
NASA Contractor Report

ICASE Report No. 93-9

191436

,/

/ ! t "

P.3 ,

IC S 2O
Years of

Excellence

TIME-STABLE BOUNDARY CONDITIONS FOR FINITE-DIFFERENC|

SCHEMES SOLVING HYPERBOLIC SYSTEMS: METHODOLOGY

AND APPLICATION TO HIGHIORDER COMPACT SCHEMES

Mark H. Carpenter

David Gottlieb

Saul Abarbanel

NASA Contract Nos. NAS1-19480 and NAS1-18605

March 1993

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

,.O

oO

m u_ O"

! ",t"

Or" t- ,-.,

Z _ 0

https://ntrs.nasa.gov/search.jsp?R=19930013937 2020-03-17T07:03:21+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42807762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




TIME-STABLE BOUNDARY CONDITIONS FOR FINITE-DIFFERENCE

SCHEMES SOLVING HYPERBOLIC SYSTEMS: METHODOLOGY

AND APPLICATION TO HIGH-ORDER COMPACT SCHEMES

Mark H. Carpenter

Aerospace Engineer, Theoretical Flow

Physics Branch, Fluid Mechanics Division

NASA Langley R.esearch Center

Hampton, VA. 23681-0001

David Got_tlieb 1

Division of Applied Mathematics

Brown University

Providence, RI 02912

Saul A barbaneP

Department of Mathematical Sciences

Division of Applied Mathematics

Te]-Aviv University

Te]-Aviv, ISRAEL

ABSTRACT

We present a systematic method for constructing boundary conditions (numerical and physical)

of the required accuracy, for compact (Pade-Iike) high-order finite-difference schemes for hyperbolic

systems. First a proper summation-by-parts formula is found for the approximate derivative. A

"simultaneous approximation term" (SAT) is then introduced to treat the boundary conditions.

This procedure leads to time-stable schemes even in the system case. An explicit construction of

the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the

approach.
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Introduction

Emphasis on the long-time numerical integration of the fluid mechanics equations has increase,t

in recent years. As a result, high-order spatially accurate schemes are favored, beca_se of their ]ow(,r

phase error. Such schemes, although they are stable in the classical sense (Lax and (l-l{-S st abilily).

may exhibit a llon-physi(al growth in t.im('. For a [ixed 1.illle T, these schemes eonverg(" as the mesh

size A:r _ O. ttowever, from a practical point of view, hi order to achieve reasonable accuracy for

large _/', meshes much too fine for the computers available in the foreseeabh- future are r('qllire(t.

Since long-time integrations are encountered in present day computations, it: is importanl to devise

schemes which are not only classically stable but also time-stal,le. Specilically, they do llol allow a

growth in time that is not called for by the differential equations.

To retain the formal accuracy of a high-order scheme, boundary closures illllSt be accomplishe,t

with accuracies that are at most one order less than the inlerior scheme [11. For the scalar explicit

central-differencing case, l,_reiss and Soberer [2] have presented a method for construcling a boundary

condition of accuracy one order less than the ironer scheme such tllat a generalized .s_zmmalio_-b!l-lmrl._

property of the differential equation is preserved. Strand [3] has used their apl)roach It)conslrucl

in the scalar case, hmrth- and sixth-order central-differet_citJg schemes with bollndarv closures of

the appropriate order such that the resulting expression for t.he derivative satisfies the sun_n_a_ion-

by-parts property. Recent attempts to utilize these boundary closures to mlmerically solve a 2 x 2

hyperbolic system have shown that, in certairl cases, an unwarranted growllh in time sl.ill reslllls.

In reference [4], the stability characteristic of various compact fourth- and sixt.h-or(h'r spatial

operators were assessed using the theory of Gustafsson, Kreiss and Sundstrom ((l-It-S) [5] for the

semidiscrete initial-1)oundary-value-prot)h,m (IBVP). This study showed that many of the higl|er

order schemes that are G-K-S stable are not time stable. It was concluded l.hat ill practical calcula-

tions, only those schemes which satistied both definitions of stability were of any tlsefulness for long

time integrations. Of practical importance was a new sixth-order scheme with fifth-order bomldary

conditions which was shown to be G-K-S and time-stable, tlecently, however, it has 1)een foumt that

most of the high-order schemes that were time-stable in the scalar case. exhibited time diw'rgence

when applied to a 2 × 2 system.

In this paper, we outline a systematic procedure for designing time-stable, as well as (;-K-S

stable schemes of high-order accuracy. The new schemes are guaranteed to be time-stable for any

hyl)erbolic system (as long as the system has a bounded energy). The first step in this procedure is

to construct an approximation to the first derivative (internal plus boundary points) that a(imits a

summation-by-parts formula. We rely on the work of Strand [3] for high-order explicit fornluiations.

For high-order compact schemes, we deriw- a new methodology for COllStl"uvtio11 of such schemes.
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Appendix I includes an exposition of the methodology, and a detailed example of the fourth-order

compact central difference scheme with third-order boundary closures. In section 1, we discuss a scalar

hyperbolic equation. We show that in general a summation-by-parts formula does not guarantee time

stability, ttowever, we introduce a new procedure for imposing boundary conditions (simultaneous

approximation term, (SAT)), that solves a linear combination of the boundary conditions and the

differential equations near the boundary. This technique is an extension of the techniques used in

reference [6] to stabilize the pseudo-spectral Chebychev collocation method. It is shown that if the

approximation of the derivative operator admits a summation-by-parts formula then tile SAT method

is stable in the classical sense and is also time-stable.

In section 2 we discuss the implementation of the SAT method to systems of hyperbolic equations.

We show that also in the system case, time stability (as well as Lax stability) is assured by having a

summation-by-parts property for the numerical derivative operator, provided that the SAT method

is utilized.

In section 3 we present numerical results that confirm the efficacy of the SAT procedure even in

the cases where previous attempts could not attain time stability. It is shown that the theoretical

predictions for the time stability of the SAT method are realized in practice for both the scalar

hyperbolic case and the 2 x 2 hyperbolic system. Finally, an optimization of the parameter 7- (which

arises in the SAT procedure) is performed, with regard to efficiency and accuracy.

1. The Scalar Case

We consider the scalar hyperbolic equation

Ou Ou

0---t-= A 0---_ 0 < x < 1 (1)

for which there exists the energy rate

_d
fox u2(x,t)dx = A(u2(1,t) - u2(O, t))dt

For positive ._, we have the boundary condition

u(1,t)=g(t)

We denote by u a vector of the unknowns (uo(t),ua(t),...uN(t)) which corresponds to grid points

XO(-----O),Xl,...XN(: 1).

In this work, we deal primarily with compact schemes for the discretization of the spatial operator

For a compact spatial operator, the approximation to the first derivative can be written asOx"

du = Qu (2)
P d--_
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where P and Q are (N + 1) x (N + l) matrices. We further assume that:

Assumption I

(i) Equation (2) is accurate to order m. Specifically, if we denote by v the vector (v(xo, t), ..., V(XN, t)

where v(x,t) E C TM and xj = jAx = N_ , and by Vx the values of ((av,_)0, ..-, t_JNJ'av',T then

Pvx-Qv= PTe

where the truncation error Te satisfies

ITel = O(Ax) m

(ii) The matrix P has a simple structure (preferably tridiagonal) and is easily invertible.

(iii) There exists a matrix H, and positive constants #1, #2 independent of N such that

#1I <_ HP <_ #21

specifically, HP is a symmetric positive definite matrix.

(iv) There exists a matrix G = H Q such that G + G T has only two elements: go,o and gg,N.

In general we require go,o < 0 < gN,X.

Assumptions 1 and 2 are common to any useful compact scheme. Assumptions 3 and _ are specific

to the summation-by-parts requirement for the spatial operator.

