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Abstract 
 

McInenly, M., Master of Science, 2023     Major 

          Geoscience 

 

Synthetic Aperture Radar Observations at Salar de Pajonales, Chile 

 

Chairperson:  Dr. Nancy Hinman  

 

Remotely sensed microwave radars provide the spatial and temporal coverage needed to improve 

our understanding of the relationship between moisture content and salt pan mineralogy and, 

ultimately, climate variability. Moisture content in the surface and near-surface crusts found in 

salt pan environments, such as salt pan, has a significant impact on the backscatter values 

recorded by synthetic aperture radar (SAR) systems. This is because moisture affects the 

dielectric constant and surface roughness of the saline surface, which in turn influences the 

amount of electromagnetic energy reflected back to the SAR sensor. Changes in backscatter 

values are attributed to seasonal and interannual variations in salar surface properties (dielectric 

constant and surface roughness) and correlate with variations in regional climate trends. To 

better understand the spatial and seasonal dynamics of a salt pan (also known as salar), this study 

interprets a series of Sentinel-1 SAR images collected over Salar de Pajonales, Chile between 01 

January 2019 and 31 December 2021. A total of 171 images were collected at 6-day intervals 

and processed using the Alaska Satellite Facility’s Hyp3 pipeline.  An image stack was compiled 

and a time series was explored with the open-source, cloud-based platform, OpenSARLab. The 

time series of a mixed evaporite-mineral surface (composite surface) revealed that seasonal 

changes in dielectric properties and surface roughness drive variations in backscatter values at 

Salar de Pajonales. Rougher surfaces had stronger backscatter values in areas with higher surface 

roughness, except in wet conditions when increased soil moisture led to higher dielectric 

properties and, consequently, increased backscatter values. Mean backscatter values varied 

across the salar, with greater variability for the composite surface. These results underscore the 

significance of both dielectric properties and surface roughness when interpreting SAR data in 

salt pan environments, such as Salar de Pajonales. Future field studies on different salar surfaces 

are needed. Those studies should include in situ surface and near-surface water samples, the 

composition of sediment samples, and the installation of climate stations. These surface data 

would enable precise dielectric constant and surface roughness models and subsequently, better 

remotely sensed soil moisture measurements. 
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1. Introduction 
 

In recent years, the application of remote sensing tools to analyze terrestrial deserts has 

been the topic of very active research (Phillips et al., 2023; Bhardwaj, 2019). These analyses are 

driven by an increased interest in understanding the controls on microbial life in desert 

environments (e.g., Cabrol, 2018), the importance of deserts in studying global climate change 

(Al-Blooshi et al., 2020), monitoring desert hydrology and aquifers (Burgi and Lohman 2020), 

and as analogues for understanding other planetary bodies (Hinman et al., 2022). Desert 

environments are characterized by low precipitation and high rates of evapotranspiration which 

create unique ecosystems that are particularly sensitive to changes in climate. As semi-arid 

conditions turn hyper-arid, water bodies like ponds and lakes dry up, and dissolved minerals 

concentrate and precipitate to form salt pan surfaces. Salt pan (e.g., salar) formation and 

evolution are linked to changes in atmospheric circulation and precipitation patterns (Thiemens 

et al., 2016), and record changes in near-surface properties (dielectric constant, surface 

roughness, mineralogy) (e.g., Barber et al., 2020). Salt pans serve as a valuable source of 

paleoclimate information and provide unique insights into present climate conditions. 

 

Previous studies (e.g., Vereecken et al., 2014; Li et al., 1996) show how climate affects 

the distribution of near-surface moisture, and that topography and near-surface properties were 

the most important factors influencing the spatiotemporal variability in moisture at the field and 

remotely sensed scales. Researchers have applied numerous techniques for estimating near-

surface moisture (e.g., Zhao et al., 2021; Guo et al., 2020), which include directly measuring the 

weight of near-surface sediments or indirectly by measuring another variable affected by near-

surface moisture (Dutta, 2015; Dorigo et al., 2011). In homogenous sediments, which are 

commonly found in salt pans (e.g., Vaks et al., 2010), direct measurements of moisture include 

significant uncertainty such as differences in measurement techniques, changes in temperature, 

and variability in material composition. Implementing indirect moisture measurement techniques 

such as time domain reflectometry, electrical resistance, and thermal dissipation at the field scale 

proves to be expensive and generally incompatible with dry, saline surfaces typical of salar 

environments. Remote sensing technology decouples the limitations in exploring the 

spatiotemporal variability of near-surface moisture at the salar scale by measuring changes in 

dielectric properties and surface roughness during seasonal wet-dry cycles (Rasheed et al., 2022). 

 

Of specific interest to this study is synthetic aperture radar (SAR) backscatter values, 

because it can effectively monitor changes in salt pan moisture content over time (Barber et al., 

2020; Frison et al., 2013). Analyzing SAR images may improve our understanding of the 

temporal and spatial relationship between moisture content, salt pan mineralogy, and climate 
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variability (Ruch et al., 2012; Leconte and Brissette, 2004). This research assesses the spatial and 

seasonal dynamics of Salar de Pajonales, a salt pan located in Northern Chile (Figure 1), by 

analyzing the microwave backscatter response through a collection of SAR images. Salar de 

Pajonales was chosen for its mixed gypsum-halite evaporite deposits, location in the Andean 

Mountains, and lack of long-term instrumentation, along with the general lack of climate data 

available in this region. 

 

Studying seasonal variation in SAR backscatter values in Salar de Pajonales has 

significant implications as we look for biosignatures on other planets (Phillips et al., 2023; 

Warren-Rhodes et al., 2023). The unique ecosystem of a salar is home to various endemic flora 

and fauna that rely on the salt pan's delicate balance of environmental conditions. We can inform 

conservation efforts and help protect the biodiversity of this vital ecosystem by understanding 

the factors that influence the salt flat's surface properties. Additionally, this research has practical 

implications for resource management and conservation. Chilean salars harbor substantial 

mineral deposits, including lithium, which is in high demand as a key component in advanced 

battery technology. It is important to understand how salar surface moisture changes seasonally 

to develop sustainable resource extraction in the region. 

 

1.1 Salar Moisture Content 

 

Climate has a strong influence on the spatial and temporal variations in surface and near-

surface (less than 5 cm) moisture in salt pan environments (e.g., Zhang et al., 2020). Water is 

found in the subsurface in both liquid and vapor states and is held in place by the cohesion 

between water molecules and the adhesion of water molecules with near-surface sediments (SU, 

2014). Water held by cohesion is called free water because of its capacity to flow on and within 

the surface. Free water within the near-surface evaporates quickly from the capillary fringe as 

seasons change from wet to dry. Bound water refers to water molecules that are attached to the 

outer layer of near-surface particles, particularly clay particles. This type of water is not readily 

mobilized within the subsurface and its rate of evaporation from the subsurface is slower 

compared to free water  

 

Near-surface moisture is commonly measured as point samples; however, this method 

does not account for the spatial and temporal variability in near-surface moisture caused by 

variations in near-surface properties, topography, and vegetation. Remotely sensed microwave 

radars provide the spatial and temporal coverage missed by point sampling near-surface moisture 

(Banerjee, 2022; Li, 2021). Vegetation, terrain, and near-surface properties also influence how 

microwave radar energy interacts with the land surface. Flat regions, like a salar, with little 

vegetation and consistent near-surface properties have the best chance of recording seasonal 

near-surface moisture changes that may translate into climate records. 
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1.2 Geology and Physiography 

 

1.2.1 General Geology 

 

The Altiplano region is located in the northern part of Chile and stretches over 1,000 km 

from the Pacific coast to the Andes Mountains (Figure 2). The entire region is located in the 

tectonically active Andean forearc (Horton et al., 2022; Clift and Hartley, 2007), and significant 

uplift of the entire region occurred during the last 2 Ma (Ortlieb et. al., 1996). Regional geology 

is characterized by four main physiographic provinces: the Coastal Cordillera, the Central 

Depression, the Cordillera Domeyko, and the Andean Cordillera. The Atacama fault system 

bounds the eastern slopes of the Coastal Cordillera with either extensional or strike-slip motion.  

This fault system divides the Coastal Cordillera from the Central Depression, a major north-

south trending intermountain region between the Coastal Cordillera and the Cordillera Domeyko.  

The Central Depression is filled with thick layers of sediments including volcanic ash and 

evaporites (Voigt, 2020).  Internally drained basins, such as the Salar de Pajonales, are located 

east of the Cordillera Domeyko at the foot of the Andean mountains. 

 

Salar formation is an interplay of short- and long- term processes. The current salar 

surface responds to meteorologic, climatic, and geologic conditions in balance with solar 

radiation through time. Salars in this region formed in a setting where tectonic uplift and 

volcanic activity created topographically closed basins (e.g., Henriquez et al., 2019). These 

basins become the depocenter for sediment and salt accumulation that is concentrated through a 

combination of evaporation, diagenesis, and fluid flow processes. As the salar forms, sediments 

and salts undergo physical and chemical changes that redistribute and concentrate salts. As new 

layers of sediment and salt accumulate, old layers compact and expel water with dissolved salts 

which concentrate into brines. As brines evaporate, minerals in the sediments precipitate out of 

solution and bind the sediment together which reshapes the salar surface (Figure 3). 

 

1.2.2 Climate and Weather Conditions 

 

 The Earth's atmospheric and oceanic circulation systems play a critical role in shaping 

global climate and weather patterns. Atmospheric circulation and the generation of trade winds 

result in reduced rainfall zones between 30 degrees north and south of the equator (Cai, 2020). 

Heating at the equator drives air circulation causing it to rise, leading to a high-pressure region 

with colder air replacing warm ascending air from higher latitudes. This circulation pattern 

creates the trade winds that blow from East to West in the subtropics. The trade winds push 

surface waters away from the South American coast and cold water wells up. Upwelling water 

cools the overlying air, reduces the moisture-holding capacity, and leads to reduced rainfall in 
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the region. Episodic changes in trade wind intensity can lead to fluctuations in atmospheric 

circulation and impact climate patterns in South America. 

 

The El Niño-Southern Oscillation (ENSO) is an episodic climate phenomenon that 

affects atmospheric and oceanic circulation systems. During El Niño events, increasing sea-

surface temperatures in the equatorial Pacific Ocean lead to changes in atmospheric circulation 

patterns and global precipitation. In South America, El Niño events are typically associated with 

increased precipitation in the central and northern regions of the continent and drought in the 

southern regions. Conversely, during La Niña events, sea-surface temperatures decreased in the 

equatorial Pacific Ocean which lead to different atmospheric circulation patterns and 

precipitation patterns. In South America, La Niña events are typically associated with drier-than-

normal conditions in the central and southern regions of the continent, and increased 

precipitation in the northern regions. 

 

1.3 Salar de Pajonales 

 

Salar de Pajonales is a 104 km2 salt pan located in the southern region of the hyper-arid 

Andean Altiplano (Figure 2). Nestled in between the Domeyko Cordillera to the west and the 

Andean mountains to the east, Salar de Pajonales is characterized by high UV exposure (Cabrol 

et al., 2014), increased evaporation (-1500 mm/yr) (Risacher and Fritz, 2009), and large annual 

temperature swings (Díaz & Bradley, 2018). A dry river channel outlines the southern portion of 

the salar, while foothills, cinder cones, and the Cordillera complete the border. Active lagoons 

are present at the lowest elevations of the salar.  

