134 research outputs found

    Quality of Experience monitoring and management strategies for future smart networks

    Get PDF
    One of the major driving forces of the service and network's provider market is the user's perceived service quality and expectations, which are referred to as user's Quality of Experience (QoE). It is evident that QoE is particularly critical for network providers, who are challenged with the multimedia engineering problems (e.g. processing, compression) typical of traditional networks. They need to have the right QoE monitoring and management mechanisms to have a significant impact on their budget (e.g. by reducing the users‘ churn). Moreover, due to the rapid growth of mobile networks and multimedia services, it is crucial for Internet Service Providers (ISPs) to accurately monitor and manage the QoE for the delivered services and at the same time keep the computational resources and the power consumption at low levels. The objective of this thesis is to investigate the issue of QoE monitoring and management for future networks. This research, developed during the PhD programme, aims to describe the State-of-the-Art and the concept of Virtual Probes (vProbes). Then, I proposed a QoE monitoring and management solution, two Agent-based solutions for QoE monitoring in LTE-Advanced networks, a QoE monitoring solution for multimedia services in 5G networks and an SDN-based approach for QoE management of multimedia services

    QoE-Assured 4K HTTP live streaming via transient segment holding at mobile edge

    Get PDF
    HTTP-based live streaming has become increasingly popular in recent years, and more users have started generating 4K live streams from their devices (e.g., mobile phones) through social-media service providers like Facebook or YouTube. If the audience is located far from a live stream source across the global Internet, TCP throughput becomes substantially suboptimal due to slow-start and congestion control mechanisms. This is especially the case when the end-to-end content delivery path involves radio access network (RAN) at the last mile. As a result, the data rate perceived by a mobile receiver may not meet the high requirement of 4K video streams, which causes deteriorated Quality-of-Experience (QoE). In this paper, we propose a scheme named Edge-based Transient Holding of Live sEgment (ETHLE), which addresses the issue above by performing context-aware transient holding of video segments at the mobile edge with virtualized content caching capability. Through holding the minimum number of live video segments at the mobile edge cache in a context-aware manner, the ETHLE scheme is able to achieve seamless 4K live streaming experiences across the global Internet by eliminating buffering and substantially reducing initial startup delay and live stream latency. It has been deployed as a virtual network function at an LTE-A network, and its performance has been evaluated using real live stream sources that are distributed around the world. The significance of this paper is that by leveraging on virtualized caching resources at the mobile edge, we have addressed the conventional transport-layer bottleneck and enabled QoE-assured Internet-wide live streaming to support the emerging live streaming services with high data rate requirements

    A reduced reference video quality assessment method for provision as a service over SDN/NFV-enabled networks

    Get PDF
    139 p.The proliferation of multimedia applications and services has generarted a noteworthy upsurge in network traffic regarding video content and has created the need for trustworthy service quality assessment methods. Currently, predominent position among the technological trends in telecommunication networkds are Network Function Virtualization (NFV), Software Defined Networking (SDN) and 5G mobile networks equipped with small cells. Additionally Video Quality Assessment (VQA) methods are a very useful tool for both content providers and network operators, to understand of how users perceive quality and this study the feasibility of potential services and adapt the network available resources to satisfy the user requirements

    A reduced reference video quality assessment method for provision as a service over SDN/NFV-enabled networks

    Get PDF
    139 p.The proliferation of multimedia applications and services has generarted a noteworthy upsurge in network traffic regarding video content and has created the need for trustworthy service quality assessment methods. Currently, predominent position among the technological trends in telecommunication networkds are Network Function Virtualization (NFV), Software Defined Networking (SDN) and 5G mobile networks equipped with small cells. Additionally Video Quality Assessment (VQA) methods are a very useful tool for both content providers and network operators, to understand of how users perceive quality and this study the feasibility of potential services and adapt the network available resources to satisfy the user requirements

    Uma abordagem preditiva de DASH QoE baseada em aprendizado de máquina em multi-access edge computing