Equation (1)is now semi-discretized using formula (2)to yield

du

= AP-'Qu (3)

Note that assumptions 3 and _( from above admit a summation-by-parts formula in the sense that

where

dE
= go,o  o+ g ,NG (4)

d----i-

1

E(t) = -_(u(t), H Pu(t) ) (5)

In Appendix I we show how to construct a fourth-order compact scheme that satisfy Assumption

1 and therefore (4).

Interestingly, equations (4) and (5) were obtained without imposing the boundary conditions. We

will use the summation-by-parts property defined in equations (4) and (5) to construct a scheme
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that a&nits a decreetsingenergy norm when the boundary conditiou is imposed. Note that the

way in which the boundary condition is imposed is import.ant fl)r numerical stability. Th,' most

common pro<c(t_u-e of imposing tim boundary conditions (A > 0 ), is to use equation (3) to )tpda.tc

the unkI._owns ',0,..ux, followed by overwriting ux = 9(t). This procedure accounts for the fa(t that

in a genera,1 hyperbolic system the precise location for each boundary condition is re)l. knowlJ until

aft('r a. characleristic decomposition is pert\)rmed at all boundaries. This procedure (particularly if

ti is a nont.rivial matrix), may not yield the. cstimat(, (4) with "_v replaced l,y g(l). In short., tim

imt)osition of certain boundary treatments may ruin the sl,ructurc of the slmmlaiioll norm, Wlli('})

results il: _=uumcrical schvme that is not. time-stal)le.

A simple counter-example is presented which demonstrates the necessity of careful 1)ollnda.ry

implementation. Consider the scalar equation ut = ux with the boundary condition '_*N = g(l). The

semi-discretizal.ionin the ttbsencc of boundary conditions becomesut = A_,,whereA = f )-1Q. As

described earlier, once the matrix A is formed, the t_omMary condit, ions arc imposed. This tm.s '_.l_e

effect of pre-multilJlyiug the matrix A by the boundary matrix l). Without loss of generality, we use

t.ll{, 1,oun,la.ry condition ,q(t) = 0 in t.llis t)roblem; the resulting l_oundary operator is the matrix

l) 3

1 00]
0 1 0

0 0 0

For time stability, the resulting matrix A t = 1) p-l Q, rather than the matrix A must exhibit a

s)m_ma.t.hm-by-part norm.

lcor siml)li(:ity , we discretize the domain into two even intervals, such that the discrel, e solution

vector is (uo, ul,,.2) 7. The t>oundary con<litkm is imposed at, ')l.2. A first-order discretizatiol_ that

satisfies the summation-by-parts energy norm is

Not,, I,hat the matrices P and 0 satisfy & = Pf a,,d Qa = -(2:'_' ,,x(:ept for qo,o and q2,:- h,

this example, the matrix It is the identity matrix. The characteristic equation for t.he /-{3 matrix is

-1.92A :_-I- 2568A 2 - 5026A + 501 = 0. The symmetry of 1{3and the alternating signs of the respective

l.crms irl the clm.ractcrisl_ic polynomial guarantee the positive detinitcncss of f{_. The discretiza.tion

Ol)(,ra, tor /I:_ = 1':-(_ Q:_ can I,(, writt, en as



.4 3 _-

11/1002 LOla/lO0' 

All the r('quiremeuts of the summathm-hy-part, s energy norm are satisfied by this (tis('reiizal ion, al_(l

a precise eucrgy norm exists in the absence of boundary conditions.

The coml)ined Ol_erator A_ = D:_ A:) becomes

11/1002 (-512)/501 1013/1002 ]
At = (-55)/334 (-112)/167 279/331

0 0 0

for which the characteristic polynomial is - 1002A :_-661A 2+ 176A = 0. The roots of the c}la.ra('toristh"

l)Oly))omia] are A = -0.86317..., and ,\ = 0.203J.9..._ respectively. The n)2merical solu(i(m will grow

in time as a result of the eige)wa/ue in the right half of the eomph,x p}ane (Rit-i') and will ,or 1)e

time-stable.

As demonstrated by the previous counter-example, a. spatial operator which satisfies the smnmat.ion-

by-parts energy uorm may not be time-stable. Many of the high-order schemes that satisfy the sum-

mat.ion prot)erty are time-stable for the scalar case. A notable exception is the sixth-order explicit

scheme with fifth-order boundary conditions reported in the work of Strand [3]. (See Appendix 1I for

details of this scheme.) For this sixth-order scheme, time st.al)ility can be guaranteed only if the last

row and column of the matrices lip and HQ are removed before matrix inve)'sh)n and multiplicath)))

are performed.

The tmderlying reason for the growth in time is the imposition of the t)oundary condition operator,

which has au effect on the structtu'e of the norm matrix P in lh = D t '-1 Q. Specifically, I) p-I

destroys the structure of the norm P. In the scalar case, this problem can be eliminated in certain

circumstances. For instance, if the matrix P is a restricted full norm, then D/)-1 still produces a.

useful norm by eliminating the zero element. A restricted full norm is defined where the diagonal

is the only nonzero element in the first (or last,) row and column of the matrix P (See Strand [3]).

A special case of the restricted full norm is the diagonal case, which is of some practical interest.

[hffortunately, even for cases where P is a restricted full norm, stability cammt be generalized to the

case of a hyperbolic system. An alternative rnealls of hnposiug boundary conditions must I)e found

for these cases.

At: this poi))t, we introduce the SAT methodology for boundary imph,me)Jta(.hm. \Ve _how in

t.he fo]}owing text that the SAT met}m<l leads not only to stability but also t.o time st.a.})ilil.3' for the

scalar wave equations, and this property applies to arbitrary hypert)olic systems. Th(" SAT )n('t})o(I
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involves the indirect imposition of the physical boundary conditions. This is accomplished by adding

a term to the derivative operator, which is proportional to the difference between the discrete value

uN and the boundary term g(t). Thus, we propose the discretization,

where

du

P-Ji- = - , gN,NS(-N--9(0) (6)

S = H-I(O, O, ..., O, 1)r (7)

Contrary to the common practice of satisfying the boundary condition directly by imposing uN = g(t),

the SAT method involves solving a derivative equation everywhere, including the boundary' points.

The extra term which is added accounts for the boundary information to within the accuracy of the

original discretization. Note that the SAT is added not only to the boundary equation but to other

points depending on the structure of the vector S, (which is the last column of the matrix H -1).

The extra SAT term does not alter the accuracy of the scheme, since the SAT term vanishes upon

substitution of the analytic solution.

We now demonstrate that the SAT method yields a Lax stable and time-stable scheme. For the

time stability analysis, we take g(t) = 0. We pre-multiply equation (6) by H and use equation (7)

to obtain

HpdU = AHQu--r£gN,N(O,O , O, 1)TuN (8)
dt ""'

We now define the energy E(t) as in equation (5) to get

dE(t) 2 _ •
dt = g°'°u° + g;V'NUN -- rgN,NU_ (9)

With go,o < 0 < gN,N_ we can immediately state the following theorem.

Theorem 1.1:

The SAT method presented in equation (6) is both stable and time-stable if

r>l (:o)

In addition to proving the stability of the SAT scheme defined in equation (6), we must show that

the procedure preserves the order of accuracy m of the spatial operator. This is accomplished by a

direct couvergence proof showing that the SAT term indeed preserves the spatial order of accuracy.

Denote by v the vector (u(x0, t), ..., U(ZN, t)) r , i.e. the values of the true solution of (1) at the

grid points. Combining the accuracy condition found in Assumption I with equation (6) we have

pdv = AQv - 7AeN,NS[U(XN, t)- g(t)] + PTe (II)
dt

6



Note that U(XN, t)--g(t)= u(1,t)--g(t)=0. Now define

_j(t) = u(xj, t)- uj(t)

where uj(t) solves (6) , to obtain

de
P--- = ),Q(- T)'gN,NS(N + PTe (12)

dt

where Te is the truncation error defined in Assumption 1. We now use the energy estimate presented

in (9) to obtain

d(c, HP,) < (¢,HPT,)
dt

and the inequality

(e, HPTe) <_ V/(e, HP()_/(Te, HPT_)

to obtain

d¢(_,HPe)

dt
<_ _/(T_,HPT_) (13)

By assumption 1 ,the truncation error is of order m, and we get

i(_, HPe) _< O(Ax) '_

which proves the convergence of the scheme.

