257,288 research outputs found

    Improving operational reliability of small hydro power plants in united energy system of Ukraine

    Get PDF
    We make an initial investigation into the temporal efficiency of a fully discrete summation-by-parts approach for unsteady flows. As a model problem for the Navier–Stokes equations we consider a two-dimensional advection–diffusion problem with a boundary layer. The problem is discretized in space using finite difference approximations on summation-by-parts form together with weak boundary conditions, leading to optimal stability estimates. For the time integration part we consider various forms of high order summation-by-parts operators and compare with an existing popular fourth order diagonally implicit Runge–Kutta method. To solve the resulting fully discrete equation system, we employ a multi-grid scheme with dual time stepping

    Journal Staff

    Get PDF
    A time-dependent coordinate transformation of a constant coeffcient hyperbolic equation which results in a variable coeffcient problem is considered. By using the energy method, we derive well-posed boundary conditions for the continuous problem. It is shown that the number of boundary conditions depend on the coordinate transformation. By using Summation-by-Parts (SBP) operators for the space discretization and weak boundary conditions, an energy stable finite dieffrence scheme is obtained. We also show how to construct a time-dependent penalty formulation that automatically imposes the right number of boundary conditions. Numerical calculations corroborate the stability and accuracy of the approximations

    COFFEE -- An MPI-parallelized Python package for the numerical evolution of differential equations

    Get PDF
    COFFEE (ConFormal Field Equation Evolver) is a Python package primarily developed to numerically evolve systems of partial differential equations over time using the method of lines. It includes a variety of time integrators and finite differencing stencils with the summation-by-parts property, as well as pseudo-spectral functionality for angular derivatives of spin-weighted functions. Some additional capabilities include being MPI-parallelisable on a variety of different geometries, HDF data output and post processing scripts to visualize data, and an actions class that allows users to create code for analysis after each timestep.Comment: 12 pages, 1 figure, accepted to be published in Software

    High order summation-by-parts methods in time and space

    Full text link

    A free-energy stable nodal discontinuous Galerkin approximation with summation-by-parts property for the Cahn-Hilliard equation

    Full text link
    We present a nodal Discontinuous Galerkin (DG) scheme for the Cahn-Hilliard equation that satisfies the summation-by-parts simultaneous-approximation-term (SBP-SAT) property. The latter permits us to show that the discrete free-energy is bounded, and as a result, the scheme is provably stable. The scheme and the stability proof are presented for general curvilinear three-dimensional hexahedral meshes. We use the Bassi-Rebay 1 (BR1) scheme to compute interface fluxes, and an IMplicit-EXplicit (IMEX) scheme to integrate in time. Lastly, we test the theoretical findings numerically and present examples for two and three-dimensional problems

    Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes

    Get PDF
    We present a systematic method for constructing boundary conditions (numerical and physical) of the required accuracy, for compact (Pade-like) high-order finite-difference schemes for hyperbolic systems. First, a roper summation-by-parts formula is found for the approximate derivative. A 'simultaneous approximation term' (SAT) is then introduced to treat the boundary conditions. This procedure leads to time-stable schemes even in the system case. An explicit construction of the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the approach

    Trace preserving quantum dynamics using a novel reparametrization-neutral summation-by-parts difference operator

    Full text link
    We develop a novel numerical scheme for the simulation of dissipative quantum dynamics following from two-body Lindblad master equations. All defining continuum properties of the Lindblad dynamics, hermiticity, positivity and in particular trace conservation of the evolved density matrix are preserved. The central ingredient is a new spatial difference operator, which not only fulfils the summation by parts (SBP) property but also implements a continuum reparametrization property. Using the time evolution of a heavy-quark anti-quark bound state in a hot thermal medium as an explicit example, we show how the reparametrization neutral summation-by-parts (RN-SBP) operator preserves the continuum properties of the theory.Comment: 34 pages, 7 figures, open-access code available via https://doi.org/10.5281/zenodo.374446

    High-order cyclo-difference techniques: An alternative to finite differences

    Get PDF
    The summation-by-parts energy norm is used to establish a new class of high-order finite-difference techniques referred to here as 'cyclo-difference' techniques. These techniques are constructed cyclically from stable subelements, and require no numerical boundary conditions; when coupled with the simultaneous approximation term (SAT) boundary treatment, they are time asymptotically stable for an arbitrary hyperbolic system. These techniques are similar to spectral element techniques and are ideally suited for parallel implementation, but do not require special collocation points or orthogonal basis functions. The principal focus is on methods of sixth-order formal accuracy or less; however, these methods could be extended in principle to any arbitrary order of accuracy
    corecore