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ABSTRACT

Information Theoretic Learning (ITL) is gaining popularity for designing adaptive filters

for a non-stationary or non-Gaussian environment [1] [2] . ITL cost functions such as the

Minimum Error Entropy (MEE) have been applied to both linear and nonlinear adaptive

filtering with better overall performance compared with the typical mean squared error

(MSE) and least-squares type adaptive filtering, especially for nonlinear systems in

higher-order statistic noise environments [3].

Quaternion valued data processing is beneficial in applications such as robotics and

image processing, particularly for performing transformations in 3-dimensional space.

Particularly the benefit for quaternion valued processing includes performing data trans-

formations in a 3 or 4-dimensional space in a more convenient fashion than using vector

algebra [4, 5, 6, 7, 8]. Adaptive filtering in quaterion domain operates intrinsically based

on the augmented statistics which the quaternion input vector covariance is taken into

account naturally and as a result it incorporates component-wise real valued cross-

correlation or the coupling within the dimensions of the quaternion input [9].

The generalized Hamilton-real calculus (GHR) for the quaternion data simplified prod-

uct and chain rules and allows us to calculate the gradient and Hessian of quaternion
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based cost function of the learning algorithms efficiently [10][11] . The quaternion repro-

ducing kernel Hilbert spaces and its uniqueness provide a mathematical foundation to

develop the quaternion value kernel learning algorithms [12]. The reproducing property

of the feature space replace the inner product of feature samples with kernel evaluation.

In this dissertation, we first propose a kernel adaptive filter for quaternion data based

on minimum error entropy cost function. The new algorithm is based on error entropy

function and is referred to as the quaternion kernel minimum error entropy (QKMEE)

algorithm [13]. We apply generalized Hamilton-real (GHR) calculus that is applicable

to quaternion Hilbert space for evaluating the cost function gradient to develop the

QKMEE algorithm. The minimum error entropy (MEE) algorithm [3, 14, 15] minimizes

Renyis quadratic entropy of the error between the filter output and desired response

or indirectly maximizing the error information potential. ITL methodology improves

the performance of adaptive algorithm in biased or non-Gaussian signals and noise

enviorments compared to the mean squared error (MSE) criterion algorithms such as

the kernel least mean square algorithm.

Second, we develop a kernel adaptive filter for quaternion data based on normalized

minimum error entropy cost function [14]. We apply generalized Hamilton-real (GHR)

calculus that is applicable to Hilbert space for evaluating the cost function gradient to

develop the quaternion kernel normalized minimum error entropy (QKNMEE) algorithm

[16]. The new proposed algorithm enhanced QKMEE algorithm where the filter update

stepsize selection will be independent of the input power and the kernel size.

Third, we develop a kernel adaptive filter for quaternion domain data, based on in-

formation theoretic learning cost function which could be useful for quaternion based

kernel applications of nonlinear filtering. The new algorithm is based on error entropy

function with fiducial point and is referred to as the quaternion kernel minimum error

entropy with fiducial point (QKMEEF) algorithm [17]. In our previous work we de-
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veloped quaternion kernel adaptive filter based on minimum error entropy referred to

as the QKMEE algorithm [13]. Since entropy does not change with the mean of the

distribution, the algorithm may converge to a set of optimal weights without having

zero mean error. Traditionally, to make the zero mean output error, the output dur-

ing testing session was biased with the mean of errors of training session. However,

for non-symmetric or heavy tails error PDF the estimation of error mean is problem-

atic [18]. The minimum error entropy criterion, minimizes Renyi’s quadratic entropy of

the error between the filter output and desired response or indirectly maximizing the

error information potential [19]. Here, the approach is applied to quaternions. Adap-

tive filtering in quaterion domain intrinsically incorporates component-wise real valued

cross-correlation or the coupling within the dimensions of the quaternion input. We

apply generalized Hamilton-real (GHR) calculus that is applicable to Hilbert space for

evaluating the cost function gradient to develop the Quaternion Minimum Error Entropy

Algorithm with Fiducial point. Simulation results are used to show the behavior of the

new algorithm (QKMEEF) when signal is non-Gaussian in presence of unimodal noise

versus bi-modal noise distributions. Simulation results also show that the new algorithm

QKMEEF can track and predict the 4-Dimensional non-stationary process signals where

there are correlations between components better than quadruple real-valued KMEEF

and Quat-KLMS algorithms.

Fourth, we develop a kernel adaptive filter for quaternion data, using stochastic infor-

mation gradient (SIG) cost function based on the information theoretic learning (ITL)

approach. The new algorithm (QKSIG) is useful for quaternion-based kernel appli-

cations of nonlinear filtering [20]. Adaptive filtering in quaterion domain intrinsically

incorporates component-wise real valued cross-correlation or the coupling within the di-

mensions of the quaternion input. We apply generalized Hamilton-real (GHR) calculus

that is applicable to quaternion Hilbert space for evaluating the cost function gradi-
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ent. The QKSIG algorithm minimizes Shannon’s entropy of the error between the filter

output and desired response and minimizes the divergence between the joint densities

of input-desired and input-output pairs. The SIG technique reduces the computational

complexity of the error entropy estimation. Here, ITL with SIG approach is applied to

quaternion adaptive filtering for three different reasons. First, it reduces the algorithm

computational complexity compared to our previous work quaternion kernel minimum

error entropy algorithm (QKMEE). Second, it improves the filtering performance by con-

sidering the coupling within the dimensions of the quaternion input. Third, it performs

better in biased or non-Gaussian signal and noise environments due to ITL approach.

We present convergence analysis and steady-state performance analysis results of the

new algorithm (QKSIG). Simulation results are used to show the behavior of the new

algorithm QKSIG in quaternion non-Gaussian signal and noise environments compared

to the existing ones such as quadruple real-valued kernel stochastic information gradient

(KSIG) and quaternion kernel LMS (QKLMS) algorithms.

Fifth, we develop a kernel adaptive filter for quaternion data, based on stochastic infor-

mation gradient (SIG) cost function with self adjusting step-size. The new algorithm

(QKSIG-SAS) is based on the information theoretic learning (ITL) approach. The new

algorithm (QKSIG-SAS) has faster speed of convergence as compared to our previous

work QKSIG algorithm.
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Chapter 1

Introduction

Information Theoretic Learning (ITL) [1][2] such as minimum error entropy is gaining

popularity for designing adaptive filters for a non-stationary or non-Gaussian environ-

ment. The adaptive filtering cost function based on mean squared error (MSE) uses only

second order statistics and does not capture the probability of error distribution in the

system. An information theoretic learning (ITL) alternative such as minimum error en-

tropy (MEE) uses minimum error entropy as a cost function. Minimizing error entropy

minimizes the distance between the joint probability distribution of the input-desired

and input-output of adaptive system and is expected to perform better with biased or

non-Gaussian signals compared to mean-squared-error (MSE) criteria adaptive filters

[3].

Quaternion domain statistical signal processing has wide range of applications in areas

such as as adaptive filtering for earthquake prediction, wind forecasting, stock market

prediction and EEG. These applications have multi dimensional nature with correlations

or couplings between dimensions. In real world applications such as wind forecasting,

there are correlations between different dimensions such as east-north, east-vertical, and

north-vertical, respectively. Therefore, considering the correlations between different di-

mensions leads to better prediction. Adaptive filtering in quaternion domain operates

intrinsically based on the augmented statistics which the quaternion input vector q

covariance ErqqHs is taken into account naturally [22]. As a result it incorporates

component-wise real valued cross-correlation or the coupling within the dimensions of

1



the quaternion input [9]. Adaptive filtering of 4-Dimensional signals in real domain

requires multiple uni-variate filters without incorporating the mutual information or

coupling between all four components [22].

1.1 Purpose of this Work

The quaternion kernel estimation is an emerging field and some algorithms are de-

veloped in quaternion domain [23],[24],[25] and [26]. The purpose of this thesis is to

develop kernel adaptive filter algorithms for quaternion domain data, based on informa-

tion theoretic learning cost functions which could be useful for quaternion based kernel

applications of nonlinear filtering. In order to develop quaternion kernel nonlinear filters

based on information theoretic learning, first the information theory concepts such as

entropy is extended to quaternion domain; second, the generalized Hamilton-real calcu-

lus (GHR) for the quaternion data [10] are used to enable the gradient calculation of

the optimization problems. The GHR calculus simplified product and chain rules allows

us to calculate the quaternion based gradient and Hessian of cost function efficiently

and use them for the learning algorithms [11],[27]. The quaternion reproducing kernel

Hilbert spaces and its uniqueness [12], provides a mathematical foundation to develop

the quaternion value kernel learning algorithms.

1.2 Organization of the Thesis

This thesis is organized as follows. The Chapters 2 and 3 describe background material

which formed the basis of the new research. The areas covered in these chapters are:

1. Introduction to Information Theoretic Learning (Chapter 2).

2



2. Quaternions and Properties (Chapter 3).

The chapters 4 to 8 describe the new algorithms and related analysis. These are:

1. Quaternion Kernel Minimum Error Entropy Adaptive Filter (Chapter 4).

2. Quaternion Kernel Normalized Minimum Error Entropy Algorithm (Chapter 5).

3. Quaternion Kernel Minimum Error Entropy Algorithm with Fiducial point for

Nonlinear Adaptive Systems (Chapter 6).

4. Quaternion Kernel Stochastic Information Gradient Algorithm for Nonlinear Adap-

tive Systems (Chapter 7).

5. Quaternion Kernel Stochastic Information Gradient Algorithm with Self Adjusting

Step-size for Nonlinear Adaptive Systems (Chapter 8).

Finally, Chapter 9 summarizes the research and describes future work.

3



Part I

Background
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Chapter 2

Introduction to Information
Theoretic Learning

This chapter describes the fundamental methodology which uses information theory

to develop adaptive information filters named information theoretic learning (ITL). In

information theoretic learning (ITL) methodology, the cost function criterion of tradi-

tional adaptive filters, replaced by new criterion based on information theory principles

such as entropy [28]. The ITL methodology plays important growing roles in adaptive

signal processing and machine learning areas [1][29].

In all supervised adaptive signal processing problems such as system identification, noise

canceling and channel equalization the goal is to minimize the difference between the

desired and the system outputs. In traditional adaptive filtering the mean-squared-error

(MSE) is used as the optimal criterion to minimize the error between the desired and the

system outputs. The MSE criterion, minimizes the error energy and its implementation

is easy. The main drawback of the MSE criterion lays on its statistical characteristic

nature that only takes into account the second order statistics and is only optimal in

the case of Gaussian signals and linear filters [30] [31].

In adaptive filtering especially for nonlinear signal processing, instead of constraining

directly energy of error, constraining the information content of signal achieves better

performance [3]. Entropy, such as Shannon entropy [32] and Renyi’s entropy [33], is a

scalar quantity that provides a measure for the average information contained in a given

PDF. When error entropy is minimized, all moments of the error PDF are constrained
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[31][29]. The entropy criterion has been utilized as an alternative for MSE in supervised

adaptive learning and minimizing error entropy (MEE) shows more robust criterion than

MSE in adaptive learning process especially for nonlinear systems.

Information theory measures the statistical uncertainty in random processes, statistical

similarity and dependencies between multiple random processes. The two main statis-

tical measures in information theory are entropy and divergence.

2.1 Entropy

Entropy measures the uncertainty of the random vector X with probability distribution

function (PDF) p(x) which is a generalization of variance to processes with non-Gaussian

distributions, and is defined by Shannon as [32][34]

HSpXq “ ´

ż 8

8

ppxq log ppxqdx “ Er´ log ppxqs (2.1)

where ppxq is probability distribution function of random variable X.

2.2 Divergence

Divergence, a measure of statistical similarity, such as Kullback-Leibler divergence

(KLD), measures the distance between two distributions p(x) and q(x) and is defined

as [34]

DKLpp||qq “

ż 8

8

ppxq log
ppxq

qpxq
dx. (2.2)

This measure becomes zero if and only if p and q are identical distributions and is
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positive otherwise.

2.3 Mutual information

Mutual information, which is a measure of statistical dependency, is a generalized form

of correlation to arbitrary nonlinear transforms of multiple processes having arbitrary

distributions [1]. The Mutual information as a special case of KLD, measures the

distance between the joint probability distribution and the product of the marginal

distributions and is defined as

ISpp; qq “

ż 8

8

ppx, yq log
ppx, yq

ppxqppyq
dxdy. (2.3)

These are some of the key measures in information theory and can be leveraged to infor-

mation theoretic learning (ITL) to derive algorithms based on information costs instead

of second-order (quadratic) costs. However adaptive filtering deals with continuous ran-

dom variables, described by their PDF. This means that the analytic approach taken in

information theory must be modified with continuous and differentiable non-parametric

estimators of entropy and divergence. Parzen estimation estimates the probability dis-

tributions of signals in the system using non-parametric sample estimators and has

advantage of linking information theory, adaptation, and kernel methods.

2.4 Parzen window

The Parzen window [35] for a set of N statistically independent random samples txiu
N
i“1

of random variable x, computes the estimate of the probability distribution function
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ppxq as

ˆppxq “
1

N

N
ÿ

l“1

κσpx´ xlq (2.4)

where κσ is Gaussian kernel defined as

κσpx´ yq “
4

?
2πσ

exp

„

´1

2σ2
px´ yq2



“
1

?
2πσ

exp

„

´1

2σ2
|x´ y|2



.

2.5 Adaptive Information Filtering

In the conventional adaptive filtering method such as least mean squares, the goal is to

minimize the mean-squared-error (MSE) between the desired response z and the system

output y “ fwpxq with respect to free parameter w as

min
@w

Jpwq “ Erpz ´ fwpxqq
2
s. (2.5)

This corresponds to estimating the orthogonal projection of the system desired response

z in the space which is spanned by the system input signal x.

Alternatively, the problem of estimating the system parameters w can be done by mini-

mizing the divergence between PDFs of system input-output and input-desired [1]. The

desired response z can be estimated by an unknown mapper of the input vector x de-

fined as z “ fwpxq ` e, where e is the error and fwpxq is linear or non-linear mapping

function. Therefore, the joint PDF ppx, zq of input-desired fully characterizes the map-

ping relationship between input and desired. The mapper estimates the system output

y, which is a parametric function of the input, with parameter vector w. Intuitively the
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system output can be an estimator p̂wpx, zq of ppx, zq. Therefore, in statistical view, the

optimization problem is to minimize the KLD between these two distributions as:

min
@w

Jpwq “

ż 8

8

ż 8

8

ppx, zq log
ppx, zq

p̂wpx, zq
dxdz. (2.6)

It can be shown that minimizing the Kullback-Leibler divergence between the joint prob-

ability distribution of the input-desired and input-output is equivalent to minimizing

the entropy of the error signal.

min
@w

´

ż

8

pepεq log pepεqdε

” min
@wPH

ż

8

ż

8

ż

8

py,x|wpy, xq log
py,x|wpy, xq

px,zpx, ζq
dydxdζ

“ min
@wPH

DKLppy,x|w||px,zq

(2.7)

where py,x is the input-output joint PDF and px,z is the input-desired joint PDF.