In conclusion, a precise means is now available for the scalar case to impose boundary condi-

tions that are guaranteed to be time stable, and that preserve the formal accuracy of the original

discretization.

2. The Hyperbolic System

In this section, we explain how to use the SAT method for systems of hyperbolic equations and

show that the resulting scheme satisfies an energy estimate similar to the one obtained for the scalar

differential equation. First the system of differential equations is described.

Let u I and U II be the two function-valued vectors

U I = (u(1)(x,t),...,u(k)(x,t))

7
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U II = (U(k+l) ...,,t(r}(x,_))

that solve the system of differential equations

Ou I _ A 10 uI
-- I

Ot Ox

where A 1

0 ulI _ A llOu II
Ot Ox

and A 11 are diagonal matrices of tile form

A* = diag( hl , ..., kk)

(15)

A 11 = diag(._k.+l,..., A_)

111order to impose the boundary conditions we assume that

Al > A2 >...> Ak > O> Ak.+_ >... > A_

(16)

For this case, a well-posed set of boundary conditions is given by

uI(1,t) = RuII(I,i) + gI(t)

"_gllere

all(l,

uII(0, t) = LuI(0, t) + gII(t)

gI(t) = (g(1)(t), ..., g(k)(t))

glI(t) = (g(k+l)(t),...,g(r)(t))

(17)

In equation (17), the matrix R has _: rows and r-_" colunlns, while the matrix L has 7"- k rows

and k columns. Without loss of generality, for the stability analysis we will assume that both gI(t)

and gII(t) vanish.

E<luation (17) is well-posed for ally L and H. llowever, to guarantee no growth ill time some

conditions must be imposed on th<, matrices L and R. These conditions are

8



Condition I:

wheret}le matrix norm is definedby

and p(A) is the spectral radius of A.

ILIIRI _< 1 (IS)

IAI = P(A T A)½

The Continuous case

It is instructive to establish and prove an energy' estimate for the continuous hyperl)olic system

although such a proof is well known. The same basic steps that are used in the continuous proof will

be used later in the text to prove the energy estimate resulting from the senti-discrete hytmrbolic

system.

Condition I is a sufficient condition for the solution of equation (15) to be bounded in time. In

fact one can state

Theorem 2.1:

Let uI(x,t) and uII(x,t) be the solution of equation (15) with the boundary conditions (17).

Recall that we take gl = gIZ = 0. Suppose that L and R in equation (17) satisfy" Condition I. Define

an inner product

(w, v) = r]0l

and an energy function E(t)

ILl (,_(0E(t) : _ i7 ""))
i----I

then the thne rate of the energy function satisfies

dE
--<0
dt -

w(x, t)_(_, _)(t_ (19)

/=k+l

(21)

Proof

We start by differentiating equation (19) with respect to t to obtain

d0t(0 , u(0)

dt - 2 fo I u(i)ul i) dx

9



Using equation (15) weobtain

sothat

d(u(O, u(i))
dt - 2 fo' u(OAiu(i)dx

d(u(i), u(i))
dt - Ai(u(O(1,t) 2 - u(O(O, t) 2) (22)

Differentiating equation (20) and substituting equation (22) we obtain the energy rate for the system

as

dE k

d--t = _-" ILl(u(_)(l't)2 - u(_)(0't)2) - _ IRl(u(_)(l't)2 - u(_)(0't)2) (23)
i=1 i=k+l

relating tile time rate of change of the energy function to tile energy that crosses the boundaries.

Note the change of sign in the second term which results from the negative sign of the eigenvalues

-_i for k < i. We must now quantify the magnitude of the boundary terms in equation (23).

Replacing the sums in equation (23) with the vector operations

k

__u(i)(1,t)2= UI(1,t)TuI(1,t)
i=1

u(i)(o,t) _ = UII(o,t)rUII(o,t)

i=k+l

we can now make use of the boundary conditions in equation (17) to obtain

UI(1,t)TuI(1,t) = UII(1,t) TR T/_uII(1,/)

(24)

ulI(0, t)TulI(0, t) = uI(0, t)TLTLuI(O, t)

Substituting the equations (24) and (25) into (23) we obtain

dE _ uii(1, t)T {R TRILl --]RI}uII(1, t) + uI(0, t) T {L T LIRI- ILI}uI(0, t)
dt

Because (;ondition I ensures that

/tlld

R TRILl -IRII <_o

L TLIRI- 1ILl _ 0

10
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equation (21) is established. Therefore the continuous energy function E(t) is bounded in time. This

9completes the proof of Theorem (,.1).

1 • • 1 eThe Seuu-dlscrete Cas.

We are ready now to discuss tile implementation of the SAT technique for the system in equation

(15) with the boundary condition given in equation (17). As in section 1 we denote by u i a vector of

unknowns (u(00' ul 0, ...u_)) T which correspond to the grid points :r0(= 0),Xl, ...z_,(= 1). We assume

that we have matrices P , Q and H such that the scalar case admits a summation-by-parts energy

norm given in section 1. The SAT discretization of equations (15) - (17) is chosen as

du i
p-- = A_C_u_- _,_A_'I'I(,_41 - (R.H)_ I- _(_) 1 < i < k

dt

(27)

e--du_= A_Q,'- _0.0_,S"_(__)- (LubC0_/- ¢_) _.+ 1 <i < ,.
dt

where r is a stabilizing factor to be determined later. As in the scalar case, we choose S (i) to be one

of the vectors

S(0=H-_(0,0,...,0,1) T 1 <i<k

(28)

S (i) = H-_(1,0,...,0,0) r k + 1 < i < r

We recall from the scalar case that HP is symmetric positive definite and HQ is skew symmetric

,.) ,..except for the terms g0,0 = (HQ)o,o < 0 and gN,N = (HQ)N,N > 0. Thus equation (__) is well

defined.

Before proving the stability (and time stability) of the SAT method in equation (27), we would like

to comment on the role of the matrix H. Explicit knowledge of H is required for the implementation

of tile SAT method, specifically the knowledge of go,o and gN,N as well as the vectors 5 '(/) are needed

to implement equation (27). Thus H is not only a theoretical tool (as in reference [2]) but is also of

practical importance.

We are now ready for the stability proof of the SAT method in equation (27).

analogous to Theorem 2.1 with the continuous integrals replaced by discrete sums.

product is defined, analogous to equation (19), as

N

(u _, u i) = _ ul(i)uz(1)
/=0

11
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A different scalar product to be used later, analogous to equations (24), is

h

[uI ' uI],,_= _., ,,,,(,/_.{_/,,,_
i= 1

for 77_= 0, N.

r

[ llII, UII]m = Y2. U!_)'tt}_ )

i=k+l

(30)

Theorem (2.2)

Let the SAT method defined by equation (27) satisfy Assumption 1, for tile discretization {}f tile

hyperbolic system defined in equation (15) with boundary conditions (17), (with gI(t) = gII(t) = 0).

Then the discretization is both stable and time-stable provided that

2- 241 -[RILL[ 2 + 241- [RILL I
< r < (31)

IRiILt - - IRIILI

Moreover, let the discrete energy be defined as

k

EN(t)=_--2_ILI(u_,HPu£)+ _ ]R}(ui, HPu')

i=k+l

where the scalar product (u',u i) is defined in equation (29). Then

(82)

dEN(t) < 0
dt -

Proof

As in theorem 2.1 we differentiate the scalar product (u I, HPu _) and use equation (27) to obtain

d •

dci(u',HPu') = Ai(ui, HQui)-gN,N2ir(u_}-(RuII)(_})(ui, HS(i}) l <i < k

d , _ " .

