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Abstract

Quaternion-valued signal processing has received more and more attentions in the past ten years

due to the increasing need to process three or four-dimensional signals, such as colour images,

vector-sensor arrays, three-phase power systems, dual-polarisation based wireless communica-

tion systems, and wind profile prediction. One key operation involved in the derivation of all

kinds of adaptive signal processing algorithms is the gradient operator. Although there are some

derivations of this operator in literature with different level of details in the quaternion domain,

it is still not fully clear how this operator can be derived in the most general case and how it

can be applied to various signal processing problems. In this study, we will give a detailed

derivation of the quaternion-valued gradient operator with associated properties and then apply

it to different areas. In particular, it will be employed to derive the quaternion-valued LMS

(QLMS) algorithm and its sparse versions for adaptive beamforming for vector sensor arrays,

and another one is its application to wind profile prediction in combination with the classic

computational fluid dynamics (CFD) approach.

For the adaptive beamforming problem for vector sensor arrays, we consider the crossed-

dipole array and the problem of how to reduce the number of sensors involved in the adap-

tive beamforming process, so that reduced system complexity and energy consumption can be

achieved, whereas an acceptable performance can still be maintained, which is particularly use-

ful for large array systems. The quaternion-valued steering vector model for crossed-dipole

arrays will be employed, and a reweighted zero attracting (RZA) QLMS algorithm is then pro-

posed by introducing a RZA term to the cost function of the original QLMS algorithm. The

RZA term aims to have a closer approximation to the l0 norm so that the number of non-zero

valued coefficients can be reduced more effectively in the adaptive beamforming process.

For wind profile prediction, it can be considered as a signal processing problem and we

can solve it using traditional linear and non-linear prediction techniques, such as the proposed

QLMS algorithm and its enhanced frequency-domain multi-channel version. On the other hand,



wind flow analysis is also a classical problem in the CFD field, which employs various simu-

lation methods and models to calculate the speed of wind flow at different time. It is accurate

but time-consuming with high computational cost. To tackle the problem, a combined approach

based on synergies between the statistical signal processing approach and the CFD approach is

proposed. There are different ways of combining the signal processing approach and the CFD

approach to obtain a more effective and efficient method for wind profile prediction. In the

combined method, the signal processing part employs the QLMS algorithm, while for the CFD

part, large eddy simulation (LES) based on the Smagorinsky subgrid-scale (SGS) model will be

employed so that more efficient wind profile prediction can be achieved.
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Chapter 1

Introduction

1.1 Introduction

Recently, hypercomplex concepts have been introduced to solve problems re-

lated to three or four-dimensional signals, such as vector-sensor array signal

processing [1, 2, 3, 4], color image processing [5] and wind profile predic-

tion [6, 7, 8]. In particular, it is widely used in wind prediction as the wind

velocity has three orthogonal directions and the quaternionic model can meet

this demand with three imaginary parts.

Therefore, some quaternion-valued signal processing methods and algorithms

have been proposed already, such as the fast complexified quaternion Fourier

transform [9] and quaternion-valued singular value decomposition [4]. Fur-

thermore, in many of the cases, the traditional complex-valued adaptive fil-

tering operation needs to be extended to the quaternion domain to derive the

corresponding adaptive algorithms, such as the quaternion-valued Least Mean

Square (QLMS) algorithm in [10]. One key operation involved in derivation of
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quaternion-valued adaptive algorithms is the gradient operator. Although there

are some derivations of this operator in literature with different level of details,

it is still not fully clear how this operator can be derived in the most general

case and how it can be applied to various signal processing problems. There-

fore, a general derivation of the quaternion-valued gradient operator applicable

to different cases is needed, based on which the derived quaternion-valued al-

gorithms can be implemented in different applications. In this thesis, we have

considered two such applications: one is wind profile prediction combined with

the classic computational fluid dynamics (CFD) approach, and the other one is

the low-complexity adaptive beamforming problem for vector-sensor arrays.

1.2 Original Contributions

1.2.1 A general HR gradient operator and its applications

Notwithstanding the advantages of the quaternionic algorithms, extra care has to

be taken in their developments, in particular when the derivatives of quaternion-

valued functions are involved, due to the fact that quaternion algebra is non-

commutative.

Regarding this, we first provide a detailed derivation of the relationship be-

tween the gradient and the increment of a quaternion function, highlighting the

difference between the left and right gradients due to the non-commutativity of

quaternion algebra. Secondly, we document several properties of the operators

that have not been reported before, in particular several different versions of
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product rules and chain rules. Thirdly, we derive a general formula for the re-

stricted HR derivatives of a wide class of regular quaternion-valued nonlinear

functions, among which are the exponential, logarithmic, and the hyperbolic

tangent functions. After that, we prove that the restricted HR gradients are

consistent with the usual definition for the gradient of a real function in a real

variable. Finally, we have derived some quaternion-valued adaptive algorithms

based on the proposed general gradient operator.

1.2.2 Application to adaptive beamforming

In this work, we consider the crossed-dipole array and study the problem of how

to reduce the number of sensors involved in the adaptive beamforming process

so that reduced system complexity and energy consumption can be achieved,

while an acceptable performance can still be maintained, which is especially

useful for large array systems. In particular, we will use the quaternion-valued

steering vector model for crossed-dipole arrays [2, 4, 11, 12, 13, 14, 15, 16, 17,

18], and propose a novel quaternion-valued adaptive algorithm for reference

signal based adaptive beamforming.

In particular, based on recent advances in quaternion-valued signal process-

ing, we derive a reweighted zero attracting (RZA) QLMS algorithm by intro-

ducing a RZA term to the cost function of the QLMS algorithm. Similar to the

idea of the RZA least mean square (RZA-LMS) algorithm proposed in [19], the

RZA term aims to have a closer approximation to the l0 norm so that the number

of non-zero valued coefficients can be reduced more effectively in the adaptive

14



beamforming process.

1.2.3 Application to wind profile prediction

Wind profile prediction can be considered as a signal processing problem and

we can solve it using traditional linear and non-linear prediction techniques,

such as the proposed QLMS algorithm and its enhanced frequency-domain

multi-channel version. On the other hand, wind flow analysis is also a clas-

sical problem in the CFD field, which employs various simulation methods and

models to calculate the speed of wind flow at different time. It is accurate but

time-consuming with high computational cost. To tackle the problem, a com-

bined approach based on synergies between the statistical signal processing ap-

proach and the CFD approach is proposed.

There are different ways of combining the signal processing approach and

the CFD approach to obtain a more effective and efficient method for wind pro-

file prediction. In our current study, we mainly focus on the issue of efficiency,

i.e. we aim to develop a method which can achieve a similar level of accuracy

as the CFD approach but with a lower complexity. Certainly, it is possible to

increase the complexity of the new method a little (but still lower than the orig-

inal CFD approach) and achieve a more accurate result. In this case the new

method could be more efficient and at the same time more effective as well. In

the combined method, the signal processing part employs the QLMS algorithm,

while for the CFD part, large eddy simulation (LES) based on the Smagorinsky

subgrid-scale (SGS) model will be employed.
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1.3 Outline

This thesis is organised as follows.

The algebra of quaternions as well as a brief review of previous research

for both quaternion-valued gradient operators and the derived adaptive algo-

rithms will be provided in Chapter 2. The general quaternion-valued gradient

operator and some related chain rules and product rules will be presented in

Chapter 3, where application of the gradient operator to the derivation of the

QLMS adaptive algorithm and a nonlinear adaptive algorithm based on the hy-

perbolic tangent function is also discussed. At the final part of this chapter, a

quaternion-valued adaptive algorithm is proposed for more efficient identifica-

tion of unknown sparse systems, which is derived by introducing an l1 penalty

term in the original cost function and the resultant ZA-QLMS algorithm can

achieve a faster convergence rate by incorporating the sparsity information of

the system into the update process.

In Chapter 4, a review of the area of adaptive beamforming based on linear

arrays will be provided first, and then the RZA-QLMS adaptive algorithm is

proposed for low-complexity/cost adaptive beamforming based on vector sen-

sor arrays consisting of crossed dipoles. It can reduce the number of sensors

involved in the beamforming process so that reduced system complexity and

energy consumption can be achieved while an acceptable performance can still

be maintained, which is especially useful for large array systems.

Application of quaternion-based signal processing to wind profile prediction
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will be presented in Chapter 5, where correlation analysis will be performed to

show that the problem can be dealt with by classic signal processing methods

and then a multi-channel frequency-domain QLMS algorithm will be employed

for wind profile prediction based on both recorded Google data and data gener-

ated by the Computational Fluid Dynamics (CFD) approach.

In Chapter 6, basic concepts related to CFD will be introduced and a combi-

nation of the CFD method and the quaternion-valued signal processing method

will be described for efficient wind profile prediction. Conclusions are drawn

in Chapter 7 with possible topics for future research.
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Chapter 2

Quaternion-valued Adaptive Signal

Processing

Adaptive filtering has been studied extensively in the past due to its applications

in a wide range of areas, such as noise reduction, echo cancelation, beamform-

ing, and speech coding, etc. [20, 21, 22, 23]. Initially, it was proposed for

real-valued applications, and then extended to the complex domain to deal with

bivariate signals particularly in digital communications [24]. Then, quaternion

calculus was introduced in signal processing with application areas involving

three or four-dimensional signals, such as color image processing [5, 25, 26,

27, 28], vector-sensor array systems [2, 4, 12, 13, 15, 16, 29], three-phase power

systems [30], quaternion-valued wireless communications [31] and wind profile

prediction [10].

In this chapter, we will first give an introduction to quaternion algebra and

then review the complex-valued gradient operator and the derivation of complex-

valued LMS algorithm. A quaternion-valued gradient operator based on real-
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valued cost function and the associated QLMS algorithm is presented in the

following and the quaternion-valued discrete Fourier transform is introduced at

the end.

2.1 Introduction to Quaternion Algebra

Quaternion is a non-commutative extension of complex numbers introduced by

Hamilton [32]. A quaternion q is composed of four parts, i.e.,

q = qa + qbi+ qcj + qdk , (2.1)

where qa is the real part, also denoted as R(q). The other three terms constitute

the imaginary part I(q). i, j and k are the three imaginary units, satisfying the

following rules:

ij = k, jk = i, ki = j, (2.2)

i2 = j2 = k2 = −1, (2.3)

ij = −ji, ki = −ik, kj = −jk (2.4)

As a result, in general the product of two quaternions p and q depends on the

order, i.e., qp ̸= pq, unless at least one of the factors is real-valued.

Let v = |I(q)| and v̂ = I(q)/v, the quaternion q can also be written as

q = qa + vv̂, (2.5)

where v̂ is a pure unit quaternion, which has the convenient property v̂2 :=

v̂v̂ = −1. The quaternionic conjugate of q is q∗ = qa − qbi − qcj − qdk, or
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q∗ = qa − vv̂. It is easy to show that

qq∗ = q∗q = |q|2, (2.6)

q−1 = q∗/|q|2. (2.7)

To express the four real components of q, it is convenient to use its involu-

tions qν := −νqν where ν ∈ {i, j, k} [33]. Explicitly, we have

qi = −iqi = qa + qbi− qcj − qdk, (2.8)

qj = −jqj = qa − qbi+ qcj − qdk, (2.9)

qk = −kqk = qa − qbi− qcj + qdk. (2.10)

qa =
1

4
(q + qi + qj + qk), (2.11)

qb =
1

4i
(q + qi − qj − qk), (2.12)

qc =
1

4j
(q − qi + qj − qk), (2.13)

qd =
1

4k
(q − qi − qj + qk). (2.14)

Two useful relations are

q∗ =
1

2
(qi + qj + qk − q),

q + qi + qj + qk = 4R(q). (2.15)

2.2 Differentiation with Respect to a Vector in Complex Do-

main

Differentiation of a function with respect to a general complex-valued vector is

a common problem in many areas of signal processing including array signal

20



processing. Now a brief review about this topic is given as follows.

Assume that the function f(z) is a function of the complex variable z, which

can be expressed as

z = x+ jy

f(z) = m+ jn. (2.16)

Thus, the complex-valued differentiation df/dz at the point z = z0 can be de-

fined as

df

dz
= lim

∆z→0

f(z0 +∆z)− f(z0)

∆z

= lim
∆x,∆y→0

∆m+ j∆n

∆x+ j∆y
(2.17)

To find out the gradient property, we can set ∆x = 0 and let ∆y → 0, then the

following result can be obtained [22]

df

dz
= −j

∂f

∂y
, (2.18)

or let ∆x → 0 with ∆y = 0, we have

df

dz
=

∂f

∂x
, (2.19)

which shows the definition for a general function f(z) when both its real part

m and its imaginary part n are differentiable [34]:

df

dz
=

1

2
(
∂f

∂x
− j

∂f

∂y
). (2.20)

As to the derivative of f(z) with respect to z∗, we can define it in a similar way

shown below [34]:
df

dz∗
=

1

2
(
∂f

∂x
+ j

∂f

∂y
). (2.21)
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An essential result with this definition is that the complex variable z is inde-

pendent of its conjugate z∗, i.e.

dz

dz∗
=

dz∗

dz
= 0 (2.22)

When the complex variable z is replaced by a complex-valued vector

w = [w1 w2 · · · wM ]T , (2.23)

where wm = am + bmj, m = 1, ...,M , the differentiation of f(w) with respect

to w can be derived as follows [21]

∂f

∂w
=

1

2



∂f
∂a1

− j ∂f
∂b1

∂f
∂a2

− j ∂f
∂b2

...

∂f
∂aM

− j ∂f
∂bM


(2.24)

Similarly, we define
∂f

∂w∗ as [21]

∂f

∂w∗ =
1

2



∂f
∂a1

+ j ∂f
∂b1

∂f
∂a2

+ j ∂f
∂b2

...

∂f
∂aM

+ j ∂f
∂bM


(2.25)

When M = 1, Eq. (2.24) and Eq. (2.25) are reduced to Eq. (2.20) and Eq. (2.21).

Similarly, w and w∗ are also independent of each other [22].
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2.3 Complex-valued Least Mean Square Algorithm

In this section, based on the complex-valued gradient operator defined earlier,

we review a widely used adaptive algorithm called the least mean square (LMS)

algorithm introduced by Widrow and Hoff [35]. A significant feature of the

LMS algorithm is its simplicity and due to its popularity and effectiveness, it has

become the standard against which other linear adaptive filtering algorithms are

evaluated [36, 37]. There are two fundamental steps in the algorithm: filtering

and update, which are formed into a feedback loop [38].

The standard structure of the adaptive filter is shown in Fig. 2.1 [21, 39]. The

output y[n] is expressed as

y[n] = wH [n]x[n], (2.26)

and the error signal e[n] is the difference between reference signal d[n] and filter

output, which is given by

e[n] = d[n]− y[n]

= d[n]− wH [n]x[n], (2.27)

where w[n] = [w1[n], w2[n], · · · , wL[n]]
T is the adaptive weight vector with

a length of L, x[n] = [x[n], x[n − 1], · · · , x[n − L + 1]]T is the input data

vector with a size of L× 1, and {·}T denotes the transpose operation. The error

signal e[n] is employed for adjusting the weight vector w[n] according to some

criterion, which is normally about minimising the error in a mean square or

weighted sum of squares sense [21].
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x[n]
y[n]−

+d[n] e[n]

w[n]

Fig. 2.1: A standard adaptive filter structure.

The cost function J0[n] of the LMS algorithm is constructed by the mean

square error (MSE) and can be formulated as

J0[n] = E{|e[n]|2} = E{(d[n]− wH [n]x[n])2}

= σ2
dd − wH [n]p − pHw[n] + wH [n]Rxxw[n] (2.28)

where σ2
dd = E{|d[n]|2}, p = E{x[n]d∗[n]} and Rxx = E{x[n]xH [n]}. The

minimum value of the cost function can be found through updating the weight

vector w[n] successively from an initial vector in the direction of the negative

gradient of the MSE [40, 41], which is given by

w[n+ 1] = w[n]− µ0∇J0[n]. (2.29)

The factor µ0 is called the step size parameter, which is a positive real-valued

constant weighting the amount of changes applied to each step. The gradient

∇J0[n] with respect to w∗ is expressed as

∇J0[n] =
∂J0[n]

∂w∗ . (2.30)

To calculate the gradient, we have to find out the exact second order statistics

of the received signals, such as the cross-correlation vector p and the auto-

correlation matrix Rxx. However, it is impossible in practice since we have to
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use the known data to estimate the second-order statistics information. There-

fore, an easy way to solve this problem is to replace the expectation values by

the instantaneous single sample estimate based on the input vector x[n] and the

reference signal d[n], a method called stochastic gradient [22].

Finally, the update equation of the well-known LMS algorithm is expressed

as

w[n+ 1] = w[n] + µ0x[n]e∗[n]. (2.31)

The convergence and stability of the LMS algorithm rely on appropriate choice

of the step size µ0 [21, 39]. A large step size leads to a fast convergence speed

but also a large excess MSE at the steady state since a large value makes the

algorithm hard to reach and stay at the exact minimum of the cost function.

However, if the µ0 is small, the excess mean square error is small, but the con-

vergence speed accordingly becomes very slow. Therefore, there is a trade-off

existing between convergence speed and steady state mean square error. As

a result of it, we have to make a compromise to choose the appropriate step

size [22].

In order to reach the steady state, the step size µ should satisfy

0 < µ0 <
2

λmax
, (2.32)

where λmax is the maximum eigenvalue of the covariance matrix Rxx. As λmax

has an upper limit, we can derive the following result

µ0 <
2

Lσ2
xx

, (2.33)

where σ2
xx is the variance of input signal.
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2.4 Quaternion-valued Gradient Operator and the Correspond-

ing LMS Algorithm

As mentioned, the hypercomplex concepts such as quaternion have been intro-

duced to solve problems related to three or four-dimensional signals. Therefore,

in many of the cases, it is necessary to extend the conventional complex-valued

adaptive filtering algorithms to the quaternion domain to derive the correspond-

ing adaptive algorithms to cater for the multi-dimensional signals, such as the

QLMS algorithm which has been employed in 3-D wind velocity with three

orthogonal directions.

Initially, we used the existing definition of quaternion-valued gradient oper-

ation and the derived QLMS algorithm in our study. However, after detailed

study, we found that the existing gradient operator definition and the derived

QLMS algorithms were not consistent, mainly due to the non-commutativity

rule was not strictly enforced. It appears that the authors in [6, 42, 43] used the

traditional product rules as well as chain rules to derive the quaternion-valued

algorithms, which are valid only if non-commutativity is not strictly enforced,

while the three dimensional quaternion model we used in our research is strictly

non-commutative.