ITL is defined as a set of algorithms to implement adaptive information filtering. In

many signal processing and machine learning problems, the probability density function

of the data is unknown, therefore fundamental issue in ITL is how to estimate entropy

and divergence directly from samples. ITL cost functions such as the Minimum Error

Entropy (MEE) have been applied to both linear and nonlinear adaptive filtering with

better overall performance compared with the typical mean squared error (MSE) and

least-squares type adaptive filtering, especially for nonlinear systems in higher-order

statistic noise environments.
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2.6 Non-Linear Kernel Adaptive Filter Theory

In this section we describe the basics of the non-linear adaptive filter theory. Details

about the materials could be found in ”Kernel Adaptive Filtering: A Comprehensive

Introduction” [21].

2.6.1 Reproducing Kernel Hilbert Space

A Hilbert space is a vector space H with an inner product ă f, g ą such that the

norm defined by ‖f‖2
H “ă f, f ą, turns H into a complete metric space. An inner

product space H is complete if every Cauchy sequence of vectors taken from the space

H converges to a limit in H. A complete inner product space is called a Hilbert space.

Suppose an inner product space H has an orthonormal basis txku
8
k“1 then the vectors

sequence tynu
8
k“1 spanned by the basis txku

8
k“1 defined as

yn “
n
ÿ

k“1

akxk, ak P R (2.8)

is Cauchy sequence if the squared Euclidean distance between the vector yn and ym for

pm ą nq, can meet the following condition:

lim
pm,nqÑ8

‖yn ´ ym‖2
H “ 0. (2.9)

A Mercer kernel is a continuous, symmetric, positive definite function κ : U ˆ U Ñ R

where U is the input domain and subset of RL. The Gaussian kernel and the polynomial

kernel are two kernels which are used commonly and defined respectively as follows:

κpu,u1q “ expp
∥∥u´ u1

∥∥2

U
q (2.10)
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κpu,u1q “ puTu1 ` 1qp (2.11)

where p is positive integer number.

Suppose H is a vector space of all real-valued functions of u that are generated by the

kernel κpu, .q. The bilinear form of two functions hp.q and gp.q in space H can be defined

as

ă h, g ą“
l
ÿ

i“1

m
ÿ

j“1

aiκpci, ĉjqbj (2.12)

where functions hp.q and gp.q are in space H defined respectively as below

h “
l
ÿ

i“1

aiκpci, .q (2.13)

g “
m
ÿ

j“1

bjκpĉj, .q (2.14)

where the ai and the bj are expansion coefficients and ci and ĉj P U for all i and j .

The bilinear form of two functions hp.q and gp.q satisfies the following properties:

1. Symmetry, ă h, g ą“ă g, h ą.

2. Scaling and distributive property, ă cf ` dg, h ą“ c ă f, g ą `d ă g, h ą.

3. Squared norm, ‖f‖2
“ă f, f ąě 0.

The bilinear term ă h, g ą is indeed an inner product.
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One of the properties of bilinear term ă h, g ą is the reproducing property which is

defined as

ă h, κpu, .q ą“ hpuq. (2.15)

By setting gp.q “ κpu, .q we can simplify the bilinear term ă h, g ą as

ă h, κpu, .q ą“
l
ÿ

i“1

aiκpci,uq “ hpuq. (2.16)

Definition 2.6.1. (Reproducing kernel Hilbert space (RKHS)): The kernel κpu,u1q,

which represents a function of the two vectors u , u1 P U, is called a reproducing kernel

of the vector space H if it satisfies the following three conditions:

1. For every u P U , κpu,u1q as a function of the vector u1 belongs to H

2. It satisfies the reproducing property

If the inner product space H, in which the reproducing kernel space is defined, is also

complete, then it is called a reproducing kernel Hilbert space (RKHS).

Theorem 1. (Mercer theorem): Any reproducing kernel κpu,u1q can be expanded as

follows:

κpu,u1q “
8
ÿ

i“1

λiφipuqφipu
1
q (2.17)

where λi and φi are the eigenvalues and the eigenfunctions respectively, and eigenvalues

are non-negative.

Therefore, a mapping ϕ can be constructed as
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ϕ : U ÝÑ F

ϕpuq “ r
a

λ1φ1puq,
a

λ2φ2puq, ....s

where ϕ is called the feature mapping and ϕpuq is the transformed feature vector lying

in the feature space F. The dimension of F is determined by the number of strictly

positive eigenvalues, which are infinite in the Gaussian kernel case.

Therefore, we can obtain the following equation which shows the inner product of two

vectors in F as

ϕpuqTϕpu1q “ κpu,u1q. (2.18)

By defining ϕpuq “ κpu, .q where ϕpuq and κpu, .q are the basis of the feature spaces F

and H respectively, the two spaces F and H will be same space.

Example 2.6.1. Let κp., .q be a polynomial kernel defined as

κpu, cq “ p1` uTcq2 (2.19)

where u “ ru1, u2s
T and c “ rc1, c2s

T . By expressing the polynomial kernel in terms of

monomials of various orders, we have

κpu, cq “ 1` u2
1c

2
1 ` 2u1u2c1c2 ` u

2
2c

2
2 ` 2u1c1 ` 2u2c2 (2.20)

Therefore, the image of the input vector u in the feature space may be written as

ϕpuq “ r1, u2
1,
?

2u1u2, u
2
2,
?

2u1,
?

2u2s (2.21)

13



and similarly we have

ϕpcq “ r1, c2
1,
?

2c1c2, c
2
2,
?

2c1,
?

2c2s. (2.22)

Based on ϕpuq and ϕpcq definitions, it is easy to verify that kernel function is indeed

the inner product of two vectors in feature space as

ϕpuqTϕpcq “ κpu, cq. (2.23)

2.6.2 Kernel Adaptive Filters

The kernel method is a powerful non-parametric modeling tool for nonlinear systems.

The Kernel function or equivalent feature map transform the input data into a high-

dimensional feature space via a reproducing kernel such that the inner product operation

in the feature space can be computed efficiently through the kernel evaluation. This

transformation enables us to transform nonlinear system to higher dimensional space

which can apply appropriate linear methods on the transformed data. The algorithm

can be formulated in terms of inner products (or equivalent kernel evaluation) without

performing inner product in the high-dimensional feature space. This method is called

the ’kernel trick’. The underlying reproducing kernel Hilbert space plays a central role in

providing linearity, convexity, and universal approximation capability. Some examples

of the kernel methodology are support vector machines, kernel principal component

analysis, and Fisher discriminant analysis [21].

Now, we will show that projecting the input into a feature space could help in learning.
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As an example, consider the function of a two-dimensional input u “ ru1, u2s
T [21]

fpu1, u2q “ a1u1 ` a2u2 ` a3u
2
1 ` a4u

2
2 (2.24)

it is clear that the function has second order non linearity. Therefore we cannot find

any linear combination of u1 and u2 to approximate f . However, by using the kernel

and its feature mapping ϕ, we can transform two dimensional input space to a higher

order feature space and find a new representation of the input as [21]

ϕ : U ÝÑ H

ϕpu1, u2q “ rx1, x2, x3,x4, x5, x6s “ r1, u
2
1,
?

2u1u2, u
2
2,
?

2u1,
?

2u2s

Now, f can be represented by a linear combinations of px1, x2, x3, x4, x5, x6q as

fpx1, x2, x3, x4, x5, x6q “ 0x1 ` a3x2 ` 0x3 ` a4x4 `
a4
?

2
x5 `

a2
?

2
x6. (2.25)

The fact that mapping the input into a feature space can simplify the learning task

has been well known for a long time in machine learning as exemplified by polynomial

regression and Volterra series.

Fig.2.1 shows the block model of a kernel adaptive filter for non-linear system identifi-

cation.

The goal of the kernel adaptive filter can be stated as finding filter wpnq to estimate

desired response dpnq, where dpnq “ fpupnqq ` vpnq, with fpnq being a nonlinear func-

tion, where upnq is the system input and vpnq is additive noise. The application here

may be seen to be similar to the system identification task for linear filters.
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Fig. 2.1: Kernel Adaptive Filter for Non-Linear system Identification

The mapping of the input to an RKHS allows for the learning of a nonlinear channel

using the linear filter wpnq. By considering wpnq as a vector in a reproducing kernel

Hilbert space (RKHS), the gradient methods may be used for optimization problem to

find the optimal weights. The estimate d̂pnq may be expressed as

d̂pnq “ă ϕpuq,wpnq ą“ ϕpuqTwpnq. (2.26)

Many approaches may be used for updating the weights wpnq for the kernel adaptive

filter. An example approach is the Kernel Least Mean Square (KLMS) algorithm.
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2.6.3 Kernel Least Mean Square (KLMS) algorithm

For the Kernel Least Mean Square (KLMS) algorithm, the goal is to minimize the cost

function Jpnq “ pepnqq2 respect to free parameter wn as

min
@wnPH

Jpnq “ pepnqq2

s.t. epnq “ dpnq ´ yn

yn “ă ϕpunq,wn ą“ wT
nϕn

(2.27)

where d is desired signal, un input signal, ϕn is the kernel map to a RKHS.

Minimizing the cost function Jpnq can be done with unconstrained optimization algo-

rithm such as gradient descent algorithm as below

wn`1 “wn ´ 0.5η∇wnJpnq

“wn ´ η

¨

˚

˝

BpJpnqq

Bwn

˛

‹

‚

T

“ wn ` ηepnqϕpunq.

(2.28)

The weight-update equation through iterations by assuming the initial weights w0 “ 0

yields
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wn`1 “wn ` ηepnqϕpunq

“wn´1 ` ηepn´ 1qϕpun´1q
looooooooooooooomooooooooooooooon

wn

`ηepnqϕpunq

“wn´1 ` η

„

epn´ 1qϕpun´1q ` epnqϕpunqs



“wn´2 ` η
n
ÿ

i“n´2

epiqϕpuiq

“w0 ` η
n
ÿ

i“0

epiqϕpuiq

“η
n
ÿ

i“0

epiqϕpuiq.

(2.29)

By substituting the weight update in the yn “ wT
nϕn and using properties of Reproduc-

ing Kernel Hilbert Space (RKHS) and the ’kernel trick,’ to replace the inner product of

two vectors with kernel κσ, we can simplify the equation in kernel form as

yn “

˜

η
n´1
ÿ

i“0

epiqϕpuiq

¸T

ϕpunq

“ η
n´1
ÿ

i“0

epiqϕpuiq
Tϕpunq

“ η
n´1
ÿ

i“0

epiqκσpui,unq.

(2.30)

Example 2.6.2. Mackey-Glass Time Series Prediction: In this example we want to

show the short term prediction of the Mackey-Glass (MG) chaotic time series using

KLMS adaptive filter. The Mackey-Glass (MG) time series is generated from the fol-

lowing time delay differential equation as:
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dxptq

dptq
“ ´bxptq `

axpt´ τq

1` xpt´ τq10
(2.31)

with b “ 0.1, a “ 0.2, and τ “ 30. The time series is sampled with period of 6 seconds

[21].

The input and desired input are corrupted by additive Gaussian noise with zero mean

and 0.04 standard deviation. The purpose of the experiment is to compare the perfor-

mance of a linear combiner trained with LMS and KLMS. The step size parameter for

LMS is 0.2. For KLMS, the Gaussian kernel with a “ 1 is chosen and the step size

parameter is also 0.2. Figure 2.2 [21] shows the learning curves of LMS and KLMS

algorithms. As expected, KLMS converges to a smaller value of MSE because of its

nonlinear nature [21].

0 100 200 300 400 500
iteration

-24

-22

-20

-18
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M
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KLMS

Fig. 2.2: Learning curves of LMS and KLMS in Mackey-Glass time series prediction
(Source: [21])
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Chapter 3

Quaternions and Properties

Quaternions are a 4-D associative, noncommutative, normed division algebra over the

real numbers, defined as in [36]

H “ tqr ` iqi ` jqj ` kqk |qr, qi, qj, qk P Ru (3.1)

where t1, i, j, ku is a basis for H and has the the following rules

ij “ k jk “ i ki “ j where i2 “ j2 “ k2 “ ´1.

For any quaternion q P H

q “ Sq ` Vq (3.2)

the Sq is the real part of q and denoted by qr “ Sq “ Rpqq and Vq is the imaginary

part of q and denoted by iqi ` jqj ` kqk “ Vq “ Ipqq. The real part of the q is a scalar

in real number domain R and the imaginary part is a 3-D vector. The conjugate of a

quaternion q is q˚ “ qr ´ iqi ´ jqj ´ kqk.

For any two quaternion numbers q and p P H , the following properties exist

ppqq˚ “ pq˚p˚q , |q| “
?
qq˚ , |pq| “ |p||q|.
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The inverse of a quaternion q ‰ 0 is q´1 “ q˚{|q|2 and for any two quaternion numbers

q and p P H the inverse of ppqq is equal to ppqq´1 “ pq´1p´1q. If |q| “ 1 then it is called

unit quaternion. If Rpqq “ 0 then q˚ “ ´q and q2 “ ´|q|2. For any quaternion q the

quaternion rotation is defined as the transformation

qµ fi µqµ´1 (3.3)

and geometrically describes a 3-D rotation of the vector part of q by an angle 2θ about

the vector part of µ [11]. The quaternion rotation (3.3) becomes quaternion involution

such as qi , qj , qk defined by

qi “ ´iqi “ qr ` iqi ´ jqj ´ kqk,

qj “ ´jqj “ qr ´ iqi ` jqj ´ kqk,

qk “ ´kqk “ qr ´ iqi ´ jqj ` kqk. (3.4)

whose conjugates qi˚ , qj˚ , qk˚ are defined as

qi˚ “ qr ´ iqi ` jqj ` kqk,

qj˚ “ qr ` iqi ´ jqj ` kqk,

qk˚ “ qr ` iqi ` jqj ´ kqk. (3.5)

For any two quaternion numbers p and q the quaternion rotation has the following

properties
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qµ “ qµ{|µ|, pqµ “ pµqµ, pq “ qpp “ qpq
˚

. (3.6)

The real representation in (3.1) can be easily generalized to a general orthogonal system

t1, iµ, jµ, kµu, where the following properties hold

iµiµ “ jµjµ “ kµkµ “ ´1. (3.7)

3.1 Quaternion Involutions and the Augmented Ba-

sis Vector

In complex domain, the real and imaginary part of a complex number z “ za ` izb

can be calculated as za “
1
2
pz ` z˚q and zb “

1
2i
pz ´ z˚q. The corresponding bivariate

signal pza, zbq P R
2 is used as a basis for the augmented complex statistics, where the

augmented basis vector is za “ rz, z˚sT . In quaternion domain, the relation between

the elements of a quadrivariate vector in R4 and the elements of a quaternion valued

variable in H is not straight forward. To deal with this issue, the four components of

the quaternion q “ qa ` iqb ` jqc ` kqd can be used which are expressed based on three
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perpendicular quaternion involution as follows [9]:

qa “
1

2
pq ` q˚q,

qb “
1

2i
pq ´ qi˚q,

qc “
1

2j
pq ´ qj˚q,

qd “
1

2k
pq ´ qk˚q.

