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a b s t r a c t

COFFEE (Conformal Field Equation Evolver) is a Python package primarily developed to numerically
evolve systems of partial differential equations over time using the method of lines. It includes a variety
of time integrators and finite differencing stencils with the summation-by-parts property, as well
as pseudo-spectral functionality for angular derivatives of spin-weighted functions. Some additional
capabilities include being MPI-parallelisable on a variety of different geometries, HDF data output and
post processing scripts to visualize data, and an actions class that allows users to create code for
analysis after each timestep.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version v1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2019_93
Legal Code License GNU General Public License (GPL)
Code versioning system used git
Software code languages, tools, and services used Python 2.7, C, MPI, HDF5, numpy, spinsfast, libfftw3
Compilation requirements, operating environments Dependencies: mpi4py with compatible MPI implementation, h5py with compatible

HDF implementation, numpy, scipy, Gnuplot, matplotlib and a variety of standard
Python modules (e.g. abc, logging and math).

If available Link to developer documentation/manual documentation provided in the code and the repository
Support email for questions maintainers are contactable via the gitlab repository

1. Motivation and significance

We present a software package, the Conformal Field Equation
Evolver or COFFEE for short, that implements techniques suitable
for numerical solution of time dependent systems of differential
equations (DEs) via the method of lines. COFFEE is primarily
implemented in Python. It imposes very few requirements on
users and was written with PEP8 [1] as the guiding philosophy.
Although COFFEE cannot compete with some existing numerical
integrators for speed, it offers a low barrier for use and substantial
flexibility.

∗ Corresponding author.
E-mail address: c.stevens@ru.ac.za (C. Stevens).

COFFEE was specifically developed to compute solutions to
a system of hyperbolic partial differential equations (PDEs) that
represent Friedrich’s conformal field equations [2]. It has been
used in eight research projects to numerically study the confor-
mal properties of general relativity, [3–10]. As an illustration
of the capabilities of COFFEE, in [10] it was used to solve a
system of PDEs in the form of an Initial Boundary Value Problem
(IBVP) containing 46 variables and 45 constraints on two different
high performance clusters using up to 200 processes. It evolved
the system in time for a range of resolutions, approximated
spatial derivatives in a number of ways, stably imposed user-
given boundary conditions and stored the data in HDF files.
Post-processing scripts demonstrated convergence and stability
of the computed solution and produced visualizations of the
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output. COFFEE contains the tools necessary to rigorously inves-
tigate the numerical evolution of a system of time dependent
PDEs.

COFFEE is unique in that, there is no computational PDE soft-
ware designed with the philosophy of user-friendliness and flex-
ibility that has been used to solve complex and challenging sys-
tems of equations, for example those derived from Einstein’s
field equations. This contrasts COFFEE with existing software like
Cactus [11], Chombo [12] or PETSc [13].

2. Software description

COFFEE was designed to significantly reduce the amount of
work needed to write code to solve systems of equations. Thus,
despite its numerical nature, COFFEE is implemented in Python
and relies heavily on numpy, mpi4py, hdf5 and custom C code.
Implementation in Python has obvious disadvantages. For exam-
ple; as Python is an interpreted language syntax can have a large
impact on speed of execution (compare for loops to list compre-
hensions), there are structural issues with interpreted languages
(in the case of Python this is the reason for the GIL), additional
overhead in the translation of Python script to Python byte code
and then to machine instructions, and a lack of the compile time
checks that are found in strongly typed languages. Nevertheless
the papers [3–10] demonstrate that COFFEE is capable of solving
technically challenging and computationally intensive systems of
PDEs.

Implementation in Python also has advantages. Of particular
note is duck typing, dynamic introspection and code injection,
which reduces the need for the user to conform to strict program-
ming patterns and understand the ‘‘COFFEE way of doing things’’.
Conforming to the philosophy of Python, COFFEE evaluates code
as given and fails fast, i.e. stops the simulation rather than contin-
uing with a potential flaw. Before each iteration of the simulation,
a collection of ‘‘actions’’ are run. Each action is an arbitrary piece
of user code that has complete access to all data at the current
time step and almost all objects performing the simulation. This
gives users substantial complete control over the simulation.