 

1.3.1 Geochemistry of Salar de Pajonales 

 

Weathering of volcanic rocks, evaporative concentration, and brine recycling play crucial 

roles in determining the geochemical makeup of water at Salar de Pajonales (Risacher et al., 

2003; Hardie and Eugster, 1970). Nearby volcanic rocks undergo physical weathering processes 

such as erosion, and chemical weathering processes like dissolution and oxidation, producing 

dilute waters that are rich in various elements (Na, Ca, Mg, K, Cl, S, among others). Evaporation 

removes water and concentrates the elements until they reach a level greater than what can be 

held in the solution, leading to oversaturation. At this point, the excess salts begin to precipitate, 

forming salt deposits on and near the salar surface. Additionally, other processes including brine 

mixing and brine recycling driven by heat flow contribute to the high salt concentrations 

observed in salar brines. Risacher et al. (2003) note that most of the incoming salts in Chilean 

salars are recycled salts. This cycle starts as brines seep deep into the basin, heat up, mix with 

meteoric waters, and get enriched before surfacing again. The recycling process serves as a 
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continuous mechanism to maintain high salt concentrations in inflow waters over geologic time 

scales (Risacher et al., 2009; Warren, 2006).  

The most abundant salts found at Salar de Pajonales include halite (sodium chloride) and 

gypsum (calcium sulfate). Geologic mapping (Figure 3; Rodriguez, 2018), identify hard halite 

crusts distributed along the salar’s eastern margin near lagoons. Halite-rich crusts are 

characterized by soft efflorescent crust with smooth dissolution surfaces and hard duricrust with 

rough desiccation cracks. The northern and interior portions of the salar is a composite of 

gypsum and halite crusts, along with windblown unconsolidated siliciclastic clay- and sand-sized 

grains.   

 

2. Methods 
 

2.1 Synthetic Aperture Radar (SAR) 

 

Developed in the early 1950s, radar was first used to image the Earth’s surface without 

obstruction from clouds or atmospheric water vapor. The radar furnished its own illumination, 

and images were collected day and night, proving a considerable advantage over optical images. 

The first scientific use of real aperture radar was for cartography and geological mapping (e.g., 

Rosen et al., 1979; Ledebuhr, 1978; Henderson et al., 1977). Radar returns are sensitive to the 

surface slope, surface roughness, and the presence of water, making it a valuable tool in geologic 

mapping. 

 

Synthetic aperture radar (SAR) is an active sensor that transmits electromagnetic pulses 

and microwave frequencies and listens for echoes (Figure 4). Electromagnetic pulses are 

transmitted and received in different polarizations to increase the information extracted from 

radar images. Echoes are recorded in phase and amplitude; with the phase measuring the distance 

to the target, and amplitude measuring the strength of the signal returned to the sensor.  Modern 

radar sensors transmit and receive microwaves in two polarizations: a vertical transmission and 

vertical reception (VV) known as co-polarized, and vertical transmission and horizontal 

reception (VH) known as cross-polarized. Co- and cross-polarized waves impact the surface and 

backscatter to the sensor with a different amplitude. Radar backscatter signal strength fluctuates 

based on several factors, including surface moisture content and surface roughness. Signal 

strength variations range from no return, such as water bodies, to strong returns, such as rough 

surfaces (Figure 5).  Backscatter values can also be affected by vegetation as it scatters the radar 

signal rather than reflecting it back towards the SAR sensor. Radar waves penetrate through the 

vegetation and reach the underlying surface, where they interact with surface features such as 
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bare soil or rough terrain. The waves are then scattered back toward the sensor, affecting the 

backscatter values. The extent of surface scattering depends on factors such as vegetation 

density, height, and the characteristics of the underlying surface. Co-polarized orientations, like 

those found on the Sentinel-1 SAR system, are best for measuring backscatter values in a salt 

pan environment characterized by rough surface crusts, like Salar de Pajonales (e.g., Barber et 

al., 2020; Ruch 2012).  

 

The European Space Agency's (ESA) Sentinel-1 program is a constellation of two radar 

satellites that provide continuous all-weather, day-and-night imaging of the Earth's surface. Both 

satellites are in a polar orbit at an altitude of about 700 kilometers and maps the Earth surface 

every 12 days. The Sentinel-1 program is particularly well-suited for monitoring changes in 

surface moisture, and capture high-resolution imagery with a short revisit time. This allows for 

frequent monitoring of the same area, enabling the detection of rapid changes in surface 

moisture. The backscatter values from the Sentinel-1 SAR sensors can also be combined with 

other types of data, such as optical imagery from Sentinel-2 and meteorological data from 

weather satellites, to provide a more complete picture of changes in surface moisture over time 

(Barber et al., 2020; Delsouc et al., 2020; Li et al., 2014). 

 

2.2 Backscatter Values 

 

Backscatter values measured from the salar surface are limited to the radar’s penetration 

depth, which is governed by two surface properties: roughness, and the dielectric constant of the 

salar surface. Ulaby et al. (1982) defined an expression for the penetration depth Pd by 

considering a wave traveling from air to a near-surface surface in the z-direction. In general, a 

portion of the wave is scattered back into the air and the remaining wave penetrates the surface. 

Knowing the dielectric properties (𝜀 𝑎𝑛𝑑 𝜀′) of the materials involved we can calculate Pd using 

the relationship: 

 

𝑃𝑑 =
𝜆(𝜀′)0.5

2𝜋𝜀
 

 

The penetration depth (𝑃𝑑) measures the thickness of the top surface layer of the near-

surface sediments that influences the radar backscatter values observed by Sentinel-1 and can be 

approximated as one-half of the transmitted wavelength (𝜆), or ~2.5 cm (Babaeian et al., 2019). 

 

2.2.1 Surface roughness 

 

The Rayleigh criterion (𝜎 =
𝜆

8𝑐𝑜𝑠𝛩
)  is a good first-order approximation of surface 

roughness.  A more stringent criterion is needed when modeling SAR backscatter behavior of a 
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salar surface because the C-band wavelength (𝜆 = 5 𝐺𝐻𝑧) is typically on the same order as the 

microwave backscatter values.  Ulaby et al. (1982) proposed a criterion in which the maximum 

phase difference (𝛩) between rays coming from the center and the edge of the antenna be less 

than 
𝜋

8
 radians.  Known as the Fraunhofer criterion, 𝜎 <

𝜆

32𝑐𝑜𝑠𝛩
 for a surface to be considered 

smooth. Measuring surface roughness depends on frequency, and as measured by Sentinel-1, is 

limited to one-fourth of the C-band frequency or approximately 1.4 cm. This means the salar 

surface appears smooth when height differences on the salar surface vary less than 1.4 cm.  

 

2.2.2 Near-surface dielectric properties 

 

The dielectric behavior of a wet surface is very complex (Dobson et al., 1986; Wang and 

Schmugge, 1980; Ulaby, 1976).  Recall that free water is found on the surface and alongside 

pockets of air within near-surface sediments, whereas bound water is adsorbed on near-surface 

sediments (Figure 6). An isolated water molecule possesses a permanent dipole moment, and 

when a microwave field is applied, the water molecule will align with the electric field. The high 

dielectric constant (approx. 30) for free water is due to the dipole moment of water and its ability 

to rotate at microwave frequencies. For oven dried sediments, the dielectric constant is 

approximately the same for all near-surface types (approx. 4) and depends only on the bulk 

density (Ulaby et al., 1981).  The changes in dielectric properties, which depend on moisture and 

other factors (see Appendix A), can be split into two parts. 

 

When near-surface moisture is between zero and a transition moisture level, most of the 

water molecules in the near-surface are partially bound to sediments, and the dielectric constant 

of the partially bound water is much smaller than that of free water (e.g. Wang and Schmugge, 

1980). When near-surface moisture exceeds the transition level, bound water becomes free water 

and the dielectric constant of the near-surface sediments increases. The transition level depends 

on the near-surface particle surface area per unit volume, and as such, is a function of salar 

mineralogy. 

 

The dielectric constant, ϵ, of the near-surface determines the strength of radar signal 

backscattered from the salar surface. The dielectric constant consists of a real part ϵ ´ and an 

imaginary part ϵ ´´, where j = √(-1): 

ϵ = ϵ ´ - jϵ ´´ 

 

and is related to the index of refraction of surface materials, n, by: 

 

n = √ϵ 

The index of refraction also is a complex quantity composed of a real part n´ and an 

imaginary part n´´: 

n = n´ - jn´´ 
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and these two parts are related to ϵ´ and ϵ´´ by: 

 

n´ = Re{√ϵ } 

n´´ = |lm{√ϵ}| 

 

and the inverse relationships are given by: 

 

ϵ ´ = (n´)2 – (n´´)2 

ϵ ´´ = 2(n´n´´) 

 

The reflectivity (Γ) determines how much of the radar signal transmitted to the surface is 

backscattered by the surface. The transmissivity (T) determines how deep the radar signal 

penetrates the air-near-surface boundary. The conservation of power requires that: 

 

T = 1 – Γ 

 

For a homogenous near-surface medium with a flat surface, the reflectivity looking 

straight down is given by: 

Γ = (
√𝜖−1

√𝜖+1
)2 

 

The power transmitted into the near-surface medium decays exponentially at a rate 

governed by the attenuation coefficient of the near-surface medium, α, which is related to n and ϵ 

by 

 

α = 2π/λ n´´ 

 

If the dielectric constant of the near-surface medium is not constant with depth, then both 

Γ and α are a function of the dielectric constant for the layer between the surface and 

approximately the penetration depth of the radar. Within the approximate penetration depth of 

Sentinel-1, we can observe seasonal changes in backscatter values because the near-surface 

dielectric constant exhibits a substantial response to changes in near surface moisture content 

regardless of surface type (Figure 7).  

 

2.3 Data collection 

 

The Sentinel-1 mission uses a synthetic aperture radar with a 5.6 cm wavelength (C-

band) from a pair of polar-orbiting satellites launched by the European Space Agency as part of 

the Copernicus program (Geudtner et al., 2021). The Sentinel-1A satellite was launched April 3, 

2014, and the Sentinel-1B satellite was launched April 25, 2016. The Sentinel-1B satellite no 
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longer acquires data as of December 23, 2021.  A total of 171 images with a six-day acquisition 

interval were downloaded using the Alaska Satellite Facility’s (ASF) archive, Vertex. Images 

were then pre-processed using the ASF Hyperspectral Imaging Processing Pipeline (HyP3) 

platform (Hogenson et al., 2016) to produce analysis-ready SAR. 

 

Producing a radar image requires multiple corrections and first takes place on the sensor 

platform. The backscattered signal is filtered for sensor and platform related noise, then 

compressed to calculate how far it is to the salar surface.  Finally, the backscatter signal is 

corrected to account for image distortions caused by the moving SAR platform.  Platform 

position and velocity are used to adjust the radar signals so it corresponds to the position of the 

salar. The processed signals are now ready to generate an image of the salar surface; however, 

geocoding and other enhancements are required to correct for errors inherent to the SAR sensor’s 

design. 

 

Geocoding a SAR image involves using the SAR platform's location and orientation to 

map the position of each radar measurement onto the UTM zone of the DEM. Nearest-neighbor 

resampling preserves the pixel values. Next, the images undergo a radiometric terrain correction 

(RTC) to mitigate the geometric distortions causing geolocation errors in terrain features and to 

normalize backscatter values, taking into account the actual area of the salar influencing the 

backscatter returns. The primary distortions in SAR images are foreshortening, layover, and 

shadow (Figure 8). The RTC process produces an image that aligns well with other geospatial 

data, making it suitable for GIS applications and time-series analysis. 

 

Foreshortening often occurs in steep terrains due to the radar platform's oblique viewing 

angle. This results in the radar signal compressing when it hits a vertical surface like a mountain 

slope. The simultaneous arrival of signals from a wide area at the sensor gives the appearance of 

a thin, bright band on images. Layover happens when the mountain’s front slope backscatter 

returns, and possibly some area before the slope begins, reaches the sensor simultaneously as the 

back slope returns, causing some returns to not be imaged. Radar shadow also results in data 

gaps. Specifically, the sensor can't image the back slope of a mountain in this condition. 

 

All terrain corrections for Sentinel-1 radar images use the sensors' slant range geometry. 

A mapping function translates the image from DEM space to SAR space, and the initial image is 

only mapped into the projected space once to prevent the propagation of any resampling errors. 