(3.8)

The combination of tq, q˚, qi˚, qj˚, qk˚u is used to define the augmented quaternion vector

qa “ rqTqiTqjTqkT sT P H4Nˆ1, and the relation with its real vector counterpart qr “

rqTqTaqTb qTc qTd s
T P R4N is defined as [9]:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

q

qi

qj

qk

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

loomoon

qa

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

IN iIN jIN kIN

IN iIN ´jIN ´kIN

IN ´iIN jIN ´kIN

IN ´iIN ´jIN kIN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

looooooooooooooooomooooooooooooooooon

A

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

qa

qb

qc

qd

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

loomoon

qr

(3.9)

where IN is the N ˆN identity matrix, q “ rq1, q2, ....qN s
T P HNˆ1 and similarly same

description for qi,qj,qk P HNˆ1, and qa,qb,qc,qd P R
Nˆ1. The 4N ˆ 4N matrix A

provides an invertible mapping between the augmented quaternion value signal qa and

the quadrivariate composite real valued vector qr as:
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qa “ Aqr

qr “ A´1qa “
1

4
AHqa.

(3.10)

3.2 GHR Calculus

In this section we briefly highlight the HR and GHR calculus properties. More details

can be found in [10] [27]. Traditional quaternion pseudoderivatives use component-

wise real derivatives of quaternion components. However, traditional method is not

suitable to apply on optimization algorithms due to the complexity of the calculation.

To overcome this issue, a recent and more elegant approach such as HR calculus and

its generalized form GHR calculus are used to derive the gradient and Hessian of cost

functions for quaternion optimization algorithms. The HR derivatives are given by

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Bf
Bqr

Bf
Bqi

Bf
Bqj

Bf
Bqk

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“
1

4

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 ´i ´j ´k

1 ´i j k

1 i ´j ´k

1 i j ´k

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Bf
Bqr

Bf
Bqi

Bf
Bqj

Bf
Bqk

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(3.11)
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and the conjugate HR derivatives (HR* derivatives)

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Bf
Bq˚

Bf
Bqi˚

Bf
Bqj˚

Bf
Bqk˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“
1

4

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 i j k

1 i ´j ´k

1 ´i j ´k

1 ´i ´j k

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Bf
Bqr

Bf
Bqi

Bf
Bqj

Bf
Bqk

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (3.12)

The traditional product and chain rules are not valid for the HR calculus and the GHR

calculus has solved the issue.

Definition 3.2.1. (GHR Derivatives): Let f : HÑ H. Then, the left GHR derivatives

of fpqq with respect to qµ and qµ˚ (µ ‰ 0 and µ P H ) are defined as [11]

Bf

Bqµ
“

1

4

ˆ

Bf
Bqr
´

Bf
Bqi
iµ ´ Bf

Bqj
jµ ´ Bf

Bqk
kµ
˙

P H (3.13)

Bf

Bqµ˚
“

1

4

ˆ

Bf
Bqr
`

Bf
Bqi
iµ ` Bf

Bqj
jµ ` Bf

Bqk
kµ
˙

P H (3.14)

while the right GHR derivatives are defined as [11]

Brf

Bqµ
“

1

4

ˆ

Bf
Bqr
´ iµ Bf

Bqi
´ jµ Bf

Bqj
´ kµ Bf

Bqk

˙

P H (3.15)

Brf

Bqµ˚
“

1

4

ˆ

Bf
Bqr
` iµ Bf

Bqi
` jµ Bf

Bqj
` kµ Bf

Bqk

˙

P H (3.16)

where Bf
Bqr

, Bf
Bqi

, Bf
Bqj

and Bf
Bqk
P H are the partial derivatives of f with respect to qr , qi,

qj, and qk , respectively, where t1, iµ, jµ, kµu is orthogonal basis of H.
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Some properties of the left GHR derivatives are [11]

First Product Rule:
Bpfgq

Bqµ
“ f

Bg

Bqµ
`
Bf

Bqgµ
g, (3.17)

Second Product Rule:
Bpfgq

Bqµ˚
“ f

Bg

Bqµ˚
`

Bf

Bqgµ˚
g, (3.18)

First Chain Rule:
Bpfpgpqqqq

Bqµ
“

ÿ

vPt1,i,j,ku

Bf

Bgv
Bgv

Bqµ
, (3.19)

Second Chain Rule:
Bpfpgpqqqq

Bqµ˚
“

ÿ

vPt1,i,j,ku

Bf

Bgv˚
Bgv˚

Bqµ˚
, (3.20)

Rotation rule:

˜

Bf

Bqµ

¸v

“
Bf v

Bqvµ
,

˜

Bf

Bqµ˚

¸v

“
Bf v

Bqvµ˚
, (3.21)

Conjugate rule:

˜

Bf

Bqµ

¸˚

“
Brf

˚

Bqµ˚
,

˜

Bf

Bqµ˚

¸˚

“
Brf

˚

Bqµ
, (3.22)
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if f is real then:

˜

Bf

Bqµ

¸˚

“
Bf

Bqµ˚
,

˜

Bf

Bqµ˚

¸˚

“
Bf

Bqµ
. (3.23)

Example 3.2.1. Find the GHR derivatives of the functions

fpqq “ wqv ` λ, gpqq “ wq˚v

Solution: Using product rule and setting µ “ 1, we have

Bfpqq

Bq
“
Bwqv

Bq
“ wq

Bv

Bq
`
Bwq

Bqv
v “ w

Bq

Bqv
v

“ wp
1

4
q

ˆ

Bq

Bqr
´
Bq

Bqi
iv ´

Bq

Bqj
jv ´

Bq

Bqk
kv
˙

v

“ wp
1

4
q

ˆ

1´ iiv ´ jjv ´ kkv
˙

v

“ wp
1

4
q

ˆ

1´ iviv´1
´ jvjv´1

´ kvkv´1

˙

v

“ wp
1

4
q

ˆ

v ´ ivi´ jvj ´ kvk

˙

“ wp
1

4
q

ˆ

v ` vi ` vj ` vk
˙

“ p
1

4
qwRepvq.

(3.24)

In a similar way it can be solved that:
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Bgpqq

Bq˚
“
Bwqv

Bq˚
“ wq

Bv

Bq˚
`
Bwq

Bqv˚
v “ w

Bq

Bqv˚
v

“ wp
1

4
q

ˆ

1` iiv ` jjv ` kkv
˙

v

“ wp
1

4
q

ˆ

1` iviv´1
` jvjv´1

` kvkv´1

˙

v

“ wp
1

4
q

ˆ

v ` ivi` jvj ` kvk

˙

“ wp
1

4
q

ˆ

v ´ vi ´ vj ´ vk
˙

“ wp
´1

4
q

ˆ

´ v ` vi ` vj ` vk
˙

“ wp
´1

4
q2v˚

“
´1

2
wv˚.

(3.25)

Definition 3.2.2. (Quaternion Gradient): The two quaternion gradients of a function

f : HNˆ1 Ñ H are defined as [11]

∇qf fi

¨

˚

˝

Bf

Bq

˛

‹

‚

T

“

¨

˚

˝

Bf

Bq1

, ...,
Bf

BqN

˛

‹

‚

T

P HNˆ1 (3.26)

∇q˚f fi

¨

˚

˝

Bf

Bq˚

˛

‹

‚

T

“

¨

˚

˝

Bf

Bq˚1
, ...,

Bf

Bq˚N

˛

‹

‚

T

P HNˆ1 (3.27)

Definition 3.2.3. (Quaternion Jacobian Matrix): The quaternion Jacobian matrices

of f : HNˆ1 Ñ HMˆ1 are defined as [11]
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Bf

Bq
“

¨

˚

˚

˚

˚

˚

˚

˝

Bf1
Bq1

... Bf1
BqN

. . .

BfM
Bq1

... BfM
BqN

˛

‹

‹

‹

‹

‹

‹

‚

(3.28)

Bf

Bq˚
“

¨

˚

˚

˚

˚

˚

˚

˝

Bf1
Bq˚1

... Bf1
Bq˚N

. . .

BfM
Bq˚1

... BfM
Bq˚N

˛

‹

‹

‹

‹

‹

‹

‚

(3.29)

3.3 Optimization in Quaternion Field

To show the intuitive link between the real and quaternion vectors, consider a quaternion

vector q “ qa` iqb` jqc` kqd P H
Nˆ1, expressed by its real coordinate vectors qa, qa,

qa, and qa P R
Nˆ1. The augmented quaternion vector h P H4Nˆ1 and its relationship

with dual-quadrivariate real vector r P R4Nˆ1 is defined as [11]

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

q

qi

qj

qk

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

loomoon

h

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

IN iIN jIN kIN

IN iIN ´jIN ´kIN

IN ´iIN jIN ´kIN

IN ´iIN ´jIN kIN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

looooooooooooooooomooooooooooooooooon

J

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

qa

qb

qc

qd

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

loomoon

r

(3.30)

where IN is the N ˆN identity matrix, and J is the 4N ˆ 4N matrix. Multiplying both

sides of (3.30) by p1{4qJH and noting that p1{4qJHJ “ I4N , we have

r “ p1{4qJHh. (3.31)
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Since r is a real vector, it follows that:

Bf

Bh
“
Bf

Br

Br

Bh
“

1

4

Bf

Bh
JH ô

Bf

Br
“
Bf

Bh
J, P R1ˆ4N (3.32)

where Bf
Bh
P H1ˆ4N and Bf

Br
P R1ˆ4N . Since f and r are real valued, we have

∇rf fi

¨

˚

˝

Bf

Br

˛

‹

‚

T

“

¨

˚

˝

Bf

Br

˛

‹

‚

H

“

¨

˚

˝

Bf

Bh
J

˛

‹

‚

H

“ JH

¨

˚

˝

Bf

Bh

˛

‹

‚

H

“ JH

¨

˚

˝

Bf

Bh˚

˛

‹

‚

T

“ JH∇h˚f.

(3.33)

This shows that the real gradient ∇rf P R
4Nˆ1 and the augmented quaternion gradient

∇h˚f P H
4Nˆ1 are related by a simple invertible linear transformation JH .

Optimization algorithms such Gradient descent or steepest descent algorithms find a

local minimum of a function by taking iterative steps proportional to the negative of

the gradient of the function. From (3.30), a real scalar function fpqq : HNˆ1 Ñ R can

also be viewed as fprq : R4Nˆ1 Ñ R for which the quadrivariate real gradient descent

update rule is given by [11]
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∆r “ ´α∇rf, r P R4Nˆ1 (3.34)

where ∆r denotes a small increment in r and α P R` is the step size. Therefore

∆h “ J∆r “ ´αJ∇rf “ ´αJJH∇h˚f “ ´4α∇h˚f. (3.35)

Thus, this gives the quaternion gradient descent update rule in the form

∆q “ ´4α∇q˚f “ ´4α

¨

˚

˝

Bf

Bq˚

˛

‹

‚

T

“ ´4α

¨

˚

˝

Bf

Bq

˛

‹

‚

H

, f P R. (3.36)

3.4 Augmented Quaternion Statistics

The standard covariance matrix Cqq of a quaternion random vector q “ rq1, ..., qN s
T

can be calculated by Cqq “ ErqqHs and the real and imaginary parts of it is shown

in table 3.1 [9]. As shown in Table 3.1 the real and imaginary parts of Cqq are linear

functions of the real-valued covariance and cross-covariance matrices of the component

vectors qa,qb,qc and qd P R
Nˆ1 . The complementary covariance matrices, the i-

covariance Cqi , the j-covariance Cqj and the k-covariance Cqk will be used to augment

the information within the covariance and are defined as [9]:
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Cqi “ ErqqiHs

Cqj “ ErqqjHs

Cqk “ ErqqkHs

(3.37)

where qiH “ rqi˚1 , ..., q
i˚
N s

T , qjH “ rqj˚1 , ..., q
j˚
N s

T and qkH “ rqk˚1 , ..., qk˚N s
T . The details

about the real and imaginary parts of the complementary covariance matrices are shown

in table 3.1 and table 3.2. The complementary covariance matrices, the i-covariance

Cqi , the j-covariance Cqj and the k-covariance Cqk are i-Hermitian, j-Hermitian and

k-Hermitian respectively which is:

Cqi “ CiH
qi

Cqj “ CjH
qj

Cqk “ CkH
qk

(3.38)

Table 3.1: Covariance matrix (part 1)

Covariance matrix Cqq “ ErqqHs Cqi “ ErqqiHs

Rp.q Cqa ` Cqb ` Cqc ` Cqd Cqa ` Cqb ´ Cqc ´ Cqd

Iip.q Cqbqa ´ Cqaqb ` Cqdqc ´ Cqcqd Cqbqa ´ Cqaqb ` Cqcqd ´ Cqdqc

Ijp.q Cqcqa ´ Cqaqc ` Cqbqd ´ Cqdqb Cqaqc ` Cqcqa ´ Cqdqb ´ Cqbqd

Ikp.q Cqdqa ´ Cqaqd ` Cqcqb ´ Cqbqc Cqdqa ` Cqaqd ` Cqbqd ` Cqdqb

Following on these results, the quadrivariate real-valued correlation matrices of each

single component qa, qb, qc and qd of the quaternion random vector q can be expressed

in terms of the quaternion-valued covariance and the complementary covariance matrices

as follows [9]:
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Table 3.2: Covariance matrix (part 2)

Covariance matrix Cqq “ ErqqjHs Cqi “ ErqqkHs

Rp.q Cqa ´ Cqb ` Cqc ´ Cqd Cqa ´ Cqb ´ Cqc ` Cqd

Iip.q Cqbqa ` Cqaqb ` Cqdqc ` Cqcqd Cqbqa ` Cqaqb ´ Cqcqd ´ Cqdqc

Ijp.q Cqcqa ´ Cqaqc ` Cqdqb ´ Cqbqd Cqaqc ` Cqcqa ` Cqdqb ` Cqbqd

Ikp.q Cqdqa ` Cqaqd ´ Cqbqc ´ Cqcqb Cqdqa ´ Cqaqd ` Cqbqc ´ Cqcqb

Cqa “
1

4
RtCqq ` Cqi ` Cqj ` Cqku

Cqb “
1

4
RtCqq ` Cqi ´ Cqj ´ Cqku

Cqc “
1

4
RtCqq ´ Cqi ` Cqj ´ Cqku

Cqd “
1

4
RtCqq ´ Cqi ´ Cqj ` Cqku

Cqbqa “
1

4
IitCqq ` Cqi ` Cqj ` Cqku

Cqcqa “
1

4
IjtCqq ` Cqi ` Cqj ` Cqku

Cqdqa “
1

4
IktCqq ` Cqi ` Cqj ` Cqku

Cqcqa “
1

4
IktCqq ` Cqi ´ Cqj ´ Cqku

Cqdqb “
´1

4
IktCqq ` Cqi ´ Cqj ´ Cqku

(3.39)

