of one direction with respect to the other direction.
Namely the pair where the number of edges in one direction is the highest. If more
than one pair with the highest number of edges in one direction exist, the one with
the higher ratio of edges in the this direction is taken. In more detail, the ratio is
calculated as fraction of the more frequent direction and the less frequent direction.
The higher the ration, the lower the number of contradicting edges.

From this first pair outgoing the other pairs are decide. In every step the highest
supported pair with respect to the before given direction is used. By handling it
this way no random breaks are created in the direction. Note that this may use a
direction of a pair where the other direction is slightly better supported.

B.3 Minimum Feedback Arc Set problem

The order creation assumes a cycle-free graph. This is done by removing a minimum
set of arcs that cause cycles. ThisMaximum Acyclic Subgraph orMinimum Feedback
Arc Set problem is well-known to be NP-hard (Karp, 1972). It is fixed parameter
tractable (FPT) (J. Chen et al., 2008) but APX hard (Kann, 1992). Nevertheless,
fast, practicable heuristics have been devised, see e.g. (Eades, X. Lin, and Smyth,
1993; Saab, 2001).

Given the size of our input graphs, it is resort to linear-time heuristics. A
modified version of Algorithm GR (Eades, X. Lin, and Smyth, 1993) is used
because it is known to work particularly well on sparse graphs.

Appendix B. Supergenome Algorithm 155

The idea is to create an order π out of the graph then remove all edges that
goes from an vertex i to a vertex j if π(j) < π(i) where π(j) is the position of j
in the order π. These guaranties an cycle free output graph. The tricky part is to
create this order in a way that removes as less edges as possible.

For this, the order is fragmented in two parts, a front π1 and a back part π2,
where then π = π1π2. To do so, a vertex removed from the graph and is either
append to π1 or added to the front of π2. An simple observation is that all sources
can be append to π1 and all sinks can be added to π2 without losing any edge.

The part where edges are lost is if no sources or sinks are left in the graph.
Then a vertex v is removed with a maximal value for dout(v)− din(v) where dout
is the out degree of v and din is the in degree of v. With other words, it has many
outgoing edges and less incoming edges. When v is append to π1 only few edges
are removed (incoming edges) and many edges are saved (outgoing edges).

Only one modification to the algorithm is done. In the original Algorithm GR,
a random vertex with the highest value is used. Here a vertex with a predecessor
that is already is append to π1 if possible. This minimized the number of sources
that are created without influencing the performance of the algorithm. In fact, it
optimized the results of the heuristic on our data sets (Table 9).

Table 9: An overview of the heuristics that solve the FAS problem. The columns are
the different data sets. The rows are the different algorithm. The first row provides the
information of the original graphs of the data sets. The absolut number of edges are shown.
The percentage of edges that are kept from the original graph are shown in brackets.

Bacteria Yeast Insect
none 12285 160886 24248434

Algorithm GR 10860 (88%) 103076 (64%) 14847253 (61%)
Eades Serialization 10871 (88%) 105296 (65%) 14913743 (62%)

It has a time complexity of O(|E|+ |V |). The organization of the vertex degrees
in an effective way is done by a class "VertexCategorizer". This class has all vertices
in lists sorted by there value and special functions that handle the removal of a
vertex in an effective way. This removal handling is described also in the original
paper (Eades, X. Lin, and Smyth, 1993).

B.4 Topological Sorting

The topological sorting is done with a DFS-topological sorting, i.e., a reversed
postorder of a DFS-forest that uses the sources as roots. A DFS-topological sorting
is chosen because if it is possible, a successor of the vertex v is placed directly after
v in the order. Thus, the DFS approach creates better results as if an unrelated
vertex is placed between them.

More specifically, the last possible vertex of the sibling order of the succors of v
is placed there. It makes sense that this should be the best-supported successor of
v, i.e., the successor u for which the most edges (v, u) exists. Therefore, the sibling

156 Appendix B. Supergenome Algorithm

order is on the support information. In the way that the last supported successor is
visited first and the best-supported successor last.

B.5 Optimization

The optimization has two main components: the validation of the order and the
re-ordering. The validation is done in a simple way of checking the neighborhood of
every vertex and count the number of violations of the robinson inequation (see 4).
The neighborhood is defined by the number of hops (h). This means that a vertex
is seen as neighbor if a path from one to the other exists that has at most length
h. Consequently, the maximum neighborhood size is kh with k being the maximal
outdegree. So that this validation has a linear time complexity with respect to the
number of vertices.

Besides the validation of an exiting order, the evaluation of potential changes is
required for an efficient optimization. Therefore, a function is provided that takes
the order and a change object as input and returns the number of violations of the
robinson in equation taking the changes in the change object int account. This
makes it possible to evaluate a movement before it is applied to the order. The
re-ordering is done in loop until no changes that optimize the order are found.

First, a list of candidates are created. These candidates are created only once.
A candidate consists of two vertices. It is iterated through the candidates and two
changes are tried for each of them. The changes are found with the functions
"moveToFront" and "swapSiblings". The best non-overlapping changes is finally
applied to the order.

The function "moveToFront" performs a move to front change on the order.
This means that a block of vertices after the source position is moved to the target
position. The moved block is as large as possible i.e. all vertices after the source
position is added to the block as long no predecessor is between the target position
and the source position.

The second function, "swapSiblings", performs a swap on the order. This
means that a block of vertices after the source position is swapped with a block of
vertices after the target position. The blocks are as large as possible but connected.
Connected means that, beside the first vertex, every other vertex has a predecessor
in the block.

Appendix C. Supergenome Results 157

APPENDIX C
Supergenome Results

C.1 Data distribution

As a simple statistical quality assessment, the coverage of the reference species of
the alignments with alignment blocks is used. To quantify positional effects, the
coverage is assessed for sliding windows along the genome. Furthermore, weight
the coverage with number of different species in the respective blocks. These can
be done before and after the filtering. Plotting the resulting data into the same
coordinate system enables a direct comparison of the coverage by the genome graph
before and after filtering. It allows to conclude whether filtering affects specific
genome positions more than others.

The plots are generated for data set Y by using Saccharomyces cerevisiae as
reference and for F by using Drosophila melanogaster as reference. The results
show that for data set Y the coverage is in general high. The filtering leads to
local loss of coverage but change nothing on the general high coverage. In the
case of data set F, it is different. Here, six genomic regions aleady have a low
coverage before filtering (end of 2L,beginning of 2R, end of 3L, begining of 3R, end
of X and complete Y). Those genomic regions overlap with repeat regions of the
chromosomes. Since repeat regions are very similar to each other and therfore hard
to align, it is not surprising to observe a low coverage for those regions if using
an alignment technique as done for the data set. For the remaining genome, the
result is the same as by the data set Y. It has a high coverage for the graph before
filtering and the filtering only lose local coverage.

After the filtering, the input alignments are transfromed into the supergenome
graph and further calculations only make use of the supergenome. This graph
is then modified in three steps: first run of simplifer, apply FAS algorithm, and
second run of simplifer. Four simplfier are applied to the graph in the fist run: the
mini-cycle remover, the dead-end simplifier, and the supperbubble simplifier. In the
second run, the mini-cycle remover is replaced by the advance dead-end simplifier.

158 Appendix C. Supergenome Results

C.2 Graph edit statistic

For every graph, three edit steps are performed. The first run of simplifier, the
remove of all cylces (FAS), and the second run of simplifier. All these steps remove
edges from the graph. The mini-cycle remover and FAS remove edges to break
cycles in the graph. In the remaining cases, edges are lost as a side effect of the
merging of connected vertices and the translation of the edges that connect them.
The different steps are repeated by the edit tools several times. To get an idea of
the consumption time of each tool in every step, a example consumption time is
given. This is the result of an example run on a machine with a Intel(R) Xeon(R)
CPU with 2.27GHz and enough RAM to fit the problem size in it. However, the
exact numbers are not important. It rather provides an impression how long each
step takes compared to the other steps. Moreover, it shows that the simplifier can
be calculated even for big data sets in a feasible time on a normal machine.

The results are shown in Table 10, 11, and 12. Here, the three steps are
indicated by horizontal lines. For every tool, how many vertices and edges have
been removed is listed along with the used time and the number of applications
(number distinct position at which the tool could be used). For data set F, it is
remarkable that most of the compute time is used in one big mini-cycle complex.
The complex has 896,082 vertices and it take 10,144 seconds to decompose it.

Table 10: The overview of the graph editors in data set B. In the table the removed
vertices (rv), removed edges (re), the time in seconds (time), and the number of applications
(#) are shown.

Edit tool rv re time #
Mini-Cycle Remover 0 2995 0.17 3
Dead-End Simplifier 4 13 0.03 21

Supperbubble Simplifier 5844 20550 0.50 21
FAS 0 1414 0.05 1

Advance Source/Sink Simplifier 67 197 0.05 14
Dead-End Simplifier 3 6 0.01 14

supperbubble Simplifier 546 1436 1.27 14

C.3 Graph properties

The graph editing steps create different temporary graphs. After each step, some
core information of the temporary graphs are collected. This are the number of
vertices, edges, and connected components (CC), the median in-degree (deg←) and
median out-degree (deg→), the mean number of blocks in vertices (mean B), and
the maximal number of blocks (max B). As a reference, this values is calculated
also for the original graph. The three temproary graphs are: the graph after the
first run of simplifier (Simplfier 1), the graph after the FAS-algorithm is applied
(FAS), and the graph after the second run of simplifier (Simplfier 2).

Appendix C. Supergenome Results 159

Table 11: The overview of the graph modifications in data set Y In the table the
removed vertices (rv), removed edges (re), the time in seconds (time), and the number of
applications (#) are shown.

Edit tool rv re time #
Mini-Cycle Remover 0 62591 1.3 5
Dead-End Simplifier 30 51 0.088 25

supperbubble Simplifier 23087 74977 1.3 25
FAS 0 1888 0.07 1

Advance Dead-End Simplifier 125 465 0.17 9
Dead-End Simplifier 143 346 0.014 9

supperbubble Simplifier 2257 7396 0.63 9

Table 12: The overview of the graph modifications in data set F. In the table the
removed vertices (rv), removed edges (re), the time in seconds (time), and the number of
applications (#) are shown.

Edit tool rv re time #
Mini-Cycle Remover 0 10620262 10439.68 10
Dead-End Simplifier 41 99 12.54 48

supperbubble Simplifier 1033047 10282577 397.38 48
FAS 0 55286 6 1

Advance Dead-End Simplifier 3505 25258 17.42 18
Dead-End Simplifier 1641 7243 2.35 18

supperbubble Simplifier 85002 842444 96.91 18

The data is shown in Table 13, 14, and 15. In case of data set B, the second
connected component is the third plasmid of Salmonella enterica Newport SL254
that is with less then 4k nucleotide very small and is aligned with nothing. In case
of data set F, the second connected component is created by the FAS algorithm.
That can happened since the FAS algorithm is a heuristic. However, it contains
only a handful vertices and is simplified to one vertex in the next step.

Table 13: The overview of the graphs in data set B.

Graph Vertexes Edges CC deg← deg→ mean B max B
Orignal 9430 35843 2 4 4 1.00 1

Simplfier 1 3582 12285 2 4 4 2.63 133
FAS 3582 10871 2 3 3 2.63 133

Simplfier 2 2966 9232 2 3 3 3.18 133

C.4 Successor statistic

Most sequences have one successor sequence in the data set. These successor
sequence is the sequence that follows the sequence on the contig. Note that

160 Appendix C. Supergenome Results

Table 14: The overview of the graphs in data set Y.

Graph Vertexes Edges CC deg← deg→ mean B max B
Orignal 30580 164114 1 6 6 1.00 1

Simplfier 1 7463 26495 1 4 4 4.10 102
FAS 7463 24607 1 3 3 4.10 102

Simplfier 2 4938 16400 1 3 3 6.19 122

Table 15: The overview of the graphs in data set F.