We can take the derivation process of the QLMS algorithm in [6] as an exam-

ple. In the LMS algorithm, the cost function is defined as J0(n) = e(n)e∗(n).

Similarly, the same real-valued quadratic cost function as in LMS is employed
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in the quaternion domain and given by

J1(n) = e(n)e∗(n) = e2a + e2b + e2c + e2d, (2.34)

where the quaternion variable e(n) is the error between desired signal and the

output with e(n) = d(n)−wT (n)x(n). d(n), w(n), x(n) denote respectively the

desired signal, the adaptive weight vector, and the filter input. (·)T , (·)H , and

(·)∗ represent respectively the transpose, Hermitian transpose, and quaternion

conjugate operator.

With the cost function in Eq. (2.34), the following gradients need to be cal-

culated using the stochastic gradient optimization

▽w(e(n)e
∗(n)) = ▽wa

(e(n)e∗(n)) +▽wb
(e(n)e∗(n))i

+ ▽wc
(e(n)e∗(n))j +▽wd

(e(n)e∗(n))k (2.35)

where w = wa + wbi+ wcj + wdk.

For the right side of above equation, they can be expressed as

▽wa
(e(n)e∗(n)) = e(n)▽wa

(e∗(n)) +▽wa
(e(n))e∗(n)

▽wb
(e(n)e∗(n)) = e(n)▽wb

(e∗(n)) +▽wb
(e(n))e∗(n)

▽wc
(e(n)e∗(n)) = e(n)▽wc

(e∗(n)) +▽wc
(e(n))e∗(n)

▽wd
(e(n)e∗(n)) = e(n)▽wd

(e∗(n)) +▽wd
(e(n))e∗(n). (2.36)

Therefore, in order to calculate the update equation of the adaptive weight

vector, the gradients shown above should be derived. In this process, the formu-

lation y(n) = wT (n)x(n) and the error expression e(n) = d(n) − wT (n)x(n)
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have been employed. The full derivation of the stochastic gradient update within

the QLMS algorithm is given as follows.

To calculate the derivative of the error e(n) and its conjugate with respect to

the weight vector w(n), the terms wT (n)x(n) and xH(n)w∗(n) appearing in the

calculations, can be expanded as:

wT (n)x(n) =



wT
a xa − wT

b xb − wT
c xc − wT

d xd

wT
a xb + wT

b xa + wT
c xd − wT

d xc

wT
a xc + wT

c xa + wT
d xb − wT

b xd

wT
a xd + wT

d xa + wT
b xc − wT

c xb


(2.37)

xH(n)w∗(n) =



wT
a xa − wT

b xb − wT
c xc − wT

d xd

−wT
a xb − wT

b xa − wT
c xd + wT

d xc

−wT
a xc − wT

c xa − wT
d xb + wT

b xd

−wT
a xd − wT

d xa − wT
b xc + wT

c xb


(2.38)

Based on the Eq. (2.37) and Eq. (2.38), the derivatives from Eq. (2.36) can be

reformulated into:

▽wa
(e(n)e∗(n)) = e(n)(−x∗(n)) + (−x(n))e∗(n)

= −e(n)x∗(n)− x(n)e∗(n) (2.39)

▽wb
(e(n)e∗(n))i = e(n)(xb + xai− xdj + xck)i

+(xb − xai+ xdj − xck)e
∗(n)i

= e(n)(−xa + xbi+ xcj + xdk)

+(xa + xbi− xcj − xdk)e
∗(n) (2.40)
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▽wc
(e(n)e∗(n))j = e(n)(xc + xdi+ xaj − xbk)j

+(xc − xdi− xaj + xbk)e
∗(n)j

= e(n)(−xa + xbi+ xcj + xdk)

+(xa − xbi+ xcj − xdk)e
∗(n) (2.41)

▽wd
(e(n)e∗(n))k = e(n)(xd − xci+ xbj + xak)k

+(xd + xci− xbj − xak)e
∗(n)k

= e(n)(−xa + xbi+ xcj + xdk)

+(xa − xbi− xcj + xdk)e
∗(n). (2.42)

Substituting Eq. (2.39) - Eq. (2.42) into Eq. (2.35), we obtain the final expres-

sion for the gradient of the cost function Eq. (2.34) in the following form as

▽w(e(n)e
∗(n)) = ▽wa

(e(n)e∗(n)) + [▽wb
(e(n)e∗(n))i

+▽wc
(e(n)e∗(n))j +▽wd

(e(n)e∗(n))k]

= −e(n)x∗(n)− x(n)e∗(n)

+[−3e(n)x∗(n) + (3xa − xbi− xcj − xdk)e
∗(n)]

= −e(n)x∗(n)− x(n)e∗(n)

+[−3e(n)x∗(n) + x(n)e∗(n) + 2xae
∗(n)]

= −4e(n)x∗(n)− x(n)e∗(n) + x∗(n)e∗(n) + 2xae
∗(n)

= −4e(n)x∗(n) + 2x∗(n)e∗(n). (2.43)

As the weight update is △w(n) = −µ▽w (e(n)e∗(n)) with step size µ1, con-

sequently, the update of the adaptive weight vector of QLMS can be expressed
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as:

w(n+ 1) = w(n) + µ1(2e(n)x∗(n)− x∗(n)e∗(n)) (2.44)

Since the authors did not state explicitly when and how the non-commutativity

condition should be enforced, it is difficult to apply the HR derivative in a gen-

eral case. As a result, we had to re-define the gradient operation and derive a

new version of the QLMS algorithm, which admits the general product rules

and chain rules.

The HC-derivative in [44] presents the same complication. Besides, the C-

derivative is simpler than the H-derivative only when it is applied to complex-

valued or real-valued functions. It no longer possesses the simplicity when it

is applied to quaternion-valued functions. For example, the product rule is no

longer valid even for the C-derivative if non-commutativity is enforced.

The GHR derivative in [45], which is proposed independent of our restricted

HR, is similar to our restricted HR derivative. It reverses to our definition when

µ is chosen among (1, i, j, k). However, for the restricted HR, we are able to

prove some powerful general results. It is not obvious that these results are also

true in GHR calculus.

2.5 Quaternion-valued Discrete Fourier Transform

Fourier transform has been used extensively in signal processing ever since the

discovery of the Fast Fourier Transform (FFT). On the other hand, since the

hypercomplex number, particularly, the quaternion, was introduced to deal with

30



multi-dimensional signals, quaternion-valued Fourier transform was presented

in [25, 46, 47] to represent 3-D pixels for color image processing. The first

application of quaternion-valued Fourier transform to color images was stud-

ied by Sangwine in [48] using a discrete version of Ells transform. Then the

quaternion-valued discrete Fourier transform (QDFT) was introduced by [26].

For QDFT [26, 49], there are two different types, which are left-side and

right-side, respectively, due to the non-commutativity property of the quater-

nion [50]. Take the right-side QDFT as an example first. As a quaternion has

three imaginary components, it is essential to specify the transform axis. With

the i transform axis, the QDFT of the input data vector x[n] = [x[n], x[n −

1], · · · , x[n− L+ 1]]T with a length of L can be expressed as

Xk[n] =
L∑
l=0

x[n− l]e−i2πkl/L, (2.45)

where k, l = 1, 2, · · · , L. All of the L components Xk[n] form the vector

X[n] =
[
X1 ... XL

]T .

The inverse QDFT (IQDFT) of X[n] is given by [51]

x[n− l] =
1

L

L∑
k=1

Xke
i2πkl/L. (2.46)

With a simplified notation, the output of the L-point QDFT is

X[n] = QDFT[x[n]] (2.47)

and its inverse form is

x[n] = IQDFT[X[n]]. (2.48)
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While for the left-side QDFT, the transform axis should be multiplied by the

left-side rather than right. For example, the left-side QDFT with the j transform

axis of input data vector x[n] is given by

Xm[n] =
L∑
l=1

e−j2πml/Lx[n− l], (2.49)

where m = 1, 2, · · · , L. Therefore, the inverse QDFT (IQDFT) of Xm is

x[n− l] =
1

L

L∑
m=1

ej2πml/LXm. (2.50)

Similarly, the transform axis k has the same format.

2.6 Summary

In summary, the algebra of quaternion including the involutions and QDFT as

well as a brief review of previous research for both real-valued and quaternion-

valued gradient operator and the derived adaptive algorithms has been pre-

sented. Although there have been some derivations about the quaternion-valued

gradient operator with different level of details, it is still not completely clear

how this operator can be derived in the most general case and how it can be

applied to various signal processing problems. In the following chapters, we

will provide a general quaternion-valued gradient operator and then derive a se-

ries of quaternion-valued adaptive algorithms, which will be applied to different

areas, including adaptive beamforming and wind profile prediction.
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Chapter 3

General Quaternion-valued Gradient

Operation and Its Applications

As mentioned above, quaternions are an extension of complex numbers from

2D plane to the 3D or 4D spaces and form one of the four existing division

algebra (real R, complex C, quaternion H and octonions O). A Hermitian Real-

valued (HR) gradient operator was proposed in [42] and the interesting formu-

lation appears to provide a general and flexible framework that could potentially

have wide applications. However, it has only been applied to real-valued func-

tions and linear quaternion-valued functions. In order to consider more general

quaternion-valued functions, we propose a pair of restricted HR gradient op-

erators, the left and the right restricted HR gradient operators, based on the

previous work on the HR gradient operator in [42] and our recent work in [10].

Based on the general quaternion-valued gradient operator, we will derive the

standard QLMS algorithm in a new way and also move to the nonlinear adap-

tive filtering area [52], by developing a quaternion-valued nonlinear adaptive
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filtering algorithm. Moreover, there is a class of algorithms that specifically de-

signed for sparse system identification, where the unknown system only has a

few large coefficients while the remaining ones own a very small amplitude that

they can be ignored without significant effect on the overall performance of the

system. To improve the performance of the QLMS algorithm for sparse system

identification, the ZA-QLMS algorithm is derived in this chapter.

This chapter is organised as follows. The restricted HR gradient operator and

the right restricted HR gradient operator are developed in Sections 3.1 and 3.2,

with their properties and rules introduced in Section 3.3. Explicit expressions

for the derivatives for a wide range of functions are provided in Section 3.4

and results for the right restricted HR operator are summarised in Section 3.5.

The increment of a general quaternion function and applications of the gen-

eral gradient operator to quaternion-valued adaptive algorithms are presented in

Section 3.6. The ZA-QLMS algorithm for sparse system identification is given

in Section 3.7, followed by a summary in Section 3.8.

3.1 The restricted HR gradient operator

Let f be a quaternion-valued function of a non-commutative quaternion q. We

use the notation

f(q) = fa + fbi+ fcj + fdk, (3.1)

where fa, ..., fd are the components of f . f can also be viewed as a function

of the four components of q, i.e., f = f(qa, qb, qc, qd). In this view f is a
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quaternion-valued function on R4.

A so-called HR gradient of f(q) was introduced in [42], which has been

applied to real-valued functions and linear quaternion-valued functions. In order

to find the gradients of more general quaternion-valued functions, we follow a

similar approach to propose a ‘restricted’ HR gradient operator (some of the

derivation was first presented in [10]). To motivate the definitions, we consider

the differential df(q) with respect to differential

dq := dqa + dqbi+ dqcj + dqdk. (3.2)

We observe that

df = dfa + idfb + jdfc + kdfd, (3.3)

where

dfa =
∂fa
∂qa

dqa +
∂fa
∂qb

dqb +
∂fa
∂qc

dqc +
∂fa
∂qd

dqd. (3.4)

According to (2.11), we have

dqa = (dq + dqi + dqj + dqk)/4. (3.5)

Making use of this and similar expressions for dqb, dqc and dqd, we find an

expression for dfa in terms of the differentials dq, dqi, dqj and dqk. More details

are given below.

We consider df = dfa + idfb + jdfc + kdfd. By definition and follow (3.4),
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we have

dfb =
∂fb
∂qa

dqa +
∂fb
∂qb

dqb +
∂fb
∂qc

dqc +
∂fb
∂qd

dqd, (3.6)

dfc =
∂fc
∂qa

dqa +
∂fc
∂qb

dqb +
∂fc
∂qc

dqc +
∂fc
∂qd

dqd, (3.7)

dfd =
∂fd
∂qa

dqa +
∂fd
∂qb

dqb +
∂fd
∂qc

dqc +
∂fd
∂qd

dqd. (3.8)

Using the relations

dqa =
1

4
(dq + dqi + dqj + dqk), (3.9)

dqb =
1

4i
(dq + dqi − dqj − dqk), (3.10)

dqc =
1

4j
(dq − dqi + dqj − dqk), (3.11)

dqd =
1

4k
(dq − dqi − dqj + dqk), (3.12)

we may rewrite dfγ with γ ∈ {a, b, c, d} as follows

dfγ =
1

4
(
∂fγ
∂qa

− i
∂fγ
∂qb

− j
∂fγ
∂qc

− k
∂fγ
∂qd

)dq

+
1

4
(
∂fγ
∂qa

− i
∂fγ
∂qb

+ j
∂fγ
∂qc

+ k
∂fγ
∂qd

)dqi

+
1

4
(
∂fγ
∂qa

+ i
∂fγ
∂qb

− j
∂fγ
∂qc

+ k
∂fγ
∂qd

)dqj

+
1

4
(
∂fγ
∂qa

+ i
∂fγ
∂qb

+ j
∂fγ
∂qc

− k
∂fγ
∂qd

)dqk

which can be written as

dfγ =
1

4

∑
ν

∑
(ϕ,µ)

∂fγ
∂qϕ

µν

 dqν (3.13)

where (ϕ, µ) ∈ {(a, 1), (b,−i), (c,−j), (d,−k)}, ν ∈ {1, i, j, k}, and µν is the
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ν-involution of µ. Therefore

df = dfa + idfb + jdfc + kdfd

=
1

4

∑
ν

∑
(ϕ,µ)

∂(fa + ifb + jfc + kfd)

∂qϕ
µν

 dqν

=
1

4

∑
ν

∑
(ϕ,µ)

∂f

∂qϕ
µν

 dqν. (3.14)

Note that, because µν and dqν are quaternions, to obtain the last equation, we

need to multiply dfb, dfc and dfd by i, j, and k from the left.

We finally arrive at

df = Ddq +Didq
i +Djdq

j +Dkdq
k , where (3.15)

D :=
1

4

(
∂f

∂qa
− ∂f

∂qb
i− ∂f

∂qc
j − ∂f

∂qd
k

)
, (3.16)

Di :=
1

4

(
∂f

∂qa
− ∂f

∂qb
i+

∂f

∂qc
j +

∂f

∂qd
k

)
, (3.17)

Dj :=
1

4

(
∂f

∂qa
+

∂f

∂qb
i− ∂f

∂qc
j +

∂f

∂qd
k

)
, (3.18)

Dk :=
1

4

(
∂f

∂qa
+

∂f

∂qb
i+

∂f

∂qc
j − ∂f

∂qd
k

)
. (3.19)

Thus one may define the partial derivatives of f(q) as follows:

∂f

∂q
:= D,

∂f

∂qi
:= Di,

∂f

∂qj
:= Dj,

∂f

∂qk
:= Dk. (3.20)

Introducing operators

∇q := (∂/∂q, ∂/∂qi, ∂/∂qj, ∂/∂qk), (3.21)

and

∇r := (∂/∂qa, ∂/∂qb, ∂/∂qc, ∂/∂qd), (3.22)
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equations (3.16-3.20) may be written as

∇qf = ∇rfJ
H (3.23)

where the Jacobian matrix

J =
1

4



1 i j k

1 i −j −k

1 −i j −k

1 −i −j k


(3.24)

and JH is the Hermitian transpose of J [42]. Using JJH = JHJ = 1/4, we

may also write

∇qfJ =
1

4
∇rf, (3.25)

which is the inverse formulae for the derivatives.

We call the gradient operator defined by (3.23) the restricted HR gradient

operator. The operator is closely related to the HR operator introduced in [42].

However, in the original definition of the HR operator, the Jacobian J appears

on the left-hand side of ∇rf , whereas in our definition it appears on the right

(as the Hermitian transpose).

The differential df is related to ∇qf by

df =
∂f

∂q
dq +

∂f

∂qi
dqi +

∂f

∂qj
dqj +

∂f

∂qk
dqk. (3.26)

Due to the non-commutativity of quaternion products, the order of the factors in

the products of the above equation (as well as equations (3.16-3.19)) can not be

swapped. In fact, one may call the above operator the left restricted HR gradient

operator.
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3.2 The right restricted HR gradient operator

On the other hand, we notice that the prefactors in (3.10-3.12) may be moved to

the right-hand side of the other factors, i.e., we may write

dqa = (dq + dqi + dqj + dqk)
1

4
, (3.27)

dqb = (dq + dqi − dqj − dqk)
1

4i
, (3.28)

dqc = (dq − dqi + dqj − dqk)
1

4j
, (3.29)

dqd = (dq − dqi − dqj + dqk)
1

4k
. (3.30)

Using these relations, we may find another expression for dfγ following the

procedure above:

dfγ =
1

4

∑
ν

dqν

∑
(ϕ,µ)

µν ∂fγ
∂qϕ

 . (3.31)

The expression is different from (3.13), in that the differentials dqν are on the

left of µν . Therefore, we derive

df = dfa + dfbi+ dfcj + dfdk

=
1

4

∑
ν

dqν

∑
(ϕ,µ)

µν ∂(fa + fbi+ fcj + fdk)

∂qϕ


=

1

4

∑
ν

dqν

∑
(ϕ,µ)

µν ∂f

∂qϕ

 , (3.32)

which is the basis for the definitions for the right restricted HR derivatives. One

may define the right restricted HR gradient operator by

(∇R
q f)

T := J∗(∇rf)
T , where (3.33)
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∇R
q := (∂R/∂q, ∂R/∂qi, ∂R/∂qj, ∂R/∂qk),

and

∂Rf

∂q
:=

1

4

(
∂f

∂qa
− i

∂f

∂qb
− j

∂f

∂qc
− k

∂f

∂qd

)
, (3.34)

∂Rf

∂qi
:=

1

4

(
∂f

∂qa
− i

∂f

∂qb
+ j

∂f

∂qc
+ k

∂f

∂qd

)
, (3.35)

∂Rf

∂qj
:=

1

4

(
∂f

∂qa
+ i

∂f

∂qb
− j

∂f

∂qc
+ k

∂f

∂qd

)
, (3.36)

∂Rf

∂qk
:=

1

4

(
∂f

∂qa
+ i

∂f

∂qb
+ j

∂f

∂qc
− k

∂f

∂qd

)
. (3.37)

The right restricted HR gradient operator is related to the differential df by

df = dq
∂Rf

∂q
+ dqi

∂Rf

∂qi
+ dqj

∂Rf

∂qj
+ dqk

∂Rf

∂qk
. (3.38)

In general, the left and right restricted HR gradients are not the same. For ex-

ample, even for the simplest linear function f(q) = q0q with q0 ∈ H a constant,

we have
∂q0q

∂q
= q0,

∂Rq0q

∂q
= R(q0). (3.39)

However, we will show later that the two gradients coincide for a class of func-

tions. In particular, they are the same for real-valued quaternion functions. The

relation between the gradients and the differential is an important ingredient of

gradient-based methods, which we will discuss further later.