All intermediate steps do nothing more than update the reference map, and by default, images are 

not co-registered to the DEM. While it is possible to improve RTC results by comparing imagery 

to a high-quality DEM, different acquisitions over the same area rarely match the DEM in the 

same way, in part because of the presence of speckle. Image speckle occurs due to the 
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constructive and destructive interference of the radar waves when they interact with the surface, 

and is removed using a Lee filter (Lee et al., 1994). 

 

The default radar image data type from Sentinel-1 RTC products is the power scale. 

Power scale is appropriate for statistical analysis of the dataset, but may not always be the best 

option for data visualization. When viewing an RTC image in a power scale in a GIS 

environment, it may appear mostly or all black, and may need adjustments to see features in the 

image. For visualization purposes, it is desirable to convert the actual pixel values to the decibel 

scale. The dB scale is calculated by multiplying 10 times the Log10 of the power scale values. 

This scale brightens the pixels, allowing for better differentiation among very dark pixels. This is 

a good scale to use when visualizing moisture changes on the salar surface; the wetter surfaces 

generally remain darker, while drier surface crusts appear brighter.  

 

2.3.1 OpenSARLab 

 

The Alaska Satellite Facility's OpenSARLab is a web-based platform that provides free 

and open access to SAR data, as well as tools and resources for processing and analyzing (Meyer 

et al., 2021). The cloud-computing platform provides customizable computing environments, 

where scientists have access to identical environments, containing the same software, running on 

the same hardware. The OpenSARlab was designed with SAR data science in mind and 

addresses the following issues that often arise when developing SAR data science techniques. 

First, most SAR analysis algorithms require the installation of many interdependent Python 

science packages. Second, SAR data products are often quite large, which leads to slow, 

expensive data transfers. Third, SAR scientists with limited resources may lack access to the 

hardware required for analysis. With access to the Alaska Satellite Facility's OpenSARLab 

platform, SAR data was downloaded, processed with ease, and analyzed using a series of Jupyter 

notebooks. 

 

The first step in a SAR image time series analysis is to organize the 171 RTC images into 

one coherent stack, where all images are georeferenced and have the same dimensions.  The 

“Prepare_Data_Stack_Hyp3” Jupyter notebook (Kennedy and Lewandowski, 2023) was used to 

download the RTC images, convert them to GeoTIFF format, and reproject the image stack to 

UTM zone 19S. This notebook assumes SAR images of Salar de Pajonales were created using 

ASF Vertex and RTC corrected with HyP3, and uses two scientific libraries: the Geospatial Data 

Abstraction Library (GDAL) and NumPy.  GDAL is a software library used to read and write 

raster and vector geospatial data formats for geospatial data processing.  Most modern GIS 

systems use GDAL in the background.  NumPy is one of the principal scientific packages of 

Python, and is used to process large multidimensional arrays like the SAR image stack created 

with the “Prepare_Data_Stack_Hyp3” notebook.  

 



11 

 

The final processing step is to subset the radar image stack with the “Subset_Data_Stack” 

jupyter notebook (Lewandowski, 2023). This notebook crops the image stack to Salar de 

Pajonales using a drag and drop interactive Matplotlib plot. Matplotlib is a low-level library used 

to create two-dimensional diagrams and graphs. The final raster image stack used in the time 

series analysis consists of 171 bands (one band for each image), each with 572 pixels at 10 m 

resolution and 555 lines. In GDAL, pixels and lines are an important concept because they are 

used to define the dimensions of raster image stack (Figure 9). 

 

2.3.2 Backscatter Time Series 

 

The Python library Pandas does the heavy lifting when compiling the SAR image time 

series for Salar de Pajonales.  Pandas is used for data manipulation and analysis, and provides 

data structures and functions for efficiently working with large data sets. The first step is to 

create a time index for the salar surface. Next, a function is used to show mean backscatter 

values, for individual bands, along the time series axes.  In order to calculate mean backscatter 

values, the raster image stack is converted to power units as follows: 

 

time_index = pd.DateTimeIndex(dates) 

 

def show_image(raster_stack, time_index, band_number, output=None, subset=None, 

vmin=None, vmax=None): 

 

    fig = plt.figure(figsize=(16, 8)) 

    ax1 = fig.add_subplot(121) 

    ax2 = fig.add_subplot(122) 

ax1.imshow(raster_stack[band_number-1], cmap='viridis', vmin=vmin, vmax=vmax) 

ax2.plot(time_index, ts_dB) 

 

ts_pwr = np.mean(raster_stack[:, subset[1]:(subset[1]+subset[3]), 

subset[0]:(subset[0]+subset[2])], axis=(1,2)) 

 

ts_dB = 10.0 * np.log10(ts_pwr) 

 

 Individual raster images of the salar surface are displayed in decibel units and the 

backscatter values are plotted alongside.  Individual image dates can be selected and displayed, 

along with the corresponding backscatter values.  For example, backscatter values for the salar 

surface on 15 January 2019 are calculated, displayed (Figure 9), and saved using: 

 

 

band_number = 3 
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subset = [90, 165, 320, 110] 

 

show_image(raster_stack_masked, time_index, band_number, subset=subset, 

output=f"{output_path}/basin_band_{band_number}.png") 

 

Visualizing SAR backscatter values for individual dates and specific areas makes it easy 

to identify and compare mean backscatter values for different surfaces at Salar de Pajonales.  A 

time series of mean backscatter values for a specific area of interest is calculated and displayed 

using the following code: 

 

def timeSeries(raster_stack, time_index, subset, ndv=0.0): 

 

    raster = raster_stack.copy() 

    if ndv != np.nan: 

        raster[np.equal(raster, ndv)] = np.nan 

 

    ts_pwr =np.nanmean(raster[:,subset[1]:(subset[1]+subset[3]), 

subset[0]:(subset[0]+subset[2])], axis=(1, 2)) 

 

    ts_dB = 10.0 * np.log10(ts_pwr) 

    ts = pd.Series(ts_dB, index=time_index) 

 

    return ts 

 

ts = timeSeries(raster_stack_masked, time_index, subset) 

fig = ts.plot(figsize=(16, 4)) 

 

The final step is to add available precipitation data to the time series analysis.  

Precipitation data were acquired from the Climate Hazards Group InfraRed Precipitation with 

Station data sensor (CHIRPS). CHIRPS is a rainfall dataset that spans 35 years from 1981 to 

present, and uses satellite imagery and station data to monitor trends in precipitation and 

droughts over time (Rivera et al., 2018). CHIRPS precipitation (mm) for Salar de Pajonales were 

collected daily with a 4.8 km resolution from 01 January 2019 through 31 December 2021 (Table 

1). Precipitation and backscatter values for multiple salar surfaces (Figure 10) are plotted using 

the following code: 

 

fig, axs = plt.subplots(5, sharex=True, sharey=False,figsize=(10, 6)) 
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fig.suptitle('SdP surface vs precipitation over time') 

 

l1 = axs[0].plot(surface1.index, surface1 ['g0'], color='purple') 

l2 = axs[1].plot(surface2.index, surface2 ['g0'], color='green') 

l3 = axs[2].plot(surface3.index, surface3 ['g0'], color='blue') 

l4 = axs[3].plot(surface4.index, surface4 ['g0'], color='brown') 

l5 = axs[4].plot(precip.index, precip['Precip'], color='black') 

 

I extracted the necessary data from the Python visualizations and imported it into the 

statistical software package, R, to analyze differences in backscatter values for different salar 

surface types. 

 

2.3.3 Data Limitations 

 

This study had some limitations that should be considered when interpreting the results. 

Firstly, the backscatter values were only measured at one frequency (C-band), so the results may 

not be representative of other microwave radar frequencies. Secondly other climate factors, such 

as wind and humidity, and the effects on surface roughness were not taken into account. Finally, 

precipitation events are interpolated datasets derived from cloud cover and constrained with 

regional stream gauge stations.  At present, Salar de Pajonales and the surrounding area are 

poorly instrumented and continuous climate datasets are not readily available. An attempt to 

verify precipitation events was made using optical imagery collected by Sentinel-2 polar-orbiting 

satellites. Some major interpolated precipitation events were confirmed with optical images, 

whereas other major precipitation events were not confirmed with optical images. The lack of 

consistent rainfall data makes it hard to definitively say how changes in moisture affect surface 

roughness and, in turn, affect backscatter values from salar surfaces. 

 

2.4 Statistical Methods 

 

The Wilcoxon rank sum tests and an Analysis of Variance (ANOVA) are used to 

compare the mean backscatter values for different salar surfaces. If you have two groups with 

equal sample sizes but different variances, ANOVA is generally the better way to test the mean 

difference between all groups, because it specifically tests for differences in means across 

multiple groups. While it is possible to use the Wilcoxon rank sum test to compare the means of 

three groups, it involves conducting multiple pairwise comparisons, which increases the risk of a 

false positive error. When conducting ANOVA, the overall variation in the dataset is split into 

two components: variation between the groups and variation within the groups. Bonferroni 

corrections are made to estimate the variation between groups (Kim, 2014). The Bonferroni 

correction involves adjusting the significance level to account for the number of comparisons 
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being made. The Bonferroni correction is a conservative approach that reduces the risk of 

making a false positive error. 

 

3. Results 
 

This study investigated the efficacy of SAR imaging in monitoring wet-dry cycles at 

Salar de Pajonales. Backscatter values varied temporally and with surface type. Regions with 

strong backscatter signals were generally tied with areas having higher inferred surface 

roughness. However, in wet conditions and regardless of surface type, an inferred rise in soil 

moisture led to higher backscatter values due to increased dielectric properties. The study also 

highlighted differences in the mean backscatter values between the salar's western and eastern 

edges, with higher variability in the center. These results suggest that the salar's spatial 

characteristics also influence the backscatter signal, alongside dielectric properties and surface 

roughness. 

.  

 

3.11 Data Description 

 

Overall, my results documented that mean values of SAR backscatter at Salar de 

Pajonales are relatively stable over the three-year period. However, I observed large differences 

in mean backscatter values between a halite-rich surface and a composite surface (Figure 11), 

each of which had distinct means and standard deviations. These differences in backscatter 

values reflect variations in surface properties, which other researchers have tied to surface 

roughness and the dielectric properties. These differences occurred seasonally over two of the 

three years (put in there is there were differences between the halite and composite surfaces). 

 

3.2.1 Seasonal Variation 

 

Dissimilar mean backscatter values of surfaces at Salar de Pajonales reflected differences 

in the surface properties of halite-rich (Figure 11) and composite surface (Figure 12) types, and 

these values changed seasonally and annually over the course of this study (Figure 13). Changes 

in backscatter values reflect seasonal variation and, consequently, have implications for 

monitoring seasonal variations in moisture content and dielectric properties over time.  No 

precipitation data is available for Salar de Pajonales. Instead, regional data from a weather 

station located 85 km to the west (-68.8129 E, -25.1493 W) and weather satellites were used as 

proxies for precipitation events.   
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3.2.2 Halite-rich Surface 

 

Mean backscatter values for a halite-rich surface at Salar de Pajonales range from -7.164 

dB to -3.413 dB with a mean value of -5.052 dB and a standard deviation of 0.760 dB 

(Figure11). Backscatter values usually increased during the dry season. However, changes in 

dielectric properties, driven by precipitation, also influence the backscatter value of the halite-

rich surface. For example, in mid-summer (January) of 2019, Salar de Pajonales received over 40 

times the average daily precipitation (18 mm) for 2019. At the same time, the backscatter value 

(-3.41 dB) was significantly higher than the three-year average (-5.05 dB). Minimum backscatter 

values (-7.16 dB) were recorded within days after two major precipitation events in mid-winter 

(2.7 mm and 1.2 mm, respectively); however, not all rain events led to low backscatter values, 

and not all episodes of low backscatter values corresponded to prior rain events. Conversely, 

backscatter values in 2020 had minimal seasonal variation, despite numerous precipitation events 

mentioned above, and did not follow the expected increase in backscatter values as the surface 

dried out. In late winter and early fall, backscatter values decreased to –6.14 dB.  