Graph Vertexes Edges CC deg← deg→ mean B max B
Orignal 1383449 24382316 1 18 18 1.00 1

Simplfier 1 350361 3479378 1 10 10 3.95 878
FAS 350361 3424092 2 10 10 3.95 878

Simplfier 2 260213 2549147 2 10 10 5.32 1054

successor depends on the reading direction of the sequence. If it is negative, then
the successor sequence is in the contig reading direction direct before the sequence.
If the reading direction is positive, the successor is the sequence that is in the contig
reading direction direct behind the sequence. These sequences belong to blocks
that are contained in the resulting order. So, the distance in blocks between the
sequence itself and it’s successor can be calculated using the order. The distance is
calculated in form that the number of blocks between them is counted. So if they
are adjacent they have a distance of zero. The data is disassembled in positive
distances where the successor block is behind and in negative distances where the
successor is before the sequence. Since the contig reading direction is arbitrary, the
reading direction is used to create more positive distances for a contig.

The data is shown in Table 16, 17, and 18. The data is binned in different
distance ranges. Different ranges and all successors are evaluted for each direction.
The absolute numbers as well as the fraction of all successors in the data set is
given.

C.5 ORF statistic

ORFs provide an estimate how much biological entities are retained in the correct
order. Thus, how many ORFs are kept together in the final order is calculated.
These is reasoned by the idea that ORFs should not be fragmented in the process
as long the genes have the same biological functions in the species in the alignment.
The ORFs are obtained from the NCBI annotations of the reference species. For
data set F, not the complete ORFs but exons are used.

To measure how fragmented a ORF is, the distances between all adjacent blocks
in the ORF are add up to the total size of the gaps between the blocks of an ORF.
The gap sizes of the ORFs are then binned. Furthermore, for each bin, the number
of broken ORFs and the number of ORFs with more than one block are counted.
Broken means that the relative order of the blocks is not kept in the genome order.

Appendix C. Supergenome Results 161

Table 16: The succesor distances in data set B.

Direction Distance Absolute Fraction
+ all 31863 0.8889601874843066
+ 0 28713 0.8010769187846999
+ 1− 5 1074 0.029964009709008733
+ 6− 20 331 0.009234718076053902
+ 21− 100 341 0.009513712579862176
+ 101− 1000 375 0.010462293892810311
+ > 1000 1029 0.028708534441871495
− all 3980 0.11103981251569343
− 0 2570 0.07170158747872667
− 1− 5 306 0.008537231816533214
− 6− 20 68 0.00189716262589627
− 21− 100 122 0.0034037329464609548
− 101− 1000 187 0.005217197221214742
− > 1000 727 0.02028290042686159

Table 17: The succesor distances in data set Y.

Direction Distance Absolute Fraction
+ all 154113 0.9310276082885277
+ 0 139707 0.843998066815683
+ 1− 5 7018 0.04239714855313236
+ 6− 20 1551 0.009369902736664049
+ 21− 100 981 0.00592641817193258
+ 101− 1000 946 0.005714976137256087
+ > 1000 3910 0.023621095873859722
− all 11417 0.06897239171147224
− 0 7009 0.04234277774421555
− 1− 5 1092 0.006596991481906603
− 6− 20 221 0.0013351054189572886
− 21− 100 242 0.0014619706397631849
− 101− 1000 285 0.0017217422823657344
− > 1000 2568 0.01551380414426388

Thus, a block exists in the ORF where both adjacent blocks are before it or both
are after it in the order.

The results are shown in Table 19, 20, and 21.

C.6 Betweeness statistic

The quality of the result for the Directed Colored Multigraph Betweenness Problem
is difficult to measure. To solve this, the results of different method and steps are
compared. Three orders are compared or, to be more accurate, the graphs that

162 Appendix C. Supergenome Results

Table 18: The succesor distances in data set F.

Direction Distance Absolute Fraction
+ all 16950668 0.6951258995630639
+ 0 16046256 0.6580370836488103
+ 1− 5 543304 0.022280224103038943
+ 6− 20 194421 0.007972964399925151
+ 21− 100 44183 0.0018118901048852383
+ 101− 1000 21545 8.835337643381496E − 4
+ > 1000 100959 0.004140203542066152
− all 7434365 0.304874100436936
− 0 6912515 0.28347367830094794
− 1− 5 285028 0.011688645243990443
− 6− 20 117550 0.004820579902434416
− 21− 100 26756 0.0010972304199875391
− 101− 1000 13254 5.435301235803125E − 4
− > 1000 79262 0.0032504364459953776

Table 19: The distribution of the total gap sizes between blocks of annotated ORF in
data set B.

Gap size Absolute Fraction Sum of Fractions Broken > 1 Blocks
0 4806 0.9578 0.9578 0 882

1− 100 104 0.0207 0.9785 2 104
> 100 108 0.0215 1.0000 48 108

Table 20: The distribution of the total gap sizes between blocks of annotated ORF in
data set Y.

Gap size Absolute Fraction Sum of Fractions Broken > 1 Blocks
0 5474 0.9030 0.9030 0 4387

1− 100 272 0.0449 0.9479 2 272
> 100 316 0.0521 1.0000 71 316

with the corresponding order are the solution to the Directed Colored Multigraph
Betweenness Problem. As reference, the original graph is part of the comparison.
The vertex set is thus the same for all graphs and only the number of edges and the
number of triples that are created out of the graph with the definition in Directed
Colored Multigraph Betweenness Problem differs. These are given as a absolute
number and as fraction of the original graph. The results are shown in Table 22,
23, and 24.

Appendix C. Supergenome Results 163

Table 21: The distribution of the total gap sizes between blocks of annotated exons in
data set F.

Gap size Absolute Fraction Sum of Fractions Broken > 1 Blocks
0 158956 0.9515 0.9515 0 107594

1− 100 2387 0.0143 0.9658 161 2387
> 100 5708 0.0342 1.0000 618 5708

Table 22: The comparison of different betweenness graphs for data set B. In the table
stand “edge” for the number of edges and “BT” for the number of fulfilled betweenness
triples. Both are also given as fraction (edge f. and BT f.).

Graph edge edge f. BT BT f.
Orignal graph 35843 1.0000 35835 1.0000
FAS graph 33438 0.9329 31185 0.8702

Before optimization graph 34123 0.9520 32534 0.9079
Betweenness graph 34146 0.9527 32578 0.9091

Table 23: The comparison of different betweenness graphs for data set Y. In the table
stand “edge” for the number of edges and “BT” for the number of fulfilled betweenness
triples. Both are also given as fraction (edge f. and BT f.).

Graph edge edge f. BT BT f.
Orignal graph 164113 1.0000 158098 1.0000
FAS graph 134567 0.8200 103126 0.6523

Before optimization graph 159911 0.9744 150151 0.9497
Betweenness graph 159996 0.9749 150308 0.9507

Table 24: The comparison of different betweenness graphs for data set F. In the table
stand “edge” for the number of edges and “BT” for the number of fulfilled betweenness
triples. Both are also given as fraction (edge f. and BT f.).

Graph edge edge f. BT BT f.
Orignal graph 24382316 1.0000 24373551 1.0000
FAS graph 21164222 0.8680 18264760 0.7494

Before optimization graph 24236459 0.9940 24086318 0.9882
Betweenness graph 24237938 0.9941 24089235 0.9883

164 Appendix C. Supergenome Results

Appendix D. Superbubbles Results 165

APPENDIX D
Superbubbles Results

Table 25: The supergenome data set and results. All data sets are downloaded
from http://hgdownload.cse.ucsc.edu/downloads.html. The used graphs are the
“orginal” graphs, i.e., after the filtering but before any simplifier is applied. The
superbubbles are presented in normalized form, i.e., the number of superbubbles is
divided by the number of vertices in the graph.

Data Set Name Superbubbles Complex Superbubbles
1 canfam1_3 0.415181 0.28936
2 felcat3_4 0.405645 0.345149
3 canfam2_4 0.311271 0.196865
4 mm5_5 0.301006 0.223376
5 geofor1_7 0.16144 0.151035
6 mm9_30 0.0500894 0.0385938
7 tarsyr2_20 0.0185623 0.0154
8 hg38_20 0.00596719 0.00453172

http://hgdownload.cse.ucsc.edu/downloads.html

166 Appendix D. Superbubbles Results

Table 26: The Stanford Large Network Dataset Collection data sets and results.
All data sets are downloaded from http://snap.stanford.edu/data/index.html. The
superbubbles are presented in normalized form, i.e., the number of superbubbles is divided
by the number of vertices in the graph.

Data Set Name Superbubbles Complex Superbubbles
1 email-EuAll 0.100183 0.0
2 soc-sign-epinions 0.0897078 0.000204812
3 sx-askubuntu 0.0271159 1.88305e-05
4 soc-Epinions1 0.021587 3.95366e-05
5 p2p-Gnutella04 0.0183891 0.0
6 sx-superuser 0.0171523 0.0
7 p2p-Gnutella09 0.0158984 0.0
8 web-Google 0.015472 0.00253964
9 p2p-Gnutella05 0.0140176 0.0
10 p2p-Gnutella08 0.013966 0.0
11 p2p-Gnutella06 0.011816 0.0
12 web-NotreDame 0.00959693 0.000273233
13 p2p-Gnutella24 0.00874877 0.0
14 p2p-Gnutella31 0.00829259 0.0
15 cit-HepPh 0.00787356 0.000636832
16 p2p-Gnutella25 0.00749328 0.0
17 wiki-Vote 0.00646521 0.0
18 web-Stanford 0.00615105 0.000205745
19 p2p-Gnutella30 0.00588845 0.0
20 cit-Patents 0.00499368 3.5234e-05
21 wiki-Talk 0.00395049 1.25293e-06
22 sx-mathoverflow 0.00330405 0.0
23 CollegeMsg 0.00315956 0.0
24 soc-sign-bitcoinalpha 0.0026434 0.0
25 soc-LiveJournal1 0.00223225 2.08352e-05
26 wiki-talk-temporal 0.00219533 0.0
27 email-Eu-core-temporal 0.0020284 0.0
28 soc-pokec-relationships 0.00179385 3.67466e-06
29 soc-sign-bitcoinotc 0.00136031 0.0
30 amazon0312 0.000114791 0.0
31 amazon0302 9.91946e-05 0.0
32 amazon0505 8.77544e-05 0.0
33 amazon0601 1.48738e-05 0.0
34 soc-Slashdot0902 0.0 0.0
35 twitter_combined 0.0 0.0
36 soc-Slashdot0811 0.0 0.0
37 gplus_combined 0.0 0.0

http://snap.stanford.edu/data/index.html

Appendix D. Superbubbles Results 167

Table 27: The LDBC Graphalytics data sets and results. All data sets are down-
loaded from https://graphalytics.org/datasets. The superbubbles are presented in
normalized form, i.e., the number of superbubbles is divided by the number of vertices in
the graph.

Data Set Name Superbubbles Complex Superbubbles
1 datagen-8_3-zf 0.0603148 0.000101354
2 datagen-7_7-zf 0.0571091 9.20298e-05
3 datagen-7_8-zf 0.0566572 8.34045e-05
4 datagen-8_2-zf 0.0558878 8.48301e-05
5 graph500-22 0.00373145 0.0
6 graph500-23 0.00356425 0.0
7 graph500-24 0.00344597 0.0
8 datagen-8_1-fb 3.86079e-06 0.0
9 datagen-8_4-fb 3.15036e-06 0.0
10 datagen-8_0-fb 1.17195e-06 0.0
11 datagen-7_5-fb 0.0 0.0
12 datagen-7_6-fb 0.0 0.0
13 datagen-7_9-fb 0.0 0.0

https://graphalytics.org/datasets

168 Appendix D. Superbubbles Results

Table 28: The simulated data sets and results. All data sets are simulated directed
graphs. “BA” graphs are created with the Barabasi–Albert model. “ER” graphs are created
with the Erdoes–Renyi model. The number gives the percent of the edge probability. “WS”
graphs are created with the Watts–Strogatz model. The number given the percent of
rewiring probability. The superbubbles are presented in normalized form, i.e., the number
of superbubbles is divided by the number of vertices in the graph.

