We present a nodal Discontinuous Galerkin (DG) scheme for the Cahn-Hilliard
equation that satisfies the summation-by-parts simultaneous-approximation-term
(SBP-SAT) property. The latter permits us to show that the discrete free-energy
is bounded, and as a result, the scheme is provably stable. The scheme and the
stability proof are presented for general curvilinear three-dimensional
hexahedral meshes. We use the Bassi-Rebay 1 (BR1) scheme to compute interface
fluxes, and an IMplicit-EXplicit (IMEX) scheme to integrate in time. Lastly, we
test the theoretical findings numerically and present examples for two and
three-dimensional problems