 

3.2.3 Composite Surface 

 

Mean backscatter values for a composite surface ranged from -13.628 dB to -6.202 dB, 

with a mean value of -9.438 dB and a standard deviation of 1.423 dB over the study period 

(Figure12). In mid-summer (January), backscatter values rapidly increased from the 2019 

minimum (-13.628 dB) to -9.738 dB, followed by a gradual increase to the 2019 maximum (-

7.911 dB) in mid-winter (July). Backscatter values remained stable until early spring, when they 

quickly decreased to the 2020 minimum (-11.168 dB) in mid-summer (January). As the season 

transitioned to fall (March), backscatter values increased to the 2020 maximum (-6.202 dB). 

Similar to 2019, backscatter values gradually decreased until a sudden spike was observed (-

8.037 dB to -6.333 dB) in late winter (August). For the remainder of 2020, backscatter values 

continued a slow decline through spring (November) (-8.333 dB) and into summer (December) (-

9.173 dB). Backscatter values continued to decrease throughout the summer (February) 2021 (-

9.766 dB) and into mid-fall (Aril) (-10.596 dB), until the 2021 maximum (-8.338 dB) was 

observed in early winter (June). In the weeks following, the 2021 minimum backscatter value (-

11.396 dB) was observed. Backscatter values slightly increased through the remainder of the 

study period (11.098 dB). 

 

A large mid-summer (January) precipitation event (64 mm) correlated with a sudden 

increase in backscatter value from the 2019 minimum (-13.628 dB) to -9.738 dB, immediately 

followed by a gradual increase to the 2019 maximum (-7.911 dB).  Backscatter values remained 

stable until early spring (September), despite sporadic regional precipitation events during the 

fall and winter. Similar to the pattern of a rain event leading to low backscatter values observed 

in 2019, the minimum (-11.168 dB) backscatter value in 2020 occurred in mid-summer 
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(January), immediately following a regional precipitation event (42 mm). Unlike 2019, 

backscatter values quickly increased to a maximum value (-6.202 dB) later in the winter 

(August), and slowly decreased to -9.173 dB for the remainder of the year. Backscatter values 

continued to decrease in 2021, despite regional precipitation events in mid- and late-summer 

(January/February) (22.5 mm and 12.3 mm), and early to late fall (May) (7.9 mm and 5.2 mm. 

The 2021 maximum (-8.338 dB) backscatter value was observed in late fall following nearly 50 

days without regional precipitation. The 2021 minimum (-11.369 dB) backscatter value occurred 

in early winter (June) days after a regional precipitation event. 

 

3.3 Statistical Analysis 

 

The Wilcoxon rank-sum test and the Bonferroni correction were used to identify 

significant differences in the SAR backscatter values of two surface types at Salar de Pajonales.  

Sometimes, observational studies may not meet the assumptions of a normal distribution or they 

have results with unequal variances and small outliers, which make it difficult to use traditional 

parametric tests like the t-test. In such cases, non-parametric tests like the Wilcoxon test or 

permutation test may be more appropriate. Although these tests may yield similar p-values, the 

Wilcoxon test is often preferred over the t-test or permutation test due to its greater robustness 

when dealing with non-normal data with outliers. Unknown factors might influence the variation 

in SAR backscatter values beyond changes in surface roughness or moisture. While the dielectric 

constant and surface roughness account for most of the variation, other physical aspects such as 

salinity and mineralogy, as well as environmental variables such as temperature and 

precipitation, may also play a part. Further data collection is necessary to fully understand how 

SAR backscatter values reflect seasonal wet-dry cycles at Salar de Pajonales. As such, outliers 

should not be discarded as they might be legitimate data points that represent rare precipitation 

events or other unknown factor.  

The Wilcoxon rank-sum test is based on the ranks of the data rather than the actual values 

(Hollander and Wolfe, 1973). The Wilcoxon rank-sum test tests the hypothesis that two groups 

come from populations with the same median value. The null hypothesis for the test is that the 

medians of the two groups are equal, and the alternative hypothesis is that they are not equal. A 

hypothesis test only tells us whether there is evidence of a difference, not how big that difference 

might be. One important assumption of the Wilcoxon rank-sum test is that the observations in 

each group are independent of each other. Here, this assumption would mean each SAR 

observation (location1, value) is independent of all other SAR observations (location2, value). 

Sentinel-1 is in orbit taking adjacent images as it encircles the Earth, and each time Salar de 

Pajonales is imaged, the orbital paths are slightly different, which represents a unique and 

independent observation of the salar surface. 

The test statistic for the Wilcoxon rank-sum test is the U statistic, which represents the 

sum of the ranks for one of the groups. U can be used to calculate a p-value for the test. If the p-
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value is less than the significance level (chosen by the user), we fail to find evidence for the null 

hypothesis and conclude that the two groups have significantly different median values. In 

addition to the Wilcoxon rank-sum test, I performed a post-hoc test to determine how specific 

groups differ significantly from each other. The Bonferroni correction post-hoc test adjusts the 

significance level for each comparison made to control for the increased likelihood of a false 

positive error. The Bonferroni correction ensures we don’t mistakenly conclude that there are 

significant differences between groups when there are not. 

 

3.3.1 Statistical Differences Between Halite-rich and Composite Surfaces 

In pairs, I used the Wilcoxon test to compare the 2019, 2020, and 2021 SAR backscatter values 

between a halite-rich surface and a surface composed of halite, gypsum, and siliciclastic 

sediments. Test results revealed that surface comparisons for all years had near 0 p-values, which 

is very strong evidence against the null hypothesis that each paired surface combination has the 

same median backscatter value. In general, the halite-rich surface had higher backscatter values 

than the composite surface.  

In 2019, the estimated difference in backscatter values for a halite-rich surface was 4.544 

dB higher than the composite surface at 95 % confidence; the difference in backscatter values for 

a halite-rich surface is between 3.403 and 3.764 dB higher than the composite surface. In 2020, 

the estimated difference was slightly lower, with the estimated backscatter values for a halite-

rich being 3.326 dB higher than the composite salar surface.  The true difference in backscatter 

values in 2020 a halite-rich surface being 3.165 to 3.503 dB higher than the composite surface.  

In 2021, the estimated difference in backscatter values for a halite-rich surface was 4.993 dB 

higher than the composite surface, and I am 95% confident the true difference in backscatter 

values for a halite-rich surface was between 4.018 and 4.035 dB higher than the composite salar 

surface. 

 

3.3.2 Bonferroni Correction 

 

Although the Wilcoxon rank sum tests provided some insights into the differences 

between the backscatter values of the salar surfaces, it is worth noting that conducting multiple 

tests increases the chance of false positives (Type I errors). This is particularly important when 

we have multiple comparisons and the p-values are small. In this case, the p-values obtained for 

all comparisons were close to 0, which increases the likelihood of making a false positive error. 

The Bonferroni correction addresses false positives by adjusting the significance level for each 

individual test, such that the overall probability of making at least one false positing is controlled 

at a predetermined level, usually 0.05.  
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The Bonferroni correction uses the significance level of each individual test divided by 

the number of tests being performed. In this study, two tests with an overall significance of 0.05 

require that each test have a significance level of 0.03. Figure 14 shows the Bonferroni-corrected 

95% confidence intervals for Sentinel-1 backscatter values for each salar surface type by year. 

The mean backscatter values for halite-rich surfaces decreased over time, while the backscatter 

values for a composite surface varied more among the years. In 2019, 2020, and 2021, the 

confidence intervals for both surface types did not overlap with each other. This is very strong 

evidence for a difference in backscatter values between the halite-rich and composite surfaces 

from 2019 through 2021. 

 

4. Discussion 
 

This study investigated the application of SAR backscatter values to understand the 

properties and seasonal variability of salar surfaces. SAR backscatter values varied temporally 

and depended on the surface type. Locations with greater surface roughness generally exhibited 

higher backscattering values. However, during moist weather conditions, an increase in moisture 

content also resulted in higher values regardless of surface type. Such variations were observed 

for two surface types: halite-rich and composite. These seasonal deviations in surface and near-

surface properties may also reflect climatic changes and would be valuable as another type of 

climate change record. ASF Hyp3 and the OpenSARLab were used to collect, process, and 

interpret SAR images of Salar de Pajonales at 6-day intervals from 2019 through 2021. The 

changes in backscatter values observed here were attributed to seasonal and interannual variation 

in salar surface properties (dielectric constant and surface roughness) and correlated with 

variations in regional climate trends. 

 Within an area of similar surface properties, differences in the dielectric constant may be 

attributed to different surface types and moisture levels. The backscatter values observed by 

Sentinel-1 between 03 January 2019 and 30 December 2021 corresponded with changes in 

roughness and dielectric properties. Near-surface dielectric properties changed seasonally and 

rapidly responded to sporadic precipitation events. Researchers have reported that shifts in the 

dielectric constant correlate with changes in surface moisture (eg., Barber et al., 2020). At Salar 

de Pajonales, the dielectric constant of the near-surface increased during the winter months and 

decreased during the summer months. Although complex, this relationship holds at Salar de 

Pajonales regardless of surface type.  Other factors, such as salinity and mineralogy, contribute 

to the complexity of the backscatter response (Long and Ulaby, 2014), which in turn contributes 

to the challenges of accurately monitoring the wet-dry cycles at Salar de Pajonales..  
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4.2 Halite Crust 

 

The co-polarized backscatter time series of a halite-rich surface at Salar de Pajonales 

indicated that the surface roughness of the halite crust changes over time.  These shifts likely 

result from changes in precipitation (e.g., Barber et al., 2020; Delcouc et al., 2020). This 

interpretation is based on the nearly synchronous changes in the halite roughness and the 

precipitation patterns observed for the region. During the wet season in 2019, 2020, and 2021 

(Figure 11), the areas of the salar that were covered by halite crust have low backscatter values. 

Conversely, during the dry season, backscatter values are higher. Studies from other halite basins 

established a direct link of decreasing surface roughness of the salt crusts during increased 

precipitation and increased surface roughness due to increased salt crystal formation during the 

dry season (e.g. Barber et al., 2020).  Overall, backscatter values for halite-rich surfaces at Salar 

de Pajonales suggest a strong dependence on precipitation induced wet-dry cycles and the 

associated changes in surface roughness. 

 

An exception to this general trend is a maximum backscatter value (-3.5 dB) of the halite 

crust during a high precipitation period in mid to late summer (January/February) 2019 (Figure 

11). There are two possible explanations for this discrepancy. First, the -3.5 dB reading observed 

may be attributed to changes in the dielectric constant rather than in surface roughness. This 

change may be the result of increased surface moisture, leading to the absorption of moisture by 

halite crystals. As the moisture content increased, the dielectric constant of the crystals also 

increased, and resulted in higher backscatter values and a brighter appearance in radar images. 

Second, regional precipitation dataset for Salar de Pajonales were extrapolated from regional 

cloud cover and rain gauge data in a different watershed and located that are located 

approximately 50 km away, but no direct precipitation measurements are available for Salar de 

Pajonales itself. An analysis of the cloud cover of Sentinel-2 images (Figure 13) reveals that the 

January/February 2019 event did not coincide with intense cloud cover over the halite-rich 

surface studied at Salar de Pajonales (Figure 13). The main cloud cover, and hence rainfall event, 

was concentrated east of the salar in an eastward draining watershed. This differs from other rain 

events in the 2019-2021 dataset, when cloud cover was present at Salar de Pajonales and 

precipitation directly impacted the study area (Figure 13). Thus, the higher backscatter values in 

2019 mid-summer may be a consequence of an intact halite crust that retained its surface 

roughness due to the lack of precipitation in Salar de Pajonales.  

