3,412 research outputs found

    Fuzzy control turns 50: 10 years later

    Full text link
    In 2015, we celebrate the 50th anniversary of Fuzzy Sets, ten years after the main milestones regarding its applications in fuzzy control in their 40th birthday were reviewed in FSS, see [1]. Ten years is at the same time a long period and short time thinking to the inner dynamics of research. This paper, presented for these 50 years of Fuzzy Sets is taking into account both thoughts. A first part presents a quick recap of the history of fuzzy control: from model-free design, based on human reasoning to quasi-LPV (Linear Parameter Varying) model-based control design via some milestones, and key applications. The second part shows where we arrived and what the improvements are since the milestone of the first 40 years. A last part is devoted to discussion and possible future research topics.Guerra, T.; Sala, A.; Tanaka, K. (2015). Fuzzy control turns 50: 10 years later. Fuzzy Sets and Systems. 281:162-182. doi:10.1016/j.fss.2015.05.005S16218228

    Contributions to fuzzy polynomial techniques for stability analysis and control

    Full text link
    The present thesis employs fuzzy-polynomial control techniques in order to improve the stability analysis and control of nonlinear systems. Initially, it reviews the more extended techniques in the field of Takagi-Sugeno fuzzy systems, such as the more relevant results about polynomial and fuzzy polynomial systems. The basic framework uses fuzzy polynomial models by Taylor series and sum-of-squares techniques (semidefinite programming) in order to obtain stability guarantees. The contributions of the thesis are: ¿ Improved domain of attraction estimation of nonlinear systems for both continuous-time and discrete-time cases. An iterative methodology based on invariant-set results is presented for obtaining polynomial boundaries of such domain of attraction. ¿ Extension of the above problem to the case with bounded persistent disturbances acting. Different characterizations of inescapable sets with polynomial boundaries are determined. ¿ State estimation: extension of the previous results in literature to the case of fuzzy observers with polynomial gains, guaranteeing stability of the estimation error and inescapability in a subset of the zone where the model is valid. ¿ Proposal of a polynomial Lyapunov function with discrete delay in order to improve some polynomial control designs from literature. Preliminary extension to the fuzzy polynomial case. Last chapters present a preliminary experimental work in order to check and validate the theoretical results on real platforms in the future.Pitarch Pérez, JL. (2013). Contributions to fuzzy polynomial techniques for stability analysis and control [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34773TESI

    A Polynomial Membership Function Approach for Stability Analysis of Fuzzy Systems

    Get PDF

    Control synthesis for polynomial discrete-time systems under input constraints via delayed-state Lyapunov functions

    Full text link
    This paper presents a discrete-time control design methodology for input-saturating systems using a Lyapunov function with dependence on present and past states. The approach is used to bypass the usual difficulty with full polynomial Lyapunov functions of expressing the problem in a convex way. Also polynomial controllers are allowed to depend on both present and past states. Furthermore, by considering saturation limits on the control action, the information about the relationship between the present and past states is introduced via Positivstellensatz multipliers. Sum-of-squares techniques and available semi-definite programming (SDP) software are used in order to find the controller.The research work by J.L. Pitarch and A. Sala has been partially supported by the Spanish government under research project [grant number DPI2011-27845-C02-01 (MINECO)]; Generalitat Valenciana [grant number PROMETEOII/2013/004]. The work by T.M. Guerra and J. Lauber has been supported by the International Campus on Safety and Intermodality in Transportation, the European Community, Delegation Regionale a la Recherche et a la Technologie, Ministere de l'Enseignement superieur et de la Recherche, Region Nord Pas de Calais and the Centre National de la Recherche Scientifique.Pitarch Pérez, JL.; Sala Piqueras, A.; Lauber, J.; Guerra, TM. (2016). Control synthesis for polynomial discrete-time systems under input constraints via delayed-state Lyapunov functions. International Journal of Systems Science. 47(5):1176-1184. https://doi.org/10.1080/00207721.2014.915357S1176118447

    ROBUST STATE FEEDBACK CONTROL OF UNCERTAIN POLYNOMIAL DISCRETE-TIME SYSTEMS: AN INTEGRAL ACTION APPROACH

    Get PDF
    his paper examines the problem of designing a nonlinear state feedback controller for polynomial discrete-time systems with parametric uncertainty. In general, this is a challenging controller design problem due to the fact that the relation between Lyapunov function and the control input is not jointly convex; hence, this problem cannot be solved by a semidenite programming (SDP). In this paper, a novel approach is proposed, where an integral action is incorporated into the controller design to convexify the controller design problem of polynomial discrete-time systems. Based on the sum of squares (SOS) approach, sufficient conditions for the existence of a nonlinear state feedback controller for polynomial discrete-time systems are given in terms of solvability of polynomial matrix inequalities, which can be solved by the recently developed SOS solver. Numerical examples are provided to demonstrate the validity of this integral action approach

    A CENTER MANIFOLD THEORY-BASED APPROACH TO THE STABILITY ANALYSIS OF STATE FEEDBACK TAKAGI-SUGENO-KANG FUZZY CONTROL SYSTEMS

    Get PDF
    The aim of this paper is to propose a stability analysis approach based on the application of the center manifold theory and applied to state feedback Takagi-Sugeno-Kang fuzzy control systems. The approach is built upon a similar approach developed for Mamdani fuzzy controllers. It starts with a linearized mathematical model of the process that is accepted to belong to the family of single input second-order nonlinear systems which are linear with respect to the control signal. In addition, smooth right-hand terms of the state-space equations that model the processes are assumed. The paper includes the validation of the approach by application to stable state feedback Takagi-Sugeno-Kang fuzzy control system for the position control of an electro-hydraulic servo-system

    Distributed Saturated Control for a Class of Semilinear PDE Systems: A SOS Approach

    Get PDF
    Producción CientíficaThis paper presents a systematic approach to deal with the saturated control of a class of distributed parameter systems which can be modeled by first-order hyperbolic partial differential equations (PDE). The approach extends (also improves over) the existing fuzzy Takagi-Sugeno (TS) state feedback designs for such systems by applying the concepts of the polynomial sum-of-squares (SOS) techniques. Firstly, a fuzzy-polynomial model via Taylor series is used to model the semilinear hyperbolic PDE system. Secondly, the closed-loop exponential stability of the fuzzy-PDE system is studied through the Lyapunov theory. This allows to derive a design methodology in which a more complex fuzzy state-feedback control is designed in terms of a set of SOS constraints, able to be numerically computed via semidefinite programming. Finally, the proposed approach is tested in simulation with the standard example of a nonisothermal plug-flow reactor (PFR).The research leading to these results has received funding from the European Union and from the Spanish Government (MINECO/FEDER DPI2015-70975-P)
    corecore