3.3 Properties and Rules of the Operator

We will now focus on the left restricted HR gradient and simply call it the

restricted HR gradient unless stated otherwise. It can be easily calculated from
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the definitions, that

∂q

∂q
= 1,

∂qν

∂q
= 0,

∂q∗

∂q
= −1

2
, (3.40)

where ν ∈ {i, j, k}. However, in order to find the derivatives for more com-

plex quaternion functions, it is useful to first establish the rules of the gradient

operators. We will see that some of the usual rules do not apply due to the

non-commutativity of quaternion products.

1. Left-linearity: for arbitrary constant quaternions α and β, and functions

f(q) and g(q), we have

∂(αf + βg)

∂qν
= α

∂f

∂qν
+ β

∂g

∂qν
(3.41)

for ν ∈ {1, i, j, k} with q1 := q. However, linearity does not hold for right

multiplications, i.e., in general

∂fα

∂q
̸= ∂f

∂q
α. (3.42)

This is because, according to the definition (3.16),

∂fα

∂q
=

1

4

∑
(ϕ,γ)

∂f

∂qϕ
αγ (3.43)

for (ϕ, γ) ∈ {(a, 1), (b,−i), (c,−j), (d,−k)}. However, αγ ̸= γα in general.

Therefore it is different from (∂f/∂q)α, which is

1

4

(
∂f

∂qa
− ∂f

∂qb
i− ∂f

∂qc
j − ∂f

∂qd
k

)
α. (3.44)

2. The first product rule: the following product rule holds:

∇q(fg) = f∇qg + [(∇rf)g]J
H . (3.45)
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For example,

∂fq

∂q
= f

∂g

∂q
+

1

4

(
∂f

∂qa
g − ∂f

∂qb
gi− ∂f

∂qc
gj − ∂f

∂qd
gk

)
. (3.46)

Thus the product rule in general is different from the usual one.

3. The second product rule: However, the usual product rule applies to dif-

ferentiation with respect to real variables, i.e.,

∂fg

∂qϕ
=

∂f

∂qϕ
g + f

∂g

∂qϕ
(3.47)

for ϕ = a, b, c, or d.

4. The third product rule: The usual product rule also applies if at least one

of the two functions f(q) and g(q) is real-valued, i.e.,

∂fq

∂q
= f

∂g

∂q
+

∂f

∂q
g. (3.48)

5. The first chain rule: For a composite function f(g(q)), g(q) := ga + gbi+

gcj+ gdk being a quaternion-valued function, we have the following chain rule:

∇qf = (∇g
qf)M (3.49)

where ∇g
q := (∂/∂g, ∂/∂gi, ∂/∂gj, ∂/∂gk) and M is a 4×4 matrix with element

Mµν = ∂gµ/∂qν for µ, ν ∈ {1, i, j, k} and gµ = −µgµ (g1 is understood as the

same as g). Explicitly, we may write

∂f

∂qν
=
∑
µ

∂f

∂gµ
∂gµ

∂qν
. (3.50)

The proof is outlined below.
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The function f(g(q)) may be view as a function of intermediate variables ga,

gb, gc and gd. Using the usual chain rule, we have

∂f

∂qβ
=

∂f

∂ga

∂ga
∂qβ

+
∂f

∂gb

∂gb
∂qβ

+
∂f

∂gc

∂gc
∂qβ

+
∂f

∂gd

∂gd
∂qβ

=
∑
ϕ

∂f

∂gϕ

∂gϕ
∂qβ

, (3.51)

with β, ϕ ∈ {a, b, c, d}, which gives ∇rf = (∇g
rf)P , where P is a 4× 4 matrix

with Pϕβ = ∂gϕ/∂qβ. With (∇rf)J
H = ∇qf , and ∇g

rf = 4(∇g
qf)J , the above

equation leads to

∇qf = 4(∇g
qf)JPJH , (3.52)

where it is easy to show that 4JPJH = M .

6. The second chain rule: The above chain rule uses g and its involutions as

the intermediate variables. It is sometimes convenient to use the real compo-

nents of g for that purpose instead. In this case, the following chain rule may be

used:

∇qf = (∇g
rf)O (3.53)

where O is a 4 × 4 matrix with entry Oϕν = ∂gϕ/∂q
ν with ϕ ∈ {a, b, c, d} and

ν ∈ {1, i, j, k}, and ∇g
r := (∂/∂ga, ∂/∂gb, ∂/∂gc, ∂/∂gd). Explicitly, we have

∂f

∂qν
=
∑
ϕ

∂f

∂gϕ

∂gϕ
∂qν

. (3.54)

7. The third chain rule: if the intermediate function g(q) is real-valued, i.e.,

g = ga, then from the second chain rule, we obtain

∂f

∂qν
=

∂f

∂g

∂g

∂qν
. (3.55)
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8. f(q) is not independent of qi, qj or qk in the sense that, in general,

∂f(q)

∂qi
̸= 0,

∂f(q)

∂qj
̸= 0,

∂f(q)

∂qk
̸= 0. (3.56)

This can be illustrated by f(q) = q2. Using the first product rule (equation

(3.45)), we have
∂q2

∂qi
= q

∂q

∂qi
+

1

4

∑
(ϕ,ν)

∂q

∂qϕ
qν

for (ϕ, ν) ∈ {(a, 1), (b, i), (c,−j), (d,−k)}. It can then be shown that

∂q2

∂qi
= qbi,

∂q2

∂qj
= qcj,

∂q2

∂qk
= qdk. (3.57)

This property demonstrates the intriguing difference between the HR derivative

and the usual derivatives, although we can indeed show that

∂q

∂qν
= 0. (3.58)

One implication of this observation is that, for a nonlinear algorithm involving

simultaneously more than one gradients ∂f/∂qν , we have to take care to include

all the terms.

3.4 Restricted HR Derivatives for a Class of Regular Func-

tions

Using the above operation rules, we may find explicit expressions for the deriva-

tives for a whole range of functions. We first introduce the following lemma:

Lemma 1. The derivative of the power function f(q) = (q − q0)
n, with
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integer n and constant quaternion q0, is

∂f(q)

∂q
=

1

2

(
nq̃n−1 +

q̃n − q̃∗n

q̃ − q̃∗

)
, (3.59)

with q̃ = q − q0.

Remark. The division in (q̃n− q̃∗n)/(q̃− q̃∗) is understood as (q̃n− q̃∗n)(q̃−

q̃∗)−1 or (q̃− q̃∗)−1(q̃n− q̃∗n) which are the same since the two factors commute.

The division operations in what follows are understood in the same way.

Proof. The lemma is obviously true for n = 0. Let n ≥ 1, we apply the first

product rule, and find

∂(q − q0)
n

∂q
= q̃

∂q̃n−1

∂q
+R(q̃n−1) (3.60)

where R(q̃n−1) is the real part of q̃n−1. We then obtain by induction

∂(q − q0)
n

∂q
=

n−1∑
m=0

q̃mR(q̃n−1−m). (3.61)

Using R(q̃n−1−m) = 1
2(q̃

n−1−m + q̃∗(n−1−m)), the summations can be evaluated

explicitly, which is given by

∂(q − q0)
n

∂q
=

n−1∑
m=0

q̃mR(q̃n−1−m)

=
1

2

(
n−1∑
m=0

(q̃n−1−m + q̃∗(n−1−m))q̃m

)

=
1

2

(
n−1∑
m=0

q̃n−1 +
n−1∑
m=0

q̃∗(n−1)

(
q̃m

q̃∗m

)m
)

=
1

2

(
nq̃n−1 +

q̃n − q̃∗n

q̃ − q̃∗

)
. (3.62)

For n < 0, we use the recurrent relation

∂((q − q0)
−n)

∂q
= q̃−1

[
∂q̃−(n−1)

∂q
−R(q̃−n)

]
(3.63)
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and the result
∂(q − q0)

−1

∂q
= −q̃−1R(q̃−1). (3.64)

and also we have used the following relation

∂q−1

∂q
= −q−1R(q−1). (3.65)

To show this result, we note ∂(qq−1)/∂q = ∂1/∂q = 0. Thus

0 = q
∂q−1

∂q
+

1

4
(q−1 − iq−1i− jq−1j − kq−1k)

= q
∂q−1

∂q
+R(q−1), (3.66)

from which the result follows. We have used (3.16) and the fact that

∂q

∂qa
= 1,

∂q

∂qb
= i,

∂q

∂qc
= j,

∂q

∂qd
= k. (3.67)

The proof also uses the following recurrent relation

∂q−n

∂q
= q−1

[
∂q−(n−1)

∂q
−R(q−n)

]
, (3.68)

which can be shown as follows: using the first product rule, we have

∂q−n

∂q
= q−1∂q

−(n−1)

∂q
+

1

4

(
∂q−1

∂qa
q−(n−1)−

∂q−1

∂qb
q−(n−1)i− ∂q−1

∂qc
q−(n−1)j − ∂q−1

∂qd
q−(n−1)k

)
. (3.69)

Using the fact ∂qq−1/∂qϕ = 0 for ϕ ∈ {a, b, c, d}, and the second product rule,

we find
∂q−1

∂qϕ
= −q−1 ∂q

∂qϕ
q−1. (3.70)
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Thus

∂q−n

∂q
= q−1∂q

−(n−1)

∂q
− q−1

4

(
q−n − iq−ni− jq−nj − kq−nk

)
= q−1∂q

−(n−1)

∂q
− q−1R(q−n)

= q−1[
∂q−(n−2)

∂q
−R(q−(n−1))]− q−1R(q−n)

= −
n∑

m=1

q−mR(q−(n+1−m))

= −
n∑

m=1

q−(n+1−m)R(q−m)

= −1

2

(
nq−(n+1) +

q−∗q−(n+1) − q−∗(n+1)q−1

q−1 − q−∗

)
= −1

2

(
nq−(n+1) + (q−1 − q−∗)−1(qq∗)−1(qq∗)(q−∗q−(n+1) − q−∗(n+1)q−1)

)
=

1

2

(
−nq−(n+1) +

q−n − q−n∗

q − q∗

)
. (3.71)

Equation (3.59) is proven by using induction as for n > 0 and using recurrent

relation for n < 0.

Theorem 1. Assuming f : H → H admits a power series representation

f(q) := g(q̃) :=
∑∞

n=−∞ anq̃
n, with an being a quaternion constant and q̃ =

q − q0, for R1 ≤ |q̃| ≤ R2 with R1, R2 > 0 being some constants, then

∂f(q)

∂q
=

1

2

[
f ′(q) + (g(q̃)− g(q̃∗))(q̃ − q̃∗)−1

]
, (3.72)

where f ′(q) is the derivative in the usual sense, i.e.,

f ′(q) :=
∞∑

n=−∞
nanq̃

n−1 =
∞∑

n=−∞
nan(q − q0)

n−1. (3.73)

Proof. Using Lemma 1 and the restricted left-linearity of HR gradients, we
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have

∂f

∂q
=

1

2

∞∑
n=−∞

an[nq̃
n−1 + (q̃n − q̃∗n)(q̃ − q̃∗)−1]

=
1

2
f ′(q) +

1

2

[ −∞∑
n=∞

an(q̃
n − q̃∗n)

]
(q̃ − q̃∗)−1

=
1

2
[f ′(q) + (g(q̃)− g(q̃∗))(q̃ − q̃∗)−1],

proving the theorem.

The functions f(q) form a class of regular functions on H . A full discussion

of such functions is beyond the scope of this thesis. However, we note that a

similar class of functions have been discussed in [53]. A parallel development

for the former is possible, and will be a topic of our future research. Mean-

while, we observe that many useful elementary functions satisfy the conditions

in Theorem 1. To illustrate the application of the theorem, we list below the

derivatives of a number of such functions.

Example 1. Exponential function f(q) = eq has representation

eq :=
∞∑
n=0

qn

n!
. (3.74)

Applying Theorem 1 with an = 1/n! and q0 = 0, we have

∂eq

∂q
=

1

2

(
eq +

eq − eq∗

q − q∗

)
. (3.75)

The exponential function f(q) = eq is defined by the series expression

eq =
∑∞

n=0 q
n/n!. There is another expression eq = eqa+v̂v = eqaev̂v =

eqa(cos v + v̂ sin v) following from the properties of the exponential function

eq1+q2 = eq1eq2, and the representation of q = qa + v̂v and v̂2 = −1. In the last
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step, we have used

ev̂v =
∞∑
n=0

(vv̂)n

n!

=
∞∑

m=0

(vv̂)2m

(2m)!
+

∞∑
m=0

(vv̂)2m+1

(2m+ 1)!

=
∞∑

m=0

(−1)mv2m

(2m)!
+ v̂

∞∑
m=0

(−1)mv2m+1

(2m+ 1)!

= cos v + v̂ sin v (3.76)

Making use of eq = eqa(cos v + v̂ sin v), we have

∂eq

∂q
=

1

2

(
eq + eqav−1 sin v

)
. (3.77)

Example 2. The logarithmic function f(q) = ln q has representation

ln q =
∞∑
n=1

(−1)n−1

n
(q − 1)n. (3.78)

with an = (−1)n−1/n and q0 = 1. Since q0 is a real number, g(q̃∗) = f(q∗).

Therefore, we have from Theorem 1

∂ ln q

∂q
=

1

2

(
q−1 +

ln q − ln q∗

q − q∗

)
. (3.79)

Using representation ln q = ln |q|+ v̂ arccos(qa/|q|), straightforwardly, the ex-

pression can be simplified as

∂ ln q

∂q
=

1

2

(
q−1 +

1

v
arccos

qa
|q|

)
, (3.80)

where v = |I(q)|. If we derive the Eq. (3.79) directly, we can have

∂ ln q

∂q
=

∂ ln |q|
∂q

+
∂v̂

∂q
arccos

qa
|q|

+ v̂
∂

∂q
(arccos

qa
|q|

) (3.81)
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Moreover, the right side of above equation can be given as follows

∂ ln |q|
∂q

=
1

|q|
∂|q|
∂q

=
1

4|q|
(
∂|q|
∂qa

− ∂|q|
∂qb

i− ∂|q|
∂qc

j − ∂|q|
∂qd

k)

=
1

8|q|
(
∂|q|2

∂qa
− ∂|q|2

∂qb
i− ∂|q|2

∂qc
j − ∂|q|2

∂qd
k)

=
q∗

4|q|2
(3.82)

∂

∂q
(arccos

qa
|q|

) = − 1√
1− q2a

|q|2

∂

∂q

qa
|q|

= − |q|√
|q|2 − q2a

(
1

|q|
∂qa
∂q

− qa
|q|2

∂|q|
∂q

)

= − |q|√
|q|2 − q2a

(
1

4|q|
− qa

|q|2
q∗

4|q|
)

= −1

4
q−1v̂ (3.83)

∂v̂

∂q
=

∂

∂q
(
I(q)

|I(q)|
)

=
1

|I(q)|
∂I(q)

∂q
+ I(q)(− 1

|I(q)|2
)
∂|I(q)|
∂q

=
1

|I(q)|
∂I(q)

∂q
− 1

2|I(q)|3
)
∂|I(q)|2

∂q

=
1

2|I(q)|
(3.84)
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Adding these three terms together:

∂ ln q

∂q
=

q∗

4|q|2
+

1

2|I(q)|
arccos

qa
|q|

+ v̂(−1

4
q−1v̂)

=
1

4
q−1 +

1

2|I(q)|
arccos

qa
|q|

+
1

4
q−1

=
1

2
q−1 +

1

2v
arccos

qa
|q|

(3.85)

Example 3. Hyperbolic tangent function f(q) = tanh q is defined as

tanh q :=
eq − e−q

eq + e−q
= q − q3

3
+

2q5

15
− ... (3.86)

Therefore, Theorem 1 applies. On the other hand, using the relation eq =

eqa(cos v + v̂ sin v), we can show that

sinh(q) =
1

2
(eqa(cos v + v̂ sin v)− e−qa(cos v − v̂ sin v))

= sinh(qa) cos v + v̂ cosh(qa) sin v (3.87)

and

cosh(q) =
1

2
(eqa(cos v + v̂ sin v) + e−qa(cos v − v̂ sin v))

= cosh(qa) cos v + v̂ sinh(qa) sin v. (3.88)

Then we can obtain

tanh q =
sinh q

cosh q
=

1

2

sinh 2qa + v̂ sin 2v

sinh2 qa + cos2 v
. (3.89)

Then derivatives in the expression given by Theorem 1 can be simplified. The

final expression can be written as

∂ tanh q

∂q
=

1

2

(
sech2 q +

v−1 sin 2v

cosh 2qa + cos 2v

)
, (3.90)
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where sech q := 1/ cosh q is the quaternionic hyperbolic secant function.

Remark. Apparently, the derivatives for these functions can also be found

by direct calculations without resorting to Theorem 1.

We now turn to a question of more theoretical interests. Even though it

might not be obvious from the definitions, the following theorem shows that the

restricted HR derivative is consistent with the derivative in the real domain for

a class of functions, including those in the above examples.

Theorem 2. For the function f(q) in Theorem 1, if q0 is a real number, then

∂f(q)

∂q
→ f ′(q) (3.91)

when q → R(q), i.e., when q approaches a real number.

Proof. Using the polar representation, we write q̃ = |q̃| exp(v̂θ), where θ =

arcsin(v/|q̃|) is the argument of q̃ with v = |I(q̃)|. Then q̃n = |q̃|n exp(nv̂θ),

and

(q̃n − q̃∗n)(q̃ − q̃∗)−1 =
I(q̃n)

I(q̃)
=

|q̃|n−1 sin(nθ)

sin θ
. (3.92)

For real q0, q̃ → qa−q0 and v → 0 when q → R(q). There are two possibilities.

