

UWS Academic Portal

Scalable virtual network video-optimizer for adaptive real-time video transmission in
5G networks
Salva-Garcia, Pablo; Alcaraz Calero, Jose M.; Wang, Qi; Arevalillo-Herráez, Miguel; Bernabe,
Jorge Bernal
Published in:
IEEE Transactions on Network and Service Management

DOI:
10.1109/TNSM.2020.2978975

Published: 30/06/2020

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Salva-Garcia, P., Alcaraz Calero, J. M., Wang, Q., Arevalillo-Herráez, M., & Bernabe, J. B. (2020). Scalable
virtual network video-optimizer for adaptive real-time video transmission in 5G networks. IEEE Transactions on
Network and Service Management, 17(2), 1068-1081. https://doi.org/10.1109/TNSM.2020.2978975

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 29 Jul 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Repository and Portal - University of the West of Scotland

https://core.ac.uk/display/327092417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/TNSM.2020.2978975
https://myresearchspace.uws.ac.uk/portal/en/publications/scalable-virtual-network-videooptimizer-for-adaptive-realtime-video-transmission-in-5g-networks(38a6e7c9-3f35-4d32-bd07-494dd0c72eaf).html
https://doi.org/10.1109/TNSM.2020.2978975

UWS Academic Portal

Scalable virtual network video-optimizer for adaptive real-time video transmission in
5G networks
Salva-Garcia, Pablo; Alcaraz Calero, Jose M.; Wang, Qi; Arevalillo-Herráez, Miguel; Bernabe,
Jorge Bernal
Published in:
IEEE Transactions on Network and Service Management

DOI:
10.1109/TNSM.2020.2978975

Published: 01/06/2020

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Salva-Garcia, P., Alcaraz Calero, J. M., Wang, Q., Arevalillo-Herráez, M., & Bernabe, J. B. (2020). Scalable
virtual network video-optimizer for adaptive real-time video transmission in 5G networks. IEEE Transactions on
Network and Service Management, 17(2), 1068-1081. [9026918]. https://doi.org/10.1109/TNSM.2020.2978975

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 16 Jul 2020

https://doi.org/10.1109/TNSM.2020.2978975
https://myresearchspace.uws.ac.uk/portal/en/publications/scalable-virtual-network-videooptimizer-for-adaptive-realtime-video-transmission-in-5g-networks(38a6e7c9-3f35-4d32-bd07-494dd0c72eaf).html
https://doi.org/10.1109/TNSM.2020.2978975

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

1

Scalable Virtual Network Video-Optimizer for
Adaptive Real-Time Video Transmission in 5G

Networks
Pablo Salva-Garcia, Jose M. Alcaraz Calero, Senior Member IEEE, Qi Wang, Miguel Arevalillo-Herráez,

and Jorge Bernal Bernabe

Abstract—The increasing popularity of video applications and
ever-growing high-quality video transmissions (e.g. 4K resolu-
tions), has encouraged other sectors to explore the growth of
opportunities. In the case of health sector, mobile Health services
are becoming increasingly relevant in real-time emergency video
communication scenarios where a remote medical experts’ sup-
port is paramount to a successful and early disease diagnosis. To
minimize the negative effects that could affect critical services in
a heavily loaded network, it is essential for 5G video providers to
deploy highly scalable and priorizable in-network video optimiza-
tion schemes to meet the expectations of a large quantity of video
treatments. This paper presents a novel 5G Video Optimizer
Virtual Network Function (vOptimizerVNF) that leverages the
latest technologies in 5G and video processing to address this
important challenge. Advanced traffic filtering is coupled with
Scalable H.265 video coding to enable run-time bandwidth-saving
video optimization without compromising Quality of Service
(QoS); kernel-space video processing is introduced to achieve
further performance gains; and the use of a Virtual Network
Function (VNF) facilitates dynamic deployment of virtualized
video optimizers to achieve scalability and flexibility in this
service. The proposed approach is implemented in a realistic 5G
testbed and empirical results demonstrate the superior scalability
and performance achieved.

Index Terms—5G, QoS, Multi-tenancy, eHealth, mHealth,
traffic filtering, Video, NFV

I. INTRODUCTION

ACCORDING to recent literature, video traffic is ex-
pected to increase dramatically in the upcoming years,

reaching four-fifths of the world’s mobile data traffic by
2022 [1]. Mobile Health (mHealth) services can benefit from
the 5G URLLC (Ultra-reliable Low Latency Communication)
technology for dealing with real-time video traffic, thereby
coping with sensitive and critical demands of certain eHealth
services. For instance, multiple ambulances might require real-
time and reliable video transmissions to a remote hospital,
where specialized medical personnel can organize the inter-
vention and collect the health-state information necessary to
proactively set up the treatment at the hospital. In such a
context, network congestion might undermine medical staff
video quality perception, and thus 5G networks need to be
prepared to self-adapt to and self-optimize the network traffic,
mitigating as much as possible the disruption of the video
streaming for critical services.

Some related works have already addressed a context-
and content-aware video optimization of the m-health video
streaming [2], but they did not considered the 5G specific

network conditions and protocols. 5G Network operators,
Carriers, and Internet Service Providers need to differentiate
and optimize the streaming video packets at both the Edge and
the Core of the 5G network, according to service demands and
preferences. Unlike in traditional IP networks, 5G networks
are intended to support mobility and multi-tenant isolation,
which raises the challenge of efficiently managing the nested-
encapsulated network traffic required to develop these features.
In addition, video optimization can benefit from dynamic,
on demand provisioning and configuration of Virtual Network
Functions (VNF). This means that a 5G virtual Optimizer
VNF (vOptimizerVNF) network service might differentiate
and filter video traffic flows according to any field of the inner
packet headers. 5G architectures can also benefit from the
flexibility provided by Network Function Virtualization (NFV)
and Software-Defined Networking (SDN) to detect traffic con-
gestion and enforce dynamically different vOptimizerVNFs to
support video adaptations per service and flow, by enforcing
proper network traffic rules that can filter the video packets in
an optimized manner.

However, and despite the new opportunities brought by
5G networks, the current management frameworks are not
able to provide self-optimization capabilities to dynamically
adapt network traffic filtering and, in turn, control video
flows according to network traffic conditions obtained from
the monitoring sensors. As a direct consequence, there is a
lack of scalable network video optimization systems that are
simultaneously able to a) deal with traffic in multi-carrier
and mobility scenarios for 5G video streaming; b) support
nested encapsulation demands imposed by both core network
and edge segments of the 5G multi-tenant networks; and
c) perform filtering in the inner layers of overlay networks.
Although we have already addressed this problem in the
past [3], we did not delve into scalability issues when handling
thousands of flows in the network and did not take into account
service optimization.

In this paper, we present an efficient virtual Video-
Optimization mechanism that is able to maintain critical ser-
vices’ Quality of Service (QoS) on-demand when the network
is congested, by performing an efficient, dynamic and selective
dropping of the enhancement layers of scalable video streams
that use the Scalable High Efficient Video Coding [4] (SHVC).
To deal with scalability and performance issues, the video
optimizer is dynamically deployed as a VNF in the Edge or in
the Core of the 5G network, whereas the video optimization

2

is performed by filtering in kernel space different video
layered packets from a particular service/flow. We evaluate the
proposed network video optimization mechanism in a real 5G
trial infrastructure testbed, in order to assess its performance.
To this end, we present a realistic use case in which we
attempt to optimize emergency video communications, and
compare different traffic filtering mechanisms to evaluate their
aptness in nested-encapsulated virtualized 5G networks. The
evaluation shows that our solution adapts to the network condi-
tions by quantifying congestion through an index, and ensures
smooth video streaming even when congestion occurs. In
addition, the performance analysis demonstrates its suitability
to handle thousands of flows in multi-tenant and virtualized
5G networks.

The rest of the paper is organized as follows. Section II
describes the state of the art in video adaptation techniques,
and provides some basic concepts that are deemed necessary
to understand the remnant of the paper. Section III-B identifies
the video optimizer requirements we believe essential for
efficient media services running on 5G networks. Section IV
describes the proposed solution, including the management
framework and some modification to standard components that
were required to provide a scalable service. Section V outline
some relevant implementation details. Sections VI and VII
reports the empirical results obtained from a comprehensive
evaluation of the proposed traffic filter mechanism and scalable
virtual video optimizer, respectively. Finally, conclusions and
future research activities are drawn in Section VIII.

II. BACKGROUND AND RELATED WORK

Relevant technologies to the work presented include both
existing methods for video-streaming adaptation and traffic
filtering mechanisms. For clarity reasons, related previous
works in these two topics are analysed separately in this
section. In addition, in the last subsection we also discuss
some basic concepts about video traffic in 5G that we deem
necessary to ease understanding of the proposed approach.

A. Video-Streaming Adaptation

Maintaining a reasonable QoS during the visualization of
a video stream has been, and still is, a challenging issue in
video transmission. The ITU-T E-Model [5] has been widely
accepted, and considers that a delay over 100 ms or a latency
variation (jitter) higher than 200 ms can have a measurable
impact on the Quality of Experience (QoE) perceived, which
is specially relevant in many multimedia applications such as
tele-conferencing [6]. More recently, Abdallah et al. [7] sur-
veyed recent advances on delay-sensitive video computations
in the cloud and pointed out new requirements that conversa-
tional video services such as video-conferencing should meet,
related to the acceptable latency between a user’s action and
the visible reaction on the screen.