_T{u, H Pu i) = Ai(u', HQ&) - g0,oAir(u {0 - (/_uI)_i))(u i, HS (0) k+l <i<r

(83)

We now use the definition of 5;(i} from equation (28) and the properties of HQ from Assumption

I to obtain
d i

_(u, HPu i) =

12



, _ /_ -- 7.u(i)(RUII_(i)_ooAi(_(dt)2+ _,_NN(_!_)2- AigN,N_(_))2+ ,YNN Nt JN 1 < i < k

(34)

Substituting the estimates

wheI'e

+l]_l(7- -- 1)g0,0[U II, UII]0 -- I/_IgN,N[U II, ulIIN -- go,o]I_lT-[u II, LuI]o

[u I, RUII]N _< lUI]NIRI[ulI[N

[U II, LuI]o _< luII]olLl]uI[o

In'Ira= v/[uI,u,],,_.

into equation (35), and collecting like terms yields

dEN(t) < -gN,u{irl(_- 1)lu'l_- _ILIIRIluIIxI_nlN+ IRIluHI_}
dt

and also

+go,o{lRl(7- - 1)luII[g - rlLll/_llull0lunl0 + ILIluIlg}

For dEN to be negative we require each curly bracket to be positive. Thus we needdt

' ILl(r - 1)lul[_ - rILIIRIIulINIulIIN + IR]lulIl_, >_ 0

IRI(T- 1)luIIl_ - _lLII/_llu'loluIIIo + ILIluIIoe >_0

Both inequalities are satisfied if

I/_IILI T_ < 4(_- 1)

and this is equivalent to equation (31). Thus, the proof is established.

13

(3_)

(36)

d i

_(u ,HPu i) =

-go,olA, l(_(o°)=- IAiI_N,N('_)) 2 + IAilg0,0T(_0_))2- IA,l_o,o,_d)(L,,., ,o,I_(i) ]¢ -4- 1 < i < r

Note that in equation (34) we used the fact that the Ai are negative for k + 1 _< i _< r. We must

now quantify the magnitude of the boundary terms in equations (34). If the sums in equations (::14)

arc replaced with the vector operations defined in equations (30) we get an estimate for the discrete

energy rate dEu(t)dt

dEN(t)
de -[Ll_0,o[u', UI]o + ILIgN,N(1 - T)[U I, UIIN + ILI_N,N[UI,/C_UII]N



3. Results

Conventional Boundary Conditions

Three high-order spatial discretizations (two explicit and one compact) are the focus of the results

section: the fourth-order explicit scheme with third-order boundary conditions, the fourth-order

compact scheme with third-order boundary conditions, and the sixth-order explicit scheme with

fifth-order boundary conditions. All satisfy the summation-by-parts requirement in the absence of

physical boundary conditions. The fourth-order explicit scheme is reported elsewhere (see [3] or [7]

for specific details) and will not be derived here. The fourth-order compact scheme is new, and

a systematic procedure for deriving both it and other compact high-order schemes is presented in

Appendix I. The sixth-order explicit scheme was first reported in reference [3], but is also included

in Appendix II.

First we demonstrate that all three schemes behave in accordance with their respective order

properties. We then comment with regard to the sixth-order explicit scheme, that satisfying the

summation-by-parts energy norm is not suflqcient for time stability.

The model problem used to test the three schemes is the scalar hyperbolic equation

Ou Ou

0--(+ Ox - o, O<_x<_l,t>_o (37)

= sin2 (-t), t _>0 (3S)

u(x,O) =sin2rc(z), 0 <x_< 1, (39)

The exact solution is

u(x,t)=sin2rr(x-t), O<x< 1, t>O (40)

For all calculations, the time discretization used was a fourth-order Runge-Kutta (R-K) method

with the time step small enough such that the temporal errors are much smaller than the spatial

truncation error. In all cases, the boundary condition was implemented at the end of each R-K stage

by overwriting the value of the solution at the boundary point.

Table I shows a grid refinement study performed on equation (37) for all three spatial dis,:retiza-

tions. Both the absolute (log L2) error at a fixed time T and the convergence rate between two

successive grid densities are plotted.

14



Grid
21 -0.501
31 -2.080
41 -2.607
61 -3.329
81 -3.832

\

(fourth explicit) (fourth compact) (sixth explicit)

log L2 Rate log L2 Rate log L2 Rate

8.96

4.22

4.10

4.03

-1.418

-2.133

-2.627

-3.316

-3.806

4.06

3.95

3.91

3.92

1.379

1.048

0.137

-1.302

-1.798

1.88

7.29

8.17

3.96

Table I: Grid convergence of three high-order schemes on ut + ux = 0.

This refinement study suggests that all three schemes are Lax stable (the exact solution is approached

at a fixed time T as mesh is refined) and grid converge consistent with each respective theoretical

rate. The convergence rates for both of the fourth-order schemes asymptote to the theoretical value

of 4. The convergence rate of the sixth-order explicit scheme is sporadic but is approximately 6

(5.28 for the interval between 21 and 81 points). This spurious behavior results from the exponential

divergence of the solution for long times T. At T = 70, the absolute error of the two fourth-order

schemes is comparable; however, that of the sixth-order scheme is two to three orders of magnitude

larger.

These numerical results indicate that the two fourth-order schemes are time-stable; the sixth-

order scheme is not. Nothing in the definition of Lax stability precludes exponential divergence of

the solution for long times T as long as the divergence rate is bounded independently of the grid

used. (See reference [4].) The numerical divergence of the solution results from a spatial operator

matrix which has an eigenvalue with a positive real part (an RH-P eigenvalue). For long times T,

the solution is dominated by this eigenvalue.

To quantify this assertion, a comparison is presented between the numerically observed divergence

rate, and a theoretical prediction from eigenvalue analysis. By assuming that the numerical error can

be represented as eN(t) = (N(0)e _N_, a growth rate C_N is determined. Similarly, an effective growth

rate C_s defined by e _sMt't = IG,,_x(At)I M, is calculated from an eigenvalue determination. (See

reference [4] for details). Table II shows a comparison of the observed growth rate of the sixth-order

explicit scheme with the rate predicted from an eigenvalue determination.

G2rl d _Numerical0.1672

31 0.1879

41 0.1880

61 0.1659

81 0.1785

0.1673

0.1886

0.1879

0.1746

0.1808
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Table II: Numerical vs. Theoretical Growth Rate for the sixth-order explicit.

The agreement is very good, with a slight discrepancy in the comparison on the 61 and 81 grid-point

cases.

The time-divergence seen in the sixth-order scheme is the same as that predicted in the counter-

example presented in section 1. Specifically, numerical time stability is not guaranteed by , dis-

cretization which satisfies a smnmation-by-parts property. Very specific boundary treatments must

be used to guarantee time stability.

SAT Boundary Conditions (Scalar)

The SAT method for treating the boundary conditions guarantees time stability for the hyperbolic

system. This method relies on a spatial operator that satisfies the summation-by-parts energy norm

for the scalar case and on very' specific boundary treatments to ensure time stability.