Firstly, if qa − q0 ≥ 0, then θ → 0 at the limit. Thus,

sin(nθ)

sin θ
∼ sin(nθ)

θ
→ n,

|q̃|n−1 → (qa − q0)
n−1. (3.93)

Therefore,

(q̃n − q̃∗n)(q̃ − q̃∗)−1 → nq̃n−1 (3.94)

[g(q̃)− g(q̃∗)](q̃ − q̃∗)−1 →
∞∑

n=−∞
nanq̃

n−1 = f ′(q). (3.95)
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Thus,
∂f(q)

∂q
→ 1

2
[f ′(q) + f ′(q)] = f ′(q). (3.96)

Secondly, if qa − q0 < 0, then θ → π. Thus

sin(nθ)

sin θ
∼ sin(nθ)

π − θ
(3.97)

Note sin(nθ) = sin[nπ − n(π − θ)] = (−1)n−1 sin[n(π − θ)], we have

sin(nθ)

sin θ
∼ (−1)n−1 sin(n(π − θ)

π − θ
→ (−1)n−1n. (3.98)

On the other hand, in this case |q̃| → −(qa − q0), hence

|q̃|n−1 → (−1)n−1(qa − q0)
n−1. (3.99)

Since q̃ → qa − q0, as a consequence, we have

(q̃n − q̃∗n)(q̃ − q̃∗)−1 → nq̃n−1 (3.100)

which is the same as Eq. (3.94). The proof then follows from the first case.

The functions in above three examples all satisfy the conditions in Theorem

2, hence we expect Theorem 2 applies. One can easily verify by direct calcula-

tions that the theorem indeed holds.

3.5 The Right Restricted HR Gradients

In this section, we briefly summarize the results for the right restricted HR gra-

dients, and highlight the difference with left restricted HR gradients.
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1. Right-linearity: for arbitrary quaternion constants α and β, and functions

f(q) and g(q), we have

∂R(fα + gβ)

∂qν
=

∂Rf

∂qν
α+

∂Rg

∂qν
β. (3.101)

However, linearity does not hold for left multiplications, i.e., in general ∂Rαf
∂q ̸=

α∂Rf
∂q .

2. The first product rule: for the right restricted HR operator, the following

product rule holds

[∇R
q (fg)]

T = [(∇R
q f)g]

T + J∗[f(∇rg)
T ] . (3.102)

The second and third product rules are the same as for the left restricted opera-

tor.

3. The first chain rule: for the composite function f(g(q)), we have

(∇R
q f)

T = MT (∇gR
q f)T . (3.103)

4. The second chain rule becomes (∇R
q f)

T = OT (∇g
rf)

T .

5. The third chain rule becomes ∂Rf
∂qν = ∂g

∂qν
∂f
∂g . Note that, ∂g/∂qν = ∂Rg/∂qν

since g is real-valued. We thus have omitted the superscript R. Also, ∂f/∂g is

a real derivative, so there is no distinction between left and right derivatives.

We can also find the right restricted HR gradients for common quaternion

functions. First of all, Lemma 1 is also true for right derivatives:

Lemma 2. For f(q) = (q− q0)
n with n integer and q0 a constant quaternion,

we have
∂Rf(q)

∂q
=

1

2

(
nq̃n−1 +

q̃n − q̃∗n

q̃ − q̃∗

)
, (3.104)
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with q̃ = q − q0.

Remark. To prove the lemma, we use the following recurrent relations:

∂(q − q0)
n

∂q
=

∂q̃n−1

∂q
q̃ +R(q̃n−1) (3.105)

∂((q − q0)
−n)

∂q
=

[
∂q̃−(n−1)

∂q
−R(q̃−n)

]
q̃−1. (3.106)

Using Lemma 2, We can prove the following result:

Theorem 3. Assuming f : H → H admits a power series representation

f(q) := g(q̃) :=
∑∞

n=−∞ q̃nan, with an being a quaternion constant and q̃ =

q − q0, for R1 ≤ |q̃| ≤ R2 with R1, R2 > 0 being some constants, then

∂Rf(q)

∂q
=

1

2

[
f ′(q) + (q̃ − q̃∗)−1(g(q̃)− g(q̃∗))

]
, (3.107)

where f ′(q) is the derivative in the usual sense, i.e.,

f ′(q) :=
∞∑

n=−∞
nq̃n−1an =

∞∑
n=−∞

n(q − q0)
n−1an. (3.108)

Note that, the functions f(q) in Theorem 3 in general form a different class

of functions than the one in Theorem 1, because in the series representation an

appears on the right-hand side of the powers. However, if an is a real number,

then the two classes of functions coincide. Therefore, we have the following

result:

Theorem 4. If an is real, then the left and right restricted HR gradients of

f(q) coincide.

Remark. As a consequence, we can see immediately the right derivatives

for the exponential, logarithmic and hyperbolic tangent functions are the same

as the left ones.
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Apparently, Theorem 2 is also true for the right derivatives. Hence, we have:

Theorem 5. The right-restricted HR gradient is consistent with the real gra-

dient in the sense of Theorem 2.

3.6 Quaternion-valued Algorithms

3.6.1 The increment of a quaternion function

When f(q) is a real-valued quaternion function, both left and right restricted

HR gradients are coincident with the HR gradients. Besides, we have

∂Rf

∂qν
=

∂f

∂qν
=

(
∂f

∂q

)ν

, (3.109)

where ν ∈ {1, i, j, k}. Thus only ∂f/∂q is independent. As a consequence (see

also [42]),

df =
∑
ν

∂f

∂qν
dqν =

∑
ν

(
∂f

∂q

)ν

dqν

=
∑
ν

(
∂f

∂q
dq

)ν

= 4R

(
∂f

∂q
dq

)
, (3.110)

where equation (3.109) has been used. Hence, −(∂f/∂q)∗ gives the steepest

descent direction for f , and the increment is determined by ∂f/∂q.

On the other hand, if f is a quaternion-valued function, the increment will

depend on all four derivatives. Taking f(q) = q2 as an example, we have (see

equations (3.57) and (3.59))

dq2 = (q + qa)dq + qbidq
i + qcjdq

j + qdkdq
k, (3.111)
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even though f(q) appears to be independent of qi, qj and qk. It can be verified

that the above expression is the same as the differential form given in terms

of dqa, dqb, dqc and dqd. Thus it is essential to include the contributions from

∂f/∂qi etc.

We also note that, if the right gradient is used consistently, the same incre-

ment would result, since the basis of the definitions is the same, namely, the

differential form in term of dqa, dqb, dqc and dqd.

We have proposed a restricted HR gradient operator and discussed its prop-

erties, in particular several different versions of product rules and chain rules.

Using the rules that we establish, we can derive a general formula for the deriva-

tive of a large class of nonlinear quaternion-valued functions. The class includes

the common elementary functions such as the exponential function, the logarith-

mic function, among others. We also prove that, for a wide class of functions,

the restricted HR gradient becomes the usual derivatives for real functions with

respect to real variables, when the independent quaternion variable tends to the

real axis, thus showing the consistency of the definition. Both linear and non-

linear adaptive filtering algorithms could be derived to show the applications of

the gradient operator later.

57



3.6.2 The QLMS algorithm

As the gradient operator expressions for quaternion variable q and its conjugate

q∗ were given before

∂f(q)

∂q
=

1

4
(
∂f(q)

∂qa
− ∂f(q)

∂qb
i− ∂f(q)

∂qc
j − ∂f(q)

∂qd
k) (3.112)

∂f(q)

∂q∗
=

1

4
(
∂f(q)

∂qa
+

∂f(q)

∂qb
i+

∂f(q)

∂qc
j +

∂f(q)

∂qd
k), (3.113)

when the quaternion variable q is replaced by a quaternion-valued vector w =

[w1 w2 · · · wM ]T , where wm = am + bmi + cmj + dmk, m = 1, ...,M , the

differentiation of f(w) with respect to w can be derived as follows

∂f

∂w
=

1

4



∂f
∂a1

− ∂f
∂b1

i− ∂f
∂c1

j − ∂f
∂d1

k

∂f
∂a2

− ∂f
∂b2

i− ∂f
∂c2

j − ∂f
∂d2

k

...

∂f
∂aM

− ∂f
∂bM

i− ∂f
∂cM

j − ∂f
∂dM

k


(3.114)

Similarly, we define
∂f

∂w∗ as

∂f

∂w∗ =
1

4



∂f
∂a1

+ ∂f
∂b1

i+ ∂f
∂c1

j + ∂f
∂d1

k

∂f
∂a2

+ ∂f
∂b2

i+ ∂f
∂c2

j + ∂f
∂d2

k

...

∂f
∂aM

+ ∂f
∂bM

i+ ∂f
∂cM

j + ∂f
∂dM

k


(3.115)

As an application, we now apply the quaternion-valued restricted HR gradi-

ent operator to develop the QLMS algorithm. Different versions of the QLMS

algorithm have been derived before. However, with the rules we have derived,

some of the calculations can be simplified, as we will be showing below.
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In terms of a standard adaptive filter, the output y[n] and error e[n] can be

expressed as

y[n] = wT [n]x[n], e[n] = d[n]− wT [n]x[n], (3.116)

where w[n] is the adaptive weight coefficient vector, d[n] the reference signal,

and x[n] the input sample vector. The conjugate e∗[n] of the error signal e[n] is

e∗[n] = d∗[n]− xH [n]w∗[n]. (3.117)

The cost function is defined as J2[n] = e[n]e∗[n] which is real-valued. Accord-

ing to the discussion above and in [42, 54], the conjugate gradient (∇wJ2[n])
∗

gives the maximum steepness direction for the optimization surface. Therefore

it is used to update the weight vector. Specifically,

w[n+ 1] = w[n]− µ2(∇wJ2[n])
∗, (3.118)

where µ3 is the step size. When expanding the cost function, we obtain

J2[n] = e[n]e∗[n]

= d[n]d∗[n]− d[n]xH [n]w∗[n]− wT [n]x[n]d∗[n] + wT [n]x[n]xH [n]w∗[n].

(3.119)

Details of the derivation process for the gradient are shown in the following

without using our rules mentioned before

∂(d[n]d∗[n])

∂w∗[n]
= 0 (3.120)

∂(d[n]xH [n]w∗[n])

∂w∗[n]
= d[n]x∗[n] (3.121)
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∂(wT [n]x[n]d∗[n])
∂w∗[n]

= −1

2
d[n]x∗[n] (3.122)

∂(wT [n]x[n]xH [n]w∗[n])

∂w∗[n]
=

1

2
wT [n]x[n]x∗[n]. (3.123)

Combining the above results, the final gradient can be obtained as follows

∇w∗J2[n] = −1

2
e[n]x∗[n]. (3.124)

To find ∇wJ2[n] , we can also use another simpler way with employing the

first product rule:

∇wJ2[n] =
∂e[n]e∗[n]

∂w

= e[n]
∂e∗[n]

∂w
+

1

4
(
∂e[n]

∂wa
e∗[n]− ∂e[n]

∂wb
e∗[n]i

−∂e[n]

∂wc
e∗[n]j − ∂e[n]

∂wd
e∗[n]k) (3.125)

After some algebra, we find

∇wJ2[n] = −1

2
x[n]e∗[n], (3.126)

which is the same result as the extended way, thereby leading to the following

update equation for the QLMS algorithm

w[n+ 1] = w[n] + µ2(e[n]x∗[n]). (3.127)

3.6.3 The AQLMS algorithm

Recently, to fully exploit the second-order statistics of the signals, an augmented

formulation of the data vector has been proposed, first for complex-valued sig-

nals and then for quaternion-valued ones. For complex-valued signals, the aug-

mented vector is composed of the original data and its conjugate, while for the
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latter, due to existence of the three quaternion involutions, the choice for the

augmented vector is not unique. Without loss of generality, here we adopt the

simplest formulation by combining the data vector x[n] and its conjugate x∗[n]

to produce an augmented vector xa[n] =
[
xT [n] xH [n]

]T [55], where {·}H is

a combination of the operations of {·}T and {·}∗ for a quaternion. For such a

“widely linear” model, the quaternion-valued output for the conjugate part of

the input is given by

ŷ[n] = gT [n]x∗[n], (3.128)

where g[n] denotes the weight vector for the conjugate part of the input x[n].

As to the AQLMS algorithm, the update of the weight vector of the conjugate

part g[n] can be found with the same method as that of the QLMS, i.e.

g[n+ 1] = g[n] + µ(e[n]x[n]). (3.129)

With the augmented weight vector ha[n] defined as

ha[n] =
[
wT [n] gT [n]

]T
, (3.130)

we obtain the following update equation

ha[n+ 1] = ha[n] + µ3(ea[n]xa
∗[n]) (3.131)

where ea[n] = d[n]− ha
T [n]xa[n].

3.6.4 The Quaternion-valued nonlinear adaptive algorithm

Another application of the proposed gradient operator is the derivation of non-

linear quaternion-valued adaptive filtering algorithms. We use the quaternion-
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valued hyperbolic tangent function as an example [56], so that the output s[n]

of the adaptive filter is given by

s[n] = tanh(y[n]) = tanh(wT [n]x[n]). (3.132)

The cost function is given by

J4[n] = e[n]e∗[n], (3.133)

with

e[n] = d[n]− tanh(wT [n]x[n]). (3.134)

Using the product rules in (3.125) and chain rules, and letting y[n] = wT [n]x[n],

we have

∂e∗[n]

∂w[n]
=− (

∂ tanh(y∗[n])

∂(y∗[n])a

∂(y∗[n])a
∂w[n]

+
∂ tanh(y∗[n])

∂(y∗[n])b

∂(y∗[n])b
∂w[n]

+
∂ tanh(y∗[n])

∂(y∗[n])c

∂(y∗[n])c
∂w[n]

+
∂ tanh(y∗[n])

∂(y∗[n])d

∂(y∗[n])d
∂w[n]

). (3.135)

Let u = |I(y)| and û = I(y)/u. Then the quaternion y = ya + I(y) can also be

written as y = ya + uû. û is a pure unit quaternion. If we employ the following

expression for tanh y

tanh y =
1

2

sinh 2ya + û sin 2u

sinh2 ya + cos2 u
, (3.136)
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finally, the gradient can be expressed as follows by using (3.89)

∇wJ4[n] =
1

4(sinh2 ya + cos2 u)2

(
(2 sin 2u(ea sin

2 ya + sin 2u(eû)a)

+ (cos u− sinu

u
)(sinh2 ya + cos2 u)(eû)a)xû

+ ea((sinh
2 ya + cos2 u)(

sinu

u
− 4 cosh 2ya)

+ sinh 2ya(sinh
2 ya − sin 2u(eû)a))x

+ 2
sinu

u
(sinh2 ya + cos2 u)(exa + e∗x)a)

)
(3.137)

Substituting the above result into Eq. (3.118) we can then obtain the update

equation for the nonlinear adaptive algorithm.

On the other hand, if we use the series representation of tanh(q), we can ob-

tain another form of the gradient function. Using the product rules, the gradient

of the cost function is given by:

∇wJ4[n] =
∂J4[n]

∂w[n]
= e[n]

∂e∗[n]

∂w[n]

+
1

4

(
∂e[n]

∂wa
e∗[n]− ∂e[n]

∂wb
e∗[n]i− ∂e[n]

∂wc
e∗[n]j − ∂e[n]

∂wd
e∗[n]k

)
(3.138)

Letting y[n] = wT [n]x[n], we have

∂e∗[n]

∂w[n]
= −∂ tanh(y∗[n])

∂w[n]

= −(
∂ tanh(y∗[n])

∂(y∗[n])a

∂(y∗[n])a
∂w[n]

+
∂ tanh(y∗[n])

∂(y∗[n])b

∂(y∗[n])b
∂w[n]

+
∂ tanh(y∗[n])

∂(y∗[n])c

∂(y∗[n])c
∂w[n]

+
∂ tanh(y∗[n])

∂(y∗[n])d

∂(y∗[n])d
∂w[n]

)

=
1

2

∞∑
m=0

m−1∑
r=0

am(y
∗[n])m−1−rx∗[n](y[n])r, (3.139)
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and
1

4

(
∂e[n]

∂wa
e∗[n]− ∂e[n]

∂wb
e∗[n]i− ∂e[n]

∂wc
e∗[n]j − ∂e[n]

∂wd
e∗[n]k

)
= −

∞∑
m=0

m−1∑
r=0

am(y[n])
m−1−rR(x[n](y[n])re∗[n]),

(3.140)

where am is the coefficient in the series representation of tanh(y[n]),

tanh(y[n]) =
∞∑

m=0

am(y[n])
m. (3.141)

The gradient can then be expressed as

∇wJ [n] =
1

2

∞∑
m=0

m−1∑
r=0

ame[n](y
∗[n])m−1−rx∗[n](y[n])r

−
∞∑

m=0

m−1∑
r=0

am(y[n])
m−1−rR(x[n](y[n])re∗[n])

= −1

2

∞∑
m=0

m−1∑
r=0

am(x[n](wT [n]x[n])re∗[n](wT [n]x[n])m−1−r.(3.142)

As the conjugate gradient gives the maximum steepness direction for the opti-

mization surface, the hyperbolic tangent function based nonlinear adaptive fil-

tering algorithm is given by:

w[n+ 1] = w[n] +
1

2
µ

∞∑
m=0

am
(m−1∑

r=0

(xH [n]w∗[n])m−1−re[n](xH [n]w∗[n])r
)
x∗[n]

= w[n] +
1

2
µ
( ∞∑
m=0

amhm

)
x∗[n], (3.143)

where

hm =
m−1∑
r=0

(xH [n]w∗[n])m−1−re[n](xH [n]w∗[n])r. (3.144)

From the above equation, we can see that if we allow e[n] to be commuted

with the other factors, then the summation becomes sech2(xH [n]w∗[n]), and the

formula is the same as in the real or complex domains.
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3.7 A Zero-attracting QLMS Algorithm for Sparse System

Identification

In adaptive filtering [21], there is a class of algorithms specifically designed for

sparse system identification, where the unknown system only has a few large co-

efficients while the remaining ones have a very small amplitude so that they can

be ignored without significant effect on the overall performance of the system.

A good example of them is the zero-attracting least mean square (ZA-LMS)

algorithm proposed in [19]. This algorithm can achieve a higher convergence

speed, and meanwhile, reduce the steady state excess mean square error (MSE).

Compared to the classic LMS algorithm [24], the ZA-LMS algorithm intro-

duces a l1 norm in its cost function, which modifies the update equation of

weight coefficient vector with a zero attractor term.

