105 research outputs found

    Study on the Context-Aware Middleware for Ubiquitous Greenhouses Using Wireless Sensor Networks

    Get PDF
    Wireless Sensor Network (WSN) technology is one of the important technologies to implement the ubiquitous society, and it could increase productivity of agricultural and livestock products, and secure transparency of distribution channels if such a WSN technology were successfully applied to the agricultural sector. Middleware, which can connect WSN hardware, applications, and enterprise systems, is required to construct ubiquitous agriculture environment combining WSN technology with agricultural sector applications, but there have been insufficient studies in the field of WSN middleware in the agricultural environment, compared to other industries. This paper proposes a context-aware middleware to efficiently process data collected from ubiquitous greenhouses by applying WSN technology and used to implement combined services through organic connectivity of data. The proposed middleware abstracts heterogeneous sensor nodes to integrate different forms of data, and provides intelligent context-aware, event service, and filtering functions to maximize operability and scalability of the middleware. To evaluate the performance of the middleware, an integrated management system for ubiquitous greenhouses was implemented by applying the proposed middleware to an existing greenhouse, and it was tested by measuring the level of load through CPU usage and the response time for users’ requests when the system is working

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201

    Modified Context Aware Middleware Architecture for Precision Agriculture

    Get PDF
    The opportunities for researchers are enhanced with the progression in the technology of communication and computing. The ease in life of many people like farmers, educators, administers, managers, etc., is increased with more inventions of the researchers using this new technology. The progressive technology for data management is providing more amount of information. However, is the user able to access the needed information when required? This question rises to the more questions like, how to identify whether the information is as per the requirement? Whether a user is authorized or not? The answer for all the questions is to make the support aware of the context. Therefore, the present technology needs to be modified to make the system aware about the context. The process of demonstrating the services based on the context using Wireless Sensor Networks (WSN) with the help of illustration on mango crop is emphasized in this paper. There are many serious problems like unsuitable fertilizer use, wrong selection of crops in wrong seasons, water waste, poor publicizing in the case of farming. These problems are addressed using the ubiquitous context aware middleware architecture for precision agriculture in mango crop

    Combining Wireless Sensor Networks and Semantic Middleware for an Internet of Things-Based Sportsman/Woman Monitoring Application.

    Get PDF
    Wireless Sensor Networks (WSNs) are spearheading the efforts taken to build and deploy systems aiming to accomplish the ultimate objectives of the Internet of Things. Due to the sensors WSNs nodes are provided with, and to their ubiquity and pervasive capabilities, these networks become extremely suitable for many applications that so-called conventional cabled or wireless networks are unable to handle. One of these still underdeveloped applications is monitoring physical parameters on a person. This is an especially interesting application regarding their age or activity, for any detected hazardous parameter can be notified not only to the monitored person as a warning, but also to any third party that may be helpful under critical circumstances, such as relatives or healthcare centers. We propose a system built to monitor a sportsman/woman during a workout session or performing a sport-related indoor activity. Sensors have been deployed by means of several nodes acting as the nodes of a WSN, along with a semantic middleware development used for hardware complexity abstraction purposes. The data extracted from the environment, combined with the information obtained from the user, will compose the basis of the services that can be obtained

    A Stream Processing System for Multisource Heterogeneous Sensor Data

    Get PDF
    With the rapid development of the Internet of Things (IoT), a variety of sensor data are generated around everyone’s life. New research perspective regarding the streaming sensor data processing of the IoT has been raised as a hot research topic that is precisely the theme of this paper. Our study serves to provide guidance regarding the practical aspects of the IoT. Such guidance is rarely mentioned in the current research in which the focus has been more on theory and less on issues describing how to set up a practical system. In our study, we employ numerous open source projects to establish a distributed real time system to process streaming data of the IoT. Two urgent issues have been solved in our study that are (1) multisource heterogeneous sensor data integration and (2) processing streaming sensor data in real time manner with low latency. Furthermore, we set up a real time system to process streaming heterogeneous sensor data from multiple sources with low latency. Our tests are performed using field test data derived from environmental monitoring sensor data collected from indoor environment for system validation. The results show that our proposed system is valid and efficient for multisource heterogeneous sensor data integration and streaming data processing in real time manner

    Internet of things for monitoring environmental conditions in greenhouses: a case of Kiambu County

    Get PDF
    Efficient management of greenhouse farming is a challenge to ensure high yield production. This is a great challenge to farmers who do not have a reliable mechanism to ensure the optimum environmental conditions for their crops. Farmers are opting to look for solutions from technologies such as Machine to Machine and Internet of Things. Machine to Machine Communication refers to solutions that allow communication between devices of the same type and a specific application through wired or wireless communication networks. Moreover, Internet of Things is a connection of physical things to the internet which makes it possible to access remote data and control the physical world from a distance. These types of solutions allow end-users to capture data about events and transfer it to other devices but they do not allow broad sharing of data or connection of the devices directly to the Internet. In this thesis, the researcher investigated the use of machine to machine communication by having small electronic devices equipped with sensors that when deployed in a farm they can record the environmental conditions and communicates the information to the farmers. Moreover, the different types of crops grown in greenhouses at Kiambu County. Thereafter, the information was analyzed and sent to relevant end users such as the farmer and a metrological department that will enable them to monitor and adapt to the environmental conditions. The research used applied method of research, interviews and questionnaires to gather data. Therefore, an IoT prototype was developed to gather the critical environmental conditions in a greenhouse. The recorded data was transmitted by wireless networks using machine to machine (M2M) technologies from the sensors to the cloud platform, Intel IoT analytics dashboard, for real-time predictive analysis of the environmental parameters. An email notification was sent to alert the farmers when the parameters exceeded the threshold which were preset. This IoT prototype was used in small to large commercial indoor operations as well as small personal gardens