In order to minimize network delays and meet the require-
ments of an acceptable service, some existing methods involve
edge network caching as an effective strategy to store media
content in edge servers that are near the access networks, and
close to the users [8]. In general, caching strategies applied

over Content Delivery Networks (CDNs) can easily speed up
content delivery processes reducing delays significantly [9],
and consequently, increase the QoE of the end users. For ex-
ample, Polaraskis et al. [10] and George et al. [11] proposed to
bring content closer to the requesters by using distributed and
cooperative algorithms for dealing with visualization requests
of on-line videos with a dynamically changing demand from
mobile devices, e.g. recent news, new movies or new music
videos [12].

Caching methods can also be combined with efficient multi-
media streaming applications to adapt the video quality being
delivered according to the user’s internet connection, device
capabilities and/or user preferences. For example, Dynamic
Adaptive Streaming over HTTP (DASH) [13] and CMAF [14]
are able to dynamically vary the bit rate and quality of the
transmitted media to match the available channel bandwidth
and alleviate specific problems related to network congestion,
such as a high latency or packet loss rate. When using such
dynamic adaptive streaming techniques, the client is the only
agent that manages the video streaming process in order
to maximize the subjective video quality [15] [16] [17] by
dynamically selecting among different representations of the
same media stream based on the estimated network through-
put. Media content is split into a sequence of small segments,
which basically are different versions of the original segment
but encoded with different bit rates and quality. Another
representative case of an adaptive bit-rate solution for real-time
video communications is the open-source project WebRTC
[18], which has been specifically developed to support real-
time voice and video communications in the browser [19],
[20]. WebRTC uses the Google Congestion Control (GCC)
algorithm to handle congestion in real-time communications
over UDP (or TCP just if UDP ports are blocked), but
performance details and congestion handling are completely
hidden from the owners of the video streaming applications.

Several other research works have focused on parsing cer-
tain aspects of the application payload headers and reacting to
the contents through packet-filtering by using a Media Aware
Network Element (MANE) [21]. In this direction, the use
of layered video streaming makes it possible to dynamically
adapt the media rate to the transmission conditions without
transcoding or re-encoding the video. Schierl et al. [22]
documented the potential use of scalable video transmissions
and outlined use cases of mobile media delivery which can
benefit from using layered transmissions over networks that
are not provisioned to provide suitable QoS. In [23] the authors
use a Media Aware Proxy (MAP), which is based on the
MANE concept, for dropping Scalable H.264 (SVC) packets
that carry information of the enhancement layers according to
the IP header in a testbed that is integrated within the Long-
Term Evolution (LTE) Evolved Packet Core Architecture.
Ryu et al. [24] describe experimental results of a picture
prioritization method and error concealment mode signaling,
which is calculated and determined at encoder and decoder
sides. Then a smart router acting as a MANE differentiates
the packets with various priorities when congestion occurs.
Jassal and Leung [25] present a simulation of cross-layer
scheduling framework that processed information about the

3

coding structure of an H.265-encoded video bitstream to
quantify the contribution of each frame to the video decoding
process. The authors adopt an LTE-Advanced simulator and
assume that the MAC-layer scheduler located in eNBs has the
ability to parse RTP packets to access information carried in
its payload, thus turning an eNB into a MANE. A MANE is
also used in [3], where the authors present a scalable H.265
video optimization mechanism for a 5G architecture.

However, and despite the extensive research in this field
of study, there is still a long way to go to meet consumer
demands, which are weakly defined in some cases. Up to now,
none of the proposed approaches has simultaneously taken into
consideration the particularities imposed by 5G architectures
to achieve a truly scalable solution. In this paper, we describe
a MANE approach that has been specifically designed for 5G
networks and is simultaneously able to fulfill the ambitious
requirements associated with the use case of real-time video
delivery in emergency communications.

B. Traffic Filtering Methods

A MANE is commonly used when inspecting and filtering
media flows in real-time is required. In this section, we review
existing approaches and tools to perform such media flow
filtering in software. As a major filtering approach, Netfilter1

is an open source framework to manipulate and mangle
packets in the Linux IP networking system. It was included
in the Linux kernel 2.4 codebase to replace the ipchains
architecture2. Netfilter defines five different hooks, which are
well-defined points in a packet traversal of the IP protocol
stack. Any packet going through a Netfilter framework will
be checked against such hook points.

Iptables is a user-space program, used as a command-line
tool that allows the configuration of the rules to be added
in each of the hooks of the Linux kernel. Built-in classifier
methods included in the default implementation of iptables
are not able to deal with traffic filtering of different multi-
carriers/operators (tenants) and mobility scenarios where vir-
tualized 5G Networks impose different level of encapsulation
to differentiate and handle users from the control plane of
the network. To overcome such lack, this research work
approaches two different Netfilter module extensions with
byte-matching capabilities: u32 and BSD Packet Filter (BPF).

u323 is a Netfilter mechanism based on byte-matching
techniques that permits dynamic inspection of networking
packets. In particular, it can jump between headers, select a
specific location, and compare a 32 bits extract from the packet
against a given value.

BPF [26] is a byte-matching filtering mechanism that pro-
vides an efficient way of filtering packets in the kernel space.
It is available in most Unix operating systems and provides
a similar functionality to the u32 iptables module. BPF [26]
is a small Virtual Machine (VM) that runs programs (in a
user-friendly high-level syntax) injected from the user space

1https://www.netfilter.org
2https://people.netfilter.org/rusty/ipchains/HOWTO.html
3http://www.netfilter.org/documentation/HOWTO/netfilter-extensions-

HOWTO-3.htm

and attached to specific hooks in the kernel. This generic,
fast and safe solution for implementing packet classification
is being used in many utilities such as libpcap, tcpdump,
iptables and even in virtual networking software such as
Open virtual switch (OVS) for overcoming OpenFlow’s packet
classification limitations.

The scalable network video optimization solution proposed
in this paper leverages and extends existing filtering mech-
anisms to filter media traffic in 5G Networks, handling the
network traffic dynamically, according to the contextual deci-
sions made by the autonomic framework.

C. Video Traffic in 5G

5G is a major evolution over previous technologies in many
senses. Apart from introducing performance improvements of
several orders of magnitude over today’s networks, 5G infras-
tructures provide native support for multi-tenancy, mobility
and dynamic management. In order to provide these features,
5G data packets follow a nested structure, which is illustrated
through an example in Fig. 1.

GTP/IP3/UDP3/

USER
MOBILITY

VXLAN/ MAC2/ IP2/ UDP2/

TENANT/TELCO

MAC1/ IP1/ UDP1/

PHYSICAL
MACHINE

RTP + H265

APPLICATION

Fig. 1. Hierarchical Encapsulation in 5G networks

The first group of headers is related to the communication
between physical machines including Medium Access Control
(MAC), IP and UDP headers. The second group includes a
VXLAN, MAC, IP and UDP, inserted to isolate tenant traffic,
especially for a telecommunication operator sharing the same
physical 5G infrastructure as a tenant. The next group of
headers includes GTP, IP and UDP, and it is introduced to
allow user mobility. GTP is the tunneling protocol employed
in LTE/5G infrastructures to establish the data path for video
transmissions with features such as mobility, admission con-
trol, etc. Finally, the application header and H.265 represent
the data being sent/received by the end users. This study
focuses on real-time video streaming based on SHVC, and the
widely adopted RTP [27] has been then selected for streaming
real-time video. Our research uses the VXLAN protocol to
achieve that tenant isolation as an example, although other
alternative protocols can be employed to fit the same purpose.

H.265/HEVC and its scalable extension (SHVC, or Scalable
H.265) have been developed by adopting a scalable coding
architecture that relies on making high-level syntax only (HLS-
only) changes to underlaying single-layer HEVC standard.
Thus, they achieve highly scalable coding efficiency without
requiring any block-level coding logic changes to the single
layer HEVC cores [4] [28].

An HEVC bitstream consists of a sequence of data units
called Network Abstraction Layer (NAL) units. The first two
bytes of a NAL unit correspond to the header, and the remnant
contains the payload data. Fig. 2 shows the structure of the
NAL unit header, which contains high-level information to
ease parsing the main properties of a NAL unit, e.g., what type
it is, and what layer and temporal sub-layer it belongs to. The

4

format of the RTP payload allows for packetization of NAL
units in each RTP packet, thereby supporting HEVC streaming
for videoconferencing, Internet video streaming, and high-
bitrate entertainment-quality video, among other applications.

Fig. 2. The Structure of the HEVC NAL Unit Header [29]

It is worth noting that a normal IP network uses a very lim-
ited subset of these headers, for instance, MAC/IP/UDP/APP.
Compared to that simple case, several additional headers have
been added to achieve both multi-tenancy and mobility.

III. PROBLEM DESCRIPTION

A. Mathematical formulation

Let us assume that a set of n concurrent users {ui, i =
1 . . . n} are using a 5G network, and each has contracted
a service subscription si based on specific demands that
relate to quality of service requirements. Let us model the
service subscription for each user ui as a vector of m fea-
tures si = { fi,1, fi,2, ..., fi,m}, where the terms fi, j refer to
threshold values required by user ui for each parameter j
in a set that the system can reliably measure (e.g. delay,
bandwidth). Let us also represent the obtained QoS for a user
ui as {mt

i,1,m
t
i,2, ...,m

t
i,m}, where terms mt

i, j refer to system
measurements at an instance in time t, for each parameter
initially considered in the definition of the service subscription.

Under this problem setting, our objective is to construct a
scalable video optimizer that is able to minimize the impact
and time span that some mt

i, j falls below the threshold value
fi, j .

B. Additional Video Optimizer Requirements

In addition to achieving the objetive specified above, we
believe there are a number of essential features that should
be supported by efficient traffic filtering and contextual media
traffic management in 5G networks. Some of these features
are imposed by the 5G infrastructure, and some others are
desirable characteristics that we believe shall be necessarily
supported to allow the deployment of high quality media
services. Next, we give a list of the most relevant properties
that have been taken into consideration in the design of the
proposed solution:
• Support different QoS levels. Traffic differentiation

should be in place according to the service subscription.
• QoE support. Traffic processing should minimize nega-

tive impact on the user’s perceived quality, especially for
video applications.

