1,892 research outputs found

    ADAPTS: An Intelligent Sustainable Conceptual Framework for Engineering Projects

    Get PDF
    This paper presents a conceptual framework for the optimization of environmental sustainability in engineering projects, both for products and industrial facilities or processes. The main objective of this work is to propose a conceptual framework to help researchers to approach optimization under the criteria of sustainability of engineering projects, making use of current Machine Learning techniques. For the development of this conceptual framework, a bibliographic search has been carried out on the Web of Science. From the selected documents and through a hermeneutic procedure the texts have been analyzed and the conceptual framework has been carried out. A graphic representation pyramid shape is shown to clearly define the variables of the proposed conceptual framework and their relationships. The conceptual framework consists of 5 dimensions; its acronym is ADAPTS. In the base are: (1) the Application to which it is intended, (2) the available DAta, (3) the APproach under which it is operated, and (4) the machine learning Tool used. At the top of the pyramid, (5) the necessary Sensing. A study case is proposed to show its applicability. This work is part of a broader line of research, in terms of optimization under sustainability criteria.Telefónica Chair “Intelligence in Networks” of the University of Seville (Spain

    Statistical data mining algorithms for optimising analysis of spectroscopic data from on-line NIR mill systems

    Get PDF
    Justin Sexton investigated techniques to identify atypical sugarcane from spectral data. He found that identifying atypical samples could help remove bias in estimates of CCS. His results can be used to track occurrences of atypical cane or improve quality estimates providing benefits at various stages along the industry value chain

    Comparison of Classical Computer Vision vs. Convolutional Neural Networks for Weed Mapping in Aerial Images

    Get PDF
    In this paper, we present a comparison between convolutional neural networks and classicalcomputer vision approaches, for the specific precision agriculture problem of weed mapping on sugarcane fields aerial images. A systematic literature review was conducted to find which computer vision methods are being used on this specific problem. The most cited methods were implemented, as well as four models of convolutional neural networks. All implemented approaches were tested using the same dataset, and their results were quantitatively and qualitatively analyzed. The obtained results were compared to a human expert made ground truth, for validation. The results indicate that the convolutional neural networks present better precision and generalize better than the classical model

    Developing a diagnostic heuristic for integrated sugarcane supply and processing systems.

    Get PDF
    Doctoral Degrees. University of KwaZulu-Natal, Pietermaritzburg.Innovation is a valuable asset that gives supply chains a competitive edge. Moreover, the adoption of innovative research recommendations in agricultural value chains and integrated sugarcane supply and processing systems (ISSPS) in particular has been relatively slow when compared with other industries such as electronics and automotive. The slow adoption is attributed to the complex, multidimensional nature of ISSPS and the perceived lack of a holistic approach when dealing with certain issues. Most of the interventions into ISSPS often view the system as characterised by tame problems hence, the widespread application of traditional operations research approaches. Integrated sugarcane supply and processing systems are, nonetheless, also characterised by wicked problems. Interventions into such contexts should therefore, embrace tame and/or wicked issues. Systemic approaches are important and have in the past identified several system-scale opportunities within ISSPS. Such interventions are multidisciplinary and employ a range of methodologies spanning across paradigms. The large number of methodologies available, however, makes choosing the right method or a combination thereof difficult. In this context, a novel overarching diagnostic heuristic for ISSPS was developed in this research. The heuristic will be used todiagnose relatively small, but pertinent ISSPS constraints and opportunities. The heuristic includes a causal model that determines and ranks linkages between the many domains that govern integrated agricultural supply and processing systems (IASPS) viz. biophysical, collaboration, culture, economics, environment, future strategy, information sharing, political forces, and structures. Furthermore, a diagnostic toolkit based on the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was developed. The toolkit comprises a diagnostic criteria and a suite of systemic tools. The toolkit, in addition, determines thesuitability of each tool to diagnose any of the IASPS domains. Overall, the diagnostic criteria include accessibility, interactiveness, transparency, iterativeness, feedback, cause-and-effect logic, and time delays. The tools considered for the toolkit were current reality trees, fuzzy cognitive maps (FCMs), network analysis approaches, rich pictures (RP), stock and flow diagrams, cause and effect diagrams (CEDs), and causal loop diagrams (CLDs). Results from the causal model indicate that collaboration, structure and information sharing had a high direct leverage over the other domains as these were associated with a larger number of linkages. Collaboration and structure further provided dynamic leverage as these were also part of feedback loops. Political forces and the culture domain in contrast, provided lowleverage as these domains were only directly linked to collaboration. It was further revealed that each tool provides a different facet to complexity hence, the need for methodological pluralism. All the tools except RP could be applied, to a certain extent, across both appreciation and analysis criteria. Rich pictures do not have causal analysis capabilities viz. cause-and-effect logic, time delays and feedback. Stock and flow diagrams and CLDs conversely, met all criteria. All the diagnostic tools in the toolkit could be used across all the system domains except for FCMs. Fuzzy cognitive maps are explicitly subjective and their contribution lies outside the objective world. Caution should therefore be practiced when FCMs areapplied within the biophysical domain. The heuristic is only an aid to decision making. The decision to select a tool or a combination thereof remains with the user(s). Even though the heuristic was demonstrated at Mhlume sugarcane milling area, it is recommended that other areas be considered for future research. The heuristic itself should continuously be updated with criteria, tools and other domain dimensions