We begin by showing that the procedure does not destroy the formal accuracy of the spatial

discretization. This result was proven in section 1 for the scalar case. Tables Ill.a and lII.b show a

grid conw_rgence study of the SAT method on the scalar wave equation defined by equations (37),

(38) and (39). Fourth-order R-K time advancement is used for all runs with a time step such that

no appreciable temporal error accunmlates. All calculations are run to time T = 10. In all cases,

the calculations remained bounded on all grids (and CFL's less than CFLm,_) for times as large as

T = 1000, which indicates time stability. This result is consistent with the results from eigenvalue

determinations in which no RH-P eigenvalues were found.

r = 1

Grid

21 -1.2289

31 -2.0878

41 -2.5784

61 -3.2211

81 -3.6806

(fourth explicit) (fourth compact) (sixth explicit)

log L2 Rate log L2 Rate log L2 Rate

4.88

3.93

3.65

3.68

-1.4005

-2.0479

-2.5096

-3.1689

-3.6464

3.67

3.70

3.74

3.82

-2.5750

-3.8300

-4.6500

-5.7880

-6.6056

7.13

6.56

6.46

6.54

Table IlI.a. Absolute error (log L2) and convergence exponent with SAT parameter r = 1, for the

fourth explicit, fourth compact and sixth explicit spatial discretizations.
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7-=2
Grid
21 -1.3472
:31 -2.0866
41 -2.5980
61 -3.3107
81 -:3.8145

(fourth explicit) (fourth compact) (sixth explicit)
log L2 Rate log L2 Rate log L2 Rate

4.20

4.09

4.05

4.03

-1.8061

-2.4296

-2.8773

-3.5243

-3.9978

3.54

3.58

3.67

3.79

-2.7007

-3.8229

-4.6666

-5.8518

-6.6485

6.37

6.75

6.73

6.38

Table IlI.b: Absolute error (log L2) and convergence exponent with SAT parameter r = '2, for the

fourth explicit, fourth compact and sixth explicit spatial discretizations.

A comparison of the SAT grid refinement studies (table IlI.a and llI.b) with those from the con-

ventional boundary treatment (table I), indicates that the formal accuracy of tile spatial operator is

unaffected by the SAT treatment. The proof of stability given in section 1 indicated that a sufficient

condition for stability of tile scalar wave equation with the SAT method is 1 _< 7-. The results shown

in tables III.a and III.b indicate that tile magnitude of the error is dependent on the value of the

parameter r. To optimize the value of the parameter 7- for these simulations, the error at T = 10

was studied as a function of r. An eigenvalue code was then used to determine the maximum CFL

of the scheme as a function of r. The results of this study are shown in Table IV.

r log L2 CFL
3.0 -3.8220 1.17

2.5 -3.8221 1.77

2.0 -3.8145 2.07

1.75 -3.8038 2.07

1.50 -3.8833 2.07

1.25 -3.7460 2.07

1.00 -3.6806 2.07

0.97 0.0

Table IV: Absolute error (log L_) and CFL for various values of the SAT parameter r, for the fourth

explicit spatial operator.

Note that a fairly sharp cutoff at the theoretical value of r = 1 is observed for the fourth-order

explicit spatial operator. (Values of 7- = 0.9',3 and r = 0.99 were obtained for tile fourth-order

compact and sixth-order explicit schemes, respectively. In addition, precise agreement was obtained

at the r cutoff between the eigenvalue determination and the numerical simulation of the scalar wave

equation.) For the fourth-order explicit spatial operator, the error decreased monotonically wilh T.

which suggests that tile value of 7- should be as large as possibh _. (',onversely, the maximum ('F1,
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that is achievablewith the fourth-order R-K schemedecreasesdramatically at r = 2. A value of

r = 2 was determined to be optimal for these studies.

SAT Boundary Conditions (System)

The last part of the validation study is to verify that the SAT boundary procedure ensures stability
1 ,

for the hyperbolic system. Equation (31) defines sufficient conditions for time stability IR--_-Li(2-

1 2V/1 terms2@ -I,_IILI) _<r < uR-g_(2+ _ -}RtlLI) in of r and the boundary coupling matrices L

and R. The test case chosen is tile hyperbolic system

Ou Ou

O-Y+ Oz - O,

Ov Ov
-- O,

Ot Ox
0<_z_< 1, t>0 (4I)

,4o, t) = _,,(o,t), _(1,t) = ;3,41,t), t > o (42)

_(., 0) = sin2_., _(., 0) = - sin 2_., 0 <. < 1, (43)

The exact solution for c_ = /3 = 1 is

u(x,t)=sin2rr(x-t), v(x,t)=-sin2rr(z+t), 0<z < 1, t>0 (44)

The case 14 j3[ = 1 is neutrally stable and provides an extremely severe test of the time stability

of a numerical method. No central difference scheme of an order greater than two, is time-stable for

this system, in spite of the fact that the spatial operator is stable for the scalar case (c_ = /3 = 0).

Examples include the (3-4-3) compact and (3,3-4-3,3) explicit fourth-order schemes, and the (52 , 52-

6-52 , 52 ) sixth-order scheme that is shown in reference [4] to be time-stable for the scalar case. All

three schemes used in the scalar analysis (fourth-order explicit and compact and sixth-order explicit),

that satisfy the summation-by-parts property are not time-stable. In all cases, the discrete solution

of the system defined by equations (41) through (44) diverges as time becomes large. Grid refinement

shows Lax stability and an order property for each scheme, but not time stability.

The scalar analysis demonstrates a precise relationship between schemes that are time-stable and

the structure of the eigenvalue spectrum that arises from the discretization matrix. Precisely, if

RH-P eigenvalues exist, then numerical divergence can be expected from the numerical simulation.

Unfortunately, this statement is a function of the CFL that is used to advance the solution. (See

reference [4].) Values of the CFL can be chosen for which no numerical divergence is experienced with

an R-K time advancement scheme; for this reason testing the numerical stability of various spatial

operators for the fully discrete system in time is impractical.
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The alternative is to use tile eigenvaluestructure of the semi-discreteproblenl as the test for
stability. If a spatial discretization operator hasno RH-P eigenvalues,then it is assumedto be time-

stable. A derivation of the discretizationmatrix operatorsfor the modelhyperbolicsystem[equati(ms

(41) and (42)] is presentedin Appendix III. In addition, the structure of the eigenvaluesis derivrd.

For our test system,we take c_ =/;_ in (44) and thus the sufficient condition for stability becomes

(2-_) <_ r _< (_+2"a-_-_ ,., _2 ). (,wen a value of c_ and a stable scheme incorporating the SAT

boundary treatment for the system, there exist a range in r for which the time discretization is

stable. As in the scalar case, good agreement exists between the theoretical and numerical stal_ility

limit. Therefore, the agreement between the theoretical prediction and the numerical eigenvalue

determination was used as a test of the validity of the theory.

Table V compares the stability lilnits of the three high order schemes for various values of the

parameter c_; the theoretical limit is compared with that predicted from the eigenvalue determination

for the 2 × 2 system. The number of grid points used in each case was 101. A study with 61 points

showed similar results. In the study, rr is the theoretical value of r based on 2-2,A-a2 r and rx

is the value as determined from the eigenvalue determination. Specifically, rN was the smallest value

of r for which the numerical eigenvalues all had negative real parts. In all cases the agreement was

very good, which suggests the validity of the theory.

1,0 0,99 0,90 0,80 0,50

Exact rr 2.0 1.75 1.39 1.25 1.07

fourth explicit rx 2.0 1.75 1.39 1.24 1.05

fourth compact rN 2.0 1.75 1.39 1.25 1.08

sixth explicit rX 2.0 1.72 1.25 1.01 1.00

Table V: The theoretical and numerical stability limits of SAT boundary scheme for various values

of el'.

In these simple examples, we have demonstrated that the SAT boundary procedure retains the

formal accuracy of the underlying spatial operator and provides a mechanism to stabilize those spatial

operators that satisfy a summation-by-parts energy property. The resulting scheme is time-stable for

both the scalar and system case. The numerically predicted stability boundaries for the parameter 7-

closely match the theoretical predictions. From a practical perspective, the numerical stability and

CFL of the fully discrete algorithm are functions of the value of r. The choice r = 2 seems to bc

well suited for both the scalar and system cases and guarantees stability even for the neutrally stabh,

system case where o = _' = 1.
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4. (lonclusions

In thispaper we studied tilestabilityand time stabilityof the semi-discretehyperbolic .,>,stem

of partialdifferentiMequations. The spatialdiscretizationsconsidered were high order (explicitand

compact), atld their boundary terms were constructed such that the derivativematrix sati.,fieda

s _l,'_ln_at io,'l-}>y-i>ar t s form_la.