The COFFEE code base has been written for readability over
performance (except for code dealing with the MPI and HDF
API’s). The code contains plenty of comments highlighting trick-
ier portions of code, why certain algorithms were chosen and
portions of code that are bug prone under change. As a general
point, we believe that code should not be viewed as an immutable
body of work but rather like working on a whiteboard: added
to and altered as needed. Hence, we expect users to directly
alter COFFEE’s code based whenever more convenient than other
methods of changing the simulation; e.g. run time control can be
exercised in actions or in system objects described in Section 2.
Due to the technicalities of working with MPI and HDF API’s,
however, caution should be exercised when editing the mpi,
actions.hdf_output and io.simulation_data modules.

The core functionality of COFFEE is an MPI-enabled implemen-
tation of the method of lines with code to support spectral and
finite difference techniques for spatial derivatives over clusters of
computers. Thus it is an implementation of the numerical meth-
ods required for evolving time dependent systems of ODEs and
PDEs, e.g. parabolic and hyperbolic systems. Of particular note,
COFFEE includes code for the simultaneous approximation (SAT)
method [14] for imposing stable boundary conditions, the papers
[15–17] for summation-by-parts finite difference operators, and
[18] for fast spin-weighted spherical harmonic transforms for
numerical implementation of the ð-calculus (eth-calculus), see for
example [19]. IO uses HDF5 for data storage. It has been run on
desktop workstations, on a cluster of computers at the University
of Otago and on the New Zealand eScience Infrastructure’s high
performance computing cluster.

For the rest of this section, it may be helpful for the reader to
refer to the UML sequence diagram of COFFEE, as shown in Fig. 1.

The IBVP class represents an initial boundary value problem.
To initialize this class objects behaving similarly to a ‘‘Solver’’, a
System object, and a Grid object must be provided. The solver
describes how steps along the lines of the simulation are per-
formed. The system calculates the time derivative of the functions
being simulated. The grid object describes the domain of the
functions and manages the MPI API. Additional options, which
have sensible defaults, at initialization are a list of actions to be
performed during simulation (e.g. data reduction, visualization,
error calculation, and so on), the maximum number of iterations
and a minimum time step.

Solvers are objects that know how to integrate one dimen-
sional ODEs. An abstract base class is provided along with im-
plementations of the Euler (explicit and implicit), the 4th order
Runge Kutta method and a variation of the 4th order Runge
Kutta method that incorporates boundary data for intermediate
steps. An adaptive 4th order Runge Kutta method has been im-
plemented but not tested sufficiently for this release of COFFEE.
The code for this will eventually be included in the repository.

System objects represent the system of differential equations
to be solved using the method of lines. An abstract base class is
provided as a form of documentation of the otherwise implicitly
assumed API provided by custom classes filling the role of a
system object. System classes must have a method that returns
what the next timestep is to be (this allows for adaptive simula-
tion), a method (evaluate()) that calculates the time derivative
at a particular point in time, and methods that give initial and
boundary values.

To make life easier for the user a number of numeric (spatial)
derivative operations have been implemented. Instances of these
have been used in the evaluate() method in published papers.
Code for the following operators is provided:

• 11 finite difference stencils,
• 9 different implementations using the fast Fourier trans-

form,
• The Geroch–Held–Penrose operators ð and ð′,
• 7 summation by parts finite difference operators with 3

supporting dissipation operators.

The Geroch–Held–Penrose operators are supported by a mod-
ule, swsh, which can calculate and manipulate spin-weighted
spherical harmonics.

The Grid object represents the domain of the functions being
calculated. To instantiate a grid object the number of data points
in each dimension, the bounds for the values of coordinates on
the data points, an MPIInterface object, and an object describ-
ing the ‘‘boundary data’’ must be provided. The MPIInterface
object wraps an instance of MPI_COMM itself wrapped by the
mpi4py module (COFFEE has been tested against both MPICH
and Open MPI). COFFEE MPIInterface objects understand how
to communicate sufficient data to neighbouring processes to al-
low simulation to continue when simulation is performed over
multiple processes via MPI.

The abstract base class for boundary data, ABCBoundary, rep-
resents the information needed to determine what data has to
be sent between sub-grids on different processes via a subclass
of MPIInterface. The ABCBoundary objects draw a distinction
between sub-grid ‘‘edges’’ that are internal and external to the full
grid as represented by the Grid object. Each internal and external
edge can, in principle, have differing numbers of ghost points and
points on the ‘‘boundary’’ region that will be communicated. This
data is communicate via the boundary_slices() method.

