
University of Massachusetts Medical School University of Massachusetts Medical School

eScholarship@UMMS eScholarship@UMMS

University of Massachusetts Medical School Faculty Publications

2020-11-11

Progressive Cactus is a multiple-genome aligner for the thousand-Progressive Cactus is a multiple-genome aligner for the thousand-

genome era genome era

Joel Armstrong
University of California, Santa Cruz

Et al.

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/faculty_pubs

 Part of the Bioinformatics Commons, Computational Biology Commons, Ecology and Evolutionary

Biology Commons, and the Genomics Commons

Repository Citation Repository Citation
Armstrong J, Karlsson EK, Zhang G, Paten B. (2020). Progressive Cactus is a multiple-genome aligner for
the thousand-genome era. University of Massachusetts Medical School Faculty Publications.
https://doi.org/10.1038/s41586-020-2871-y. Retrieved from https://escholarship.umassmed.edu/
faculty_pubs/1905

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.
This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in University of
Massachusetts Medical School Faculty Publications by an authorized administrator of eScholarship@UMMS. For
more information, please contact Lisa.Palmer@umassmed.edu.

https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/faculty_pubs
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/faculty_pubs?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F1905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F1905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/28?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F1905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/14?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F1905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/14?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F1905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/30?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F1905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1038/s41586-020-2871-y
https://escholarship.umassmed.edu/faculty_pubs/1905?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F1905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://escholarship.umassmed.edu/faculty_pubs/1905?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F1905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:Lisa.Palmer@umassmed.edu

246 | Nature | Vol 587 | 12 November 2020

Article

Progressive Cactus is a multiple-genome
aligner for the thousand-genome era

Joel Armstrong1, Glenn Hickey1, Mark Diekhans1, Ian T. Fiddes1, Adam M. Novak1,
Alden Deran1, Qi Fang2,3, Duo Xie2,4, Shaohong Feng2,5, Josefin Stiller3, Diane Genereux6,
Jeremy Johnson6, Voichita Dana Marinescu7, Jessica Alföldi6, Robert S. Harris8,
Kerstin Lindblad-Toh6,7, David Haussler1,9, Elinor Karlsson6,10,11, Erich D. Jarvis9,12,
Guojie Zhang3,5,13,14 ✉ & Benedict Paten1 ✉

New genome assemblies have been arriving at a rapidly increasing pace, thanks to
decreases in sequencing costs and improvements in third-generation sequencing
technologies1–3. For example, the number of vertebrate genome assemblies currently
in the NCBI (National Center for Biotechnology Information) database4 increased by
more than 50% to 1,485 assemblies in the year from July 2018 to July 2019. In addition
to this influx of assemblies from different species, new human de novo assemblies5 are
being produced, which enable the analysis of not only small polymorphisms, but also
complex, large-scale structural differences between human individuals and haplotypes.
This coming era and its unprecedented amount of data offer the opportunity to
uncover many insights into genome evolution but also present challenges in how to
adapt current analysis methods to meet the increased scale. Cactus6, a reference-free
multiple genome alignment program, has been shown to be highly accurate, but the
existing implementation scales poorly with increasing numbers of genomes, and
struggles in regions of highly duplicated sequences. Here we describe progressive
extensions to Cactus to create Progressive Cactus, which enables the reference-free
alignment of tens to thousands of large vertebrate genomes while maintaining high
alignment quality. We describe results from an alignment of more than 600 amniote
genomes, which is to our knowledge the largest multiple vertebrate genome
alignment created so far.

Comparative genomics analyses, including species-tree inference7,8,
comparative annotation9,10, and selection detection11,12, require genome
alignments. Multi-species genome alignment involves creating a map-
ping from each region of each genome to a corresponding region in
each other genome, taking into account the possibility of complex
rearrangements and copy number changes13. Genome aligners are
one of the most fundamental tools used in comparative genomics,
but because the problem is difficult, different aligners frequently give
different results14, and many intentionally limit the alignments they
produce to simplify the problem. Two of the most common limitations
are ‘reference bias’, the result of constraining a multiple alignment to
only regions present in a single reference genome, and restricting the
alignment to be ‘single-copy’, which allows only a single alignment
in any column in any given genome, causing the alignment to miss
multiple-orthology relationships created by lineage-specific duplica-
tions. Cactus6 is a genome alignment program that has neither of these

restrictions; it can generate a reference-free multiple alignment that
allows the detection of multiple-orthology relationships.

The version of Cactus available in 2012 performed very well in the
Alignathon14, an evaluation of genome aligners. However, the runtime of
that initial iteration of Cactus scaled quadratically with the total number
of bases in the alignment problem, making alignment of more than
about ten vertebrate genomes completely impractical. To address these
difficulties, we present fundamental changes to the Cactus process
that incorporate a progressive alignment strategy15, which changes the
runtime of the alignment to scale linearly with the number of genomes.
We show that the result, which we call Progressive Cactus, is an aligner
that retains state-of-the-art accuracy, and continues to lack reference
bias, but which is tractable to use on hundreds to thousands of large,
vertebrate-sized input genomes. Progressive Cactus has been devel-
oped over several years, and has already been successfully used as an
integral component of high-profile comparative genomics projects16–20.

https://doi.org/10.1038/s41586-020-2871-y

Received: 24 August 2019

Accepted: 27 July 2020

Published online: 11 November 2020

Open access

 Check for updates

1UC Santa Cruz Genomics Institute, UC Santa Cruz, Santa Cruz, CA, USA. 2BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China. 3Section for Ecology and Evolution, Department of Biology,
University of Copenhagen, Copenhagen, Denmark. 4BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China. 5State Key Laboratory of Genetic Resources and
Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. 6Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
7Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. 8Department of Biology, The Pennsylvania State University, University
Park, PA, USA. 9Howard Hughes Medical Institute, Chevy Chase, MD, USA. 10Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA. 11Bioinformatics
and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA. 12Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA. 13Center
for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China. 14China National GeneBank, BGI-Shenzhen, Shenzhen, China. ✉e-mail: guojie.zhang@bio.
ku.dk; bpaten@ucsc.edu

https://doi.org/10.1038/s41586-020-2871-y
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-020-2871-y&domain=pdf
mailto:guojie.zhang@bio.ku.dk
mailto:guojie.zhang@bio.ku.dk
mailto:bpaten@ucsc.edu

Nature | Vol 587 | 12 November 2020 | 247

Progressive Cactus
The new Progressive Cactus pipeline is freely available and open source.
The only inputs needed are a guide tree and a FASTA file for each genome
assembly.

The key innovation of Progressive Cactus is to adapt the classic ‘pro-
gressive’ strategy (used in collinear multiple alignment for decades) to a
whole-genome alignment setting. Progressive aligners use a ‘guide tree’
to recursively break a multiple alignment problem into many smaller
sub-alignments, each of which is solved independently; the resulting
sub-alignments are themselves aligned together according to the tree
structure to create the final alignment. Progressive alignment has been
successfully applied to whole-genome alignment before—for example,
by progressiveMauve21 and TBA/MULTIZ22. Cactus now follows a similar
strategy, with the key innovation being that Progressive Cactus imple-
ments a progressive-alignment strategy for whole-genome alignment
using reconstructed ancestral assemblies as the method for combining
sub-alignments. This strategy (analogous to the MAVID23 strategy of
using ancestral reconstruction in collinear multiple alignment) not
only results in a much faster alignment runtime but also produces
ancestral reconstructions.

Figure 1a shows the overall organization of the Progressive Cactus
process. The guide tree, which need not be fully resolved (binary), is used
to recursively split a large alignment problem (comparing every genome
to every other genome) into many small subproblems, each of which
compares only a small number (usually 2–5) of genomes against one
another. The purpose of each subproblem is to reconstruct an ancestral
assembly at each internal node in the guide tree, as well as to generate
alignments between that internal node’s children and its ancestral recon-
struction. The ancestral assemblies are then used as input genomes in
subproblems further up the tree, and the parent–child alignments are

later combined to produce the full alignment. Two sets of genomes are
considered: the children of the internal node (which we call the ‘ingroup
genomes’), and a set of non-descendants of that node (the ‘outgroup
genomes’). The ingroup genomes form the core alignment relationship
being established at this node. The outgroup genomes serve to answer
the question of what sequence from the ingroups is also present in the
ancestor (whether an indel among the ingroups is likely to be a deletion
rather than an insertion), and in how many copies (whether a duplication
predates or postdates the speciation event the node represents). The
outgroups also provide information for guiding the ancestral assembly
by providing order-and-orientation information, as well as base-level
information when generating ancestral sequences. These genome sets
are used as the input to the main subproblem workflow (Fig. 1b).

Each individual subproblem follows a similar procedure to the
original Cactus process. The subproblem procedure begins with a
set of pairwise local alignments generated via the sensitive pairwise
local-alignment program LASTZ24. These pairwise alignments are
then filtered and combined into a cactus graph representing an initial
multiple alignment using the previously described CAF algorithm6—
although we note important changes to the filtering in Methods and
Extended Data Fig. 1—to attempt to recover the homologies that date to
the most recent common ancestor of the ingroup genomes. The initial
alignment is refined using the previously described BAR algorithm6
to create a more complete alignment. The ancestral assembly is then
created by ordering the blocks in this final alignment and establishing
a most-likely base call for each column in each block. The resulting
ancestral sequence is then fed into later subproblems (unless the root
of the guide tree has been reached, which ends the alignment process).

As a practical matter, Progressive Cactus uses the Toil25 workflow
framework to organize and distribute its computational tasks. Although
genome alignment is a computationally intensive task, using Toil, we

Reconstructed ancestor

Ingroup genomeIngroup genome

Outgroup genome

Large guide tree

Smaller subproblem

Local
alignment

CAF
Filter to
anchors

BAR
Extend from

anchors

Ancestral
genome
inference

Ingroups,
outgroups

Additional
repeat-
masking

Input
genomes

Individual subproblems

Genome
sequences

HAL
alignment

a

b

Fig. 1 | The alignment process within
Progressive Cactus. a, A large alignment problem
is split into many smaller subproblems using an
input guide tree. Each subproblem compares a set
of ingroup genomes (the children of the internal
node to be reconstructed) against each other as
well as a sample of outgroup genomes
(non-descendants of the internal node in
question). b, Flowchart represents the phases in
which the overall alignment, as well as each
subproblem alignment, proceeds through. The
end result is a new genome assembly that
represents the Progressive Cactus reconstruction
of the ancestral genome, and an alignment
between this ancestral genome and its children.
After all subproblems have been completed, the
parent–child alignments are combined to create
the full reference-free alignment in the HAL27
format.

248 | Nature | Vol 587 | 12 November 2020

Article

can break up the problem into small pieces that can work in hetero-
geneous compute environments, playing to the advantages of both
cheap CPU-rich machines and more expensive memory-rich machines.
Because it runs on Toil and supports container execution via Docker
and Singularity26, Progressive Cactus can be run on many different
environments: single machines (for small alignments), conventional
clusters, and commercial clouds.

Given the rate of arrival of new assembly versions and newly sequenced
genomes, adding new information to an alignment without recomput-
ing it from scratch is valuable, especially for large alignments in which
recomputing the entire alignment is often cost-prohibitive. Progressive
Cactus, combined with special functionality in the HAL toolkit27, there-
fore supports the addition and removal of genomes from the alignment
by taking advantage of the tree structure of the progressive alignments
it produces (Methods, Extended Data Fig. 2, Extended Data Table 1).

Evaluation on simulated data
The Alignathon simulated datasets14 have been aligned with many
competing genome aligners and have a known truth set, providing
a way to compare Progressive Cactus against other genome aligners.
Progressive Cactus produces alignments with higher accuracy for both
simulated primate (F1 score of 0.989) and mammal (F1 score of 0.795)
clades than any aligner that participated in the Alignathon (Supple-
mentary Tables 1, 2), including the original version of Cactus.

To evaluate the improvements in quality and runtime of the align-
ments produced using the new progressive alignment strategy, we
simulated the evolution of twenty 30-megabase genomes using Evolver
(https://www.drive5.com/evolver) along a tree of catarrhines. We ran
two alignment strategies—one using a fully resolved binary guide tree
(which takes full advantage of the new progressive mode), and one using
a fully unresolved star guide tree (which is similar to the originally pub-
lished version of Cactus)—across variously sized subsets of genomes
roughly evenly spaced throughout the catarrhine tree. The alignments
using the progressive strategy finished more quickly, with the speed
improvement growing larger with the increasing number of species
(for example, a 15% reduction in runtime for 10 species and 48% for 20

species), owing to its linear runtime scaling, as opposed to the quad-
ratic scaling of the star-tree (Fig. 2a). The progressive strategy is also
more accurate than the star strategy (Fig. 2b) and maintains accuracy
as the number of species (and therefore nodes in the tree) increases.