In this part, we propose a novel quaternion-valued adaptive algorithm with

a sparsity constraint, which is called zero-attracting QLMS (ZA-QLMS) al-

gorithm. The additional constraint is formulated based on the l1 norm. Both

the QLMS and ZA-QLMS algorithms can identify an unknown sparse system

effectively. However, a better performance in terms of convergence speed is

achieved by the latter one.

3.7.1 The zero-attracting QLMS (ZA-QLMS) algorithm

To derive the ZA-QLMS algorithm, similar to [19], in the cost function, we add

a l1 norm penalty term for the quaternion-valued weight vector w[n].
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For a standard adaptive filter, the output y[n] and error e[n] can be expressed

as

y[n] = wT [n]x[n] (3.145)

e[n] = d[n]− wT [n]x[n] . (3.146)

The conjugate form e∗[n] of the error signal e[n] is given by

e∗[n] = d∗[n]− xH [n]w∗[n]. (3.147)

Our proposed cost function with a zero attractor term is then formulated as

J5[n] = e[n]e∗[n] + γ1∥w[n]∥1 , (3.148)

where γ1 is a small constant.

The gradient of the above cost function with respect to w∗[n] and w[n] can

be respectively expressed as

∇w∗J5[n] =
∂J5[n]

∂w∗ (3.149)

and

∇wJ5[n] =
∂J5[n]

∂w
(3.150)

From [42, 54], we know that the conjugate gradient gives the maximum

steepness direction for the optimization surface. Therefore, the conjugate gradi-

ent ∇w∗J5[n] will be used to derive the update of the coefficient weight vector.

By using our proposed product rules, the derivation process for the gradient

is simplified and expressed as

∂J5[n]

∂w∗ =
∂(e[n]e∗[n] + γ1∥w[n]∥1)

∂w∗

=
∂(e[n]e∗[n])

∂w∗ +
∂(γ1∥w[n]∥1)

∂w∗ . (3.151)
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The first part of the above equation is same as that for QLMS algorithm, which

is

∇w∗J2[n] = −1

2
e[n]x∗[n]. (3.152)

Moreover, the last part of the gradient of cost function is given by

∂(γ1∥w[n]∥1)
∂w∗ =

1

4
γ1 · sgn(w[n]) , (3.153)

where the symbol sgn is a component-wise sign function that is defined as [19]

sgn(x) =


x/|x| x ̸= 0

0 x = 0

Combining the above results, the final gradient can be obtained as follows

∇w∗J5[n] = −1

2
e[n]x∗[n] +

1

4
γ1 · sgn(w[n]) . (3.154)

With the general update equation for the weight vector

w[n+ 1] = w[n]− µ5∇w∗J5[n], (3.155)

where µ5 is the step size, we arrive at the following update equation for the

proposed ZA-QLMS algorithm

w[n+ 1] = w[n] +
1

2
µ5(e[n]x∗[n])− 1

4
ρ1 · sgn(w[n]) , (3.156)

where ρ1 = µ5γ1. The last term represents the zero attractor, which enforces the

near-zero coefficients to zero and therefore accelerates the convergence process

when majority of the system coefficients are nearly zero in a sparse system.
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Note that equation (3.156) will be reduced to the normal QLMS algorithm

without the zero attractor term, given by

w[n+ 1] = w[n] + µ2(e[n]x∗[n]) , (3.157)

and the cost function is changed to

J2[n] = e[n]e∗[n] . (3.158)

3.7.2 Simulation results

In this part, simulations are performed for sparse system identification using

the proposed algorithm in comparison with the QLMS algorithm. The sparse

systems are considered in the following. The input signal to the adaptive filter

is colored and generated by passing a quaternion-valued white gaussian signal

through a randomly generated filter. The noise part is quaternion-valued white

Gaussian and added to the output of the unknown sparse system, with a 30dB

signal to noise ratio (SNR) for both scenarios.

Scenario One

For this scenario, the parameters are: the step size is 4 × 10−7; the unknown

sparse FIR filter length L is 32, with 4 non-zero coefficients at the 2nd, 8th, 16th

and 31st taps, and its magnitude of the impulse response is shown in Fig. 3.1; the

coefficient of the zero attractor ρ1 is 1 × 10−6. The learning curve obtained by

averaging 100 runs of the corresponding algorithm is given in Fig. 3.2, where
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we can see that the ZA-QLMS algorithm has achieved a faster convergence

speed than the QLMS algorithm when they both reach a similar steady state.
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Fig. 3.1: Magnitude of the impulse response of the sparse system.

Scenario Two

For this case, length of the unknown FIR filter is reduced to 16, still with 4 active

taps. The parameters are: step size is 6×10−7 and the value of ρ1 is 1×10−6. The

results are shown in Fig. 3.3. Again we see that the ZA-QLMS algorithm has a

faster convergence speed and has even converged to a lower steady state error

in this specific scenario. With zero attractor term still outperforms the QLMS

algorithm in faster convergence speed for the sparse system identification, even

with the different sparsity from the first scenario. Furthermore, the ZA-QLMS
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Fig. 3.2: Learning curves for the first scenario.

algorithm gets smaller mean square error at the later stage.

3.8 Summary

In this chapter, we have given a detailed derivation of two gradient operators:

the restricted HR gradient operator and the right restricted HR gradient opera-

tor. We also documented some properties of the operators, in particular several

different versions of product rules and chain rules. After that, we prove that the

restricted HR gradients are consistent with the usual definition for the gradient

of a real function of a real variable.

Then, application of the gradient operator to the derivation of QLMS adap-
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Fig. 3.3: Learning Curves for the second scenario.

tive algorithm and a nonlinear adaptive algorithm based on the hyperbolic tan-

gent function is discussed. Furthermore, a quaternion-valued adaptive algo-

rithm has been proposed for more efficient identification of unknown sparse

systems. It is derived by introducing an l1 penalty term in the original cost

function and the resultant ZA-QLMS algorithm can achieve a faster conver-

gence rate by incorporating the sparsity information of the system into the up-

date process. Simulation results have been provided to show the effectiveness

of the new algorithm with a zero attractor.
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Chapter 4

Application to Adaptive Beamforming

Adaptive beamforming has a range of applications and has been studied exten-

sively in the past in various areas ranging from radar, sonar, microphone arrays,

radio astronomy, seismology, medical diagnosis and treatment, to communica-

tions [22, 57, 58, 59, 60, 61, 62, 63, 64, 65], especially for traditional sensor

arrays. With the introduction of vector sensor arrays, such as those consisting

of crossed-dipoles and tripoles [66, 67, 68], adaptive beamforming for such an

array system has attracted more and more attention recently [2, 11, 67].

In this work, we consider the crossed-dipole array and study the problem

of how to reduce the number of sensors involved in the adaptive beamform-

ing process so that reduced system complexity and energy consumption can be

achieved while an acceptable performance can still be maintained, which is es-

pecially useful for large array systems. In particular, we will use the quaternion-

valued steering vector model for crossed-dipole arrays [2, 4, 11, 12, 13, 14, 15,

16, 17, 18], and propose a novel quaternion-valued adaptive algorithm for ref-

erence signal based beamforming.
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Based on these recent advances in quaternion-valued signal processing, we

here derive a reweighted zero attracting (RZA) quaternion-valued least mean

square (QLMS) algorithm by introducing a RZA term to the cost function of

the QLMS algorithm. Similar to the idea of the RZA least mean square (RZA-

LMS) algorithm proposed in [19], the RZA term aims to have a closer approx-

imation to the l0 norm so that the number of non-zero valued coefficients can

be reduced more effectively in the adaptive beamforming process. This algo-

rithm can be considered as an extension of our recently proposed zero-attracting

QLMS (ZA-QLMS) algorithm [69], where the l1 norm penalty term was used

in the update equation of the weight vector due to the sparsity-promoting nature

of l1 norm minimisation, and much of the recent research has employed that.

We will show in our simulations that the RZA-LMS algorithm has a much bet-

ter performance in terms of both steady state error and the number of sensors

employed after convergence.

This chapter is organized as follows. A review of the complex-valued array

model and beamforming structure is given in Section 4.1. The quaternion-based

array signal model and the reference signal based adaptive beamforming struc-

ture is provided in Section 4.2, and the proposed RZA-QLMS algorithm is de-

rived in Section 4.3. Simulation results are presented in Section 4.4, followed

by a summary in Section 4.5.
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Fig. 4.1: A ULA with M omnidirectional sensors.

4.1 Introduction to Adaptive Beamforming

4.1.1 Array model and beamforming structure

Based on different spatial locations of the sensors, arrays can be categorised

into three classes: linear arrays, planar arrays and volumetric arrays [22, 64].

Due to the simple structure and lower computational complexity in practical ap-

plications, linear arrays have been a focus of research since the very beginning

of the array signal processing area. In our study, we will focus on the uniform

linear arrays (ULAs).

A ULA with M omnidirectional sensors is shown in Fig. 4.1, and the distance

between two adjacent sensors is d. The plane wave signal s[n] arrives at the

array from the far field. The direction of the signal is measured by an angle
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θ with respect to the broadside, which is perpendicular to the line of sensors.

The delay τ between two adjacent sensors for the input signal with known DOA

angle θ is expressed as

τ(θ) =
d

c
sin θ = 2π

d

ω0λ0
sin θ (4.1)

where c is the propagation speed of the wavefront and λ0 is the wavelength

corresponding to the centre frequency ω0 of input signal.

If we assume that the signal received by the first sensor is s[n], then the

following ones arrive at the sensors accordingly with (m−1)τ(θ) seconds delay,

where m = 1, · · · ,M . We can also find that the received signal at the mth

sensor has a phase shift e−jω0(m−1)τ(θ) because of the propagation delay. If we

express these phase shifts on all sensors of the array, a so-called steering vector

a(θ) of the input signal from DOA angle θ will be obtained based on that

a(θ) = [1, e−j2πd sin θ/λ0, · · · , e−j2π(M−1)d sin θ/λ0]T (4.2)

where the superscript (·)T represent the transpose operation. Then, the received

signals can be expressed as vector form

x[n] = a(θ)s[n]. (4.3)

For a general beamforming structure, the output of this array will be a mix-

ture of all of the arrived signals including the interested signals as well as inter-

ferences. The purpose of beamforming is to select the desired signals from spe-

cific direction while suppressing the interferences from other directions, thereby

adjusting the weight vector w to form a appropriate beampattern having a peak
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at the desired direction and nulls at the interferences directions. As to the basic

beamformer structure, the received signals through sensors are always multi-

plied by a set of coefficient weight vectors and then summed up to form into the

beamformer output y[n]

y[n] = w[n]Tx[n] (4.4)

The beam pattern of a beamformer is its response to the impinging signals as a

function of θ, which is given by

B(θ) = wTa(θ), (4.5)

where a(θ) is the steering vector and the magnitude response |B(θ)| is adopted

to describe the change of a beamformer with regards to the signal arriving from

distinguished DOA angles.

Furthermore, as a beamformer has to track the changing signals in many

practical scenarios, adaptive beamforming is required to obtain the data-dependent

optimum output. Various adaptive beamforming methods have been proposed

in the past decades, and one representative example is the reference signal based

(RSB) beamformer [39, 70, 71, 72, 73].

4.1.2 LMS-based RSB beamformer

For a LMS-based RSB beamformer, the beamforming process can be regarded

as a conventional adaptive filtering problem, which is similar to the standard

adaptive filter structure introduced before. The general structure of such a beam-

former is given in Fig. 4.2 [74, 75, 76].
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Fig. 4.2: Reference signal based beamforming structure.

The error signal e[n] is generated by the difference between the reference

signal and the beamformer output, which is given by

e[n] = d[n]− wH [n]x[n], (4.6)

where d[n] is the reference signal, w[n] denotes the adaptive weight vector, x[n]

is the input data vector, and {·}T denotes the transpose operation. The cost

function J2[n] is constructed by using the mean square error (MSE) E{|e[n]|2}

and can be expressed as [77, 78]

J2[n] = E{|e[n]|2} = E{(d[n]− wH [n]x[n])2}

= E{|d[n]|2} − wH [n]p − pHw[n] + E{wH [n]x[n]xH [n]w[n]} (4.7)

where p = E{x[n]d∗[n]}. Then the gradient ∇J2[n] is expressed as

∇J2[n] =
∂J2[n]

∂w∗ . (4.8)

Finally, the update equation of LMS-based adaptive algorithm with step size µ2

is expressed as

w[n+ 1] = w[n] + µ2e
∗[n]x[n]. (4.9)
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4.2 Adaptive Beamforming Based on Vector Sensor Arrays

4.2.1 Quaternionic array signal model

d
 ...

θ

φ
y

z

x

Fig. 4.3: A ULA with crossed-dipoles.

A general structure for a uniform linear array (ULA) with M crossed-dipole

pairs is shown in Fig. 4.3, where these pairs are located along the y-axis with

an adjacent distance d, and at each location the two crossed components are

parallel to the x-axis and y-axis, respectively. For a far-field incident signal with

a direction of arrival (DOA) defined by the angles θ and ϕ, its spatial steering

vector is given by

Sc(θ, ϕ) = [1, e−j2πd sin θ sinϕ/λ,

· · · , e−j2π(M−1)d sin θ sinϕ/λ]T (4.10)

where λ is the wavelength of the incident signal and {·}T denotes the transpose

operation. For a crossed dipole the spatial-polarization coherent vector can be
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given by [79, 80]

Sp(θ, ϕ, γ, η) =


[− cos γ, cos θ sin γejη] for ϕ = π/2

[cos γ,− cos θ sin γejη] for ϕ = −π/2

(4.11)

where γ is the auxiliary polarization angle with γ ∈ [0, π/2], and η ∈ [−π, π] is

the polarization phase difference.

The array structure can be divided into two sub-arrays: one parallel to the

x-axis and one to the y-axis. The complex-valued steering vector of the x-axis

sub-array is given by

Sx(θ, ϕ, γ, η) =


− cos γSc(θ, ϕ) for ϕ = π/2

cos γSc(θ, ϕ) for ϕ = −π/2

(4.12)

and for the y-axis it is expressed as

Sy(θ, ϕ, γ, η) =


cos θ sin γejηSc(θ, ϕ) for ϕ = π/2

− cos θ sin γejηSc(θ, ϕ) for ϕ = −π/2

(4.13)

Combining the two complex-valued subarray steering vectors together, an

overall quaternion-valued steering vector with one real part and three imaginary

parts can be constructed as

Sq(θ, ϕ, γ, η) = ℜ{Sx(θ, ϕ, γ, η)}+ iℜ{Sy(θ, ϕ, γ, η)}+

jℑ{Sx(θ, ϕ, γ, η)}+ kℑ{Sy(θ, ϕ, γ, η)}, (4.14)

where ℜ{·} and ℑ{·} are the real and imaginary parts of a complex num-

ber/vector, respectively. Given a set of coefficients, the response of the array
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Fig. 4.4: Reference signal based adaptive beamforming.

is given by

r(θ, ϕ, γ, η) = wHSq(θ, ϕ, γ, η) (4.15)

where w is the quaternion-valued weight vector.

4.2.2 Reference signal based quaternion-valued adaptive beamforming

The reference signal based beamformer is a very important class of adaptive

beamformers, and one particular application is the smart antenna technique in

wireless communications, where a reference signal is usually available. As just

mentioned, when a reference signal d[n] is available, adaptive beamforming can

be implemented by the standard adaptive filtering structure, as shown in Fig. 4.4,

where xm[n], m = 1, · · · ,M are the received quaternion-valued input signals

through the M pairs of crossed-dipoles, and wm[n] = am + bmi + cmj + dmk,

m = 1, · · · ,M are the corresponding quaternion-valued weight coefficients

with a, b, c and d being real-valued. y[n] is the beamformer output and e[n] is

80



the error signal

y[n] = wT [n]x[n]

e[n] = d[n]− wT [n]x[n] , (4.16)

where

w[n] = [w1[n], w2[n], · · · , wM [n]]T

x[n] = [x1[n], x2[n], · · · , xM [n]]T . (4.17)

The conjugate form of the error signal is e∗[n], given by

e∗[n] = d∗[n]− xH [n]w∗[n], (4.18)

where {·}H is the combination of both {·}T and {·}∗ operations for a quaternion.

Then w can be updated by minimizing the instantaneous square error.

As discussed in [54, 81], the gradient of J3[n] with respect to w∗ would give

the steepest direction for the optimization surface. It can be obtained as follows

∇w∗J3[n] = −1

2
e[n]x∗[n] , (4.19)

and the update equation for the weight vector with step size µ3 is given by

w[n+ 1] = w[n]− µ3∇w∗J0[n], (4.20)

leading to the following QLMS algorithm [10, 16, 82]

w[n+ 1] = w[n] +
1

2
µ3(e[n]x∗[n]). (4.21)
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4.3 The RZA-QLMS Algorithm

Using the above adaptive QLMS algorithm, we can find the optimal coefficient

vector in terms of minimum mean square error (MSE) and obtain a satisfactory

beamforming result. However, to reduce the complexity and also power con-

sumption of the system, in particular for a large array, we can reduce the num-

ber of sensors involved in the adaptive beamforming process, at the cost of the

beamforming performance. To achieve this, we here derive a novel quaternion-

valued adaptive algorithm by introducing an RZA term to the original cost func-

tion of the QLMS algorithm. In this way, we can simultaneously minimise

the number of sensors involved while suppressing the interferences during the

beamforming process.

First, to minimise the number of sensors, we could add the l0 norm of the

weight vector w to the cost function J3[n] to form a new cost function

Ĵ3[n] = (1− δ1)e[n]e
∗[n] + δ1 ∥ w[n] ∥0, (4.22)

where δ1 is a weighting term between the original cost function and the newly

introduced term. In this way, the number of non-zero valued coefficients in w

will be minimised too, where a similar idea has been applied in [83].

In practice, we could replace the l0 norm by the l1 norm. However, l1 norm

would uniformly penalise all non-zero valued coefficients, while l0 norm pe-

nalises smaller non-zero values more heavily than those larger non-zero values.

To have a closer approximation to l0 norm, we can introduce a larger weighting

term to those coefficients with smaller values and a smaller weighting term to
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those with larger values. This weighting term will change according to the re-

sultant coefficients at each update of the algorithm. This general idea has been

implemented as a reweighted l1 minimization [84, 85, 86] and employed in the

sparse array design problem [87, 88, 89].

