728,488 research outputs found

    High efficiency InGaAs solar cells on Si by InP layer transfer

    Get PDF
    InP/Si substrates were fabricated through wafer bonding and helium-induced exfoliation of InP, and InGaAs solar cells lattice matched to bulk InP were grown on these substrates using metal-organic chemical-vapor deposition. The photovoltaic characteristics of the InGaAs cells fabricated on the wafer-bonded InP/Si substrates were comparable to those synthesized on commercially available epiready InP substrates, thus providing a demonstration of wafer-bonded InP/Si substrates as an alternative to bulk InP substrates for solar cell applications

    Plasmon-free Surface-enhanced Raman Spectroscopy on TiO\u3csub\u3e2\u3c/sub\u3e-graphene Oxide Inverse Opal Substrates

    Get PDF
    TiO2-graphene oxide (GO) inverse opal materials were shown to be active plasmon-free surface-enhanced Raman spectroscopy (SERS) substrates. The SERS activity of the substrates was analyzed using three different probe molecules: phenethylamine (PEA), methylene blue (MB), and 4-mercaptobenzoic acid (4-MBA). The morphology of the substrates was investigated by SEM and AFM. Prepared TiO2-GO inverse opals substrates can be reused up to five times with minimal loss of signal, rendering them perfect candidates to be used as highly stable, low-cost, metal-free, recyclable SERS substrates

    Pulsed PECVD growth of silicon nanowires on various substrates

    Get PDF
    Silicon nanowires with high aspect ratio were grown using PPECVD and a gold catalyst on a variety of different substrates. The morphology of the nanowires was investigated for a range of crystalline silicon, glass, metal, ITO coated and amorphous silicon coated glass substrates. Deposition of the nanowires was carried out in a parallel plate PECVD chamber modified for PPECVD using a 1kHz square wave to modulate the 13.56MHz RF signal. Samples were analyzed using either a Phillips XL20 SEM of a ZEISS 1555 VP FESEM. The average diameter of the nanowires was found to be independent of the substrate used. The silicon nanowires would grow on all of the substrates tested, however the density varied greatly. It was found that nanowires grew with higher density on the ITO coated glass substrates rather than the uncoated glass substrates. Aligned nanowire growth was observed on polished copper substrates. Of all the substrates trialed, ITO coated aluminosilicate glass proved to be the most effective substrate for the growth of silicon nanowires

    Computing Substrates and Life

    No full text
    Alive matter distinguishes itself from inanimate matter by actively maintaining a high degree of inhomogenous organisation. Information processing is quintessential to this capability. The present paper inquires into the degree to which the information processing aspect of living systems can be abstracted from the physical medium of its implementation. Information processing serving to sustain the complex organisation of a living system faces both the harsh reality of real-time requirements and severe constraints on energy and material that can be expended on the task. This issue is of interest for the potential scope of Artificial Life and its interaction with Synthetic Biology. It is pertinent also for information technology. With regard to the latter aspect, the use of a living cell in a robot control architecture is considered

    HD DVD substrates for surface enhanced Raman spectroscopy analysis : fabrication, theoretical predictions and practical performance

    Get PDF
    Commercial HD DVDs provide a characteristic structure of encoding pits which were utilized to fabricate cost efficiently large area SERS substrates for chemical analysis. The study targets the simulation of the plasmonic structure of the substrates and presents an easily accessible fabrication process to obtain highly sensitive SERS active substrates. The theoretical simulation predicted the formation of supermodes under optimized illumination conditions, which were verified experimentally. First tests of the developed SERS substrates demonstrated their excellent potential for detecting vitamin A and pro- vitamin A at low concentration levels

    Does the Dirac Cone Exist in Silicene on Metal Substrates?

    Full text link
    Absence of the Dirac cone due to a strong band hybridization is revealed to be a common feature for epitaxial silicene on metal substrates according to our first-principles calculations for silicene on Ir, Cu, Mg, Au, Pt, Al, and Ag substrates. The destroyed Dirac cone of silicene, however, can be effectively restored with linear or parabolic dispersion by intercalating alkali metal atoms between silicene and the metal substrates, offering an opportunity to study the intriguing properties of silicene without further transfer of silicene from the metal substrates

    Morphology and flexibility of graphene and few-layer graphene on various substrates

    Full text link
    We report on detailed microscopy studies of graphene and few-layer-graphene produced by mechanical exfoliation on various semi-conducting substrates. We demonstrate the possibility to prepare and analyze graphene on (001)-GaAs, manganese p-doped (001)-GaAs and InGaAs substrates. The morphology of graphene on these substrates was investigated by scanning electron and atomic force microscopy and compared to layers on silicon oxide. It was found that graphene sheets strongly follow the texture of the sustaining substrates independent on doping, polarity or roughness. Furthermore resist residues exist on top of graphene after a lithographic step. The obtained results provide the opportunity to research the graphene-substrate interactions

    Lubricated friction between incommensurate substrates

    Full text link
    This paper is part of a study of the frictional dynamics of a confined solid lubricant film - modelled as a one-dimensional chain of interacting particles confined between two ideally incommensurate substrates, one of which is driven relative to the other through an attached spring moving at constant velocity. This model system is characterized by three inherent length scales; depending on the precise choice of incommensurability among them it displays a strikingly different tribological behavior. Contrary to two length-scale systems such as the standard Frenkel-Kontorova (FK) model, for large chain stiffness one finds that here the most favorable (lowest friction) sliding regime is achieved by chain-substrate incommensurabilities belonging to the class of non-quadratic irrational numbers (e.g., the spiral mean). The well-known golden mean (quadratic) incommensurability which slides best in the standard FK model shows instead higher kinetic-friction values. The underlying reason lies in the pinning properties of the lattice of solitons formed by the chain with the substrate having the closest periodicity, with the other slider.Comment: 14 pagine latex - elsart, including 4 figures, submitted to Tribology Internationa

    Instability and dripping of electrified liquid films flowing down inverted substrates

    Get PDF
    We consider the gravity-driven flow of a perfect dielectric, viscous, thin liquid film, wetting a flat substrate inclined at a nonzero angle to the horizontal. The dynamics of the thin film is influenced by an electric field which is set up parallel to the substrate surface—this nonlocal physical mechanism has a linearly stabilizing effect on the interfacial dynamics. Our particular interest is in fluid films that are hanging from the underside of the substrate; these films may drip depending on physical parameters, and we investigate whether a sufficiently strong electric field can suppress such nonlinear phenomena. For a non-electrified flow, it was observed by Brun et al. [Phys. Fluids 27, 084107 (2015)] that the thresholds of linear absolute instability and dripping are reasonably close. In the present study, we incorporate an electric field and analyze the absolute and convective instabilities of a hierarchy of reduced-order models to predict the dripping limit in parameter space. The spatial stability results for the reduced-order models are verified by performing an impulse-response analysis with direct numerical simulations (DNS) of the Navier–Stokes equations coupled to the appropriate electrical equations. Guided by the results of the linear theory, we perform DNS on extended domains with inflow and outflow conditions (mimicking an experimental setup) to investigate the dripping limit for both non-electrified and electrified liquid films. For the latter, we find that the absolute instability threshold provides an order-of-magnitude estimate for the electric-field strength required to suppress dripping; the linear theory may thus be used to determine the feasibility of dripping suppression given a set of geometrical, fluid, and electrical parameters
    • 

    corecore