    Ag-IoT for crop and environment monitoring: Past, present, and future

    Get PDF
    CONTEXT: Automated monitoring of the soil-plant-atmospheric continuum at a high spatiotemporal resolution is a key to transform the labor-intensive, experience-based decision making to an automatic, data-driven approach in agricultural production. Growers could make better management decisions by leveraging the real-time field data while researchers could utilize these data to answer key scientific questions. Traditionally, data collection in agricultural fields, which largely relies on human labor, can only generate limited numbers of data points with low resolution and accuracy. During the last two decades, crop monitoring has drastically evolved with the advancement of modern sensing technologies. Most importantly, the introduction of IoT (Internet of Things) into crop, soil, and microclimate sensing has transformed crop monitoring into a quantitative and data-driven work from a qualitative and experience-based task. OBJECTIVE: Ag-IoT systems enable a data pipeline for modern agriculture that includes data collection, transmission, storage, visualization, analysis, and decision-making. This review serves as a technical guide for Ag-IoT system design and development for crop, soil, and microclimate monitoring. METHODS: It highlighted Ag-IoT platforms presented in 115 academic publications between 2011 and 2021 worldwide. These publications were analyzed based on the types of sensors and actuators used, main control boards, types of farming, crops observed, communication technologies and protocols, power supplies, and energy storage used in Ag-IoT platforms

    Implementation of Middleware for Internet of Things in Asset Tracking Applications: In-lining Approach

    Get PDF
    ThesisInternet of Things (IoT) is a concept that involves giving objects a digital identity and limited artificial intelligence, which helps the objects to be interactive, process data, make decisions, communicate and react to events virtually with minimum human intervention. IoT is intensified by advancements in hardware and software engineering and promises to close the gap that exists between the physical and digital worlds. IoT is paving ways to address complex phenomena, through designing and implementation of intelligent systems that can monitor phenomena, perform real-time data interpretation, react to events, and swiftly communicate observations. The primary goal of IoT is ubiquitous computing using wireless sensors and communication protocols such as Bluetooth, Wireless Fidelity (Wi-Fi), ZigBee and General Packet Radio Service (GPRS). Insecurity, of assets and lives, is a problem around the world. One application area of IoT is tracking and monitoring; it could therefore be used to solve asset insecurity. A preliminary investigation revealed that security systems in place at Central University of Technology, Free State (CUT) are disjointed; they do not instantaneously and intelligently conscientize security personnel about security breaches using real time messages. As a result, many assets have been stolen, particularly laptops. The main objective of this research was to prove that a real-life application built over a generic IoT architecture that innovatively and intelligently integrates: (1) wireless sensors; (2) radio frequency identification (RFID) tags and readers; (3) fingerprint readers; and (4) mobile phones, can be used to dispel laptop theft. To achieve this, the researcher developed a system, using the heterogeneous devices mentioned above and a middleware that harnessed their unique capabilities to bring out the full potential of IoT in intelligently curbing laptop theft. The resulting system has the ability to: (1) monitor the presence of a laptop using RFID reader that pro-actively interrogates a passive tag attached to the laptop; (2) detect unauthorized removal of a laptop under monitoring; (3) instantly communicate security violations via cell phones; and (4) use Windows location sensors to track the position of a laptop using Googlemaps. The system also manages administrative tasks such as laptop registration, assignment and withdrawal which used to be handled manually. Experiments conducted using the resulting system prototype proved the hypothesis outlined for this research

    A Systematic Review of IoT Solutions for Smart Farming

    Get PDF
    The world population growth is increasing the demand for food production. Furthermore, the reduction of the workforce in rural areas and the increase in production costs are challenges for food production nowadays. Smart farming is a farm management concept that may use Internet of Things (IoT) to overcome the current challenges of food production. This work uses the preferred reporting items for systematic reviews (PRISMA) methodology to systematically review the existing literature on smart farming with IoT. The review aims to identify the main devices, platforms, network protocols, processing data technologies and the applicability of smart farming with IoT to agriculture. The review shows an evolution in the way data is processed in recent years. Traditional approaches mostly used data in a reactive manner. In more recent approaches, however, new technological developments allowed the use of data to prevent crop problems and to improve the accuracy of crop diagnosis.info:eu-repo/semantics/publishedVersio

    Proposal of architecture for IoT solution for monitoring and management of plantations

    Get PDF
    The world population growth is increasing the demand for food production. Furthermore, the reduction of the workforce in rural areas and the increase in production costs are challenges for food production nowadays. Smart farming is a farm management concept that may use Internet of Things (IoT) to overcome the current challenges of food production This work presents a systematic review of the existing literature on smart farming with IoT. The systematic review reveals an evolution in the way data are processed by IoT solutions in recent years. Traditional approaches mostly used data in a reactive manner. In contrast, recent approaches allowed the use of data to prevent crop problems and to improve the accuracy of crop diagnosis. Based on the finds of the systematic review, this work proposes an architecture of an IoT solution that enables monitoring and management of crops in real time. The proposed architecture allows the usage of big data and machine learning to process the collected data. A prototype is implemented to validate the operation of the proposed architecture and a security risk assessment of the implemented prototype is carried out. The implemented prototype successfully validates the proposed architecture. The architecture presented in this work allows the implementation of IoT solutions in different scenarios of farming, such as indoor and outdoor
    • 

    corecore