164 research outputs found

    A Unifying Approach to Quaternion Adaptive Filtering: Addressing the Gradient and Convergence

    Full text link
    A novel framework for a unifying treatment of quaternion valued adaptive filtering algorithms is introduced. This is achieved based on a rigorous account of quaternion differentiability, the proposed I-gradient, and the use of augmented quaternion statistics to account for real world data with noncircular probability distributions. We first provide an elegant solution for the calculation of the gradient of real functions of quaternion variables (typical cost function), an issue that has so far prevented systematic development of quaternion adaptive filters. This makes it possible to unify the class of existing and proposed quaternion least mean square (QLMS) algorithms, and to illuminate their structural similarity. Next, in order to cater for both circular and noncircular data, the class of widely linear QLMS (WL-QLMS) algorithms is introduced and the subsequent convergence analysis unifies the treatment of strictly linear and widely linear filters, for both proper and improper sources. It is also shown that the proposed class of HR gradients allows us to resolve the uncertainty owing to the noncommutativity of quaternion products, while the involution gradient (I-gradient) provides generic extensions of the corresponding real- and complex-valued adaptive algorithms, at a reduced computational cost. Simulations in both the strictly linear and widely linear setting support the approach

    On data-selective learning

    Get PDF
    Adaptive filters are applied in several electronic and communication devices like smartphones, advanced headphones, DSP chips, smart antenna, and teleconference systems. Also, they have application in many areas such as system identification, channel equalization, noise reduction, echo cancellation, interference cancellation, signal prediction, and stock market. Therefore, reducing the energy consumption of the adaptive filtering algorithms has great importance, particularly in green technologies and in devices using battery. In this thesis, data-selective adaptive filters, in particular the set-membership (SM) adaptive filters, are the tools to reach the goal. There are well known SM adaptive filters in literature. This work introduces new algorithms based on the classical ones in order to improve their performances and reduce the number of required arithmetic operations at the same time. Therefore, firstly, we analyze the robustness of the classical SM adaptive filtering algorithms. Secondly, we extend the SM technique to trinion and quaternion systems. Thirdly, by combining SM filtering and partialupdating, we introduce a new improved set-membership affine projection algorithm with constrained step size to improve its stability behavior. Fourthly, we propose some new least-mean-square (LMS) based and recursive least-squares based adaptive filtering algorithms with low computational complexity for sparse systems. Finally, we derive some feature LMS algorithms to exploit the hidden sparsity in the parameters.Filtros adaptativos são aplicados em diversos aparelhos eletrônicos e de comunicação, como smartphones, fone de ouvido avançados, DSP chips, antenas inteligentes e sistemas de teleconferência. Eles também têm aplicação em várias áreas como identificação de sistemas, equalização de canal, cancelamento de eco, cancelamento de interferência, previsão de sinal e mercado de ações. Desse modo, reduzir o consumo de energia de algoritmos adaptativos tem importância significativa, especialmente em tecnologias verdes e aparelhos que usam bateria. Nesta tese, filtros adaptativos com seleção de dados, em particular filtros adaptativos da família set-membership (SM), são apresentados para cumprir essa missão. No presente trabalho objetivamos apresentar novos algoritmos, baseados nos clássicos, a fim de aperfeiçoar seus desempenhos e, ao mesmo tempo, reduzir o número de operações aritméticas exigidas. Dessa forma, primeiro analisamos a robustez dos filtros adaptativos SM clássicos. Segundo, estendemos o SM aos números trinions e quaternions. Terceiro, foram utilizadas também duas famílias de algoritmos, SM filtering e partial-updating, de uma maneira elegante, visando reduzir energia ao máximo possível e obter um desempenho competitivo em termos de estabilidade. Quarto, a tese propõe novos filtros adaptativos baseado em algoritmos least-mean-square (LMS) e mínimos quadrados recursivos com complexidade computacional baixa para espaços esparsos. Finalmente, derivamos alguns algoritmos feature LMS para explorar a esparsidade escondida nos parâmetros

