
E. Y. Emori et al., An Advanced Control Strategy for the Evaporation Section…, Chem. Biochem. Eng. Q., 37 (1) 17–32 (2023)	 17

An Advanced Control Strategy for the Evaporation Section  
of An Integrated First- and Second-Generation  
Ethanol Sugarcane Biorefinery

E. Y. Emori, M. A. S. S. Ravagnani, and C. B. B. Costa*

Chemical Engineering Department,  
Universidade Estadual de Maringá,  
Av. Colombo, 5790 Bloco D90, CEP 87020-290,  
Maringá, PR, Brazil

The sugarcane crushing stage is one of the most important technologies being devel-
oped at the moment. In this paper, the control of the multiple-stage evaporation system 
was addressed, as it is a crucial stage in the first- and second-generation ethanol produc-
tion from sugarcane. A neural network model was proposed based on a dynamic phenom-
enological model developed in EMSO (Environment for Modeling, Simulation and Op-
timization). The phenomenological model was used to build a neural network prediction 
model for an MPC (Model Predictive Control) scheme using a DMC (Dynamic Matrix 
Control) algorithm. Simulations were carried out to evaluate the performance for track-
ing the set-point. Also, disturbance rejection tests were performed, considering different 
step disturbances. The analysis demonstrated that the MPC scheme performed well in the 
tests and showed superiority when compared to classical PID controllers.
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Introduction

Sugarcane processing is one of Brazil’s most 
significant economic operations. It has enabled the 
country to become the world’s second-largest man-
ufacturer of bioethanol, accounting for about 27 % 
of global output. Ethanol production from sugar-
cane in Brazil is one of the most competitive sectors 
of the national and world economy, with 422 sugar-
cane factories operating all around the country1,2. 
Within the 2020/2021 harvest season, over 657.4 
Mt of cane were used as feedstock, producing more 
than 41.5 Mt of sugar and 32.5 Mm³ of ethanol3. A 
large byproduct of alcohol production is bagasse, 
which is burned to produce steam in boilers. This 
steam is then used as a utility in different sectors of 
the plant. Second-generation ethanol production 
from bagasse has an inexpensive raw material and 
is an environmentally friendly alternative to rising 
ethanol production4. However, in comparison to 
first-generation substrates1, lignocellulosic materi-
als are more difficult to be processed because of 
their heterogeneous composition and sophisticated 
structure. Since the three components of lignocellu-
lose (cellulose, hemicellulose, and lignin) are so 

closely linked, pretreatment and enzymatic hydroly-
sis are required prior to fermentation to enable the 
sugars contained in the cellulose and hemicellulose 
compounds to be released4,5.

The production process of bioethanol consists 
of two main parts in general: the first- and sec-
ond-generation processes. In the first-generation 
process, sugarcane juice is extracted in mills, 
pre-treated, clarified, concentrated in evaporators, 
and then fermented and distilled. In second-genera-
tion ethanol production, sugarcane bagasse is used 
as feedstock. This biomass passes through pre-treat-
ment and hydrolysis processes that transform the 
cellulose fraction of biomass into a hexose syrup. 
This syrup is then fermented and distilled to obtain 
ethanol6. From both production processes, evapora-
tion is one of the most energy-consuming stages. 
Due to the high latent heat, evaporation of water 
consumes a huge amount of thermal energy and 
fuel, which results in high operating costs and envi-
ronmental problems7.

For the development of biofuels, lignocellulos-
ic biomass provides the most accessible, car-
bon-neutral alternative resource. It is the most ap-
propriate carbon-based feedstock due to its 
abundance and renewable nature. Also, the produc-
tion of lignocellulosic products is possible without 
increasing the cultivation area, therefore there is no 
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overlap with the food industry. Processing lignocel-
lulosic biomass is environmentally friendly since it 
ensures that most components are processed into 
valuable products8. Bioethanol made from lignocel-
lulose is regarded as a viable alternative to fossil 
fuels, and its market is expected to grow as a result 
of its widespread use as a fuel additive. Another ad-
vantage of using bagasse as feedstock for bioetha-
nol production in sugarcane industries is its ready 
availability at the plant site. Also, second-genera-
tion bioethanol production may share part of the in-
frastructure where first-generation ethanol produc-
tion takes place (for instance, concentration, 
fermentation, distillation, storage, and cogeneration 
facilities)4,5. In addition, potential fermentation in-
hibitors generated during the pretreatment of the 
lignocellulosic material might have a weakened im-
pact on fermentation yields, since a dilution of those 
inhibitors occurs when the hydrolyzed liquor is 
mixed with sugarcane juice and fermented simulta-
neously6.

In dairy, sugar, medicine, and a variety of other 
sectors, the multiple-stage evaporator (MSE) is 
commonly used. Controlling an MSE effectively re-
sults in higher product quality and lower energy 
costs. The purpose of the evaporation process is to 
ensure that the product brix quality is maintained. 
Unwanted characteristics, such as time delays, pow-
erful disturbances, and coupling effects, on the oth-
er hand, add uncertainty and make control challeng-
ing9. Despite the complexity and non-linear 
dynamic of the process, it is quite common to find 
only PID control on industrial applications of such 
a piece of equipment. Classical PID usage is ex-
plained by its well-structured theory, simple imple-
mentation and tuning, and high versatility to deal 
with wide types of process variables. Despite its 
high versatility, PID control alone may have some 
inefficient aspects, such as unsuitability for nonlin-
ear behavior and a lack of predictive actions to dis-
turbance effects in regulatory control once its con-
trol algorithm is based only on the controlled 
variable error10.