The higher backscatter values in 2019 may be linked to changes in dielectric constant or 

in surface roughness or both. The absence of a similar backscatter signal during the other rainy 

events, and the coinciding lack of cloud cover above Salar de Pajonales during this rain event, 

however, seem to favor the former interpretation of dry conditions in Salar de Pajonales during 

this seasonal wet event. Seasonal variation in surface roughness, not dielectric properties, better 

explains the unexpected increase in backscatter values observed for a halite-rich surface at Salar 

de Pajonales. Due to lack of field data for 2019-2021, this relationship cannot be confirmed. 
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4.3 Composite Surface 

 

The results from the co-polarized backscatter time series of a composite surface at Salar 

de Pajonales demonstrate a complex interaction between dielectric properties and how moisture 

is distributed at and near the surface.  It appears that these interactions to be the direct result to 

regional climate change. Studies from similar salt pans found that as the precipitation levels 

decreased in the dry season, the amount of free water in the system decreases and the amount of 

bound water increases (e.g., Li et al., 2019). I infer that a similar process to be present at Salar de 

Pajonales. The presence of free water on the composite surface, following annual wet periods, 

led to increased SAR backscatter values. Conversely, an increase in water bound, corresponding 

to a decrease in free water, to near-surface sediments decreased in SAR backscatter values 

during dry periods.  

 

Regional precipitation, particularly in 2019, influenced the distribution of free and bound 

water, thereby affecting the corresponding backscatter values. In contrast to the surface 

dominated by halite, where backscatter values are primarily determined by surface roughness, 

the composite surface exhibited backscatter values that were influenced by variations in the 

proportion of free and bound water, resulting in changes in the dielectric constant. During 

periods of high regional precipitation in 2019, more free water was present in the Salar de 

Pajonales, resulting in higher backscatter values (González-Zamora et al., 2018). Unusually high 

amounts of precipitation observed in the mountains surrounding Salar de Pajonales caused an 

abnormally fast transition between free and bound water. Larger amounts of free water in 2019, 

relative to 2020/21, resulted in a rapid increase in backscatter signal and continued to increase 

until free water on and near the surface transitioned to bound water. Similar to the results by Li 

et al. (2019) and González-Zamora et al. (2018), the disproportionate amount of free water in 

2019 disturbed the composite surface enough for free water to infiltrate and bind with the near-

surface sediments, which led to decreased backscatter values observed in September 2019. At 

this point, soil moisture was dominated by bound water, and backscatter signals continued 

decreasing throughout the year.  

 

Laboratory experiments conducted by Hassanizadeh et al., (2002) and Teenhuis et al. 

(1996) evaluate how evaporation rates change as salt concentrations within the capillary fringe 

change. In the capillary fringe, water is held within the sediment pores by capillary forces 

(cohesion and adsorption; Wadge and Archer, 2003). As near-surface salinity increased, the 

evaporation rate of the groundwater decreased (Hassanizadeh et al., 2002). When water 
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containing dissolved salts is drawn to the surface by capillary forces evaporates, the dissolved 

salts are left behind to form crusts. The thickness of salt crusts can vary depending on 

evaporation rate, and in some cases, can halt evaporation all together. The formation of thick salt 

crusts within the sediment of the composite surface, which includes clay-mineral hydration, is 

expected to increase the surface volume and consequently, enhance the surface roughness. 

Increasing surface roughness typically results in increased backscatter values; however, this is 

not observed as the composite surface dries during each seasonal wet-dry cycle. Instead, 

decreasing backscatter values may be attributed to a decrease in the dielectric constant caused by 

water evaporating from near-surface sediments. 

 

Similar to the trend observed in 2019, changes in backscatter values occurred in 2020 

through 2021, the transition between free and bound water happens much faster because there 

are fewer free water inputs (i.e. rain, snow, fog). Sudden increases and rapid decreases in 

backscatter values observed in early fall (March) and late winter (August) 2020, as well as late 

fall (May/June) 2021, correlate with sporadic short term rain events or snow cover during the 

austral winter (Figure 13). The backscatter value decreases from 2020 through 2021 when 

compared to 2019. Aceituno and Salazar (2021) observed snow cover anomalies and identified 

an overall decrease in regional precipitation associated with the 2020 La Niña event in the Andes 

Mountains.La Niña continued through 2021 and the overall decrease in regional precipitation is 

reflected in the gradual decrease in backscatter value for a composite surface at Salar de 

Pajonales.  Backscatter signals attenuate as they penetrate deeper in to the dry surface and this is 

reflected in the decreasing backscatter values observed at Salar de Pajonales. 

 

The backscatter trend observed for composite surface sediments at Salar de Pajonales 

reflects the regional transition from a wetter to a drier period (Figure 13).  The backscatter 

pattern observed in 2019 reflects a wetter climate in relation to the 2019-2020 El Nino event that 

contributed higher than normal precipitation for central and northern Chile (e.g., Garreaud et al., 

2020). Whereas the backscatter pattern recorded from 2020 through 2021 reflects the drier than 

normal conditions caused by 2020-2021 La Niña event (e.g., Romero et al., 2021).  

 

5. Conclusion 
 

In this three-year study, SAR backscatter values differed between two surface types 

found at the surface of Salar de Pajonales. The differences resulted from variations in surface 

roughness and dielectric properties. Further, the backscatter values of the two surface types 

varied according to predictable changes in surface properties as expected from seasonal and 

annual variations in environmental conditions. Subsequently, these variances in surface 

properties were tied to differences in the effects of both the properties of the surface materials 

file:///C:/Users/mmcin/Downloads/null
file:///C:/Users/mmcin/Downloads/null
file:///C:/Users/mmcin/Downloads/null
file:///C:/Users/mmcin/Downloads/null
file:///C:/Users/mmcin/Downloads/null
file:///C:/Users/mmcin/Downloads/null
file:///C:/Users/mmcin/Downloads/null
file:///C:/Users/mmcin/Downloads/null
file:///C:/Users/mmcin/Downloads/null


22 

 

and seasonality on dielectric constant and moisture content. These findings highlight the intricate 

relationship between dielectric properties and surface roughness in determining backscatter 

values. They also emphasize the importance of considering both factors when interpreting SAR 

images in salar environments. Observing changes in surface roughness and moisture levels 

provides insights into Earth's geological processes. These insights extend to the study of similar 

processes on other planets, aiding astrobiology and planetary study. It also helps us understand 

the geologic history and potential for life on other planets. In ecosystem management, 

observations from this research shed light on the impact of climate change on wet-dry cycles. In 

hydrology and water management, it provides the means to monitor water availability, 

facilitating efficient water management strategies for sustainable lithium mining. 

Although available meteorological datasets suggest a connection between rain and snow 

events and reductions in backscattered power, further investigation is required to better 

understand the underlying physical mechanisms driving seasonal changes in backscatter values. 

Notably, the lack of a permanent ground weather station within the basin may limit the accuracy 

of interpreting backscatter signal behavior during seasonal wet-dry cycles. Additionally, precise 

field sampling of surface and near-surface water, crust, and sediments would help to constrain 

interpretations and provide the necessary data for more accurate SAR-derived moisture estimates 

in salt pan environments. While mapping near-surface soil moisture is crucial for understanding 

hydrological processes, it is only one aspect of a larger picture, and other factors such as 

groundwater storage and recharge must also be taken into account. Thus, future studies should 

focus on larger salars or expand the study area to include salt pans in various climates and with 

different mineralogies. 
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7. Figures 
 

  

Figure 1: Optical image of the northern portion of South America. The different countries are outlined in white and solid red circles mark the 
location of study surfaces. (A) Location of Chile, South America. (B) Location of Salar de Pajonales in Chile. (C) Example of a salt crust  at Salar de 
Pajonales. 
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Figure 2: A) Regional physiographic provinces in northern Chile with 
study area marked by a red circle. B) Approximate location of study 
area (red circle) in South America. Credit: Martínez, F., et al., 2022. 

A 

B 



33 

 

 

 

  

Figure 3: A) Geologic Map and cross-section of Salar de Pajonales. B) Optical image of Salar de Pajonales. 
Credit: Rodrigues, 2018. 
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Figure 4: SAR sensor data acquisition geometry.  The radar flies along a straight line and observes Earth at an oblique look 
angle (theta) using radiated pulses at microwave frequencies. The size of the illuminated footprint is defined by the radiated 
pulses and the distance between the satellite and Earth’s surface. Credit: Lauknes, TR, 2011 
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Figure 5: Conceptual sketch of how SAR signals (lambda) vary with surface roughness. (a) smooth, (b) intermediate, (c) rough. 
Credit: Meyer, F., 2019. 
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Figure 6: Schematic representation of mineral particles in a saline soil environment. Sand- and clay-sized particles are 
surrounded by free water (depicted in blue) and air pockets (depicted in white). Thel particles' outer has a thin film of water 
bound to them (depicted in blue). Credit:  http://www.roadex.org/e-learning/lessons/drainage-of-low-volume-roads/water-in-
road-materials-and-subgrade-soils-terminology/ 
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Figure 7: Relationship between soil moisture and dielectric constant for different soil types. 
Credit: Ulaby, FT., et al., 1982 
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Figure 8: Main geometric distortions on SAR images and their dependence on acquisition geometry: (a) 
foreshortening, (b) layover, (c) shadow. Credit: Meyer, F., 2019. 

. 
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Figure 9: OpenSARLab time series output comparing the backscatter values for different surface types found at 
Salar de Pajonales.  (A) halite-rich surface during summer (February) 2019, (B) a composite surface during winter 
(June)  2021 

A 

B 
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Figure 10: SAR backscatter time series, with regional precipitation, for different surface types: (a) halite-rich surface, (b) composite 
surface, (c) precipitation 

A 

B 

C 
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Figure 11: Sentinel-1 co-polarized backscatter values and CHIRPS regional. Changes in backscatter reflect 
seasonal variation in moisture. Backscatter values tend to increase during drier parts of the year and 
decreased during wetter parts of the year, and do not always correlate with precipitation events recorded 
during the study period. 
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Figure 12: Sentinel-1 co-polarized backscatter values and CHIRPS regional precipitation data. Changes in 
backscatter values reflect seasonal variation in a composite surface at Salar de Pajonales. 
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Figure 13: Boxplots, by year, of backscatter values for a halite-rich and composite surface. Mean values are provided in Table 1.  
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Figure 14: Bonferroni corrected 95% confidence intervals for the difference in backscatter values between a halite-rich and 
composite surface.  
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Figure 15: Regional Sentinel-2 shortwave infrared images. Red box outlines Salar de Pajonales. Blue and white clouds represent rain events, 
whereas blue without clouds represent snow events. A) Mid-summer (January) 2019. No precipitation is observed near Salar de Pajonales. Storms 
to the east are inferred by blue and white clouds. B) Mid-summer (January) 2020. No precipitation or nearby storms. C) Mid-summer (January) 
2021. No precipitation in the Salar de Pajonales region. D) Early spring (September) 2019. Snow is seen accumulating in the nearby mountains and 
on the salar surface. E) Early spring (August) 2020. Regional precipitation with partial coverage over the salar. F) Early spring (August) 2021. 
similar to (d), this image represents snow cover at elevations above the salar surface.  

A B C 

F E D 
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Figure 16: Integral equation model simulations for the backscatter values at L-Band. Credit: Lasne et al., 
2008 
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Table 1: Summary statistics. 
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8. Appendix 
 

8.1 Factors Affecting the Dielectric Constant  

 

Introduction 

 

This section delves into other factors affecting the dielectric properties of salar surface 

materials. The primary aim is to understand how temperature, salinity, and mineralogy influence 

the dielectric response of two surface types at Salar de Pajonales: halite-rich crusts and 

composite surfaces with halite, gypsum, and clay minerals. Temperature changes lead to 

structural modifications in minerals that modify their dielectric responses. Salinity causes 

disruptions in water polarization due to ion concentration, which also affect distinct dielectric 

behavior as observed during variations caused by wet-dry cycle induced changes in mineral 

composition. Investigating all factors allows for a more accurate assessment of the dielectric 

properties of salar surfaces, which is necessary to improve our understanding of the temporal and 

spatial relationship between moisture content, salt pan mineralogy, and climate variability in 

salar environments. 