Data Set Name Superbubbles Complex Superbubbles
1 BA 0.31112 0.0
1 BA 0.31063 0.0
1 BA 0.30892 0.0
1 ER_001 0.0 0.0
1 ER_001 0.0 0.0
1 ER_001 0.0 0.0
1 ER_005 0.0 0.0
1 ER_005 0.0 0.0
1 ER_005 0.0 0.0
1 ER_010 0.0 0.0
1 ER_010 0.0 0.0
1 ER_010 0.0 0.0
1 WS_001 0.0 0.0
1 WS_001 0.0 0.0
1 WS_001 0.0 0.0
1 WS_005 0.0 0.0
1 WS_005 0.0 0.0
1 WS_005 0.0 0.0
1 WS_010 0.0 0.0
1 WS_010 0.0 0.0
1 WS_010 0.0 0.0

List of Symbols 169

List of Symbols

Bubbles

G̃C The augmented graph of a component C that contains the same weak
superbubbles as G that are contained in C.

ĜC The augmented directed acyclic graph (DAG) of a component C that
contains the same weak superbubbles as G̃C .

≺s, t� A bubble with the entrance s and the exit t

OutChild(v) The maximal position of a child of v in a inverse postorder of a
DFS-tree.

OutParent(v) The minimal position of a parent of v in a inverse postorder of a
DFS-tree.

〈s, t〉 A superbubble with the entrance s and the exit t

Cycles

dC(ci, cj) The cycle distance from ci to cj on the cycle C

maxc(v) The vertex u ∈ C that is v a
 und dC(c, u) is maximal.

minc(v) The vertex u ∈ C that is v a
 und dC(c, u) is minimal.

Q(C) The set of all C -covered vertices of the cycle C.

K(C) The set of all C -cut vertices of the cycle C.

Q(C) The set of all C -covered intervals of the cycle C.

`(v) The lowlink property of Tarjan’s strongly connected component (SCC)
algorithm.

L(C) The set of all C
 -covered intervals of C for which there is no larger C

 -
covered interval with the same starting point.

B The cover of a cycle.

170 List of Symbols

C A cycle.

Graph

A/symG The acyclic component of the graph G.

P/symG A set of every non singleton SCC and the acyclic component of the graph
G.

v ∼ u The vertex v is connected with the vertex u

[v, u] A set of every vertex that can be reach to v whiteout passing through u.

[v, u] A set of every vertex that can be reached from v whiteout passing through
u.

v x
 u The constrained reach relation. This means that v can reach u without

passing through x, i.e., a path p = v → u exists with p ∩ {x} = ∅

(v, u) An edge from v to u

E(G) The vertex edge of G

V (e) The vertices that are connected by the edge e

head(e) The head vertex of the edge e, i.e., the vertex at which the edge points.

indeg(v) The in-degree of the vertex v

G[U] Creates induced subgraph of G with vertex set U

neighbor(v) The neighbors of the vertex v

v 6 u The negated 2-reach relation. This means that v has at most one vertex-
independent path to u

outdeg(v) The out-degree of the vertex v

v → u A path from v to u, i.e., a order set {v, . . . , u}

pre(v) The predecessor of the vertex v

property(v, k) Access the information of a property k on vertex v

v u The vertex v can reach the vertex u

[v] A set of every vertex that can be reached from v and v itself.

SG A set of every non singleton SCC of the graph G.

H ⊆ G H is a subgraph of G

suc(v) The successor of the vertex v

tail(e) The tail vertex of the edge e, i.e., the vertex at which the edge starts.

List of Symbols 171

v u The 2-reach relation. This means that v has at least two vertex-independent
paths to u

V (G) The vertex set of G

A The incidence matrix of a digraph G. The rows are the vertices and the
columns are the edges. In the column of edge e is in the row of head(e) a
−1 and in the row of tail(e) a 1.

G A graph.

S An element of PG.

Complexity

O(n) The complexity of a function. The complexity is linear dependent of n.

NP The complexity class “nondeterministic polynomial time”.

Order

[a><c] The betweenness order relation. This means that b is between a and c.

[a ≤ b ≤ c] The cycle order relation. This means that relative to a, b comes for c.

xc1, . . . , ck

x

The shorthand notion for a cyclic set

[n] The set of the first n natural numbers.

{x | x ∈ N ∧ 2 < x < 6} The set with all natural numbers that are greater two
and smaller 6, i.e., 3, 4, 5.

$[3 :10] The interval from the third to the tens element of the ordered set (X,$),
i.e. {x | x ∈ X ∧ 3 ≤ $(x) ≤ 10}. When $ is the identity function it can
be skipped. Thus [3 :5] are the natural number 3, 4, 5.

$−1 The inverse function of the total order $. Thus, it gets for a position the
corresponding element.

$(3 :10) The open interval from the third to the tens element of the ordered set
(X,$), i.e. {x | x ∈ X ∧ 3 < $(x) < 10}.

a ≤ b The order relation. This means that a come for b.

(X,$) The ordered set with X as set and $: X → N as order defining bijection

$ The reverse total order of the total order $.

(1, 2, . . . , 100) The sequence that contains [1 :100]

{3, 4, 5} The set with 3, 4, 5 as elements. This can also used as shorthand notion
for a ordered set

172 List of Symbols

$ A bijection that represents an order.

Supergenome

B[k] The column k of genome-wide multiple sequence alignment (gMSA) block
B.

columns(B) All columns of gMSA block B.

τG(B) The projection that extracts from an alignment block B the sequence
intervals belonging to assembly G

(G, c, i, j, σ) A sequence interval from positions i to j on contig c of genome
assembly G with reading direction σ.

C (A) The ternary relation (A,C,B) ∈ C (()A) whenever C is between A and B
for some assembly G

Γ The supergenome graph.

γ The total order of the supergenome graph.

B The bacteria dataset.

F The fly dataset.

Y The yeast dataset.

G A genome assembly of a species, often referenced as genome.

A A gMSA.

C A mini-cycle complex.

σ The reading direction of an interval.

d A Robinsonian dissimilarity measure.

Tree

v ≺ u The ancestor partial order of a tree.

lca(v, u) The least common ancestor of the tree vertices v and u.

parent(v) The parent of the tree vertex v, i.e., the vertex that have v as successor.

root(T) The root vertex of the tree T .

v / u The sibling partial order of a tree.

T (v) The subtree of T rooted at v

pT (v) The path from root(T) to the tree vertex v in T .

π The postorder of a tree.

List of Symbols 173

ρ The preorder of a tree.

F A forest.

T A tree.

174 List of Abbreviations

List of Abbreviations

BFS breadth-first search.

C1S simultaneous consecutive ones property.

DAG directed acyclic graph.

DFS depth-first search.

DNA deoxyribonucleic acid.

gMSA genome-wide multiple sequence alignment.

MFAS minimum feedback arc set problem.

MSA multiple sequence alignment.

ORF open reading frame.

RNA ribonucleic acid.

SCC strongly connected component.

SSP supergenome sorting problem.

TCA tricaboxylic acid.

Definition Index 175

Definition Index

acyclic component 30
augmented graph (SCC) 60
auxiliary graph (DAG) 62

betweenness (alignment) 101
betweenness (graph) 106
betweenness order 21
betweenness problem 21
betweenness relation 20
betweenness violation 105
BFS 37
BFS-forest 38
BFS-tree 37
bubble 46
bubbloid 48

C
 -cover 81
C
 -covered 79
C
 -cut vertex 81
C-interval 80
C-reachable 79
clean C

 -cover 81
connected component 24
connected relation 24
constrained reachability 27
constraint reachable set 28
cycle 29
cycle interval 22
cycle order 19
cyclic set 22

DAGsuperbubble (Algorithm) 71
DFS-forest 37
DFS-topological sorting 38

DFS-tree 36
digraph 26
directed colored multigraph between-

ness problem 106

edge types 32

forest 32

genome-wide multiple sequence
alignments 99

graph operations 26
graph simplifier 41
graph-set operations 25

incidence matrix 29
induced subgraph 25
interval 22
inverse function 18

legitimate root 78

mini superbubbles 49
mini-cycle 108
mini-cycle complex 108
minimal C

 -cover 82
MSA-block 99

ordered set 21
OutChild (DAG) 66
OutChild (DFS) 75
OutParent (DAG) 66
OutParent (DFS) 75

partial order 17

176 Definition Index

path 27
postorder 31
preorder 31
property graph 24

quasi-legitimate root 87

2-reachability 27
reachability 27
reachable set 28
reversed order 18
Robinsonian dissimilarities 106

SCC 30
search tree 32
sequence 23
single-vertex C

 -cover 83
subgraph 25
subtree 30
sung graph 54

superbubble 49
Superbubble (Algorithm) 77
Superbubble# (Algorithm) 86
superbubbloid 48
superbubbloid (DAG) 68
superbubbloid (DFS) 76
supergenome 100
supergenome graph 102

topological sorting 38
total C

 -cover 81
total order 18
trail 27
tree 30

undirected graph 23

weak superbubble 57
weak superbubbloid 57

Bibliography 177

Bibliography

1000 Genomes Project Consortium (Sept. 2015). “A global reference for human ge-
netic variation”. In: Nature 526.7571, pp. 68–74. DOI: 10.1038/nature15393.

Acuña, V., R. Grossi, G. F. Italiano, L. Lima, R. Rizzi, G. Sacomoto, M.-F. Sagot,
and B. Sinaimeri (2017). “On Bubble Generators in Directed Graphs”. In: Graph-
Theoretic Concepts in Computer Science, 43rd WG. Ed. by H. L. Bodlaender
and G. J. Woeginer. Vol. 10520. Lecture Notes Comp. Sci. Heidelberg: Springer,
pp. 18–31. DOI: 10.1007/978-3-319-68705-6_2.

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman (Oct. 1990).
“Basic local alignment search tool”. In: Journal of Molecular Biology 215.3,
pp. 403–410. DOI: 10.1016/s0022-2836(05)80360-2.

Arnold, C., F. Externbrink, J. Hackermüller, and K. Reiche (Nov. 2014). “CEM-
Designer: Design of custom expression microarrays in the post-ENCODE Era”.
In: Journal of Biotechnology 189, pp. 154–156. DOI: 10.1016/j.jbiotec.
2014.09.012.

Balister, P., S. Gerke, G. Gutin, A. Johnstone, J. Reddington, E. Scott, A. Soleiman-
fallah, and A. Yeo (Dec. 2009). “Algorithms for generating convex sets in
acyclic digraphs”. In: Journal of Discrete Algorithms 7.4, pp. 509–518. DOI:
10.1016/j.jda.2008.07.008.

Barabási, A.-L. and R. Albert (1999). “Emergence of Scaling in Random Networks”.
In: Science 286.5439, pp. 509–512. ISSN: 0036-8075. DOI: 10.1126/science.
286.5439.509. eprint: https://science.sciencemag.org/content/286/
5439/509.full.pdf.

Barth, D., F. Pellegrini, A. Raspaud, and J. Roman (1995). “On bandwidth, cutwidth,
and quotient graphs”. In: RAIRO - Theoretical Informatics and Applications
29.6, pp. 487–508. DOI: 10.1051/ita/1995290604871.

Belda, E., A. Moya, and F. J. Silva (Mar. 2005). “Genome Rearrangement Distances
and Gene Order Phylogeny in γ-Proteobacteria”. In: Molecular Biology and
Evolution 22.6, pp. 1456–1467. DOI: 10.1093/molbev/msi134.