Therefore, the augmented quaternion-valued covariance matrix of an augmented random
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vector qa “ rqTqiTqjTqkT sT P H4Nˆ1 can be calculated as follows:

Cqa “ EtqaqaHu “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Cqq Cqi Cqj Cqk

CH
qi Cqiqi Cqiqj Cqiqk

CH
qj Cqjqi Cqjqj Cqjqk

CH
qk

Cqkqi Cqkqj Cqkqk

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(3.40)

The corresponding real valued quadrivariate covariance matrix CR can be defined as [9]

CR “ EtqrqrT u “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Cqa Cqaqb Cqaqc Cqaqd

Cqbqa Cqb Cqbqc Cqbqd

Cqcqa Cqcqb Cqc Cqcqd

Cqdqa Cqdqb Cqdqc Cqd

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(3.41)

Based on the relationship between the augmented quaternion-valued vector qa and the

corresponding real valued composite vector qr, qr “ A´1qa “ 1
4
AHqa, the real valued

quadrivariate covariance matrix can be expressed in terms of the augmented quaternion

valued covariance matrix as:

CR “ EtqrqrT u

“ Et
1

4
AHqa

1

4
qaHAu

“
1

16
AHEtqaqaHuA

“
1

16
AHCqaA

(3.42)
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3.5 Quaternion Vector Spaces

3.5.1 The Quaternion Division Ring

The quaternion set H is a four-dimensional vector space over the real field R spanned

by the linearly independent basis t1, i, j, ku [12]. Therefore, any element q P H can be

written as a linear combination of basis as q “ a` ib` jc` kd, where a, b, c, d P R. For

any two quaternions q1 and q2, the sum and the scalar multiplication are defined in R4

as:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a1

b1

c1

d1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a2

b2

c2

d2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a1a2 ´ b1b2 ´ c1c2 ´ d1d2

a1b2 ´ b1a2 ´ c1d2 ´ d1c2

a1c2 ´ b1d2 ´ c1a2 ´ d1b2

a1d2 ´ b1c2 ´ c1b2 ´ d1a2.

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(3.43)

and for any scalar α P R, the scalar multiplication are defined as

αq “ α

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a

b

c

d

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

αa

αb

αc

αd

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(3.44)

Remark 1. The pair pH,`q is an Abelian group [12], for which the addition operation

is defined in (3.43) and the additive identity is 0 “ p0, 0, 0, 0q P H.

The quaternion multiplication or Hamilton product is a bilinear mapping
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HˆHÑ H, pp, qq Ñ pq defined by

pq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a1

b1

c1

d1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a2

b2

c2

d2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a1 ` a2

b1 ` b2

c1 ` c2

d1 ` d2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(3.45)

Remark 2. The quaternion product defined in (3.45) distributes over the sum.

ppq ` rq “ pq ` pr

pp` qqr “ pr ` qr

(3.46)

Remark 3. The pair pH, .q equipped with the identity element is a monoid under mul-

tiplication, while the inclusion of the multiplicative inverse makes pH\t0u, .q a group

[12].

Remark 4. SincepH,`q is an Abelian group (Remark 1), pH, .q is a group (Remark 3),

and the quaternion product distributes over the sum (Remark 2), the triplet pH,`, .q is

a non-commutative division ring [12].

3.5.2 Quaternion-Valued Hilbert Spaces

In order to construct general vector space over H, it requires division field. As shown

in previous section, the pH,`, .q lacks the commutativity property and it is a division

ring only. However, it is possible to construct a left-module. The left-module H over H

as vector space [12] in which the non-commutative scalar multiplication HˆHÑ H is

defined on the left-hand side by pq,xq Ñ qx.

Definition 3.5.1. (Quaternion Left Hilbert Space): A nonempty set H is called a
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quaternion left Hilbert space if it is a quaternion left module, and there exists a

quaternion-valued function ă.,.ą: HˆHÑ H with the following properties:

1. Conjugate symmetry: ă x,y ą“ă y,x ą˚

2. Linearity: ă px` qy, z ą“ p ă x, z ą `q ă y, z ą

3. Conjugate linearity: ă x, py ` qz ą“ă x,y ą p˚` ă y, z ą q˚

4. if ă x,x ąě 0 and ă x,x ą“ 0 then x “ 0

5. Completeness: If txnu
8
n“1 P H is a Cauchy sequence, then x “ limnÑ8 xn P H

3.6 Quaternion Reproducing Kernel Hilbert Spaces

Definition 3.6.1. (Quaternion Reproducing Kernel Hilbert Space): [12] Let X be an

arbitrary set and H a left quaternion Hilbert space of functions from X to H. We

say that H is a quaternion reproducing kernel Hilbert space (QRKHS) if the linear

evaluation map

Lx : H ÝÑ H

f ÞÝÑ fpxq

is bounded for @x P X.

3.6.1 Riesz Representation Theorem

Theorem 2. (Quaternion Riesz Representation Theorem): [12] For every bounded

linear function L defined over a quaternion left Hilbert space H, there exists a unique

element g P H such that Lpfq “ă f, g ą , @f P H.
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Corollary 2.1. (Reproducing Property): [12] For @f P H, there exists a unique element

Kx P H such that the evaluation map Lx “ fpxq can be expressed as Lx “ă f,Kx ą.

Since Kxp.q P H, it can be evaluated for any y P X. This allows us to define

K : X ˆX ÝÑ H

px,yq ÞÝÑ Kpx,yq “ Kxpyq

whereby the function K is referred to as the reproducing kernel of the QRKHS H. Its

existence and uniqueness properties are a direct consequence of the quaternion Riesz

representation theorem.

The following relationships are readily obtained by applying the reproducing property

on the functions Kx “ Kpx, .q P H and Ky “ Kpy, .q P H:

1. Kpx,yq “ă Kx, Ky ą“ă Ky, Kx ą
˚“ K˚py,xq

2. Kpx,xq “‖Kx‖ ě 0

3. Kx “ 0 ðñ fpxq “ă f,Kx ą“ 0, @f P H

3.6.2 Moore-Aronszajn Theorem

Definition 3.6.2. (Positive Definiteness - Integral Form): [12] A Hermitian kernel

Kpx,yq “ K˚py,xq is positive definite on the set X iff for any integrable function

θ : X ˆX ÝÑ H, θ ‰ 0 it obeys

ż

X

ż

X

θ˚pxqKpx,yqθpyqdxdy ą 0.
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Definition 3.6.3. (Positive Definiteness - Matrix Form): [12] A Hermitian kernel

Kpx,yq “ K˚py,xq is positive definite on the set X iff the kernel matrix Kij “ Kpxi,xjq

is positive definite for any choice of the set Sx “ tx1, ...,xmu Ă X,m P N.

Theorem 3. (Quaternion Moore-Aronszajn Theorem):[12] For any positive definite

quaternion-valued kernel K defined over a set X, there exists a unique (up to an iso-

morphism) left quaternion Hilbert space of functions H for which K is a reproducing

kernel.

3.6.3 Quaternion-Valued Gaussian Kernel

The Gaussian kernel can be extended to quarenion domain by using the quaternion

norm in its argument. The real-valued Gaussian kernel K in quaternion domain can be

defined as [12]

Kpx,yq “ exp

ˆ

´ Appx´ yqHpx´ yq

˙

where A ą 0 is the kernel parameter. Also, we can show that, based on Definition 3.6.3,

the K is positive definite in the quaternion domain.

First, for any arbitrary non-zero vector x P Hn, the quadratic form xHKx is real.

2ItxHKxu “ txHKxu ´ txHKxuH “ 0.
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By expanding the vector x “ xr ` ixi ` jxj ` kxk within RtxHKxu using its real and

imaginary parts, we can write

RtxHKxu “ txTr Kxru ` tx
T
i Kxiu ` tx

T
j Kxju ` tx

T
kKxku.

Since K is positive definite in the real domain, the arbitrary components xr,xi,xj,xk are

real-valued, and the quadratic form txHKxu is positive. Therefore, we have txHKxu “

RtxHKxu ą 0, which shows that the real Gaussian kernel K P H is positive definite.
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Part II

New Algorithms
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Chapter 4

Quaternion Kernel Minimum Error
Entropy Adaptive Filter

In this chapter, we describe and develop quaternion kernel adaptive filter based on

information theoretic learning (ITL) cost function referred to quaternion kernel mini-

mum error entropy (QKMEE) algorithm. We use the generalized Hamilton-real calculus

(GHR) to derive the gradient of the optimization problem in quaternion domain [10].

The GHR calculus simplified product and chain rules and allows us to calculate the

quaternion based gradient and Hessian of cost function efficiently, and use them for the

learning algorithms [11].

The quaternion reproducing kernel Hilbert spaces and its uniqueness is established in

[12]. These provide a mathematical foundation to develop the quaternion value kernel

learning algorithms. The reproducing property of the feature space replace the inner

product of feature samples with kernel evaluation. The existence and uniqueness of

quaternion reproducing kernel Hilbert space (QRKHS) provide a theoretical basis for

kernel algorithms operating in quaternion feature spaces.

The new algorithm minimizes the Renyi’s entropy of the errors of the adaptive filter in

quaternion domain.

Definition 4.0.1. (Renyi’s Entropy for Quaternion data): Renyi’s entropy [33] such as
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the order–α Renyi’s entropy for quaternion data can be defined as

Hαpeq “
1

1´ α
log

ż 8

´8

pαe pεqdε (4.1)

where α P R`zt1u and pe is probability distribution function of quaternion random

variable e.

We can define order–α information potential Vα as

Vαpeq “

ż 8

´8

pαe pεqdε. (4.2)

In practice the entropy function is not accessible since it is a function of the PDF of

relative random variable e. The entropy can be estimated by using some specific method

such as the Parzen window which is a good estimation of the order–2 Renyi’s entropy

function.

Definition 4.0.2. (Parzen Window for Quaternion data): For a set of N statistically in-

dependent random samples teiu
N
i“1 of quaternion random variable e, the Parzen window

computes the estimate of the probability distribution function pe as

p̂epεq “
1

N

N
ÿ

l“1

κσ{
?

2pε´ elq (4.3)

where κσ is Gaussian-based kernel for quaternion data defined as
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κσpX ´ Y q “
4

?
2πσ

expt
´1

2σ2
pXr ´ Yrq

2
` pXi ´ Yiq

2
`

pXj ´ Yjq
2
` pXk ´ Ykq

2
u

“
4

?
2πσ

expt
´1

2σ2
|X ´ Y |2u

and X and Y are quaternion numbers P H in forms of

X “ Xr ` iX i ´ jXj ´ kXk and Y “ Yr ` iY i ´ jY j ´ kY k.

More details of the quaternion kernel is provided in [25].

The information potential V peq can be estimated using Parzen window as

V̂ peq “
1

N2

N
ÿ

l1“1

N
ÿ

l2“1

κσpel1 ´ el2q. (4.4)

The global solution of maximization of the V peq is the same as global solution of V̂ peq

with the Parzen window estimation and the global solution is achieved when all related

errors are constant and the maximum value of V peq is shown by V p0q or equally V̂ p0q “

V̂ p0q “ 4?
2πσ

.

Minimizing the error entropy can be done by maximizing the error information potential

cost function Jnpeq in quaternion domain H which can be defined as

Jnpeq “
1

N2

N
ÿ

i,j“1

κσpepn´ iq ´ epn´ jqq. (4.5)

Based on (4.5) we develop The Quaternion Kernel Minimum Error Entropy Algorithm
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in next section.

4.1 Quaternion Kernel Minimum Error Entropy Al-

gorithm Derivation

For the quaternion kernel adaptive filter based on minimum entropy (QKMEE) with

quaternion data, the goal is to maximize the cost function Jnpeq (4.5) with respect to

free parameter wn as

max
@wnPH

Jnpeq

s.t. epnq “ d´ yn

yn “ă Φpunq,wn ą“ wH
n ϕn

(4.6)

where d is desired signal, un input vector and ϕn= Φpunq which Φp.q is the kernel map

to a quaternion RKHS [25] defined as

Φpuq “Φpur ` iui ` juj ` kukq

“ φpruTr uTi uTj qTk s
T
q ` i.φpruTr uTi uTj uTk s

T
q

` j.φpruTr uTi uTj uTk s
T
q ` k.φpruTr uTi uTj uTk s

T
q

where φ is the feature map of real kernel κ defined as

φpur, ui, uj, ukq “κp., pur, ui, uj, ukqq.

Maximizing the information potential cost function Jnpeq (4.5) can be done with uncon-
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strained optimization algorithm such as gradient ascent algorithm as

wn`1 “wn ` η∇w˚nJnpeq (4.7)

where η is adaptation step size.

To derive the gradient of cost function, we define functions f : HÑ H and gl,t : HÑ R

as

fpxq “ exppxq (4.8)

gl,tpwnq “
|́epn´ lq ´ epn´ tq|2

2σ2
(4.9)

where epn´ lq = dpn´ lq ´wH
n ϕn´l are a posteriori errors for all l : 1 ď l ď N .

To simplify the notation for function gl,t in our derivative for a given l and t, 1 ď lď N

and 1 ď t ď N , we define gpwnq “ gl,tpwnq “ ´
|epn´lq´epn´tq|2

2σ2 .

With the above notation the equation (9) can be written as

wn`1 “ wn ` µ

¨

˚

˝

N
ÿ

l“1

N
ÿ

t“1

B

„

fpgl,tpwnqq



Bwn

˛

‹

‚

H

(4.10)

where µ “ η 1
N2

4?
2πσ

.

For a given l and t, the partial derivative can be calculated with GHR chain rule as

B

„

fpgl,tpwnqq



Bwn

“

B

„

fpgpwnqq



Bwn

“
ÿ

vPt1,i,j,ku

Bf

Bgv
Bgv

Bwn

.

(4.11)
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Using HR derivative property and quaternion rotation, for @v P ti, j, ku we can show

that Bf
Bgv
“ 0 . Suppose v “ i then

Bf

Bgi
“

1

4

ˆ

Bf

Bgr
´ i
Bf

Bgi
` j

Bf

Bgj
` k

Bf

Bgk

˙

“
1

4

ˆ

Bexppgq

Bgr
´ i
Bexppgq

Bgi
` j

Bexppgq

Bgj
` k

Bexppgq

Bgk

˙

“
1

4

ˆ

exppgq ´ iiexppgq ` jjexppgq ` kkexppgq

˙

“
1

4

ˆ

exppgq ` exppgq ´ exppgq ´ exppgq

˙

“ 0

(4.12)

and if v “ 1 then

Bf

Bg
“

1

4

ˆ

Bf

Bgr
´ i
Bf

Bgi
´ j

Bf

Bgj
´ k

Bf

Bgk

˙

“ exppgq.