• Context-awareness. Video optimization requires context
awareness in traffic conditions, e.g., the congestion level,
obtained from monitoring sensors (flow sensors and video
Sensors).

• Application layer filtering. The system in charge of the
network traffic filtering should be able to deal with traffic

of any header/field of any protocol of the OSI protocol
stack, including any Layer 7 video application protocol
as long as this video content is either not encrypted
or encrypted by following the subsample encryption
scheme specified in ISO/IEC 23001-7 [30]. This scheme
leaves the first two bytes of each NAL unit unencrypted
(the header), allowing the vOptimizerVNF to recognize
among different layers of video whereas the payload
remains encrypted. It should be noted that the full content
encryption scheme is out of the scope of this research and
is proposed as future work.

• Scalability. The system should be able to cope with
thousands of flows, while meeting the QoS requirements
e.g., on throughput and latency.

• Bandwidth saving. The traffic processing in video flows
should maximize bandwidth saving to mitigate network
congestion.

• Multi-tenant support. In 5G networks different carriers,
network operators, and verticals are allowed to share the
physical infrastructure by virtualizing functional blocks
of the network architecture as VNFs. To differentiate
the traffic among them, for security and management
reasons, packets need to be encapsulated (e.g in VxLAN).
Thus, the filtering mechanism is required to deal with that
encapsulation.

• Mobility support. LTE and 5G networks must support
mobility of the user equipment (UE). Mobility in 5G
architectures means that packets need to be encapsulated
towards the mobility anchor component (SGW/UPF),
e.g. using the GTP protocol. The traffic filter is thus
required to be able to handle efficiently and directly these
encapsulation headers.

• Dynamic management. Rules based on the context of
real-time monitoring must be implemented dynamically
and removed from the management framework to auto-
matically adapt the video traffic filtering policies. This
dynamic and intelligent management needs to rely on
softwarized network management and NFV technologies
for handling efficiently such adaption.

IV. PROPOSED SOLUTION

A. Management Framework

To be able to provide self-optimization capabilities to dy-
namically adapt network traffic filtering, we have adopted the
management framework illustrated in Fig. 3. This is based
on 5G PPP SELFNET [31], which is compliant with the
ETSI MANO reference architecture [32], and incorporates
new elements that allow for the task at hand. The main roles
and responsibilities of each component are described below.
The numbered arrows indicate the actions sequence in the
video optimization process and will also be further commented
afterwards.

• Physical Layer. It consist of all the physical hardware
equipment of the 5G Infrastructure, including compute,
storage and networking components.

5

SO
N

Ac
ce
ss

La
ye
r

SELFNET API

SO
N

Au
to
no
m
ic

La
ye
r

D
at

a
N

et
w

or
k

La
ye

r

C
on

tro
l

La
ye

r

Data Plane

In
fra

st
ru

ct
ur

e
La

ye
r

N
FVO

 O
rchestration & M

anagem
ent Layer

VNF
Orchestrator

VNF
Management

VIM

Video
Optimizer

Virtualization

Physical Layer

Video
Optimizer

AnalyzerMonitoring Decision
Maker Planner Orchestrator

Resource
InventorySON Sensors SON Actuator

1

2

4 5 6

77

8
8

Aggregator

9 9

2 3

Fig. 3. Selfnet 5G management framework and video optimization process.

• Virtualization Layer. It comprises all the logical hard-
ware equipment created by the hypervisor. This includes
compute, storage and networking through virtualization.

• Data Plane. It represents the physical and logical path
for user communications along the infrastructure.

• SON Sensors. They provide compute, storage and net-
working information metrics about the current status
of the infrastructure. To allow monitoring the level of
congestion of every network port in the infrastructure
and metadata of the video flows, these sensors jointly
report key metrics such as port speed, current bandwidth
consumed per port, and maximum bitrate required per
video flow.

• Resource Inventory. It is maintained by a set of software
components (topology managers) that allows an update-
to-date inventory of physical and logical hardware equip-
ment and services deployed in such hardware. This inven-
tory also maintains a record of active flows, forwarding
tables, and so on.

• Monitoring. It stores all the metrics reported by the
sensors. These are sent either periodic or event-based
metrics to a message bus. The Monitoring component
is registered to the message bus and performs a highly
scalable storage of data.

• Aggregator. It defines and computes aggregated metrics
that are defined as a mathematical combination of the raw
metrics provided by the SON sensors. This component al-
lows for both spatial and temporal aggregation as well as
filtering in order to produce periodic aggregated metrics,
which are then published to the message bus (and stored
in the Monitoring component).

• Analyzer. It allows the definition of rules that are used
to monitor the current status of the infrastructure by
using spatial and temporal correlation in the information
gathered from both the monitoring component and the
resource inventory. The rules produce alertsabout specific
events in the infrastructure that require attention, either
by a human being or by a Decision Maker component.

• Decision Maker. It permits the definition of rules that

are used to make decisions to react to the current status
of the infrastructure by using any spatial and temporal
correlation in the information from the Monitoring and
Analyzer components and from the Resource inventory.
Those rules lead to decisions aimed to govern the strategy
intended to mitigate the alert received by the Analyzer
component.

• Planner. It makes it possible to define templates that are
used to transform the strategy indicated by the Decision
Maker into an ordered set of implementable steps required
to implement the strategy received.

• Orchestrator. It receives an implementable plan and then
orchestrates the execution of each of the steps involved
in the plan in order to enforce it into the infrastructure
with the purpose of resolving the alert.

• SON Actuator. It configures the actuators of the infras-
tructure related to the enforcement of the steps involved
in the process of resolving the alert. As an example, it
inserts rules to control traffic in the data path.

• VNF Orchestrator. It orchestrates the deployment of the
different VNFs using the physical and logical resources
of the infrastructure.

• VNF Manager. It is in charge of the configuration and
the management of the life cycle of the different VNFs
managed in the infrastructure.

• Virtual Infrastructure Manager (VIM). It manages the
different physical and virtual resources of the infrastruc-
ture, including compute, storage and networking.

This general management architecture brings the SDN and
NFV paradigms together and closes a control loop to allow
automated responses to network issues. Design and implemen-
tation challenges related to this architecture are described in
detail in [31].

Taking advantage of said management architecture, the net-
work traffic filtering proceeds according to the steps depicted
in Fig. 3, which are further described below.

1) The administrator pro-actively defines the policies ac-
cording to the QoS required for each service profile.
These policies are translated into an intent format.

2) At run-time, the SON Sensor starts providing monitoring
information through probes to the Monitoring module.
This monitoring traffic is sent through the Pub/Sub
Broker.

3) The aggregation module continuously and dynamically
computes a Congestion Index and reports it to the
Analyzer module.

4) If the congestion level surpasses a threshold, the Ana-
lyzer module detects congestion, and warns the Decision
Maker.

5) The Decision Maker adds new filtering rules to se-
lectively drop traffic coming from a concrete service
with specific QoS requirements, and informs the Planner
module of the decision made. Qos requirements may
vary depending on the service profile selected (e.g a
new ambulance’s intervention). Thus, this module is also
in charge of re-scheduling existing rules in the case of
updates on a particular service requirements.

6

6) The Planner translates the decision communicated by the
Decision Maker into an implementable plan, and informs
the Orchestrator about the best strategy to enforce the
rules in the vOptimizerVNF.

7) The Orchestrator is notified of the deployment of the
rules. Optionally, it might contact the NFV MANO to
deploy (if not deployed yet) the vOptimizerVNF as
a VNF. Then, the Orchestrator contacts the involved
SON Actuator to enforce the filtering rules through the
Northbound API.

8) The SON Actuator contacts the vOptimizerVNF using
a Southbound API to enforce the filtering rules that
will optimize the video transmission. The proposed
filtering mechanism is able to deploy the rules in the
vOptimizerVNF either in the edge or in the VNF domain
of the core of the virtualized 5G Network.

9) Finally, filtering rules are enforced in the vOptimiz-
erVNF through the Southbound API. These rules con-
sider the network traffic filtering requirements described
in section III-B to cope with the real-time and scalable
video traffic, including nested-encapsulation for multi-
tenant and mobility traffic filtering support.

B. Proposed xu32 Filtering Mechanism

Current traffic filtering mechanisms do not fully support
the complex and large rule predicates needed to cope with
requirements laid out in section III-B (e.g. complex nested-
encapsulation). This section describes our proposed traffic
filtering mechanism to circumvent this limitation.

As described in section II-B, u32 is a Netfilter mechanism
based on byte-matching techniques that allows a dynamic
inspection of message payloads. Although u32 filtering pred-
icates are complex and do not follow a human-readable
format, they are expressive enough to construct powerful rules
(predicate + action). As a drawback, u32 only allows a limited
number of characters per predicate. This is an important
restriction when it comes to handling encapsulated traffic since
predicates may become extremely longer compared with pure
IP traffic. While in purely IP traffic we would need to inspect
only 5 protocol headers (MAC/IP/UDP/RTP/H265), in the case
of complex 5G encapsulated data transmissions, this number
may increase (depending on the network segment) up to 12
protocols, as can be seen in Fig. 1. Due to this restriction
in the implementation of u32, it is currently impossible to
build a single predicate for inspecting these 12 protocols at
once. Consequently, long predicates must be divided into many
sub-predicates (ideally one per protocol) to achieve the same
filtering expression, which also entails a new iptables chain to
group them into the same user-rule context. Therefore, network
traffic passing through this matching scheme will suffer time
penalties due to the overhead introduced by jumping chains
and associated sub-predicates.