Effect of the guide tree
Because Progressive Cactus uses an input guide tree to decompose
the alignment problem, the guide tree can potentially impact the
resulting alignment. This could be problematic when the exact spe-
cies tree relating the input set of genomes is unknown or controversial.
However, we reduce any effect of the guide tree by including a great
deal of outgroup information, including multiple outgroups when
possible. To quantify the effect of the guide tree on a large alignment
with an uncertain species tree, we created four alignments of a set of
48 avian species (Supplementary Table 3), which we subset down to
a single chromosome (chromosome 1). The avian species tree is still
being actively debated28,29 and there are different plausible hypotheses,
making birds an excellent test case with no single clearly correct guide
tree. We aligned these birds using four different guide trees: two trees
that represent two different hypotheses about the avian species tree28,29,
one consensus tree between the former two trees, and one tree that
was randomly permuted from one of the previously published trees29
(Methods, Supplementary Fig. 1). The four alignments were highly
similar, with an average of 98.5% of aligned pairs identical between
any two different alignments (Extended Data Table 2).

We further examined whether these small differences in the guide
tree affect some species more than others. For any pair of these 48 spe-
cies, the F1 score for aligned pairs between the previously published28,29
alignments was at least 0.955 (Supplementary Fig. 2). As an example,
the phylogenetic relationship between the species Cuculus canorus,
Chlamydotis macqueenii and Tauraco erythrolophus is different in the
guide tree based on Prum et al.28 than that based on Jarvis et al.29 (Sup-
plementary Fig. 3). The F1 score for aligned pairs within this clade between
the two alignments was 0.972, lower but comparable to the score for a
similar clade that had an identical phylogenetic relationship in both trees,
0.982 (for Merops nubicus, Picoides pubescens and Buceros rhinoceros).

×

×

a b

Fig. 2 | Comparing alignments of varying numbers of simulated genomes
using Progressive Cactus. a, The progressive mode of Progressive Cactus is
shown, versus the mode without progressive decomposition that is similar to
that previously described6 (‘star’). The average total runtime of the two
alignment methods across three runs is shown. Data are mean and s.d. The
runtime is identical when aligning two genomes as the alignment problem is

not further decomposed, but the linear scaling of the progressive mode means
it is much faster with large numbers of genomes than the quadratic scaling
required without progressive alignment. b, The precision, recall and F1 score
(harmonic mean of precision and recall) of aligned pairs for each alignment
compared with pairs from the true alignment produced by the simulation.

https://www.drive5.com/evolver

Nature | Vol 587 | 12 November 2020 | 249

Effect of assembly quality on alignment
Our progressive approach means that the alignment between two
genomes distant in the guide tree is informed by the reconstructions
of the ancestral genomes along the path, which is in turn formed using
data from other genomes in the tree. To evaluate the practical effect
of differing quality of input assemblies, we created two alignments
of 11 boreoeutherian mammal species, 7 of which represented either
high-quality assemblies in one alignment (using modern assemblers and
often long-read data) or lower quality assemblies in the other alignment

(usually using much older shorter-read technologies) (Supplemen-
tary Table 4). The remaining four assemblies were held constant to
facilitate a comparison between the two alignments. Despite alignment
differences between the long-read and short-read assemblies (Sup-
plementary Table 5), the alignment between these four assemblies was
similar in both datasets (for example, 0.855 Jaccard similarity between
induced pairwise human–dog alignments) (Supplementary Fig. 4),
a level of similarity higher than seen between alignment strategies,
indicating that the progressive alignment strategy can tolerate poor

0

25

50

75

100

Genome

C
ov

er
ag

e
on

 h
um

an
 (%

)

0

25

50

75

100

0.0 0.2 0.4

Distance from human (substitutions/site)

H
um

an
 r

eg
io

n
re

co
ns

tr
uc

te
d

 (%
)

0

25

50

75

100

Genome

C
ov

er
ag

e
on

 c
hi

ck
en

 (%
)

Clade

Galloanserae

Neoaves

Palaeognathae

Region Coding exons UTR exons Introns Whole genome Repeats

a

b c
Clade

Euarchonta

Laurasiatheria

Xenarthra

Afrotheria

Glires

C
hi

ck
en

–t
ur

ke
y

C
hi

ck
en

–d
uc

k

C
hi

ck
en

–z
eb

ra
 �

nc
h

C
hi

ck
en

–o
st

ric
h

C
hi

ck
en

–h
um

an

H
um

an
–c

hi
m

p

H
um

an
–l

em
ur

H
um

an
–l

em
ur

H
um

an
–m

ou
se

H
um

an
–m

ou
se

H
um

an
–c

hi
ck

en

ed

A
ves

E
ut

he
ri

a

0

25

50

75

100

0.2 0.4 0.6

Distance from chicken (substitutions/site)

C
hi

ck
en

 r
eg

io
n

re
co

ns
tr

uc
te

d
 (%

)

Fig. 3 | Analysing the 600-way amniote
alignment. a, The species tree relating the 600
genomes. Branches are coloured by clades as in b
and c. b, Percentage coverage on human within the
eutherian mammals, grouped by clade from highest
to lowest coverage. c, As in b, but for coverage on
chicken within the avian alignment. d, Percentage of
various regions within the human genome
mappable to each ancestral genome reconstructed
along the path leading from human to the root. The
positions of selected ancestors are labelled by
dotted lines to indicate useful taxonomic reference
points as context. UTR, untranslated region. e, As in
d, but for the path of reconstructed ancestors
between chicken and the root.

250 | Nature | Vol 587 | 12 November 2020

Article

assemblies. Reinforcing this, comparing the induced pairwise align-
ments of human–dog to direct pairwise alignments computed using
the established chains and nets pipeline30, we find the same level of
Jaccard similarity for both the high- and low-quality assembly align-
ments (Supplementary Fig. 5). Of the aligned pairs in the induced
pairwise Progressive Cactus alignments, 82% were found in the chains
and nets alignment, and, vice versa, 78% of pairs in the chains and nets
alignment were found in each Progressive Cactus alignment. Concord-
ant results were found comparing human–mouse pairwise alignments
(Supplementary Fig. 5).

600-way amniote alignment
To demonstrate Progressive Cactus, we present results from an align-
ment of 605 amniote genomes, relating in a reference-free manner to
more than 1 trillion bases of DNA across hundreds of millions of years of
genome evolution (an estimated 35.4 neutral substitutions per site). The
amniote-wide alignment combines two smaller alignments: one created
for the initial release of the Zoonomia project31, which includes 242 placen-
tal mammals representing most eutherian mammal families, and one for
the Bird 10,000 genomes (B10K) project32, which includes 363 avians, also
representing most bird families. The overall topology is shown in Fig. 3a.
To our knowledge, this represents the largest whole-genome alignment
created so far. Table 1 contains aggregate statistics on this alignment.

Coverage within the 600-way alignment closely tracks phylogenetic
distance and genome size; for example, a median coverage on human of
2.3 gigabases (Gb) from Euarchonta mammalian species, versus 1.2 Gb and
1.0 Gb from more distant Laurasiatheria and Glires mammalian species,
respectively (Fig. 3b, c). The ancestral reconstructions within the 600-way
alignment are highly complete, especially for functional sequence: 86% of
human coding bases are represented in our reconstruction of the ancestor
of all placental mammals, whereas 95% of chicken coding bases are repre-
sented in our reconstruction of the common ancestor of avians (Fig. 3d, e).
Owing to the long branch length (approximately 0.7 substitutions-per-site
divergence between the two clades), the amniote (human–chicken) ances-
tral assembly has a much lower proportion of reconstructed sequence
than its immediate children, the avian and eutherian mammal ancestors,
for example, retaining 16.3% of chicken intron bases versus 84.4% in the
avian ancestor, and 7.2% of human intron bases versus 56.5% in the euthe-
rian ancestor. However, coding bases are still well retained (86.8% from
chicken and 58.7% from human). The ancestral assemblies consistently
contain a relatively higher proportion of sequence for avians than for
mammals even across similar phylogenetic distances, consistent with a
more conservative mode of genome evolution in avians that is influenced
by lower repeat counts and denser gene content33.

The ancestral reconstructions provide a history of substitution, indel
and rearrangement events. Although this history is by its nature only a
hypothetical reconstruction of the true history of genome evolution
along the tree, it is accurate enough to be useful. To demonstrate the
utility of the indel history, we examined rates of small (less than or equal
to 20 base pairs (bp)) insertion and deletion events in the 600-way
alignment. As expected from previous studies16,34, the rate of small
indels in any given branch was correlated with the rate of nucleotide
substitution (an R2 value of 0.69 for insertions and 0.80 for deletions

in avians, and 0.39 and 0.40, respectively, for eutherians), although the
relative rates remained lower for insertions (1.2% of the substitution
rate for both clades) and for deletions (2.4% and 1.2% of the substitu-
tion rate for avians and eutherians, respectively). Notably, we observe
similar rates of deletions between eutherian and avian lineages, but evi-
dence of a slightly increased rate of insertions in avians (Extended Data
Fig. 3a). The ancestral assemblies also represent even difficult-to-align
regions such as transposable elements. We ran RepeatMasker35 on sev-
eral human ancestors, focusing on the recently-emerged L1PA6 family
of L1 retrotransposons. When ascending the primate tree, approaching
the origin of modern L1PA6 elements above the human–rhesus ances-
tor, L1PA6 elements appear increasingly similar to their consensus
sequence (Extended Data Fig. 3b, Supplementary Fig. 6).

Despite its scale, sub-alignments of the 600-way are similar to smaller
alignments of the same species. Within the 7.1 billion aligned base pairs
involving human, mouse, rat or dog within the 600-way, 76.49% were
present in an alignment with less than a tenth the number of species
(Supplementary Fig. 7)—this similarity is in line with that observed
between different alignments of these same species14. As expected, the
alignments more strongly agree in functional regions, such as coding
exons, than for the genome as a whole (Supplementary Fig. 8). The
size and fraction of functional elements reconstructed in ancestors
shared between the 600-way and smaller alignments of mammals and,
separately, avians were also highly similar (Supplementary Figs. 9, 10).

To evaluate the relative accuracy of the progressive alignment pro-
cess back to the amniote ancestor, human protein-coding transcripts
and genes were mapped to the chicken genome using translated BLAT36,
translated BLAST37, LASTZ24 and the 600-way alignment. Of 84,001
transcripts, BLAT mapped 70%, BLAST mapped 80%, LASTZ mapped
67%, and Progressive Cactus mapped 74%. Both Progressive Cactus and
LASTZ had much lower levels of multi-mapping (2–3% of transcripts)
than either translated method (16–51%) (Supplementary Tables 6–8).
Comparison of Cactus and LASTZ coding sequence mappings to the
union of the translated alignments, both in terms of individual gene
counts and coding and mRNA bases, showed that Cactus has a margin-
ally higher fraction of shared elements with the translated alignments

Table 1 | Aggregate statistics for the 600-way alignment

Alignment No. of
genomes

Total
bases

Instance-
hours

Core-hours Common
ancestor size

Zoonomia 242 669 billion 68,166 1.9 million 1.73 Gb

B10K 363 400 billion 5,302 0.2 million 1.13 Gb

Combined 605 1.07 trillion 73,692 2.1 million 181 Mb

The increase in computational work for the mammal alignment compared with the bird
alignment is largely caused by the increase in the pairwise alignment phase runtime
because it scales quadratically with the size of the genomes being aligned.

40

60

80

100

40 60 80 100
Coverage on reference in MULTIZ alignment (%)

C
ov

er
ag

e
on

 r
ef

er
en

ce
 in

 C
ac

tu
s

al
ig

nm
en

t
(%

)

Reference Chicken Zebra �nch

Fig. 4 | Comparing Cactus and MULTIZ alignment coverage. A comparison of
coverage in the Progressive Cactus avian alignment compared to a chicken-
referenced MULTIZ22 alignment of the same genomes. Coverage of both
alignments on chicken and zebra finch is shown to illustrate the effects of
reference bias on the completeness of the MULTIZ alignment. The diagonal
dotted line indicates a slope of 1 (that is, if the coverage of MULTIZ and
Progressive Cactus were equal).

Nature | Vol 587 | 12 November 2020 | 251

than LASTZ (Supplementary Table 9). Supporting this result, comparing
the median per-transcript and per-gene base-level Jaccard similarity of
these mappings to chicken, while Progressive Cactus and LASTZ were
most similar, Progressive Cactus was more similar to translated BLAT
and Blast than LASTZ was (Supplementary Figs. 11, 12, Supplementary
Table 10). Both Progressive Cactus and LASTZ have higher base-level
similarity with existing chicken annotations than either translated
alignment method (Supplementary Table 11).

The B10K species were also separately aligned with MULTIZ22 using
the chicken genome as the reference, allowing us to make a comparison
between the two resulting alignments. Progressive Cactus aligned more
total bases to chicken (covering an average of 69.4% of the chicken genome
from the other species) than MULTIZ (64.9%), for an average increase of
47 Mb. Because, unlike Progressive Cactus, MULTIZ is reference-biased,
the difference is starker when looking at the number of bases aligned to a
genome not used as the MULTIZ reference (an average of 79% of the zebra
finch covered versus 49.2%, for an average increase of 367 Mb) (Fig. 4).