(4.13)

By substituting (4.12) and (4.13) in (4.11) we can simplify (4.11) as follow

ÿ

vPt1,i,j,ku

Bf

Bgv
Bgv

Bwn

“ exppgq
Bg

Bwn

. (4.14)
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To calculate the derivative of function g , we can expand it as follows

gpwnq “
|́epn´ lq ´ epn´ tq|2

2σ2

“
´1

2σ2
|epn´ lq ´ epn´ tq|2

“
´1

2σ2

„

pepn´ lq ´ epn´ tqq˚pepn´ lq ´ epn´ tqq



“
´1

2σ2

„

pe˚pn´ lq ´ e˚pn´ tqqpepn´ lq ´ epn´ tqq



“
´1

2σ2

„

|epn´ lq|2 ´|epn´ tq|2 ´ epn´ lqe˚pn´ tq

´ e˚pn´ lqepn´ tq



.

(4.15)

Therefore by substituting (4.15) in (4.14) we can find partial derivative of g using GHR

calculus as below

Bg

Bwn

“

ˆ

´1

2σ2

˙„

B|epn´ lq|2

Bwn

`
B|epn´ tq|2

Bwn

´
Bepn´ tqe˚pn´ lq

Bwn

´
Bepn´ lqe˚pn´ tq

Bwn



.

(4.16)

By substituting epn´ lq = dpn´ lq´wH
n ϕn´l in (4.16) and using GHR calculus, we can

compute each partial derivative of (4.16) as

B|epn´ lq|2

Bwn

“
Bepn´ lqe˚pn´ lq

Bwn

“ epn´ lq
Be˚pn´ lq

Bwn

`
Bepn´ lq

Bw
e˚pn´lq
n

e˚pn´ lq

(4.17)

where

Be˚pn´ lq

Bwn

“ ´ϕHn´l
Bwn

Bwn

“ ´ϕHn´l (4.18)
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and the second term of (4.17) can be calculated as

Bepn´ lq

Bw
e˚pn´lq
n

e˚pn´ lq “ ´
BwH

n ϕn´l

Bw
e˚pn´lq
n

e˚pn´ lq

“ ´wH
n

Bϕn´l

Bw
e˚pn´lq
n

e˚pn´ lq ´
BwH

n

Bw
ϕn´le˚pn´lq
n

ϕn´le
˚
pn´ lq

“
1

2

ˆ

ϕn´le
˚
pn´ lq

˙H

“
1

2
epn´ lqϕHn´l.

(4.19)

By substituting (4.18) and (4.19) in (4.17) we can obtain

B|epn´ lq|2

Bwn

“ ´
1

2
epn´ lqϕHn´l. (4.20)

Using the same method, the other terms of (4.16) can be calculated. By substituting

all partial derivatives , we can simplify (4.16) as below

Bg

Bwn

“

ˆ

´1

2σ2

˙

¨

˚

˝

´
1

2
epn´ lqϕHn´l `´

1

2
epn´ tqϕHn´t

`
1

2
epn´ lqϕHn´t `

1

2
epn´ tqϕHn´l

˛

‹

‚

“

ˆ

1

4σ2

˙„

epn´ lq ´ epn´ tq

„

ϕHn´l ´ ϕ
H
n´t



.

(4.21)
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Therefore by substituting (4.21) in (4.14) we can obtain

BJpnq

Bwn

“

N
ÿ

l“1

N
ÿ

t“1

B

„

fpgl,tpwnqq



Bwn

“

N
ÿ

l“1

N
ÿ

t“1

ÿ

vPt1,i,j,ku

Bf

Bgv
Bgv

Bwn

“

ˆ

1

4σ2

˙

ˆ

N
ÿ

l“1

N
ÿ

t“1

exppgl,tpwnqq

ˆ

„

epn´ lq ´ epn´ tq

„

ϕHn´l ´ ϕ
H
n´t



˛

‹

‚

.

(4.22)

Thus, the gradient of the cost function Jnpeq can be calculated based on the following

equation

∇w˚nJnpeq “

¨

˚

˝

BJpnq

Bwn

˛

‹

‚

H

“

ˆ

1

4σ2

˙

ˆ

»

—

–

N
ÿ

l“1

N
ÿ

t“1

exppgl,tpwnqq

ˆ

„

epn´ lq ´ epn´ tq

„

ϕHn´l ´ ϕ
H
n´t



fi

ffi

fl

H

.

(4.23)

By setting w0 “ 0 and replacing exp(g) with its kernel equivalent κσ we can obtain

filter output weight as
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wn “ ζ
n
ÿ

p“0

N
ÿ

l“1

N
ÿ

t“1

¨

˚

˝

„

κσ

ˆ

epp´ lq ´ epp´ tq

˙

ˆ

„

epp´ lq ´ epp´ tq

„

ϕHp´l ´ ϕ
H
p´t



˛

‹

‚

H (4.24)

where ζ “ µ
?

2π{16σ.

By substituting the weight update in the yn “ wH
n ϕn and using properties of Quaternion

Reproducing Kernel Hilbert Space (QRKHS) and the ’kernel trick’ to replace the inner

product of two vectors with quaternion kernel κ̄σ̄, we can simplify the equation in kernel

form as

yn “ ζ
n
ÿ

p“0

N
ÿ

l“1

N
ÿ

t“1

„

κσpepp´ lq ´ epp´ tqq



ˆ

„

epp´ lq ´ epp´ tq

„

κ̄σ̄pup´l,unq ´ κ̄σ̄pup´t,unq



.

(4.25)

Based on equation (4.25), the pseudo code for QKMEE could be summarized in Algo-

rithm 1 table.
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Algorithm 1 QKMEE Algorithm

Input: signal and desired tpui, dpiqqu
8
i“1 Ă H, y0 “ 0

Output: Estimate desired output ˆdpnq “ yn at time n, Residual epnq
1: Initialization The kernel parameters σ̄, σ using Silverman’s rule 1.06 ˆ
mintσY , R{1.34u ˆN1{5L

2: while pun, dpnqq, available do
3: {calculate filter output at iteration n}

yn “ ζ
n
ÿ

p“0

N
ÿ

l“1

N
ÿ

t“1

”

κσpepp´ lq ´ epp´ tqq
ı

ˆ

”

epp´ lq ´ epp´ tq
ı”

κ̄σ̄pup´l,unq ´ κ̄σ̄pup´t,unq

ı

(4.26)

4: epnq “ dpnq ´ yn {calculate error at iteration n}
5: n “ n` 1
6: end while

4.2 Simulation Results

4.2.1 Quaternion Nonlinear Channel Estimation

4.2.1.1 Symmetric Unimodal Density Noise

The Quat-KMEE (QKMEE) algorithm was simulated for a nonlinear channel with sym-

metric unimodal Gaussian noise. The channel consisted of the quaternion filter, i.e.,

zpnq “ g˚1upnq ` g
˚
2u

i
pnq ` g˚3u

j
pnq ` g˚4u

k
pnq

` h˚1upn´ 1q ` h˚2u
i
pn´ 1q ` h˚3u

j
pn´ 1q ` h˚4u

k
pn´ 1q

(4.27)

and nonlineraity, i.e.,

ypnq “ zpnq ` az2
pnq ` bz3

pnq ` vpnq (4.28)
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where vpnq is Symmetric unimodal density Gaussian noise described later. Coefficients

g1, ..., g4, h1, ..., h4, a, b, and noise vpnq are all quaternion valued.The coefficients used

were [23]

a “ 0.075` i0.35` j0.1´ k0.05,

b “ ´0.025´ i0.25´ j0.05` k0.03,

g1 “ ´0.40` i0.30` j0.15´ k0.45,

h1 “ 0.175´ i0.025` j0.1` k0.15,

g2 “ ´0.35´ i0.15´ j0.05` k0.20,

h2 “ 0.15´ i0.225` j0.125´ k0.075,

g3 “ ´0.10´ i0.40` j0.20´ k0.05,

h3 “ `0.025` i0.075´ j0.05´ k0.05,

g4 “ `0.35` i0.10´ j0.10´ k0.15,

h4 “ ´0.05´ i0.075´ j0.075` k0.175.

For the tests, the input upnq was formed using impulsive Gaussian mixture models to

form non-Gaussian signals as follows [23]:

pupiq “ p0.85Np1.0, 0.01q ` 0.15Np3.0, 0.01qq

`ip0.40Np0.5, 0.01q ` 0.60Np2.5, 0.01qq

`jp0.65Np3.5, 0.01q ` 0.35Np1.5, 0.01qq

`kp0.25Np2.0, 0.01q ` 0.75Np5.5, 0.01qq

(4.29)
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And noise vpnq was formed using symmetric unimodal Gaussian distributions as:

pvpiq “ pNp0.0, 0.01qq

`ipNp3.0, 0.01qq

`jpNp1.0, 0.01qq

`kpNp0.5, 0.01qq

(4.30)

where NpmN , σNq denotes the normal (Gaussian) PDF with mean mN and variance σN .

The kernel parameters σ̄ “ 3.14; σ “ 0.17 for the Parzen window with size N “ 10,

are estimated using Silverman’s rule 1.06 ˆmintσY , R{1.34u ˆ N1{5L [37] where σY is

the data standard deviation, L is data dimension, R is the interquartile and N is the

number of samples. The simulation results of Quat-KMEE algorithm for the nonlinear

channel are shown in Fig.4.1 and Fig.4.2.

Fig.4.1 shows the mean-squared-error (MSE) of the Quat-KMEE and Quat-KLMS algo-

rithms with step sizes ζ “ 2.5 and ζKLMS “ 1 respectively. Fig.4.2 shows the probability

density of error signal real and imaginary components of the Quat-KMEE and Quat-

KLMS algorithms. As shown in Fig.4.2 the error signal’s real and imaginary compo-

nents have symmetric unimodal Gaussian distributions. The results show improvement

of Quat-KMEE for modeling nonlinear channel when the input signal is non-Gaussian

compared with Quat-KLMS.
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Fig. 4.1: Mean Squared Error of Quat-KLMS and Quat-KMEE for non-Gaussian signal

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Error Value

0

2

4

6

8

10

12

14

16

18

20

P
ro

ba
bi

lit
y 

D
en

si
ty

Quat-KLMS
Quat-KMEE

(a) Real component.

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Error Value

0

2

4

6

8

10

12

P
ro

ba
bi

lit
y 

D
en

si
ty

Quat-KLMS
Quat-KMEE

(b) imaginary i-component.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Error Value

0

2

4

6

8

10

12

P
ro

ba
bi

lit
y 

D
en

si
ty

Quat-KLMS
Quat-KMEE

(c) imaginary j-component.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Error Value

0

2

4

6

8

10

12

14

P
ro

ba
bi

lit
y 

D
en

si
ty

Quat-KLMS
Quat-KMEE

(d) imaginary k-component.

Fig. 4.2: Probability Density of Error Signal using unimodal density Noise.
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4.2.2 Filtering of an Autoregressive Process

In this experiment, the model was described by a fourth-order quaternion autoregressive

process AR(4) for one step ahead prediction as in equation (4.30)

zpnq “1.4zpn´ 1q ´ 0.7zpn´ 2q ` 0.04zpn´ 3q

´ 0.05zpn´ 4q ` upnq

(4.31)

where input noise upnq was formed using impulsive Gaussian mixture models to form

non-Gaussian signal defined as (4.31). The state zpnq was observed through the non-

linearity described in (4.27), where vpnq is non-Gaussian noise as (4.32). The system

signal-to-noise ration was set to SNR “ 0.1dB.

pupiq “ p0.85Np1.0, 0.01q ` 0.15Np3.0, 0.01qq

`ip0.40Np0.5, 0.01q ` 0.60Np2.5, 0.01qq

`jp0.65Np3.5, 0.01q ` 0.35Np1.5, 0.01qq

`kp0.25Np2.0, 0.01q ` 0.75Np5.5, 0.01qq

(4.32)

pvpiq “ p0.90Np0.0, 0.01q ` 0.10Np1.0, 0.01qq

`ip0.70Np3.0, 0.01q ` 0.30Np0.5, 0.01qq

`jp0.45Np1.0, 0.01q ` 0.55Np4.5, 0.01qq

`kp0.80Np0.5, 0.01q ` 0.20Np1.5, 0.01qq

(4.33)

The parameters for the Quat-KMEE were ζ “ 10, σ̄ “ 6.5, and σ “ 0.35, and

for the Quat-KLMS ζ “ 0.9, σ̄ “ 6.5 were used. In simulation, the performance

of algorithms were measured based on the prediction gain which can be described as
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Rp “ 10 logpσ2
y{σ

2
eq where σ2

y and σ2
e are the power of input and output error respectively

[24]. Fig.4.3 shows the prediction gain of Quat-KMEE and Quat-KLMS algorithms. As

shown in Fig.4.3 the Quat-KMEE has better steady-state prediction gain (around 20

dB) compared to Quat-KLMS. Fig.4.4 shows the probability densities of the real and

imaginary parts of the error signal of the Quat-KMEE and Quat-KLMS filters. It is

clear from Fig.4.4 that entropy criterion generates more concentrated error probabil-

ity distribution PDF, whereas the variance (MSE) generates wider error probability

distribution PDF.
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Fig. 4.3: Prediction Gain of Quat-KLMS and Quat-KMEE for non-Gaussian signal and
noise of Filtering AR(4)
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Fig. 4.4: Probability Density of Error signal for non-Gaussian signal and noise of Fil-
tering AR(4)

4.3 Conclusion

We have shown the derivation and demonstration of convergence of a quaternion kernel

adaptive algorithm based on minimum error entropy. The algorithm is based on informa-

tion theoretic learning (ITL) cost function. The resulting algorithm is the Quat-KMEE

algorithm. A gradient is derived based on GHR calculus applied on quaternion RKHS.

Simulation results show the convergence of the mean-squared-error of the new algorithm

(QKMEE) versus the existing algorithm (QKLMS). The QKMEE algorithm performed

better with non-Gaussian signals and noise compared to QKLMS which is based on the

MSE criteria adaptive filter and has better convergence misadjustment. Also the sim-
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ulation results show that minimizing error entropy results in more concentrated error

probability distribution PDF compared to MSE criterion.
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Chapter 5

Quaternion Kernel Normalized
Minimum Error Entropy Adaptive
Algorithms

This chapter shows how to develop a kernel adaptive filter for quaternion data based on

normalized minimum error entropy cost function. The generalized Hamilton-real (GHR)

calculus which is applicable to Hilbert space for evaluating the cost function gradient is

applied to develop the quaternion kernel normalized minimum error entropy (QKNMEE)

algorithm. The new proposed algorithm enhanced QKMEE algorithm while the filter

update step-size selection will be independent of the input power and the kernel size.