The modified cost function for the proposed RZA-QLMS algorithm with the

reweighting term is given by

J6[n] = (1− δ1)e[n]e
∗[n] + δ1

M∑
m=1

(εm|wm[n]|), (4.23)

where εm is the reweighting term for wm. In deriving the gradient, we have

treated the weighting term as a constant as an approximation. This has been a

widely adapted practice to achieve a trade-off between complexity and perfor-

mance in reweighted l1 norm approximation. This is also similar to the practice

in the derivation of many variable step size adaptive filtering algorithms, where

the variation in step size has been added at a later stage, after derivation of the

gradient. Then using the chain rule in [81], we can obtain the gradient of the

above cost function J6[n] with respect to w∗[n]. In particular, the differentiation

of the second part of the cost function with regards to w∗
m[n] is given by

∂(εm|wm[n]|)
∂w∗

m

=
1

4
εm(

∂(|wm[n]|)
∂am

+
∂(|wm[n]|)

∂bm
i

+
∂(|wm[n]|)

∂cm
j +

∂(|wm[n]|)
∂dm

k)

=
1

4
εm(

am
|wm[n]|

+
bm

|wm[n]|
i+

cm
|wm[n]|

j +
dm

|wm[n]|
k)

=
1

4
εm

wm[n]

|wm[n]|
=

1

4
εm(sign(wm[n])) , (4.24)
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where sign(·) is a component-wise sign function

sign(wm[n]) =


wm[n]/|wm[n]| wm[n] ̸= 0

0 wm[n] = 0

The overall gradient result is given by

∇w∗
m
J6[n] = −1

2
(1− δ1)e[n]x

∗
m[n] +

1

4
δ1εm(sign(wm[n])). (4.25)

We choose the reweighting term εm as

εm = 1/(σ + |wm[n]|), (4.26)

with σ being roughly the threshold value below which the corresponding sensor

will not be included in the update.

This can be understood in this way: when the coefficient value is much larger

than σ, |wm[n]|
σ+|wm[n]| will be almost 1 and the reweighted norm will be almost the

same as the l0 norm; when the coefficient value is much smaller than σ, |wm[n]|
σ+|wm[n]|

will be a very small value and it will not contribute sufficiently to the reweighted

l1 norm, i.e. we do not minimise that coefficient any more and it can be consid-

ered to be zero. As a result, the σ should be small enough.

Then, with the step size µ6, we finally obtain the following update equation

for the proposed RZA-QLMS algorithm in vector form

w[n+ 1] = w[n] +
1

2
(µ6 − 4ρ2)(e[n]x∗[n])

−ρ2(sign(w[n]))./(σ + |w[n]|) , (4.27)

where ρ2 =
1
4µ6δ1, |w[n]| is a vector formed by taking the absolute value of the

coefficients in w[n], ‘./’ is a component-wise division between two vectors, and
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Table 4.1: Comparison of computational complexity.

QLMS ZA-QLMS RZA-QLMS

Real-valued addition 28M+4 35M+4 38M+4

Real-valued multiplication 32M+4 44M+4 52M+4

Square root operation 0 M 2M

sign(w[n]) is defined as

sign(w[n]) =


w[n]./|w[n]| w[n] ̸= 0

0 w[n] = 0

When σ + |w[n]| is removed from the above equation, it will be reduced to the

ZA-QLMS algorithm in [69], with its cost function given by

J7[n] = (1− δ2)e[n]e
∗[n] + δ2∥w[n]∥1 , (4.28)

where δ2 is a trade-off factor. The update equation for the ZA-QLMS algorithm

is

w[n+ 1] = w[n] +
1

2
(µ7 − 4ρ3)(e[n]x∗[n])− ρ3 · sign(w[n]) , (4.29)

where ρ3 =
1
4µ7δ2, and µ7 is the step size.

We now discuss the computational complexity of the algorithms. The results

are shown in Tab. 4.1, where M is the number of vector sensors of the array.

Obviously, the proposed RZA-QLMS algorithm has the highest computational

complexity. However, as we will see in simulations, this additional cost is paid

back by a resultant much smaller number of sensors and especially at a later

stage of the adaptation, when the number of sensors involved in the update
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becomes smaller, the overall complexity of the RZA-QLMS algorithm could be

lower than the other two algorithms.

After removing the sensors with a smaller magnitude for their coefficients

compared to σ, the beam response difference ∆r between the original array and

the new one is given by

∆r = |wHSq − (w −∆w)HSq|

= |∆wHSq| ≤ |∆wH | · |Sq| ≤ σ ·∆M ·
√
M (4.30)

where ∆M is the number of removed sensors, and ∆w is the change of w

after some of its sensors are removed (these corresponding coefficients on the

positions of removed sensors have a magnitude smaller than σ). As a result, the

maximum possible change in array response, due to removal of some sensors,

is given by σ ·∆M ·
√
M .

4.4 Simulation Results

Simulations are performed based on a vector sensor array with 16 crossed-

dipoles and half-wavelength spacing for the three algorithms: QLMS, ZA-

QLMS and RZA-QLMS. The stepsizes µ, µ1 and µ2 are set to be 2 × 10−4,

4 × 10−4 and 2 × 10−4, respectively, which are chosen empirically to make

sure these algorithms have a similar convergence speed. A desired signal with

20 dB signal to noise ratio (SNR) impinges from the broadside of the array

(θ = 0◦) and two interfering signals with a signal to interference ratio (SIR) of

-10 dB arrive from the directions (20◦, 90◦), and (30◦,−90◦), respectively. All
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Fig. 4.5: Learning curves of the three algorithms.

the signals have the same polarisation of (γ, η) = (30◦, 0). For the RZA-QLMS

and ZA-QLMS algorithms, the coefficients of the zero attractor ρ1 and ρ2 are

7 × 10−7 and 2.8 × 10−5, respectively and σ = 0.001. Their learning curves

obtained by averaging results from 200 simulation runs are shown in Fig. 4.5

and the resultant beam patterns are shown in Fig. 4.6, where for convenience

positive values of θ indicate the value range θ ∈ [0◦, 90◦] for ϕ = 90◦, while

negative values of θ ∈ [−90◦, 0◦] indicate an equivalent range of θ ∈ [0◦, 90◦]

with ϕ = −90◦.

First, the two nulls at the directions of the interfering signals can be observed

in all three beam patterns, clearly demonstrating that all of the algorithms have

achieved a satisfactory beamforming result. However, from Fig. 4.5, we see that

although these three algorithms have a similar convergence speed, the original
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Fig. 4.6: Beam patterns of the three algorithms with 0◦ desired signal.

QLMS algorithm has the smallest steady state error, which is not surprising

since it has the most degrees of freedom among them. On the other hand, the

proposed RZA-QLMS algorithm has achieved a lower steady state error than

the ZA-QLMS algorithm.

In terms of output signal to interference plus noise ratio (SINR), it is 23.48

dB for the QLMS algorithm, 18.32 dB for the RZA-QLMS algorithm, and 7.36

dB for the ZA-QLMS algorithm. The output SINR is obtained by finding the

power of the desired signal at the output of the beamformer and also the total

power of noise and interferences at the output and then calculate the ratio be-

tween the two. In our simulations, we have all the signals (desired, interference

and noise). After obtaining the optimum weight vector, we then pass only the

desired signal through the system and the power of the output signal will be
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Fig. 4.7: Amplitudes of the steady state weight coefficients.

the power of the desired signal at the output of the beamformer; similarly, we

pass only the interferences and noise through the system and the power of the

output signal in this case will be the power of the interferences plus noise at the

beamformer output.

The reason for the higher sidelobes of the RZA-QLMS algorithm is, by im-

posing zeros effectively to the system, the number of available sensors will be

smaller than the other two algorithms and with a smaller sensor number, the

sidelobe will increase naturally. However, we can not simply evaluate the per-

formance of the different algorithms based on the sidelobe levels, as this is an

adaptive beamforming system and the response of the array at the directions of

interfering signals plays a much more important role in determining the output

SINR.
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Table 4.2: Comparison of computational complexity with sensor numbers

QLMS ZA-QLMS RZA-QLMS

Real-valued addition 452 564 346

Real-valued multiplication 516 708 472

Square root operation 0 16 18

The amplitudes of steady state weight coefficients for the three algorithms

are shown in Fig. 4.7, where for the QLMS algorithm, the amplitudes of the co-

efficients are spread over the sixteen sensors with some small variations, while

for the ZA-QLMS algorithm, as the l1 norm of the weight vector is minimised,

some degree of sparsity has also been achieved with four of the coefficients are

close to zero. However, with 0.001 as the threshold value, they can not be dis-

carded. For the RZA-QLMS algorithm, the variation is significantly larger and

seven of them are almost zero-valued, which means the corresponding sensors

can be removed and only 9 sensors are needed to give a satisfactory beamform-

ing result, rather than 16 sensors. Moreover, the difference response between

the original array and the one with 7 sensors removed is small, and no difference

can really be observed by a naked eye, as shown in Fig. 4.8.

Based on the steady-state sensor number, the computational complexity of

the three algorithms is listed in Tab. 4.2, where we can see that the RZA-QLMS

algorithm has the lowest complexity.

For the direction of the desired signal, we can consider any other directions

and the proposed algorithms are not limited to the zero degree case. For exam-

ple, we can consider the case of the desired signal coming from the direction 15◦
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Fig. 4.8: Beam pattern of the two arrays.

and the resultant beam pattern is shown in Fig. 4.9 in this reply, where the two

interfering signals come from 30◦ and −15◦, respectively. We can see from the

figure that the algorithms have worked well by forming a beam to the desired

direction and two nulls at the interference directions.

4.5 Summary

A brief review of adaptive beamforming was provided first and then a reweighted

zero attracting quaternion-valued least mean square algorithm was derived for

reference signal based adaptive beamforming based on vector sensor arrays con-

sisting of crossed dipoles. It can reduce the number of sensors involved in

the beamforming process so that reduced system complexity and energy con-
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Fig. 4.9: Beam patterns of the three algorithms with 15◦ desired signal.

sumption can be achieved while an acceptable performance can still be main-

tained, which is especially useful for large array systems. Simulation results

have shown that the proposed algorithm can work effectively for beamforming

while enforcing a sparse solution for the weight vector where the corresponding

crossed-dipole sensors with zero-valued coefficients can be removed from the

system.
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Chapter 5

Application to Wind Profile Prediction

Wind profile (including speed and direction) prediction at different scales (short-

term, mid-term and long-term) plays a crucial role for efficient operation of

wind turbines and wind power prediction. In this study, the wind profile is re-

lated to three dimensional wind speed prediction in continuous time series. This

problem can be approached in two different ways: one is based on statistical sig-

nal processing techniques and both linear and nonlinear (such as artificial neural

networks) models can be employed either separately or combined together for

profile prediction; on the other hand, wind/atmospheric flow analysis is a clas-

sical problem in computational fluid dynamics (CFD) in applied mathematics,

which employs various numerical methods and algorithms, although it is an ex-

tremely time-consuming process with high computational complexity. In this

chapter, we will focus on the application of the signal processing approach to

wind profile prediction and a combination of the signal processing approach and

the CFD approach will be studied in the next chapter.

Here we will first perform a correlation analysis to the wind flow data gen-
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erated by CFD, by using the Wiener solution to find out the optimum weight

vector and then calculate the minimum prediction error using the correlation

distribution of the data samples. Obviously, the correlations and then the pre-

diction errors will be different with different sampling frequencies and predic-

tion advance steps. The aim here is to obtain a smaller prediction error and a

longer prediction advance time by finding the appropriate sampling frequency,

since a higher sampling frequency will increase the computational complexity,

whereas a lower sampling frequency will lead to a larger prediction error. Then

we will propose a multi-channel frequency-domain QLMS algorithm and apply

it to the wind profile prediction problem.

This chapter is organised as follows. Correlation analysis is presented in Sec-

tion 5.1, while the frequency-domain multi-channel quaternion-valued adaptive

filtering problem will be studied in Section 5.2 . Simulation results are given in

Section 5.3 using the CFD generated data and also the recorded wind data from

multiple measurement sites. Section 5.4 briefly summarises the chapter.

5.1 Correlation Analysis

5.1.1 The Wiener solution

For the signal processing based approach, we can use the Wiener solution for

quasi-stationary scenarios and the QLMS algorithm for the more general case

with constantly changing data statistics. Here we introduce the Wiener solution

first.
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To obtain the Wiener solution, we assume a reference signal d[n] is available,

which would be the most up to date measurement of the wind speed in our case.

Then we can work out the prediction error e[n] after finding out the optimum

weight vector w[n].

We use s[n] to represent the input data sequence to the predictor. The error

signal e[n] is given by

e[n] = d[n]− wT [n]s[n], (5.1)

where w[n] = [w1[n], w2[n], · · · , wL[n]]
T is the weight vector with length L

and s[n] = [s[n], s[n−1], · · · , s[n−L+1]]T is the corresponding L-by-1 input

data vector. From [31], based on the instantaneous gradient result, the optimum

solution wopt should satisfy

E{−1

2
s[n]e∗[n]} = 0. (5.2)

In particular,

E{s[n]e∗[n]} = E{s[n]d∗[n]} − E{s[n]s[n]Hw∗
opt}

= p − Rsw∗
opt = 0, (5.3)

where the cross-correlation vector p = E{s[n]d∗[n]} and the covariance matrix

Rs = E{s[n]s[n]H}. Note that the superscript H denotes Hermitian transpose.

Then, we have

w∗
opt = R−1

s p. (5.4)

As shown, the optimum weight vector can be obtained by the above equation

directly. For the covariance matrix, Rs can be expressed in expanded form using
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the condition of wide-sense stationarity, and we have

Rs =



r(0) r(1) · · · r(L− 1)

r∗(1) r(0) · · · r(L− 2)

... ... . . . ...

r∗(L− 1) r∗(L− 2) · · · r(0)


(5.5)

where the r(k),k = 0, 1, · · · , L−1 is the autocorrelation function of the process

for a lag of k given by

r(k) = E[s[n]s∗[n− k]], k = 0, 1, · · · , L− 1. (5.6)

Correspondingly, the cross-correlation vector p can be described by the ex-

panded form below

p = [p(0), p(−1), · · · , p(1− L)]T . (5.7)

where p(−k) = E[s(n)d∗[n]], k = 0, 1, 2, · · · , L− 1.

5.1.2 Correlations with different sampling frequencies

As mentioned, an appropriate sampling frequency is essential for effective and

efficient prediction. Several data sets with different sampling frequencies will

be used to work out the normalised error and then compare them to find out

the desired sampling frequency for the studied scenario. The data is generated

by a CFD software employing the Direct Numerical Simulation (DNS) method.

For each sampling frequency, a sample sequence will be produced for calculat-

ing the correlation matrix/vector to obtain the Wiener solution. Then, we can
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Table 5.1: Normalised prediction error at sampling frequency fs = 5Hz with prediction step P

and number of samples involved N (Part I).

N=1-1000 N=1-1500 N=1-2000 N=1-2500 N=1-3000

P=1 0.0039 0.0057 0.0051 0.0048 0.0048

P=2 0.0315 0.0393 0.037 0.035 0.035

P=3 0.0920 0.1060 0.1010 0.0990 0.0990

P=4 0.1777 0.1956 0.1863 0.1830 0.1844

P=5 0.2748 0.2922 0.2793 0.2758 0.2773

P=6 0.3728 0.3865 0.3706 0.3675 0.3683

find the proper sampling frequency with reasonable range of errors and use this

sampling frequency for signal processing based prediction.

5.1.3 Simulation results

The data we used is generated by a CFD software employing the DNS method.

We have chose 9 points from the periodic boxes with 262144 grids. First, the

sampling frequency is set as fs = 5Hz, i.e., with a sampling interval of 0.2s.

We use the Wiener solution to find out the optimum weight vector and then

calculate the minimum prediction error using the correlation distribution of the

data samples. The results for different sampling frequencies are listed in Tables

5.1-5.2, where the column direction is the prediction advance step from P=1

to P=6, and the row direction is the number of samples used for obtaining the

correlation matrix/vector to calculate the Wiener solution. The values in the

table are the resultant prediction error normalised by the power of corresponding

data sequence.
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Table 5.2: Normalised prediction error at sampling frequency fs = 5Hz with prediction step P

and number of samples involved N (Part II).

N=1-3500 N=1-4000 N=1-4500 N=1-5000 N=1-10000 N=1-20000

P=1 0.0056 0.0054 0.0053 0.0052 0.0048 0.0050

P=2 0.038 0.038 0.038 0.037 0.0359 0.0374

P=3 0.1030 0.1030 0.1030 0.1030 0.1008 0.1040

P=4 0.1886 0.1897 0.1901 0.1897 0.1859 0.1904

P=5 0.2805 0.2826 0.2838 0.2845 0.2774 0.2826

P=6 0.3702 0.3729 0.3751 0.3772 0.3666 0.3719

Table 5.3: Normalised prediction error at sampling frequency fs = 2Hz with prediction step P

and number of samples involved N (Part I).

N=1-500 N=1-1000 N=1-1500 N=1-2000 N=1-2500

P=1 0.1123 0.1206 0.1134 0.1069 0.1101

P=2 0.3639 0.3758 0.3516 0.3385 0.3431

P=3 0.5768 0.5868 0.5583 0.5431 0.5465

P=4 0.7247 0.7392 0.7140 0.6972 0.6987

P=5 0.8251 0.8424 0.8231 0.8074 0.8072

Table 5.4: Normalised prediction error at sampling frequency fs = 2Hz with prediction step P

and number of samples involved N (Part II).

N=1-3000 N=1-3500 N=1-4000 N=1-4500 N=1-5000

P=1 0.1097 0.1071 0.1070 0.1063 0.1080

P=2 0.3448 0.3400 0.3422 0.3415 0.3452

P=3 0.5490 0.5458 0.5476 0.5496 0.5541

P=4 0.6993 0.6971 0.6978 0.7028 0.7065

P=5 0.8064 0.8037 0.8029 0.8088 0.8127
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Table 5.5: Normalised prediction error at sampling frequency fs = 1Hz with prediction step P

and number of samples involved N (Part I).

N=1-500 N=1-1000 N=1-1500 N=1-2000 N=1-2500

P=1 0.3595 0.3662 0.3549 0.3561 0.3533

P=2 0.7045 0.7072 0.6922 0.6904 0.6836

P=3 0.9050 0.8890 0.8705 0.8643 0.8542

Table 5.6: Normalised prediction error at sampling frequency fs = 1Hz with prediction step P

and number of samples involved N (Part II)

N=1-3000 N=1-3500 N=1-4000 N=1-4500 N=1-5000

P=1 0.3619 0.3629 0.3629 0.3616 0.3614

P=2 0.6944 0.6944 0.7037 0.7036 0.7042

P=3 0.8619 0.8683 0.8721 0.8723 0.8725

We have also tried two other scenarios, with a sampled frequency of 2Hz

and 1Hz, and the results are shown in Tables 5.3, 5.4, 5.5 and 5.6. We can

see that the values shown in Tables 5.3 and 5.4 are larger than the case with

the 5Hz sampling frequency given the same sample intervals. For example, the

normalised error is around 0.3 at P=6 (the acceptable range) in the first case,

whereas the error is around 0.3 for the second case when prediction step is P=2,

which means the correlation is smaller when sampling frequency is decreased,

as expected.

