2,809 research outputs found

    Performance of Electrical Spectroscopy using a Resper Probe to Measure the Salinity and Water Content of Concrete or Terrestrial Soil

    Get PDF
    This paper discusses the performance of electrical spectroscopy using a RESPER probe to measure the salinity s and volumetric content {\theta}W of the water in concrete or terrestrial soil. The RESPER probe is an induction device for spectroscopy which performs simultaneous and non invasive measurements of the electrical RESistivity 1/{\sigma} and relative dielectric PERmittivity {\epsilon}r of a subjacent medium. Numerical simulations establish that the RESPER can measure {\sigma} and {\epsilon} with inaccuracies below a predefined limit (10%) up to the high frequency band (HF). Conductivity is related to salinity and dielectric permittivity to volumetric water content using suitably refined theoretical models which are consistent with the predictions of Archie's and Topp's empirical laws. The better the agreement, the lower the hygroscopic water content and the higher s; so closer agreement is found with concrete containing almost no bonded water molecules provided these are characterized by a high {\sigma}. A novelty of the present paper is the application of a mathematical- physical model to the propagation of errors in the measurements, based on a sensitivity functions tool. The inaccuracy of salinity (water content) is the ratio (product) between the conductivity (permittivity) inaccuracy, specified by the probe, and the sensitivity function of salinity (water content) relative to conductivity (permittivity), derived from the constitutive equations of the medium. The main result is the model's prediction that the lower the inaccuracy for the measurements of s and {\theta}W (decreasing by as much as an order of magnitude from 10% to 1%), the higher {\sigma}; so the inaccuracy for soil is lower.Comment: 45 pages, 5 figures, 1 tabl

    Root Zone Sensors for Irrigation Management in Intensive Agriculture

    Get PDF
    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method). An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS), such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity) marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy) on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy

    EFFECT OF SALINITY ON THE DIELECTRIC PROPERTIES OF GEOLOGICAL MATERIALS : IMPLICATION FOR SOIL MOISTURE DETECTION BY MEANS OF REMOTE SENSING

    No full text
    International audienceThis paper deals with the exploitation of dielectric properties of saline deposits for the detection and mapping of moisture in arid regions on both Earth and Mars. We then present a simulation and experimental study in order to assess the effect of salinity on the permittivity of geological materials and therefore on the radar backscattering coefficient in the [1-7GHz] frequency range. Dielectric mixing models were first calibrated by means of experimental measurements before being used as input parameters of analytical scattering models (IEM, SPM). Simulation results will finally be compared to field measurements (Pyla dune, Death Valley, Mojave Desert) and will be used for the interpretation of SAR data (AIRSAR, PALSAR)

    SYNTHESIS AND EVALUATION OF ANTIMICROBIAL ACTIVITY OF PHENYL AND FURAN-2-YL[1,2,4] TRIAZOLO[4,3-a]QUINOXALIN-4(5H)-ONE AND THEIR HYDRAZONE PRECURSORS

    Get PDF
    A variety of 1-(s-phenyl)-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one (3a-3h) and 1-(s-furan-2-yl)-[1,2,4]triazolo[4,3- a]quinoxalin-4(5H)-one (5a-d) were synthesized from thermal annelation of corresponding hydrazones (2a-h) and (4a-d) respectively in the presence of ethylene glycol which is a high boiling solvent. The structures of the compounds prepared were confirmed by analytical and spectral data. Also, the newly synthesized compounds were evaluated for possible antimicrobial activity. 3-(2-(4-hydroxylbenzylidene)hydrazinyl)quinoxalin-2(1H)-one (2e) was the most active antibacterial agent while 1-(5-Chlorofuran-2-yl)-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one (5c) stood out as the most potent antifungal agent

    Active microwave users working group program planning

    Get PDF
    A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured

    Study on Measuring System of Subsurface Contamination using Complex Dielectric Method

    Get PDF
    For evaluating subsurface contamination, sampling method (boring) is commonly used, but this method cannot monitor the change of in-situ contamination and concentration with respect to time. The purpose of this study is to develop a measuring system for subsurface contamination in which a so-called FDR-V system (Frequency Domain Reflectometry with Vector network analyzer) was employed to measure the salinity contaminant. This FDR-V method is a coaxial probe method,which allows the measurement of the complex dielectric constant from 1GHz to 18GHz. The experimental study indicates the possibility in measuring both the salinity concentration and volumetric moisture content

    Quantitative evaluation of soil ion content using an imaginary part model of soil dielectric constant

    Get PDF
    An imaginary part model of soil dielectric constant for predicting the soil salinity status was developed based on a series of relations between dielectric imaginary part and soil bulk conductivity, soil bulk conductivity and soil solution electrical conductivity, and soil solution electrical conductivity and ion contents in soil using pot trials with different soil salinity levels in the 2008 growing season. This model was calibrated and tested with data from the 2009 growing season. The results showed that the inverted values of the total concentration of salt (Sc), Cl– , and Ca2+ at low frequencies (P-band of microwave observations) from the imaginary part model fitted well with the observed values, since root mean square errors (RMSEs) were 0.34 g kg–1, 0.09 g kg–1 and 0.13 g kg–1, respectively, but the inversion effect of Na+ was relatively poor. Moreover, the Sc, Cl– , and Na+ could be well inverted at high frequencies (C-band of microwave observations), since RMSEs were minor, with values of 0.25 g kg–1, 0.02 g kg–1, and 0.15 g kg–1, respectively. The close fit between the observed and inverted values indicated that the present models could be used to estimate soil ion content quickly and reliably under different saline conditions, which, when suitable measures are taken, can be used to reduce the effects of soil salinity on crop growth

    SYNTHETIC APERTURE RADAR OBSERVATIONS AT SALAR DE PAJONALES, CHILE

    Get PDF
    Remotely sensed microwave radars provide the spatial and temporal coverage needed to improve our understanding of the relationship between moisture content and salt pan mineralogy and, ultimately, climate variability. Moisture content in the surface and near-surface crusts found in salt pan environments, such as salt pan, has a significant impact on the backscatter values recorded by synthetic aperture radar (SAR) systems. This is because moisture affects the dielectric constant and surface roughness of the saline surface, which in turn influences the amount of electromagnetic energy reflected back to the SAR sensor. Changes in backscatter values are attributed to seasonal and interannual variations in salar surface properties (dielectric constant and surface roughness) and correlate with variations in regional climate trends. To better understand the spatial and seasonal dynamics of a salt pan (also known as salar), this study interprets a series of Sentinel-1 SAR images collected over Salar de Pajonales, Chile between 01 January 2019 and 31 December 2021. A total of 171 images were collected at 6-day intervals and processed using the Alaska Satellite Facility’s Hyp3 pipeline. An image stack was compiled and a time series was explored with the open-source, cloud-based platform, OpenSARLab. The time series of a mixed evaporite-mineral surface (composite surface) revealed that seasonal changes in dielectric properties and surface roughness drive variations in backscatter values at Salar de Pajonales. Rougher surfaces had stronger backscatter values in areas with higher surface roughness, except in wet conditions when increased soil moisture led to higher dielectric properties and, consequently, increased backscatter values. Mean backscatter values varied across the salar, with greater variability for the composite surface. These results underscore the significance of both dielectric properties and surface roughness when interpreting SAR data in salt pan environments, such as Salar de Pajonales. Future field studies on different salar surfaces are needed. Those studies should include in situ surface and near-surface water samples, the composition of sediment samples, and the installation of climate stations. These surface data would enable precise dielectric constant and surface roughness models and subsequently, better remotely sensed soil moisture measurements
    • 

    corecore