The following results were obtained:

1. A systematic way was developed to obtMn high-order accurate derivative matrices (includ-

ing boundary terms) having a. summation-by-parts property. The method is illustrated hy

finding explicit forms iu the 4th order compact case.

'2. The summation-by-parts property does not, by itself, guarantee the stability and time

stability of tile scheme, not even in the scalar case. (Refer to the explicit sixth-order

example cited in the text.)

3. To overcome this difficulty we introduce tile simultaneous approximation term (SAT) ill

order to account for the effect of tile coupling of the physicM boundary conditions. The

SAT contains a free parameter "r.

t. We give I:_ounds on r such that lille resulting scheme for the, system (or scalar) case, we

have stability as well as time stability.

5. Numerical studies verify the theory.
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APPENDIX I

(Ionstruction of the Fourth-Order Compact Scheme

We begin with tile semi-discrete equation ut = Atu where u = (u,, u2, ..., UN) T, which results fiom a

particular discretization of the equation ut = u_. The matrix A t is then decomposed as A t = p-i Q.

The interior scheme used is the fourth-order compact scheme defined implicitly as

1 dtti-i dui 1 dUi+l _ 3 (ui+, - ui-1) (AI. 1)
4 dx + _ + 4 dx 4 A

Note that the interior scheme satisfies the summation-by-parts energy norm (as well as tile generalized

norm). The matrices P and Q can be written in general form, with boundary closures of arbitrary

siz_ N as

Po,o PO,N 0

PN,O

0

1
pN,N

1_ 11_
4 4

; Q

qo,o qo,N

3
qN O qN,N

-3 0 3_
4 4

0

0

with the H matrix written as

ho,o ho,N 0

hN,o hN, N x

x y

To simplify the matrix algebra, the following new matrices are introduced:

4

0 1 0

-1 0 1

0 -101
• l
, C =

410

141

0 1 4 1

D

y x O

x y x

0 x y x

22
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Note that S, C, and D are M x M matrices, where M is an arbitrary number that corresponds to

the number of interior points in the discretization. The structure of the matrices is tri-diagonal in

nature. The matrix A is N x M, and the only non-zero element is ax,l = 1.

Thus, we can write H, P, and Q as

H

fl x A

x A T D

• p = ; Q =
1 A T (7 :3 A T ,q,

where P, 0, and f/ are the N × N submatrices that involve the unknown quantities in the matrices

P, Q, and H, respectively.

The spatial operator that involves P and Q satisfies the generalized summation-by-parts energy

norm if a matrix H can be found which simultaneously symmetrizes H P and yields an tt Q matrix

that is nearly skew symmetric. By defining W = H P and V = HQ, the matrices W and I" become

W

x 1I:fA ]

[tP + _AA r .rAC +

' DA r DC + 4ATAxATp +

V ___

3ffA ]

ft C2 3,: A A T :r A 5; +
4

a D A T D q' + _ A r ,4xArQ - a ' ,

Thus, the matrices W and V are important to the stability properties of the spatial operator.

Several notes about the structure of W and V should be made at this point. First, the matrices

A A r and A r A are zero except for the (N, N) and (0, 0) elements, respectively. Second, the matrix

A r A is automatically symmetric and it has the same tri-diagonal strucl.ure as the D andDC+_

C matrices. Third, the matrix D ,5' + _-_ A T A is automatically skew-symmetric which incl,uh,s t 1,(,

zero at the (0, 0) position. The fourth quadrant of W and V automatically satisfy the conditions on

the generalized summation-by-parts energy norm. The remaining conditions that W and I" must

satisfy, written in terms of the submatrices [/, P, _), C, D, S, and A, are

f7 b = (f# b)-i, (AI.
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1AT fi T + X C T A T -=- 1-D A T + x A T
4 4

(iI. 3)

ttQ, + (ftQ)T = 3X AA T +A6o,ol (AI. 4)
2

3AT fiT + x S TAT = 3 D A T - x A T Q (AI. 5)
4 4

where A 60,0 is the non-zero element that occurs in tile first row and column of tile matrix. This

contribution to equation (AI. 4) allows for a non-zero value at the (0,0) element in the matrix V.

By ext)anding tile specific terms ill equations (AI. 2 through AI. 5), we have

A T _i 7"

0 0

0 0

; A T p =

Pn,o PT_,n
0 0

0 0

ATe)

qn,o

0

0

0

; C T A T =_

0 0

0

S T A T =

0 0

0 0

; D A T =

0 0

0 0

By comparing the matrices involved in equation (AI. 3), it is apparent that

1 y

-_ hk,N + X _k,N = X pN,k + _ _k,N; k = O, N

Similarly, equation (AI. 5) yields the expression

-_ hLN -=- --x qN,k + 6k,N; k = O, N

Elimin;_ting hk,N between equation (AI. 6) and equation (AI. 7) yields the expression

qN,k = --3 PN,k + 3 (_k,N; ]¢ = O, N

24
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These properties of the matrices /6 and 0 must be satisfied regardless of the order properties of the

boundary.

We now derive the additional constraints that must be satisfied near the boundaries l o gllaratltcc

the or(ler properties of these points. Substitution of the equations +l.i = j_ and _t7_,,= rj'- t inlo

the matrices (2 and /6, respectively, yields tim constraints that ensure the accuracy of the 1)oundary

l)oints. The general expression at the l)oundat'y writtetl in terms of an arbitrary accuracy i' l>c<'omes

+,v j ,+_, r ,_"-1 _'\' j, 3 _1_;
r _ p<j + _5+,,_+(N+ 1 = _ q_"J + 7i-¢5*NC:Y-I- 1 k = 0,:Y (A]. 9)

j=0 j=0

Third-ord(,r accuracy at the boundary t)oints requires r = 0,3 with ;\+ _> 3.

Zl Snu: fat', we have not specified the exact value of the parameter :Y. \Ve m)w specify a pre<'ise

vahte for the parameter N so that specific boundary conditions can be derived for the fourtt>or<h,t +

interior Pade schetne. To retain the formal accuracy of the interior schctne, the I_oundary closlltc

must be accomplished to at least third-order accuracy, and requires that :Y _> 3. For :Y = 3.

equatiotl (AI. 9) can be written concisely in matrix notation as

/6

0.0 -1 1 *00 2*01 3*02

0* 1-1 1. 1° 2. 11 3.12

0.2 -1 1.20 2.21 3.22

0.3 -1 1.3 o 2.31 3.32

=0
00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

+

0 0 0 0

0 0 0 0

0 0 0 0

3 11 10 36
,I ,t

Solving this expression for the matrix 0 results ill the expression

O= /6

-; ; 3 -3 1
6 2 3

-___1 -1 1 @3 2

1 -1 1 1
6 2 3

3 2

+

0 0 0 0

0 0 0 0

0 0 0 0
7 -5 17 -23

24 4 8 12

which relates the matrix (+2to the matrix /6 through third-order accuracy ctmstraitlls.

We +viii now solve for the last row of the matrices/6 and O and for the last, co]llllll/of Ill(, lnalrix

/I. Equation (AI. 9) is written for /," = N, and qx,j and P.v,.i (detined in equation (AI. S)) arc ,_st,,t

to yiehl the relationship

25



g jT-, r )T_, N j_ 3 _.
r _-_PN,j + _(N+l = -3 Y'_.PN,j + _(N+I) _+ 3N, r = 0,3 (AI. 10)

j=0 j=0

Setting N = 3 and solving the system for p3,k, k = 0, 3 yields p3,0 = p3,1 --: 0, p3,2 -- ¼, and p3,3 = 1.