Bernt, M., A. Donath, F. Jühling, F. Externbrink, C. Florentz, G. Fritzsch, J. Pütz,
M. Middendorf, and P. F. Stadler (Nov. 2013). “MITOS: Improved de novo
metazoan mitochondrial genome annotation”. In: Molecular Phylogenetics and
Evolution 69.2, pp. 313–319. DOI: 10.1016/j.ympev.2012.08.023.

Bertrand, D., M. Blanchette, and N. El-Mabrouk (Oct. 2009). “Genetic Map Refine-
ment Using a Comparative Genomic Approach”. In: Journal of Computational
Biology 16.10, pp. 1475–1486. DOI: 10.1089/cmb.2009.0094.

https://doi.org/10.1038/nature15393
https://doi.org/10.1007/978-3-319-68705-6_2
https://doi.org/10.1016/s0022-2836(05)80360-2
https://doi.org/10.1016/j.jbiotec.2014.09.012
https://doi.org/10.1016/j.jbiotec.2014.09.012
https://doi.org/10.1016/j.jda.2008.07.008
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://science.sciencemag.org/content/286/5439/509.full.pdf
https://science.sciencemag.org/content/286/5439/509.full.pdf
https://doi.org/10.1051/ita/1995290604871
https://doi.org/10.1093/molbev/msi134
https://doi.org/10.1016/j.ympev.2012.08.023
https://doi.org/10.1089/cmb.2009.0094

178 Bibliography

Bertrand, P. (Apr. 2008). “Systems of sets such that each set properly intersects
at most one other set—Application to cluster analysis”. In: Discrete Applied
Mathematics 156.8, pp. 1220–1236. DOI: 10.1016/j.dam.2007.05.023.

Bertrand, P. and J. Diatta (May 2017). “Multilevel clustering models and interval
convexities”. In: Discrete Applied Mathematics 222, pp. 54–66. DOI: 10.1016/
j.dam.2016.12.019.

Blanchette, M. et al. (2004). “Aligning Multiple Genomic Sequences With the
Threaded Blockset Aligner”. In: Genome Research 14.4, pp. 708–715. DOI:
10.1101/gr.1933104.

Bodlaender, H. L., F. V. Fomin, A. M. C. A. Koster, D. Kratsch, and D. M. Thilikos
(Jan. 2011). “A Note on Exact Algorithms for Vertex Ordering Problems on
Graphs”. In: Theory of Computing Systems 50.3, pp. 420–432. DOI: 10.1007/
s00224-011-9312-0.

Bonfield, J. K., K. F. Smith, and R. Staden (1995). “A new DNA sequence
assembly program”. In: Nucleic Acids Research 23.24, pp. 4992–4999. DOI:
10.1093/nar/23.24.4992.

Booth, K. S. and G. S. Lueker (Dec. 1976). “Testing for the consecutive ones
property, interval graphs, and graph planarity using PQ-tree algorithms”. In:
Journal of Computer and System Sciences 13.3, pp. 335–379. DOI: 10.1016/
s0022-0000(76)80045-1.

Brankovic, L., C. S. Iliopoulos, R. Kundu, M. Mohamed, S. P. Pissis, and F. Vayani
(Jan. 2016). “Linear-time superbubble identification algorithm for genome
assembly”. In: Theoretical Computer Science 609, pp. 374–383. DOI: 10.1016/
j.tcs.2015.10.021.

Bray, N. and L. Pachter (Apr. 2004). “MAVID: Constrained Ancestral Alignment of
Multiple Sequences”. In: Genome Research 14.4, pp. 693–699. DOI: 10.1101/
gr.1960404.

Brudno, M., C. B. Do, G. M. Cooper, M. F. Kim, E. Davydov, N. C. S. Program, E. D.
Green, A. Sidow, and S. Batzoglou (Mar. 2003). “LAGAN and Multi-LAGAN:
Efficient Tools for Large-Scale Multiple Alignment of Genomic DNA”. In: Genome
Research 13, pp. 721–731. DOI: 10.1101/gr.926603.

Burr, S. A. (1984). “Some undecidable problems involving the edge-coloring and
vertex-coloring of graphs”. In: Discrete Mathematics 50, pp. 171–177. DOI:
10.1016/0012-365x(84)90046-3.

Byrne, K. P. and K. H. Wolfe (Sept. 2005). “The Yeast Gene Order Browser:
Combining curated homology and syntenic context reveals gene fate in polyploid
species”. In: Genome Research 15.10, pp. 1456–1461. DOI: 10.1101/gr.
3672305.

Capotă, M., T. Hegeman, A. Iosup, A. Prat-Pérez, O. Erling, and P. Boncz (2015).
“Graphalytics”. In: Proceedings of the GRADES’15 on - GRADES’15. ACM
Press. DOI: 10.1145/2764947.2764954.

Chen, J., Y. Liu, S. Lu, B. O’sullivan, and I. Razgon (Oct. 2008). “A fixed-parameter
algorithm for the directed feedback vertex set problem”. In: Journal of the ACM
55.5, pp. 1–19. DOI: 10.1145/1411509.1411511.

https://doi.org/10.1016/j.dam.2007.05.023
https://doi.org/10.1016/j.dam.2016.12.019
https://doi.org/10.1016/j.dam.2016.12.019
https://doi.org/10.1101/gr.1933104
https://doi.org/10.1007/s00224-011-9312-0
https://doi.org/10.1007/s00224-011-9312-0
https://doi.org/10.1093/nar/23.24.4992
https://doi.org/10.1016/s0022-0000(76)80045-1
https://doi.org/10.1016/s0022-0000(76)80045-1
https://doi.org/10.1016/j.tcs.2015.10.021
https://doi.org/10.1016/j.tcs.2015.10.021
https://doi.org/10.1101/gr.1960404
https://doi.org/10.1101/gr.1960404
https://doi.org/10.1101/gr.926603
https://doi.org/10.1016/0012-365x(84)90046-3
https://doi.org/10.1101/gr.3672305
https://doi.org/10.1101/gr.3672305
https://doi.org/10.1145/2764947.2764954
https://doi.org/10.1145/1411509.1411511

Bibliography 179

Chen, X. and M. Tompa (May 2010). “Comparative assessment of methods for
aligning multiple genome sequences”. In: Nature Biotechnology 28.6, pp. 567–
572. DOI: 10.1038/nbt.1637.

Chiaromonte, F., V. B. Yap, and W. Miller (Dec. 2001). “SCORING PAIRWISE
GENOMIC SEQUENCE ALIGNMENTS”. In: Biocomputing 2002. WORLD
SCIENTIFIC, pp. 115–126. DOI: 10.1142/9789812799623_0012.

Chor, B. and M. Sudan (Nov. 1998). “A Geometric Approach to Betweenness”. In:
SIAM Journal on Discrete Mathematics 11.4, pp. 511–523. DOI: 10.1137/
s0895480195296221.

Christof, T., M. Oswald, and G. Reinelt (1998). “Consecutive Ones and a Between-
ness Problem in Computational Biology”. In: Integer Programming and Combi-
natorial Optimization. Ed. by R. E. Bixby, E. A. Boyd, and R. Z. Ríos-Mercado.
Springer Berlin Heidelberg, pp. 213–228. DOI: 10.1007/3-540-69346-7_17.

Chvátal, V. and B. Wu (Sept. 2011). “On Reichenbach’s Causal Betweenness”. In:
Erkenntnis 76.1, pp. 41–48. DOI: 10.1007/s10670-011-9321-z.

Ciccarelli, F. D., T. Doerks, C. von Mering, C. J. Creevey, B. Snel, and P. Bork
(Mar. 2006). “Toward Automatic Reconstruction of a Highly Resolved Tree of
Life”. In: Science 311.5765, pp. 1283–1287. DOI: 10.1126/science.1123061.

Collier, J. H. and A. S. Konagurthu (Oct. 2014). “An Information Measure for
Comparing Top k Lists”. In: 2014 IEEE 10th International Conference on e-
Science. IEEE. DOI: 10.1109/escience.2014.39.

Cuthill, E. and J. McKee (1969). “Reducing the Bandwidth of Sparse Symmetric
Matrices”. In: Proceedings of the 1969 24th National Conference. ACM ’69.
New York, NY, USA: ACM, pp. 157–172. DOI: 10.1145/800195.805928.

Darling, A. E., B. Mau, and N. T. Perna (June 2010). “progressiveMauve: Multiple
Genome Alignment with Gene Gain, Loss and Rearrangement”. In: PLoS ONE
5.6. Ed. by J. E. Stajich, e11147. DOI: 10.1371/journal.pone.0011147.

Dayhoff, M., R. Schwartz, and B. Orcutt (1978). “22 a model of evolutionary
change in proteins”. In: Atlas of protein sequence and structure. Vol. 5. National
Biomedical Research Foundation Silver Spring, pp. 345–352.

De Bruijn, N. G. (1946). “A combinatorial problem”. In: Koninklijke Nederlandse
Akademie v. Wetenschappen 49, pp. 758–764. URL: http://www.dwc.knaw.
nl/DL/publications/PU00018235.pdf.

Dehal, P. and J. L. Boore (Sept. 2005). “Two Rounds of Whole Genome Duplication
in the Ancestral Vertebrate”. In: PLoS Biology 3.10. Ed. by P. Holland, e314.
DOI: 10.1371/journal.pbio.0030314.

Dodd, M. S., D. Papineau, T. Grenne, J. F. Slack, M. Rittner, F. Pirajno, J.
O’Neil, and C. T. S. Little (Mar. 2017). “Evidence for early life in Earth’s
oldest hydrothermal vent precipitates”. In: Nature 543.7643, pp. 60–64. DOI:
10.1038/nature21377.

Drillon, G. and G. Fischer (Aug. 2011). “Comparative study on synteny between
yeasts and vertebrates”. In: Comptes Rendus Biologies 334.8-9, pp. 629–638.
DOI: 10.1016/j.crvi.2011.05.011.

Dugar, G., A. Herbig, K. U. Förstner, N. Heidrich, R. Reinhardt, K. Nieselt, and
C. M. Sharma (May 2013). “High-Resolution Transcriptome Maps Reveal Strain-
Specific Regulatory Features of Multiple Campylobacter jejuni Isolates”. In: PLoS

https://doi.org/10.1038/nbt.1637
https://doi.org/10.1142/9789812799623_0012
https://doi.org/10.1137/s0895480195296221
https://doi.org/10.1137/s0895480195296221
https://doi.org/10.1007/3-540-69346-7_17
https://doi.org/10.1007/s10670-011-9321-z
https://doi.org/10.1126/science.1123061
https://doi.org/10.1109/escience.2014.39
https://doi.org/10.1145/800195.805928
https://doi.org/10.1371/journal.pone.0011147
http://www.dwc.knaw.nl/DL/publications/PU00018235.pdf
http://www.dwc.knaw.nl/DL/publications/PU00018235.pdf
https://doi.org/10.1371/journal.pbio.0030314
https://doi.org/10.1038/nature21377
https://doi.org/10.1016/j.crvi.2011.05.011

180 Bibliography

Genetics 9.5. Ed. by D. Hughes, e1003495. DOI: 10.1371/journal.pgen.
1003495.

Eades, P., X. Lin, and W. F. Smyth (Oct. 1993). “A fast and effective heuristic
for the feedback arc set problem”. In: Information Processing Letters 47.6,
pp. 319–323. DOI: 10.1016/0020-0190(93)90079-o.

Earl, D. et al. (Oct. 2014). “Alignathon: a competitive assessment of whole-
genome alignment methods”. In: Genome Research 24.12, pp. 2077–2089. DOI:
10.1101/gr.174920.114.

Erdös, P. and A. Rényi (1959). “On Random Graphs I”. In: Publicationes Mathe-
maticae Debrecen 6, p. 290.

Euler, L. (1741). “Solutio problematis ad geometriam situs pertinentis”. In: Com-
mentarii academiae scientiarum Petropolitanae, pp. 128–140.