To significantly reduce those delay penalties, we have
modified the standard u32 Netfilter module to increase the
maximum number of characters per predicate. Our byte-
matching proposal allows describing longer predicates that
cover all involved protocols in a complex 5G encapsulated

data transmission, thereby eliminating the need to create sub-
predicates. Unlikely the standard u32, our byte-matching pro-
posal has achieved a one-to-one relationship between predicate
and rule, and a many-users-to-one iptables chain. When several
users streaming video over a 5G network, the number of jumps
by using the standard u32 would be (NU ∗ NP) + NC, with
NU the number of users, NP the number of protocol headers
and NC the number of chains. Conversely, when using our
modified u32, the number of jumps lessens to just NU. For
example, to control one hundred 5G video-users using the
standard u32 , it would be needed (100*12)+100=1300 jumps
(1200 plus 100 jumps in predicates and chains, respectively)
instead of the just 100 rule-jumps when using a unique but
longer predicate per each user. However, since the matching
efficiency may drop when predicates becomes longer and
longer, we prioritize a premature matching of essential proto-
cols instead to incur in the typical inspection left to right (outer
to inner encapsulation layers) which works just fine in simple
predicates. For example, the tenant’s information is inspected
first (instead of the fourth) to achieve an early decision and
omit the rest of the predicate inspection. By doing so, there is
room for improvement in u32 when complex predicates have
to be processed in real-time communications. Aforementioned
improvements and considerations is that we call the Extended
u32 (xu32).

C. Proposed Scalable Virtual Video Optimizer

In the last edition of the Mobile World Congress
(MWC2018), Qualcomm employed extensive network sim-
ulations to yield an accurate indication of what to expect
when 5G networks are launched. They predicted 490 Mbit/s
median speeds for a common configuration of sub-6 GHz
5G Massive MIMO. They also predicted a 1.4 Gbit/s median
speed for a configuration using 28 GHz millimeter waves4. The
vOptimizerVNF aims to deal with up to 1536 simultaneous
video flows coming from different Distributed Units (DUs).
Assuming a bit rate of 1 Mbit/s per video flow, our video
optimizer service is able to handle about 1.5 Gbit/s (12 vOp-
timizerVNFinstances which manage 128 flows each), which
turns sufficient according to the expected medium speed of the
emerging 5G networks. It is noted that the value of 1 Mbps
is chosen for testing the worst possible scenario in terms of
the number of rules (the more rules, the worse) as well as
providing a clear testing example to the readers (1 flow ==
1 Mbps == 1 matching rule). Nevertheless, vOptimizerVNF
would also be able to handle higher bit rates. This section
describes the solution devised to make this vOptimizerVNF
scalable, so that it can cope with a number of flows without
incurring unacceptable delays or packet loss.

The video optimizer service aims to be deployed in the
edge of the 5G network (RAN), meaning the Central Unit
(CU), and in turn our vOptimizerVNF might need to cope
with around 1500 users sending video flows simultaneously.
Assuming a video-conference per user at a time, and one
matching filtering rule per flow (i.e. a video Conference), a

4https://qualcomm.com/news/releases/2018/02/25/qualcomm-network-
simulation-shows-significant-5g-user-experience-gains

7

traditional approach such as the one considered in the previous
section would not be able to cope with video traffic filtering
of such a high amount of flows with no packet loss. To fill
this gap, the scalability mechanism proposed in this paper
leverages Virtualization technology to split the management
of thousands of concurrent video flows into different VNFs,
each one holding a different instance of vOptimizerVNF.

The video traffic is forwarded from a load balancer to
the appropriate vOptimizerVNF, segregating the user’s traffic
towards a VNF according to the kind of service subscription
selected (if exists). Then, it is forwarded to a particular VM
according to the 2 bits of the inner IP address assigned to that
particular video profile/subscription, acting as a load balancing
criterion. It should be noticed that the rules are added to the
corresponding VMs according to this representation. Cluster-
ing VMs by subscription type make it possible to assign a
different bandwidth to each VM according to the service type.
Moreover, the entropy in the bits selected to assign type of
services to vOptimizerVNF can be handled in the management
plane as an efficient assignment of IP addresses to active users
of the infrastructure using the DHCP service.

When the video optimizer schema needs to cope with
additional concurrent video flows, these additional flows are
split, forwarded and managed by additional VMs according to
further bits of the IP address. This means the solution proposed
is fully scalable from a logical point of view. However, the
scalability related to the physical network and infrastructure
resources is limited by the bandwidth supported by network
cards, and the rest of the physical infrastructure in terms
of compute and memory. This can be solved by splitting
the deployment across additional physical network appliances,
although this issue has been left out the scope of this paper.

In our design, a Tenant Load Balancer VNF (TenantLB)
holds the rules for balancing the traffic to the associated
vOptimizerVNF. In order to calculate the set of VNFs used to
achieve the load balancer, the algorithms make use of 3 bits in
the IP addresses that have been used in the management plane
to allocate IP ranges to the user of the infrastructure based
on their subscription package as shown in Fig. 4. Thus, every
subscription package will have N vOptimizerVNF s associated
with it and then other bits available in the IP address are
employed to select which vOptimizerVNF to be used within
the group of such subscription type.

D. Cognitive framework

The cognitive framework in our system continuously quan-
tifies the congestion degree of the network at a fine-grain level,
employing an aggregated metric named Congestion Index (CI),
which is defined as follows:

CI =
MaxBitrate

NicSpeed − (CurrentBC − CurrentVFBR)
In this equation, MaxBitrate is the maximum instantaneous

bitrate required for the video flow, NicSpeed is the nominal
bitrate of the NIC interface serving the video flow, currentBC
(CurrentBandwidthConsumed) is the bandwidth (in bitrate)
consumed by all the flows including the concerned video, and

1	 2 3 4 5 6 7 8 1	 2 3 4 5 6 7 8 1	 2 3 4 5 6 7 8

Subscription User/vOptimizer

Tenant
Load

Balancer

User
Load

Balancer

+

NO

YES

vOptimization
service	active?

Input	video
traffic

To	the	usual
networking	data

path

vOptimizers	Stack

Adapted
video	traffic

1	 2 3 4 5 6 7 8

Fig. 4. Scalable virtual video optimizer deployment

CurrentVFBR (CurrentVideoFlowBitrate) is the instantaneous
bitrate measured for the video flow, as illustrated in Fig. 5.
These metrics are reported by the sensors deployed in the
infrastructure.

Nic
Speed

Current video
flow/s bitrate

Current
bandwidth
consumed

Available
bandwidth

Fig. 5. Congestion Index based on the current status of the available/consumed
bandwidth

When the Congestion Index surpasses a given threshold,
it triggers an alert that is processed by the cognitive layer,
leading to the application of the filtering rule in the associated
vOptimizerVNF. Such threshold is inherited from our previous
study in [33], in which we presented a QoE modelling for
UHD video flows in 5G networks. Particularly, it is employed
as a continuous real-time indicator of the "health" of video
application flows at the scale required in future 5G networks.
Subjective and Objective QoE empirical measurements carried
out in that paper have validated high accuracy of any down-
grading QoE prediction. Further details on this QoE modelling
for Ultra-HD video streaming in 5G networks can be found
in [33], [34].

E. Example scenario

To demonstrate the applicability of the presented video
adaptation system in a real scenario, this section presents a
mHealth use case were multiple ambulances are delivering
several health-related video streams to a remote hospital.
Even if all transmissions are considered critical services,
the particular characteristics of each intervention may differ
between ambulances or even between distinct incidents of the
same ambulance during the day. For example, in terms of video
quality, a hearth stroke may require less image sharpness than
a deep wound, where it is crucial to inspect if any vital organ
has been damaged. Therefore, not only critical video services

8

have to be prioritized against non-priority and co-existing user
video streams, but also an intra-service adaptation must take
place to lessen the quality of those critical services with less
quality requirements and ensure a high quality transmission
of others with a higher priority. For the sake of clarity, we
interchangeably use the term profile and subscription of a user
to mean its particular video quality requirements.

Drop

Drop

UHD
Users with an UHD
service profile

Users with an FHD
service profile

Users with an HD
service profile

FHD

HD

Best Effort
Drop

Title
Subhead

ACTION

Cancel

Title
Subhead

HD Guaranteed

Best Effort

Video Quality Service
Select your video profile

UHD Guaranteed

FHD Guaranteed

Uncontrolled
packet loss areaCongestion Index Growing

Fig. 6. Adaptation of the video traffic based on the user subscription and the
current value of the Congestion Index.

The rules are added and decommissioned in the vOptimiz-
erVNF according to the current traffic congestion conditions
and user subscription. Traffic filtering rules for a particular user
flow are added dynamically to the vOptimizerVNF according
to the kind of subscription assigned to the user. This is possible
as the management framework (Decision Maker and Planner
of the framework described in section IV-A) keeps track of the
users’ IP addresses and corresponding profiles together with
the corresponding vOptimizerVNF in charge of handling those
users according to the IP address. They contact the specific
vOptimizerVNF in real-time to enforce a particular rule that
deals with a specific flow.

As shown in Fig. 6, as the Congestion Index increases,
rules are added to the appropriate vOptimizerVNF to drop
different video layers according to users subscription. Three
enhancement layers have been proposed for improving the
spatial resolution of the base layer of the video, namely
High Definition (HD), Full High Definition (FHD) and Ultra-
High Definition (UHD). As an example, users with a HD
Guaranteed Service profile will see a downscaling video
resolution from UHD to FHD when the Congestion Index
surpasses a threshold, and again from FHD to HD if it keeps
growing. However, the video resolution will never fall below
the guaranteed one.