Many authors have reported different control 
strategies applied to sugarcane juice multiple-stage 
evaporators, using simulation as a testing tool. As it 
is a very versatile problem, diverse approaches are 
found in the literature. Adams et al.11 enhanced the 
poor control structure commonly used in the sugar-
cane industry by developing a feedforward scheme. 
That paper focused on problems presented by a 
double-stage evaporator caused by brix and level 
disturbances. Pérez et al.12 studied a five-stage 
evaporator of a sugarcane operating plant and pro-
posed a mathematical model of that system and its 
control scheme with PID controllers, but a high sta-
bilization time was observed due to the high dead 

time of the evaporator stages. Ahammad et al.13 re-
ported different applications of fuzzy controllers in 
multiple-stage evaporators of a sugarcane plant. 
Merino et al.14 implemented Real-Time Optimiza-
tion (RTO) in a sugar cane industry evaporator. In 
order to find optimal operating conditions, the algo-
rithm uses data validation, reconciliation, and opti-
mization.

From the many different schemes found in the 
literature, Model Predictive Control (MPC) stands 
out in the control of multiple-stage evaporation sys-
tems. Because of its capacity to manage restrictions, 
range control, and plants with complicated behav-
ior, MPC technology is presented as a typical solu-
tion for industrial multivariable systems, mainly 
when constraint fulfillment and control performance 
optimization are required. Its implementation is 
based on a representative process model-based solu-
tion to an open-loop finite-horizon control issue. 
From this model, the controller estimates a sequence 
of control actions for each sample instant, guiding 
the process toward its optimal path. MPC has the 
advantage of being able to improve operational per-
formance by reducing system unpredictability. It 
has the ability to maximize high-value product re-
covery, enhance plant capacity while operating un-
der restrictions, and reduce energy usage15,16. Smith 
et al.17 modeled a five-stage evaporator of a sugar-
cane factory, and the model was used as an internal 
model for a model predictive controller17. Benne et 
al.18 applied advanced control in a five-stage evapo-
rator. The method used an MPC scheme with a 
black-box neural network as a prediction model. Ip-
anaque et al.19 studied the modeling, simulation, 
and nonlinear control of a double-stage evaporator 
of a sugarcane bioethanol plant. Nonlinear General-
ized Predictive Control (GPC) was used to control 
the juice concentration at the output of the last 
evaporator stage. Acebes et al.20 focused on plant-
wide control with a three-stage evaporator as its key 
central system using a dynamic nonlinear MPC sup-
ported by PID controllers, along with an algorithm 
that calculated the dynamic scheduling of the pro-
duction process. Mazaeda et al.21 also applied MPC 
in plant-wide control of a sugar factory, working 
with the last three stages of the evaporation system.

As noted, there are many different applications 
of MPC in the control of multiple-stage evaporation 
systems. Although many of them are concerned 
with the sugarcane industry, there is no study relat-
ed to integrated first- and second-generation ethanol 
production. This integration changes the process 
and adds distinct features that can be an obstacle to 
the proper operation and the success of the control 
system. The addition of a glucose syrup flow rate 
changes the juice composition and is a source of 
disturbance, due to variations in units that promote 



E. Y. Emori et al., An Advanced Control Strategy for the Evaporation Section…, Chem. Biochem. Eng. Q., 37 (1) 17–32 (2023)	 19

the processing of the lignocellulosic material 
(pre-treatment, enzymatic hydrolysis, filtering, etc.). 
Also, syrup flow interruptions may be necessary 
due to operational issues. Furthermore, the effective 
control of evaporators in the integrated biorefinery 
becomes very important because a significant part 
of what was previously available fuel for steam 
generation (bagasse) is being used as raw material 
for second-generation ethanol, so that the use of 
steam cannot be indiscriminate. Therefore, the con-
trol scheme and configuration for such a process is 
an interesting subject of study.

When using MPC, the model that is utilized for 
the prediction can be obtained in a variety of meth-
ods. While some prefer to specify the model in ad-
vance, it is frequently more feasible to do system 
identification and fit a model based on observed 
input-output behavior. Nonlinear MPC techniques 
often use black-box models to predict the system 
behavior due to its cheaper computational cost22. 
The usage of black-box models for MPC is advan-
tageous nowadays with the progress of computa-
tional processing. Since they do not require a 
knowledge of system physics, black-box models are 
relatively simple to set up. In order to train these 
models, a comprehensive collection of system in-
put-output data under reasonable working condi-
tions is necessary. As a result, the ease with which 
inverse models can be developed comes at the ex-
pense of reduced generalization capability when 
compared to phenomenological models. Of all non-
linear black-box modeling techniques available, Ar-
tificial Neural Network (ANN) is the most common 
modeling method due to its high reliability in mod-
eling nonlinear systems as compared to other meth-
ods. ANN uses multiple layers of neurons to repli-
cate the human brain. In most cases, supervised 
learning techniques are used to train the weights of 
these neurons. An ANN that has been properly 
trained can accurately approximate any nonlinear 
operation23. One of the most common neural net-
works is the backpropagation neural network 
(BPNN). It has three layers and is a standard multi-
layer perceptron (MLP). It has been widely used in 
numerous fields due to its high nonlinear processing 
capability23,24. In this context, a black-box model is 
suitable to represent a multiple-stage evaporator 
model due to its nonlinear dynamics. One of the 
most successful MPC methods and widely used in 
the industry is the Dynamic Matrix Control (DMC) 
algorithm. This method uses a model step response, 
which is set for a particular operating point in the 
system. The control signals are defined by the min-
imization of an objective function that contains the 
predicted data, and the model of the process is used 
to predict future outputs throughout a prediction 
horizon. In practice, the DMC algorithm provides 

better control quality (e.g., smaller overshoots or a 
lower settling time) than traditional PI or PID con-
trollers, particularly for plants with large time de-
lays25.