    An Advanced Control Strategy for the Evaporation Section of An Integrated First- and Second-Generation Ethanol Sugarcane Biorefinery

    Get PDF
    The sugarcane crushing stage is one of the most important technologies being developed at the moment. In this paper, the control of the multiple-stage evaporation system was addressed, as it is a crucial stage in the first- and second-generation ethanol production from sugarcane. A neural network model was proposed based on a dynamic phenomenological model developed in EMSO (Environment for Modeling, Simulation and Optimization). The phenomenological model was used to build a neural network prediction model for an MPC (Model Predictive Control) scheme using a DMC (Dynamic Matrix Control) algorithm. Simulations were carried out to evaluate the performance for tracking the set-point. Also, disturbance rejection tests were performed, considering different step disturbances. The analysis demonstrated that the MPC scheme performed well in the tests and showed superiority when compared to classical PID controllers. This work is licensed under a Creative Commons Attribution 4.0 International License

    Comparing Linear Discriminant Analysis with Classification Trees Using Forest Landowner Survey Data as a Case Study with Considerations for Optimal Biorefinery Siting

    Get PDF
    Bioenergy is reemerging as an important topic in energy‐related research. The rapid increase in costs of petroleum products has led to a renewed interest in alternative sources of energy such as biofuels. World‐wide energy consumption has increased 17 times in the last century and the demand for energy in emerging markets such as China and India is projected to increase in the future at unprecedented rates. A review of the current bioenergy literature is presented in this thesis. Also, comments on the economics of bioethanol are discussed. The primary part of the thesis focuses on statistical classification methods related to factors that influence landowner attitudes towards harvesting timber. A comparison of linear discriminant analysis (LDA) and classification tree (CT) methods is presented using the results of a forest landowner survey as a case study. Several CT techniques are discussed with an emphasis on the CRUISE classification tree program. The LDA procedure in SPSS is used to construct linear discriminant functions of the survey results. CRUISE is also used to construct classification trees of the survey results. Survey results showed that 73.3 percent of farmer forest landowners harvested timber, and 69.6 percent of non‐farmers who had a length of residency beyond 36.5 years harvested timber. For landowners who conducted commercial timber harvests, the importance level of income from the harvest was the overriding factor relative to all other factors. Discriminant analysis results supported the results of CTs. However, the linear discrimination functions and corresponding coefficients did not provide the level of two‐dimensional detail of CTs, which also detected hidden interactions

    Identifying the factors that determine ecosystem services provision in Pampean agroecosystems (Argentina) using a data-mining approach

    Get PDF
    Ecosystem services (ES) have become a key concept in the assessment of natural resources, as a way to connect human well-being and ecosystems degradation. However, ES quantification is considered a basic problem because provision varies considerably as a result of land use change and site-specific characteristics (i.e. climate, soil, topography, and time). Thus, more detailed studies are needed to assess whether these changes affect ecological variables. We explored the use of environmental and crop management variables in predicting the provision of four ES (soil C balance, soil N balance, N2O emission control and groundwater contamination control) in three agroecosystems located in the Pampa region (Argentina). Data-mining, represented by k-means cluster and classification trees, was used to identify the dependence of ES provision on the variation of both environmental and crop management factors. We used plot level crop management and environmental field information stored in a large database during a 10-year period. The k-means method selected five different clusters. The final configuration showed two contrasting clusters: one with the lowest ES provision, and another one with the highest ES provision. The five clusters were represented in the terminal nodes of the final classification tree. Regarding the predictive power of the variables, crop and year were the most important predictors. Then, differences observed in ES provision resulted from changes in land use (variable “crop”) and crop season (variable “year”). These results are meant to enlighten stakeholders in terms of how to manage Pampean agroecosystems in order to positively influence ES provision.Fil: Rositano, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Cerealicultura; ArgentinaFil: Bert, Federico Esteban. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Cerealicultura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Piñeiro, Gervasio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Recursos Naturales y Ambiente. Cátedra de Ecología; ArgentinaFil: Ferraro, Diego Omar. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Cerealicultura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentin

    Assessment of E-Senses Performance through Machine Learning Models for Colombian Herbal Teas Classification

    Get PDF
    This paper describes different E-Senses systems, such as Electronic Nose, Electronic Tongue, and Electronic Eyes, which were used to build several machine learning models and assess their performance in classifying a variety of Colombian herbal tea brands such as Albahaca, Frutos Verdes, Jaibel, Toronjil, and Toute. To do this, a set of Colombian herbal tea samples were previously acquired from the instruments and processed through multivariate data analysis techniques (principal component analysis and linear discriminant analysis) to feed the support vector machine, K-nearest neighbors, decision trees, naive Bayes, and random forests algorithms. The results of the E-Senses were validated using HS-SPME-GC-MS analysis. The best machine learning models from the different classification methods reached a 100% success rate in classifying the samples. The proposal of this study was to enhance the classification of Colombian herbal teas using three sensory perception systems. This was achieved by consolidating the data obtained from the collected samples
    corecore