1,178,088 research outputs found
High efficiency InGaAs solar cells on Si by InP layer transfer
InP/Si substrates were fabricated through wafer bonding and helium-induced exfoliation of InP, and InGaAs solar cells lattice matched to bulk InP were grown on these substrates using metal-organic chemical-vapor deposition. The photovoltaic characteristics of the InGaAs cells fabricated on the wafer-bonded InP/Si substrates were comparable to those synthesized on commercially available epiready InP substrates, thus providing a demonstration of wafer-bonded InP/Si substrates as an alternative to bulk InP substrates for solar cell applications
Computing Substrates and Life
Alive matter distinguishes itself from inanimate matter by actively maintaining a high degree of inhomogenous organisation. Information processing is quintessential to this capability. The present paper inquires into the degree to which the information processing aspect of living systems can be abstracted from the physical medium of its implementation. Information processing serving to sustain the complex organisation of a living system faces both the harsh reality of real-time requirements and severe constraints on energy and material that can be expended on the task. This issue is of interest for the potential scope of Artificial Life and its interaction with Synthetic Biology. It is pertinent also for information technology. With regard to the latter aspect, the use of a living cell in a robot control architecture is considered
Densification of porous refractory substrates
A hydrolyzed tetraethyl orthosilicate is applied to the surface of a porous refractory substrate following which the substrate is heated to a temperature and for a period of time sufficient to bond the silica released from the tetraethyl orthosilicate to the substrate. The surface is thus densified and strengthened
Morphology and flexibility of graphene and few-layer graphene on various substrates
We report on detailed microscopy studies of graphene and few-layer-graphene
produced by mechanical exfoliation on various semi-conducting substrates. We
demonstrate the possibility to prepare and analyze graphene on (001)-GaAs,
manganese p-doped (001)-GaAs and InGaAs substrates. The morphology of graphene
on these substrates was investigated by scanning electron and atomic force
microscopy and compared to layers on silicon oxide. It was found that graphene
sheets strongly follow the texture of the sustaining substrates independent on
doping, polarity or roughness. Furthermore resist residues exist on top of
graphene after a lithographic step. The obtained results provide the
opportunity to research the graphene-substrate interactions
Graphene formation on SiC substrates
Graphene layers were created on both C and Si faces of semi-insulating,
on-axis, 4H- and 6H-SiC substrates. The process was performed under high vacuum
(<10-4 mbar) in a commercial chemical vapor deposition SiC reactor. A method
for H2 etching the on-axis sub-strates was developed to produce surface steps
with heights of 0.5 nm on the Si-face and 1.0 to 1.5 nm on the C-face for each
polytype. A process was developed to form graphene on the substrates
immediately after H2 etching and Raman spectroscopy of these samples confirmed
the formation of graphene. The morphology of the graphene is described. For
both faces, the underlying substrate morphology was significantly modified
during graphene formation; sur-face steps were up to 15 nm high and the uniform
step morphology was sometimes lost. Mo-bilities and sheet carrier
concentrations derived from Hall Effect measurements on large area (16 mm
square) and small area (2 and 10 um square) samples are presented and shown to
compare favorably to recent reports.Comment: European Conference on Silicon Carbide and Related Materials 2008
(ECSCRM '08), 4 pages, 4 figure
Silicon-slurry/aluminide coating
A low cost coating protects metallic base system substrates from high temperatures, high gas velocity ovidation, thermal fatigue and hot corrosion and is particularly useful fo protecting vanes and blades in aircraft and land based gas turbine engines. A lacquer slurry comprising cellulose nitrate containing high purity silicon powder is sprayed onto the superalloy substrates. The silicon layer is then aluminized to complete the coating. The Si-Al coating is less costly to produce than advanced aluminides and protects the substrates from oxidation and thermal fatigue for a much longer period of time than the conventional aluminide coatings. While more expensive Pt-Al coatings and physical vapor deposited MCrAlY coatings may last longer or provide equal protection on certain substrates, the Si-Al coating exceeded the performance of both types of coatings on certain superalloys in high gas velocity oxidation and thermal fatigue and increased the resistance of certain superalloys to hot corrosion
Colloidal Dynamics on Disordered Substrates
Using Langevin simulations we examine driven colloids interacting with
quenched disorder. For weak substrates the colloids form an ordered state and
depin elastically. For increasing substrate strength we find a sharp crossover
to inhomogeneous depinning and a substantial increase in the depinning force,
analogous to the peak effect in superconductors. The velocity versus driving
force curve shows criticality at depinning, with a change in scaling exponent
occuring at the order to disorder crossover. Upon application of a sudden pulse
of driving force, pronounced transients appear in the disordered regime which
are due to the formation of long-lived colloidal flow channels.Comment: 4 pages, 4 postscript figure
Comparative study of hatching rates of African catfish (Clarias gariepinus Burchell 1822) eggs on different substrates
The hatching rates of African catfish (Clarias gariepinus) eggs on four natural substrates: the roots of Nile cabbage (Pistia stratiotes), water hyacinth (Eichhornia crassipes), pond weed (Ceratophyllum dermasum) and green grass leaves (Commelina sp.), and four artificial substrates: sisal mats, nylon mats, papyrus mats and kakaban mats, was assessed. Concrete slabs were used as control. The natural substrates performed better than the artificial ones. Pistia roots gave the best mean hatching rate of 66.2 ± 3.62%. Green grass leaves were second with a mean rate of 54.0 ± 3.46%, water hyacinth was third with 49.7 ± 3.16% and Ceratophyllum fourth with a mean of 13.0 ± 2.37%. Concrete slabs gave a mean rate of 18.6 ± 2.8%, sisal mats 18.6 ± 2.0%, papyrus 12.2 ± 1.2% and kakaban 11.8 ± 1.9%. Nylon mats were the last, with a mean rate of 4.0 ± 0.7%. The best performing natural substrates were those with the ability to float and thin fibrous roots that seemed to allow higher aeration of the eggs during incubation. The cost of using natural substrates was minimal
- …
