1,381 research outputs found

    Design and Fabrication of a Polymer FDM Printer Capable of Build Parameter Monitoring and In-Sit Geometric Monitoring Via Photogrammetry

    Get PDF
    Additive manufacturing, or 3D printing, is a complex process that creates free-form geometric objects by sequentially placing material in a location to construct an object, usually as a layer-by-layer process. One of the most widespread methods is Fused Deposition Modeling (FDM). FDM is used in many of the consumer-grade polymer 3D printers available today. While consumer grade machines are cheap and plentiful, they lack many of the features desired in a machine used for research purposes and are often closed-source platforms. Commercial-grade models are more expensive and are also usually closed-source platforms that do not offer flexibility for modifications often needed for research. This research focuses on the design and fabrication of a machine to be used as a test bed for research in the field of polymer FDM processes. The goal was to create a platform that tightly controls and/or monitors the FDM build parameters so that experiments can be repeated with a known accuracy. The platform offers closed loop position feedback, control of the hot end and bed temperature, and monitoring of environment temperature and humidity. Additionally, the platform is equipped with cameras and a mechanism for in-situ photogrammetry, creating a geometric record of the print throughout the printing process. Through photogrammetry, backtracking and linking of process parameters to observable geometric defects can be achieved. The controls system and instrumentation are built on an open flexible paradigm enabling customization as necessary for future research

    Proceedings of the 5th Baltic Mechatronics Symposium - Espoo April 17, 2020

    Get PDF
    The Baltic Mechatronics Symposium is annual symposium with the objective to provide a forum for young scientists from Baltic countries to exchange knowledge, experience, results and information in large variety of fields in mechatronics. The symposium was organized in co-operation with Taltech and Aalto University. Due to Coronavirus COVID-19 the symposium was organized as a virtual conference. The content of the proceedings1. Monitoring Cleanliness of Public Transportation with Computer Vision2. Device for Bending and Cutting Coaxial Wires for Cryostat in Quantum Computing3. Inertial Measurement Method and Application for Bowling Performance Metrics4. Mechatronics Escape Room5. Hardware-In-the-Loop Test Setup for Tuning Semi-Active Hydraulic Suspension Systems6. Newtonian Telescope Design for Stand-off Laser Induced Breakdown Spectroscopy7. Simulation and Testing of Temperature Behavior in Flat Type Linear Motor Carrier8. Powder Removal Device for Metal Additive Manufacturing9. Self-Leveling Spreader Beam for Adjusting the Orientation of an Overhead Crane Loa

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    The technological translation from Industry 4.0 to Precision Agriculture: adoption and perception of Italian farmers

    Get PDF
    Purpose: This research aims to identify the rate of knowledge, adoption and perceptions of Italian farmers towards Precision Agriculture technologies. Methodology: An online survey was carried out, using the Snowball sampling method, among 755 Italian farmers and involving the main Italian trade associations. Findings: The findings showed that among Italian farmers the technologies related to Monitoring appear to be the best known, adopted and perceived as the most useful; followed by technologies related to Automation and IoT. Managerial implications: Considering the results that emerged from this research, it seems necessary to undertake models of training development paths so that farmers can deepen the themes of technological integration with an orientation towards sustainability. Research limitations: The present research, not being able to be considered exhaustive for the understanding of the phenomenon, aims to be the starting point for future research aimed at a further analysis on the models of diffusion and technological integration. Originality: The models of technological integration for agricultural cultivation techniques are constantly evolving. Through the analysis of knowledge, use and perception of farmers it could be possible to detect new models for the diffusion of technology

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    Additive Manufacturing Technologies and Applications

    Get PDF
    The present Special Issue proposes articles in the area of Additive Manufacturing with particular attention to the different employed technologies and the several possible applications. The main investigated technologies are the Selective Laser Sintering (SLS) and the Fused Deposition Modelling (FDM). These methodologies, combined with the Computer Aided Design (CAD), provide important advantages. Numerical, analytical and experimental knowledge and models are proposed to exploit the potential advantages given by 3D printing for the production of modern systems and structures in aerospace, mechanical, civil and biomedical engineering fields. The 11 selected papers propose different additive manufacturing methodologies and related applications and studies

    Model-based operator guidance in interactive, semi-automated production processes