    Get PDF
    Orientador: Christian Rodolfo Esteve RothenbergDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: O tráfego de serviços de vídeo multimídia está crescendo rapidamente nas redes móveis nos últimos anos. Os serviços de vídeo que usam técnicas de Dynamic Adaptive Streaming sobre HTTP (DASH) dominaram o tráfego total da Internet para transportar o tráfego de vídeo. Espera-se que as operadoras de rede móvel (Mobile Network Operators - MNOs) continuem atendendo a essa demanda crescente por tráfego de vídeo suportado por DASH, ao mesmo tempo em que fornecem uma alta qualidade de experiência (Quality of Experience - QoE) aos usuários finais. Além disso, as operadoras precisam ter um conhecimento claro acerca da qualidade de vídeo percebida pelos usuários finais e relacioná-la com o monitoramento em nível de rede, ou com informações de telemetria para identificação de problemas, análise da causa raiz e predição de padrões. Para garantir um gerenciamento de tráfego de rede com reconhecimento de QoE, um pré-requisito é que os MNOs monitorem o tráfego de rede passivamente e realizem medições efetivas de indicadores-chave de desempenho (Key Performance Indicators - KPIs) de QoE, como resoluções, eventos de paralisação, entre outros, que influenciam diretamente a percepção do usuário final. Muitas abordagens da literatura foram propostas para medir os KPIs com o objetivo de fornecer uma qualidade de serviço de vídeo aceitável. A maioria das soluções exige consciência de contexto do usuário final, o que não é viável do ponto de vista do MNO. No entanto, Deep Packet Inspection (DPI), outra solução mais amplamente usada para estimar os KPIs diretamente do tráfego de rede, não é mais uma solução conveniente para as operadoras devido à adoção de criptografia de streaming de vídeo fim-a-fim sobre TCP (HTTPs) e QUIC. Portanto, o aprendizado de máquina (Machine Learning - ML) passou a ser recentemente aceito como uma solução bem reconhecida para estimar KPIs de QoE, analisando os padrões de tráfego criptografados bem como estatísticas como qualidade de serviço (Quality of Service - QoS). Este trabalho apresenta uma abordagem mais refinada e leve, baseada em aprendizado de máquina, denominada Edge QoE Probe, para estimar QoE do usuário final para o serviço de vídeo DASH, monitorando passivamente o tráfego de rede criptografado na borda da rede. Nossa abordagem pode avaliar vários KPIs de QoE, como por exemplo resolução, taxa de bits, proporção de paralisação, entre outros, tanto em tempo real quanto por sessão. Além disso, neste trabalho investigamos o desempenho do vídeo DASH sobre o protocolo de transporte tradicional TCP (HTTPs) e QUIC. Para este propósito, avaliamos experimentalmente diferentes traces de rede celular em um ambiente emulado de alta fidelidade e comparamos o desempenho comportamental de algoritmos Adaptive Bitrate Streaming (ABS) considerando KPIs de QoE sobre TCP (HTTPs) e QUIC. Nossos resultados empíricos mostram que os algoritmos tradicionais de ABS usando QUIC como transporte precisariam alterações específicas para melhorar o desempenho em termos de QoE de vídeo baseados em DASHAbstract: Multimedia video services traffic is rapidly growing in mobile networks in recent years. Video services using Dynamic Adaptive Streaming over HTTP (DASH) techniques have dominated the total internet traffic to carry video traffic. Mobile Network Operators (MNOs) are expected to run on with this growing demand for DASH-supported video traffic while providing a high Quality of Experience (QoE) to the end-users. Besides, operators need to have a crystal notion of video quality perceived by the end-users and correlate them with network-level monitoring or telemetry information for problem identification, root cause analysis, and pattern prediction. To ensure QoE–aware network traffic management, a prerequisite for the MNOs is to monitor the network traffic passively and measure objective QoE Key Performance Indicators (KPIs) (such as resolutions and stalling events) effectively that directly influence end-user subjective feedback. Many literature approaches have been proposed to measure the KPIs aimed to deliver acceptable video service quality. Most of the solutions require end-user awareness, which is not viable from the MNOs' perspective. However, Deep Packet Inspection (DPI), another most widely used solution to estimate the KPIs directly from network traffic, is not a convenient solution anymore for the operators due to the adoption of end-to-end video streaming encryption over TCP (HTTPs) and QUIC transport protocol. Hence, in recent, Machine Learning (ML) has been accepted as a well-recognized solution for estimating QoE KPIs by analyzing the encrypted traffic patterns and statistics as Quality of Service (QoS). This work presents an ML-based lightweight and fine-grained Edge QoE Probe approach to estimate the end-user QoE for DASH video service by passively monitoring the encrypted network traffic on the edge of the network. Our approach can assess numerous QoE KPIs (such as resolution, bit-rate, quality switches, startup delay, and stall ratio) both in a real-time and per-session manner. Moreover, we investigate the DASH video service performance over the traditional TCP (HTTPs) and QUIC transport protocol in this work. For this purpose, we experimentally evaluate different cellular network traces in a high-fidelity emulated testbed and compare the behavioral performance of Adaptive Bitrate Streaming (ABS) algorithms considering QoE KPIs over TCP (HTTPs) and QUIC. Our empirical results show that QUIC suffers from traditional state-of-the-art ABS algorithms' ineffectiveness to improve video streaming performance without specific changesMestradoEngenharia de ComputaçãoMestre em Engenharia ElétricaFuncam