Ezawa, K. (Mar. 2016). “Characterization of multiple sequence alignment errors
using complete-likelihood score and position-shift map”. In: BMC Bioinformatics
17.1. DOI: 10.1186/s12859-016-0945-5.

Fagin, R., R. Kumar, and D. Sivakumar (Jan. 2003). “Comparing Top k Lists”. In:
SIAM Journal on Discrete Mathematics 17.1, pp. 134–160. DOI: 10.1137/
s0895480102412856.

Feige, U. (2000). “Coping with the NP-Hardness of the Graph Bandwidth Problem”.
In: Algorithm Theory - SWAT 2000. Springer Berlin Heidelberg, pp. 10–19. DOI:
10.1007/3-540-44985-x_2.

Fellows, M. R., D. Hermelin, F. Rosamond, and H. Shachnai (May 2016). “Tractable
Parameterizations for the Minimum Linear Arrangement Problem”. In: ACM
Transactions on Computation Theory 8.2, pp. 1–12. DOI: 10.1145/2898352.

Fischer, G., E. P. C. Rocha, F. Brunet, M. Vergassola, and B. Dujon (2006).
“Highly Variable Rates of Genome Rearrangements between Hemiascomycetous
Yeast Lineages”. In: PLoS Genetics 2.3, e32. DOI: 10.1371/journal.pgen.
0020032.

Fishburn, P. C. (July 1971). “Betweenness, orders and interval graphs”. In: Journal
of Pure and Applied Algebra 1.2, pp. 159–178. DOI: 10.1016/0022-4049(71)
90016-8.

Flood, M. M. (Jan. 1990). “Exact and heuristic algorithms for the weighted feedback
arc set problem: A special case of the skew-symmetric quadratic assignment
problem”. In: Networks 20.1, pp. 1–23. DOI: 10.1002/net.3230200102.

Fried, C., W. Hordijk, S. J. Prohaska, C. R. Stadler, and P. F. Stadler (2004). “The
Footprint Sorting Problem”. In: J. Chem. Inf. Comput. Sci. 44, pp. 332–338.
DOI: 10.1021/ci030411+.

Friedberg, R., A. E. Darling, and S. Yancopoulos (2008). “Genome Rearrangement
by the Double Cut and Join Operation”. In: Bioinformatics. Vol. 452. Humana
Press, pp. 385–416. DOI: 10.1007/978-1-60327-159-2_18.

Garg, S., J. Aach, H. Li, R. Durbin, and G. Church (Mar. 2019). “A haplotype-
aware de novo assembly of related individuals using pedigree graph”. In: DOI:
10.1101/580159.

Garg, S., M. Rautiainen, A. M. Novak, E. Garrison, R. Durbin, and T. Marschall
(June 2018). “A graph-based approach to diploid genome assembly”. In: Bioin-
formatics 34.13, pp. i105–i114. DOI: 10.1093/bioinformatics/bty279.

https://doi.org/10.1371/journal.pgen.1003495
https://doi.org/10.1371/journal.pgen.1003495
https://doi.org/10.1016/0020-0190(93)90079-o
https://doi.org/10.1101/gr.174920.114
https://doi.org/10.1186/s12859-016-0945-5
https://doi.org/10.1137/s0895480102412856
https://doi.org/10.1137/s0895480102412856
https://doi.org/10.1007/3-540-44985-x_2
https://doi.org/10.1145/2898352
https://doi.org/10.1371/journal.pgen.0020032
https://doi.org/10.1371/journal.pgen.0020032
https://doi.org/10.1016/0022-4049(71)90016-8
https://doi.org/10.1016/0022-4049(71)90016-8
https://doi.org/10.1002/net.3230200102
https://doi.org/10.1021/ci030411+
https://doi.org/10.1007/978-1-60327-159-2_18
https://doi.org/10.1101/580159
https://doi.org/10.1093/bioinformatics/bty279

Bibliography 181

Gärtner, F., C. Höner zu Siederdissen, L. Müller, and P. F. Stadler (Sept. 2018).
“Coordinate Systems for Supergenomes”. In: Algorithms for Molecular Biology
13.1, p. 15. DOI: 10.1186/s13015-018-0133-4.

Gärtner, F., L. Müller, and P. F. Stadler (Dec. 2018). “Superbubbles revisited”. In:
Algorithms for Molecular Biology 13.1, p. 16. DOI: 10.1186/s13015-018-
0134-3.

Gärtner, F. and P. F. Stadler (Apr. 2019). “Direct Superbubble Detection”. In:
Algorithms 12.4. ISSN: 1999-4893. DOI: 10.3390/a12040081.

Gavril, F. (1977). “Some NP-complete problems on graphs”. In: Proceedings of
the 11th conference on Information Sciences and Systems. Baltimore: Johns
Hopkins Univ., pp. 91–95.

Gawad, C., W. Koh, and S. R. Quake (Jan. 2016). “Single-cell genome sequencing:
current state of the science”. In: Nature Reviews Genetics 17.3, pp. 175–188.
DOI: 10.1038/nrg.2015.16.

Gerstein, M. B., C. Bruce, J. S. Rozowsky, D. Zheng, J. Du, J. O. Korbel, O.
Emanuelsson, Z. D. Zhang, S. Weissman, and M. Snyder (June 2007). “What is
a gene, post-ENCODE? History and updated definition”. In: Genome Research
17.6, pp. 669–681. DOI: 10.1101/gr.6339607.

Gibbs, N. E., W. G. Poole, and P. K. Stockmeyer (1976). “An Algorithm for
Reducing the Bandwidth and Profile of a Sparse Matrix”. In: SIAM Journal on
Numerical Analysis 13.2, pp. 236–250. ISSN: 00361429. URL: http://www.
jstor.org/stable/2156090.

Giegerich, R. (2000). “Explaining and Controlling Ambiguity in Dynamic Program-
ming”. In: Combinatorial Pattern Matching. Springer Berlin Heidelberg, pp. 46–
59. DOI: 10.1007/3-540-45123-4_6.

Gogarten, J. P. and J. P. Townsend (Aug. 2005). “Horizontal gene transfer, genome
innovation and evolution”. In: Nature Reviews Microbiology 3.9, pp. 679–687.
DOI: 10.1038/nrmicro1204.

Goryunov, D. V., B. E. Nagaev, M. Y. Nikolaev, A. V. Alexeevski, and A. V. Troitsky
(Nov. 2015). “Moss phylogeny reconstruction using nucleotide pangenome of
complete Mitogenome sequences”. In: Biochemistry (Moscow) 80.11, pp. 1522–
1527. DOI: 10.1134/s0006297915110152.

Gotoh, O. (Dec. 1982). “An improved algorithm for matching biological sequences”.
In: Journal of Molecular Biology 162.3, pp. 705–708. DOI: 10.1016/0022-
2836(82)90398-9.

Grötschel, M., M. Jünger, and G. Reinelt (Dec. 1984). “A Cutting Plane Algorithm
for the Linear Ordering Problem”. In: Operations Research 32.6, pp. 1195–1220.
DOI: 10.1287/opre.32.6.1195.

Hagberg, A., D. A. Schult, and P. Swart (2008). “Exploring network structure,
dynamics, and function using NetworkX”. In: Proceedings of the 7th Python
in Science Conference (SciPy 2008). Ed. by G. Varoquaux, T. Vaught, and
J. Millman. scipy.org, pp. 11–16. URL: https://conference.scipy.org/
proceedings/scipy2008/paper_2/full_text.pdf.

Hahsler, M., K. Hornik, and C. Buchta (2008). “Getting Things in Order: An
Introduction to the R Package seriation”. In: Journal of Statistical Software
25.3. DOI: 10.18637/jss.v025.i03.

https://doi.org/10.1186/s13015-018-0133-4
https://doi.org/10.1186/s13015-018-0134-3
https://doi.org/10.1186/s13015-018-0134-3
https://doi.org/10.3390/a12040081
https://doi.org/10.1038/nrg.2015.16
https://doi.org/10.1101/gr.6339607
http://www.jstor.org/stable/2156090
http://www.jstor.org/stable/2156090
https://doi.org/10.1007/3-540-45123-4_6
https://doi.org/10.1038/nrmicro1204
https://doi.org/10.1134/s0006297915110152
https://doi.org/10.1016/0022-2836(82)90398-9
https://doi.org/10.1016/0022-2836(82)90398-9
https://doi.org/10.1287/opre.32.6.1195
https://conference.scipy.org/proceedings/scipy2008/paper_2/full_text.pdf
https://conference.scipy.org/proceedings/scipy2008/paper_2/full_text.pdf
https://doi.org/10.18637/jss.v025.i03

182 Bibliography

Hamilton, W. R. (Dec. 1856). “LVI. Memorandum respecting a new system of roots
of unity”. In: The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science 12.81, pp. 446–446. DOI: 10.1080/14786445608642212.

Haselbeck, R. J. and L. McAlister-Henn (1993). “Function and expression of yeast
mitochondrial NAD- and NADP-specific isocitrate dehydrogenases.” In: Journal
of Biological Chemistry 268.16, pp. 12116–12122. URL: http://www.jbc.
org/content/268/16/12116.abstract.

Haussler, D., M. Smuga-Otto, J. M. Eizenga, B. Paten, A. M. Novak, S. Nikitin,
M. Zueva, and D. Miagkov (July 2018). “A Flow Procedure for Linearization
of Genome Sequence Graphs”. In: Journal of Computational Biology 25.7,
pp. 664–676. DOI: 10.1089/cmb.2017.0248.

Henikoff, S. and J. G. Henikoff (Nov. 1992). “Amino acid substitution matrices
from protein blocks.” In: Proceedings of the National Academy of Sciences
89.22, pp. 10915–10919. DOI: 10.1073/pnas.89.22.10915.

Herbig, A., G. Jager, F. Battke, and K. Nieselt (June 2012). “GenomeRing: alignment
visualization based on SuperGenome coordinates”. In: Bioinformatics 28.12,
pp. i7–i15. DOI: 10.1093/bioinformatics/bts217.

Hezroni, H., D. Koppstein, M. Schwartz, A. Avrutin, D. Bartel, and I. Ulitsky
(May 2015). “Principles of Long Noncoding RNA Evolution Derived from Direct
Comparison of Transcriptomes in 17 Species”. In: Cell Reports 11.7, pp. 1110–
1122. DOI: 10.1016/j.celrep.2015.04.023.

Hierholzer, C. and C. Wiener (Mar. 1873). “Ueber die Möglichkeit, einen Linienzug
ohne Wiederholung und ohne Unterbrechung zu umfahren”. In: Mathematische
Annalen 6.1, pp. 30–32. DOI: 10.1007/bf01442866.

Higgins, D. G. and P. M. Sharp (Dec. 1988). “CLUSTAL: a package for performing
multiple sequence alignment on a microcomputer”. In: Gene 73.1, pp. 237–244.
DOI: 10.1016/0378-1119(88)90330-7.

Hopcroft, J. and R. Tarjan (June 1973). “Algorithm 447: efficient algorithms for
graph manipulation”. In: Communications of the ACM 16.6, pp. 372–378. DOI:
10.1145/362248.362272.

Idury, R. M. and M. S. Waterman (Jan. 1995). “A New Algorithm for DNA
Sequence Assembly”. In: Journal of Computational Biology 2.2, pp. 291–306.
DOI: 10.1089/cmb.1995.2.291.

Jain, M., H. E. Olsen, B. Paten, and M. Akeson (Nov. 2016). “The Oxford Nanopore
MinION: delivery of nanopore sequencing to the genomics community”. In:
Genome Biology 17.1. DOI: 10.1186/s13059-016-1103-0.