Once simulation is started COFFEE enters a ‘‘main’’ loop con-
tained in the ibvp class. First, the next timestep is determined.
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Fig. 1. A UML sequence diagram of COFFEE. The names of function calls and variables have been preserved in the diagram, t is the current time, tslice is a time
slice of function data (passed in the advance() and evaluate() methods and created in the initial_data() call) or derivatives of function data (returned in
the diffop() call) or values of functions at intermediate times (returned from the evaluate() call), i is the number of the current iteration, tslice.data is
the values of the function at the current time. Note that the lifetime of the tslice object is strictly speaking incorrect as different time slices are used in each of
the inner fragment loops. The Solver is responsible for creation of new time slices between each fragment evaluation. We have left this off the diagram as it only
serves to complicate it.

Second, each action in the action list is performed. Third, the
values of the function at the current time plus the time step are
calculated. Fourth, the process is repeated until an exception is
raised, e.g. an overflow occurs, or the final time is reached.

All data in each iteration of the main loop is stored in a time
slice object. Each time slice contains the function data, the grid,
and the current time.

The last major portion of COFFEE worth discussing is actions.
An action is a piece of code that does something with a timeslice.
Actions are user definable and can contain references to any
object available at runtime. When called an action is passed the
current timeslice. Actions have complete freedom and therefore
are able to dynamically affect the simulation. An action should
subclass the actions.Prototype class and at least implement
the function _doit().

COFFEE is supported by additional scripts that work on the
resulting hdf files to produce the normal array of secondary
derived information, such as the calculation of convergence rates,
errors, visualization, and manipulation of data in hdf files.

There are only a few requirements that need to be met before
COFFEE can be used to compute solutions, see Section 3 for an
example or refer to one of the more detailed examples provided
in the COFFEE repository. Users must provide:

1. an object with a method that returns the next time step
∆t and a method that computes the time derivative of
the system at a given point in time (which we call ‘‘the
system’’),

2. select an object which can solve ordinary differential equa-
tions (ODEs) or provide their own (‘‘the solver’’), and

3. specify the domain of the solution to be computed and
what discretization to use (‘‘the grid’’).

Once these components have been selected from libraries within
COFFEE, or have been custom written, they are passed as argu-
ments during object initialization to the ibvp class. The sim-
ulation can now be run by calling the ibvp.run() method.

There are an array of additional options that can be specified
involving IO, MPI topology and data communication, methods for
calculation of spatial differences, length of simulation and forced
evaluation at specific times, and real time visualization.

To run a simulation the user must instantiate objects that be-
have like the COFFEE provided System, Grid, Solver and IBVP
classes. COFFEE has existing implementations of Grid, Solver
and IBVP classes that are sufficient for most simulations. Since
the System class represents the system of DEs to be solved this
is left to the user for implementation. Collectively these classes
contain all information needed to perform a simulation. In the
research projects cited above initialization of these classes and
the start of simulation has been collected in what we call a setup
file. See Listing 2 for a minimal example of a setup file. The
COFFEE repository contains more detailed examples. For use in
research, the Otago numerical relativity group included a plethora
of runtime command line customizations in setup files, but this
is not required. Typical options in a setup file involve: logging,
differential operators, solvers, output settings, ‘‘action lists’’ and
settings related to real time generation of visualizations.

2.1. Software architecture

In keeping with Python’s philosophy COFFEE’s architecture is
flat, except where interaction with MPI or HDF API’s is needed.
As a consequence explicit code dependencies are either obvious,
e.g. the IO system relies on h5py, or explicitly stated, e.g. Grid
objects use instances of the ABCBoundary class which is in
the grid.grid module along with the Grid class. In order to
document the implicit dependencies which result from Python’s
reliance on duck typing numerous abstract base classes are pro-
vided. These classes document the otherwise implicit assump-
tions made about class API’s. We encourage users to subclass
abstract base classes, though this is not required.



4 G. Doulis, J. Frauendiener, C. Stevens et al. / SoftwareX 10 (2019) 100283

Fig. 2. A graph of the function computed by Listings 1 and 2. Component 0
is the value of the function that solves the wave equation specified in Listing
1, while component 1 is its derivative. The time has been chosen to show the
function after the first reflection off both boundaries but before the separate
wave packets merge for the first time. You can replicate this graph by using the
gpl_plotter action to run only at time 3.0.

Since the implicit dependencies are the most likely to cause
issues for new users we briefly describe them. Fig. 1 describes
the expected flow of data during initialization of the data and
one iteration of the simulation and therefore presents a schematic
view of the implicit dependencies internal to COFFEE.