    QoE management of HTTP adaptive streaming services

    Get PDF

    Architectures and Algorithms for Content Delivery in Future Networks

    Get PDF
    Traditional Content Delivery Networks (CDNs) built with traditional Internet technology are less and less able to cope with today’s tremendous content growth. Enhancing infrastructures with storage and computation capabilities may help to remedy the situation. Information-Centric Networks (ICNs), a proposed future Internet technology, unlike the current Internet, decouple information from its sources and provide in-network storage. However, content delivery over in-network storage-enabled networks still faces significant issues, such as the stability and accuracy of estimated bitrate when using Dynamic Adaptive Streaming (DASH). Still Implementing new infrastructures with in-network storage can lead to other challenges. For instance, the extensive deployment of such networks will require a significant upgrade of the installed IP infrastructure. Furthermore, network slicing enables services and applications with very different characteristics to co-exist on the same network infrastructure. Another challenge is that traditional architectures cannot meet future expectations for streaming in terms of latency and network load when it comes to content, such as 360° videos and immersive services. In-Network Computing (INC), also known as Computing in the Network (COIN), allows the computation tasks to be distributed across the network instead of being computed on servers to guarantee performance. INC is expected to provide lower latency, lower network traffic, and higher throughput. Implementing infrastructures with in-network computing will help fulfill specific requirements for streaming 360° video streaming in the future. Therefore, the delivery of 360° video and immersive services can benefit from INC. This thesis elaborates and addresses the key architectural and algorithmic research challenges related to content delivery in future networks. To tackle the first challenge, we propose algorithms for solving the inaccuracy of rate estimation for future CDNs implementation with in-network storage (a key feature of future networks). An algorithm for implementing in-network storage in IP settings for CDNs is proposed for the second challenge. Finally, for the third challenge, we propose an architecture for provisioning INC-enabled slices for 360° video streaming in next-generation networks. We considered a P4-enabled Software-Defined network (SDN) as the physical infrastructure and significantly reduced latency and traffic load for video streaming

    Predicting quality of experience for online video service provisioning

    Get PDF
    The expansion of the online video content continues in every area of the modern connected world and the need for measuring and predicting the Quality of Experience (QoE) for online video systems has never been this important. This paper has designed and developed a machine learning based methodology to derive QoE for online video systems. For this purpose, a platform has been developed where video content is unicasted to users so that objective video metrics are collected into a database. At the end of each video session, users are queried with a subjective survey about their experience. Both quantitative statistics and qualitative user survey information are used as training data to a variety of machine learning techniques including Artificial Neural Network (ANN), K-nearest Neighbours Algorithm (KNN) and Support Vector Machine (SVM) with a collection of cross-validation strategies. This methodology can efficiently answer the problem of predicting user experience for any online video service provider, while overcoming the problematic interpretation of subjective consumer experience in terms of quantitative system capacity metrics
    corecore