Most works presented previously used com-
mercial simulators. Contrary to the previous pieces 
of software employed in the works mentioned here, 
EMSO is a piece of software with an uncharged li-
cense for academic research and educational activi-
ties. Also, it has the advantage that all built software 
models are available for inspection and extension 
by any user, making it extremely versatile for scien-
tific use. It has a graphical interface for modeling 
techniques based on block diagrams, as well as a 
modeling language with object-oriented features, 
which enables the hierarchical inclusion of parame-
ters, variables, and equations to enhance model 
complexity. It also has a broad range of applica-
tions, including steady and dynamic simulations, 
parameter estimation, data reconciliation, sensitivi-
ty analysis, and optimization. Developers also im-
plemented plugins that make possible the communi-
cation between EMSO and other software, e.g., 
thermodynamic databases26.

In the present paper, an MPC scheme is pro-
posed and implemented in a four-stage evaporator 
used in a sugarcane biorefinery that integrates the 
production of first- and second-generation ethanol. 
It is based on a feedforward neural network model 
of the system. The aim was to control sugar concen-
tration at the outlet of the system. A phenomenolog-
ical nonlinear dynamic model implemented in 
EMSO coupled with VRTherm, a thermodynamic 
plugin, represented the plant and provided the sim-
ulations to test the control system. Disturbances 
were applied on sugarcane juice temperature, juice 
volumetric flow rate, and juice sugar concentration 
simultaneously in pairs, and on the glucose syrup 
volumetric flow rate. The set-point was also changed 
for a servo performance test. These disturbances 
were applied to evaluate the control system perfor-
mance in different situations, such as disturbance 
rejection and set-point tracking.

Methods

Phenomenological model for the multiple-stage 
evaporation system

A schematic representation of the evaporation 
system is presented in Fig. 1. The system model is 
a set of phenomenological equations of a quadru-
ple-stage evaporator system. The layout is based on 
the infrastructure already established in many 
first-generation sugarcane ethanol plants in Brazil, 
with the usage of co-current four-stage evaporators. 
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Each stage has steam and juice inlets, and liquid 
(concentrated juice) and steam (vegetal steam) out-
lets. Initially, clarified juice (Juice in Fig. 1), which 
represents juice after the stage of sugarcane milling 
and juice clarification, is split into two parts. One of 
these branches is mixed with the hexose syrup (Syr-
up) generated with the hydrolysis of the cellulose 
present in the sugarcane bagasse. The mixed juice is 
then used as a feed stream to the evaporators. The 
other branch (Bypass) is mixed with the concentrat-
ed juice outlet of the fourth evaporator (Liquid out-
let) and sent to a buffer tank, which, in its turn, is 
responsible for providing the stream that feeds the 
fermentation system. Further detailed information 
about the model can be found in Emori et al.27

A stream of saturated steam at 405 K and 2.37 
atm was used to feed the evaporator system. At 373 
K and 2.3 atm, the clarified juice stream contained 
a 15-weight percent sucrose mixture in water. From 
the total of 650 m3 h–1, 350 m3 h–1 were bypassed. 
The evaporator feed stream was made by combin-
ing the not-bypassed stream with glucose syrup, 
which was then fed to the first stage of evaporation 
and concentrated to around 50 Brix degrees in the 
set of evaporators. After that, the bypassed juice 
stream was combined with the concentrated juice 
(Liquid outlet) to obtain the appropriate concentra-
tion for the fermentative process, 24.0 Brix degrees.

Based on one of the hypotheses of the study of 
Furlan et al.28, the glucose syrup stream is taken to 
be a mixture of only water and glucose (10 wt%) at 
the same temperature and pressure of the clarified 
juice stream. The considered second-generation eth-
anol production process makes use of the Organo-
solv pretreatment process. After the pretreatment of 
bagasse, a filter separates the solid cellulose-rich 
stream from the liquid stream, which contains the 
hydrolyzed hemicellulose and solubilized lignin. 
The solid fraction is washed with NaOH aqueous 
solution to remove, in a second filter, the remaining 
lignin that eventually may be entrapped in the sol-
ids. Just after that, the cellulose fraction is hydro-

lyzed with specific enzymes to produce the glucose 
(hexose) syrup. Therefore, there are no other sugars 
in the glucose syrup sent to the evaporators.

Neural Network

In comparison with a phenomenological model, 
a black-box model acts as a faster substitute since it 
does not require solving a system of multiple differ-
ential-algebraic equations. Therefore, in order to 
obtain an internal model for the MPC, a feedfor-
ward artificial neural network with one input layer, 
one output layer, and one hidden layer was chosen 
to approximate the dynamic phenomenological 
model to a black-box model. The objective was to 
use the neural network to predict the second mixer 
(M2 in Fig. 1) outlet (Concentrated Juice) concen-
tration response to disturbances in the feed juice 
(Juice) properties and glucose syrup (Syrup).The 
network was developed using the Scilab ATOMS 
open-source module named “Neural Network Mod-
ule”29.

The selected activation functions for the hidden 
layer and the output layer were tan-sigmoid and lin-
ear, respectively. The network architecture, illustrat-
ed in Fig. 2, was selected because this is the stan-
dard network for function approximation30. The 
scheme shows an input layer with u input values 
and hidden and output layers composed of nodes 
with W weights values and b bias values. This neu-
ral network was trained using a backpropagation 
scheme. The optimization routine chosen was the 
gradient descent, and a momentum training function 
was used with mean square error as the objective 
function. To avoid overfitting problems, the training 
algorithm was interrupted as the neural network er-
ror values stagnated.