Equatiou (AI. 8) can be used to show that q3,0 = q3a = 0, q3,2 - 4,3 and q3,3 = 0. Similarly,

equation (AI. 6) yields the values of hk,3 as ho,3 = hl,3 = 0, h2,3 = x, and h3,3 = y. Thus, the last

row of/5 and O are the same as the interior scheme. In addition, the specific form of the matrix/2/

nlust be

ho,o ho,1 hoa 0

hl,o hi,1 h,,: 0

h2,0 h.2,1 h2,2 x

h3,0 h3,1 h3a Y

Thus, accuracy constraints on the last row of the matrices /5 and _), combined with the structure

requirements imposed by equations (AI. 3) and (AI. 5), allow for the direct solution of the last rows

of/5 and 0, and the last column of f/. Multiplying the expression relating/5 to _) by the matrix f/,

and using the substitutions /2/Q = _ and f//5 = W yields the expression for I)" of the form

- 1__!1 3 -__k
6 2

-__k -__k 1
3 2

1_ -1 1_
6 2

-__!, _a -3
3 2

1

3

-g

0 0 0 0

0 0 0 0
7x -5x 17x -23x

4y 4
24 4 8 12

Solving for I_ and I) such that equation (AI. 2) (where 1_ = 1_ r) and equation (AI. 4) (1) + I) r =

3_x A A T + A (5o0 I) are satisfied to obtain
2

-9 c_ 1536 3'+1536 B-899 a 768 ")'+768/3--703 c_

16 768 192

1536 "/+1536/3-899 a 0 1536 ")'+1536/3-1277
768 256

768 "7+768/3- 703 o_ 15363,+1536 _-- 1277 o_ 0
192 256

1536-),+1536 B--1481 ot 768 W+768/3-733 _ 1536"/+1536 /3--947 c_
768 192 768

1536W+1536 _-1481
768

768 _+768 fl-733

192

1536 "7+1536/3-947 cr
768

-3a

32

&lid
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137 c_-- 192 3' --512 "_--128/3+525 a 145 oe-- 144 --( ;'4

192 128 ,18

--512 "y-- 128 fl+525 c_ --816 "7--384 fl+737 c_ --3072 _--1344 fl+3001 c_ 557 c_--576"_

128 48 192 192

145 c_--144 7 --3072"1--1344 fl+3001 a --3264 2--1536_+3011 a --15367--384 3+15,13,_

48 192 192 384

fl 557 c_-- 576 3, -- 1536 _,- 384 fl+ 1543 c_
192 384 ")'

with x - 8 and y = a. Three arbitrary parameters remain after all accuracy, sylnmetry and

skew-sylntnetry conditions are satisfed.

The final step in tile discretization is to find a specific form of the matrix /5 that will lead to a

simple algorithm. Because the matrix P is tri-diagonal in the interior, tile boundary closure sho_lld

retain the tri-diagonal structure. After/5 is specified, we can solve for the lnatrix /2/ from It = f"/5-_

if tile inverse of/5 exists, and the last cohunn of/2/is [0, 0, 9, z] T. Tile matrix (_) follows immediately

from 0 = /5 i)-1 I/V. The last test is to ensure that both }_v_ and that the filll matrix IV are positive

definite.

Many matrices/5 have been found that satisfy all of the criteria given in the generalized summation-

by-parts energy norm analysis. Ft'om a numerical perspective, all behaved silnilarly. The results

presented here are those that were the simplest to code. Choosing a specific matrix/5 of the forul

21__! 1 0 0
429

1 3.563 -1 0
1688 8

43 1893 1390 --
17 1054 186

0 0 1_ 1
4

yields a matrix O of the form

--289 279 75 -7

234 286 286 2574

--8635 6987 1851 -203

3376 3376 3376 3376

--15043 -4089 147 29353

18972 2108 124 18972

0 0 -3 0
4

The resulting matrix /2/ is therefore
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h

7028200765,3 --9426299

7658388480 2268480

--55530689643 805158{t

255279(i 160 7501 (;0

63842626133 --9153739

2552796160 756160

--71498870,1,13 101101,t9

7658:{88480 226848(I

--192913

1067520

149823 0
7{558,10

--4433 -- 1

;{5.5840 8

102703 1
I O67520

/.Froln a practical point of view, the inconvenient form of the [t matrix is not of great concern

since the matrix H is only inverted once and one colunln is stored for use.

The matrices /6, 0, and [l can be used to establish both the sylnlnetry of the lnatrix V and the

near skew-sylntnetry of the tnatrix W. The first six rows and colulnns of the V matrix are

16513 --261 2993 -6223 0 0
46080 5120 15360 46080

--261 9153 -2943 1611 0 0
5120 5120 5120 5120

2993 --29,13 7473 --2063 --1 13
t#

15360 5120 5120 15360 32

--6223 1611 --2063 47953 1 -- 1

46080 5120 15360 46080 8 ,32

0 0 -_ 1_ 1.5 t
:{2 8 16 8

0 0 0 -_ i lj
:{2 8 16

The first six rows and colullmS of the W matrix are

r

-9 4_ -al -7 0 0
16 64 128 128

-45 0 81 9 0 0
64 128 128

11 -81 0 41 -3 0
128 128 64 32

7 --9 -41 0 _ ---3
128 128 64 4 32

0 0 3 -3 0 33_ -4- 7

0 0 0 3 -,3 0
32 4

As showli, the matrix II/" is nearly skew symmetric, and the ulatrix I." is symmetric. For the lnatrix W

is positive definite, it is necessary to show that every sul)Inatrix is positive definite. The inner sclleme

is ,tiagorlaliy dollliliall{ and contl'il)lll,(_s to the clel_lliteiless of the complete matrix W. However, the
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boundary elemenlsare m_t diagonally donlinant, and suppress the inMtive-definitencss.The,l x.l

l,olmdarv matri× [.I.""= I.I."+ _ A ,4T has the followingcharaclvristicpolynomial

751!)7.1720 A_ - 3_07814.100 A:_ + 52!)!)0(i8!)28 A: - 307932:112.1 A + 536779791 = 0 (A1. 11)

Tlle symlm'try of lh(, li" matrix alld the alternating signs of each term in lhc characterisli(' 1)ol3qlomial

gllatant(,c l llal. llw matrix is l)osiliv(, d('tinite. The chara.cteristic poly_lomial of ever\" slll,lnal.rix (,it)

to len points, wlli('h iucludes four boundary and six interior points) of the malt'ix II" results ill a

l)ositivc (lefinil,e matrix. No proo[" that lhc complet, e discret.izalion is l)osili\'e (l(,t]uil.e for all arlfitrary

]lllnll)(q" of i]lt('rior l)oints llas 1)(,(,n found.

The a('('llva('y of l.h(, new s('hem(" is third order at 1.he boundari(,s and fourth order in l.h(" inl.cri()r.

To slu_w this, tlw Ta.ylor (,xl)ansion for long wav(,lenglh modes is mad(, Ilsing Ill(' stencil al each of

l.ll(" tirsl f()llr I)oi[ll.s. The r(,sllll.s are

17 _4
,:_ + _ +-..

.13

i,_ + _# +...
98

,I

,_ _00._ +..-
1

- i___ _ +...
180

(:xl.z_)

AI high resolution, the boundary poinl.s behave with third-order trtmca.l.iou error; the interior 1)('}laves

wit.h ['ourl.ll-order error. Therefore, the reslllli_g scheme is formally fourl.h-or(ler accurate.