    Filtering and Tracking with Trinion-Valued Adaptive Algorithms

    Get PDF
    A new model for three-dimensional processes based on the trinion algebra is introduced for the first time. Compared with the pure quaternion model, the trinion model is more compact and computationally more efficient, while having similar or comparable performance in terms of adaptive linear filtering. Moreover, the trinion model can effectively represent the general relationship of state evolution in Kalman filtering, where the pure quaternion model fails. Simulations on real-world wind recordings and synthetic data sets are provided to demonstrate the potentials of this new modeling method

    Quaternion adaptive line enhancer

    Full text link

    Quaternion Information Theoretic Learning Adaptive Algorithms for Nonlinear Adaptive

    Get PDF
    Information Theoretic Learning (ITL) is gaining popularity for designing adaptive filters for a non-stationary or non-Gaussian environment [1] [2] . ITL cost functions such as the Minimum Error Entropy (MEE) have been applied to both linear and nonlinear adaptive filtering with better overall performance compared with the typical mean squared error (MSE) and least-squares type adaptive filtering, especially for nonlinear systems in higher-order statistic noise environments [3]. Quaternion valued data processing is beneficial in applications such as robotics and image processing, particularly for performing transformations in 3-dimensional space. Particularly the benefit for quaternion valued processing includes performing data transformations in a 3 or 4-dimensional space in a more convenient fashion than using vector algebra [4, 5, 6, 7, 8]. Adaptive filtering in quaterion domain operates intrinsically based on the augmented statistics which the quaternion input vector covariance is taken into account naturally and as a result it incorporates component-wise real valued cross-correlation or the coupling within the dimensions of the quaternion input [9]. The generalized Hamilton-real calculus (GHR) for the quaternion data simplified product and chain rules and allows us to calculate the gradient and Hessian of quaternion based cost function of the learning algorithms eciently [10][11] . The quaternion reproducing kernel Hilbert spaces and its uniqueness provide a mathematical foundation to develop the quaternion value kernel learning algorithms [12]. The reproducing property of the feature space replace the inner product of feature samples with kernel evaluation. In this dissertation, we first propose a kernel adaptive filter for quaternion data based on minimum error entropy cost function. The new algorithm is based on error entropy function and is referred to as the quaternion kernel minimum error entropy (QKMEE) algorithm [13]. We apply generalized Hamilton-real (GHR) calculus that is applicable to quaternion Hilbert space for evaluating the cost function gradient to develop the QKMEE algorithm. The minimum error entropy (MEE) algorithm [3, 14, 15] minimizes Renyis quadratic entropy of the error between the lter output and desired response or indirectly maximizing the error information potential. ITL methodology improves the performance of adaptive algorithm in biased or non-Gaussian signals and noise enviorments compared to the mean squared error (MSE) criterion algorithms such as the kernel least mean square algorithm. Second, we develop a kernel adaptive filter for quaternion data based on normalized minimum error entropy cost function [14]. We apply generalized Hamilton-real GHR) calculus that is applicable to Hilbert space for evaluating the cost function gradient to develop the quaternion kernel normalized minimum error entropy (QKNMEE) algorithm [16]. The new proposed algorithm enhanced QKMEE algorithm where the filter update stepsize selection will be independent of the input power and the kernel size. Third, we develop a kernel adaptive lter for quaternion domain data, based on information theoretic learning cost function which could be useful for quaternion based kernel applications of nonlinear filtering. The new algorithm is based on error entropy function with fiducial point and is referred to as the quaternion kernel minimum error entropy with fiducial point (QKMEEF) algorithm [17]. In our previous work we developed quaternion kernel adaptive lter based on minimum error entropy referred to as the QKMEE algorithm [13]. Since entropy does not change with the mean of the distribution, the algorithm may converge to a set of optimal weights without having zero mean error. Traditionally, to make the zero mean output error, the output during testing session was biased with the mean of errors of training session. However, for non-symmetric or heavy tails error PDF the estimation of error mean is problematic [18]. The minimum error entropy criterion, minimizes Renyi\u27s quadratic entropy of the error between the filter output and desired response or indirectly maximizing the error information potential [19]. Here, the approach is applied to quaternions. Adaptive filtering in quaterion domain intrinsically incorporates component-wise real valued cross-correlation or the coupling within the dimensions of the quaternion input. We apply generalized Hamilton-real (GHR) calculus that is applicable to Hilbert space for evaluating the cost function gradient to develop the Quaternion Minimum Error Entropy Algorithm with Fiducial point. Simulation results are used to show the behavior of the new algorithm (QKMEEF) when signal is non-Gaussian in presence of unimodal noise versus bi-modal noise distributions. Simulation results also show that the new algorithm QKMEEF can track and predict the 4-Dimensional non-stationary process signals where there are correlations between components better than quadruple real-valued KMEEF and Quat-KLMS algorithms. Fourth, we develop a kernel adaptive filter for quaternion data, using stochastic information gradient (SIG) cost function based on the information theoretic learning (ITL) approach. The new algorithm (QKSIG) is useful for quaternion-based kernel applications of nonlinear ltering [20]. Adaptive filtering in quaterion domain intrinsically incorporates component-wise real valued cross-correlation or the coupling within the dimensions of the quaternion input. We apply generalized Hamilton-real (GHR) calculus that is applicable to quaternion Hilbert space for evaluating the cost function gradient. The QKSIG algorithm minimizes Shannon\u27s entropy of the error between the filter output and desired response and minimizes the divergence between the joint densities of input-desired and input-output pairs. The SIG technique reduces the computational complexity of the error entropy estimation. Here, ITL with SIG approach is applied to quaternion adaptive filtering for three different reasons. First, it reduces the algorithm computational complexity compared to our previous work quaternion kernel minimum error entropy algorithm (QKMEE). Second, it improves the filtering performance by considering the coupling within the dimensions of the quaternion input. Third, it performs better in biased or non-Gaussian signal and noise environments due to ITL approach. We present convergence analysis and steady-state performance analysis results of the new algorithm (QKSIG). Simulation results are used to show the behavior of the new algorithm QKSIG in quaternion non-Gaussian signal and noise environments compared to the existing ones such as quadruple real-valued kernel stochastic information gradient (KSIG) and quaternion kernel LMS (QKLMS) algorithms. Fifth, we develop a kernel adaptive filter for quaternion data, based on stochastic information gradient (SIG) cost function with self adjusting step-size. The new algorithm (QKSIG-SAS) is based on the information theoretic learning (ITL) approach. The new algorithm (QKSIG-SAS) has faster speed of convergence as compared to our previous work QKSIG algorithm