Discussion
The Vertebrate Genomes Project38 led by the Genome 10K39 and the Earth
BioGenome Project40, among others, aim to release thousands of new,
high-quality genome assemblies over the next decade. These projects
will give us incredible insight into natural history, but will need massive
genome alignments. We have shown that Progressive Cactus can create
reference-free alignments of hundreds of vertebrate genomes effi-
ciently. The B10K32 and Zoonomia31 consortia are using this alignment
for comparative analysis, for example, analysing patterns of selection
in unprecedented detail.

We focus on creating a reference-free alignment and ancestral recon-
struction, allowing analysis of genome evolution throughout the entire
tree rather than in comparison to one anointed reference. As the aver-
age assembly becomes ever more complete and accurate38, the value of
such a reference-free approach grows. Similarly driven by technology
improvements, sequencing efforts will increasingly produce multiple,
phased de novo assemblies from different individuals in a popula-
tion41. Progressive Cactus has already proved useful for comparison
between assemblies of the same species20. Alignments of such assem-
blies are essential for annotation9 and variant characterization42 and
should prove useful for reference-free pangenome construction of the
variation present in a population43.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-020-2871-y.

1. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323,
133–138 (2009).

2. Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M. & Jaffe, D. B. Direct determination of
diploid genome sequences. Genome Res. 27, 757–767 (2017).

3. Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: delivery
of nanopore sequencing to the genomics community. Genome Biol. 17, 239 (2016).

4. Kitts, P. A. et al. Assembly: a resource for assembled genomes at NCBI. Nucleic Acids Res.
44 (D1), D73–D80 (2016).

5. Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long
reads. Nat. Biotechnol. 36, 338–345 (2018).

6. Paten, B. et al. Cactus: algorithms for genome multiple sequence alignment. Genome Res. 21, 1
512–1528 (2011).

7. Liu, L., Yu, L. & Edwards, S. V. A maximum pseudo-likelihood approach for estimating
species trees under the coalescent model. BMC Evol. Biol. 10, 302 (2010).

8. Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree
reconstruction from partially resolved gene trees. BMC Bioinformatics 19 (Suppl. 6), 153
(2018).

9. Fiddes, I. T. et al. Comparative annotation toolkit (CAT)-simultaneous clade and personal
genome annotation. Genome Res. 28, 1029–1038 (2017).

10. König, S., Romoth, L. W., Gerischer, L. & Stanke, M. Simultaneous gene finding in multiple
genomes. Bioinformatics 32, 3388–3395 (2016).

11. Hubisz, M. J., Pollard, K. S. & Siepel, A. PHAST and RPHAST: phylogenetic analysis with
space/time models. Brief. Bioinform. 12, 41–51 (2011).

12. Garber, M. et al. Identifying novel constrained elements by exploiting biased substitution
patterns. Bioinformatics 25, i54–i62 (2009).

13. Armstrong, J., Fiddes, I. T., Diekhans, M. & Paten, B. Whole-genome alignment and
comparative annotation. Annu. Rev. Anim. Biosci. 7, 41–64 (2018).

14. Earl, D. et al. Alignathon: a competitive assessment of whole-genome alignment
methods. Genome Res. 24, 2077–2089 (2014).

15. Feng, D. F. & Doolittle, R. F. Progressive sequence alignment as a prerequisite to correct
phylogenetic trees. J. Mol. Evol. 25, 351–360 (1987).

16. Green, R. E. et al. Three crocodilian genomes reveal ancestral patterns of evolution
among archosaurs. Science 346, 1254449 (2014).

17. Dobrynin, P. et al. Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biol.
16, 277 (2015).

18. Gordon, D. et al. Long-read sequence assembly of the gorilla genome. Science 352,
aae0344 (2016).

19. Lilue, J. et al. Sixteen diverse laboratory mouse reference genomes define strain-specific
haplotypes and novel functional loci. Nat. Genet. 50, 1574–1583 (2018).

20. Kronenberg, Z. N. et al. High-resolution comparative analysis of great ape genomes.
Science 360, eaar6343 (2018).

21. Darling, A. E., Mau, B. & Perna, N. T. progressiveMauve: multiple genome alignment with
gene gain, loss and rearrangement. PLoS One 5, e11147 (2010).

22. Blanchette, M. et al. Aligning multiple genomic sequences with the threaded blockset
aligner. Genome Res. 14, 708–715 (2004).

23. Bray, N. & Pachter, L. MAVID: constrained ancestral alignment of multiple sequences.
Genome Res. 14, 693–699 (2004).

24. Harris, R. Improved Pairwise Alignment of Genomic DNA. PhD thesis, Pennsylvania State
Univ. (2007).

25. Vivian, J. et al. Toil enables reproducible, open source, big biomedical data analyses.
Nat. Biotechnol. 35, 314–316 (2017).

26. Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity: scientific containers for mobility of
compute. PLoS One 12, e0177459 (2017).

27. Hickey, G., Paten, B., Earl, D., Zerbino, D. & Haussler, D. HAL: a hierarchical format for storing
and analyzing multiple genome alignments. Bioinformatics 29, 1341–1342 (2013).

28. Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted
next-generation DNA sequencing. Nature 526, 569–573 (2015).

29. Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of
modern birds. Science 346, 1320–1331 (2014).

30. Kent, W. J., Baertsch, R., Hinrichs, A., Miller, W. & Haussler, D. Evolution’s cauldron:
duplication, deletion, and rearrangement in the mouse and human genomes. Proc. Natl
Acad. Sci. USA 100, 11484–11489 (2003).

31. Zoonomia Consortium. A comparative genomics multitool for scientific discovery and
conservation. Nature https://doi.org/10.1038/s41586-020-2876-6 (2020).

32. Feng, S. et al. Dense sampling of bird diversity increases power of comparative
genomics. Nature https://doi.org/10.1038/s41586-020-2873-9 (2020).

33. Zhang, G. et al. Comparative genomics reveals insights into avian genome evolution and
adaptation. Science 346, 1311–1320 (2014).

34. Chen, J.-Q. et al. Variation in the ratio of nucleotide substitution and indel rates across
genomes in mammals and bacteria. Mol. Biol. Evol. 26, 1523–1531 (2009).

35. Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0 http://www.repeatmasker.
org (2013–2015).

36. Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).
37. Camacho, C. et al. Blast+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
38. Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate

species. Preprint at https://doi.org/10.1101/2020.05.22.110833 (2020).
39. Koepfli, K.-P., Paten, B., the Genome 10K Community of Scientists & O’Brien, S. J. The

Genome 10K Project: a way forward. Ann. Rev. Animal Biosci. 3, 57–111 (2015).
40. Lewin, H. A. et al. Earth BioGenome Project: Sequencing life for the future of life. Proc.

Natl Acad. Sci. USA 115, 4325–4333 (2018)
41. Shafin, K. et al. Nanopore sequencing and the Shasta toolkit enable efficient de novo

assembly of eleven human genomes. Nat. Biotechnol. 38, 1044–1053 (2020).
42. Hickey, G. et al. Genotyping structural variants in pangenome graphs using the vg toolkit.

Genome Biol. 21, 35 (2020).
43. Sherman, R. M. et al. Assembly of a pan-genome from deep sequencing of 910 humans of

African descent. Nat. Genet. 51, 30–35 (2019).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this license,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41586-020-2871-y
https://doi.org/10.1038/s41586-020-2876-6
https://doi.org/10.1038/s41586-020-2873-9
http://www.repeatmasker.org
http://www.repeatmasker.org
https://doi.org/10.1101/2020.05.22.110833
http://creativecommons.org/licenses/by/4.0/

Article
Methods

Data reporting
Sample selection was made according to the needs of the Zoonomia
and B10K projects. The experiments were not randomized, and there
was no blinding.

Evaluation on simulated data
Twenty primate genomes were simulated using Evolver, managed using
the evolverSimControl (https://github.com/dentearl/evolverSimCon-
trol, commit b3236deb) pipeline. The root genome used was derived
from 30 megabases selected from the hg19 genome, and is available
at http://courtyard.gi.ucsc.edu/~jcarmstr/datastore/progressiveCac-
tusEvolverSim.tar.gz along with the Evolver configuration files that
were used. The species tree used for the simulation was obtained from
a catarrhine subtree of the 100-way alignment tree available on the
UCSC browser.

The tree used was, in Newick format:
(((((((Human:0.00655,Chimp:0.00684)anc0e:0.00122,Bonobo:

0.00784)anc1e:0.003,Gorilla:0.008964)anc2e:0.009693,Orangu
tan:0.01894)anc3e:0.003471,Gibbon:0.02227)anc4e:0.01204,(((((Rh
esus:0.004991,Crab_eating_macaque:0.005991)anc5e:0.001,Sooty_
mangabey:0.001)anc6e:0.005,Baboon:0.003042)anc7e:0.01061,
(Green_monkey:0.027,Drill:0.03)anc8e:0.002)anc9e:0.003,((Proboscis_
monkey:0.0007,Angolan_colobus:0.0008)anc10e:0.005,(Golden_
snub-nosed_monkey:0.0007,Black_snub_nosed_monkey:0.0008)
anc11e:0.004)anc12e:0.009)anc13e:0.02)anc14e:0.02183,(((Marm
oset:0.03,Squirrel_monkey:0.01035)anc15e:0.01065,White-faced_
sapajou:0.009)anc16e:0.01,Nancy_Mas_night_monkey:0.01)anc17e:
0.01)anc18e;

The alignments were generated using Progressive Cactus commit
51eb980b. The input files (the simulated genomes, input files and Pro-
gressive Cactus configuration file) are available at http://courtyard.
gi.ucsc.edu/~jcarmstr/datastore/progressiveCactus.EvolverSim.Cac-
tusInput.EvenlySpread.tar.gz. A non-default configuration (included in
the dataset) was used to change the alignment filtering in both runs to
better support the high degree of polytomy in the star-tree runs. Four
sets of 2, 6, 10 and 20 genomes were used, each of which were run three
times to generate runtime estimates. The sets are as follows: 2 species:
rhesus and marmoset; 6 species: rhesus, marmoset, gorilla, drill and
black snub-nosed monkey, white-faced sapajou; 10 species: species
from 6-species alignment and human, sooty mangabey, proboscis
Monkey and Nancy Ma’s night monkey; 20 species: all species.

The runtime statistics were gathered using the toil stats command
(the overall clock time was used, which represents central processing
unit (CPU) time spent across all jobs). To generate the recall and preci-
sion statistics, multiple alignment format files (MAFs) were exported
for each run (using hal2maf from the HAL27 package (https://github.
com/ComparativeGenomicsToolkit/hal, commit 68db41d) with the
--onlyOrthologs option using the rhesus genome as a reference) and
compared with the Evolver MAF using mafComparator (https://github.
com/dentearl/mafTools, commit 82077ac3).

Comparison using Alignathon data
For comparison against other genome alignment methods, we aligned
data (both the simulated ‘primates’ and ‘mammals’ datasets) used in
the Alignathon using Progressive Cactus. For comparison, we down-
loaded all the original Alignathon entries in MAF format. We used the
original Alignathon analysis workflow (https://github.com/dentearl/
mwgAlignAnalysis, commit df98753) to reanalyse the MAFs, with the
output of the newest Progressive Cactus version added, to generate
the precision/recall statistics (which we extracted from the compari-
son against the most recent common ancestor (MRCA) truth set). The
simulated-mammal results are shown in Supplementary Table 1, and
the simulated-primates results are shown in Supplementary Table 2.

Evaluation of the effect of the guide tree
The guide-tree analysis was performed on a set of 48 bird genomes pre-
viously published29. To reduce the amount of alignment work required,
we subset these genomes down to the size of only a single chromosome,
chicken chromosome 1 (by removing any contig or scaffold that had less
than 20% of its sequence alignable to chicken chromosome 1). We used
Progressive Cactus commit 36304707 for all alignments in this analysis.

The Prum and Jarvis topologies were adapted from Prum et al.28
and Jarvis et al.29, respectively. The ‘permuted’ topology was gen-
erated starting from the Jarvis topology, via three randomly cho-
sen subtree-prune-regraft operations followed by three random
nearest-neighbour-interchange operations. Each of these three topolo-
gies had branch-length estimates performed using phyloFit from the
PHAST package (https://github.com/CshlSiepelLab/phast, commit
52e8de9) based on fourfold-degenerate sites of BUSCO orthologues.
Finally, the ‘consensus’ tree was produced as a strict consensus of the
Jarvis and Prum trees (collapsing all groupings that were not the same in
both trees) using the ape::consensus method from the APE R package44.
The branch-lengths for this tree were generated from the fitted branch
lengths for the two input trees, using the consensus.edges function of
the phytools R package45. The four final trees that were used in the four
Progressive Cactus alignments are shown in Supplementary Fig. 1, and
available in supplementary data in Newick format.