The Congestion Index can be reported directly to the
vOptimizerVNF through the Aggregator in the framework.
However, it might happen that the vOptimizerVNF was not
deployed and managed in the same network domain, and the
Aggregator was not accessible in that network. In such a
case, our vOptimizerVNF is capable of dealing with Explicit
Congestion Notification (ECN) [35], checking the Differen-
tiated Services Code Point (DSCP) field of IPv4 or IPv6
headers [36]. ECN reduces latency and jitter through marking
packets that warn the target when congestion is detected. ECN
employs the two least significant bits to mark the congestion
CE=11 of DSCP. In our proposal, the SELFNET Flow Control
Agent can mark the packet using ECN, when the congestion

is detected. Then, our vOptimizerVNF deployed in a non-
SELFNET aware network can use such congestion indication
in packets, together with the rest of the bits of the DSCP fields,
to differentiate the users’ services, and start filtering the video
layers according to the subscribed service.

To differentiate users’ preferences in packets, the Assurance
Forwarding Per Hop (AF-PHB) protocol provides delivery of
IP packets in four different AF classes using the DSCP header.
Each AF class has a preference, and packets are assigned one
of three different levels of drop precedence, Low, Medium,
or High, thereby resulting in 12 categories as considered in
our proposal. In our case, the vOptimizerVNF instead of
dealing with traffic shaping and policy giving (buffer space
and bandwidth), it performs video optimization according to
differentiated services given by the AF-PHB.

V. IMPLEMENTATION ISSUES

A. Video Filtering Rules

The proposed implementation has been carried out by a
Filtering Agent prototyped in Python using Pika5 as a library
to expose a Northbound interface receiving Intents using the
AMPQ protocol. An Intent defines what type of traffic should
be controlled and the action that needs to be enforced over
such traffic. As an example, let assume that the Filtering Agent
is deployed in both points labeled with C in Fig. 9, and also
that the traffic needs to be dropped in order to filter video
according to the quality of service. The Intent for this example
under such assumptions is depicted in Fig. 7.

Once the Filter Agent is deployed in a vOptimizerVNF, it
is ready for receiving Intents from the SON Actuator (as de-
scribed in section IV-A) and thus ready for applying/removing
network policies in the data path. An Intent is composed of two
concepts: Flows, which is an array for describing the packet
structure of the current bitstream and Action, which contains
information about the ’what’ and ’how’ should be applied
(e.g., add, update or delete a video-rule). Once that information
provided by the Intent has been dissected, a specific filtering
plug-in is selected to transforming the new policy into an
implementable and executable rule. Figure 7 shows an example
where the BPF filtering plug-in has been specified as the one to
use. The Intent is firstly converted into high-level BPF syntax
and sent after to the iptables xt_bpf compiler module for the
byte-coding conversion. Finally, the netlink socket is used for
kernel/user-space communication and the rule is applied into
a hook of the kernel.

B. Prototype of the Proposed Scalable Virtual Video Optimizer

In a dense scenario with multiple users simultaneously
sending video, and a filtering rule per device, it is not feasible
to handle such large quantities of rules and massive traffic
with a single firewall. Moreover, this is further complicated
in light of the complex rules defined that require inspecting
the packets according to multi-encapsulation imposed in 5G
networks. Our solution benefits from leveraging NFV and
cloud-computing technologies to dynamically and on demand

5ttps://pika.readthedocs.io/en/0.11.2/

9

Network
policy
enforcer

intention

 "Flows": [{
 "l3Proto": "2048",
 "encapsulationID1": "00000445",
 "encapsulationID2": "0000D0D4",
 "srcIP": "10.10.7.1",
 "dstIP": "10.10.7.2",
 "l4Proto": "17",
 "srcPort": "5004",
 "dstPort": "5004",
 "structure": "/mac:14/ip4:20/udp:8/
 vxlan:8/mac:14/ip4:20/
 udp:8/gtp:8/ip4:20/udp:8/
 rtp:12/shvc:2"}
 "Action": {
 "actionType": "INSERT",
 "actionName": "DROP",
 "videolayer": 1
 "plugin": "xu32"
 }}

bpf plug-in

src 10.10.7.1 and dst 10.10.7.2 and src
port 5004 and dst port 5004 and udp

Intention

High level rule syntax (BPF example)

u32 plug-in xu32 plug-in

North bound
interface

South bound
interface

0 0 DROP all * * 0.0.0.0/0 0.0.0.0/0 match bpf
19,32 0 0 12,84 0 0 4294967295,21 0 15 2462003738,40 0 0 20,84 0 0
65535,21 0 12 58324,32 0 0 32,116 0 0 8,84 0 0 16777215,21 0 8
10332,40 0 0 42,21 0 6 28242,32 0 0 44,21 0 4 2823123714,32 0 0 62,84
0 0 4294967295,21 0 1 3222011906,6 0 0 65535,6 0 0 0

Flow/s structure dissector

xtables compiler module

Kernel
Hooking
Point

netlink
Byte code (BPF example)

Intent enforcer

Fig. 7. Video Optimizer Architecture

deploy VNFs in the RAN backhaul, in the format of distributed
vOptimizerVNF.

Each vOptimizerVNF deals with a subset of the rules,
according to a network segmentation addressed in a particular
RAN. A first filtering agent acts as a load balancer, and quickly
redirects the traffic to the appropriate vOptimizerVNF accord-
ing to the subset of rules it handles. The network segmentation
and forwarding in the load balancer can be achieved with just
one rule per deployed subsequent vOptimizerVNF, inspecting
the inner IP packet of the encapsulated traffic. Alternatively,
this can be done per tenant, by looking into the VXLAN
header. This scalable approach enables the deployment of ad-
ditional vOptimizerVNFs according to the network conditions,
while our management framework allows the autonomous
configuration of the rules for those vOptimizerVNFs.

VI. EVALUATION OF PROPOSED FILTERING MECHANISM

This section empirically analyzes and compares the pro-
posed solutions in order to find out which one is the most
suitable for video traffic filtering and optimization in 5G
networks, according to the maximum number of flows that
can be managed in an instance of vOptimizerVNF without
having packets lost.

In the worst case in terms of scalability, the administrator
would need the finest grain of details in the control of the
traffic and thus consider one rule per flow. The evaluation aims
to measure the impact of dealing with complex rules that re-
quire deep headers inspection of the packets to support nested-

encapsulation originated by multi-tenancy and mobility. The
testbed estimates the advisable maximum number of complex
filtering rules that can be enforced in one vOptimizerVNF
without incurring packet loss, taking into account the finest
grain conditions, according to different rates of incoming
packets.

In the empirical performance evaluation carried out, each of
the filtering complex rules aims to deal with a different flow,
and therefore, it is composed of 17 antecedents to match differ-
ent fields/headers of the nested-encapsulated packet explained
in section II-C. The antecedents matched in each rule are Inner,
Middle and Outer occurrences of the IP Source, Inner, Middle
and Outer occurrences of the IP Destination, Inner, Middle
and Outer occurrences of the Source Port, Inner, Middle and
Outer occurrences of the Destination Port, Inner occurrence
of the MAC destination address, VXLAN VNI, GTP TEID,
RTP Payload Type and the Layer ID of the HEVC Network
Abstraction Layer.

The evaluation compares traditional BPF and u32 Netfilter
traffic filtering solutions with our proposed mechanism xu32,
when the number of simultaneous flows is increasing and thus
holding an increasing number of filtering rules is required.

The first performance evaluation measures the average of
jitter and delay per a number of simultaneous flows. As can
be seen in Fig. 8a and Fig. 8b, our solution outperforms BPF
and u32 in terms both jitter and delay regardless of the number
of flows. The jitter and delay values are negligible below 128
flows, and in xu32 are far lower compared with the other two
solutions.

The second experiment measures the packet loss as the
number of simultaneous flows handled increases. As depicted
in Figure 8c, BPF and u32 start incurring packet loss when
the number of flows rises over 64. In contrast, our solution
performs well up to 256 flows.

In addition, the empirical evaluation carried out measures
the time required by the network management framework to
deal with the filtering rules, i.e., the time required to load and
flush simultaneously different increasing number of filtering
rules to the filtering agent that handles the flows. Again,
this management times have been compared with traditional
solutions BFP and u32. As can be seen in Table I, BPF is the
solution that requires less computational time for both flushing
and loading operations. Our solution xu32 outperforms u32,
as it requires less predicates and characters to represent the
rules (as explained in section IV-B), making the management
operations lighter in terms of memory, which, in turn, increases
the overall management efficiency.

Given these results, it can be concluded that our proposed
xu32 mechanism is the most suitable solution since it al-
lows identifying and filtering scalable video traffic efficiently
without packet loss with highest number of simultaneous
flows. In addition, it can be concluded that 128 flows per
vOptimizerVNF instance is the appropriate number as a higher
number would lead to packet loss by most of the solutions.
The summary of the achieved empirical performance results,
when 128 video-flows are simultaneously being handled by
using the xu32 technique, are shown in Table II.