    Adaptive signal processing algorithms for noncircular complex data

    No full text
    The complex domain provides a natural processing framework for a large class of signals encountered in communications, radar, biomedical engineering and renewable energy. Statistical signal processing in C has traditionally been viewed as a straightforward extension of the corresponding algorithms in the real domain R, however, recent developments in augmented complex statistics show that, in general, this leads to under-modelling. This direct treatment of complex-valued signals has led to advances in so called widely linear modelling and the introduction of a generalised framework for the differentiability of both analytic and non-analytic complex and quaternion functions. In this thesis, supervised and blind complex adaptive algorithms capable of processing the generality of complex and quaternion signals (both circular and noncircular) in both noise-free and noisy environments are developed; their usefulness in real-world applications is demonstrated through case studies. The focus of this thesis is on the use of augmented statistics and widely linear modelling. The standard complex least mean square (CLMS) algorithm is extended to perform optimally for the generality of complex-valued signals, and is shown to outperform the CLMS algorithm. Next, extraction of latent complex-valued signals from large mixtures is addressed. This is achieved by developing several classes of complex blind source extraction algorithms based on fundamental signal properties such as smoothness, predictability and degree of Gaussianity, with the analysis of the existence and uniqueness of the solutions also provided. These algorithms are shown to facilitate real-time applications, such as those in brain computer interfacing (BCI). Due to their modified cost functions and the widely linear mixing model, this class of algorithms perform well in both noise-free and noisy environments. Next, based on a widely linear quaternion model, the FastICA algorithm is extended to the quaternion domain to provide separation of the generality of quaternion signals. The enhanced performances of the widely linear algorithms are illustrated in renewable energy and biomedical applications, in particular, for the prediction of wind profiles and extraction of artifacts from EEG recordings