Johannsen, W. (Dec. 1914). “Elemente der exakten Erblichkeitslehre. Mit Grundzü-
gen der biologischen Variationsstatistik”. In: Zeitschrift für Induktive Abstammungs-
und Vererbungslehre 11.1, pp. 200–200. DOI: 10.1007/bf01704312.

Kahn, A. B. (Nov. 1962). “Topological sorting of large networks”. In: Communica-
tions of the ACM 5.11, pp. 558–562. DOI: 10.1145/368996.369025.

Kann, V. (1992). “On the approximability of NP-complete optimization problems”.
PhD thesis. Stockholm: Royal Institute of Technology. URL: http://www.
nada.kth.se/~viggo/papers/phdthesis.pdf.

https://doi.org/10.1080/14786445608642212
http://www.jbc.org/content/268/16/12116.abstract
http://www.jbc.org/content/268/16/12116.abstract
https://doi.org/10.1089/cmb.2017.0248
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1093/bioinformatics/bts217
https://doi.org/10.1016/j.celrep.2015.04.023
https://doi.org/10.1007/bf01442866
https://doi.org/10.1016/0378-1119(88)90330-7
https://doi.org/10.1145/362248.362272
https://doi.org/10.1089/cmb.1995.2.291
https://doi.org/10.1186/s13059-016-1103-0
https://doi.org/10.1007/bf01704312
https://doi.org/10.1145/368996.369025
http://www.nada.kth.se/~viggo/papers/phdthesis.pdf
http://www.nada.kth.se/~viggo/papers/phdthesis.pdf

Bibliography 183

Karp, R. M. (1972). “Reducibility among Combinatorial Problems”. In: Complexity
of Computer Computations. Springer US, pp. 85–103. DOI: 10.1007/978-1-
4684-2001-2_9.

Kececioglu, J. (1993). “The maximum weight trace problem in multiple sequence
alignment”. In: Combinatorial Pattern Matching. Springer-Verlag, pp. 106–119.
DOI: 10.1007/bfb0029800.

Kehr, B., K. Trappe, M. Holtgrewe, and K. Reinert (Apr. 2014). “Genome alignment
with graph data structures: a comparison”. In: BMC Bioinformatics 15.1. DOI:
10.1186/1471-2105-15-99.

Kendall, M. G. (June 1938). “A New Measure of Rank Correlation”. In: Biometrika
30.1/2, p. 81. DOI: 10.2307/2332226.

Kent, W. J., C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler,
Haussler, and David (2002). “The Human Genome Browser at UCSC”. In:
Genome Research 12.6, pp. 996–1006. DOI: 10.1101/gr.229102.

Kirchner, F., N. Retzlaff, and P. F. Stadler (2019). “A General Framework for Exact
Partially Local Alignments”. In: Proceedings of the 12th International Joint
Conference on Biomedical Engineering Systems and Technologies. SCITEPRESS
- Science and Technology Publications. DOI: 10.5220/0007380001940200.

Kirkman, T. P. and A. Cayley (Jan. 1856). “XVIII. On the representation of
polyedra”. In: Philosophical Transactions of the Royal Society of London 146,
pp. 413–418. DOI: 10.1098/rstl.1856.0019.

Krebs, H. A., S. Gurin, and L. V. Eggleston (1952). “The pathway of oxidation
of acetate in baker’s yeast”. In: Biochemical Journal 51.5, pp. 614–628. ISSN:
0264-6021. DOI: 10.1042/bj0510614. eprint: http://www.biochemj.org/
content/51/5/614.full.pdf.

Lande, R. and M. Kirkpatrick (July 1988). “Ecological speciation by sexual selection”.
In: Journal of Theoretical Biology 133.1, pp. 85–98. DOI: 10.1016/s0022-
5193(88)80026-2.

Leskovec, J. and A. Krevl (2014). SNAP Datasets: Stanford Large Network Dataset
Collection. http://snap.stanford.edu/data.

Li, H. (Mar. 2016). “Minimap and miniasm: fast mapping and de novo assembly
for noisy long sequences”. In: Bioinformatics 32.14, pp. 2103–2110. DOI:
10.1093/bioinformatics/btw152.

Li, H. (May 2018). “Minimap2: pairwise alignment for nucleotide sequences”.
In: Bioinformatics 34.18. Ed. by I. Birol, pp. 3094–3100. DOI: 10.1093/
bioinformatics/bty191.

Li, K., X. Tang, B. Veeravalli, and K. Li (Jan. 2015). “Scheduling Precedence
Constrained Stochastic Tasks on Heterogeneous Cluster Systems”. In: IEEE
Transactions on Computers 64.1, pp. 191–204. DOI: 10.1109/tc.2013.205.

Liiv, I. (2010). “Seriation and matrix reordering methods: An historical overview”. In:
Statistical Analysis and Data Mining 3, pp. 70–91. DOI: 10.1002/sam.10071.

Lin, S. et al. (Nov. 2014). “Comparison of the transcriptional landscapes between
human and mouse tissues”. In: Proceedings of the National Academy of Sciences
111.48, pp. 17224–17229. DOI: 10.1073/pnas.1413624111.

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/bfb0029800
https://doi.org/10.1186/1471-2105-15-99
https://doi.org/10.2307/2332226
https://doi.org/10.1101/gr.229102
https://doi.org/10.5220/0007380001940200
https://doi.org/10.1098/rstl.1856.0019
https://doi.org/10.1042/bj0510614
http://www.biochemj.org/content/51/5/614.full.pdf
http://www.biochemj.org/content/51/5/614.full.pdf
https://doi.org/10.1016/s0022-5193(88)80026-2
https://doi.org/10.1016/s0022-5193(88)80026-2
http://snap.stanford.edu/data
https://doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1109/tc.2013.205
https://doi.org/10.1002/sam.10071
https://doi.org/10.1073/pnas.1413624111

184 Bibliography

Linné, C. von (1767). Systema naturae per regna tria naturae, secundum classes,
ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Typis
Ioannis Thomae von Trattner, DOI: 10.5962/bhl.title.156772.

Lorenz, R., S. H. Bernhart, F. Externbrink, J. Qin, C. H. zu Siederdissen, F. Amman,
I. L. Hofacker, and P. F. Stadler (2012). “RNA Folding Algorithms with G-
Quadruplexes”. In: Advances in Bioinformatics and Computational Biology.
Springer Berlin Heidelberg, pp. 49–60. DOI: 10.1007/978-3-642-31927-
3_5.

Lorenz, R., S. H. Bernhart, C. H. zu Siederdissen, H. Tafer, C. Flamm, P. F. Stadler,
and I. L. Hofacker (Nov. 2011). “ViennaRNA Package 2.0”. In: Algorithms for
Molecular Biology 6.1. DOI: 10.1186/1748-7188-6-26.

Lutz, B., H. C. Lu, G. Eichele, D. Miller, and T. C. Kaufman (Jan. 1996). “Rescue
of Drosophila labial null mutant by the chicken ortholog Hoxb-1 demonstrates
that the function of Hox genes is phylogenetically conserved.” In: Genes &
Development 10.2, pp. 176–184. DOI: 10.1101/gad.10.2.176.

Makedon, F. S., C. H. Papadimitriou, and I. H. Sudborough (July 1985). “Topologi-
cal Bandwidth”. In: SIAM Journal on Algebraic Discrete Methods 6.3, pp. 418–
444. DOI: 10.1137/0606044.

Malewicz, G., M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski (2009). “Pregel: a system for large-scale graph processing”. In:
Proceedings of the 28th ACM symposium on Principles of distributed computing
- PODC ’09. ACM Press. DOI: 10.1145/1582716.1582723.

Martí, R., J. J. Pantrigo, A. Duarte, and E. G. Pardo (Jan. 2013). “Branch and
bound for the cutwidth minimization problem”. In: Computers & Operations
Research 40.1, pp. 137–149. DOI: 10.1016/j.cor.2012.05.016.

Martí, R. and G. Reinelt (2011). The Linear Ordering Problem. Vol. 175. Springer
Berlin Heidelberg. DOI: 10.1007/978-3-642-16729-4.

McGrath, C. L. and L. A. Katz (Jan. 2004). “Genome diversity in microbial
eukaryotes”. In: Trends in Ecology & Evolution 19.1, pp. 32–38. DOI: 10.1016/
j.tree.2003.10.007.

Medini, D., C. Donati, H. Tettelin, V. Masignani, and R. Rappuoli (Dec. 2005).
“The microbial pan-genome”. In: Current Opinion in Genetics & Development
15.6, pp. 589–594. DOI: 10.1016/j.gde.2005.09.006.

Meidanis, J., O. Porto, and G. P. Telles (Nov. 1998). “On the consecutive ones
property”. In: Discrete Applied Mathematics 88.1-3, pp. 325–354. DOI: 10.
1016/s0166-218x(98)00078-x.

Menger, K. (1927). “Zur allgemeinen Kurventheorie”. In: Fundamenta Mathematicae
10, pp. 96–115. DOI: 10.4064/fm-10-1-96-115.

Metcalf, L. and W. Casey (2016). “Graph theory”. In: Cybersecurity and Applied
Mathematics. Elsevier, pp. 67–94. DOI: 10 . 1016 / b978 - 0 - 12 - 804452 -
0.00005-1.

El-Metwally, S., T. Hamza, M. Zakaria, and M. Helmy (Dec. 2013). “Next-
Generation Sequence Assembly: Four Stages of Data Processing and Com-
putational Challenges”. In: PLOS Computational Biology 9.12, pp. 1–19. DOI:
10.1371/journal.pcbi.1003345.

https://doi.org/10.5962/bhl.title.156772
https://doi.org/10.1007/978-3-642-31927-3_5
https://doi.org/10.1007/978-3-642-31927-3_5
https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1101/gad.10.2.176
https://doi.org/10.1137/0606044
https://doi.org/10.1145/1582716.1582723
https://doi.org/10.1016/j.cor.2012.05.016
https://doi.org/10.1007/978-3-642-16729-4
https://doi.org/10.1016/j.tree.2003.10.007
https://doi.org/10.1016/j.tree.2003.10.007
https://doi.org/10.1016/j.gde.2005.09.006
https://doi.org/10.1016/s0166-218x(98)00078-x
https://doi.org/10.1016/s0166-218x(98)00078-x
https://doi.org/10.4064/fm-10-1-96-115
https://doi.org/10.1016/b978-0-12-804452-0.00005-1
https://doi.org/10.1016/b978-0-12-804452-0.00005-1
https://doi.org/10.1371/journal.pcbi.1003345

Bibliography 185

Miller, J. R., S. Koren, and G. Sutton (June 2010). “Assembly algorithms for
next-generation sequencing data”. In: Genomics 95.6, pp. 315–327. DOI: 10.
1016/j.ygeno.2010.03.001.

Minkin, I. and P. Medvedev (Feb. 2019). “Scalable multiple whole-genome alignment
and locally collinear block construction with SibeliaZ”. In: DOI: 10.1101/
548123.

Murphy, R. C., K. B. Wheeler, B. W. Barrett, and J. A. Ang (2010). “Introducing
the graph 500”. In: Cray Users Group (CUG) 19, pp. 45–74.

Nagarajan, N. and M. Pop (July 2009). “Parametric Complexity of Sequence
Assembly: Theory and Applications to Next Generation Sequencing”. In: Journal
of Computational Biology 16.7, pp. 897–908. DOI: 10.1089/cmb.2009.0005.

Nawrocki, E. P. and S. R. Eddy (Sept. 2013). “Infernal 1.1: 100-fold faster RNA
homology searches”. In: Bioinformatics 29.22, pp. 2933–2935. DOI: 10.1093/
bioinformatics/btt509.

Necsulea, A. and H. Kaessmann (Oct. 2014). “Evolutionary dynamics of coding and
non-coding transcriptomes”. In: Nature Reviews Genetics 15.11, pp. 734–748.
DOI: 10.1038/nrg3802.