10

0,1 0,1 0,9

53,3

0,1

79,7

193,8

401,5

0,18

110,95

284,08

554,33

0
50

100
150
200
250
300
350
400
450
500
550
600

64 128 256 512

DE
LA

Y
IN

 M
IL

LI
SE

CO
N

DS

SIMULTANEOUS FLOWS

Average Delay
(Measuring different filtering techniques)

xu32 - low bpf - low u32 - low

(a)

0,0 0,0 0,7 3,8
0,1

6,3

25,1

90,8

0,1
10,8

51,5

130,4

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

64 128 256 512

JIT
TE

R
IN

 M
IL

LI
SE

CO
N

DS

SIMULTANEOUS FLOWS

Average Jitter
(Measuring different filtering techniques)

xu32 - low bpf - low u32 - low

(b)

0,0 0,0 0,0

59,2

0,0

10,2

76,0

94,4

0,0

24,5

84,3

96,1

0
10
20
30
40
50
60
70
80
90

100

64 128 256 512

PA
CK

ET
 LO

SS
 (%

)

SIMULTANEOUS FLOWS

Percentage of Packet Loss
(Measuring different filtering techniques)

xu32 - low bpf - low u32 - low

(c)

Fig. 8. Comparison of (a) Delay, (b) Jitter and (c) Packets Loss with the three
different filtering techniques as the number of simultaneous flows increases.

VII. EVALUATION OF SCALABLE VIRTUAL VIDEO
OPTIMIZER

A. Infrastructure Deployment

In order to perform a fair evaluation of the proposed
approach, we have deployed an experimental virtualized LTE-
based infrastructure in our labs, which supports 5G features.
Fig. 9 shows a holistic view of our deployment. The manage-
ment plane has been excluded for simplicity. The infrastructure

TABLE I
FLUSHING AND LOADING MANAGEMENT TIMES FOR CLEANING AND

APPLYING DIFFERENT SET OF PER USER VIDEO-RULES, IN MILLISECONDS.

N Flows xu32 bpf u32
Flushing 64 21 ms 16 ms 51 ms
Loading 64 22 ms 22 ms 120 ms

Total: 43 ms 38 ms 171 ms
Flushing 128 23 ms 18 ms 81 ms
Loading 128 23 ms 19 ms 200 ms

Total: 46 ms 37 ms 281 ms
Flushing 256 36 ms 15 ms 123 ms
Loading 256 48 ms 43 ms 378 ms

Total: 84 ms 58 ms 501 ms
Flushing 512 43 ms 19 ms 232 ms
Loading 512 86 ms 61 ms 671 ms

Total: 129 ms 80 ms 903 ms

TABLE II
SUMMARY STATISTICS WHEN 128 VIDEO-FLOWS ARE SIMULTANEOUSLY

BEING HANDLED BY USING THE XU32 TECHNIQUE.

Packet Loss Rate 0.00 %
Average Delay 0.061 ms
Average Jitter 0.014 ms
Flushing Time 23.496 ms
Loading Time 22.956 ms

is composed of 10 computers with Ubuntu 16.04 and an
OpenStack Mitaka release, to permit tenant isolation. The
deployment employs Neutron and OpenDayLight as SDN con-
troller running the NetVirt Neutron interface. OpenDayLight
uses OpenFlow and OVSDB to control the Open vSwitch
(OVS) v2.9 software that administers the data path of the
virtual machines. For clarity reasons, only one Edge and one
Core PC are shown in the figure, but our infrastructure has
two Edge nodes and eight Core nodes. Each box labeled as
Operator X represents a tenant administrative domain. Each
of these tenants has deployed a complete set of VNFs to run
the 5G network.

To conduct the deployment of the VNFs, a Mosaic5G6

infrastructure has been instantiated in each tenant, using
OpenAirInterface 2018.W257, a primary open source mobile
infrastructure with 5G capabilities. The current version of
Mosaic5G allows functional disaggregation of DU and CU,
although still using the LTE spectrum. Moreover, for the
Core network, the current release still uses MME, HSS and
SGW/PGW terminology; however, it is fully virtualized and
running in VNFs. This scenario gives us a realistic sub-6Ghz
5G infrastructure to research and evaluate the traffic along all
the network segments.

It should be noted that the switches labeled with A in
Fig. 9 represent the control points used in OpenStack to
enforce tenant isolation by mean of VLAN, VXLAN, GRE
encapsulation, or any other. The different points in the data
path labeled with B in Fig. 9 represent the data plane (using
IP connectivity) where GTP encapsulation is present to deal
with mobility devices. Notice that after VXLAN encapsulation
is carried out, there is another set of VNFs that are deployed

6http://mosaic-5g.io/
7https://www.openairinterface.org

11

PGW

HSS MME

SGW SGW

MME HSS

PGW

OPERATOR	(1)

CU CU

DU
OPERATOR	(1) OPERATOR	(2)

Radio
Components

(RAN)
Managing

Components	(EPC)

B B
B

vOPT
MANAGEMENT

DU

B

B B
OPERATOR	(2)

A

A

A

C

Fig. 9. Scenario for a real-time video filtering in a virtualized and multi-tenant 5G Infrastructure

in the management tenant space. This tenant is connected to
two different networks which are binded to different Open-
VSwitches, and allows infrastructure administrators to locate
therein VNFs that will receive all the traffic from all the tenants
of the infrastructure.

Packets flowing across the infrastructure shown in Fig. 9
can be encapsulated using different encapsulation protocols
depending on the network segment. The points in the data
path labeled with C represent the locations where the network
traffic is nested-encapsulated. Our proposed video traffic op-
timizer, labeled as vOPT in Fig. 9, is deployed and managed
exactly in those C locations.

B. Experimental Design

A set of experiments has been conducted in order to validate
the suitability and scalability of the proposed scalable virtual
video optimizer service for 5G networks. These experiments
were run over a physical setting that deployed 12 instances
of the vOptimizerVNF, according to the structure shown in
Figure 10. The load balancer VM redirects each flow to the
pertinent vOptimizerVNF, according to the user subscription
and inner IP address. 12 vOptimizerVNFs are needed to cope
with the 1536 flows considered, each one holding up to 128
filtering rules, one per flow. As empirically demonstrated in
section VI, 128 is the advisable number of complex rules per
vOptimizerVNF without incurring packet loss.

One LTE-based smart-phone was connected to this testbed
to reproduce a video streaming packet trace in the data path.
The bitstream was encoded by using the SHVC reference
software8 and streamed with GPAC9 MP4Box multimedia
packager. During functioning, we obtained Packet Captures
(PCAP) files of the interaction between the video streamer
transmitting Scalable H.265 video and the SGW component of
the 5G infrastructure. In addition, PCAPs were extracted from
the real video transmission to stress an increasing number of
video flows.

Such setting has allowed us to evaluate a) how our frame-
work can save network bandwidth as the number of simulta-
neous flows grows (and thus the Congestion Index increases),

8https://hevc.hhi.fraunhofer.de/shvc
9https://gpac.wp.imt.fr

by selectively dropping video flow layers according to the
user’s preferences, i.e. filtering the flows according to user
subscription; and b) the scalability of the system as the number
of flows increases, by measuring the delay introduced in our
solution when addingthe load balancer to the data path, and/or
more vOptimizerVNF instances.

The testbed machine had an Ubuntu 16.04.1 64-bit operating
system, kernel 4.15, 128 GB RAM, 56-core Intel Xeon CPU
E5-2660 v4 @ 2.00GHz, 2TB optical hard disk plus a 500GB
solid-state hard disk. Each of the 13 VMs employed for
the deployment of the video optimizer service (one acting
as Tenand+User load balancer and 12 vOptimizerVNFs) was
deployed with KVM, 8Gb RAM, 2 vCores, 40Gb HDD and
with Ubuntu 16.04.1 Xenial 64-bit with 4.14.50 kernel version,
patched to allow our custom u32 Netfilter module (i.e., xu32).

C. Performance Testing

Tests have been executed 5 times per each vOptimizerVNF
added to the testbed. Results are average results. The first
experiment, whose results are reported in Fig. 11, evaluates
the average end-to-end delay introduced by our solution in
different test cases, as the number of concurrent flows grows,
and therefore, additional vOptimizerVNFs are needed in the
scenario.

Delay is measured from point A to B (in Fig. 10), i.e.
from the moment when the video streaming reaches the
vOptimizerVNF physical machine until it leaves the machine.
Therefore, it includes the time added by the load balancer, the
network time to divert the traffic across the VMs, and the time
required by each vOptimizerVNF to match the flow and drop
the video scalable layer.

In Fig. 11, the x-axis quantifies both the number of vOp-
mizerVNFs and the increasing number of rules associated
with each vOptimizerVNF deployed in the system (adding 128
rules each time). Meanwhile, the y-axis provides information
about the average end-to-end delay (in milliseconds) that
is introduced into the network due to having the proposed
optimization scheme. As it can be appreciated, there is no
correlation between the delay incurred and the number of vOp-
timizerVNFs/rules. The total delay keeps fairly steady as the
number of rules (and video flows) grows, and provide evidence

12

switch_2
virbr3

vOptimizer	
(instance	5)
(513-640)

vOptimizer
(instance	11)
(1281-1408)

vOptimizer	
(instance	10)
(1153-1280)

vOptimizer
(instance	12)
(1409-1536)

vOptimizer
(instance	9)
(1025-1152)

vOptimizer	
(instance	1)
(1-128)

vOptimizer	
(instance	6)
(641-768)

vOptimizer	
(instance	7)
(769-896)

vOptimizer	
(instance	8)
(897-1024)

vOptimizer	
(instance	4)
(385-512)

vOptimizer	
(instance	2)
(129-256)

vOptimizer	
(instance	3)
(257-384)

End-Point

TenantLB+
UserLB

A

switch_1
virbr2

output_network
virbr1

input_network
virbr0

B

Fig. 10. Implementation of the performance evaluation testbed.

that the proposed VNF-based architecture can successfully be
used to deal with volumetric scalability.