8.1.1 Review of the Dielectric Constant 

 

Recall from section 2.2.2, the dielectric constant is composed of two parts: a real part and 

an imaginary part. The dielectric constant, also known as relative permittivity, primarily 

describes a material's ability to store electrical energy by polarizing its molecular structure in 

response to an external electric field. It consists of a real part and an imaginary part, collectively 

representing the material's total response to the electric field. The real part reflects energy 

storage, and is sensitive to changes in temperature and mineralogy, but not salinity. Using SAR 

data and the laboratory analysis of the dielectric constant with different salt contents, Shao et al. 

(2003) showed that the backscattering value of salt-affected soil correlates more with the 

imaginary part than with the real part of the dielectric constant. 

Materials with a higher real part of the dielectric constant exhibit increased polarization 

and stronger opposing internal fields against the applied external field. Polarizing pure water 

molecules with an electromagnetic field does not directly induce an electric field. Instead, it 

causes the water molecules to experience a reorientation of their electric dipole moments in 

response to the applied electric field. The reorientation of dipole moments polarizes the water, 

and induces a partial separation of charges within the water molecule, leading to the alignment of 

the positive and negative charges in opposite directions. The reorientation of water molecules in 



49 

 

response to the electromagnetic field does not directly induce an electric field, but rather leads to 

the creation of an induced electric dipole moment in the water (). This induced dipole enhances 

the ability of water to store electrical energy and contributes to its high dielectric constant. 

(Shostak and Muenter, 1991). It is important to note that the induced electric dipole moment and 

resulting polarization in the water are temporary and exist only as long as the external 

electromagnetic field is applied. When the field is removed, the water molecules return to their 

original random orientation. 

  The imaginary part relates to energy dissipation or loss, often due to conductivity, and is 

sensitive to changes in temperature, salinity, and mineralogy (Ulaby et al., 1986). emphasizing 

the significant role that dissolved salts play in modifying soil's dielectric behavior. The study 

demonstrates that increased salinity leads to increased soil conductivity due to the presence of 

dissolved salts, which contribute to a greater number of available ionic charge carriers. This 

enhanced conductivity, in turn, increases the imaginary part of the dielectric constant. 

Materials actively conduct electric charges and dissipate energy in the form of heat when 

subjected to an external electric field, a phenomenon known as conductivity. Conductivity 

actively contributes to the occurrence of dielectric loss in a material as charges in motion 

generate energy dissipation, typically manifesting as heat. Dielectric loss can be broadly divided 

into two primary components: energy loss from conductivity and energy loss from dipole 

orientation. These energy losses are accounted for by the imaginary part of the dielectric 

constant, also known as the dielectric loss factor (Ulaby et al., 1981). In the case of most 

materials, the extent of dielectric loss relies on the behavior of charges under the influence of an 

electric field, particularly when a co-polarized SAR signal is applied (Lasne et al., 2007).  

8.1.2 Temperature  

Temperature has a notable impact on the dielectric constant of materials, and in general, 

the dielectric constant of a material tends to decrease with increasing temperature (Hallikainen et 

al., 1985). This effect occurs because temperature affects the mobility and polarization of electric 

charges within the salar surface materials. As temperature increases, the molecular motion and 

vibration within the surface materials increase, which leads to a reduction in the overall 

polarization, and, consequently, the dielectric constant of the salar surface material. In the case of 

halite-rich and composite surfaces, increasing temperature causes water molecules found in open 

pores and stuck to clay-sized particles to vibrate and evaporate. The decreasing near-surface 

moisture content reduces the polarization of the surface materials and the dielectric constant 

decreases. 

However, this is not always the case for salar surfaces since different minerals may have 

varying responses to temperature changes. Higher temperatures can lead to increased ion 

mobility in salar surface materials, especially if water is present (Ulaby et al., 1986). When salts 
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dissolve in water, the higher temperature increases the kinetic energy of the ions, enabling them 

to move more freely within the surface material. As ion mobility increases, the conductivity of 

the surface material also rises. The increased ion mobility and conductivity contributes to the 

overall increased polarization of the wet salar surface material when an electric field is applied 

by the SAR sensor. Research on halite-dominated surfaces by Yu et al., (2021) found that 

increasing temperature may actually increase the dielectric constant as a result of increased 

conductivity. 

8.1.3 Salinity 

 

It is important to distinguish the material the dielectric constant refers to (saline water vs. 

salar surface) in order to understand the impacts of salinity on dielectric behavior of salar 

surfaces. Saline water increases the ion content and conductivity of the surface materials. 

Increasing conductivity results in a higher degree of polarization (both free and bound water), 

and increases the imaginary part of the dielectric constant (Stogryn, 1971).  On the other hand, 

salar surfaces, with their salt crusts and diverse mineral compositions (e.g., halite, gypsum, clay) 

exhibit distinct dielectric properties. Different minerals and moisture contents yield varying 

electrical conductivities and polarizability, and the presence of salts within the surface material 

matrix further influences the dielectric response (Gadani et al., 2014; Ulaby et al., 1996; Dobson 

et al., 1985). 

The dielectric constant of drier salar surface materials typically decreases with increasing 

salinity. This is because, as salinity increases, soils have more bound water, which tends to have 

a lower dielectric constant compared to free water. Research studies have shown that the specific 

effect depends on various factors such as the mineral composition of the salt crust and the 

concentration of salts present. For example, research by Sánchez et al. (2019) investigated the 

dielectric properties of salt crusts in the Salar de Uyuni in Bolivia, and found that salt crust 

conductivity increased as salt concentrations in the crust increased (less free water). Higher 

conductivity led to reduced ability to store charges, and resulted in a lower real part of the 

dielectric constant. Another study by Bianchi et al. (2018) focused on the dielectric properties of 

salt-encrusted surfaces in a coastal area, and determined that the real part of the dielectric 

constant also decreased with increasing salinity of the salt crust due to increased conductivity. 

While higher salinity decreases the real part of the dielectric constant, research by Lasne et al. 

(2007) demonstrated that the imaginary part of the dielectric constant increased with increasing 

salinity, even at low moisture levels. 

An increase in salar surface salinity causes the imaginary part of the dielectric constant to 

increase, especially at high moisture levels. According to Carver (1977), the microwave response 

to soil salinity is dependent on the density of free ions in the soil. Soils with a high concentration 

of salts and moisture have high conductance. Therefore, the imaginary part of the dielectric 

constant would be higher, and lead to increased SAR backscatter values. Current research (Zhao 
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et al, 2020; Wu et al., 2015) confirm Carver’s conclusions, and Lasne et al. (2007) demonstrated 

how SAR backscatter values with increasing salinity. Specifically, Lasne and others observed 

that for minimal moisture levels, the bound water component dominates leading to a weak 

increase in dielectric constant. As moisture levels increased, the free water component increases, 

which allows for a greater number of dissolved salts and increased conductivity. Figure 16 

demonstrates the correlation between modeled backscatter values and increasing dielectric 

values. This correlation arises from the rise in both the real and imaginary parts of the dielectric 

constant as salinity and soil moisture levels increased.. In regards to a halite-rich surface and a 

composite surface at Salar de Pajonales, an overall difference in salinity between the two 

surfaces explains the overall difference in mean backscatter values observed from 2019 through 

2020.  

 

8.1.4 Mineralogy 

 

Different minerals exhibited distinct dielectric properties due to variations in 

polarizability and electrical conductivity. These variations resulted in different responses to the 

applied electric field, affecting both the imaginary and real parts of the dielectric constant (Gong 

et al., 2018; Shao et al., 2003). Salar surface materials (halite, gypsum, clay minerals) contain 

varying amounts of absorbed water and varying degrees of salinity. For instance, clay minerals 

typically have a higher moisture content compared to gypsum or halite, and high-salinity clay 

minerals may exhibit increased dielectric values. Higher salinity leads to increased conductivity 

and polarization of the pore water stuck to clay minerals, which in turn can cause both parts of 

the dielectric constant to increase. The dielectric constant (dimensionless) of clay ranges from 5 

to 40 (Martinez and Byrnes, 2001).  Halite has dielectric constant ranging from 5 to 6 (Martinez 

and Byrnes, 2001). When moisture is present, halite can dissolve in water, leading to the 

dissociation of sodium (Na+) and chloride (Cl-) ions, and increased soil conductivity and 

dielectric loss. Conversely, the dielectric properties of gypsum are influenced by its chemical 

composition and the amount of crystalline water it contains. The dielectric constant of gypsum 

typically varies between 5 and 10 (Martinez and Byrnes, 2001). Although gypsum has lower 

water solubility compared to halite, its impact on conductivity in soil mixtures is less significant.  

A study by Johnson et al. (2015) focused on the dielectric properties of different saline 

soils in the context of SAR remote sensing, and found that the mineral composition of saline 

soils significantly influenced both the real and imaginary parts of the dielectric constant. The 

different SAR signals curves observed for a halite-rich surface (Figure 11) and a composite 

surface (Figure 12), at Salar de Pajonales, might be explained by the differences in mineralogy. 

The slow decay observed on the SAR signal composition curve for the composite surface might 

reflect the time it takes for water bound to the gypsum and clay minerals to evaporate. During 

seasonal wet-dry cycles, clay minerals undergo hydration and dehydration processes due to 

changes in seasonal moisture content. These hydration and dehydration cycles result in changes 

in how much water is bound to clay minerals found in the composite surface. As a result, the 
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composite surface exhibits a distinctly different SAR backscatter signal when compared to the 

halite-rich surface. 

8.1.5 Implications for Remote Sensing 

 

In summary, the temperature, salinity, and mineralogy of saline surfaces at Salar de 

Pajonales have significant impact on its microwave dielectric behavior. The mobility and 

polarization of electric charges within the surface materials are affected by temperature, resulting 

in a general decrease in the dielectric constant with rising temperatures. However, in the 

presence of water, higher temperatures can enhance ion mobility and content, leading to higher 

dielectric constants in surfaces dominated by halite. Salinity plays a crucial role by increasing 

conductivity and influencing polarization, typically resulting in a reduced real part of the 

dielectric constant but an increased imaginary part. Moreover, the specific mineralogy of the 

surface materials, such as halite, gypsum, and clay minerals, imparts distinct dielectric properties 

that also impact the real and imaginary parts of the dielectric constant.  

 

The varying moisture contents and salinities interact uniquely within the applied electric 

field. Understanding the complex interplay among temperature, salinity, and mineralogy is 

essential for accurate remote sensing and environmental modeling applications concerning the 

dielectric behavior of saline surfaces at Salar de Pajonales. Dielectric constant measurements can 

provide useful information about the composition of a saltpan, but quantifying the exact 

composition can be more challenging due to the complex interactions between multiple factors 

that influence the dielectric constant. While it can be used to estimate the general properties of 

the salar surface, deriving precise quantitative measures of composition requires more 

comprehensive analysis and additional data. Nonetheless, dielectric constant measurements can 

be combined with other techniques (geochemical analyses and sedimentological studies) to infer 

salar surface composition more accurately.  
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8.2 Appendix B: R Code 

 

The following R code was used for statistical analysis on SAR backscatter values collected over 

different salar surface types at Salar de Pajonales from 01 Jan 2019 through 31 December 2021. 

R was used for statistical analysis due to its flexibility and versatility in handling large datasets 

and conducting complex analyses. The code presented in this appendix begins with a data import 

section, where the SAR backscatter values are read into R and organized for analysis. The next 

section of the code computes basic descriptive statistics, including mean, minimum, maximum, 

and standard deviation of the backscatter values for each salar surface. The following section 

produces boxplots to visualize the distribution of backscatter values for each surface type. 

Finally, the Wilcoxon rank-sum test with Bonferroni correction and a pairwise analysis with 95% 

confidence interval is conducted to determine if there are significant differences in backscatter 

values between the different saline surface types. 

The following code import the required libraries used for statistical analysis. 