We further focused on the alignments with guide trees based on
Jarvis29 and Prum28 (Supplementary Fig. 3) to establish what alignment
differences resulted from different phylogenetic hypotheses. Supple-
mentary Fig. 2 shows a refinement of the overall alignment-to-alignment
F1 scores shown in Extended Data Table 2, showing the F1 scores for each
species pair between the Jarvis- and Prum-based alignments. Each pair
of species has an F1 score between Jarvis- and Prum-based alignments
of at least 0.955.

Effect of assembly quality on alignment quality
We aligned two sets of 11 boreoeutherian genomes: one in which 7 of
the species were represented by relatively low-quality assemblies, and
another in which the same 7 species were represented by higher-quality
assemblies; the assemblies used are listed in Supplementary Table 4.
The remaining four genomes had the same assemblies in both align-
ments to facilitate comparison (human, hg38; mouse, mm10; rat, rn6;
and dog, canFam3). We used Progressive Cactus commit 36304707 for
all alignments in this analysis.

Generation of the 600-way alignment
The Zoonomia alignment was composed of two sets of mammalian
genomes: newly assembled DISCOVAR assemblies and GenBank assem-
blies. The DISCOVAR genomes were masked with RepeatMasker commit
2d947604, using Repbase46 version 20170127 as the repeat library and
CrossMatch as the alignment engine. The pipeline used is available at
https://github.com/joelarmstrong/repeatMaskerPipeline, commit
a6ad966. The guide-tree topology was taken from the TimeTree data-
base47 (using release current in October 2018), and the branch lengths
were estimated using the least-squares-fit mode of PHYLIP (http://
evolution.genetics.washington.edu/phylip/getme-new1.html, version
3.695)48. The distance matrix used was largely based on distances from
the 4d site trees from the UCSC browser49. To add those species not
present in the UCSC tree, approximate distances estimated by Mash
(https://github.com/marbl/Mash, commit 541971b)49 to the closest
UCSC species were added to the distance between the two closest UCSC
species. We used the hal package to process the HAL file (https://github.
com/ComparativeGenomicsToolkit/hal, commit 68db41d).

The final guide tree is embedded in the HAL file, and available using
the halStats --tree command. The 363 assemblies in the B10K align-
ment comprised four sets: 236 newly sequenced species for the ‘family’
phase of the project, assembled using SOAPdenovo2 and AllpathsLG,

https://github.com/dentearl/evolverSimControl
https://github.com/dentearl/evolverSimControl
http://courtyard.gi.ucsc.edu/%7ejcarmstr/datastore/progressiveCactusEvolverSim.tar.gz
http://courtyard.gi.ucsc.edu/%7ejcarmstr/datastore/progressiveCactusEvolverSim.tar.gz
http://courtyard.gi.ucsc.edu/%7ejcarmstr/datastore/progressiveCactus.EvolverSim.CactusInput.EvenlySpread.tar.gz
http://courtyard.gi.ucsc.edu/%7ejcarmstr/datastore/progressiveCactus.EvolverSim.CactusInput.EvenlySpread.tar.gz
http://courtyard.gi.ucsc.edu/%7ejcarmstr/datastore/progressiveCactus.EvolverSim.CactusInput.EvenlySpread.tar.gz
https://github.com/ComparativeGenomicsToolkit/hal
https://github.com/ComparativeGenomicsToolkit/hal
https://github.com/dentearl/mafTools
https://github.com/dentearl/mafTools
https://github.com/dentearl/mwgAlignAnalysis
https://github.com/dentearl/mwgAlignAnalysis
https://github.com/CshlSiepelLab/phast
https://github.com/joelarmstrong/repeatMaskerPipeline
http://evolution.genetics.washington.edu/phylip/getme-new1.html
http://evolution.genetics.washington.edu/phylip/getme-new1.html
https://github.com/marbl/Mash
https://github.com/ComparativeGenomicsToolkit/hal
https://github.com/ComparativeGenomicsToolkit/hal

42 assemblies already sequenced from the ‘order’ phase of the project,
36 assemblies taken from GenBank, and 49 assemblies contributed by
other research groups. For the avian guide-tree, we used a tree that the
B10K consortium derived as preliminary data from ultraconserved
elements.

Both alignments were run on the AWS cloud over the course of 3
weeks for the avians and 2 months for the mammals, using a maximum
of 240 c3.8xlarge instances and 20 r3.8xlarge instances. Because Toil’s
autoscaling mode was used, this capacity was only fully used during
the initial phase of the alignment, when the potential for parallelism
was at its highest.

The 600-way alignment was formed by aligning the two roots of
the B10K and Zoonomia alignments, using the xenTro9 (frog), latCha1
(coelacanth), and danRer11 (zebrafish) assemblies as outgroups. This
created a ‘linker’ alignment connecting the roots of the two alignments.
The B10K and Zoonomia alignments were then added to this linker
alignment using the halAppendSubtree command.

Micro-indel events within the 600-way
We extracted all insertion and deletion events by running the halBranch-
Mutations (https://github.com/ComparativeGenomicsToolkit/hal,
commit 68db41d) tool on every branch in the 600-way alignment. The
ungapped insertion and deletion calls (represented by ‘I’ and ‘D’, respec-
tively, within the output file) were filtered so that only calls spanning
less than 20 bp (in the child for insertions, and the parent for deletions)
were counted. The rate for each branch was then obtained by dividing
the count of these micro-indel events by the total amount of sequence
present in the child.

Repetitive elements within ancestral sequences
We ran RepeatMasker (https://github.com/rmhubley/RepeatMasker,
commit 2d947604) on all ancestral assemblies of human within the
600-way alignment (using RepBase46 version 20170127, selecting the
‘primate’ repeat library and choosing CrossMatch as the alignment
engine). We also ran the same pipeline against human (as existing
annotations used the ‘Homo_sapiens’ repeat library). All ancestors
up to human-rhesus had over 78% of the human complement of L1PA6
elements (Supplementary Fig. 10).

Human/chicken transcript alignment protocols
Protein-coding transcript annotations were obtained from the UCSC
Genome browser48 tables. Human annotations are GENCODE V34 on
hg38 (GRCh38/GCA_000001405.27) and chicken annotations are
Ensembl 85 on galGal4 (GCA_000002315.2). Predicted RNA sequences
for each protein-coding transcript are extracted from the genome. Only
gene annotations on the primary assemblies were used, those on alter-
nate loci, patches, and assembled sequences were dropped. This results
in 84,001 transcripts in 19,695 genes for human and 15,328 transcripts
in 14,499 genes for chicken. The human transcripts were then mapped
from the human genome to the chicken genome. The steps for each
method are outlined below, although the actual execution was done by
partitioning the data and using a cluster. Command-line tools from the
UCSC Genome Browser group and programs used came from: https://
github.com/ucscGenomeBrowser/kent, commit 8a8d921, https://
github.com/ComparativeGenomicsToolkit/hal, commit 68db41d,
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.10.0/, version
tblastn: 2.10.0, and https://github.com/lastz/lastz, version 1.03.54.

BLATX transcript alignment protocol
The BLATX alignments were created using protein-translated mode to
align the mRNAs to the target genome with BLAT version 36x5. They
were then filtered following the same protocol the UCSC Genome
Browser uses for creating the other species RefSeq alignments:

blat -noHead -q=rnax -t=dnax -mask=lower <dest-genome.2bit> \
<src-rna.fa> <dest-rna-raw.psl>

We then filter to get near-best in genome. Alignment to chicken
uses near best filter of -localNearBest = 0.010 while to human it uses
-globalNearBest = 0.010:

faPolyASizes <src-rna.fa> <src-rna.polya>
pslCDnaFilter <nearBestOption> -minId=0.35 -minCover=0.15

-minQSize=20 \
-ignoreIntrons -repsAsMatch -ignoreNs -bestOverlap \
-polyASizes=<src-rna.polya> <dest-rna-raw.psl> <dest-rna-mapped.

psl>
The transMapPslToGenePred command is then used to project the
original coding sequence (CDS) onto the alignment.

TBLASTX transcript alignment protocol
The TBLASTX alignments were created using the protein-translated
‘tblastx’ program to align the mRNAs to the target genome with BLAST+
version 2.10.0+.

The database is created using the repeat masking from the UCSC
Genome Browser genomes to match what is used within the BLATX
methodology above:

convert2blastmask -in <dest-genome.fa> -masking_algorithm
repeat \

-masking_options “repeatmasker, default” -outfmt maskinfo_asn1_
bin \

-out <dest-genome.mask>
makeblastdb -dbtype nucl -in <dest-genome.fa> -mask_data

<dest-genome.mask>
The mRNAs are aligned and the resulting XML converted to PSL format,
filtering to an e-value threshold of 0.01. These are then chained using a
program the UCSC group developed for chaining BLAST alignments:

tblastx -db <dest-genome.fa> -db_soft_mask 40 -outfmt 5 -query
<src-rna.fa> \

-out <dest-rna-raw.xml>
blastXmlToPsl -eVal=0.01 <dest-rna-raw.xml> <dest-rna-raw.psl>
simpleChain -outPsl -maxGap=75000 <dest-rna-raw.psl>

<dest-rna-chained.psl>
The alignments produced are then filtered in the same manner as the
BLATX alignments.

LASTZ transcript alignment protocol
Both the LASTZ and Cactus transcript mappings use the ‘TransMap’50
projection alignment algorithm to project transcript annotation
between genomes. The LASTZ alignment chains and nets50–52 were
obtained from the UCSC Genome Browser downloads. These were then
filtered to produce a set of syntenic mapping chains using these steps:

netFilter -syn <genomes.net> <syntenic.net>
netChainSubset -wholeChains <syntenic.net> <genome.chain>

<mapping.chain>

Cactus transcript alignment protocol
The Cactus alignments are extracted for all primary chromosomes
from the HAL file and chained using the same chaining algorithm as
the LASTZ chains, with the –noDupes option having a similar effect as
the syntenic net filtering:

halLiftover --outPSL --noDupes 600way.hal <srcOrganism> \
<srcChroms.bed> <destOrganism> <src-dest.psl> <genome.psl>
axtChain -psl -linearGap=loose -scoreScheme=HoxD55.q <genome.

psl> <mapping.chain>
The ‘TransMap’ protocol is used for both the LASTZ and Cactus mapping
chains to produce alignments of the transcripts to the other genomes.
This used the ‘pslMap’ command to do the mapping and ‘pslRecalc-
Match’ to update the statistic in the alignments:

pslMap -chainMapFile <src-rna.psl> <mapping.chains>
<dest-rna-over.psl>

pslRecalcMatch <dest-rna-over.psl> <dest-genome.2bit> <src-rna.
fa> <dest-rna-raw.psl>

https://github.com/ComparativeGenomicsToolkit/hal
https://github.com/rmhubley/RepeatMasker
https://github.com/ucscGenomeBrowser/kent
https://github.com/ucscGenomeBrowser/kent
https://github.com/ComparativeGenomicsToolkit/hal
https://github.com/ComparativeGenomicsToolkit/hal
https://github.com/lastz/lastz

Article
The alignments produced are then filtered in the same manner as the
LASTZ alignments.

Transcript and gene alignment subsets and comparison
To facilitate the comparative analysis of the alignment methods, we
created reduced sets of the alignments using two different approaches.
Although both BLATX and TBLASTX will align UTR, the strength of
protein-translated methods is in recognizing distant coding sequence
relationships. Alignment projection-mapping methods were previously
shown53 to align more UTR bases than translated methods. To facilitate
comparisons, CDS alignments from each method were created by trim-
ming the RNA alignments to contain only the CDS regions as defined
by the human annotation set.

Although mapping all transcripts is useful, particularly for under-
standing the utility of the methods in assisting genome annotation,
individual transcripts overlap, biasing assessment of transcribed
mappings to genes with larger transcript numbers. To remove most
of this base multiplicity from comparisons, in addition to showing full
transcript results, subsets of the alignments are created using only one
representative transcript per gene. For the full RNA alignments, the
longest RNA for each gene was chosen, with the CDS alignments choos-
ing the transcript with the longest CDS. The biology of overlapping
gene structures and the ambiguities in defining genes cause around
4% of genomic bases to appear in more than one gene in the RNA, and
3% in the CDS gene sets owing to overlap.

Individual pairwise alignments were compared at the base-level,
consistent with the earlier comparisons reported. In brief, alignment
similarity is computed by comparing the set of shared aligned pairs.
That is, a pairwise alignment can be viewed as a set of aligned base
pairs, each a coordinate from the source (human) and target (chicken)
genome. The Jaccard index is, in this context, the number of aligned
pairs identical between the two alignments divided by the union of all
aligned pairs in the two alignments. It is worth noting that translated
alignments are encoded for comparison using their induced base-level
alignments. Transcripts or genes that are not aligned by either of the
aligners being compared are assigned Jaccard indices of zero.

