23,355 research outputs found

    Localization and Rendering of Sound Sources in Acoustic Fields

    Get PDF
    DisertačnĂ­ prĂĄce se zabĂœvĂĄ lokalizacĂ­ zdrojĆŻ zvuku a akustickĂœm zoomem. HlavnĂ­m cĂ­lem tĂ©to prĂĄce je navrhnout systĂ©m s akustickĂœm zoomem, kterĂœ pƙiblĂ­ĆŸĂ­ zvuk jednoho mluvčího mezi skupinou mluvčích, a to i kdyĆŸ mluvĂ­ současně. Tento systĂ©m je kompatibilnĂ­ s technikou prostorovĂ©ho zvuku. HlavnĂ­ pƙínosy disertačnĂ­ prĂĄce jsou nĂĄsledujĂ­cĂ­: 1. NĂĄvrh metody pro odhad vĂ­ce směrĆŻ pƙichĂĄzejĂ­cĂ­ho zvuku. 2. NĂĄvrh metody pro akustickĂ© zoomovĂĄnĂ­ pomocĂ­ DirAC. 3. NĂĄvrh kombinovanĂ©ho systĂ©mu pomocĂ­ pƙedchozĂ­ch krokĆŻ, kterĂœ mĆŻĆŸe bĂœt pouĆŸit v telekonferencĂ­ch.This doctoral thesis deals with sound source localization and acoustic zooming. The primary goal of this dissertation is to design an acoustic zooming system, which can zoom the sound of one speaker among multiple speakers even when they speak simultaneously. The system is compatible with surround sound techniques. In particular, the main contributions of the doctoral thesis are as follows: 1. Design of a method for multiple sound directions estimations. 2. Proposing a method for acoustic zooming using DirAC. 3. Design a combined system using the previous mentioned steps, which can be used in teleconferencing.

    A Novel Combined System of Direction Estimation and Sound Zooming of Multiple Speakers

    Get PDF
    This article presents a new system for estimation the direction of multiple speakers and zooming the sound of one of them at a time. The proposed system is a combination of two levels; namely, sound source direction estimation, and acoustic zooming. The sound source direction estimation uses so-called the energetic analysis method for estimation the direction of multiple speakers, whereas the acoustic zooming is based on modifying the parameters of the directional audio coding (DirAC) in order to zoom the sound of a selected speaker among the others. Both listening tests and objective assessments are performed to evaluate this system using different time-frequency transforms

    Towards a new ITU-T recommendation for subjective methods evaluating gaming QoE

    Get PDF
    This paper reports on activities in Study Group 12 of the International Telecommunication Union (ITU-T SG12) to define a new Recommendation on subjective evaluation methods for gaming Quality of Experience (QoE). It first resumes the structure and content of the current draft which has been proposed to ITU-T SG12 in September 2014 and then critically discusses potential gaming content and evaluation methods for inclusion into the upcoming Recommendation. The aim is to start a discussion amongst experts on potential evaluation methods and their limitations, before finalizing a Recommendation. Such a recommendation might in the end be applied by non -expert users, hence wrong decisions in the evaluation design could negatively affect gaming QoE throughout the evaluation

    Navigation-by-music for pedestrians: an initial prototype and evaluation

    Get PDF
    Digital mobile music devices are phenomenally popular. The devices are becoming increasingly powerful with sophisticated interaction controls, powerful processors, vast onboard storage and network connectivity. While there are ‘obvious’ ways to exploit these advanced capabilities (such as wireless music download), here we consider a rather different application—pedestrian navigation. We report on a system (ONTRACK) that aims to guide listeners to their destinations by continuously adapting the spatial qualities of the music they are enjoying. Our field-trials indicate that even with a low-fidelity realisation of the concept, users can quite effectively navigate complicated routes

    The sweet spot: How people trade off size and definition on mobile devices

    Get PDF
    Mobile TV can deliver up-to-date content to users on the move. But it is currently unclear how to best adapt higher resolution TV content. In this paper, we describe a laboratory study with 35 participants who watched short clips of different content and shot types on a 200ppi PDA display at a resolution of either 120x90 or 168x128. Participants selected their preferred size and rated the acceptability of the visual experience. The preferred viewing ratio depended on the resolution and had to be at least 9.8H. The minimal angular resolution people required and which limited the up-scaling factor was 14 pixels per degree. Extreme long shots were best when depicted actors were at least 0.7° high. A second study researched the ecological validity of previous lab results by comparing them to results from the field. Image size yielded more value for users in the field than was apparent from lab results. In conclusion, current prediction models based on preferred viewing distances for TV and large displays do not predict viewing preferences on mobile devices. Our results will help to further the understanding of multimedia perception and service designers to deliver both economically viable and enjoyable experiences

    Understanding user experience of mobile video: Framework, measurement, and optimization

    Get PDF
    Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt & Hlavacs, 2011; Buchinger, Kriglstein & Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study

    The Big Picture on Small Screens Delivering Acceptable Video Quality in Mobile TV

    Get PDF
    Mobile TV viewers can change the viewing distance and (on some devices) scale the picture to their preferred viewing ratio, trading off size for angular resolution. We investigated optimal trade-offs between size and resolution through a series of studies. Participants selected their preferred size and rated the acceptability of the visual experience on a 200ppi device at a 4: 3 aspect ratio. They preferred viewing ratios similar to living room TV setups regardless of the much lower resolution: at a minimum 14 pixels per degree. While traveling on trains people required videos with a height larger than 35mm
    • 

    corecore