The neural network training parameters were 
selected by trial and error, analyzing the best re-
sponses of the system. The selected values were a 
learning rate of 0.05, a maximum of 8000 epochs, a 
momentum rate of 0.09, and a performance goal 

F i g .  1  – Schematic representation of the evaporation system
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(minimum error) of 10–7. The hidden layer was 
composed of 21 neurons. The number of neurons 
was selected based on an observable maximum in-
crease in the learning capacity. When stagnation in 
the error reduction with the increase of the number 
of neurons was observed, then its amount was se-
lected.

The output layer was composed of one neuron 
representing the prediction of the second mixer out-
put juice concentration (Concentrated Juice stream 
in Fig. 1). Five variables were selected for the input 
layer based on the main variables that affect the dy-
namics of the output juice concentration: tempera-
ture, volumetric flow rate, and sugar concentration 
of the clarified juice stream (Juice), the first evapo-
rator feed steam temperature, and the glucose syrup 
flow rate. As a model approximation procedure, the 
previous value predicted in the output layer was 
also used as a sixth input for the next prediction, 
generating a cascade effect.

Data generated from simulations of the phe-
nomenological model were used as input informa-
tion to the neural network. The training data was 
obtained by applying disturbances in the Juice and 
Syrup streams. All other variables were maintained 
unchanged. Therefore, the bypass fraction value 
was fixed, although the bypass stream characteris-
tics changed as disturbances were applied. The sec-
ond mixer outlet concentration was used as the out-
let training variable of the neural network. This data 
was composed of an array of 5750 values for each 
input and output variable. For a better prediction ca-
pacity and compatibility with the MPC model re-
quirements, all values were normalized in order to 
reach similar magnitudes. It is considered that the 
steady-state values were the initial ones. To gener-
ate the training input information, different step dis-
turbances were applied to each input variable simul-
taneously using a sigmoid equation, shown in 
Equation (1).

	
00 1

1
PfX X
eτ τ−

  = +  +  
	 (1)

In this equation, X0 and X are the variable value 
at steady-state and after the disturbance, respective-
ly. Pf is the fraction of variation that the disturbance 
magnitude represents relative to the variable steady-
state value X0. τ0 represents the time in which the 
disturbance occurs (selected to be 600 seconds), 
and τ is the time of the simulation.

The disturbances were applied right after the 
start of the simulation simultaneously in the five in-
put process variables of the neural network: tem-
perature, volumetric flow rate, and sugar concentra-
tion of the clarified juice stream (Juice), the first 
evaporator feed steam temperature, and the glucose 
syrup flow rate. Twenty-three different simulations 
ran in EMSO, each for 12,500 seconds with steps of 
50 seconds, generating a total of 5750 points. An-
other four similar simulations were run and used for 
validation purposes.

Model Predictive Control

An MPC scheme was developed to control the 
second mixer outlet sugar concentration. Since this 
stream is the system outlet, the scheme has the ca-
pacity to control the concentration of the entire sys-
tem. Besides, MPC is effective against large dead 
response times that are present when control devic-
es are inserted in the outlet of a multiple-stage 
evaporator. The manipulated variable was the steam 
flow rate fed to the first evaporator.

The MPC algorithm was also implemented in 
Scilab. It considers parameters that are related to its 
predictive and control capacity. The control horizon 
M defines how many control action steps are calcu-
lated in the prediction. The prediction horizon P de-
fines of how many steps ahead the prediction will 
be made. The sampling instant k is present because 
this algorithm moves through the time at each sam-
pling, developing its predictions based on past out-
puts and control actions, optimizing the future con-
trol action based on how far the predicted future 
output is from the set-point. Fig. 3 shows a sche-
matic representation of an MPC.

F i g .  2  – Schematic representation of the neural network
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A Dynamic Matrix Control (DMC) was select-
ed as the MPC scheme using an artificial neural net-
work model. After the neural network training stage, 
step-response models were simulated in EMSO and 
then introduced into the MPC algorithm in the form 
of Equation (2). The main advantage of this ap-
proach is that step-response models can represent 
stable processes with unusual dynamic behavior 
that cannot be accurately described by simple trans-
fer function models23.

Equation (2) describes the step-response model 
of the second mixer outlet sugar concentration. In 
this equation, for each step k and future predicted 
step j, y(k+j) is the sugar concentration at the k+j 
sampling instant, Δu(k–i+j) is the change in the ma-
nipulated variable from one sampling instant to the 
next, N is the number of S step-response coeffi-
cients (the magnitude of variation of the response to 
a step disturbance at each sampling i), and y0 is the 
initial sugar concentration.

( ) ( ) ( )
1

0
1

N

i N
i

y k j y S u k i j S u k N j
−

=

+ = + ∆ − + + − +∑ 	

The DMC algorithm is based on predictions of 
future outputs on a limited time interval, named 
prediction horizon. These predictions are also based 
on the step-response model and are calculated with 
Equation (3), in which ( )ŷ k j+  represents the sug-
ar concentration predicted value. The s values are 
the step-response coefficients calculated through 
the neural network model in each step k.

  
( ) ( ) ( )

1

1

ˆ
N

i N
i

y k j s u k i j s u k N j
−

=

+ = ∆ − + + − +∑
	

(3)

Equation (3) terms can be expanded and divid-
ed into past and future control actions, as shown by 
Equation (4). The first sum expression denotes the 
effect of future control moves, and the second de-
notes the effect of past control moves. 