To account for human bases that map to multiple bases in chicken
(which occurs frequently for the translated alignment methods that
include very distant, fragmented, paralogous alignments, but much less
often for the non-translated methods), when comparing the alignments
of an mRNA or CDS between two methods, if either or both methods
produces multiple alignments, we pick the pair of mappings (one from
each method) with highest shared similarity to report. This generally
has the effect of removing distant paralogues from the comparison.

Progressive Cactus methods
Progressive Cactus builds upon the original Cactus program, in par-
ticular the CAF and BAR algorithms, which are described in detail in the
original publication. In overview, the CAF algorithm (short for Cactus
Alignment Filter) is an algorithm designed to construct a sequence
graph from an input set of local alignments (in the Progressive Cactus
pipeline computed using LASTZ). We omit a complete definition here,
but a sequence graph represents the alignment of a set of nucleotide
strings. It can formally be represented using a bi-directed or bi-edged
graph54–56 (Supplementary Fig. 13a). Larger nucleotide strings are
encoded as walks through sequence graphs (Supplementary Fig. 13b);
in the bi-edged representation an alignment between two or more
substrings is represented by both strings visiting a common sequence
edge; in Progressive Cactus each sequence edge represents an align-
ment ‘block’, a set of oriented substrings in the set of input strings which
are considered to be gaplessly aligned. A key property of alignments
represented by sequence graphs is that the alignments they represent
are equivalence relations: that is, alignments are transitive, reflexive
and symmetric. The core challenge the CAF algorithm addresses is
sub-selecting which local alignments from the input set to include

in the sequence graph, because typically a collection of local align-
ments computed with a tool like LASTZ will contain numerous transitive
inconsistencies which when combined will create implausible, high
degree alignment blocks in the sequence graph. The CAF algorithm
uses the 3-edge connected components of a sequence graph to define a
restricted form of cactus graph such that there exists a homomorphism
from the alignment blocks in the sequence graph onto the resulting
cactus graph (Supplementary Fig. 13c). In the constructed cactus graph
each edge is a member of exactly one simple cycle. These simple cycles
correspond to ‘chains’ of alignment blocks, maximal sequences of
blocks whose aligned substrings appear in the same order and orienta-
tion in the input strings. The CAF algorithm iteratively filters the input
set of alignments to remove local alignments that create short simple
cycles in the cactus graph, this is achieved by deleting alignment blocks
from the sequence graph involved with these short cycles. The result
of the CAF algorithm is a filtered set of local alignments represented
using a sequence graph. To add to the output sequence graph of the
CAF algorithm the BAR algorithm constructs a detailed alignment by
extending gapped alignments from the ends of each alignment block,
using a greedy approach to force consistency between the alignments
constructed starting from connected alignment blocks. In Progressive
Cactus the CAF and BAR algorithms are applied to create an alignment
of the corresponding set of in-group and out-group species for each
internal node of a guide tree.

Below we provide updates on the changes made to Cactus to create
Progressive Cactus.

Preliminary repeat-masking
Progressive Cactus requires input genomes to be soft-masked, but often
repetitive sequence goes unmasked due to poor masking or incom-
plete repeat libraries for newly-sequenced species. This can negatively
affect alignment runtimes (as alignments need to be enumerated to
and from all copies of a repetitive sequence) and impact quality. For
this reason, we mask overabundant sequence before alignment, using
a strategy not based on alignment to repeat consensus libraries, but on
over-representation of alignments. We first divide each genome into
small, mutually overlapping chunks. For each chunk, we align it to itself
and a configurable amount of other randomly sampled chunks (cur-
rently 20% of the total pool). To avoid combinatorial explosion due to
unmasked repetitive sequence, we use a special mode of LASTZ which
stops exploring alignments from any region early if a maximum depth
is reached (using the flag --queryhsplimit=keep,nowarn:1500, which
stops after a high-scoring-pair depth of 1,500). We then soft-mask any
region covered by more than a configurable number of these align-
ments (currently set to 50). Further details can be found in the src/
cactus/preprocessor section of the Progressive Cactus codebase.
Although the preprocessing step is automatically run as part of the
pipeline, we also provide a cactus_preprocessor utility to run only the
preprocessor without producing a full genome alignment.

Local alignment and outgroup selection
The alignment process for each subproblem begins with a series of
local alignments generated using LASTZ. The local alignments fall
into two sets: a set of all-against-all alignments among the ingroup
genomes, and a set of alignments from ingroup genomes to outgroup
genomes. We have found outgroup selection to be absolutely crucial
in creating an acceptable ancestral reconstruction: any missing data
or misassembly in the outgroup that causes a true deletion in one of
the ingroups to be misinterpreted as an insertion in others will mean
that the ancestor contains less sequence than it ought to. This missing
sequence in turn impacts the alignment between the entire subtree
below the reconstructed ancestor and the entire supertree above it:
the missing sequence will never be aligned between the subtree and
supertree. To avoid this we attempt to use multiple outgroup genomes
in each subproblem (by default, the three nearest outgroup genomes,

as measured by branch-length). Naively aligning each ingroup against
multiple outgroups would significantly increase the computation time;
to avoid this we note that in general any region already containing an
outgroup alignment benefits very little from aligning an additional
outgroup. Therefore, we iteratively align each ingroup against one
outgroup at a time, pruning away any ingroup sequence already covered
by the previous outgroup alignments. In this way, the computational
cost is reduced to be far less than naively aligning against the entire
outgroup set, while still retaining nearly all of the benefit. In addition,
we allow the user to designate certain genomes in the input as being
of particularly high quality; these are chosen as outgroups if possible
to avoid problems with missing data in regions such as mitochondrial
or sex chromosomes that are often missing from some assemblies
but not others.

Paralogy resolution
Users of a genome alignment are often interested in ‘orthology’ rela-
tionships, rather than all ‘homology’ relationships, between a set of
sequences. For example, when comparing human and chimpanzee
KZNF genes, providing an alignment from each gene to the over-40056
homologous KZNF genes in the other genome is nigh-useless; the user
is likely interested in only the orthologous copy or copies (in the case
of a lineage-specific duplication) in the other genome. For this rea-
son, Progressive Cactus alignments are capable of representing com-
plex orthology/paralogy relationships, with an ability to display the
alignment(s) labelled as orthologous, but also the option for a user to
request alignments to paralogues at a customizable divergence-time
threshold. This is achieved by implicitly producing a gene tree as the
alignment is built, albeit with some restrictions, namely that a duplica-
tion event is represented by multiple regions in the child(ren) aligned
to a single region in the parent species. This forbids the representation
of gene-tree-species-tree discordance as would occur in incomplete
lineage-sorting or horizontal transfer, as well as the exact ordering
of multiple duplication events along a single branch. The restricted
problem we solve at each subproblem step is that each alignment block
should represent all regions orthologous to a single region of the ances-
tral sequence, possibly multiple per species; we make no attempt to
fully resolve the gene tree when multiple duplications take place along
a single branch. However, this still requires resolving the timing of all
duplication events to the lineages of the tree: duplicated sequences
whose coalescence precedes the speciation event represented in the
subproblem should be split, while those following the speciation event
should be kept together.

To achieve the desired alignment blocks in each subproblem, in con-
structing the initial sequence graph during the CAF algorithm Progres-
sive Cactus greedily chooses which pairwise alignments to include
in an effort to prevent paralogous alignments between the ingroup
species. We developed two algorithms. Both are greedy algorithms
designed to rank the pairwise local alignments and then iteratively add
the alignments to the graph, at each step choosing to accept or reject
the addition of alignments to the graph. Each added alignment ‘glues’
together two alignment blocks, splitting existing alignment blocks as
necessary and merging the resulting two alignment blocks into one
new block in the graph (Supplementary Fig. 14).

The first algorithm, which was used in previous, beta versions of
Progressive Cactus, relied on an outgroup-based heuristic to resolve
duplication timing. This heuristic, which we term ‘single-copy out-
group filtering’, first sorts all the LASTZ alignments by their score in
descending order. Then, starting from the highest-scoring alignment,
it iteratively adds one alignment at a time to the sequence graph, reject-
ing the gluing of any two blocks if the resulting alignment block would
contain two or more substrings from the same outgroup genome. In
this way the heuristic refuses to glue blocks when the resulting block
would contain homologies that imply duplications in the outgroups.
These self-homologies within the outgroup would necessarily involve

duplication events that occurred above or outside of the subtree rooted
at the MRCA of the ingroup genomes. Since the goal at each progressive
step is to determine (the transitive closure of) orthology relationships
within this subtree, refusing these outgroup self-homologies proves
useful for assigning orthology between ingroups. Unfortunately, this
method is very sensitive to incomplete outgroup assemblies (contain-
ing an incorrect number of copies of a duplicated region) or variation in
the similarity between closely related paralogues, causing assignment
to the wrong copy. As seen in Extended Data Fig. 1, this filtering method
tended to resolve duplications far too early, often causing paralogues
to be called orthologues.

To remedy this problem, we developed an improved duplication-
timing method, which we term ‘best-hit filtering’. The method pre-
processes the local alignments to define for every base in every input
genome a ranking by score of the local alignments that overlap it. The
sequence graph is then built by first including the highest-scoring align-
ment for each base in each genome. We refer to this highest-scoring
set as the set of ‘primary’ alignments and the remaining alignments
the ‘secondary’ alignments. Note this definition is asymmetric: a
pairwise alignment may be primary for one of the substrings it aligns
and secondary for the other. All primary alignments are added to the
initial graph unconditionally because they represent the most likely
orthologue relationship (or in the case of multiple orthology, probably
a random orthologue) (Supplementary Fig. 15). The set of primary
alignments represents a conservative set of alignment relationships
that should include nearly no alignments to ancient paralogues. How-
ever, in regions that have undergone many rounds of lineage-specific
duplications (which should all be aligned together in the restricted
duplication-timing problem we described above), the set of primary
alignments will often by chance not align all copies together. For this
reason, after adding the primary alignments we iteratively add second-
ary alignments, going in descending order of score, rejecting any sec-
ondary alignment that would glue together any two existing blocks that
both contain sequences from the same outgroup species (similar to the
‘single-copy outgroup filtering’ method)—this allows lineage-specific
duplications of ingroup genomes to correctly land in the same block,
while avoiding merging blocks from likely-paralogous alignments.

Of the two methods, the newer best-hit filtering removes many more
probably paralogous alignments, especially to closely related genomes,
while leaving approximately the same amount of sequence covered by
at least one alignment. For example, we ran two versions of Progressive
Cactus, one using the best-hit filtering and one using the outgroup
filtering (commits 450da74 [best-hit filtering] and aca859f [outgroup
filtering]), using the following tree:

(((((Human:0.006969,Chimp:0.009727):0.025291,Rhesus:0.0445
68):0.07,Tree_shrew:0.19):0.03,(Kangaroo_rat:0.17,(Mouse:0.072818,
Rat:0.081244):0.11):0.150342):0.02326,((Dog:0.07,Cat:0.07):0.08738
1,((Pig:0.06,Cow:0.06):0.104728,Horse:0.05):0.05):0.04);

Comparing the best-hit filtering alignment and the one using the
single copy outgroup filtering, the amount of human sequence mapping
to two or more places in the chimpanzee genome was reduced from 6.1%
to 2.6%, while the total amount of human covered by chimpanzee actu-
ally increased owing to the removal of ancient homologues, simplifying
the initial alignment relationships (see Extended Data Fig. 1a, b for an
example visualization and Extended Data Fig. 1c for aggregate statistics).

The alignment files are accessible in the URLs listed at Supplementary
Table 12, and the assemblies used are listed in Supplementary Table 13.
Coverage statistics from the resulting alignments were obtained using
the halCoverage tool (https://github.com/ComparativeGenomics-
Toolkit/hal, commit 68db41d). To confirm that these improvements
were likely caused by the removal of paralogous rather than ortholo-
gous alignments, we compared phylogenetic trees implicit in the col-
umns of HAL alignments to independently re-estimated approximately
maximum likelihood (ML) trees produced by FastTree (http://www.
microbesonline.org/fasttree/, version 2.1.11)57 for the same regions. The

https://github.com/ComparativeGenomicsToolkit/hal
https://github.com/ComparativeGenomicsToolkit/hal
http://www.microbesonline.org/fasttree/
http://www.microbesonline.org/fasttree/

Article
duplication-timing evaluation was performed using a custom pipeline
(https://github.com/joelarmstrong/treeBuildingEvaluation) designed
to sample columns from a HAL file and evaluate their trees against an
independently re-estimated tree of the same region. For this analy-
sis we used the two 12-boreoeutherian alignments described above,
sampling 10,000 columns from the human genome. The comparison
trees were built from a context of 1,000 bases around the entries in
each sampled column using FastTree 2.1.10 and the -gtr -nt options.
Only duplicated columns were counted in the final output (columns
containing no duplications did not count in the results). The coales-
cence pairs were evaluated using the --onlySelf option, meaning that
only pairs that included the sampled site were counted in the results.
To avoid weighting columns with a high number of copies per genome
more than columns with a low number of copies per genome, only a
single coalescence was randomly sampled per column.