Neme, R. and D. Tautz (Feb. 2016). “Fast turnover of genome transcription across
evolutionary time exposes entire non-coding DNA to de novo gene emergence”.
In: eLife 5. DOI: 10.7554/elife.09977.

Nguyen, N., G. Hickey, B. J. Raney, J. Armstrong, H. Clawson, A. Zweig, D.
Karolchik, W. J. Kent, D. Haussler, and B. Paten (Aug. 2014a). “Comparative
assembly hubs: Web-accessible browsers for comparative genomics”. In: Bioin-
formatics 30.23, pp. 3293–3301. DOI: 10.1093/bioinformatics/btu534.

Nguyen, N., G. Hickey, B. J. Raney, J. Armstrong, H. Clawson, A. Zweig, D.
Karolchik, W. J. Kent, D. Haussler, and B. Paten (Aug. 2014b). “Comparative
assembly hubs: Web-accessible browsers for comparative genomics”. In: Bioin-
formatics 30.23, pp. 3293–3301. DOI: 10.1093/bioinformatics/btu534.

Nguyen, N., G. Hickey, D. R. Zerbino, B. Raney, D. Earl, J. Armstrong, W. J. Kent,
D. Haussler, and B. Paten (May 2015). “Building a Pan-Genome Reference for
a Population”. In: Journal of Computational Biology 22.5, pp. 387–401. DOI:
10.1089/cmb.2014.0146.

Nitsche, A., D. Rose, M. Fasold, K. Reiche, and P. F. Stadler (Mar. 2015). “Com-
parison of splice sites reveals that long noncoding RNAs are evolutionarily well
conserved”. In: RNA 21.5, pp. 801–812. DOI: 10.1261/rna.046342.114.

Nuutila, E. and E. Soisalon-Soininen (Jan. 1994). “On finding the strongly connected
components in a directed graph”. In: Information Processing Letters 49.1, pp. 9–
14. DOI: 10.1016/0020-0190(94)90047-7.

Onodera, T., K. Sadakane, and T. Shibuya (2013). “Detecting superbubbles in
assembly graphs”. In: International Workshop on Algorithms in Bioinformatics.
Ed. by A. Darling and J. Stoye. Vol. 8126. Berlin, Heidelberg: Springer Verlag,
pp. 338–348. DOI: 10.1007/978-3-642-40453-5_26.

Opatrny, J. (Feb. 1979). “Total Ordering Problem”. In: SIAM Journal on Computing
8.1, pp. 111–114. DOI: 10.1137/0208008.

https://doi.org/10.1016/j.ygeno.2010.03.001
https://doi.org/10.1016/j.ygeno.2010.03.001
https://doi.org/10.1101/548123
https://doi.org/10.1101/548123
https://doi.org/10.1089/cmb.2009.0005
https://doi.org/10.1093/bioinformatics/btt509
https://doi.org/10.1093/bioinformatics/btt509
https://doi.org/10.1038/nrg3802
https://doi.org/10.7554/elife.09977
https://doi.org/10.1093/bioinformatics/btu534
https://doi.org/10.1093/bioinformatics/btu534
https://doi.org/10.1089/cmb.2014.0146
https://doi.org/10.1261/rna.046342.114
https://doi.org/10.1016/0020-0190(94)90047-7
https://doi.org/10.1007/978-3-642-40453-5_26
https://doi.org/10.1137/0208008

186 Bibliography

Oswald, M. and G. Reinelt (May 2009). “The simultaneous consecutive ones
problem”. In: Theoretical Computer Science 410.21-23, pp. 1986–1992. DOI:
10.1016/j.tcs.2008.12.039.

Oyedotun, K. S. and B. D. Lemire (1997). “The Carboxyl Terminus of the Sac-
charomyces cerevisiaeSuccinate Dehydrogenase Membrane Subunit, SDH4p, Is
Necessary for Ubiquinone Reduction and Enzyme Stability”. In: Journal of Biolog-
ical Chemistry 272.50, pp. 31382–31388. DOI: 10.1074/jbc.272.50.31382.

Pardo, E. G., R. Martí, and A. Duarte (2018). “Linear Layout Problems”. In:
Handbook of Heuristics. Springer International Publishing, pp. 1025–1049. DOI:
10.1007/978-3-319-07124-4_45.

Paten, B., D. Earl, N. Nguyen, M. Diekhans, D. Zerbino, and D. Haussler (June
2011). “Cactus: Algorithms for genome multiple sequence alignment”. In:
Genome Research 21.9, pp. 1512–1528. DOI: 10.1101/gr.123356.111.

Paten, B., J. M. Eizenga, Y. M. Rosen, A. M. Novak, E. Garrison, and G. Hickey (July
2018). “Superbubbles, Ultrabubbles, and Cacti”. In: Journal of Computational
Biology 25.7, pp. 649–663. DOI: 10.1089/cmb.2017.0251.

Paten, B., J. Herrero, K. Beal, S. Fitzgerald, and E. Birney (Nov. 2008). “Enredo
and Pecan: Genome-wide mammalian consistency-based multiple alignment
with paralogs”. In: Genome Research 18.11, pp. 1814–1828. DOI: 10.1101/gr.
076554.108.

Pearce, D. J. (Jan. 2016). “A space-efficient algorithm for finding strongly connected
components”. In: Information Processing Letters 116.1, pp. 47–52. DOI: 10.
1016/j.ipl.2015.08.010.

Peer, Y. V. de, S. Maere, and A. Meyer (Aug. 2009). “The evolutionary significance
of ancient genome duplications”. In: Nature Reviews Genetics 10.10, pp. 725–
732. DOI: 10.1038/nrg2600.

Pevzner, P. A., H. Tang, and M. S. Waterman (Aug. 2001). “An Eulerian path
approach to DNA fragment assembly”. In: Proceedings of the National Academy
of Sciences 98.17, pp. 9748–9753. DOI: 10.1073/pnas.171285098.

Pevzner, P. A., H. Tang, and G. Tesler (Sept. 2004). “De Novo Repeat Classification
and Fragment Assembly”. In: Genome Research 14.9, pp. 1786–1796. DOI:
10.1101/gr.2395204.

Prohaska, S. J., S. J. Berkemer, F. Gärtner, T. Gatter, N. Retzlaff, C. H. zu
Siederdissen, and P. F. Stadler (Dec. 2017). “Expansion of gene clusters, circular
orders, and the shortest Hamiltonian path problem”. In: Journal of Mathematical
Biology 77.2, pp. 313–341. DOI: 10.1007/s00285-017-1197-3.

Rahm, E., W. E. Nagel, E. Peukert, R. Jäkel, F. Gärtner, P. F. Stadler, D. Wiegreffe,
D. Zeckzer, and W. Lehner (Dec. 2018). “Big Data Competence Center ScaDS
Dresden/Leipzig: Overview and selected research activities”. In: Datenbank-
Spektrum 19.1, pp. 5–16. DOI: 10.1007/s13222-018-00303-6.

Reid, J. K. and J. A. Scott (Jan. 2006). “Reducing the Total Bandwidth of a Sparse
Unsymmetric Matrix”. In: SIAM Journal on Matrix Analysis and Applications
28.3, pp. 805–821. DOI: 10.1137/050629938.

Rhoads, A. and K. F. Au (Oct. 2015). “PacBio Sequencing and Its Applications”.
In: Genomics, Proteomics & Bioinformatics 13.5, pp. 278–289. DOI: 10.1016/
j.gpb.2015.08.002.

https://doi.org/10.1016/j.tcs.2008.12.039
https://doi.org/10.1074/jbc.272.50.31382
https://doi.org/10.1007/978-3-319-07124-4_45
https://doi.org/10.1101/gr.123356.111
https://doi.org/10.1089/cmb.2017.0251
https://doi.org/10.1101/gr.076554.108
https://doi.org/10.1101/gr.076554.108
https://doi.org/10.1016/j.ipl.2015.08.010
https://doi.org/10.1016/j.ipl.2015.08.010
https://doi.org/10.1038/nrg2600
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1101/gr.2395204
https://doi.org/10.1007/s00285-017-1197-3
https://doi.org/10.1007/s13222-018-00303-6
https://doi.org/10.1137/050629938
https://doi.org/10.1016/j.gpb.2015.08.002
https://doi.org/10.1016/j.gpb.2015.08.002

Bibliography 187

Risi, C., B. Belknap, E. Forgacs-Lonart, S. P. Harris, G. F. Schröder, H. D. White,
and V. E. Galkin (Dec. 2018). “N-Terminal Domains of Cardiac Myosin Binding
Protein C Cooperatively Activate the Thin Filament”. In: Structure 26.12, 1604–
1611.e4. DOI: 10.1016/j.str.2018.08.007.

Roberts, M., W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke (July 2004).
“Reducing storage requirements for biological sequence comparison”. In: Bioin-
formatics 20.18, pp. 3363–3369. DOI: 10.1093/bioinformatics/bth408.

Robinson, W. S. (Apr. 1951). “A Method for Chronologically Ordering Archaeological
Deposits”. In: American Antiquity 16.4, pp. 293–301. DOI: 10.2307/276978.

Ronse, C. (Oct. 2014). “Axiomatics for oriented connectivity”. In: Pattern Recogni-
tion Letters 47, pp. 120–128. DOI: 10.1016/j.patrec.2014.03.020.

Rosen, Y., J. Eizenga, and B. Paten (2017). “Describing the Local Structure of
Sequence Graphs”. In: Algorithms for Computational Biology – 4th AlCoB.
Ed. by D. Figueiredo, C. Martín-Vide, D. Pratas, and M. A. Vega-Rodríguez.
Vol. 10252. Lecture Notes Comp. Sci. Heidelberg: Springer, pp. 24–46. DOI:
10.1007/978-3-319-58163-7_2.

Saab, Y. (May 2001). “A Fast and Effective Algorithm for the Feedback Arc Set
Problem”. In: Journal of Heuristics 7.3, pp. 235–250. ISSN: 1572-9397. DOI:
10.1023/A:1011315014322.

Saccharomyces Genome Database Community (n.d.). SGD Yeast Pathway: Sac-
charomyces cerevisiae TCA cycle, aerobic respiration. http : / / pathway .
yeastgenome.org/YEAST/NEW- IMAGE?object=TCA- EUK- PWY. Accessed:
2017-05-18.

Sankoff, D. (1983). “Time warps, string edits, and macromolecules”. In: The Theory
and Practice of Sequence Comparison, Reading.

Schleimer, S., D. S. Wilkerson, and A. Aiken (2003). “Winnowing”. In: Proceedings
of the 2003 ACM SIGMOD international conference on on Management of data
- SIGMOD ’03. ACM Press. DOI: 10.1145/872757.872770.

Schwartz, S., W. J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. C. Hardison, D.
Haussler, and W. Miller (2003). “Human–Mouse Alignments with BLASTZ”.
In: Genome Research 13.1, pp. 103–107. DOI: 10.1101/gr.809403.

Smith, T. and M. Waterman (Mar. 1981). “Identification of common molecular
subsequences”. In: Journal of Molecular Biology 147.1, pp. 195–197. DOI:
10.1016/0022-2836(81)90087-5.

Spearman, C. (Jan. 1904). “The Proof and Measurement of Association between
Two Things”. In: The American Journal of Psychology 15.1, p. 72. DOI:
10.2307/1412159.

Spingola, M., L. Grate, D. Haussler, and M. Ares Jr. (Feb. 1999). “Genome-wide
bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae”.
In: RNA 5.2, pp. 221–234. DOI: 10.1017/s1355838299981682.

Sung, W.-K., K. Sadakane, T. Shibuya, A. Belorkar, and I. Pyrogova (July 2015).
“An O(mlogm)-time algorithm for detecting superbubbles”. In: IEEE/ACM
Transactions on Computational Biology and Bioinformatics 12, pp. 770–777.
DOI: 10.1109/TCBB.2014.2385696.