 
		  (4) 
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= +
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A bias correction is added to the prediction 
based on the difference between the predicted re-
sponse and the real response (from EMSO step-re-
sponse model). The corrected prediction is obtained 
through Equation (5), in which ( )1y k +  represents 
the sugar concentration corrected prediction value.

	 ( ) ( ) ( ) ( )ˆ ˆ1 1y k y k y k y k+ = + +  −   	 (5)

When substituting Equation (4) into Equation 
(5) and writing it in matrix form, Equation (6) is 
obtained. Sf and Spast are the vector of future and 
past step-model coefficients, respectively, Δuf and 
Δupast are the vectors of future (represented by the f 
subscript) and past control moves (represented by 
the past subscript), respectively, and d is the error 
vector that denotes the difference between the pre-
dicted and the correct model.

	 f f past past N pastY S u S u s u d= ∆ + ∆ + + 	 (6)

 The difference between the past control effect 
and the set-point is denominated unforced error E, 

F i g .  3  – Scheme of an MPC

(2)
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and is given by Equation (7). It represents the dis-
tance between the set-point and the controlled vari-
able if no future control moves are applied. 
	 past past N pastE S u s u d= ∆ + + 	 (7)

The DMC control law is based on the minimi-
zation of the objective function represented by 
Equation (8). P is the prediction horizon, rk+1 is the 
control set-point at each i sampling, w is the control 
weight coefficient that limits the magnitude of the 
control actions, and M is the control horizon.

	 ( ) ( )
1

2 2
1 1 1

1 0

P M

k k k
i i

r y w uϕ
−

+ + +
= =

= − + ∆∑ ∑ 	 (8)

The MPC control law that minimizes this ob-
jective function is obtained from its derivative with 
respect to ∆u. By setting this derivative to zero, 
Equation (9) is obtained. T

fS  is the transpose of the 
vector Sf, and W is the vector of control weight co-
efficients.
	 ( ) 1T

f f f fu S S W S E
−

∆ = + 	 (9)

Control system

The MPC scheme was coupled in a closed-loop 
system based on the work of Emori et al. It consists 
of PI level controllers on all evaporators and PI 
pressure controllers in the second, third, and fourth 
stages to prevent high oscillations in the multi-
ple-stage evaporator response, and to prevent high 
variations in each valve opening input due to the 
system response to disturbances. This type of con-
troller is usually applied for pressure and level con-
trol with the derivative term discarded. Both PI con-
trollers manipulate an outlet valve opening fraction. 
The liquid outlet stream flow rate is used to control 
the level, whereas the vegetal steam outlet flow rate 
is used to control the pressure. More details can be 
found in Emori et al.27

For comparison purposes, tests were made with 
a PID concentration controller using the same con-
trolled (second mixer outlet sugar concentration) 
and manipulated (steam flow rate fed to the first 
evaporator) variables of the MPC scheme.

The controller parameters were based on the 
values used by Emori et al.27 However, the scheme 
was changed by the addition of a PI temperature 
controller in the second stage and, differently from 
Emori et al., the second mixer outlet stream con-
centration was controlled, instead of the fourth stage 
liquid outlet concentration. This approach is more 
general and also takes the bypass stream into ac-
count. Therefore, the system dynamics changed and 
new parameters were calculated for these compo-
nents. The tuning method used was the same as in 
the cited work. The second stage PI temperature 
controller was configured with a proportional gain 

of 7.0 and an integral time of 1.8 min. The PID con-
centration controller was configured with a propor-
tional gain of 0.178, an integral time of 62.9 s, a 
derivative time of 15.2 min, and a set-point of 24.0 
Brix degrees (the same set-point value of the MPC).

Simulation

The simulation was carried out in EMSO pro-
cess simulator using SUNDIALS as a differential 
and algebraic equation solver algorithm. The appli-
cation of step disturbances in the simulation was 
introduced through a sigmoid equation (Equation 
(1)).

With the purpose of calculating the thermody-
namic properties of mixtures and compounds, the 
VRTherm thermodynamic database was used along 
with the EMSO library of properties. This software 
uses empirical correlations and state equations as 
functions of state variables to obtain these proper-
ties. More details can be found in Emori et al.27

Results and discussion

Neural Network Model

Fig. 4 shows the best results of the neural net-
work model with the momentum training function. 
The graph shows the response of the sugar mass 
concentration of the second mixer outlet to distur-
bances in the form of Equation (1). These results 
were obtained after 8000 epochs, reaching mean 
square errors of 2.0·10–5. Adaptive learning meth-
ods were also applied. However, it showed an un-
stable training stage and was discarded. The net-
work presented a mean node weight value of 
0.0012960 and a mean bias value of 0.0079388.

F i g .  4 	–	 Neural network performance in comparison with 
values generated by the phenomenological model
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For validation purposes, the figure shows the 
values generated by the neural network using data 
from four simulations that were not used in the 
training stage. As can be seen, the neural network 
demonstrated an efficient performance, with ade-
quate generalization and capacity to reproduce the 
phenomenological model dynamic behavior.

Set-point tracking

To evaluate changes in the product specifica-
tions, a set-point tracking problem was approached. 
Therefore, a servo problem of a set-point step in-
crease of 3.0 Brix degrees was applied in the con-
centration controller of the second mixer outlet, re-
sulting in a change of sugar mass fraction from 0.24 
to 0.27. The tests were made with different MPC 
parameters, and the best results regarding settling 
time and overshoot value were reached with a con-
trol horizon M of 5, prediction horizon P of 15, and 
a weight factor w of 0.0005.

Fig. 5 presents results for the servo problem, 
i.e., the response of the control system to the change 
in the set-point. Although there is a gap between the 
neural network prediction and the phenomenologi-
cal plant model, the bias correction shown in Equa-
tion (5) mitigated this problem, and the servo prob-
lem was successfully addressed. This difference can 
be explained by the nonlinearity of the multi-
ple-stage evaporator system and the error present in 
the neural network model.