3. Illustrative examples

We give an example of code that solves the one dimensional
wave equation in the code Listings 1 and 2 (also see Fig. 2). Code
from these listings can be found in the COFFEE repository. The
first file, given in Listing 1 defines the system object. It specifies
what spatial differential operator to use, how to calculate a time
step, the initial data and how to calculate the time derivatives
of the solution. The second file, given in Listing 2, initializes the
objects necessary for simulation and hands them to an IBVP
object which manages the main simulation loop.

4. Impact

There are only a few other packages currently available that
incorporate a similar set of features to COFFEE. Each of these
has different philosophies, structure and goals. For example, the
Cactus code [11,20] is a very large, community-driven project
developed over many years. However the philosophy of Cactus
and that of COFFEE differ greatly; Cactus is extremely optimized,
written mostly in Fortran and C, and is very strict on how things
are done and what the user can do. COFFEE on the other hand is
written in Python and is designed for ease-of-use and flexibility.
These properties make COFFEE and Cactus natural complements
of each other and useful in their own right. In particular, COFFEE,
although powerful enough to satisfy advanced programmers, is
also aimed at users from a variety of different fields that may
have limited programming skills. These users want a simple way
to numerically evolve systems of ODEs or PDEs and are not
necessarily worried about speed.

To help reduce runtime, COFFEE is MPI-parallelized: The com-
putational domain is split into smaller domains, each having its
own memory and dedicated core. The performance increase using
MPI is exemplified with the strong scaling test results given in
Table 1. It is seen that increasing the number of MPI proceesses
decreasing runtime up to around 32 cores, after which increasing
MPI processes starts to increase computational time again. This
is expected as the total gridsize is fixed, and the point at which
increasing the number of MPI processes stops decreasing runtime

Table 1
A strong scaling test, using the one-dimensional system of symmetric hyperbolic
PDEs described in [8], with: 12801 equi-distant spatial gridpoints between
z = −1 and z = +1, spatial stepsize ∆z, CFL of 0.5, temporal stepsize of
CFL∗∆z, spatial derivatives approximated with a fourth-order finite differencing
operator with the summation-by-parts property [17] and boundary conditions
implemented with the SAT method [14]. The simulations were run on New
Zealand eScience Infrastructure’s Mahuika cluster which has 8,136 cores in 226
×Broadwell (E5-2695v4, 2.1 GHz, dual socket 18 cores per socket) compute
nodes.
# of processes 1 2 4 8 16 32 64 128

Runtime (s) 256.6 190.4 117.7 71.9 61.3 54.5 54.8 58.4

will increase with an increased total gridsize. For a sufficiently
large number of MPI processes, communication between each
subgrid has increased to a point where the communication itself
is now the bottleneck.

User interaction with MPI in COFFEE is minimal, only a few
lines of Python code are needed in the setup file, detailing: the
dimension of the grid, the periodicity (if any), and the topology
(e.g. Cartesian). A few more lines communicating data between
processes in the system file may also be needed, e.g. for spatial
derivative approximations. Examples of how to do the above are
given in COFFEE’s repository, see Code metadata table.

Further, COFFEE contains an implementation of spin-weighted
spherical harmonics using the optimized transform algorithm
of [18]. Current research involving COFFEE involves a modified
version of [18] which is optimized for axi-symmetry. This code
is not released in this version of COFFEE but will be included
after sufficient testing has been completed. This specialized spin-
weighted spherical harmonic code was used in [10,21].

The COFFEE package is extremely versatile as it presupposes
very little about the system that the user inputs. Thus if a process
can be modelled over time by a differential equation or a system
of differential equations then it can be numerically evolved in
COFFEE. Of course whether or not a numerical solution can be
found will depend on the specifics of the system of equations and
the chosen numerical methods.

5. Conclusions

COFFEE is a user-friendly Python package for the numerical
evolution of (a system of) ODEs and PDEs. It contains a wide vari-
ety of numerical algorithms for marching in time, approximating
spatial derivatives and stably imposing boundary conditions as
well as being MPI-parallelized by the splitting of the compu-
tational domain. It has been rigorously tested during multiple
research projects and has functionality through the actions class
for performing user-defined tasks during the evolution. COFFEE is
ideally suited to users that hold user-friendliness above absolute
speed and want flexibility to taylor the code to their particular
problem.
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