Because HAL does not produce a fully binarized history of duplica-
tion events, we compared the MRCA of randomly selected pairs of
sites from genomes containing a duplication within the column. If
the MRCA species in the HAL tree is a descendant of the MRCA species
within the reconciled ML tree, that implies that there are paralogues
represented as orthologues within the HAL tree (since a duplication
event must have been resolved too early). Similarly, if the MRCA spe-
cies within the HAL tree is an ancestor of that within the reconciled ML
tree, a duplication event must have been resolved too late in the HAL
tree, indicating additional false loss or deletion events. The number of
paralogous alignments (represented by the coalescence time between
duplicated sequences being too ‘early’ in the HAL tree relative to the ML
tree) in the alignment of the 12 boreoeutherian genomes was clearly
reduced (46% in the outgroup filtering versus 26% in the best-hit filter-
ing) (Extended Data Fig. 1d).

We separately ran the Comparative Annotation Toolkit (CAT; https://
github.com/ComparativeGenomicsToolkit/hal, commit 68db41d)9 on
identical human, chimpanzee and gorilla assemblies (hg38, panTro6,
and gorGor5 assemblies) in two alignments using the outgroup and
best-hit filtering methods. We ran using the GENCODE V30 gene set58.
We projected the transcripts solely via transMap without the use of the
AUGUSTUS modes. Multiple-mapping statistics and the gene compo-
sition of the final gene set were taken from the filter_tm_metrics.json
file in the CAT output.

Not only was CAT less likely to identify a human gene in multiple
chimp loci using the best-hit filtering (for example, 6.5% versus 9.8%
multiple-mappings across all genes in chimp, and 5.9% versus 13.8%
for the recently-duplicated KRAB zinc-finger gene family) (Extended
Data Fig. 1e), but as a result orthologues for 104 more human genes
were identified in the output gene set for chimp (182 in gorilla) (Sup-
plementary Table 14). This is probably because tens of thousands of
fewer paralogous transcripts were filtered out in the initial filtering
phase of CAT (Supplementary Table 15), reducing confusion about
which transcript projection to put into the gene set.

Removing recoverable chains
The original CAF algorithm was focused on removing small rearrange-
ments while retaining as much of the original alignment relationships
as possible in the filtered cactus graph. However, because the input
local alignments are insensitive, the original alignment relationships
are likely to have missed certain homologies. This can result in what
we term ‘incomplete blocks’: blocks that contain some alignment rela-
tionships but are missing others, that is, are proper subsets of the cor-
responding ‘true’ alignment block. In our anchor-and-extend process,
once a block becomes an anchor it can never be modified. As a result,
these incomplete blocks will remain incomplete: they prevent the true
alignment relationship from being found, even if an adjacent syntenic
anchor block is complete and contains all desired alignment relation-
ships. These problematic incomplete blocks become more prevalent
at longer evolutionary distances: the local aligner will miss more true

homologies at increasing distances, causing more incomplete blocks
and in turn a far worse alignment.

To remove these incomplete blocks, Progressive Cactus originally
relied on a heuristic that identified blocks that were ‘likely’ to be
incomplete, removing blocks that did not have alignment relation-
ships between all ingroups. However, this heuristic performed poorly
in the presence of deletions or missing data: any large deletion in one
ingroup could cause huge stretches of the other ingroup(s) to be left
unaligned. To remedy this, we have developed a new alteration to the
CAF algorithm, one that now focuses on maximizing the potential size
of the alignment graph ‘after’ extension as opposed to ‘before’ exten-
sion. We call this addition ‘removing recoverable chains’ because it
identifies chains in the cactus graph that represent alignments that
could be recovered by the BAR algorithm extension process.

The algorithm is applied as a post-processing step after the CAF
process, which proceeds as normal. After the cactus graph is created
and filtered, the algorithm identifies ‘recoverable blocks’. Each block
is composed of segments, each of which represents a non-overlapping
region of a sequence and which strand is being aligned; we briefly review
the necessary terminology, but see59 for additional context. We call a
segment ‘a left-adjacent’ to another segment ‘b’ if ‘a’ represents the
positive strand and ‘b’ comes before ‘a’ in their sequence and there is
no other segment between them. Similarly, we call a left-adjacent to
b if a is on the negative strand and a comes before b in their sequence
ordering with no other intervening segment. If a is left-adjacent to b,
then b is right-adjacent to a.

A block is called ‘recoverable’ if, in the case that the block was removed,
all its regions would be contained entirely within a single end alignment
in the BAR extension phase. The end alignments are identified by looking
at all unaligned sequences between the adjacent segments of a single
‘end’ of a block: in short, two end alignments are created for every block,
one for all sequences between each segment and its left-adjacent seg-
ment, and similarly for the right-adjacent segments. In practice, this
means that for some block A, it is recoverable if all its segments are all
left- or right-adjacent to segments from the same block B ≠ A.

Whether a block is recoverable depends only on its immediate neigh-
bouring blocks. However, it is interesting to consider the maximum set
of recoverable blocks, and, by contrast, of unrecoverable blocks—these
unrecoverable blocks represent a minimal set of anchors that can be
extended from to recover the alignment relationships from the original
sequence graph as well as potential additional alignment relationships.

Because the chains and nets within the cactus graph represent a hier-
archy of the rearrangements implicit in the alignment, they are helpful
for finding a smaller set of anchors to extend from. We consider what
anchors could provide recoverability to a block: if a block A’s segments
would lie within the end alignment of B if all the recoverable blocks
between B and A, including A, were destroyed, we call A recoverable
given B. The relationship is transitive: if block A is recoverable given
block B, and B is recoverable given C, then A is recoverable given C. All
blocks in a chain are recoverable given each other, since all blocks in a
chain are collinear with each other, potentially with intervening rear-
rangements located further down the chain/net hierarchy. Similarly,
if any block in a chain is recoverable given another block above the
chain in the chain/net hierarchy, the entire chain is recoverable given
that block. Owing to this fact, to determine the recoverability status
of all blocks, we only have to examine the blocks at the ends of chains
and their immediate neighbours, rather than every block.

Although in principle we would need to keep only one block within
even unrecoverable chains (since all other blocks within the chain
would be recoverable given that single block), to save computational
effort in realignment we only destroy or keep entire chains as a unit.
In the same spirit, to avoid spending needless effort when the chain is
recoverable but very likely is not incomplete, we apply a heuristic and
do not remove chains that contain the same number of copies in all
ingroups and outgroups.

https://github.com/joelarmstrong/treeBuildingEvaluation
https://github.com/ComparativeGenomicsToolkit/hal
https://github.com/ComparativeGenomicsToolkit/hal

After identifying and removing all recoverable blocks, some blocks
previously marked unrecoverable may become recoverable (because
adjacent blocks were removed). For this reason, we run the process of
identifying and removing recoverable chains multiple times in a loop,
until either no recoverable chains are identified or a limit on the num-
ber of cycles is reached. The structure of the cactus graph may change
after removing recoverable blocks, so we recompute the cactus graph
after every removal step. The process that is followed is described in
pseudocode as follows:

function RemoveRecoverableChains(G, n)
for 1 ... n do

cactusGraph ← CreateCactusGraph(G)
RecoverableChains ← ∅
for chain C in cactusGraph do

if
 ⊳ A single adjacent end offers the potential for recover-
ability
(|C.leftAdjacencies| = 1 or |C.rightAdjacencies| = 1)
 ⊳ Shared adjacencies indicate a non-recoverable rear-
rangement
and C.leftAdjacencies ∩ C.rightAdjacencies = ∅
 ⊳ Links between chain ends indicate a non-recoverable
duplication
and C.leftEnd ∉ C.rightAdjacencies then

RecoverableChains ← RecoverableChains ∪ {C}
end if

end for
if |RecoverableChains| = 0 then

break
else

Destroy each chain in RecoverableChains
end if

end for
end function

Improvements from removing recoverable sequence
To quantify the effect that the process of removing recoverable chains
(described above) had on real alignments, we ran alignments on a set
of nine Euarchontoglires genomes with the feature turned on and off.
The tree used was:

(((((((human:0.00877,gorilla:0.008964):0.009693,orang:0.01894):
0.015511,rhesus:0.037601):0.07392,tarsier:0.1114):0.034014,tree_
shrew:0.19114):0.002,(kangaroo_rat:0.171759,(chinese_hamster:0.14,
mouse:0.132282):0.11015):0.114051)euarchontoglires:0.020593,(cow:
0.18908,dog:0.13303):0.032898);
We used Progressive Cactus commit 56874bde, with the --root euar-
chontoglires option so that cow and dog were used only as outgroups.
Coverage on human increased for all genomes when recoverable chains
were removed, especially for those most distant from human (Supple-
mentary Fig. 16). This probably reflects the fact that though the losses
caused by not removing recoverable chains in any single subproblem
are relatively small, they can compound to be quite considerable in
large alignments since many subproblems are involved in creating the
alignment between distant species (such as human and mouse, which
are separated by seven internal nodes in this tree).

Ancestral genome reconstruction
The core of what makes the progressive alignment algorithm pos-
sible is the ancestral reconstruction generated in each subproblem.
This assembly serves as a summary of each subproblem alignment;
the alignable sequence between the genomes in the subtree below
the ancestor, as well as that alignable between the subtree and the
supertree above the ancestor, is all present in the ancestral reconstruc-
tion. The ancestral sequence contains a base for each column in all
blocks which contain an alignment between two ingroups and/or an

ingroup and an outgroup—any alignment purely between outgroups
is discarded. The order and orientation of the blocks relative to one
another is chosen via a previously published algorithm for ordering
a pangenome60.

The identity of the ancestral bases is inferred via maximum-likelihood
on a Jukes-Cantor model61 of evolution using Felsenstein’s pruning
algorithm62 on the subtree of the guide tree induced by the genomes
in the subproblem. These base-calls are generated as the alignment
is being made, so they necessarily take only a part of the alignment
information into account and may be different than the ideal base-calls
would be if taking into account information across the entire alignment.
However, we provide a tool, ancestorsML, distributed as part of the
HAL toolkit, that re-estimates ancestral base-calls after completion
of the alignment if desired.

Adding a new genome to an existing alignment
Progressive Cactus supports adding a new genome to an existing
alignment by taking advantage of the tree structure of the progres-
sive alignments it produces. There are three ways that a new genome
can be added to an alignment, depending on its phylogenetic posi-
tion relative to the existing genomes: (1) as outgroup to all the exist-
ing genomes in the alignment; (2) by being added as a new child of
an existing ancestral genome in the alignment; or (3) by splitting a
branch in the existing alignment, creating a new internal node and
two new branches (Extended Data Fig. 2). Progressive Cactus allows
adding a new genome in any of these ways, though the details differ
(as described below). Assemblies can be replaced with new versions by
simply deleting them and adding the new assembly in as a leaf. Adding
multiple genomes is possible, either iteratively or (if the new genomes
are monophyletic) by aligning together the new genomes and adding
in the ancestral clade root.

Adding a genome as an outgroup is straightforward because it fol-
lows the normal progressive process: the root of the existing align-
ment and the new genome can be aligned together into a supertree
alignment in which the existing subtree alignment can be appended
to. A genome can be added as a new child of an existing internal node
by simply aligning the new child, its siblings, and its parent together,
without inferring a new ancestral genome. Adding a genome by split-
ting an existing branch is the least straightforward, but is key if the
topology of the alignment or the accuracy of the ancestral genomes
is important. To add a genome to an existing alignment, two subprob-
lems are required: one relating the new genome and its new sibling
in the target tree, constructing the ancestral genome that will split
the existing branch, and one relating this new ancestral genome, its
sibling, and its parent.

After the addition of a new genome as an ingroup (by adding it to a
node or a branch), at most a single ancestral sequence is re-inferred.
This prevents any information from the new genome from propagat-
ing to the rest of the tree. Although this saves considerable effort in
recomputing other parts of the alignment, it also means that, occasion-
ally, rare stretches of sequence in a newly added genome would not be
properly aligned to distant outgroups because they were deleted or
missing in the new genome’s close relatives. Re-inferring the ancestral
genomes on the path from newly added genomes to the root should
address this issue if it appears.

We tested the effect of adding a new genome to an existing alignment
using the same set of simulated catarrhine genomes as described above.
To replicate the use-case of an end-user wanting to add a genome to
a previously-created alignment, we generated an alignment holding
out one of the 20 genomes (the crab-eating macaque), and added that
genome back into the alignment by both splitting an existing branch
(resulting in the same topology as a full alignment would), and by add-
ing the macaque as a new child of an existing ancestor (creating a tri-
furcation which did not exist in the original tree. All alignments for this
analysis were generated using Progressive Cactus commit 49e80082

Article
and we used tools from the hal package (https://github.com/Compara-
tiveGenomicsToolkit/hal, commit 68db41d).