Fig. 5b shows the behavior of the PID and the 
MPC concentration controller to the same set-point 
step change. It can be seen that both achieved the 
new set-point; however, due to the long delay and 
dead-time responses of the evaporator system, the 
classical controller took a longer time to reach the 
set-point value, with a settling time of about 120 
minutes compared to 60 minutes of the MPC. Al-
though the MPC presented a better performance, 
both control schemes were satisfactory in set-point 
tracking changes. The performance can be compa

F i g .  5 	–	 MPC response on the plant model (EMSO model) and prediction model (a), comparison of the MPC and the PID perfor-
mance (b), and manipulated steam flow rate and valve opening behavior (c) to an increase of 3.0 Brix in the set-point
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red qualitatively and timewise quantitatively with 
the work of Razzanelli et al.31 with an application of 
MPC in a four-stage evaporation unit with concen-
tration set-point changes. In that study, the best re-
sults showed settling times ranging from 60 to 90 
minutes.

From the manipulated variable graph, it can be 
observed that, although both schemes reached the 
same set-point, the manipulated variable reached 
different states. The expected MPC faster response 
can be observed as it applies a more intense initial 
response when compared with the PID trajectory.

Disturbance rejection

To demonstrate its effectiveness against distur-
bances, the proposed MPC scheme was tested by 
applying step disturbances in properties of the sug-

arcane juice stream that commonly affect the evap-
orator performance: a step increase in the sucrose 
mass percentage of the clarified juice (Brix degree) 
by 2 points, increasing its concentration from 15 to 
17 °Brix; a step increase in the volumetric flow rate 
of the clarified juice in 10 % of its steady-state val-
ue (650 m³ h–1); and a step raise in the clarified 
juice temperature of 5 K. These disturbances were 
applied simultaneously in pairs, simulating possible 
changes in these variables caused by feedstock and 
operating random variations that are usually present 
in an industrial process. A disturbance was also ap-
plied to the glucose syrup volumetric flow rate, de-
creasing its value by 30 % and 45 %. As in the set-
point tracking tests, a control horizon M of 5, a 
prediction horizon P of 15, and a weight factor w of 
0.0005 showed to be the best MPC parameters for 
disturbance rejection.

F i g .  6 	–	 Responses of MPC and PID controlled evaporators on the second mixer to simultaneous step disturbances in juice sugar 
concentration and temperature (a), juice volumetric flow rate and temperature (b), and juice sugar concentration and volumetric flow 
rate (c)
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The MPC response to the disturbances in the 
sugarcane juice stream is presented in Fig. 6. The 
graph shows the sugar mass fraction of the outlet of 
the second mixer to simultaneous disturbances on 
the juice concentration and temperature (Fig. 6a), 
juice volumetric flow rate and temperature (Fig. 
6b), and juice concentration and volumetric flow 
rate (Fig. 6c). Also, as a means of comparison, the 
response of the PID concentration controller for the 
same set of disturbances is shown. From the figure, 
although both successfully reached the set-point 
value, it can be seen that the MPC scheme performs 
better than the PID controller regarding the settling 
time. An initial overshoot can be seen in both con-
trol scheme responses, but it is rapidly decreased as 
the control action is applied. This sudden change is 
generated by the bypass parameter values variations 
due to the disturbances. Since the bypass fraction is 
constant and this stream heads directly into the sec-
ond mixer, any variation in the flow rate of the juice 
is driven both to the set of evaporator stages and the 
outlet mixer; furthermore, the sudden change in 
temperature or concentration is also present in the 
bypass stream, leading to an overshoot in the early 
moments after the disturbances are applied. The dif-
ferent behavior, after the early moments, is attribut-
ed, then, to the different control actions generated 
by the PID and MPC controllers. As a consequence, 
these distinctive actions lead to different states and 
control actions in the level and pressure PI control-
lers. It is interesting to observe also that the simul-
taneous volumetric flow rate and temperature dis-
turbances generated the response with the highest 
variation. It can be explained by the fact that, along 
with the concentration disturbance, a flow rate 
change affects the system less as these two distur-
bances present opposite effects on the outlet con-
centration. However, being applied with the tem-
perature disturbance, an increase in the evaporator 
feed flow rate results in a higher decrease in the 
juice concentration.

The behavior of the manipulated steam inlet 
flow rate fed to the first evaporator when distur-
bances in the sugarcane juice stream occurred can 
be seen in Fig. 7. The same scale was used in the 
three graphs of Fig. 7 for comparison purposes. The 
fast settling time provided by the MPC scheme is 
possible due to rapid variations in the feed steam 
valve opening. However, a high variation as the one 
observed in Fig. 7b (which is closely related to the 
fact that this pair of disturbances leads to the high-
est variation in the controlled variable response) 
may cause deterioration in the valve structure. 
Therefore, in the case of strong disturbances, an in-
crease in the control weight coefficient in Equation 
8 may be necessary to adequate the intensity of the 
control action to this disturbance.

The 30 % decrease in the glucose syrup volu-
metric flow rate was well handled by both control 
schemes, as can be seen in Figs. 8a and 8b. The 
MPC performance presented a lower settling time, 
but with a higher variation on the manipulated vari-
able. In the case of a disturbance of higher magni-
tude, more intense variations on steam flow rate are 
necessary, as can be seen in Figs. 8c and 8d. This 
time, a 45 % decrease was applied in the syrup flow 
rate. It is possible to see that the PID is reaching its 
stability limits. However, the MPC was still able to 
bring back the controlled variable to the set-point 
with no trouble. It shows not only faster responses 
but also more robustness than the classical control.