In chapter 4, the QKMEE algorithm was developed [13]. One of the main drawbacks of

the minimum error entropy algorithm (MEE) is its strong dependency on the kernel size

σ, and on the input signal power. In order to avoid these problems Han et al [38] [39]

proposed the normalized minimum error entropy (NMEE) algorithm. Diniz et al [14]

address some of the issues from the previous works and derived a new version for the

linear-in-parameter NMEE algorithm which the solution is equivalent to the previous

works .

The quaternion normalized minimum error entropy (QNMEE) algorithm, minimizes

Renyis quadratic entropy of the error between the filter output and desired response.

This approach improved performance for biased or non-Gaussian signals compared to

the minimum mean square error criterion, while converges quickly with misadjustment.

60



This chapter is organized as follow: section 2 contains the algorithm derivation, section

3 convergence analysis, section 4 is simulation results and section 5 is conclusions.

5.1 The Quaternion Normalized Minimum Error En-

tropy Algorithm Derivation

In previous chapter (chapter 4), the QKMEE algorithm was developed. The goal was

to maximize the information potential of the error signal. The adaptive filter could be

expressed as yn = ă Φpunq ,wn ą, which also can be written as:

yn “ wH
n ϕn (5.1)

where ϕn= Φpunq is the kernel map to a QRKHS [25].

The normalized minimum error entropy algorithm proposed in [14] was based on the

real number domain R. We use the same method as real domain case to develop quater-

nion kernel normalized minimum error entropy algorithm (QKNMEE). The proposed

parameter to be estimated in quaternion domain may be described as follows:

min
@wn`1PH

‖wn`1 ´wn‖2
2

s.t. εpnq ´ εplq “ 0

@l P tn´N, ...n´ 1u

(5.2)

where H is a quaternion RKHS and εpn´ lq = dpn´ lq ´ wH
n`1ϕn´l are a posteriori

errors for @l : 1 ď l ď N .

The above constrained minimization problem (5.2) could be converted to the following
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unconstrained minimization problem with cost function Jpnq using quaternion Lagrange

multipliers λn´l P H for @l : 1 ď l ď N :

Jpnq “ pwn`1 ´wnq
H
pwn`1 ´wnq `

N
ÿ

l“1

λn´lpεpnq ´ εpn´ lqq. (5.3)

The minimum of Jpnq is reached when the gradient of Jpnq with respect to wn`1 is zero.

The gradient of cost function Jpnq can be calculated in quaternion domain using GHR

calculus as follow

∇w˚n`1
Jpnq “

¨

˚

˝

BJpnq

Bwn`1

˛

‹

‚

H

“

¨

˚

˝

Bpw ´wnq
Hpw ´wnq

Bwn`1

˛

‹

‚

H

`

¨

˚

˝

B
řN
l“1 λn´lpεpnq ´ εpn´ lqq

Bwn`1

˛

‹

‚

H

(5.4)

where

BJpnq

Bwn`1

“

“
BpwH

n`1wn`1q

Bwn`1

´
BpwH

n`1wnq

Bwn`1

´
BpwH

n wn`1q

Bwn`1

`
BpwH

n wnq

Bwn`1

`

N
ÿ

l“1

λn´l
Bpεpnq ´ εpn´ lqq

Bwn`1

.

(5.5)
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Using product rule of GHR calculus, the gradient can be calculated as:

BJpnq

Bwn`1

“

wH
n`1

Bwn`1

Bwn`1

`
BwH

n`1

Bw
wn`1

n`1

wn`1

´wH
n`1

Bwn

Bwn`1

´
BwH

n`1

Bwwn
n`1

wn

´wH
n

Bwn`1

Bwn`1

´
BwH

n

Bw
wn`1

n`1

wn`1

`wH
n

Bwn

Bwn`1

`
BwH

n

Bwwn
n

wn

`

N
ÿ

l“1

λn´lp
1

2
ϕHn ´

1

2
ϕHn´lq.

(5.6)

Using GHR calculus and derivatives properties the gradient can be simplified as:

BJpnq

Bwn`1

“
1

2
wH
n`1 ´

1

2
wH
n

`

N
ÿ

l“1

λn´lp
1

2
ϕHn ´

1

2
ϕHn´lq.

(5.7)

Therefore, by setting BJpnq
Bwn`1

“ 0 , the filter weight update can be calculated as :

wH
n`1 “wH

n ´

N
ÿ

l“1

λn´lpϕ
H
n ´ ϕ

H
n´lq

“ wH
n ´ ΛΨdpnq

H

(5.8)

where Ψdpnq “ rϕn ´ ϕn´1, ..., ϕn ´ ϕn´N s P H1ˆN which H is a quaternion RKHS and

Λ “ rλn´1, ..., λn´N s P H
1ˆN for N quaternion Lagrange multipliers.
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TheN Lagrange multipliers may be computed by theN constraint equations εpn` 1, nq “

εpn` 1, kq for @k P tn´N, ...n´ 1u using N previous posterior errors defined as εpn, kq

= dpkq ´wH
n ϕk. Therefore @k P tn´N, ...n´ 1u we have the following equation

dpnq ´wH
n`1ϕn “ dpkq ´wH

n`1ϕk. (5.9)

By substituting (5.8) in (5.9), we can obtain

dpnq ´

¨

˚

˝

wH
n ´

N
ÿ

l“1

λn´lpϕ
H
n ´ ϕ

H
n´lq

˛

‹

‚

ϕn

“ dpkq ´

¨

˚

˝

wH
n ´

N
ÿ

l“1

λn´lpϕ
H
n ´ ϕ

H
n´lq

˛

‹

‚

ϕk.

(5.10)

By using distributive property of quaternion RKHS, equation (5.10) can be expressed

as:

dpnq ´wH
n ϕn ´

N
ÿ

l“1

λn´lpϕ
H
n ´ ϕ

H
n´lqϕn

“ dpkq ´wH
n ϕk ´

N
ÿ

l“1

λn´lpϕ
H
n ´ ϕ

H
n´lqϕk.

(5.11)

By substituting the posterior errors and changing the order in equation (5.11), it can

be simplified to:
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epnq ´ εpn, kq “ ´
N
ÿ

l“1

λn´lpϕ
H
n ´ ϕ

H
n´lqpϕn ´ ϕkq

“ ´ΛΨdpnq
H
pϕn ´ ϕkq.

(5.12)

Now, we define εd “ repnq ´ εpn, n ´ 1q, ..., epnq ´ εpn, n ´ Nqs P H1ˆN , and rewrite N

distinct delta error equations in matrix form as:

εd “ ´ΛΨdpnq
HΨdpnq. (5.13)

Therefore the N quaternion Lagrange multipliers can be calculated as

Λ “ ´εd

ˆ

Ψdpnq
HΨdpnq

˙´1

(5.14)

where it is assumed that Ψdpnq
HΨdpnq P HNˆN is non-singular and H is QRKHS. By

substituting Λ in equation (5.8) we can simplify filter weight update recursion formula

as:

wH
n`1 “ wH

n ` εd

ˆ

Ψdpnq
HΨdpnq

˙´1

Ψdpnq
H . (5.15)

To simplify the weight update calculation and reduce the computational complexity due

to matrix inversion, we use matrix inversion lemma and simplify the filter weight update

equation (5.8) as:
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wH
n`1 “ wH

n ` εdΨdpnq
H

ˆ

ΨdpnqΨdpnq
H

˙´1

(5.16)

or in element-wise form as:

wH
n`1 “ wH

n `

¨

˚

˝

N
ÿ

l“1

„

epnq ´ εpn´ lq

„

ϕHn ´ ϕ
H
n´l



˛

‹

‚̂

¨

˚

˝

„

ϕn ´ ϕn´l

„

ϕHn ´ ϕ
H
n´l



` ...`

„

ϕn ´ ϕn´N

„

ϕHn ´ ϕ
H
n´N



˛

‹

‚

´1

.

(5.17)

Using quaternion left Hilbert space inner product properties we can simplify the equation

(5.17) as:

wH
n`1 “ wH

n `

¨

˚

˝

N
ÿ

l“1

„

epnq ´ εpn´ lq

„

ϕHn ´ ϕ
H
n´l



˛

‹

‚̂

¨

˚

˝

„

ϕHn ´ ϕ
H
n´l

„

ϕn ´ ϕn´l



` ...`

„

ϕHn ´ ϕ
H
n´N

„

ϕn ´ ϕn´N



˛

‹

‚

´1

.

(5.18)

Therefore by expanding the vectors multiplications we can overwrite equation (5.18) as

follow:
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wH
n`1 “ wH

n `

¨

˚

˝

N
ÿ

l“1

„

epnq ´ εpn´ lq

„

ϕHn ´ ϕ
H
n´l



˛

‹

‚̂

¨

˚

˝

ϕHn ϕn ´ ϕ
H
n ϕn´1 ´ ϕ

H
n´1ϕn ` ϕ

H
n´1ϕn´1 ` ...

ϕHn ϕn ´ ϕ
H
n ϕn´N ´ ϕ

H
n´Nϕn ` ϕ

H
n´Nϕn´N

˛

‹

‚

´1

.

(5.19)

Using properties of QRKHS and the kernel trick to replace the inner product of two

vectors with quaternion kernel κ̄σ̄, we can simplify the equation (5.19) in kernel form

as:

wH
n`1 “ wH

n `

¨

˚

˝

N
ÿ

l“1

„

epnq ´ εpn´ lq

„

ϕHn ´ ϕ
H
n´l



˛

‹

‚̂

¨

˚

˝

κ̄σ̄pun,unq ´ 2κ̄σ̄pun,un´1q ` κ̄σ̄pun´1,un´1q ` ...

κ̄σ̄pun,unq ´ 2κ̄σ̄pun,un´Nq ` κ̄σ̄pun´N,un´Nq...

˛

‹

‚

´1

.

(5.20)

Using quaternion-extended real Gaussian kernel [25], κ̄σ̄p., .q is real Gaussian kernel, the

inverse term in equation (5.20) is changed to real number and can be moved to right

or left side in quaternion multiplication. By setting wH
0 “ 0 and including a step size

factor η, the weight update recursion can be calculated as:
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wH
n “ η

n´1
ÿ

p“0

¨

˚

˝

N
ÿ

l“1

„

eppq ´ εpp´ lq

„

ϕHp ´ ϕ
H
p´l



˛

‹

‚̂

¨

˚

˝

N
ÿ

l“1

κ̄σ̄pup,upq ´ 2κ̄σ̄pup,up´lq ` κ̄σ̄pup´l,up´lq

˛

‹

‚

´1

.

(5.21)

By substituting the weight update in the yn “ wH
n ϕn and using properties of QRKHS

and the ’kernel trick’ to replace the inner product of two vectors with quaternion kernel

κ̄σ̄, equation (5.21) can be simplified in kernel form as:

yn “ η
n´1
ÿ

p“0

¨

˚

˝

N
ÿ

l“1

„

eppq ´ εpp´ lq

„

κ̄σ̄pup,unq ´ κ̄σ̄pup´l,unq



˛

‹

‚

ˆ

¨

˚

˝

N
ÿ

l“1

κ̄σ̄pup,upq ´ 2κ̄σ̄pup,up´lq ` κ̄σ̄pup´l,up´lq

˛

‹

‚

´1

.

(5.22)

5.2 Convergence Analysis

The goal of the convergence analysis is to find a range for learning step size η in equation

(5.21) which QKNMEE converges to optimal set of weights. To studying convergence

of QKMEE algorithm, we consider an approach using the energy conservation relation

[40]. The weight error at iteration n` 1 can be defined as:
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vn`1 “ w0
´wn`1

“ w0
´ pwn `∆wnq

“ vn ´∆wn.

(5.23)

For checking energy conservation, we initially find a priori and a posteriori errors:

ean “ vHn ϕn and epn “ vHn`1ϕn respectively, where

epn “ vHn`1ϕn

“ pvHn ´∆wH
n qϕn

“ ean ´∆wH
n ϕn

“ ean ´ η

ˆ

¨

˚

˝

N
ÿ

l“1

„

epnq ´ epn´ lq

„

ϕHn ϕn ´ ϕ
H
n´lϕn



˛

‹

‚

ˆ

¨

˚

˝

N
ÿ

l“1

κ̄σ̄pup,upq ´ 2κ̄σ̄pup,up´lq ` κ̄σ̄pup´l,up´lq

˛

‹

‚

´1

.

(5.24)

To simplify calculation, function γpnq can be defined as:

γpnq fi

¨

˚

˝

N
ÿ

l“1

„

epnq ´ epn´ lq

„

κ̄σ̄pun,unq ´ κ̄σ̄pun´l,unq



˛

‹

‚

ˆ

¨

˚

˝

N
ÿ

l“1

κ̄σ̄pup,upq ´ 2κ̄σ̄pup,up´lq ` κ̄σ̄pup´l,up´lq

˛

‹

‚

´1 (5.25)
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thus, the energy can be expressed as:

∥∥∥vHn`1ϕn

∥∥∥2

“

∥∥∥vHn ϕn ´ ηγpnq
∥∥∥2

“

∥∥∥vHn ϕn

∥∥∥2

` vHn ϕn

ˆ

´ ηγ˚pnq

˙

`

ˆ

´ ηγpnq

˙ˆ

vHn ϕn

˙˚

`‖´ηγpnq‖2

“

∥∥∥vHn ϕn

∥∥∥2

´ 2ηRe

ˆ

vHn ϕnγ
˚
pnq

˙

` η2‖γpnq‖2 .

(5.26)

Using Cauchy Schwarz inequality in Hilbert space and normalized kernel κ̄σ̄pun,unq “ 1,

we can expressed the following inequality as:

∥∥∥vHn`1ϕn

∥∥∥2

ď‖vn`1‖2‖ϕn‖2
“‖vn`1‖2 κ̄σ̄pun,unq (5.27)

therefore

∥∥∥vHn`1ϕn

∥∥∥2

ď‖vn`1‖2 (5.28)

and

∥∥∥vHn ϕn

∥∥∥2

ď‖vn‖2 . (5.29)

By subtracting (5.29) from (5.28), inequality can be written as:
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∥∥∥vHn`1ϕn

∥∥∥2

´

∥∥∥vHn ϕn

∥∥∥2

ď‖vn`1‖2
´‖vn‖2 . (5.30)

By taking expectation of both sides of (5.30) :

E
∥∥∥vHn`1ϕn

∥∥∥2

´ E
∥∥∥vHn ϕn

∥∥∥2

ď E‖vn`1‖2
´ E‖vn‖2 . (5.31)

For convergence, the energy of the weight error vector should gradually reduce per

iteration, thus

E

»

—

–

∥∥∥vHn`1ϕn

∥∥∥2

fi

ffi

fl

´ E

»

—

–

∥∥∥vHn ϕn

∥∥∥2

fi

ffi

fl

ă 0. (5.32)

Therefore, by taking expectation of both sides of equation (5.26) and using inequality

(5.32)

E

»

—

–

∥∥∥vHn`1ϕn

∥∥∥2

fi

ffi

fl

´ E

»

—

–

∥∥∥vHn ϕn

∥∥∥2

fi

ffi

fl

“ ´2ηE

»

—

–

Re

ˆ

vHn ϕnγ
˚
pnq

˙

fi

ffi

fl

` η2E

»

—

–

‖γpnq‖2

fi

ffi

fl

ă 0.