To add the crab-eating macaque back in as the child of an existing
node (the add-to-node strategy), we ran a single new alignment with
the tree (Rhesus:0.006, Crab_eating_macaque:0.007, Sooty_mang-
abey:0.001)anc6e;. The anc6e genome from the original, held-out align-
ment was used as an unreconstructed ancestral input sequence. We set
the ‘runMapQFiltering’ option in the config file to ‘0’ and the ‘align-
mentFilter’ option to ‘singleCopyOutgroup’, because these options
produce a better alignment of polytomies. We merged the resulting
HAL file into a new copy of the existing alignment via the command:

halReplaceGenome <copy of held-out alignment> anc6e \
--topAlignmentFile <held-out alignment> \
--bottomAlignmentFile <add-to-node alignment>.

To add the macaque by splitting a branch (the add-to-branch strat-
egy), we ran two separate alignments. We ran the first with the tree
(((Rhesus:0.004991, Crab_eating_macaque:0.005991) anc5e:0.001,
Sooty_mangabey:0.001)anc6e:0.005, Baboon:0.003042)anc7e;
(with the --root anc5e option so that only a single subproblem was
run), generating a newly reconstructed anc5e ancestor. We then ran a
second alignment with the tree (anc5e:0.001, Sooty_mangabey:0.001)
anc6e;, again providing the anc6e assembly from the original alignment
rather than inferring a new reconstruction. (We note that these two
subproblems could have been run in a single alignment invocation,
resulting in the same amount of alignment work but a slightly more
complicated merging process.) To merge these two add-to-branch
intermediate alignments into a full alignment, we first removed the
Rhesus genome from a new copy of the held-out alignment. We then ran
 halAddToBranch <held-out alignment> <first add-to-branch
alignment> <second add-to-branch alignment> anc6e anc5e
 Rhesus Crab_eating_macaque 0.001 0.006.

Both methods resulted in alignments that had accuracy deviating
less than 0.1% from the full alignment that included the macaque from
the start: both addition methods, as well as the full alignment, achieved
an F1 score of 0.926 (Extended Data Table 1). We evaluated the perfor-
mance of these new alignments using mafComparator in the same
way as described above. In the interest of narrowly determining the
accuracy of alignments involving the newly added genome, we counted
only aligned pairs involving the Crab_eating_macaque genome when
calculating precision, recall, and F1 scores.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability
The 600-way genome alignment is composed of data gathered for
the Zoonomia mammalian genomes project and data from the B10K
project. All genomes have been archived in GenBank, spreadsheets
containing all the accession numbers of the assemblies is provided in
the Supplementary Information. The 600-way alignment is available
in HAL format from https://cglgenomics.ucsc.edu/data/cactus/. At the
same location we also provide the subset of the alignment containing
the Zoonomia genomes, the subset of the alignment containing the
B10K genomes, and a visualization of the alignments and associated
data as an assembly hub for the UCSC Browser49. Note that the B10K
consortium is organizing phylogenomic and other analyses with the
avian alignment and sequencing data. We encourage people to contact

us for collaboration if they are interested in using these data for phylo-
genetic analyses. Source data are provided with this paper.

Code availability
The Progressive Cactus pipeline is available at https://github.com/
ComparativeGenomicsToolkit/cactus under the MIT license, version
1.0 is archived here: https://doi.org/10.5281/zenodo.3873410. The exact
version of Progressive Cactus used for each of the analyses described
above varies; for the commit used in each analysis, see the appropriate
section of the Methods.

44. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R

language. Bioinformatics 20, 289–290 (2004).
45. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other

things). Methods Ecol. Evol. 3, 217–223 (2012).
46. Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in

eukaryotic genomes. Mob. DNA 6, 11 (2015).
47. Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines,

timetrees, and divergence times. Mol. Biol. Evolution 34, 1812–1819 (2017).
48. Felsenstein, J. PHYLIP: phylogeny inference package (version 3.2). Cladistics 5, 164–166 (1989).
49. Haeussler, M. et al. The UCSC Genome Browser database: 2019 update. Nucleic Acids

Res. 47, D853–D858 (2019).
50. Zhu, J. et al. Comparative genomics search for losses of long-established genes on the

human lineage. PLoS Computational Biol. 3, https://doi.org/10.1371/journal.pcbi.0030247
(2007).

51. Chiaromonte, F., Yap, V. B. & Miller, W. Scoring pairwise genomic sequence alignments.
Pac. Symp. Biocomput. 2002, 115–126 (2001).

52. Schwartz, S. Human-mouse alignments with blastz. Genome Res. 13, 103–107 (2003).
53. Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using

MinHash. Genome Biol. 17, 132 (2016).
54. Pevzner, P. A., Tang, H., Tesler, G. & Tesler, G. De novo repeat classification and fragment

assembly. Genome Res. 14, 1786–1796 (2004).
55. Medvedev, P. & Brudno, M. Maximum likelihood genome assembly. J. Comput. Biol. 16,

1101–1116 (2009).
56. Paten, B. et al. Superbubbles, ultrabubbles, and cacti. J. Comput. Biol. 25, 649–663 (2018).
57. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood

trees for large alignments. PLoS One 5, e9490 (2010).
58. Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes.

Nucleic Acids Res. 47 (D1), D766–D773 (2019).
59. Paten, B. et al. Cactus graphs for genome comparisons. J. Comput. Biol. 18, 469–481 (2011).
60. Nguyen, N. et al. Building a pan-genome reference for a population. J. Comput. Biol. 22,

387–401 (2015).
61. Jukes, T. H. & Cantor, C. R. Evolution of protein molecules. Mammalian Protein Metabol.

III, 21–132 (1969).
62. Felsenstein, J. Maximum likelihood and minimum-steps methods for estimating

evolutionary trees from data on discrete characters. Systematic Zool. 22, 240–249 (1973).
63. Armstrong, J. Enabling Comparative Genomics at the Scale of Hundreds of Species.

PhD thesis, Univ. California Santa Cruz (2019).
64. Nguyen, N. et al. Comparative assembly hubs: web-accessible browsers for comparative

genomics. Bioinformatics 30, 3293–3301 (2014).

Acknowledgements The research reported in this publication was supported by the National
Institutes of Health (NIH) under award numbers U01HG010961, U41HG010972, R01HG010485,
2U41HG007234, 5U54HG007990, 5T32HG008345-04 and U01HL137183. The content is solely
the responsibility of the authors and does not necessarily represent the official views of the
NIH. Parts of this work and its text were also included in J.A.’s PhD thesis63.

Author contributions J.A., G.H., D.H., M.D., A.M.N., I.T.F., A.D., R.S.H. and B.P. developed
Progressive Cactus and key software upon which it depends. J.A., Q.F., D.X., S.F. and G.S.
created and analysed the avian sub-alignment. J.A., D.G., J.J. and V.D.M. created and analysed
the mammalian sub-alignment. D.H., K.L., E.K., E.J., G.Z. and B.P. directed and developed the
work. M.D. and J.A. performed the human–chicken alignment comparisons. J.A. performed the
remaining analyses. J.A. and B.P. wrote the manuscript and all authors edited it.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41586-020-
2871-y.
Correspondence and requests for materials should be addressed to G.Z. or B.P.
Peer review information Nature thanks Thomas Keane, Javier Herrero and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://github.com/ComparativeGenomicsToolkit/hal
https://github.com/ComparativeGenomicsToolkit/hal
https://cglgenomics.ucsc.edu/data/cactus/
https://github.com/ComparativeGenomicsToolkit/cactus
https://github.com/ComparativeGenomicsToolkit/cactus
https://doi.org/10.5281/zenodo.3873410
https://doi.org/10.1371/journal.pcbi.0030247
https://doi.org/10.1038/s41586-020-2871-y
https://doi.org/10.1038/s41586-020-2871-y
http://www.nature.com/reprints

Extended Data Fig. 1 | Results from improved paralogue filtering. a, b, A
sample snake track64 within a recently duplicated region before (a) and after
(b) the filtering change. Nucleotide substitutions are shown as red bars, and
insertions are shown as thin orange bars. c, Coverage results from two
alignments of identical assemblies using the outgroup and best-hit filtering
methods. Multiple-mappings: sites that map to two or more sites on the target
genome. d, Results from comparing phylogenetic trees implicit in the HAL

alignment to ML re-estimated trees of the same regions. ‘Early’ coalescences
indicate that too many duplication events have been created in the reconciled
trees, and ‘late’ indicates that too many loss events have been created.
e, Percentage of human genes that map more than once to the chimp/gorilla
genomes in two CAT9 annotations using alignments created with the outgroup
and best-hit filtering methods. KZNF, KRAB zinc-finger genes.

Article

Extended Data Fig. 2 | Methods of adding a genome to a Progressive Cactus
alignment. The top row shows the different ways of adding a new genome
given its phylogenetic position, and the bottom row shows what subproblems

would need to be computed for the new genome to be properly merged into the
existing alignment. Green circles represent a new genome, and red circles
represent newly reconstructed genomes.

Deletions Insertions

Avian
Eutherian

0.0
00
0.0

01
0.0

02
0.0

03
0.0

04
0.0

05
0.0

00
0.0

01
0.0

02
0.0

03
0.0

04
0.0

05

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Rate of micro−indels per site

Br
an

ch
 le

ng
th

 (s
ub

st
itu

tio
ns

/s
ite

)

Clade
Avian

Eutherian

Extended Data Fig. 3 | Analysing insertions, deletions and L1PA6 repeats in
the 600-way alignment. a, Rates of micro-insertions and -deletions
(micro-indels) along each branch within the 600-way alignment, compared to
conventional substitutions/site branch length. The data from avian and
eutherian branches are separated. Lines show a best-fit linear model for each

category. b, Violin plot showing the increasing similarity to consensus of L1PA6
elements within reconstructed ancestral genomes along the path to the
emergence of modern L1PA6 elements (in the human-rhesus ancestor).
Horizontal lines indicate the median values.

Article
Extended Data Table 1 | Adding a new genome to an alignment of simulated genomes

Precision, recall and F1 score statistics are all of the aligned pairs that contain a base of the added genome. An alignment in which the genome was included initially is shown for comparison.

Extended Data Table 2 | Alignment similarity between four alignments of the same 48 avian genomes with different guide
trees

The similarity between each pair of alignments is represented by the F1 score of aligned-pair relationships in the two alignments.

�

������������	
����������������
�����������

���� !"�#$%#&'()*��+!,-.'!)("$') $/0'()*��+!,-1 "��)%#&2(33'�04')(� 1 ! '�5*6%!* !)�%3"��7)* � "��$(5%/%8%)0�9)* 6��:)*')6 "(/8%!*;<*%!9��3"��7%$!!)�(5)(� 9��5�#!%!) #50'#$)�'#!"'� #50%#� "��)%#&;=��9(�)* �%#9��3')%�#�#4')(� 1 ! '�5*"�8%5% !>! ?()*��!@1 9 � !'#$)* A$%)��%'8B�8%50�* 5:8%!);
2)')%!)%5!=��'88!)')%!)%5'8'#'80! !>5�#9%�3)*'))* 9�88�6%#&%) 3!'� "� ! #)%#)* 9%&(� 8 & #$>)'/8 8 & #$>3'%#) C)>��D)*�$!! 5)%�#;#E'��#9%�3 $<* C'5)!'3"8 !%F +G,9�� '5* C" �%3 #)'8&��("E5�#$%)%�#>&%7 #'!'$%!5�) #(3/ �'#$(#%)�93 '!(� 3 #)?!)') 3 #)�#6*)* �3 '!(� 3 #)!6 �)': #9��3$%!)%#5)!'3"8 !��6*)* �)* !'3 !'3"8 6'!3 '!(� $� " ') $80<* !)')%!)%5'8) !)+!,(! $?4H6*)* �)* 0'� �# I��)6�I!%$ $JGKLMNOPPOGMQRSQSMSTOUKVMWRMVRSNXYWRVMSOKRKLMWLMGZPR[MVRSNXYWRMPOXRMNOP\KR]MQRNTGŶURSMYGMQTRM_RQTOVSMSRNQYOG̀?$!5�%")%�#�9'885�7'�%') !) !) $?$!5�%")%�#�9'#0'!!(3")%�#!��5��� 5)%�#!>!(5*'!) !)!�9#��3'8%)0'#$'$a(!)3 #)9��3(8)%"8 5�3"'�%!�#!?9(88$!5�%")%�#�9)* !)')%!)%5'8"'�'3) �!%#58($%#&5 #)�'8) #$ #50+ ;&;3 '#!,���)* �/'!%5 !)%3') !+ ;&;� &� !!%�#5� 99%5% #),?4H7'�%')%�#+ ;&;!)'#$'�$$ 7%')%�#,��'!!�5%') $!)%3') !�9(#5 �)'%#)0+ ;&;5�#9%$ #5 %#) �7'8!,=��#(88*0"�)* !%!) !)%#&>)*) !)!)')%!)%5+ ;&;b>Q>X,6%)*5�#9%$ #5 %#) �7'8!> 99 5)!%F !>$ &� !�99� $�3'#$c7'8(#�) $dYeRMcMeZKURSMZSMR]ZNQMeZKURSMfTRGReRXMSUYQZWKR̀=��g'0 !%'#'#'80!%!>%#9��3')%�#�#)* 5*�%5 �9"�%��!'#$D'�:�75*'%#D�#) �'�8�!))%#&!=��*% �'�5*%5'8'#$5�3"8 C$!%&#!>%$ #)%9%5')%�#�9)* '""��"�%') 8 7 89��) !)!'#$9(88� "��)%#&�9�()5�3 !A!)%3') !�9 99 5)!%F !+ ;&;��* #h!V>B '�!�#h!X,>%#$%5')%#&*�6)* 06 � 5'85(8') $JUXMfRWMNOKKRNQYOGMOGMSQZQYSQYNSMiOXMWYOKOjYSQSMNOGQZYGSMZXQYNKRSMOGMPZGLMOiMQTRM\OYGQSMZWOeR̀2�9)6'� '#$5�$ B�8%50%#9��3')%�#'/�()'7'%8'/%8%)0�95�3"() �5�$ H')'5�88 5)%�#H')''#'80!%!