    Get PDF
    This contribution focuses on the task of guiding and supervision of technical processes realized by human operators. The review of publications of the last decades discloses that especially technical processes with strong interconnection of human operator and manufacturing process are not adequately addressed by the evolved automation approaches. Integrating human process knowledge and experience into the resulting automation system is still a major concern. Besides the introduction of automation in a handcrafting process that is increasing the overall system complexity, the design of the human-machine interface to the automation system is of central importance. Within this thesis, the trade-off between manual manufacturing and automation is addressed by a semi-automation approach. The application example is the no-bake molding process, a mold manufacturing process for casts that is traditionally handmade. Within this process the human operator plays a central role (i.e. knowledge and expertise), whereas the (intelligent) automation is carrying out physical operation, which is guided and supervised by the human operator. This is achieved by experimentally identified quality representing process variables that allow for in-process feedback to the human operator. Process guiding assistance is given using a formalization approach of the human-automation-interaction. By deducing situative information of interest from the resulting human-automation-system model with respect to the current process goal, the established process model is used for supervision and assistance of the overall process. The design of the human-machine-interface is based on a detailed analysis of the handcrafted process and is realized as a direct, intuitively usable, marker-based interaction technique. The integrated human-automation-system and the corresponding human-machine-interface with process guidance assistance functionality is initially evaluated. The results are discussed for the future work with respect to the individual, human operator-specific process understanding and process reproducibility.Diese Arbeit befasst sich mit Fachkraftaufgaben in der Führung und Überwachung von technischen Prozessen. Die Übersicht der Publikationen der letzten Jahrzehnte eröffnet, dass insbesondere technische Prozesse mit enger Verknüpfung von Mensch und Herstellungsprozess bei den entwickelten Automatisierungsansätzen nicht hinreichend berücksichtigt werden. Die Integration von Prozesswissen und -erfahrung in das resultierende Automatisierungssystem bleibt eine offene Fragestellung. Neben der Einführung von Automation in Handarbeitsprozesse, die die Komplexität des Gesamtsystems erhöhen, ist die Gestaltung der Mensch-Maschine-Schnittstelle zum Automatisierungssystem von zentraler Bedeutung. Der Konflikt zwischen Handarbeit und Automatisierung wird in dieser Arbeit durch die Einführung einer Teilautomatisierung gelöst. Das Anwendungsbeispiel ist das Kaltharzverfahren, ein traditionell in Handarbeit bewältigter Herstellungsprozess für Gussformen. In diesem Prozess spielt die Fachkraft eine zentrale Rolle (z. B. durch ihr Prozesswissen und ihre Expertise), während die (intelligente) Automatisierung –geführt und überwacht durch die Fachkraft– anfallende physische Aktionen ausführt. Dies wird durch experimentell ermit- telte qualitäts-beschreibende Prozessgrößen erreicht, die eine in-prozess Rückführung zum Bedienpersonal ermöglichen. Prozessführungsassistenz ist basierend auf die Formalisierung der Mensch-Automation-Interaktion gegeben. Durch die Bestimmung von situativen Informationen hoher Wichtigkeit aus dem resultierenden Mensch-Automation-System Modell bezogen auf das aktuelle Prozessziel, wird das bestehende Prozessmodell zur Überwachung und Prozessführungsassistenz des Gesamtprozesses genutzt. Die Gestaltung der Mensch-Maschine-Schnittstelle basiert auf einer detaillierten Analyse des Handarbeitsprozesses und ist als direkte, intuitiv bedienbare, markerbasierte Interaktionstechnik realisiert. Das integrierte Mensch-Automation-System sowie die zugehörige Mensch-Maschine-Schnittstelle inklusive Prozessführungsassistenzfunktionen wurden initial evaluiert. Die erzielten Ergebnisse werden hinsichtlich des individuellen, fachkraftabhängigen Prozesswissens und der Reproduzierbarkeit für den Ausblick diskutiert

    Deltronic Solutions Delta 3D Printer

    Get PDF
    The Delta 3D Printer project is a 2014-2015 Cal Poly ME senior project sponsored by Dr. Jose Macedo, Professor and Department Chair of the Cal Poly IME Department; Yaskawa America, Inc., industry-leading producer of high-quality electronic drives and motors; and Bell-Everman, Inc., producer of high-precision embedded motion systems. The Delta 3D Printer project was conceived by Dr. Macedo as a collaboration between Cal Poly engineering and Yaskawa America. The majority of delta 3d printers on the market utilize stepper motors to control the print head motion. The 3D printer for this project was designed to use servo motors instead of stepper motors. Servo motors allowed us to increase both the accuracy and speed of the printer while providing a constant feedback loop to the control system. The printer uses a fuse deposition modeling extrusion method and prints with 3mm ABS plastic filament. The printer has a 1.5ft diameter by 1ft height build volume

    ALSEP termination report

    Get PDF
    The Apollo Lunar Surface Experiments Package (ALSEP) final report was prepared when support operations were terminated September 30, 1977, and NASA discontinued the receiving and processing of scientific data transmitted from equipment deployed on the lunar surface. The ALSEP experiments (Apollo 11 to Apollo 17) are described and pertinent operational history is given for each experiment. The ALSEP data processing and distribution are described together with an extensive discussion on archiving. Engineering closeout tests and results are given, and the status and configuration of the experiments at termination are documented. Significant science findings are summarized by selected investigators. Significant operational data and recommendations are also included
    corecore