 

knitr::opts_chunk$set(echo = TRUE, results='hide', warning=FALSE, message=FALSE, out.width="100

%", options(continue = " ")) 

library(doBy) 

library(knitr) 

library(tidyverse) 

 

Load the SAR backscatter values for a halite-rich and composite salar surface. Backscatter 

values for each surface type and the year they were collected are stored in a data frame. 

#Load data 

df_composite <- read.csv("vv_soil_dB.csv") 

df_halite <- read.csv("vv_halite_dB.csv") 

 

##Format date column and create new factor from Year.  Add surface type column too! 

 

df_composite$Date <- as.Date(df_composite$Date, format = "%m/%d/%Y") 

df_composite$year <- as.factor(year(df_composite$Date)) 

df_composite <- mutate(df_composite, type = "composite") 

df_composite <- select(df_composite, g0,year,type) 

 

df_halite$Date <- as.Date(df_halite$Date, format = "%m/%d/%Y") 

df_halite$year <- as.factor(year(df_halite$Date)) 
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df_halite <- mutate(df_halite, type = "halite") 

df_halite <- select(df_halite, g0,year,type) 

 

####Manipulate Data#### 

 

##Halite Surface## 

 

df_halite_2019 <- filter(df_halite,year == "2019") 

df_halite_2019 <- mutate(df_halite_2019, pwr = 10^(g0/10),type="halite") 

df_h19 <- select(df_halite_2019,pwr) 

 

df_halite_2020 <- filter(df_halite,year == "2020") 

df_halite_2020 <- mutate(df_halite_2020, pwr = 10^(g0/10),type="halite") 

df_h20 <- select(df_halite_2020,pwr) 

 

df_halite_2021 <- filter(df_halite,year == "2021") 

df_halite_2021 <- mutate(df_halite_2021, pwr = 10^(g0/10),type="halite") 

df_h21 <- select(df_halite_2021,pwr) 

 

##Composite Surface## 

 

df_composite_2019 <- filter(df_composite,year == "2019") 

df_composite_2019 <- mutate(df_composite_2019, pwr = 10^(g0/10),type="soil") 

df_c19 <- select(df_composite_2019,pwr) 

 

df_composite_2020 <- filter(df_composite,year == "2020") 

df_composite_2020 <- mutate(df_composite_2020, pwr = 10^(g0/10),type="soil") 

df_c20 <- select(df_composite_2020,pwr) 

 

 

df_composite_2021 <- filter(df_composite,year == "2021") 

df_composite_2021 <- mutate(df_composite_2021, pwr = 10^(g0/10),type="soil") 

df_c21 <- select(df_composite_2021,pwr) 

 

#Filter SAR data by year and combine both surface types. 

 

2019 

 

df_19 <- bind_rows(df_halite_2019, df_composite_2019) 

df_19 <- select(df_19,pwr,type,year) 

df_19 <- mutate(df_19, type=factor(type)) 

 

2020 
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df_20 <- bind_rows(df_halite_2020, df_composite_2020) 

df_20 <- select(df_20,pwr,type,year) 

df_20 <- mutate(df_20, type=factor(type)) 

 

2021 

 

df_21 <- bind_rows(df_halite_2021, df_composite_2021) 

df_21 <- select(df_21,pwr,type,year) 

df_21 <- mutate(df_21, type=factor(type)) 

 

Load CHIRPS precipitation data and display descriptive statistics in a table. 

 

precip <- read.csv("ClimateEngine.csv") 

precip$Date <- as.Date(precip$Date, format = "%m/%d/%Y") 

precip$Year <- as.factor(year(precip$Date)) 

df_precip <- summaryBy(precip~Year,data=precip,FUN=c(length,mean,max,sd)) 

colnames(df_precip) <- c("Year","n", "Mean", "Max", "SD") 

 

#Round g0 values and make table 

 

round_df <- function(df_precip,digits){ 

  nums <- vapply(df_precip, is.numeric, FUN.VALUE = logical(1)) 

   

  df_precip[,nums] <- round(df_precip[,nums], digits=digits) 

   

  (df_precip) 

} 

 

#round data frame 

tab_precip <- round_df(df_precip, digits=3) 

 

kbl(tab_precip, booktabs = T) %>% 

  kable_classic_2(c("striped")) 

 

Calculate and display descriptive statistics for each salar surface, by year, in a table. 

 

 

df <- data.frame( 
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  Year = c(2019, 2019,2020, 2020, 2021, 2021), 

  type = c("Halite", "Composite","Halite", "Composite", "Halite", "Composite"), 

  n = c(58, 58, 55, 55, 58, 58), 

  Mean = c(-4.71, -9.442, -4.941, -8.35,  -5.498, -10.465), 

  Min = c(-7.034, -13.628, -6.144, -11.168,-7.164, -11.396), 

  Max = c(-3.413, -7.911,-4.34, -6.202, -4.25, -8.338), 

  SD = c(0.699, 1.577, 0.412, 0.961, 0.861, 0.679),  

  Var = c(0.489, 2.485,0.169, 0.924, 0.741, 0.461) 

) 

 

df$Year <- ifelse(duplicated(df$Year), "", df$Year) 

names(df)[2] <- "Surface" 

 

# Render the resulting table using kable 

 

kbl(df, booktabs = T) %>% 

  kable_classic_2(c("striped", "hover")) 

Plot side-by-side boxplots, by year, for each salar surface type. 

library(ggplot2) 

 

df_all <- rbind(df_19, df_20, df_21) 

 

# side-by-side boxplots 

 

theme_set(theme_bw(base_size=9)) 

p <- ggplot(df_all,aes(x=type,y=(10*log10(pwr)), color=type)) + geom_boxplot() 

p + facet_wrap(~ year, nrow = 1, scales = "free_x",shrink=TRUE) + ggtitle("Salar Surface Backscatter") 

+ ylab("dB") + xlab("Surface type") + theme(plot.title = element_text(hjust = 0.5),legend.position = "non

e") 

 

Perform the Wilcoxon rank-sum test, and plot the estimated difference in mean backscatter 

values between surface types using Bonferroni pairwise comparisons. 

 

library(Rmisc)  

 

(a_19_ci <- group.CI(pwr~type, data=df_19, ci=1-.05/2)) 

(a_20_ci <- group.CI(pwr~type, data=df_20, ci=1-.05/2)) 

(a_21_ci <- group.CI(pwr~type, data=df_21, ci=1-.05/2)) 
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# Combine all the data into one dataframe 

df <- rbind(a_19_ci, a_20_ci, a_21_ci) 

 

df$year <- c(rep("2019", nrow(a_19_ci)), rep("2020", nrow(a_20_ci)), rep("2021", nrow(a_21_ci))) 

 

# Create the pairwiseCI plots 

 

p <- ggplot(df, aes(x = type, y = 10*log10(pwr.mean))) + 

  geom_point() + 

  geom_errorbar(aes(ymin = 10*log10(pwr.lower), ymax = 10*log10(pwr.upper)), width = 0.2) + 

  ylab("Backscatter (dB)") + xlab("Surface Type") 

  theme_classic() 

 

# Facet wrap by year 

 

p + facet_wrap(~year) 

 
#Wilcoxon rank-sum test by year 

 

Wilcox.test(df_h19$pwr, df_c19$pwr, conf.level=0.95, conf.int=TRUE) 

Wilcox.test(df_h20$pwr, df_c20$pwr, conf.level=0.95, conf.int=TRUE) 

Wilcox.test(df_h21$pwr, df_c21$pwr, conf.level=0.95, conf.int=TRUE)  
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8.3 Appendix C: OpenSAR Lab Code 

 

SAR Amplitude Time Series Analysis. Original code by: 

Franz J Meyer; University of Alaska Fairbanks & Josef Kellndorfer, Earth Big Data, LLC 

 

This notebook compiles a time series of a deep multi-temporal SAR image data stack acquired by 

Sentinel-1. 

 

URLWidget() 

[2]: from IPython.display import Markdown 

from IPython.display import display 

notebookUrl = 

notebookUrl.value user = 

!echo 

$JUPYTERHUB_USER env 

= !echo $CONDA_PREFIX 

if env[0] == '': 

env[0] = 'Python 3 (base)' 

if env[0] != '/home/jovyan/.local/envs/rtc_analysis': 

display(Markdown(f'<text 

style=color:red><strong>WARNING:</strong></text>')) 

display(Markdown(f'<text style=color:red>This notebook should be run using␣ 

the "rtc_analysis" conda environment.</text>')) display(Markdown(f'<text 

style=color:red>It is currently using the "{env[0]. 

split("/")[-1]}" environment.</text>')) display(Markdown(f'<text style=color:red>Select 

the "rtc_analysis" from the␣ 

"Change Kernel" submenu of the "Kernel" menu.</text>')) 

display(Markdown(f'<text style=color:red>If the "rtc_analysis" environment␣ 

is not present, use <a href="{notebookUrl.split("/user")[0]}/user/{user[0]}/ 

notebooks/conda_environments/Create_OSL_Conda_Environments.ipynb">␣ 

Create_OSL_Conda_Environments.ipynb </a> to create it.</text>')) 

display(Markdown(f'<text style=color:red>Note that you must restart your␣ 

server after creating a new environment before it is usable by notebooks.</ text>')) 

Our first step is to import the necessary python libraries into your Jupyter Notebook: 

 

This notebook assumes that you’ve prepared your own data stack of RTC image products 

over your personal area of interest. This can be done using the 

Prepare_Data_Stack_Hyp3_v2 and Subset_Data_Stack notebooks. 

http://earthbigdata.com/
http://earthbigdata.com/
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This notebook expects Radiometric Terrain Corrected (RTC) image products as input, so be 

sure to select an RTC process when creating the subscription for your input data within 

HyP3. Prefer a unique orbit geometry (ascending or descending) to keep geometric 

differences between images low. 

Begin by writing a function to retrieve and the absolute paths to each of our tiffs: 

 

Select the directory holding your tiffs 

 

FileChooser(path='/home/jovyan/notebooks', filename='', title='',␣ 

↪show_hidden=False, select_desc='Select', cha… 

Determine the path to the analysis directory containing the tiff directory: 

 

analysis_dir: /home/jovyan/notebooks/SAR_Training/English/Master/RTC 

 

/home/jovyan/notebooks/SAR_Training/English/Master/RTC/SdP_VV/*.tif*  

Write a function to extract the tiff dates from a wildcard path: 

 

Call get_dates() to collect the product acquisition dates: 

 

['20190103', '20190109', '20190115', '20190121', '20190127', '20190202', 

'20190208', '20190214', '20190220', '20190226', '20190304', '20190310', 

'20190316', '20190322', '20190328', '20190403', '20190409', '20190415', 

'20190421', '20190427', '20190503', '20190509', '20190515', '20190527', 

'20190602', '20190608', '20190614', '20190620', '20190626', '20190702', 

'20190708', '20190714', '20190720', '20190726', '20190801', '20190807', 

'20190813', '20190819', '20190825', '20190831', '20190906', '20190912', 

'20190918', '20190924', '20190930', '20191006', '20191018', '20191024', 

'20191030', '20191105', '20191111', '20191117', '20191123', '20191129', 

'20191205', '20191211', '20191217', '20191229', '20200110', '20200122', '20200203', 

'20200215', '20200227', '20200304', '20200310', '20200322', 

'20200328', '20200403', '20200409', '20200415', '20200421', '20200427', 

'20200503', '20200509', '20200515', '20200521', '20200527', '20200602', 

'20200608', '20200614', '20200620', '20200626', '20200702', '20200708', 

'20200714', '20200720', '20200726', '20200801', '20200807', '20200813', 

'20200819', '20200825', '20200831', '20200906', '20200912', '20200918', 

'20200924', '20200930', '20201006', '20201012', '20201018', '20201024', 

'20201030', '20201105', '20201111', '20201117', '20201123', '20201129', 

'20201205', '20201211', '20201217', '20201223', '20201229', '20210104', 

'20210110', '20210116', '20210122', '20210128', '20210203', '20210209', 

https://media.asf.alaska.edu/uploads/RTC/rtc_atbd_v1.2_final.pdf
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'20210215', '20210221', '20210227', '20210305', '20210311', '20210317', 

'20210329', '20210404', '20210410', '20210416', '20210422', '20210428', 

'20210504', '20210510', '20210516', '20210522', '20210528', '20210603', 

'20210609', '20210615', '20210621', '20210627', '20210703', '20210709', 

'20210715', '20210721', '20210727', '20210802', '20210808', '20210814', 

'20210820', '20210826', '20210901', '20210907', '20210913', '20210919', 

'20210925', '20211007', '20211013', '20211019', '20211025', '20211031', 

'20211106', '20211112', '20211118', '20211124', '20211130', '20211206', '20211212', 

'20211218', '20211230'] 

Gather the upper-left and lower-right corner coordinates of the data stack: 

[10]: coords = [[], []] info = (gdal.Info(tiff_paths[0], options = ['-json'])) info 

= json.dumps(info) coords[0] = 

(json.loads(info))['cornerCoordinates']['upperLeft'] coords[1] = 

(json.loads(info))['cornerCoordinates']['lowerRight'] print(coords) 

[[510570.0, 7226820.0], [527730.0, 7210170.0]]  

Grab the stack’s UTM zone. 