Sylvester, J. J. (1878). “On an Application of the New Atomic Theory to the
Graphical Representation of the Invariants and Covariants of Binary Quantics,

https://doi.org/10.1016/j.str.2018.08.007
https://doi.org/10.1093/bioinformatics/bth408
https://doi.org/10.2307/276978
https://doi.org/10.1016/j.patrec.2014.03.020
https://doi.org/10.1007/978-3-319-58163-7_2
https://doi.org/10.1023/A:1011315014322
http://pathway.yeastgenome.org/YEAST/NEW-IMAGE?object=TCA-EUK-PWY
http://pathway.yeastgenome.org/YEAST/NEW-IMAGE?object=TCA-EUK-PWY
https://doi.org/10.1145/872757.872770
https://doi.org/10.1101/gr.809403
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.2307/1412159
https://doi.org/10.1017/s1355838299981682
https://doi.org/10.1109/TCBB.2014.2385696

188 Bibliography

with Three Appendices”. In: American Journal of Mathematics 1.1, pp. 64–104.
DOI: 10.2307/2369436.

Tankyevych, O., H. Talbot, and N. Passat (2013). “Semi-connections and Hi-
erarchies”. In: Mathematical Morphology and Its Applications to Signal and
Image Processing. Ed. by C. L. Luengo Hendriks, G. Borgefors, and R. Strand.
Vol. 7883. Lecture Notes in Computer Science. Berlin: Springer, pp. 159–170.
DOI: 10.1007/978-3-642-38294-9_14.

Tarjan, R. (June 1972). “Depth-First Search and Linear Graph Algorithms”. In:
SIAM Journal on Computing 1.2, pp. 146–160. DOI: 10.1137/0201010.

Tarjan, R. E. (1976). “Edge-disjoint spanning trees and depth-first search”. In: Acta
Informatica 6.2, pp. 171–185. DOI: 10.1007/bf00268499.

Trifonov, E. N. (Oct. 2011). “Vocabulary of Definitions of Life Suggests a Definition”.
In: Journal of Biomolecular Structure and Dynamics 29.2, pp. 259–266. DOI:
10.1080/073911011010524992.

Tucker, A. (1972). “A structure theorem for the consecutive 1’s property”. In:
Journal of Combinatorial Theory, Series B 12.2, pp. 153–162. ISSN: 0095-8956.
DOI: https://doi.org/10.1016/0095-8956(72)90019-6.

Viro, O., O. Ivanov, N. Netsvetaev, and V. Kharlamov (Sept. 2008). Elementary
Topology. American Mathematical Society. DOI: 10.1090/mbk/054.

Wang, L. and T. Jiang (Jan. 1994). “On the Complexity of Multiple Sequence
Alignment”. In: Journal of Computational Biology 1.4, pp. 337–348. DOI:
10.1089/cmb.1994.1.337.

Washietl, S., M. Kellis, and M. Garber (2014). “Evolutionary dynamics and tissue
specificity of human long noncoding RNAs in six mammals”. In: Genome
Research 24.4, pp. 616–628. DOI: 10.1101/gr.165035.113.

Watson, J. D. and F. H. C. Crick (Apr. 1953). “Molecular Structure of Nucleic Acids:
A Structure for Deoxyribose Nucleic Acid”. In: Nature 171.4356, pp. 737–738.
DOI: 10.1038/171737a0.

Watts, D. J. and S. H. Strogatz (June 1998). “Collective dynamics of ‘small-world’
networks”. In: Nature 393.6684, pp. 440–442. DOI: 10.1038/30918.

Xiao, S., X. Cao, and S. Zhong (July 2014). “Comparative epigenomics: defining and
utilizing epigenomic variations across species, time-course, and individuals”. In:
Wiley Interdisciplinary Reviews: Systems Biology and Medicine 6.5, pp. 345–352.
DOI: 10.1002/wsbm.1274.

Xue, Y. et al. (Sept. 2009). “Human Y Chromosome Base-Substitution Mutation
Rate Measured by Direct Sequencing in a Deep-Rooting Pedigree”. In: Current
Biology 19.17, pp. 1453–1457. DOI: 10.1016/j.cub.2009.07.032.

Yasutake, Y., S. Watanabe, M. Yao, Y. Takada, N. Fukunaga, and I. Tanaka (2003).
“Crystal Structure of the Monomeric Isocitrate Dehydrogenase in the Presence
of NADP+: INSIGHT INTO THE COFACTOR RECOGNITION, CATALYSIS,
AND EVOLUTION”. In: Journal of Biological Chemistry 278.38, pp. 36897–
36904. DOI: 10.1074/jbc.M304091200.

Yue, J.-X. and G. Liti (May 2019). “simuG: a general-purpose genome simulator”. In:
Bioinformatics. Ed. by J. Hancock. DOI: 10.1093/bioinformatics/btz424.

https://doi.org/10.2307/2369436
https://doi.org/10.1007/978-3-642-38294-9_14
https://doi.org/10.1137/0201010
https://doi.org/10.1007/bf00268499
https://doi.org/10.1080/073911011010524992
https://doi.org/https://doi.org/10.1016/0095-8956(72)90019-6
https://doi.org/10.1090/mbk/054
https://doi.org/10.1089/cmb.1994.1.337
https://doi.org/10.1101/gr.165035.113
https://doi.org/10.1038/171737a0
https://doi.org/10.1038/30918
https://doi.org/10.1002/wsbm.1274
https://doi.org/10.1016/j.cub.2009.07.032
https://doi.org/10.1074/jbc.M304091200
https://doi.org/10.1093/bioinformatics/btz424

Bibliography 189

Zerbino, D. R. and E. Birney (Feb. 2008). “Velvet: algorithms for de novo short
read assembly using de Bruijn graphs”. In: Genome Research 18.5, pp. 821–829.
DOI: 10.1101/gr.074492.107.

https://doi.org/10.1101/gr.074492.107

Publications 193

Publications

R. Lorenz, S. H. Bernhart, F. Externbrink, J. Qin, C. H. zu Siederdissen, F. Amman,
I. L. Hofacker, and P. F. Stadler (2012). “RNA Folding Algorithms with G-
Quadruplexes”. In: Advances in Bioinformatics and Computational Biology.
Springer Berlin Heidelberg, pp. 49–60. DOI: 10.1007/978-3-642-31927-
3_5.

M. Bernt, A. Donath, F. Jühling, F. Externbrink, C. Florentz, G. Fritzsch, J. Pütz,
M. Middendorf, and P. F. Stadler (Nov. 2013). “MITOS: Improved de novo
metazoan mitochondrial genome annotation”. In: Molecular Phylogenetics and
Evolution 69.2, pp. 313–319. DOI: 10.1016/j.ympev.2012.08.023.

C. Arnold, F. Externbrink, J. Hackermüller, and K. Reiche (Nov. 2014). “CEM-
Designer: Design of custom expression microarrays in the post-ENCODE Era”.
In: Journal of Biotechnology 189, pp. 154–156. DOI: 10.1016/j.jbiotec.
2014.09.012.

S. J. Prohaska, S. J. Berkemer, F. Gärtner, T. Gatter, N. Retzlaff, C. H. zu
Siederdissen, and P. F. Stadler (Dec. 2017). “Expansion of gene clusters, circular
orders, and the shortest Hamiltonian path problem”. In: Journal of Mathematical
Biology 77.2, pp. 313–341. DOI: 10.1007/s00285-017-1197-3.

F. Gärtner, C. Höner zu Siederdissen, L. Müller, and P. F. Stadler (Sept. 2018).
“Coordinate Systems for Supergenomes”. In: Algorithms for Molecular Biology
13.1, p. 15. DOI: 10.1186/s13015-018-0133-4.

F. Gärtner, L. Müller, and P. F. Stadler (Dec. 2018). “Superbubbles revisited”. In:
Algorithms for Molecular Biology 13.1, p. 16. DOI: 10.1186/s13015-018-
0134-3.

E. Rahm, W. E. Nagel, E. Peukert, R. Jäkel, F. Gärtner, P. F. Stadler, D. Wiegreffe,
D. Zeckzer, and W. Lehner (Dec. 2018). “Big Data Competence Center ScaDS
Dresden/Leipzig: Overview and selected research activities”. In: Datenbank-
Spektrum 19.1, pp. 5–16. DOI: 10.1007/s13222-018-00303-6.

F. Gärtner and P. F. Stadler (Apr. 2019). “Direct Superbubble Detection”. In:
Algorithms 12.4. ISSN: 1999-4893. DOI: 10.3390/a12040081.

https://doi.org/10.1007/978-3-642-31927-3_5
https://doi.org/10.1007/978-3-642-31927-3_5
https://doi.org/10.1016/j.ympev.2012.08.023
https://doi.org/10.1016/j.jbiotec.2014.09.012
https://doi.org/10.1016/j.jbiotec.2014.09.012
https://doi.org/10.1007/s00285-017-1197-3
https://doi.org/10.1186/s13015-018-0133-4
https://doi.org/10.1186/s13015-018-0134-3
https://doi.org/10.1186/s13015-018-0134-3
https://doi.org/10.1007/s13222-018-00303-6
https://doi.org/10.3390/a12040081

194 Presentations

Presentations

07.10.2014 Oriented graph grammars and stereochemistry
12. Herbstseminar der Bioinformatik

29.09.2015 Cilk Plus - The power of multicore and vector processing
13. Herbstseminar der Bioinformatik

18.02.2016 Golden Genome
31nd TBI Winterseminar in Bled

15.02.2017 From Genomes to Supergenomes - How to deal with be-
tweenness
32nd TBI Winterseminar in Bled

15.02.2018 The Magic of Graph Databases
33rd TBI Winterseminar in Bled

02.10.2018 Superbubbles
16. Herbstseminar der Bioinformatik

Selbständigkeitserklärung 195

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässige
fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die angeführten
Quellen und Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich oder sin-
ngemäß aus veröffentlichten oder unveröffentlichten Schriften entnommen wurden,
und alle Angaben, die auf mündlichen Auskünften beruhen, als solche kenntlich
gemacht. Ebenfalls sind alle von anderen Personen bereitgestellten Materialen oder
erbrachten Dienstleistungen als solche gekennzeichnet.

(Ort, Datum)

(Unterschrift)

	Introduction
	Molecules of Life
	Evolution
	Genome Evolution
	Alignments
	Genome Assembly
	Supergenome
	Orders and graphs
	Total Ordering of a Digraph

	Total graph ordering
	Ordering
	Graphs
	General ordering methods
	Genome Assembly
	Supergenome
	Graph simplifier

	Superbubbles
	State of the Art
	Weak Superbubbles
	Properties of (Weak) Superbubbles
	Superbubbles and SCC
	Superbubbles maintaining DAG
	Superbubbles in a DAG
	Superbubbles and DFS
	Superbubbles and Cycles
	Linear Superbubble Detection

	Supergenome
	Motivation
	Genome-wide multiple sequence alignments
	gMSA as Graph
	Modeling the ``Supergenome Sorting Problem''
	Betweenness Problems
	Graph Simplification
	Supergenome Pipeline

	Applications
	Superbubbles
	Supergenome

	Discussion and Outlook
	Superbubbles
	Parallel Superbubble Detection
	Generalization of Superbubble
	Other Graph Algorithms and Superbubbles
	Supergenome
	Parameterized Supergenome
	Genome Assembly
	Appendices
	Supergenome Data Sets
	4way Salmonella
	7way Yeast
	27way Insect

	Supergenome Algorithm
	Filter
	Simplifier
	Minimum Feedback Arc Set problem
	Topological Sorting
	Optimization

	Supergenome Results
	Data distribution
	Graph edit statistic
	Graph properties
	Successor statistic
	ORF statistic
	Betweeness statistic

	Superbubbles Results
	List of Symbols
	List of Abbreviations
	Definition Index
	Bibliography
	Curriculum Scientiae
	Publications
	Presentations