g # $%5)B') #>k(�a% l*'#&mEnoEnpnp

qq
q
qq

q
q
qqq

4�!�9)6'� 6'!(! $)�5�88 5)$')'
<* �'5)(!!�9)6'� +*))"!-EE&%)*(/;5�3E5�3"'�')%7 & #�3%5!)��8:%)E5'5)(!,6'!(! $)�'#'80F)* '!! 3/8% !'#$& # �'))* '8% #)!$!5�%/ $;<* '�5*%7 $7 �!%�#r;p%!* � -*))"!-EE$�%;��&Erp;snorEF #�$�;toutvrp2" 5%9%5!5�33%)(! $-sr /wop/>tmtpvupu>vsp$'uv>'5'osw9>smouv/$ '#$vw oppon;<* ! !" 5%9%55�33%)!'� � 9 � #5 $)�%#$%7%$('8'#'80! !%#)* D)*�$!;
x#'$$%)%�#6 (! $!�9)6'� 9��3)* 9�88�6%#&y1.!+'88� 9 � #5 $%#)* 3)*�$!,-*))"!-EE&%)*(/;5�3E$ #) '�8E 7�87 �2%3��#)��8>5�33%)/tntm$ /*))"!-EE&%)*(/;5�3E$ #) '�8E3'9<��8!>5�33%)onpuu'5t*))"!-EE&%)*(/;5�3E$ #) '�8E36&?8%&#?#'80!%!>5�33%)$9woust*))"!-EE&%)*(/;5�3Ea� 8'�3!)��#&E� " ')D'!: �B%" 8%# >5�33%)'m'$wmm*))"!-EE&%)*(/;5�3E�3*(/8 0E1 " ')D'!: �>5�33%)n$wvumpv*))"-EE 7�8()%�#;& #)%5!;6'!*%#&)�#; $(E"*08%"E&)3 I# 6r;*)38>7 �!%�#t;mws*))"!-EE&%)*(/;5�3E��3"'�')%7 k #�3%5!<��8:%)E��3"'�')%7 I?##�)')%�#I<��8:%)>5�33%)u'o5u nv*))"!-EE&%)*(/;5�3E��3"'�')%7 k #�3%5!<��8:%)E)�%8>5�33%)u'o5u nv*))"!-EE&%)*(/;5�3E�!*82% " 8.'/E"*'!)>5�33%)sn o$ w*))"!-EE&%)*(/;5�3E3'�/8ED'!*>5�33%)svrwur/*))"!-EE&%)*(/;5�3E(5!5k #�3 g��6! �E: #)>5�33%)o'o$wnr*))"!-EE&%)*(/;5�3E��3"'�')%7 k #�3%5!<��8:%)E*'8>5�33%)mo$/vr$9)"-EE9)";#5/%;#83;#%*;&�7E/8'!)E C 5()'/8 !E/8'!)zEn;rp;pE>7 �!%�#)/8'!)#-n;rp;p*))"-EE666;3%5��/ !�#8%# ;��&E9'!))� E>7 �!%�#n;r;rr*))"!-EE&%)*(/;5�3E8'!)FE8'!)F>7 �!%�#r;pt;sv

{

������������	
���������
���������������

�������
�����������

=��3'#(!5�%")!()%8%F%#&5(!)�3'8&��%)*3!����!�9)6'�)*')'� 5 #)�'8)�)�)* � ! '�5*/()#�)0)$!5�%/ $%#%#"(/8%!* $8%) �')(� >!�9)6'� 3(!)/ / 3'$ '7'%8'/8)�)� $%)��!E� 7% 6 �!;| | !)��#&80 #5�(�'& 5�$ $ "�!%)%�#%#%#'5�33(#%)0� "�!%)��0+ ;&;k%)}(/,;2)* 4')(� 1 ! '�5*&(%$ 8%# !9��!(/3%))%#&5�$ @!�9)6'� 9��9(�)* �%#9��3')%�#;H')'B�8%50%#9��3')%�#'/�()'7'%8'/%8%)0�9�9$')'?883'#(!5�%")!3(!)%#58($ '$')''7'%8'/%8%)0!)') 3 #)<*%!!)') 3 #)!*�(8$"��7%$)* 9�88�6%#&%#9��3')%�#>6* � '""8%5'/8 -I?55 !!%�#5�$!>(#%~(%$ #)%9% �!>����6 /8%#:!9��"(/8%580'7'%8'/8 $')'!)!I?8%!)�9�99%&(� !)*')*'7 '!!�5%') $�'6$')'I?$!5�%")%�#�9�9'#0� !)�%5)%�#!�#�#$')''7'%8'/%8%)0

=% 8$I!" 5%9%5� "��)%#&B8 '! ! 8 5))* �# / 8�6)*')%!%!)* / !)9%)9��0�(�� ! '�5*;x9x90�('� #�)!(� >� '$)* '""��"�%') ! 5)%�#!/ 9�� 3':%#&0�(�! 8 5)%�#;.%9 !5% #5 ! g *'7%�(�'8@!�5%'8!5% #5 ! A5�8�&%5'8> 7�8()%�#'�0@ #7%��#3 #)'8!5% #5 !=��'� 9 � #5 5�"0�9�9)* $�5(3 #)6%)*'88! 5)%�#!>! #')(� ;5�3E$�5(3 #)!E#�I� "��)%#&I!(33'�0I98');"$9.%9 !5% #5 !!)($0$!%&#?88!)($% !3(!)$%!58�! �#�#)* ! "�%#)! 7 #6* #)* $%!58�!(� %!%!# &')%7 ;2'3"8 !%F H')' C58(!%�#!
1 "8%5')%�#
1'#$�3%F')%�#g8%#$%#&1 "��)%#&9��!" 5%9%53') �%'8!>!0!) 3!'#$3)*�$!| | � ~(%� %#9��3')%�#9��3'()*��!'/�()!�3)0" !�9�93') �%'8!> C" �%3 #)'8!0!) 3!'#$3)*�$!(! $%#%#3'#0!)($% !;} � >%#$%5') 6*)* � '5*3') �%'8>!0!) 3����3)*�$8%!) $%!%!� 8 7'#))�)�0�(�!)($0;x9x90�('� #�)!(� %9%9'8%!)%) 3'""8% !)�)�0�(�� ! '�5*>� '$)* '""��"�%') ! 5)%�#/ 9�� ! 8 5)%#&'� !"�#! ;D') �%'8!@ C" �%3 #)'8!0!) 3!#E'x#7�87 $%#%#)* !)($0?#)%/�$% !A(:'�0�)%55 888%# !B'8' �#)�8�&0?#%3'8!'#$�)* ���&'#%!3!}(3'#� ! '�5*"'�)%5%"'#)!�8%#%5'8$')'

D)*�$!#E'x#7�87 $%#%#)* !)($0�*xBI! ~=8�650)�3)�0D1xI/'! $# (��%3'&%#&

<* mppI6'0& #�3 '8% #)%!%!5�3"�%! $�9�9$')'&')* � $9��)* l��#�3%'"��a 5)'#$$')'9��3)* g%�$rp>ppp& #�3 !+grp�,"��a 5);?88& #�3 !*'7 / #'�5*%7 $%#%#k #g'#:>!"� '$!*)!5�#)'%#%#&'88)* '55 !!%�##(3/ �!�9�9)* '!! 3/8% !%!%!"��7%$ $%#%#)* !(""8 3 #)'�03') �%'8;
?88)* '8% #)$')'%!%!3'$ '7'%8'/8 9��%33 $%') "(/8%5(! ;<* mppI6'0'8% #)%!%!'7'%8'/8 %#%#}?.9��3')')')*))"!-EE'8% #)�()"();!t;'3'F�#'6!;5�3Empp6'0;*'8;| | '8!�"��7%$)* !(/!)�9�9)* '8% #)5�#)'%#%#&)* l��#�3%'& #�3 !')-*))"!-EE'8% #)I�()"();!t;'3'F�#'6!;5�3Enpp3I7r;*'8;<* !(/!)�9�9)* '8% #)5�#)'%#%#&)* g%�$rp�& #�3 !%!%!')-*))"!-EE'8% #)I�()"();!t;'3'F�#'6!;5�3E/%�$!I9%#'8;*'8;?7%!('8%F')%�#�9�9)* '8% #)!'#$'!!�5%') $$')'%!%!'7'%8'/8 /0/08�'$%#&�(�'!! 3/80*(/%#)�)* y�2�/��6! �;g0g05�"0%#&)* *(/8%#:*))"!-EE5�3"'�')%7 I& #�3%5!I*(/!;!tI(!I6 !)In;'3'F�#'6!;5�3Empp6'0�*(/;)C)%#)�)* �<�'5:}(/!�"'& >)* mps& #�3 !'#$'!!�5%') $)�'5:!6%88/ / '7'%8'/8 ;
<* &(%$ I)�)�"�8�&06'!)': #9��3)* <%3 <� $')'/'! (!%#&)* � 8 '! 5(�� #)%#%#�5)�/ �npro;

q

4�4�!'3"8 !%F 5'85(8')%�#6'!" �9��3 $9��'#0�9�9)* '#'80! !;
g 9�� 5�#!)�(5)%#&)* mppI6'06 6 7'8(') $)* ~('8%)0�9�9"(/8%580'7'%8'/8 & #�3 '!! 3/8% !�)*�!)*')$%$#�)3)�(�5�#)%&(%)0����~('8%)0� ~(%� 3 #)!6 � C58($ $'#$$%$#�)3': %)%)%#)��(�!)�9�9mps& #�3 !;�)* �)*'#)*')>#�#�$')'6'! C58($ $;| | *'7 � "8%5') $)* !3'88!%3(8') $'8% #)!)!6 6 $!5�%/ >6*%5*!*�6# '�I%$ #)%5'8� !(8)!;=��5�!)� '!�#!>6 6 *'7 #�)� "8%5') $)* 8'�& �'8% #)!6 6 $!5�%/ ;| | $�$�#�)/ 8% 7 �'#$�3%F')%�#%!%!� 8 7'#)!%#5 6 6 '� #�)$!5�%/%#&'#'#'#'80!%!$%7%$ $%#)� C" �%3 #)'8&��("!;
| | $�$�#�)/ 8% 7 /8%#$%#&%!%!� 8 7'#)!%#5 6 6 '� #�)$!5�%/%#&'#'#'#'80!%!$%7%$ $%#)� C" �%3 #)'8&��("!;

qqqqqq

qqq

	Progressive Cactus is a multiple-genome aligner for the thousand-genome era
	Let us know how access to this document benefits you.
	Repository Citation

	Progressive Cactus is a multiple-genome aligner for the thousand-genome era
	Progressive Cactus
	Evaluation on simulated data
	Effect of the guide tree
	Effect of assembly quality on alignment
	600-way amniote alignment
	Discussion
	Online content
	Fig. 1 The alignment process within Progressive Cactus.
	Fig. 2 Comparing alignments of varying numbers of simulated genomes using Progressive Cactus.
	Fig. 3 Analysing the 600-way amniote alignment.
	Fig. 4 Comparing Cactus and MULTIZ alignment coverage.
	Extended Data Fig. 1 Results from improved paralogue filtering.
	Extended Data Fig. 2 Methods of adding a genome to a Progressive Cactus alignment.
	Extended Data Fig. 3 Analysing insertions, deletions and L1PA6 repeats in the 600-way alignment.
	Table 1 Aggregate statistics for the 600-way alignment.
	Extended Data Table 1 Adding a new genome to an alignment of simulated genomes.
	Extended Data Table 2 Alignment similarity between four alignments of the same 48 avian genomes with different guide trees.