    Quaternion-Valued Adaptive Signal Processing and Its Applications to Adaptive Beamforming and Wind Profile Prediction

    Get PDF
    Quaternion-valued signal processing has received more and more attentions in the past ten years due to the increasing need to process three or four-dimensional signals, such as colour images, vector-sensor arrays, three-phase power systems, dual-polarisation based wireless communica- tion systems, and wind profile prediction. One key operation involved in the derivation of all kinds of adaptive signal processing algorithms is the gradient operator. Although there are some derivations of this operator in literature with different level of details in the quaternion domain, it is still not fully clear how this operator can be derived in the most general case and how it can be applied to various signal processing problems. In this study, we will give a detailed derivation of the quaternion-valued gradient operator with associated properties and then apply it to different areas. In particular, it will be employed to derive the quaternion-valued LMS (QLMS) algorithm and its sparse versions for adaptive beamforming for vector sensor arrays, and another one is its application to wind profile prediction in combination with the classic computational fluid dynamics (CFD) approach. For the adaptive beamforming problem for vector sensor arrays, we consider the crossed- dipole array and the problem of how to reduce the number of sensors involved in the adap- tive beamforming process, so that reduced system complexity and energy consumption can be achieved, whereas an acceptable performance can still be maintained, which is particularly use- ful for large array systems. The quaternion-valued steering vector model for crossed-dipole arrays will be employed, and a reweighted zero attracting (RZA) QLMS algorithm is then pro- posed by introducing a RZA term to the cost function of the original QLMS algorithm. The RZA term aims to have a closer approximation to the l0 norm so that the number of non-zero valued coefficients can be reduced more effectively in the adaptive beamforming process. For wind profile prediction, it can be considered as a signal processing problem and we can solve it using traditional linear and non-linear prediction techniques, such as the proposed QLMS algorithm and its enhanced frequency-domain multi-channel version. On the other hand,it using traditional linear and non-linear prediction techniques, such as the proposed QLMS algorithm and its enhanced frequency-domain multi-channel version. On the other hand,wind flow analysis is also a classical problem in the CFD field, which employs various simulation methods and models to calculate the speed of wind flow at different time. It is accurate but time-consuming with high computational cost. To tackle the problem, a combined approach based on synergies between the statistical signal processing approach and the CFD approach is proposed. There are different ways of combining the signal processing approach and the CFD approach to obtain a more effective and efficient method for wind profile prediction. In the combined method, the signal processing part employs the QLMS algorithm, while for the CFD part, large eddy simulation (LES) based on the Smagorinsky subgrid-scale (SGS) model will be employed so that more efficient wind profile prediction can be achieved

    Study of wind profile prediction with a combination of signal processing and computational fluid dynamics

    Get PDF
    Wind profile prediction at different scales plays a crucial role for efficient operation of wind turbines and wind power prediction. This problem can be approached in two different ways: one is based on statistical signal processing techniques and both linear and nonlinear models can be employed either separately or combined together for profile prediction; on the other hand, wind/atmospheric flow analysis is a classical problem in computational fluid dynamics (CFD) in applied mathematics, which employs various numerical methods and algorithms, although it is an extremely time-consuming process with high computational complexity. In this work, a new method is proposed based on synergy's between the signal processing approach and the CFD approach, by alternating the operations of a quaternion-valued least mean square (QLMS) algorithm and the large eddy simulation (LES) in CFD. As demonstrated by simulation results, the proposed method has a much lower computational complexity while maintaining a comparable prediction result
    • …
    corecore