For the third case (sampling frequency is 1Hz), the errors are much larger

than the previous two cases, even with a prediction step of P=2. Therefore,

we have to choose a smaller prediction step in the simulation to maintain the

reasonable range of error. This can also be found in Fig. 5.1 clearly, where the
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Fig. 5.1: Normalised error of wind prediction at different sample intervals.

bottom one is the error surface at 5Hz, and the top one is for 1Hz, while the

middle one is for the 2Hz case.

As a result, we can see from the Fig. 5.2 that the normalised prediction er-

ror has increased as the value of prediction step P increases or the sampling

frequency fs decreases. This trend stays the same even if a larger number of

data samples are used. Therefore, we can make prediction further in advance

with smaller error when the correlation value is large, and the acceptable predic-

tion step value depends on the correlation of these samples. On the other hand,

we can estimate the prediction advance time through analysing the correlation

distribution of the generated data.
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5.2 Transform-domain Quaternion-valued Adaptive Filtering

and Its Application for Wind Profile Prediction

To increase the convergence speed and reduce the computational complexity

of an adaptive filtering algorithm, traditionally we can transform the signals

into the transform domain (also called frequency domain) or employing the

more general subband techniques to split the signals into subbands, leading to

frequency-domain or subband adaptive filtering structures [22, 90, 91, 92, 93].

With the introduction of quaternion-valued discrete Fourier transform (QDFT)

and filter banks systems [26, 27], we can apply the same approach to quaternion-

valued adaptive algorithms with similar advantages as in the complex domain.
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In this part, we focus on the transform-domain method where the QDFT is

applied to the input signals and an adaptive algorithm is then applied to the

transformed signals by minimizing the error between the output of the adaptive

filter and the reference signal. The QLMS algorithm is employed for wind

profile prediction to show the improved convergence speed. Moreover, due

to correlation of the wind data at different spatial positions, a multi-channel

version is used, which will provide further improved performance.

For a standard adaptive filtering structure, as shown before, the error signal

e[n] is given by

e[n] = d[n]− w[n]Tx[n], (5.8)

where d[n] is the reference signal, w[n] denotes the adaptive weight vector with

a length of L, x[n] = [x[n−1], x[n−2], · · · , x[n−L]]T is the input data vector,

and {·}T denotes the transpose operation.

Instead of the single-channel adaptive filtering structure, in many applica-
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tions, such as beamforming [22], a multi-channel one has to be employed. Such

a structure with M input channels is shown in Fig. 5.3, which also has a par-

ticular application in the area of wind profile prediction. In the past, most of

the work in linear wind profile prediction has been based on the observation at

a single point in space [55, 94]. However, the wind profile at different spatial

positions is highly correlated and incorporating information from neighbour-

ing positions in the prediction process will improve performance of the system.

This can be realised by a multi-channel linear prediction structure, where the

reference signal in Fig. 5.3 will be a properly delayed version of one input

signal, with the delay determined by the required prediction step. For the M -

channel adaptive filtering structure with L filter taps attached to each channel,

the output y[n] is given by

y[n] = wT [n]x[n] , (5.9)

where the ML× 1 coefficients weight vector w[n] are defined as

w[n] =
[
w1

T [n] w2
T [n] ... wM

T [n]
]T (5.10)

with

wm[n] =
[
wm,1[n] wm,2[n] ... wm,L[n]

]T (5.11)

and the ML× 1 input data vector x[n] is defined as

x[n] =
[
x1

T [n] x2
T [n] ... xM

T [n]
]T (5.12)

with

xm[n] =
[
xm[n− 1] xm[n− 2] ... xm[n− L]

]T
. (5.13)
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filter.

The update equation for the M -channel case can be derived in a straightforward

way from the single-channel one.

There are different structures for tran sform-domain implementation of tra-

ditional adaptive filtering algorithms [90], associated with varied advantages

and disadvantages. In this work, similar to [95], we apply an L-point QDFT

to each of the input signals and the QDFT outputs are then combined together

by a weight vector to give the output signal y[n], which is then compared with

the reference signal d[n] directly to generate the error signal e[n]. The resultant

structure is shown in Fig. 5.4.

For the QDFT [26], there are two different types, which are left-side and

right-side, respectively, due to the non-commutativity property of a quater-

nion [50]. In our simulations, we have tried both and they give very similar
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results. So here we only focus on the right-side QDFT. As a quaternion has

three imaginary components, it is essential to specify the transform axis. With

the i transform axis, the QDFT of xm can be expressed as

Xm,k =
L∑
l=1

xm[n− l]e−i2πkl/L, (5.14)

where k = 1, 2, · · · , L. All of the L components Xm,k form the vector Xm =[
Xm,1 ... Xm,L

]T and further we have the new data vector in the frequency

domain

X[n] = [X1
T [n] X2

T [n] ... XM
T [n]]T . (5.15)

The inverse QDFT (IQDFT) of Xm is [51]

xm[n− l] =
1

L

L∑
k=1

Xm,ke
i2πkl/L. (5.16)

With a simplified notation, the output of the L-point QDFT is

Xm[n] = QDFT[xm[n]] (5.17)

and its inverse form is

xm[n] = IQDFT[Xm[n]]. (5.18)

Similar to the time-domain QLMS algorithm, the frequency-domain multi-

channel QLMS algorithm can be expressed as

e[n] = d[n]− wf
T [n]X[n] (5.19)

wf [n+ 1] = wf [n] +
1

2
µ7(e[n]Xf

∗[n]) . (5.20)
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Fig. 5.5: Prediction results using the QLMS algorithm.

We will see in our simulations part that the proposed trasform-domain method

can increase the convergence speed significantly due to the decorrelation ef-

fect of the transform and therefore in a dynamic environment, provide much

improved tracking capability.

5.3 Simulation Results

5.3.1 Results based on CFD generated data

In this part, after performing the correlation analysis, both the QLMS and the

AQLMS algorithms are applied to the wind data generated by the CFD software

with a sampling frequency of 1 Hz. The parameters are as follows. The step size

is µ = 2.5 × 10−4 and the adaptive filter length is L = 16. The prediction step
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Fig. 5.6: Prediction results using the AQLMS algorithm.

is 2. The adaptive weight vector is initialized as an all-zero vector. Fig. 5.5 and

Fig. 5.6 show the results for the QLMS and AQLMS algorithms, respectively.

As we can see from the results, both algorithms can track the change of the wind

speed signal effectively.

5.3.2 Results based on real data

In this section, simulations will be provided to show the performance of the

proposed frequency-domain method based on the 3-D wind data obtained from

a Google website [96]. The data was recorded by anemometers at Tracy, CA,

US with a 7.6 Hz sampling rate on 11th June, 2011. Two sets of simulations will

be performed, one for the single channel structure and one for the multi-channel

structure.
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Scenario One: Single-channel prediction

In the first set of simulations, we use the wind data recorded at one single loca-

tion and perform the prediction using past values of the data at the same loca-

tion. The parameters are as follows. The step size is µ = 10−6 and the adaptive

filter length is L = 8. The prediction step is 1. The adaptive weight vector is

initialized as an all-zero vector.

Fig. 5.7 shows the result for the time-domain QLMS algorithm, with Fig.

5.8 for the frequency-domain QLMS algorithm. Note that the x-axis is the time

interval from the start of iterations, and the y-axis is the magnitude of wind

speed. Comparing these two results, we can see that the frequency-domain

algorithm outperforms the time-domain algorithm, since it can track the original

signal more quickly. To show this more clearly, the learning curves of the error

signal for the two methods are provided in Fig. 5.9.

Scenario Two: Multi-channel prediction

As to the multi-channel predictor in our second set of simulations, it has M = 5

channels and the length of the adaptive filter attached to each channel is L = 8.

The step size is µ = 5 × 10−6 and the prediction step is P = 1. Similarly, the

initial adaptive weight vector is set to be of all zeros.

Compared with Fig. 5.7, the multi-channel result in Fig. 5.10 gives a better

prediction performance, due to much more information involved in the predic-

tion process. In Fig. 5.11, it shows the frequency-domain result, with a similar

curve to the single-channel case in Fig. 5.8. The learning curves for the predic-
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Fig. 5.7: The single-channel time-domain prediction result.

tion error have been shown in Fig. 5.12, where again we can observe that the

frequency-domain method has provided a much faster convergence speed.

From the two sets of simulations, we can see that the proposed quaternion-

valued multi-channel transform-domain adaptive filter is very promising in ap-

plications requiring a fast tracking capability, and clearly a better choice for the

specific area of wind profile prediction.

For the adaptive filter length chosen in this section, both of the above scenar-

ios are set to L = 8. The following figures are the comparison results between

different filter lengths (L=16, 32, 64) in time-domain and transform-domain, re-

spectively. From the result we can see that the convergence speed is faster for

the relatively larger filter length with similar steady state error, however, there

is a trade-off between filter length and error. With the increasing L, the learning
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Fig. 5.8: The single-channel transform-domain prediction result.
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Fig. 5.9: The single-channel learning curve for the magnitude of the error signal.
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Fig. 5.10: The multi-channel time-domain prediction result.
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Fig. 5.11: The multi-channel transform-domain prediction result.
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Fig. 5.12: The multi-channel learning curve for the magnitude of the error signal.
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Fig. 5.13: The learning curve for the magnitude of the error signal with L=16.
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Fig. 5.14: The learning curve for the magnitude of the error signal with L=32.
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Fig. 5.15: The learning curve for the magnitude of the error signal with L=64.
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curve can not converge faster with very large filter length, such as the transform-

domain with L = 64 in Fig. 5.15 when compared to L = 32 in Fig. 5.14. It

is obvious that the L = 32 shows the better tracking ability than L = 16 and

L = 64.

5.4 Summary

A correlation analysis has been performed using the Wiener solution to show

that the signal processing based wind profile prediction method can provide a

feasible solution to the underlying problem. With the analysis result, we can

find out the appropriate sampling frequency and then use the QLMS/AQLMS

algorithm to predict the wind speed effectively. Furthermore, based on the

QDFT, we have extended the recently proposed time-domain quaternion-valued

adaptive filter into the frequency domain and the single-channel structure to the

multi-channel case with a particular application to the area of wind profile pre-

diction. Like the traditional frequency-domain methods, the proposed one can

improve the convergence speed of the employed adaptive algorithms, leading

to much better tracking capability for applications in a dynamic environment.

Simulations based on the QLMS/AQLMS algorithm have been performed us-

ing the CFD generated data to show the good prediction result, and also the

recorded wind data from multiple measurement sites clearly demonstrate the

potential of the proposed method in this particular area.
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Chapter 6

Combined Approach to Wind Profile

Prediction

As mentioned in last chapter, wind profile prediction is a classical signal pre-

diction problem; on the other hand, wind or atmospheric flow analysis is also a

traditional problem in Computational Fluid Dynamics (CFD) in applied mathe-

matics, which employs conservation laws, physical models and numerical meth-

ods to make predict. The CFD approach is relatively accurate when compared

to other approaches, but there are still some disadvantages. For example, it

is time-consuming with high computational complexity, and it contains uncer-

tainties/errors in initial/boundary conditions as well as models. Therefore, the

aim of this study is to propose efficient and effective methods for wind pro-

file/atmospheric flow prediction based on synergies between the statistical sig-

nal processing approach and the CFD approach.

CFD is a branch of fluid mechanics, which adopts numerical approaches and

algorithms to tackle the fluid flow problems. Usually, computers are used to
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solve the equations that model the motions of liquids and gases with suitable

boundary conditions. A large number of fluid dynamics problems are modeled

by the Navier-Stokes equations, which will be described in detail in this chapter,

together with several CFD techniques.

This chapter is organised as follows. The basic CFD concepts and simulation

methods will be reviewed in Section 6.1. Two combined methods (alternating

and weighting) based on both the signal processing approach and the CFD ap-

proach will be investigated in Section 6.2. A summary of this chapter is given

in Section 6.3.

6.1 Computational Fluid Dynamics

6.1.1 The fluid dynamics equations

The Navier-Stokes equations are the basis of fluid dynamics problems. They are

essentially the mathematical formulation of the Newton’s second law applied to

fluid motions. The general expression of the equations is

ρ(
∂u
∂t

+ (u · ∇)u) = −∇P + ηµu (6.1)

where u is the fluid velocity at a particular spatial location at a given time, P

is the pressure and ρ is the fluid density. The left hand side of the equation is

the acceleration of the fluid, whilst on the right side are (the gradient of) the

forces, including pressure and viscous force. Together with the conservation of

mass and suitable boundary conditions, the Navier-Stokes equations can model

a large class of fluid motions accurately [97].
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6.1.2 Reynolds number

In fluid mechanics, the Reynolds number (Re) is a dimensionless number which

is the ratio of the inertial force to the viscous force, and thus measures the

relative importance of these two forces with the given flow conditions. The

expression for the Reynolds number can be derived from Navier-Stokes equa-

tions when all the parameters in the equations are non-dimensionalized prop-

erly, which is:

Re =
ρvL

µ
=

vL

ν
(6.2)

where

v is the velocity scale of the fluid (m/s),

L is a characteristic linear dimension of the fluid field,the length scale (m),

µ is the dynamic viscosity of the fluid,

ν is the kinematic viscosity(ν = µ/ρ),

ρ is the density of the fluid.

Therefore, the time scale is T = L/v and the pressure scale is p = ρv2.

Assuming that the parameters are non-dimensionalized as follows: u∗ =

u/v, x∗ = x/L and t∗ = t/T = tv/L, the Navier-Stokes equations can be

rewritten as
∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ = −∇∗P ∗ +

1

Re
∆∗u∗ (6.3)

where Re is shown in Eq. (6.2). From Eq. (6.3), it is clear that the controlling

parameters appear in the form of the Reynolds number. The equation is the

same for the same Reynolds number, even if the parameters are different. That
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is to say, two flow fields will be similar, if their Reynolds numbers are the same.

6.1.3 Turbulence or Laminar

The second term on the left hand side of Eq. (6.1) represents the contribution

from the advection of fluid particles to fluid acceleration, and is customarily

called the inertial force. The second term on the right hand side represents

the viscous force. The ratio of these two forces is the Reynolds number (Re).

As it turns out, when Re is large, the flows tend to become unstable and gen-

erate a spectrum of high frequency components in the velocity signal. Such

a regime of fluid motions is called turbulence. Turbulent flows always occur

at high Reynolds numbers [98]. Atmospheric flows, including the wind fields

around wind farms, are always turbulence [99]. Due to the presence of the high

frequency components, the CFD calculation of the velocity signal in turbulent

wind fields becomes very time consuming unless simplifying models are intro-

duced.

6.1.4 Discretisation methods

Finite difference

In fluid mechanics, people have found relatively effective numerical methods

to solve the ordinary and also the partial differential equations. They start with

some forms of discretisation and one of these methods is the finite difference

method. The detailed calculation process can be described as follows.

We use the following simple ordinary differential equation to illustrate the
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method
d2y

dx2
= −λy . (6.4)

We assume that the boundary values y(0) = ya, y(1) = yb are known, and

suppose we want to find the solutions at (x1, x2, · · · , xN). Then, we need the

appropriate equations for the unknown (y1, y2, · · · , yN), where yn is the solu-

tion at xn. In terms of these unknown values, it is quite simple to derive the

approximate form of the ordinary differential equations.

One of the approximate forms for d2y
dx2 is [100]:(

d2y

dx2

)
xn

=
yn−1 + yn+1 − 2yn

h2
. (6.5)

At the point xn, the relation between yn, yn−1 and yn+1 follows from Eq. (6.4):

yn−1 + yn+1 − 2yn
h2

= −λyn

yn−1 + yn+1 − 2yn = −λh2yn . (6.6)

As x1 and xN are set to be 0 and 1, respectively, the unknown values for

yn can be calculated by means of iteration. More specifically, when using the

former equation, at point x2, the expression is

y3 + y1 − 2y2 = −λh2y2 . (6.7)

For point xN−1, the description of the equation will be

yN + yN−2 − 2yN−1 = −λh2yN−1 . (6.8)

Due to the given condition y1 = ya and yN = yb, in total, we have N − 2

unknown variables with N − 2 algebraic equations. Therefore, those variables
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can be obtained easily. As mentioned before, the values y1, y2, · · · , yN provide

an approximation to the solution yx of the ordinary differential equation. The

approximation can be improved by increasing the number of grid points N .

Spectral method

Another method is spectral method, which will be used in our programme. The

Fourier series for a function u(x) can be expressed as follows with 0 ≤ x ≤ 2π

and kn = nπ

u(x) =
+∞∑

n=−∞
ûne

iknx (6.9)

where ûn = 1
2π

∫ 2π

0 u(x)e−iknx dx is the Fourier coefficient. When we try to

find numerical solutions, the series has to be truncated. Thus, u(x) will be

approximated by the following equations with a sufficiently large N

u(x) =
N∑

n=−N

ûne
iknx . (6.10)

In the spectral method, we aim at solving ûn. When ûn is known, u(x) is

given by Eq. (6.10). Therefore, we need to derive the equation for ûn. We use

the Burger’s equation to illustrate the idea and the Burger’s equation is given by

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
. (6.11)

The Burger’s equation is a 1-D model of the Navier-Stokes equations, but it

retains the most important nonlinear term. Therefore, it is an essential model to

study the nonlinear effects in the Navier-Stokes equations.
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Now we derive the equation for ûn based on the Burger’s equation:∫ 2π

0

e−iknx

(
∂u

∂t
+ u

∂u

∂x

)
dx =

∫ 2π

0

e−iknx
∂u

∂t
dx+

∫ 2π

0

e−iknxu
∂u

∂x
dx

=
∂ûn
∂t

+ (û
∂u

∂x
)n (6.12)

In practice, u∂u
∂x is evaluated with a pseudo-spectral method [101]. This vis-

cous diffusion term becomes:∫ 2π

0

e−iknx

(
ν
∂2u

∂x2

)
dx

= ν(e−iknx

(
∂u

∂x

)∣∣∣∣2π
0

−
∫ 2π

0

ue−iknx(−iknx)(ν
∂u

∂x
) dx

=

∫ 2π

0

νe−iknx(iknx)(
∂u

∂x
) dx

= ν(ikn)
2ûn

= −νk2nûn . (6.13)

The equation in the Fourier series now becomes

∂ûn
∂t

+ (û
∂u

∂x
)n = −νk2nûn, (6.14)

in other words, a set of ordinary differential equations, which are then solved

by finite difference approximation in time.