Note that any UTM zone conflicts should already have been handled in the 

Prepare_Data_Stack_Hyp3 notebook. 

[11]: utm = json.loads(info)['coordinateSystem']['wkt'].split('ID')[-1]. 

↪split(',')[1][0:-2] 

print(f"UTM Zone: {utm}") 

UTM Zone: 32719 

 

Now we stack up the data by creating a virtual raster table with links to all subset data files. 

Create the virtual raster table for the subset GeoTiffs: 

[12]: image_file = Path(f"{analysis_dir}/raster_stack.vrt") 

!gdalbuildvrt -separate $image_file $wildcard_path 

0…10…20…30…40…50…60…70…80…90…100 - done. 

Now you are ready to perform time series change detection on your data stack. 

 

Print the bands and dates for all images in the virtual raster table (VRT): 

 

Bands and dates for 

/home/jovyan/notebooks/SAR_Training/English/Master/RTC/raster_stack.vrt 

 1 2019-01-03 2 2019-01-09 3 2019-01-15 4 2019-01-21 5 2019-01-27 
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6 2019-02-02 7 2019-02-08 8 2019-02-14 9 2019-02-20 10 2019-02-26 11 

2019-03-04 12 2019-03-10 13 2019-03-16 14 2019-03-22 15 2019-03-28 

 16 2019-04-03 17 2019-04-09 18 2019-04-15 19 2019-04-21 20 2019-04-27 

 21 2019-05-03 22 2019-05-09 23 2019-05-15 24 2019-05-27 25 2019-06-02 

 26 2019-06-08 27 2019-06-14 28 2019-06-20 29 2019-06-26 30 2019-07-02 

 31 2019-07-08 32 2019-07-14 33 2019-07-20 34 2019-07-26 35 2019-08-01 

 36 2019-08-07 37 2019-08-13 38 2019-08-19 39 2019-08-25 40 2019-08-31 

 41 2019-09-06 42 2019-09-12 43 2019-09-18 44 2019-09-24 45 2019-09-30 

 46 2019-10-06 47 2019-10-18 48 2019-10-24 49 2019-10-30 50 2019-11-05 

 51 2019-11-11 52 2019-11-17 53 2019-11-23 54 2019-11-29 55 2019-12-05 

 56 2019-12-11 57 2019-12-17 58 2019-12-29 59 2020-01-10 60 2020-01-22 

 61 2020-02-03 62 2020-02-15 63 2020-02-27 64 2020-03-04 65 2020-03-10 

 66 2020-03-22 67 2020-03-28 68 2020-04-03 69 2020-04-09 70 2020-04-15 

 71 2020-04-21 72 2020-04-27 73 2020-05-03 74 2020-05-09 75 2020-05-15 

 76 2020-05-21 77 2020-05-27 78 2020-06-02 79 2020-06-08 80 2020-06-14 

 81 2020-06-20 82 2020-06-26 83 2020-07-02 84 2020-07-08 85 2020-07-14 

 86 2020-07-20 87 2020-07-26 88 2020-08-01 89 2020-08-07 90 2020-08-13 

 91 2020-08-19 92 2020-08-25 93 2020-08-31 94 2020-09-06 95 2020-09-12 

 96 2020-09-18 97 2020-09-24 98 2020-09-30 99 2020-10-06 100 2020-10-12 

101 2020-10-18 102 2020-10-24 103 2020-10-30 104 2020-11-05 105 2020-11-11 

106 2020-11-17 107 2020-11-23 108 2020-11-29 109 2020-12-05 110 2020-12-11 

111 2020-12-17 112 2020-12-23 113 2020-12-29 114 2021-01-04 115 2021-01-10 

116 2021-01-16 117 2021-01-22 118 2021-01-28 119 2021-02-03 120 2021-02-09 

121 2021-02-15 122 2021-02-21 123 2021-02-27 124 2021-03-05 125 2021-03-11 

126 2021-03-17 127 2021-03-29 128 2021-04-04 129 2021-04-10 130 2021-04-16 

131 2021-04-22 132 2021-04-28 133 2021-05-04 134 2021-05-10 135 2021-05-16 

136 2021-05-22 137 2021-05-28 138 2021-06-03 139 2021-06-09 140 2021-06-15 

141 2021-06-21 142 2021-06-27 143 2021-07-03 144 2021-07-09 145 2021-07-15 

146 2021-07-21 147 2021-07-27 148 2021-08-02 149 2021-08-08 150 2021-08-14 

151 2021-08-20 152 2021-08-26 153 2021-09-01 154 2021-09-07 155 2021-09-13 

156 2021-09-19 157 2021-09-25 158 2021-10-07 159 2021-10-13 160 2021-10-19 161 

2021-10-25 162 2021-10-31 163 2021-11-06 164 2021-11-12 165 2021-11-18 

166 2021-11-24 167 2021-11-30 168 2021-12-06 169 2021-12-12 170 2021-12-18 171 

2021-12-30 

 

Open Your Data Stack with gdal 

 

Print the bands, pixels, and lines: 

[16]: print(f"Number of bands: {img.RasterCount}") 

print(f"Number of pixels: {img.RasterXSize}") 

print(f"Number of lines: {img.RasterYSize}") 

Number of bands: 171 
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Number of pixels: 572 

Number of lines: 555 

 

Create a masked raster stack 

[17]: raster_stack = img.ReadAsArray() raster_stack_masked = 

np.ma.masked_where(raster_stack==0, raster_stack) del raster_stack 

 

Create a directory in which to store our plots and animations: 

[18]: output_path = analysis_dir/'plots_and_animations'  

 

    

if vmax == None: 

vmax = np.percentile(raster_stack[band_number-1].flatten(), 95) 

ax1.imshow(raster_stack[band_number-1], cmap='viridis', vmin=vmin,␣ 

↪vmax=vmax) ax1.set_title(f'Image Band {band_number} 

{time_index[band_number-1]. 

↪date()}') if 

subset == 

None: 

bands, ydim, xdim = raster_stack.shape 

subset = (0, 0, xdim, ydim) 

ax1.add_patch(patches.Rectangle((subset[0], subset[1]), subset[2],␣ 

subset[3], fill=False, edgecolor='red')) 

ax1.xaxis.set_label_text('Pixel') 

ax1.yaxis.set_label_text('Line') ax1.legend(['Subset 

AOI'], loc='best') 

ts_pwr = np.mean(raster_stack[:, subset[1]:(subset[1]+subset[3]), subset[0]: 

(subset[0]+subset[2])], axis=(1,2)) ts_dB 

= 10.0 * np.log10(ts_pwr) 

ax2.plot(time_index, ts_dB) 

ax2.yaxis.set_label_text('$\gamma^o$ [dB]') ax2.set_title('$\gamma^o$ 

Backscatter Time Series') 

# Add a vertical line for the date where the image is displayed 

ax2.axvline(time_index[band_number-1], color='red') ax2.legend(['Time 

Series', f'Band {band_number} Date'], loc='best') plt.grid() 

fig.autofmt_xdate() 
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if output: 

plt.savefig(output, dpi=720) 

print(f"Saved plot: {output}") 

[20]:  band_number = 96 

subset_composite = (250, 250, 5, 

5) subset_halite = (110, 200, 5, 5) 

show_image(raster_stack_masked, time_index, band_number, subset=subset_halite,␣ 

↪output=f"{output_path}/halite_band_{band_number}.png") 

show_image(raster_stack_masked, time_index, band_number,␣ 

↪subset=subset_composite, output=f"{output_path}/composite_band_{band_number}. 

↪png") 

/home/jovyan/.local/envs/rtc_analysis/lib/python3.9/sitepackages/numpy/lib/function_base

.py:4691: UserWarning: Warning: 'partition' will ignore the 'mask' of the MaskedArray. 

arr.partition( 

Saved plot: /home/jovyan/notebooks/SAR_Training/English/Master/RTC/plots_and_ani 

mations/halite_band_96.png 

Saved plot: /home/jovyan/notebooks/SAR_Training/English/Master/RTC/plots_and_ani 

mations/composite_band_96.png 
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[21]: # Extract the means along the time series axes # 

raster shape is time steps, lines, pixels. 

# With axis=1,2, we average lines and pixels for each time step (axis 0) # 

returns pandas time series object 

subset1 = subset_composite 

def timeSeries(raster_stack, time_index, subset1, ndv=0.0): 

raster = raster_stack.copy() 

if ndv != np.nan: 

raster[np.equal(raster, ndv)] = np.nan 

ts_pwr =np.nanmean(raster[:,subset1[1]:(subset1[1]+subset1[3]), subset1[0]: 

↪(subset1[0]+subset1[2])], axis=(1, 2)) 

# convert the means to dB ts_dB = 10.0 

* np.log10(ts_pwr) # make the pandas time 

series object ts = pd.Series(ts_dB, 

index=time_index) return ts subset2 = 

subset_halite 

def timeSeries(raster_stack, time_index, subset2, ndv=0.0): 

raster = raster_stack.copy() 

if ndv != np.nan: 

raster[np.equal(raster, ndv)] = np.nan 

ts_pwr =np.nanmean(raster[:,subset2[1]:(subset2[1]+subset2[3]), subset2[0]: 

↪(subset2[0]+subset2[2])], axis=(1, 2)) 

# convert the means to dB ts_dB = 10.0 

* np.log10(ts_pwr) # make the pandas 
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time series object ts = pd.Series(ts_dB, 

index=time_index) return ts 

#print(ts_pwr) 

[22]:  ts1 = timeSeries(raster_stack_masked, time_index, subset1) ts2 = 

timeSeries(raster_stack_masked, time_index, subset2) 

[23]:  fig = ts1.plot(figsize=(16, 4)) fig.yaxis.set_label_text('mean 

dB') fig.set_title('Co-Polarized Backscatter (dB) Timeseries') 

fig = ts2.plot(figsize=(16, 4)) fig.xaxis.set_label_text('Date') 

plt.grid() 

#fig.legend(['Precipitation (mm)'], loc='best', bbox_to_anchor=(0.75, 0.5, 0.5,␣ 

↪0.5)) fig.legend(['Composite Surface', 'Halite Surface'], 

loc='best',␣ 

↪bbox_to_anchor=(0.685, 0.3, 0.5, 0.5)) 

[23]: <matplotlib.legend.Legend at 0x7fc917dd4c40> 

 

Composite surface vs precipitation is displayed as an example 

 

 

# Load backscatter values and precipitation data 
precip=pd.read_csv(‘ClimateEngine.csv’, parse_dates)=[‘Date’], index_col=[‘Date’]  

df_s=pd.read_csv(‘vv_dB_composite.csv’, parse_dates)=[‘Date’], index_col=[‘Date’]  
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