In comparison with the other disturbances, this 
response had a higher settling time for the MPC due 
to the increased magnitude of the step value. For 
this reason, it may be necessary to decrease the val-
ue of the weight factor parameter, although it may 
increase the overshoot value. With a lower weight 
factor, the MPC can apply control actions with the 
necessary higher intensity to handle the magnitude 
of the glucose syrup disturbance. Therefore, it is in-
teresting to input a simple change in the weight fac-
tor parameter when changes of high magnitude in 
the flow rate are necessary. It may occur when a 
problem is detected or deactivation is necessary in 
the glucose syrup production stage. The implemen-
tation of this scheme is simple since it requires only 
a flow rate measurement, which is easily done.

In both feed juice and glucose syrup distur-
bance tests, the manipulated variable presented dif-
ferent behavior for PID control and MPC. With dif-
ferent stationary settling values, it demonstrates that 
the nonlinearity of the multiple-stage evaporation 
system can affect the control performance. Both 
schemes work with the error, i.e., the difference be-
tween the set-point and the controlled variable. 
However, it is clear that the manipulated variable 
trajectory is highly different for both schemes, and 
is the factor that makes the MPC superior to the 
PID.

Table 1 shows the metrics of the MPC and PID 
performances as a means of comparison. These 
metrics are the settling time, mean square error 
(MSE) from the set-point value (measured from the 
sugar mass fraction), and the highest variation value 
in the sugar mass fraction. In general, the MPC per-
formed better, particularly concerning the settling 
time. This fact is expected, since the main feature of 
the MPC is its prediction capacity, leading to a fast-
er response. Also, the MPC performance presented 
better mean square error values. The results in Table 
1 show that, in the disturbance tests for both sugar-
cane juice and glucose syrup flow rates, the MPC 
responses were superior. In comparison with the 
PID, the MPC settling times were 43.0 % faster on 
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average. The table also shows an average reduction 
in mean square error of 63.5 % with the predictive 
controllers. In comparison with the recent literature, 
a study with step-change disturbance tests per-
formed on a four-stage evaporator showed a reduc-
tion of 53.34 % in the mean square error32. Although 

the MPC was applied in a different process, the per-
formances can be compared since the evaporation 
unit is similar and the authors also applied neural 
network MPC control.

Tests were also made by changing the operat-
ing conditions. To simulate possible changes in 

F i g .  7 	–	 Manipulated valve opening and steam inlet flow rate fed to the first effect when simultaneous disturbances in juice sugar 
concentration and temperature (a), juice volumetric flow rate and temperature (b), and juice sugar concentration and volumetric flow 
rate (c) are applied

Ta b l e  1 	–	Control metrics related to the response of MPC and PID controllers to different disturbances. The controlled variable is 
the concentration of the concentrated juice that leaves the system, and the manipulated variable is the flow rate of steam fed to the 
first effect. 

Disturbances
Settling time (min) MSE Absolute Highest 

variation

MPC PID MPC PID MPC PID

Juice concentration and temperature 82 93 4.88·10–6 3.21·10–5 0.009 0.025

Juice flow rate and temperature 132 173 2.61·10–5 8.05·10–5 0.027 0.018

Juice concentration and flow rate 110 349 4.89·10–6 5.61·10–5 0.012 0.022

Glucose syrup flow rate (–30 %) 190 355 5.07·10–5 7.49·10–5 0.031 0.018

Glucose syrup flow rate (–45 %) 183 450 8.46·10–5 1.95·10–4 0.046 0.034
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feedstock intake, a disturbance rejection test was 
applied in a scenario with an initial positive and 
negative change of 30 % in the juice volumetric 
flow rate in comparison with the nominal value of 
650 m³ h–1 used before. The steam initial flow rate 
was also changed accordingly to maintain the mixer 
outlet concentration initially at 24.0 °Brix. A simul-
taneous step increase in concentration and tempera-
ture similar to the one applied in the previous dis-
turbance rejection test was applied with the different 
initial conditions. The main issue with changing 
significantly the juice flow rate is that it changes the 
interaction between the steam flow rate and the 
concentration. Therefore, the neural network must 
be able to generalize these changes accordingly.

Fig. 9a shows the MPC performance within 
these different scenarios. As a means of compari-
son, the MPC response for these disturbances in the 

nominal operating configuration is also displayed. 
The figure shows that the MPC was able to handle 
the disturbances in all situations. As expected, a 
lower juice flow rate presented an initial higher 
overshoot but required less variation in the steam 
usage since the amount of liquid was also lower. 
The opposite occurred with an increased juice flow 
rate. Therefore, this test showed the capability of 
the MPC and the neural network to work in differ-
ent scenarios that would render the classical PID 
inefficient. Fig. 9b depicts the variation in steam 
flow rate (and in the valve opening fraction) caused 
by the disturbances used in each scenario. The ini-
tial response of the system in all cases showed an 
increase in the outlet juice concentration. Conse-
quently, as expected, the MPC applied negative 
steam flow rate variations, to decrease the juice 
concentration and reach the set-point, as can be 
seen in Fig. 9b.