(5.33)
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Thus, in order the algorithm converges, the convergence step size η should be:

η ă 2

E

»

—

–

Re

ˆ

epnγ
˚pnq

˙

fi

ffi

fl

E

»

—

–

‖γpnq‖2

fi

ffi

fl

. (5.34)

5.3 Simulation Results

5.3.1 Channel Estimation Based on the Weiner Nonlinear Model

The Quat-KNMEE (QKNMEE) algorithm was simulated with Parzen Window lenght

N “ 10 for a nonlinear channel with non-Gaussian noise versus Quat-KLMS [23]. The

channel consisted of the quaternion filter, i.e.,

zpnq “ g˚1upnq ` g
˚
2u

ipnq ` g˚3u
jpnq ` g˚4u

kpnq

`h˚1upn´ 1q ` h˚2u
ipn´ 1q ` h˚3u

jpn´ 1q ` h˚4u
kpn´ 1q

and nonlineraity, i.e.,

ypnq “ zpnq ` az2pnq ` bz3pnq ` vpnq

where vpnq is added non-Gaussian noise described later. Coefficients g1, ..., g4, h1, ..., h4, a, b,

and noise vpnq are all quaternion valued.The coefficients used were

a “ 0.075` i0.35` j0.1´ k0.05,

b “ ´0.025´ i0.25´ j0.05` k0.03,

72



g1 “ ´0.40` i0.30` j0.15´ k0.45,

h1 “ 0.175´ i0.025` j0.1` k0.15,

g2 “ ´0.35´ i0.15´ j0.05` k0.20,

h2 “ 0.15´ i0.225` j0.125´ k0.075,

g3 “ ´0.10´ i0.40` j0.20´ k0.05,

h3 “ `0.025` i0.075´ j0.05´ k0.05,

g4 “ `0.35` i0.10´ j0.10´ k0.15,

h4 “ ´0.05´ i0.075´ j0.075` k0.175.

For the tests, both input upnq and noise vpnq were formed using impulsive Gaussian

mixture models to form non-Gaussian signals. A quaternion random variable with com-

ponents from different real Gaussian distributions was formed [23]. The probability

distributions used were

pupiq “ p0.85Np1.0, 0.01q ` 0.15Np3.0, 0.01qq

` ip0.40Np0.5, 0.01q ` 0.60Np2.5, 0.01qq

` jp0.65Np3.5, 0.01q ` 0.35Np1.5, 0.01qq

` kp0.25Np2.0, 0.01q ` 0.75Np5.5, 0.01qq

pvpiq “ p0.90Np0.0, 0.01q ` 0.10Np1.0, 0.01qq

` ip0.70Np3.0, 0.01q ` 0.30Np0.5, 0.01qq

` jp0.45Np1.0, 0.01q ` 0.55Np4.5, 0.01qq

` kp0.80Np0.5, 0.01q ` 0.20Np1.5, 0.01qq

where NpmN , σNq denotes the normal (Gaussian) PDF with mean mN and variance

σN . The Quat-KNMEE and Quat-KLMS simulation results for the nonlinear channel
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are shown in Fig.5.1 to Fig.5.2. The Fig.5.1 and Fig.5.2 are ensemble-averaged over 10

realizations.

To compare the performance of new proposed algorithm Quat-KNMEE with Quat-

KMEE and Quat-KLMS, the parameters of all three algorithms were chosen that all

three algorithms reached the same steady state mean square errors. For this reason the

parameters for the Quat-KNMEE were η “ 3, σ̄ “ 2.24 and for the Quat-KMEE were

η “ 0.4, σ̄ “ 2.24, and σ “ 0.736 and for the Quat-KLMS η “ 0.5, σ̄ “ 2.24 were used.

Fig.5.1 shows the performance comparisons when the input power was set to 5.1 dB and

measurement noise 12.5 dBm. As shown in Fig.5.1, The newly proposed algorithm Quat-

KNMEE converged with 1000 iterations where the Quat-KMEE converged with 2000

iterations. It is clear from Fig.5.1, that the newly proposed algorithm Quat-KNMEE

converges faster compared to the other two algorithms Quat-KMEE and Quat-KLMS.

To show that the Quat-KNMEE filter update step-size selection is independent of the

input power, the input power of second simulation was increased to 1.75dB while all step-

size of all three algorithms were kept the same as before. Fig.5.2 shows the input power

impacts on three algorithms when input power was set to 1.75 dB. As shown in Fig.5.2,

the convergence rate of the Quat-KNMEE didn’t change and converged within 1000

iterations while the convergence rate and stability of the other two algorithms Quat-

KMEE and Quat-KLMS changed and converged faster compared to the first simulation

using smaller input power.

Fig.5.3 shows the learning curves of the Quat-KNMEE filter with different convergence

step sizes. As shown in Fig.5.3 when the step size parameter η increases, the rate of

convergence of Quat-KNMEE algorithm is correspondingly increased. When the step

size is set to values greater than 5, the algorithm couldn’t converge and become unstable.
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Fig. 5.1: Learning curves for Quat-KNMEE, Quat-KMEE and Quat-KLMS and for
non-Gaussian signal with input power = -5.1 dB
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Fig. 5.2: Learning curves for Quat-KNMEE, Quat-KMEE and Quat-KLMS and for
non-Gaussian signal with input power = 1.75 dB
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Fig. 5.3: Learning curves for Quat-KNMEE with different convergence step size for
non-Gaussian signal with input power = -5.1 dB

5.4 Conclusion

We have shown the derivation and convergence analysis of a quaternion kernel adaptive

algorithm based on normalized minimum error entropy. The algorithm is based on

information theoretic learning (ITL) cost function. The resulting algorithm is the Quat-

KNMEE (QKNMEE) algorithm. We used GHR calculus to derive the gradient of cost

function in QRKHS. Simulation results show the convergence curve of the mean square

error of the new algorithm (QKNMEE) versus the existing algorithms Quat-KMEE

(QKMEE) and Quat-KLMS (QKLMS). The algorithm’s convergence is very fast and

outperforms the existing one QKMEE and QKLMS. The convergence analysis (5.34)

shows that convergence step-size is independent of kernel size. The simulation results

show that the convergence rate of the Quat-KNMEE is independent of the input power

and the kernel size. QKNMEE algorithm gives better performance for low signal to

noise ratio (SNR) environments.
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Chapter 6

Quaternion Kernel Minimum Error
Entropy Algorithm with Fiducial
point for Nonlinear Adaptive
Systems

In chapter 4, we developed quaternion kernel adaptive filter based on minimum error

entropy referred to as the quaternion KMEE (QKMEE) algorithm [13]. Since entropy

does not change with the mean of the distribution, the algorithm may converge to set

of optimal weights without having zero mean error [3]. To make the zero mean output

error, the output during testing session was biased with the mean of errors of training

session. However, for non-symmetric or heavy tails error PDF the estimation of error

mean is problematic.

In statistical signal processing and machine learning applications, one of the challeng-

ing problem is the estimation of unknown parameters or hidden functions from noisy

observations [41]. In Bayesian estimation framework the solution is by calculating the

posterior probability density functions PDF of the unknowns. Although the computa-

tion of statistical quantities related to these posterior distribution is analytically impos-

sible, sampling techniques such as Monte Carlo (MC) solve the problem [41]. To reduce

the computational complexity and variance of the corresponding estimators, some de-

terministic sampling techniques are applied to the algorithms. As a result, high-order

information about the distribution can be captured with a fixed and small number of
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points [42]. Techniques such as Herding [43] [44] can be used to sub-select a small

collection of samples from a much larger set of MC samples to minimize the squared

error between expected feature values evaluated at the true distribution and the em-

pirical distribution obtained from herding. Similarly, in Quasi-Monte Carlo (QMC)

methods [45], deterministic sequences of samples are selected based on the concept of

low-discrepancy to avoid all kind of randomness. Other techniques such as quadrature,

unscented transformations [41] are applied for deterministic approximations of the pos-

terior distribution. These techniques generate a set of deterministically selected samples

which are called sigma points, to do better estimation of moments of the posterior den-

sity function. These techniques are as extension of the standard Kalman filter and are

used in filtering applications as alternative to the particle filtering techniques based on

MC sampling and most of them are derived for the Gaussian distribution [41].

In our previous work we developed quaternion kernel adaptive filter based on minimum

error entropy referred to as the quaternion KMEE (QKMEE) algorithm [13]. Since

entropy does not change with the mean of the distribution, the algorithm may converge

to set of optimal weights without having zero mean error [3]. To make the zero mean

output error, the output during testing session was biased with the mean of errors of

training session. However, for non-symmetric or heavy tails error PDF the estimation

of error mean is problematic. Another way to locate the peak of the error probability

distribution function at the origin is incorporate this operation in the cost function

using fiducial points [18]. Fiducial points technique for estimating the error probability

distribution function does not require extra steps in estimation algorithms. Instead, it

integrates fixed points in cost function during the optimization process. However, QMC

or other sigma points techniques require using deterministic selection of samples.

In this chapter, we describe a quaternion kernel adaptive filter based on minimum error

entropy cost function with Fiducial point referred to as the quaternion minimum error
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entropy with fiducial point (QKMEEF) algorithm.

As described in chapter 4, the Renyi’s entropy [33] such as the order–α Renyi’s entropy

for quaternion data could be defined as:

Hαpeq “
1

1´ α
log

ż 8

´8

pαe pεqdε (6.1)

where α P R`zt1u and pe is probability distribution function of quaternion random

variable e.

We can define order–α information potential Vα as

Vαpeq “

ż 8

´8

pαe pεqdε. (6.2)

In practice the entropy function is not accessible since it is a function of the PDF of

relative random variable e. The entropy can be estimated by using some specific method

such as the Parzen window which is a good estimation of the order–2 Renyi’s entropy

function.

For a set of N statistically independent random samples teiu
N
i“1 of quaternion random

variable e,

the Parzen window computes the estimate of the probability distribution function pe

as

p̂epεq “
1

N

N
ÿ

l“1

κσ{
?

2pε´ elq (6.3)

where κσ is Gaussian-based kernel for quaternion data defined as
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κσpX ´ Y q “
4

?
2πσ

expt
´1

2σ2
pXr ´ Yrq

2
` pXi ´ Yiq

2
`

pXj ´ Yjq
2
` pXk ´ Ykq

2
u

“
4

?
2πσ

expt
´1

2σ2
|X ´ Y |2u

where X and Y are quaternion numbers P H in form of

X “ Xr ` iX i ´ jXj ´ kXk and Y “ Yr ` iY i ´ jY j ´ kY k.

More details of the quaternion kernel is provided in [25].

The information potential V peq can be estimated using Parzen window as

V̂ peq “
1

N2

N
ÿ

l1“1

N
ÿ

l2“1

κσpel1 ´ el2q. (6.4)

The global solution of maximization of the V̂ peq using Parzen window estimation is

achieved when all related errors are constant and the maximum value reaches to V̂ p0q “

4?
2πσ

. We will show later that the maximization solution is the global solution.

In supervised learning the goal is to make most of the errors equal to zero, we can

construct naturally an augmented criterion so that it minimizes the error entropy or

(maximizing the error information potential) with locating the peak of the error PDF

at the origin [27]. This can be done by maximizing the information potential cost

function V̂ peq in quaternion domain H respect to a fiducial point e0 “ 0 where teiu
n
i“0

are the errors produced by adaptive filter. We can construct an augmented cost function

Jnpeq by adding a fiducial point to the information potential function (6.4) as
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Jnpeq “
1

pN ` 1q2

N
ÿ

i,j“1

κσpepn´ iq ´ epn´ jqq

`
1

pN ` 1q2

„

2
N
ÿ

i“1

κσpepn´ iqq ` κσp0qq



.

(6.5)

Based on (6.5) we develop The Quaternion Kernel Minimum Error Entropy with Fidu-

cial Point Algorithm in next section.

6.1 The Quaternion Kernel Minimum Error Entropy

with Fiducial Point Algorithm Derivation

For the quaternion kernel adaptive filter based on minimum error entropy with fiducial

point cost function (QKMEEF), the goal is to maximize the cost function Jnpeq (6.5)

respect to free parameter wn as

max
@wnPH

Jnpeq

s.t. epnq “ d´ yn

yn “ă Φpunq,wn ą“ wH
n ϕn

(6.6)

where d is desired signal, un input signal, ϕn= Φpunq and Φp.q is the kernel map to

a quaternion RKHS [25]. Maximizing the information potential cost function Jnpeq

(6.5) can be done with unconstrained optimization algorithm such as gradient ascent

algorithm.
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wn`1 “wn ` η∇w˚nJnpeq

“wn ` µ

¨

˚

˝

BpJ1pnq ` J2pnqq

Bwn

˛

‹

‚

H
(6.7)

where

J1pnq “
N
ÿ

l,t“1

expt
|́epn´ lq ´ epn´ tq|2

2σ2
u (6.8)

and

J2pnq “
N
ÿ

l“1

expt
|́epn´ lq|2

2σ2
u (6.9)

where η is adaptation step size and µ “ η 1
pN`1q2

4?
2πσ

,

and epn´ lq = dpn´ lq ´wH
n ϕn´l are a posteriori errors for all l : 1 ď l ď N .

To derive the gradient of cost function we define functions f : HÑ H and gl,t : HÑ R

as

fpxq “ exppxq (6.10)

gl,tpwnq “
|́epn´ lq ´ epn´ tq|2

2σ2
. (6.11)

To simplify the notation for function gl,t in our derivative for a given l and t, 1 ď lď N

and 1 ď t ď N we define

gpwnq “ gl,tpwnq “ ´
|epn´lq´epn´tq|2

2σ2 .
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With the above notation the derivative BJ1pnq
Bwn

can be written as

BJ1pnq

Bwn

“

N
ÿ

l“1

N
ÿ

t“1

B

„

fpgl,tpwnqq



Bwn

. (6.12)

For a given l and t, the partial derivative can be calculated with GHR chain rule as

B

„

fpgl,tpwnqq



Bwn

“

B

„

fpgpwnqq



Bwn

“
ÿ

vPt1,i,j,ku

Bf

Bgv
Bgv

Bwn

.