29



APPENDIX II

Sixth Order Explicit Scheme

Here, we derive an explicit scheme that is formally sixth-order accurate. Unlike the fourth-order

compact case presented earlier, the matrix H can be tile identity matrix. To constrain the nlatrix/5

to be synunetric and the matrix O be nearly skew synunetric, six alternative formulas are required

at the boundaries, each of which is closed to fifth-order accuracy to retain the formal accuracy. The

corner 7 x: 7 submatrices of the global matrices/5 and Q can be written as

0

2113 18487 553 14759 _ 54839 0
10800 345600 57600 172800 172800 345600

18487 175781 _ 129329 (-346319) _ 0
345600 51840 6912 34560 207360 172800

553 _ 43807 (--915) 126833 _ 0
57600 6912 5184 128 34560 518400

14759 129329 (-915) 67769 _ 34811 0
172800 34560 128 8640 6912 172800

(-346319) 126833 _ 156053 _ 0
172800 207360 34560 6912 51840 115200

54839 _ (--39307) 34811 _ 32569 0
345600 172800 518400 172800 115200 32400

0 0 0 0 0 0 1

Q6 =

(-1) 1235503 (--859597) 398 (-603059) 14969 0
2 1036800 518400 225 518400 41472

(--1235503) 0 16343 _ 186797 (--184657) 0
1036800 5760 20736 69120 172800

859597 _ 0 128759 (--18743) 3799 0
518400 5760 51840 6912 2700

68005 (-128759) 0 110351 (--607693) 1__
225 20736 51840 51840 518400 60

603059 (--186797) 18743 (-110351) 0 376549 (-3)
518400 69120 6912 51840 345600 20

184657 (--3799) 607693 (--376549) 0
41472 172800 2700 518400 345600 4

0 0 0 _ a__ (3) 0
60 20 4

l'he characteristic polynomial of the matrix P6 is

10399739562845798400000000 A6 _

+ 1003578630643249838161920000 A4 -

30

248512609916244983808000000 As

1639038223377237368051712000 A3



+ 1248376737213799711434406800 )_2 _ 412235365042816633559197440 A

+37455444120716264727507839 = 0 (AII. 1)

The symmetry of the matrix P6 and the alternating signs of tile terms in the polynomial are sufficient

for positive definiteness of both the matrix P6 and the global matrix P.

The truncation error at the boundary points is

,4

i4

i4

6448299997451547397244467{ 6
+ + ..

224732664724297588365047034

55178459341997062554732146

+

+

1123663323621487941825235170

9037811404281609896272961946
+ •

2247326647242975883650470340

62520732887440126777806839_ _
+ .

2247326647242975883650470340

21521021082694965917733146
+ .

1123663323621487941825235170

710158025419711630205390546

224732664724297588365047034
-'_ o o

(AIl. 2)

which indicates fifth-order accuracy at tile six boundary points.
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APPENDIX Ill

Eigenvalues of the Discrete System

The eigenvalues of tile semi-discrete system are used in tile results section to corot}are the theoretical

and the 1]mnerical stability boundaries. The model equation is the hyperbolic system used in the

main text and defined by equations (41), and (42). For convenience, we define the (N+ 1) × (N+ 1)

mat;rix ,4 = p-t Q. The matrix A contains all the information from the spatial discretization

{}t}erat{} r :_L The semi-discrete h)rm of equation (41) becomes
¢'}3? "

du

d-T + A u = O,

dv
Av = 0, t>0 (AIII. 1)

dt

with th{, boundary conditions defined by equation (42)• In matrix notation, the discrete system takes

the forn]

A t c_B ]
a_ g
Dt --

/3J-_BJ J-_Atd

wheFe

tt 1 ]

tt N - 1

?t N

tOo

l_ 1

?_N- 1

A t =

(ll,l al,2

(12,1 (L2,2

aN-l,l aN-l,2

(ZN,1 aN,2

al,N-1

(12,N-1

aN-I,N-I

t2 N,N-1

al ,N

a2,N

aN-I,N

aN,N

an(]

/3

(LI,0

a2,o

; J =

0
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Note that JJ = I, so that J = j-1. The vector ff is the concatenated vector of discrete values

from the scalar vectors u and v with the elements u0 and vN removed. These elements are removed

because tile physical bolmdary condition relates them to known elements in the vector if, so that and

need not need to solve for them. The matrix A t is the N x N submatrix of A which is obtained by

eliminating the zeroth row and zeroth column. Note that this was the matrix that was analyzed in the

scalar analysis to determine time stability of the spatial operator. The matrix B is zero everywhere

except tile first column, where the zeroth column of the original A matrix is written. This column is

precisely the coupling between the u and v vector, which occurs at the boundary.

It is instructive to relate the system eigenvalues to those obtained in the scalar analysis [(A* -

A l) u = 0]. By defining the matrix H-' and H as

--I

with I1-1 H = H H-' = I, we note that the system matrix can be made block diagonal with tile

similarity transform H

A t + _/_BJ 0 ]

]o At_

For scalar time-stable spatial schemes, the eigenvalues of the matrix A t are bounded to the left half-

plane. Note that for c_ = 0 (or /3 = 0) the contribution from tile boundary coupling matrix B is

identically zero, and the eigenvalues of the resulting system are simply the scalar eigenvahxes with

a multiplicity of two. For non-zero values of the parameters c_ and /3, the eigenvalues of the total

matrix are different from those of tile original matrix A t. Also note that two distinct eigenvalue

scenarios exist for tile boundary parameters ol and /3, depending on whether their signs are equal or

opposite.

33



Form Approved

REPORT DOCUMENTATION PAGE OMeno o7o4-oIas

Pubhc reDOrteng burden 'or th_s collec_Aon of _niormaI_o_ is estimated to average _ _our oer resDorse. _ncl_dlr_g the time for revqew_ng instruc_lon_, searc_dng ex_tmg da a sourct'_

gathering and maintaining the data needed, and (ompletlng an(] rev,ewmg the coJ[P_lOn of _nforrnatlOt3 Send comft_enls re<Jardlng this Durden esttrnate or any other aspect of th

coIlectAon of _nforrnat_on. including sugge_trons for re_iucing t_l_ OufClen To _Nashrngton Head(luarters Service,. Directorate ,'or tnformation OI3_=ratlOn_ and Re_%. l_lS Jeffe_or

Daws Highway. Su*te 1204. Arhngton. VA 22202_4307. and to t_e Office of Management and Budget. Paperwcrw. ReOuchon Prolect (07C4-0 88) Washington. DE 20503

|. AGENCY USE ONLY (Leave blank) 2. _EPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1993 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

TIME-STABLE BOUNDARY CONDITIONS FOR FINITE-DIFFERENCE

SCHEMES SOLVING HYPERBOLIC SYSTEMS: METHODOLOGY AND APPLI-

CATION TO HIGH-ORDER COMPACT SCHEMES
6. AUTHOR{S]

Mark H. Carpenter, David Gottlleb, and Saul Abarbanel

7. PERFORMINGORGANIZATION NAME(S) AND ADDRESS{ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

11. SUPPLEMENTARY NOTES

Langley Technical Monitor:

Final Report

Michael F. Card

C NASI-19480

C NASI-18605

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 93-9

10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

NASA CR-191436

ICASE Report No. 93-9

Submitted to Journal of CQmpu-

tatlonal Physics

i12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 64

12b. DISTRIBUTION CODE

13. ABSTRACT(Maximum200words)

We present a systematic method for constructing boundary conditions (numerical and

physical) of the required accuracy, for compact (Pade-like) high-order finite-dlffer-

ence schemes for hyperbolic systems. First a proper summation-by-parts formula is

found for the approximate derivative. A "simultaneous approximation term" (SAT) is

then introduced to treat the boundary conditions. This procedure leads to time-stabl,

schemes even in the system case. An explicit construction of the fourth-order com-

pact case is given. Numerical studies are presented to verify the efficacy of the
approach.

14. SUBJECTTERMS

time-stability; high-order finite difference; compact

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7S40-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

lg. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

36
16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Pre_crnbecl by ANSI Std /3g-18

298-102

NASA- Laizgley, 1993