0
1
2
3
4
5
6
7
8

1
vO

pt
 (1

28
)

2
vO

pt
 (2

56
)

3
vO

pt
 (3

84
)

4
vO

pt
 (5

12
)

5
vO

pt
 (6

40
)

6
vO

pt
 (7

68
)

7
vO

pt
 (8

96
)

8
vO

pt
 (1

02
4)

9
vO

pt
 (1

15
2)

10
 v

O
pt

 (1
28

0)

11
 v

O
pt

 (1
40

8)

12
 v

O
pt

 (1
53

6)DE
LA

Y
IN

 M
IL

LI
SE

CO
N

DS

NUMBER OF ACTIVE VOPTIMIZERS/RULES

End-to-End Averaged Delay (Network +vOptimizer)

Total Delay

Fig. 11. End-to-End Delay according to the accumulative number of flows-
vOptimizerVNF

Fig. 12 provides further information about the source of the
delay reported in 11, differentiating between that caused by
the network and by the vOptimizerVNF. The network delay
is stable, around 3.5 ms. The vOptimizerVNF fluctuates more
and it is close to 0.5 ms, on average. The network delay could
be improved depending on the network topology, hypervisor
selected, operating system, and routing mechanism enforced.

Fig. 13 shows the bandwidth saved by dropping one video
layer, as the number of activated vOptimizerVNF (and hence
the number of users) grows. vOptimizerVNF optimizes the
video transmission by filtering the corresponding layer to
reduce the resolution from 4k video to 2k video. As expected,
this experiment shows that as the number of concurrent
flows grows, the bandwidth saved increases linearly, as a
consequence of the selective video layer dropping.

These results demonstrate the ability of the vOptimiz-
erVNFs to selectively and intelligently optimize the whole
network traffic and user experience, by dynamically saving
bandwidth according to the actual congestion as the number
of concurrent flows grows.

Increasing the available bandwidth allows video streams to
traverse the network without incurring random packet loss due
to congestion, and consequently, remain video quality level for

0
1
2
3
4
5
6
7

1
 v

O
pt

 (1
28

)

2
 v

O
pt

 (2
56

)

3
 v

O
pt

 (3
84

)

4
 v

O
pt

 (5
12

)

5
 v

O
pt

 (6
40

)

6
 v

O
pt

 (7
68

)

7
 v

O
pt

 (8
96

)

8
 v

O
pt

 (1
02

4)

9
 v

O
pt

 (1
15

2)

10
 v

O
pt

 (1
28

0)

11
 v

O
pt

 (1
40

8)

12
 v

O
pt

 (1
53

6)

DE
LA

Y
IN

 M
IL

LI
SE

CO
N

DS

NUMBER OF ACTIVE VOPTIMIZERS/RULES

End-to-End Averaged Delay
(Network vs vOptimizer)

Networking vOptimizer

Fig. 12. End-to-End Delay by differentiating network vs vOptimizerVNF de-
lay

0
1
2
3
4
5
6
7

0
vO

pt

 (
0)

1
vO

pt
 (1

28
)

2
vO

pt
 (2

56
)

3
vO

pt
 (3

84
)

4
vO

pt
 (5

12
)

5
vO

pt
 (6

40
)

6
vO

pt
 (7

68
)

7
vO

pt
 (8

96
)

8
vO

pt
 (1

02
4)

9
vO

pt
 (1

15
2)

10
 v

O
pt

 (1
28

0)

11
 v

O
pt

 (1
40

8)

12
 v

O
pt

 (1
53

6)BA
N

DW
ID

TH
 IN

 G
BY

TE
S

NUMBER OF ACTIVE VOPTIMIZERS/RULES

Current Bandwidth vs Bandwidth Saved

Bw Saved Current BW

Fig. 13. Current bandwidth versus saved bandwidth when increasing the
number of actives vOptimizerVNF

the final users. Such perceived quality is maintained due to the
fact that there is very little difference between 4K and FHD
versions of a video when streamed with sufficient bandwidth,
especially for end-users watching video on a smartphone-sized
screen. In fact, some viewers in [33] found the FHD version
to be of better quality than the 4K version according to a
subjective feedback study. This supports our assertion that

13

dropping a scalable layer will have little impact on the user’s
perception of quality specially when the most common devices
used for video-conference are smartphones with a limited
screen size.

Although it is not directly the focus of this paper, to
test the scalability of the proposed system when the number
of flows suddenly increases, and therefore several instances
of the vOptimizer are needed, we have recently conducted
experiments to deploy dynamically VNFs through OpenStack.
In this regard, as demonstrated in our recent work [37],
the time taken by the orchestrator to deploy a similar VNF
service in OpenStack is around 4s, regardless of the number
of simultaneous VNFs to be deployed (up to 48 VNFs).

VIII. CONCLUSIONS

This paper has proposed a new Video Optimizer scheme
to deal with large-scale video flow processing in 5G net-
works. A novel network filtering mechanism is introduced to
optimize scalable video streaming flows in a highly scalable
and flexible way by exploring dynamic Video Optimizer
deployment based on NFV, kernel-space traffic filtering and
layered scalable video codec. The latest scalable video coding
standard Scalable H.265 is adopted to demonstrate the future-
proof consideration regarding video applications. The Video
Optimizer is enabled to be aware of multi-tenancy and traffic
tunneling in 5G networks, and thus is ready to be deployed in
such emerging 5G networks.

The main scientific contributions are enumerated as follows.
First, a cognitive management framework has been provided
with its respective interfaces. Second, several technical ap-
proaches to perform kernel-based video optimization have
been analyzed. Third, a novel approach to carry out video
optimization has been provided and validated. Forth, a real
industrially relevant problem has been mathematically mod-
elled. Fifth, a novel approach to scale up network capacity
using VNFs to load balance the processing of video flows has
been provided and validated.

The proposed scheme has been implemented in a realistic
5G testbed. Empirical results demonstrate its advantages in
handling complex 5G video traffic scenarios in relation to the
capability gaps exposed by traditional filtering mechanisms.
Moreover, the benefits in scalability and efficiency to process
thousands of video flows are highlighted, together with the
added value of saving bandwidth in response to network
congestion status whilst meeting the QoE/QoS requirements
for the users.

Future work will integrate the proposed scheme with a
network slicing based 5G system under development, full
encrypted transmissions, and furthermore investigate machine
learning techniques to enhance the cognitive network manage-
ment and video traffic processing capabilities. In addition, and
although the optimizer has specially been designed and tested
in a video setting environment, the framework presented is
sufficiently general to be applied in other contexts. Neverthe-
less, such applicability shall be further studied, and evaluated
in a rigorous way.

ACKNOWLEDGMENT

This work has been partially supported by the European
Commission H2020 5G-PPP ICT-2016-2/761913 (SliceNet:
End-to-End Cognitive Network Slicing and Slice Management
Framework in Visualized Multi- Domain, Multi-Tenant 5G
Networks) project; a postdoctoral INCIBE grant from the
program "Ayudas para la Excelencia de los Equipos de In-
vestigacion Avanzada en Ciberseguridad" with code INCIBEI-
2015-27363; and FEDER and Spanish Gov. through projects
TIN2014-59641-C2-1-P and PGC2018-096463-B-I00.

REFERENCES

[1] Cisco Public, “Cisco public Cisco Visual Networking Index: Global
Mobile Data Traffic The Cisco R© Visual Networking Index (VNI)
Global Mobile Data,” Tech. Rep., 2019, accessed: 2019-4-22. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-738429.pdf

[2] S. CicalÃš, M. Mazzotti, S. Moretti, V. Tralli, and M. Chiani, “Multiple
video delivery in m-health emergency applications,” IEEE Transactions
on Multimedia, vol. 18, no. 10, pp. 1988–2001, Oct 2016.

[3] P. Salva-Garcia, J. M. Alcaraz-Calero, R. M. Alaez, E. Chirivella-Perez,
J. Nightingale, and Q. Wang, “5g-uhd: Design, prototyping and empirical
evaluation of adaptive ultra-high-definition video streaming based on
scalable h.265 in virtualised 5g networks,” Computer Communications,
vol. 118, pp. 171 – 184, 2018.

[4] J. M. Boyce, Y. Ye, J. Chen, and A. K. Ramasubramonian, “Overview
of SHVC: Scalable extensions of the high efficiency video coding
standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 1,
pp. 20–34, Jan. 2016.

[5] International Telecommunication Union, “ITU-T Rec G.107: The E-
model: a computational model for use in transmission planning,” ITU-T
Recommendations, 2015, accessed: 2019-4-22. [Online]. Available:
http://handle.itu.int/11.1002/1000/12505

[6] J. G. Gruber, “Delay Related Issues in Integrated Voice and Data
Networks,” IEEE Trans. on Communications, vol. 29, no. 6, pp. 786–
800, 1981.

[7] M. Abdallah, C. Griwodz, K.-T. Chen, G. Simon, P.-C. Wang, and C.-
H. Hsu, “Delay-Sensitive Video Computing in the Cloud,” ACM Trans.
on Multimedia Computing, Communications, and Applications, vol. 14,
no. 3s, pp. 1–29, 2018.

[8] G. Ma, Z. Wang, M. Zhang, J. Ye, M. Chen, and W. Zhu, “Understanding
performance of edge content caching for mobile video streaming,” IEEE
J. Sel. Areas Commun., vol. 35, no. 5, pp. 1076–1089, May 2017.

[9] H. Ahlehagh and S. Dey, “Video-aware scheduling and caching in the
radio access network,” IEEE/ACM Trans. Netw., vol. 22, no. 5, pp. 1444–
1462, Oct. 2014.

[10] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, and L. Tas-
siulas, “Distributed caching algorithms in the realm of layered video
streaming,” IEEE Trans. Mob. Comput., pp. 1–1, 2018.

[11] J. George and S. Sebastian, “Cooperative caching strategy for video
streaming in mobile networks,” in 2016 International Conference on
Emerging Technological Trends , Kollam, India, Oct. 2016, pp. 1–7.