6.1.5 Simulations methods and models for turbulence

Direct numerical simulation

Direct numerical simulation (DNS) solves the Navier-Stokes equations using

a pseudo-spectral method directly without any turbulence models [102]. The
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computational cost for it can be very high even if Re is moderate. Therefore,

this method is not yet applicable to practical situations [97], such as, the atmo-

spheric flows we will deal with. However, the advantage of this method is that

it is simple as well as accurate with complete information, and it is useful in

the development of turbulence models for practical applications. Therefore, as

a first step, we use DNS to generate the reference velocity signals to compare

with the results produced by other models.

Large eddy simulation (LES) and Subgrid-scale model (SGS)

Large eddy simulation (LES) is a mathematical model for turbulence proposed

by Joseph Smagorinsky to simulate atmospheric air currents [103], and first

explored by Deardorff in 1970 [104]. In LES we eliminate the small length

scales of the solution and simulate the large scales only, which reduces the

calculation cost. However, because of the nonlinear nature of the Navier-Stokes

equations, the small scales are coupled to the large scales. The effects have to be

modeled; otherwise, the solution will diverge. The model is called subgrid-scale

model.

To separate large scales from small scales, the idea of low pass filtering (LPF)

is applied. As a result, the input u(x) becomes output ũ(x) through the LPF with

system function G(x). More specifically, the filtering process is expressed as

follows:

ũ(x) = G(x) ∗ u(x) =
∫ +∞

−∞
G(y − x)u(y) dy (6.15)

where ũ(x) is the filtered velocity, which is what we solve in LES. We need the
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equation for ˜u(x). Again using the Burgers equation as an example, we apply

the filter to the Burgers equation:∫ +∞

−∞
G(y − x)(

∂u

∂t
+ u

∂u

∂y
) dy =

∫ +∞

−∞
G(y − x)ν

∂2u

∂x2
dy

=
∂

∂t

( ∫ +∞

−∞
G(y − x)u dy

)
+ ũ

∂u

∂x

= ν
∂2ũ

∂x2
(6.16)

with

ũ
∂u

∂x
=

∫ +∞

−∞
G(y − x)u

∂u

∂y
dy. (6.17)

We obtain the resultant ‘filtered’ Burgers equation:

∂ũ

∂t
+ ũ

∂u

∂x
= ν

∂2ũ

∂x2
(6.18)

From

u
∂u

∂x
=

∂

∂x
(
u2

2
), (6.19)

we get

ũ
∂u

∂x
=

∂

∂x
(̃
u2

2
). (6.20)

Therefore, equation (6.18) becomes:

∂ũ

∂t
+

1

2

∂

∂x
ũ2 = ν

∂2ũ

∂x2
(6.21)

However, as ũ2 and ũ2 are different, the equation is not closed. In LES, we write

the equation in the following form:

∂ũ

∂t
+ ũ

∂ũ

∂x
= ν

∂2ũ

∂x2
+ ũ

∂ũ

∂x
− 1

2

∂

∂x
ũ2

= ν
∂2ũ

∂x2
− 1

2

∂

∂x
(ũ2 − ũ2) (6.22)
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where the term ũ2 − ũ2 is called the subgrid-scale stress. Since it is not closed,

we need to model it in terms of ũ. The model is what we called subgrid-scale

model. For Navier-Stokes equations, we will have a subgrid-scale stress tensor,

which is denoted as τij:

τij = ũiuj − ũiũj (6.23)

In our study, we will also use LES to model the wind fields [97].

6.2 The Combined Approach

In the combined method, the signal processing part employs the QLMS algo-

rithm, while for the CFD part, LES based on the Smagorinsky SGS model will

be employed. There are different ways of combining them together to obtain

a more effective and efficient method for wind profile prediction. In our cur-

rent study, we mainly focus on the issue of efficiency, i.e. we aim to develop

a method which can achieve a similar level of accuracy as the CFD approach

but with a lower complexity. Certainly, it is possible to increase the complexity

of the new method a little (but still lower than the original CFD approach) and

achieve a more accurate result and in this case the new method could be more

efficient and at the same time more effective as well.

To combine the QLMS algorithm and LES together, two approaches are

adopted in our study: one is to combine the results of QLMS prediction and

LES by an appropriate weighting function and the other is to alternate their op-

erations in succession. Here we will mainly focus on the alternating method
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and show that its running time is much shorter than the CFD method while still

maintaining a comparable good prediction result. For the weighting method,

we have done some preliminary analysis, which does give some good results;

nevertheless, more analysis and research are needed in the future.

6.2.1 Alternating

The alternating process is described as follows. First, the QLMS algorithm is

used to obtain the predicted wind velocity, and then we use the prediction result

as the initial conditions for the LES method for calculating the next stage of the

wind velocity. In the next round, the same process is repeated. The process flow

chart is shown below in Fig. 6.1.

As the LES approach is more accurate over the time scale of large scale flows

but time consuming with a high computational cost, and the QLMS algorithm

has a very low complexity, an alternating combination of these two will produce

a method with a much lower complexity.

When comparing the accuracy of the new method with the CFD approach

(the LES method in this context), the CFD data generated by DNS is used as a

reference. The DNS simulation is based on a denser grid than the LES: 64 ×

64×64 grid points for DNS and 32×32×32 grids for LES. The code is written

in FORTRAN 90. Running the code, we can then generate a time series of

three-dimensional turbulent wind velocity fields.
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QLMS Algorithm

Initial Conditions

Fig. 6.1: The alternating progress.
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Simulation

Simulation results are provided in this section to show the performance of the

proposed alternating method. Based on an analysis of the correlation generated

by the CFD data, we have chosen the sampling frequency as 1/6 Hz for this

data set, i.e. the sampling interval between adjacent samples is 6 seconds. The

other parameters are: the length of the FIR filter is L = 16 and the step size is

µ = 1× 10−5.

The results are shown in Table 6.1, where the first column is the prediction

advance value P , e1 the normalised error between the LES method and the

DNS method, and e2 is the normalised error between the combined method and

the DNS method. We can see that in terms of the normalised prediction error,

the two methods have a very similar performance. As to the computational

complexity, we show the running time of the two methods in Table 6.2, where t1

and t2 are for the LES method and the alternating method, respectively. We can

see that the running time for the LES method is nearly doubled when compared

to the alternating method as the prediction advance step increases, highlighting

the clear advantage of the proposed combined alternating method.

6.2.2 Weighting

For the weighting method, we use the QLMS algorithm based on the DNS wind

data to obtain the prediction result. Meanwhile, the LES method will be em-

ployed to predict the wind velocity as well. As the LES approach is accurate

127



Table 6.1: Normalised prediction error for the proposed alternating method with prediction

advance value P .
P e1 e2

1 0.0538 0.0854

2 0.0969 0.0762

3 0.0889 0.0811

4 0.1115 0.0842

5 0.0880 0.0759

6 0.0861 0.0924

7 0.1042 0.1028

8 0.1013 0.0973

9 0.1022 0.0871

10 0.0960 0.0820

Table 6.2: Running time with prediction advance value P (seconds).

P t1 t2

1 260.9 214.1

2 484.6 380.4

3 832.2 533.2

4 1432.5 657.4

5 1813.6 787

6 1951.4 1015.9

7 2338.9 1253.2

8 2465 1177.1

9 2489.3 1464.7

10 3134.3 1646.4
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Table 6.3: Normalised prediction error in (dB) by data sequence with sampling frequency fs

(Hz) and prediction time Pt (hours) (Part I).

Pt=0.5 hours Pt=1 hours Pt=1.5 hours Pt=2 hours

fs=1Hz -24.7813 -24.5924 -24.3497 -24.6158

fs=1
3

Hz -24.6510 -24.7694 -24.5924 -24.5341

fs=1
6

Hz -24.3383 -24.2928 -24.2702 -24.3497

fs=1
7

Hz -24.4415 -24.5690 -24.5341 -24.0795

fs=1
8

Hz -24.0241 -23.5283 -23.9580 -23.9470

fs=1
9

Hz -23.8380 -24.0573 -23.9032 -24.0795

fs= 1
12

Hz -23.7623 -23.4968 -24.1800 -23.2483

fs= 1
18

Hz -23.0259 -22.4810 -21.3031 -21.6980

but time consuming with high computational cost, and the QLMS algorithm is

relatively simple in simulation, and the different weighting between them can

be applied to reduce the complexity as well as maintaining a good prediction

result.

Firstly, we will show the normalised error of the wind velocity with 8 differ-

ent sets. The first sampling frequency fs is set as 1Hz. Then the rest sets are at

1/3, 1/6, 1/7, 1/8, 1/9, 1/12, 1/18 Hz, respectively.

With the above analysis, we can obtain tables with sampling frequency along

column direction and prediction time in the row direction, and the values in the

tables are the resultant prediction error normalised by the corresponding data se-

quence, which are shown in Table 6.3 and Table 6.4. Moreover, in Table 6.5 and

Table 6.6, the rows and columns are the same, and the values are the resultant

prediction error normalised by the power of the corresponding data sequence.
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Table 6.4: Normalised prediction error in (dB) by data sequence with sampling frequency fs

(Hz) and prediction time Pt (hours) (Part II).

Pt=2.5 hours Pt=3 hours Pt=3.5 hours Pt=4 hours

fs=1 Hz -24.6158 -24.5225 -24.5690 -24.6510

fs=1
3

Hz -24.5574 -24.7337 -24.6393 -24.7694

fs=1
6

Hz -24.0351 -24.3955 -24.4993 -24.2475

fs=1
7

Hz -23.9580 -24.0795 -24.0351 -24.3156

fs=1
8

Hz -23.9800 -23.6872 -23.9360 -24.3726

fs=1
9

Hz -23.5073 -23.5916 -23.7194 -23.7947

fs= 1
12

Hz -22.8573 -23.9142 -23.5810 -23.6127

fs= 1
18

Hz -22.1824 -22.6144 -22.2285 -22.1457

Table 6.5: Normalised prediction error in (dB) by the power of data sequence with sampling

frequency fs (Hz) and prediction time Pt (hours) (Part I).

Pt=0.5 hours Pt=1 hours Pt=1.5 hours Pt=2 hours

fs=1 Hz -12.9811 -12.9437 -12.9048 -12.9538

fs=1
3

Hz -11.8369 -11.8611 -11.8344 -11.8262

fs=1
6

Hz -11.0367 -11.0332 -11.0271 -11.0483

fs=1
7

Hz -10.8795 -10.9174 -10.9219 -10.8347

fs=1
8

Hz -10.6647 -10.5723 -10.6578 -10.6505

fs=1
9

Hz -10.4722 -10.5315 -10.4955 -10.5276

fs= 1
12

Hz -10.1484 -10.1106 -10.2347 -10.0493

fs= 1
18

Hz -9.4960 -9.3864 -9.1627 -9.2524
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Table 6.6: Normalised prediction error in (dB) by the power of data sequence with sampling

frequency fs (Hz) and prediction time Pt (hours) (Part II)

Pt=2.5 hours Pt=3 hours Pt=3.5 hours Pt=4 hours

fs=1 Hz -12.9591 -12.9364 -12.9458 -12.9570

fs=1
3

Hz -11.8230 -11.8531 -11.8407 -11.8669

fs=1
6

Hz -10.9924 -11.0531 -11.0763 -11.0238

fs=1
7

Hz -10.8056 -10.8171 -10.8076 -10.8623

fs=1
8

Hz -10.6592 -10.6079 -10.6369 -10.7226

fs=1
9

Hz -10.4500 -10.4511 -10.4768 -10.4850

fs= 1
12

Hz -9.9828 -10.1862 -10.1162 -10.1342

fs= 1
18

Hz -9.3347 -9.4004 -9.3310 -9.3228

From the table shown in 6.3 and 6.4, we can see that the correlation is smaller

when sampling frequency is decreased, as expected. Therefore, the normalised

error has been increased as the value of prediction step P increases or the sam-

pling frequency fs decreases. Therefore, we can make prediction further in

advance with smaller error when the correlation value is large, and the accept-

able prediction step value depends on the correlation of these samples. On the

other hand, we can estimate the prediction advance time through analysing the

correlation distribution of the generated data.

Simulations

In terms of the given data set, we can choose the 1/9 Hz to be the sampling

frequency of the following predictions. The histograms of error signal for both

methods will be shown below. The parameters are: the length of the FIR filter
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Fig. 6.2: Histograms for normalised error with the QLMS algorithm.

is L = 16 and step size is µ = 1 × 10−5. The prediction advance step is

N = 1.6× 103, which accounts for 4 hours prediction advance time.

From the histogram bars, we can see that the distributions are rather different.

Therefore, we have to try different weighting to find out the relatively small

error signals. Then, in the following step, different constant weighting between

the QLMS algorithm and the LES method will be used, such as, 0.3, 0.5, 0.7.

Then the DFT will be applied to the remaining normalised error signal to see

their frequency components.

These three different weightings have been employed and their normalised

prediction errors are shown in Figs. 6.4, 6.5 and 6.6. Moreover, their corre-

sponding spectrum of the error signal is shown in Figs. 6.7, 6.8 and 6.9. From

these figures, we can see that the error is smaller when the weighting for QLMS
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Fig. 6.3: Histograms for normalised error with the LES method.
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Fig. 6.4: Error signal with combined method at α = 0.3.
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Fig. 6.5: Error signal with combined method at α = 0.5.
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Fig. 6.6: Error signal with combined method at α = 0.7.
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Fig. 6.7: The spectrum of error signal with combined method at α = 0.3.
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Fig. 6.8: The spectrum of error signal with combined method at α = 0.5.
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Fig. 6.9: The spectrum of error signal with combined method at α = 0.7.

algorithm is smaller. However, the LES has a higher computational complexity.

As the computational time for LES is around 6 hours, which is much longer

than the QLMS algorithm with only a few minutes, there is trade-off between

accuracy and complexity.

6.3 Summary

In this chapter, the CFD approach has been reviewed briefly, including the CFD

basic concepts and the simulation methods, and a new combined method is pro-

posed by alternating the operation of the QLMS algorithm and the LES method

in succesiion. As demonstrated by computer simulations, the proposed method

has a much lower computational complexity with roughly half of the running

time of a standard LES operation, while still maintaining a comparable perfor-
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mance in terms of prediction accuracy. A weighting method is also proposed,

and its potential needs to be explored further in the future.
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Chapter 7

Conclusions and Future Plan

7.1 Conclusions

In this thesis, the fundamental concept of quaternions was introduced in Chapter

2 and then the general quaternion-based gradient operator and its related chain

rules as well as product rules were presented in detail in Chapter 3, where the

QLMS algorithm and its augmented version the AQLMS algorithm are derived

as an application together with a nonlinear adaptive algorithm.

Then, the application of quaternion-valued signal processing to adaptive

beamforming based on crossed-dipole arrays was studied in Chapter 4, with

the aim of reducing the number of sensors involved in the adaptive beamform-

ing process, so that reduced system complexity and energy consumption can

be achieved, whereas an acceptable performance can still be maintained. Such

a technique is particularly useful for large array systems. In particular, based

on the quaternion-valued steering vector model, a reweighted zero attracting

QLMS algorithm was derived by introducing a RZA term to the cost function
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of the original QLMS algorithm. The RZA term aims to have a closer approxi-

mation to the l0 norm so that the number of non-zero valued coefficients can be

reduced more effectively in the adaptive beamforming process.

Another application to wind profile prediction was investigated in Chapter 5,

where correlation analysis was provided to show that signal processing can pro-

vide a viable approach to wind profile prediction. Then, a quaternion-valued

multi-channel frequency domain adaptive filtering structure was introduced,

which can improve the convergence speed of the employed adaptive algorithms,

leading to much better tracking capability for applications in a dynamic envi-

ronment.

Base on the synergies of the signal processing approach and the CFD ap-

proach, a combined approach was proposed in Chapter 6. The basic con-

cepts of CFD were first reviewed, including the direct numerical simulation

(DNS) methods and the large eddy simulation (LES) methods. Then a com-

bined method was proposed by alternating the operation of the QLMS algorithm

and the LES method one by one. As demonstrated by computer simulations, the

proposed method has a much lower computational complexity with roughly half

of the running time of a standard LES operation, while still maintaining a com-

parable performance in terms of prediction accuracy. A weighting method is

also proposed, and its potential needs to be further explored in the future.
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7.2 Future Work

For future work, the focus will be further detailed investigation of the com-

bined approach for wind profile prediction. Two combined methods have been

proposed in the thesis: one is alternating and one is weighting. However, this

part of the study is only preliminary and more details are needed. For example,

for the alternating method, how frequent should the alternating be performed

for more effective and efficient prediction? For the weighting method, what

is the exact trade-off between complexity and accuracy and how to choose the

best weighting function? How about combining the alternating method and the

weighting method together to form a new combined method?

As an application of the developed combined methods, we can consider the

wind farm design problem, which deals with the problem of finding the opti-

mum wind turbine layout in terms of maximising energy production and min-

imising development costs, while meeting various geographical constraints im-

posed by the site.

A starting point in its design is effective modelling of atmospheric behaviour

and interaction between wind and turbine. With constant moving of turbine

blades, the modelling is a complicated process involving non-stationary bound-

ary conditions. One possible approach is that we split it into a series of short

periods of time, short enough so that we can consider the boundary is approx-

imately stationary within this period of time. We can then apply some of our

developed combined algorithms based on both signal processing and compu-
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tational fluid dynamics to within each period of time and also to the transition

between adjacent periods of time to smooth out the error. We may also need to

split the whole three-dimensional space into small sub-spaces to deal with the

problem more efficiently.

One particular focus for this part of the project is to reduce the computa-

tional complexity of the modelling process so that the problem can be solved

not only effectively, but also efficiently. Based on the developed modelling al-

gorithms, we then apply it to the problem of optimisation, analysis and design

of wind farms, as given a specific layout of the wind farm, the atmospheric flow

behaviour can be obtained for the whole farm and so the overall generated wind

power. This is a highly nonlinear optimisation problem and various nonlinear

optimisation algorithms will be employed in the process. At the end of the

project, a software tool for wind farm design can be developed.
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