F i g .  8 	–	 Responses of MPC and PID controlled concentration on the second mixer to a step disturbance in the glucose syrup volu-
metric flow rate of –30 % (a) and –45 % (c), and behavior of the manipulated valve opening and steam inlet flow rate fed to the first 
evaporator (b) and (d) for –30 % and –45 %, respectively
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F i g .  9 	–	 Responses of MPC controlled concentration on the second mixer to simultaneous disturbances in juice sugar concentration 
and temperature (a) and behavior of the manipulated valve opening and steam inlet flow rate fed to the first evaporator (b) for differ-
ent values of juice flow rate

F i g .  1 0 	 –	 Responses of two different strategies for controlling the concentration of the output of the second mixer to simultaneous 
step disturbances in juice sugar concentration and temperature (a), juice volumetric flow rate and temperature (b), juice sugar con-
centration, and volumetric flow rate (c), and a 30 % step disturbance in the glucose syrup volumetric flow rate (d). The strategies are 
PID controller manipulating steam flow rate fed to the first effect and the same PID controller coupled to a PI controller manipulat-
ing splitter fraction value.
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Although being able to handle the disturbances, 
this control scheme (i.e., control of the concentra-
tion of the concentrated juice that leaves the system 
by manipulating flow rate of steam fed to the first 
stage) showed limitations regarding disturbances of 
higher magnitude. Fig. 8 shows that the PID con-
troller generated oscillations, suggesting a change 
in the gain value. However, these changes can af-
fect negatively the responses to other disturbances.

The main reason for this limitation is the fact 
that this control scheme affects only one of the two 
inputs to mixer M2. Therefore, changing its concen-
tration will only change the mixer output concentra-
tion to a certain level. One solution to this problem 
could be coupling a second controller that manipu-
lates the fraction of the clarified juice sent to the 
bypass. The main objective of this strategy is to aid 
the first concentration controller in the presence of 
disturbances of higher magnitude. In this context, a 
PI concentration controller was inserted to manipu-
late this fraction, controlling the concentration of 
the second mixer output simultaneously with the 
steam manipulator controller. However, changes in 
the bypass fraction can affect the first controller ac-
tion performance. Therefore, a low gain value of the 
PI concentration controller was set as a means to 
generate significant control action only in a rela-
tively high concentration value deviation from the 
set-point. The tuning method was the same as that 
of the other classical controllers, with a proportion-
al gain of 0.011 and an integral time of 1.3 min.

An improvement can be seen in Fig. 10, which 
shows a comparison between the first control strat-
egy (PID controller manipulating steam flow rate) 
and the second one (PID controller manipulating 
steam flow rate coupled with the PI controller ma-
nipulating splitter fraction to bypass stream). Al-
though slightly increasing the settling time of the 
simultaneous disturbances, this change showed a 
significant impact on the glucose syrup flow rate 
disturbance response, decreasing the oscillation and 
the overshoot. The main advantage of this control 
system is to overcome the magnitude limit of the 
disturbance rejections. Therefore, it can be useful in 
situations where failures are presented by the ligno-
cellulosic material processing or even in the case of 
changes in the operating parameters. Tests were 
also performed with the coupling of the MPC con-
troller to the PI controller manipulating the splitter 
fraction to the bypass stream. However, no signifi-
cant changes were presented. Although not present-
ing significant changes, the MPC performance was 
still superior in comparison with the PID.

Conclusions

In the present paper, a dynamic phenomenolog-
ical model of a quadruple-stage evaporation system 

used in the integrated first- and second-generation 
ethanol production in sugarcane autonomous biore-
fineries was used to train a feedforward artificial 
neural network. The objective was to obtain a black-
box model to use as an internal prediction model for 
an MPC scheme. The non-commercial process sim-
ulator EMSO was used to model, simulate, and gen-
erate transient responses of the evaporation system 
to be used as training and validation data. The neu-
ral network and the MPC scheme were implement-
ed in Scilab to control the outlet juice concentration 
of the evaporation system.

A neural network topology was selected and a 
backpropagation scheme with gradient descent and 
a momentum training function with a mean square 
error as the objective function was used. The trained 
network showed good generalization and efficiency 
to approximate the model dynamics.

In both servo and regulatory problems, the 
MPC implemented in parallel with PI pressure and 
level controllers showed good results as it was able 
to quickly track new set-points and mitigate distur-
bances. The advantage of this scheme, mainly in the 
settling time and robustness, became evident when 
comparing the closed-loop responses to those of a 
classical PID controller in parallel with PI pressure 
and level controllers when applying the same in-
puts. Therefore, the proposed advanced controller 
showed to be more suitable to control this type of 
system. The results also showed that the coupling of 
the PID controller to a PI controller that manipulat-
ed the bypass splitter fraction value enhanced the 
control system flexibility, enabling the rejection of 
disturbances of higher magnitudes, and facilitating 
changes in operating parameters that may be neces-
sary.
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L i s t  o f  s i m b o l s

d	 –	 subscript for the difference between the pre-
dicted and the correct sugar mass fraction

E	 –	 subscript for the difference between the past 
control effect and the set-point

f	 –	 subscript for variables of future steps
i	 –	 counter for each step
j	 –	 counter for each future step
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k	 –	 subscript for the current step
M	 –	 control horizon
N	 –	 total number of steps
r	 –	 sugar mass fraction set-point
s	 –	 neural network calculated step magnitude
S	 –	 step response magnitude
Sf	 –	 vector of future step coefficients
Spast	 – vector of past step coefficients
u	 –	 size of change in the manipulated variable, 

mol h–1

upast	 –	 size of change already applied in the manip-
ulated variable, mol h–1

w	 –	 manipulated variable weight coefficient
W	 –	 vector of manipulated variable weight coeffi-

cient
y	 –	 sugar mass fraction
y0	 –	 initial sugar mass fraction
y 	 –	 corrected sugar mass fraction prediction
ŷ 	 –	 predicted sugar mass fraction
Y 	 –	 vector of corrected sugar mass fraction pre-

diction
φ	 –	 objective function
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