[12] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire, “Fem-
tocaching and device-to-device collaboration: A new architecture for
wireless video distribution,” IEEE Commun. Mag., vol. 51, no. 4, pp.
142–149, Apr. 2013.

[13] International Organization for Standardization, “ISO/IEC 23009-
1:2014 - dynamic adaptive streaming over HTTP (DASH),”
Tech. Rep. 2, 2014, accessed: 2019-4-22. [Online]. Available:
https://www.iso.org/standard/65274.html

[14] International Organization for Standardization., “ISO/IEC FDIS 23000-
19 Information technology - Multimedia application format (MPEG-A)
- Part 19: Common media application format (CMAF) for segmented
media,” Tech. Rep., 2018, accessed: 2019-4-22. [Online]. Available:
https://www.iso.org/standard/71975.html

[15] M. Claeys, S. Latre, J. Famaey, and F. D. Turck, “Design and evalua-
tion of a Self-Learning HTTP adaptive video streaming client,” IEEE
Commun. Lett., vol. 18, no. 4, pp. 716–719, Apr. 2014.

[16] L. Yu, T. Tillo, and J. Xiao, “QoE-Driven dynamic adaptive video
streaming strategy with future information,” IEEE Trans. Broadcast.,
vol. 63, no. 3, pp. 523–534, 2017.

14

[17] C. Zhou, C. W. Lin, X. Zhang, and Z. Guo, “A Control-Theoretic
approach to rate adaption for DASH over multiple content distribution
servers,” IEEE Trans. on Circuits and Systems for Video Technology,
vol. 24, no. 4, pp. 681–694, Apr. 2014.

[18] E. Adam Bergkvist, I. E. Daniel C. Burnett, C. Cullen Jennings, M. u.
N. . Anant Narayanan, M. C. u. M. . Bernard Aboba, G. Taylor
Brandstetter, and M. Jan-Ivar Bruaroey, “WebRTC 1.0: Real-time Com-
munication Between Browsers,” 2018.

[19] F. Fund, C. Wang, Y. Liu, T. Korakis, M. Zink, and S. S. Panwar,
“Performance of DASH and WebRTC video services for mobile users,”
in 2013 20th International Packet Video Workshop, PV 2013, 2013.

[20] B. Jansen, T. Goodwin, V. Gupta, F. Kuipers, and G. Zussman, “Per-
formance Evaluation of WebRTC-based Video Conferencing,” ACM
SIGMETRICS Performance Evaluation Review, vol. 45, no. 2, pp. 56–
68, 2018.

[21] Y.-K. Wang, R. Even, T. Kristensen, and R. Jesup, “RTP payload
format for h. 264 video,” Tech. Rep., accessed: 2019-4-22. [Online].
Available: https://tools.ietf.org/html/rfc6184

[22] T. Schierl, T. Stockhammer, and T. Wiegand, “Mobile video transmission
using scalable video coding,” IEEE Trans. on Circuits and Systems for
Video Technology, 2007.

[23] C. Mysirlidis, A. Lykoyrgiotis, T. Dagiuklas, I. Politis, and S. Kotsopou-
los, “Media-aware proxy: Application layer filtering and L3 mobility for
media streaming optimization,” in 2015 IEEE International Conference
on Communications (ICC), Jun. 2015, pp. 6912–6917.

[24] E. S. Ryu, Y. Ryu, H. J. Roh, J. Kim, and B. G. Lee, “Towards
robust UHD video streaming systems using scalable high efficiency
video coding,” in 2015 International Conference on Information and
Communication Technology Convergence, Oct. 2015, pp. 1356–1361.

[25] A. Jassal and C. Leung, “H.265 video capacity over beyond-4g net-
works,” in 2016 IEEE International Conference on Communications
(ICC), May 2016, pp. 1–6.

[26] S. McCanne and V. Jacobson, “The bsd packet filter: A new architecture
for user-level packet capture,” in Proceedings of the USENIX Winter
1993 Conference Proceedings on USENIX Winter 1993. San Diego,
California. USENIX Association, 1993, pp. 2–2.

[27] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
transport protocol for real-time applications,” Network Working Group,
Tech. Rep., accessed: 2018-5-22. [Online]. Available: https://www.rfc-
editor.org/info/rfc3550

[28] R. Sjöberg and J. Boyce, “HEVC High-Level syntax,” in High Efficiency
Video Coding (HEVC): Algorithms and Architectures, V. Sze, M. Buda-
gavi, and G. J. Sullivan, Eds. Cham: Springer International Publishing,
2014, pp. 13–48.

[29] Y.-K. Wang, Y. Sanchez, T. Schierl, S. Wenger, and M. M. Hannuksela,
“RTP payload format for high efficiency video coding (HEVC),”
Internet Engineering Task Force (IETF), Tech. Rep., 2016, accessed:
2018-5-22. [Online]. Available: https://www.rfc-editor.org/info/rfc7798

[30] ISO/IEC, “ISO/IEC23001-7: Common encryption in ISO base
media file format files,” Tech. Rep., 2016. [Online]. Available:
https://www.iso.org/obp/ui/#iso:std:iso-iec:23001:-7:ed-3:v1:en

[31] P. Neves, R. Calé, M. R. Costa, C. Parada, B. Parreira, J. Alcaraz-Calero,
Q. Wang, J. Nightingale, E. Chirivella-Perez, W. Jiang, H. D. Schotten,
K. Koutsopoulos, A. Gavras, and M. J. Barros, “The SELFNET approach
for autonomic management in an NFV/SDN networking paradigm,” Int.
J. Distrib. Sens. Netw., vol. 12, no. 2, p. 2897479, Feb. 2016.

[32] ETSI, “ETSI GS NFV-MAN 001,” Etsi, vol. 2, no. 1, pp. 1–184,
2014. [Online]. Available: https://www.etsi.org/deliver/etsigs/NFV −
MAN/001099/001/01.01.0160/gsn f v −man001v010101p.pd f

[33] J. Nightingale, P. Salva-Garcia, J. M. A. Calero, and Q. Wang,
“5G-QoE: QoE modelling for Ultra-HD video streaming in 5G
networks,” IEEE Trans. Broadcast., vol. 64, no. 2, pp. 621–634, Jun.
2018.

[34] SELFNET-consortium, “Deliverable D7.4 Report and Functional
demonstration of the Use Cases,” Tech. Rep., 2018,
accessed: 2019-3-12. [Online]. Available: https://bscw.selfnet-
5g.eu/pub/bscw.cgi/d99265/D7.4 Report and Functional demonstration
of the Use Cases.pdf

[35] S. Floyd, K. Ramakrishnan, and D. L. Black, “The addition
of explicit congestion notification (ecn) to ip,” Tech. Rep.
RFC 3168, 2001, accessed: 2019-3-12. [Online]. Available:
https://tools.ietf.org/html/rfc3168

[36] K. Nichols, D. L. Black, S. Blake, and F. Baker, “Definition of the
differentiated services field (ds field) in the ipv4 and ipv6 headers,”
Tech. Rep. RFC 2474, 1998, accessed: 2019-3-10. [Online]. Available:
https://tools.ietf.org/html/rfc2474.html

[37] P. Salva-Garcia, E. Chirevella-Perez, J. B. Bernabe, J. M. Alcaraz-
Calero, and Q. Wang, “Towards Automatic Deployment of Virtual
Firewalls to Support Secure mMTC in 5G Networks,” in INFOCOM
2019 - IEEE Conference on Computer Communications Workshops,
INFOCOM WKSHPS 2019. IEEE, apr 2019, pp. 385–390. [Online].
Available: https://ieeexplore.ieee.org/document/8845183/

Pablo Salvá García is a Postdoctoral Researcher at
University of the West of Scotland, where he got
his PhD. He is currently involved in H2020 5G-
PPP Phase 2 SLICENET project as previously in
H2020 5G-PPP Phase 1 SELFNET project. His main
interests include Network Management, Cognitive
Control Plane, Quality of Service in Network Traf-
fic Control, Software-Data Paths, Software-Defined
Networks in Cloud Computing, Video Delivery in
Mobile Edge Computing and 5G networks.

Jose M. Alcaraz-Calero is a Full Professor in
networks at University of the West of Scotland. He
is the technical co-coordinator of the EU H2020 5G-
PPP Phase I SELFNET and the EU H2020 5G-PPP
Phase II SliceNet projects. His professional interests
include cognitive pipelines, network management
and control, automation and orchestration in 5G mo-
bile networks. Corresponding Author (jose.alcaraz-
calero@uws.ac.uk)

Qi Wang is a Full Professor at the University of the
West of Scotland. He is the technical co-coordinator
of the EU H2020 5G-PPP Phase I SELFNET and the
EU H2020 5G-PPP Phase II SliceNet projects. His
research interests include wireless/mobile, multime-
dia, and software-defined networks with an emphasis
on 5G.

Miguel Arevalillo-Herráez worked as a post-
doctoral research fellow and a senior lecturer at
Liverpool John Moores University, until 1999. Then,
he left to work for private industry for a one-year
period, and came back to academy in 2000. He was
the program leader for the computing and business
degrees at the Mediterranean University of Science
and Technology until 2006. Since then, he has served
the University of Valencia (Spain), currently as a
Full-Professor in Artificial Intelligence.

Jorge Bernal Bernabe is a senior research fel-
low at University of Murcia as well as Adjunct
Professor in the same department. During the last
years, he has been collaborating in several FP7 and
H2020 European research projects, such as DE-
SEREC, Semiramis, Inter-Trust, SocIoTal, ARIES or
ANASTACIA. His scientific activity is mainly de-
voted to the security, trust, and privacy management
in distributed systems and IoT.