(6.13)

Using HR derivative property and quaternion rotation, for @v P ti, j, ku we can show

that Bf
Bgv
“ 0. Suppose v “ i then

Bf

Bgi
“

1

4

ˆ

Bf

Bgr
´ i
Bf

Bgi
` j

Bf

Bgj
` k

Bf

Bgk

˙

“
1

4

ˆ

Bexppgq

Bgr
´ i
Bexppgq

Bgi
` j

Bexppgq

Bgj
` k

Bexppgq

Bgk

˙

“
1

4

ˆ

exppgq ´ iiexppgq ` jjexppgq ` kkexppgq

˙

“
1

4

ˆ

exppgq ` exppgq ´ exppgq ´ exppgq

˙

“ 0

(6.14)

and if v “ 1 then

Bf

Bg
“

1

4

ˆ

Bf

Bgr
´ i
Bf

Bgi
´ j

Bf

Bgj
´ k

Bf

Bgk

˙

“ exppgq.

(6.15)
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By substituting (6.14) and (6.15) in (6.13) we can simplify (6.13) as follows

ÿ

vPt1,i,j,ku

Bf

Bgv
Bgv

Bwn

“ exppgq
Bg

Bwn

. (6.16)

To calculate the derivative of function g, we can expand it as follows

gpwnq “
|́epn´ lq ´ epn´ tq|2

2σ2

“
´1

2σ2
|epn´ lq ´ epn´ tq|2

“
´1

2σ2

„

pepn´ lq ´ epn´ tqqpepn´ lq ´ epn´ tqq˚


“
´1

2σ2

„

pepn´ lq ´ epn´ tqqpe˚pn´ lq ´ e˚pn´ tqq



“
´1

2σ2

„

|epn´ lq|2 `|epn´ tq|2 ´ epn´ lqe˚pn´ tq

´ epn´ tqe˚pn´ lq



(6.17)

therefore by substituting (6.17) in (6.16) we can find partial derivative of g using GHR

calculus as shown below

Bg

Bwn

“

ˆ

´1

2σ2

˙„

B|epn´ lq|2

Bwn

`
B|epn´ tq|2

Bwn

´
Bepn´ lqe˚pn´ tq

Bwn

´
Bepn´ tqe˚pn´ lq

Bwn



.

(6.18)

By substituting epn´ lq = dpn´ lq´wH
n ϕn´l in (6.18) and using GHR calculus, we can
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compute each partial derivative of (6.18) as

B|epn´ lq|2

Bwn

“
Bepn´ lqe˚pn´ lq

Bwn

“ epn´ lq
Be˚pn´ lq

Bwn

`
Bepn´ lq

Bw
e˚pn´lq
n

e˚pn´ lq

(6.19)

where

Be˚pn´ lq

Bwn

“ ´ϕHn´l
Bwn

Bwn

“ ´ϕHn´l. (6.20)

The second term of (6.19) can be calculated as

Bepn´ lq

Bw
e˚pn´lq
n

e˚pn´ lq “ ´
BwH

n ϕn´l

Bw
e˚pn´lq
n

e˚pn´ lq

“ ´wH
n

Bϕn´l

Bw
e˚pn´lq
n

e˚pn´ lq ´
BwH

n

Bw
ϕn´le˚pn´lq
n

ϕn´le
˚
pn´ lq

“
1

2

ˆ

ϕn´le
˚
pn´ lq

˙H

“
1

2
epn´ lqϕHn´l.

(6.21)

By substituting (6.20) and (6.21) in (6.19) we can obtain

B|epn´ lq|2

Bwn

“ ´
1

2
epn´ lqϕHn´l. (6.22)

Using the same method, the other terms of (6.18) can be calculated. By substituting

all partial derivatives, we can simplify (6.18) as below
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Bg

Bwn

“

ˆ

´1

2σ2

˙

¨

˚

˝

´
1

2
epn´ lqϕHn´l ´

1

2
epn´ tqϕHn´t

`
1

2
epn´ lqϕHn´t `

1

2
epn´ tqϕHn´l

˛

‹

‚

“

ˆ

1

4σ2

˙„

epn´ lq ´ epn´ tq

„

ϕHn´l ´ ϕ
H
n´t



.

(6.23)

Therefore by substituting (6.23) in (6.16) we can obtain

BJ1pnq

Bwn

“

N
ÿ

l“1

N
ÿ

t“1

B

„

fpgl,tpwnqq



Bwn

“

N
ÿ

l“1

N
ÿ

t“1

ÿ

vPt1,i,j,ku

Bf

Bgv
Bgv

Bwn

“

ˆ

1

4σ2

˙

ˆ

N
ÿ

l“1

N
ÿ

t“1

exppgl,tpwnqq

ˆ

„

epn´ lq ´ epn´ tq

„

ϕHn´l ´ ϕ
H
n´t



.

(6.24)

We can use the same method to calculate the BJ2pnq
Bwn

as below

BJ2pnq

Bwn

“

ˆ

1

4σ2

˙

ˆ 2
N
ÿ

l“1

exppepn´ lqq

ˆ epn´ lqϕHn´l.

(6.25)

Therefore the gradient of the cost function Jpnq can be calculated based on the following
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equation

∇w˚nJnpeq “

¨

˚

˝

BJnpeq

Bwn

˛

‹

‚

H

“
1

4pN ` 1q2σ2
ˆ

»

—

–

N
ÿ

l“1

N
ÿ

t“1

κσ

ˆ

epn´ lq ´ epn´ tq

˙

ˆ

„

epn´ lq ´ epn´ tq

„

ϕHn´l ´ ϕ
H
n´t



` 2
N
ÿ

l“1

κσpepn´ lqqepn´ lqϕ
H
n´l

fi

ffi

fl

H

.

(6.26)

The gradient of the cost function Jnpeq will be zero when

∇w˚nJnpeq “ 0 ðñ tepn´ lq “ 0 : @l : 1 ď l ď Nu. (6.27)

The solution of (6.27) is the global solution of maximization problem (6.6). Otherwise

there should exist l : 1 ď l ď N which epn´ lq ‰ 0. By plugging in the non zero solution

in (19) the corresponding kernel term couldn’t reach to the maximum value and results

Jnpeq ă Jnp0q “ κσp0q which is smaller than the maximum value of the cost function.

By setting the initial weight w0 “ 0, the filter update weight at iteration n could be

calculated as
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wn “ ζ
n´1
ÿ

p“0

¨

˚

˝

N
ÿ

l“1

N
ÿ

t“1

„

κσ

ˆ

epp´ lq ´ epp´ tq

˙

ˆ

„

epp´ lq ´ epp´ tq

„

ϕHp´l ´ ϕ
H
p´t



` 2
N
ÿ

l“1

κσ

ˆ

epp´ lq

˙

epp´ lqϕHp´l

˛

‹

‚

H

(6.28)

where ζ “ µ
?

2π{16σ “ η 1
4pN`1q2σ2 .

The weight update equation (6.28) includes the products of errors with Hermitian trans-

pose of the input vectors ϕp´l in Reproducing Kernel Hilbert Space for @l : 1 ď l ď N

epp´ lqϕHp´l “

„

dpp´ lq ´wH
p´lϕp´l



ϕHp´l

“ dpp´ lqϕHp´l ´wH
p´lϕp´lϕ

H
p´l

“ dpp´ lqΦpup´lq
H
´wH

p´lΦpup´lqΦpup´lq
H .

(6.29)

The covariance term Φpup´lqΦpup´lq
H in (6.29) indicates that the augmented statistics

of quaternion input vector is inherent to the QKMEEF algorithm.

By substituting the weight update in the yn “ wH
n ϕn and using properties of Quaternion

Reproducing Kernel Hilbert Space (QRKHS) and the ’kernel trick’ to replace the inner

product of two vectors with quaternion kernel κ̄σ̄, we can simplify the equation in kernel

form as
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yn “ ζ
n´1
ÿ

p“0

¨

˚

˝

N
ÿ

l“1

N
ÿ

t“1

„

κσpepp´ lq ´ epp´ tqq



ˆ

„

epp´ lq ´ epp´ tq

„

κ̄σ̄pup´l,unq ´ κ̄σ̄pup´t,unq



` 2
N
ÿ

l“1

κσ

ˆ

epp´ lq

˙

epp´ lqκ̄σ̄pup´l,unq

˛

‹

‚

.

(6.30)

6.2 Convergence Analysis

The goal of the convergence analysis is to find a range for learning step size η in equation

(6.7) which the QKMEEF algorithm converges to optimal set of weights.

wn`1 “wn ` η∇w˚nJpnq. (6.31)

To study convergence of the QKMEEF algorithm, we consider an approach using the

energy conservation relation [40].

The weight error at iteration n` 1 can be defined as

vn`1 “ w0
´wn`1

“ w0
´ pwn `∆wnq

“ vn ´∆wn

“ vn ´ η∇w˚nJpnq

“ vn ´
η

4σ2pN ` 1q2

„

ΛpnqΨ`ΛdpnqΨdpnq
H

H

(6.32)
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where

Ψdpnq “ rΦdpn, 1q, ...,Φdpn,Nqs

Φdpn, kq “ rϕn´k ´ ϕn´1, ..., ϕn´k ´ ϕn´N s

Λdpnq “

„

Γdpn, 1q, ...,Γdpn,Nq



Γdpn, kq “

„

κσpepn´ kq ´ epn´ 1qqpepn´ kq ´ epn´ 1qq,

, ..., κσpepn´ kq ´ epn´Nqqpepn´ kq ´ epn´Nqq



and

Ψpnq “ rϕn´1, ..., ϕn´N s

Λpnq “

„

κσpepn´ 1qqpepn´ 1qq,

, ..., κσpepn´Nqqpepn´Nqq



.

Based on energy conservation relation, both side of equation (6.32) should have the

same energy, thus the energy can be expressed as:

‖vn`1‖2
F “∥∥∥∥∥vn ´

η

4σ2pN ` 1q2

„

ΛpnqΨ`ΛdpnqΨdpnq
H

H
∥∥∥∥∥

2

F

(6.33)

where ‖.‖2
F is the norm in Quaternion Reproducing Kernel Hilbert Space (QRKHS).
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By Expanding the equation (6.33) we can obtain

vHn`1vn`1 “
˜

vHn ´
η

4σ2pN ` 1q2

„

ΛpnqΨH
pnq `ΛdpnqΨd

H
pnq



¸

ˆ

˜

vn ´
η

4σ2pN ` 1q2

„

ΨpnqΛH
pnq `ΨdpnqΛd

H
pnq



¸

“ vHn vn

´ 2
η

4σ2pN ` 1q2
Re

˜

vHn ΨpnqΛH
pnq ` vHn ΨdpnqΛd

H
pnq

¸

`
η2

16σ4pN ` 1q4

˜

ΛpnqΨH
pnqΨpnqΛH

pnq

` 2ˆRe

ˆ

ΛpnqΨH
pnqΨdpnqΛd

H
pnq

`ΛdpnqΨd
H
pnqΨdpnqΛd

H
pnq

¸

.

(6.34)
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By taking expectation of both sides of equation (6.34) we obtain

E

»

—

–

‖vn`1‖2
F

fi

ffi

fl

“ E

»

—

–

‖vn‖2
F

fi

ffi

fl

´ 2
η

4σ2pN ` 1q2
E

«

Re

˜

vHn ΨpnqΛH
pnq`

vHn ΨdpnqΛd
H
pnq

¸

fi

ffi

fl

`
η2

16σ4pN ` 1q4
E

«˜

ΛpnqΨH
pnqΨpnqΛH

pnq

` 2ˆRe

ˆ

ΛpnqΨH
pnqΨdpnqΛd

H
pnq

`ΛdpnqΨd
H
pnqΨdpnqΛd

H
pnq

¸ff

.

(6.35)

For convergence, the energy of the weight error vector should gradually reduce per

iteration, thus

E

»

—

–

‖vn`1‖2
F

fi

ffi

fl

ă E

»

—

–

‖vn‖2
F

fi

ffi

fl

. (6.36)

Therefore the algorithm converged if the following inequality could be satisfied:
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´ 2
η

4σ2pN ` 1q2
E

«

Re

˜

vHn ΨpnqΛH
pnq`

vHn ΨdpnqΛd
H
pnq

¸

fi

ffi

fl

`
η2

16σ4pN ` 1q4
E

«˜

ΛpnqΨH
pnqΨpnqΛH

pnq

` 2ˆRe

ˆ

ΛpnqΨH
pnqΨdpnqΛd

H
pnq

`ΛdpnqΨd
H
pnqΨdpnqΛd

H
pnq

¸ff

ă 0

(6.37)

thus

0 ă η ă 8σ2
pN ` 1q2

ˆ E

«

Re

˜

vHn ΨpnqΛH
pnq ` vHn ΨdpnqΛd

H
pnq

¸

fi

ffi

fl

{

E

«˜

ΛpnqΨH
pnqΨpnqΛH

pnq

` 2ˆRe

ˆ

ΛpnqΨH
pnqΨdpnqΛd

H
pnq

`ΛdpnqΨd
H
pnqΨdpnqΛd

H
pnq

¸ff

.

(6.38)

After algorithm convergence, the Ψd converged to 0 therefore (6.38) could be simplified

as
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0 ă η ă 8σ2
pN ` 1q2

E

«

Re

˜

vHn ΨpnqΛHpnq

¸

fi

ffi

fl

E

«˜

ΛpnqΨHpnqΨpnqΛHpnq

¸ff .
(6.39)

The upper bound for η satisfies the condition for the algorithm convergence.

Using normalized kernel ϕHn ϕn “ κ̄σ̄pun,unq “ 1 the minimum of the upper bound of η

could be approximated as

min

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

8σ2
pN ` 1q2

E

«

Re

˜

vHn ΨpnqΛHpnq

¸

fi

ffi

fl

E

«˜

ΛpnqΨHpnqΨpnqΛHpnq
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6.3 Simulation Results

6.3.1 Quaternion Nonlinear Channel Estimation

6.3.1.1 Symmetric Unimodal Density Noise

The Quat-KMEEF (QKMEEF) algorithm was simulated for a nonlinear channel with

symmetric unimodal Gaussian noise. The channel consisted of the quaternion filter, i.e.,

zpnq “ g˚1upnq ` g
˚
2u

i
pnq ` g˚3u

j
pnq ` g˚4u

k
pnq

` h˚1upn´ 1q ` h˚2u
i
pn´ 1q ` h˚3u

j
pn´ 1q ` h˚4u

k
pn´ 1q

(6.41)

and nonlineraity, i.e.,

ypnq “ zpnq ` az2
pnq ` bz3

pnq ` vpnq (6.42)

where vpnq is Symmetric unimodal density Gaussian noise described later. Coefficients

g1, ..., g4, h1, ..., h4, a, b, and noise vpnq are all quaternion valued.The coefficients used

were [23]

a “ 0.075` i0.35` j0.1´ k0.05,

b “ ´0.025´ i0.25´ j0.05` k0.03,

g1 “ ´0.40` i0.30` j0.15´ k0.45,

h1 “ 0.175´ i0.025` j0.1` k0.15,

g2 “ ´0.35´ i0.15´ j0.05` k0.20,

h2 “ 0.15´ i0.225` j0.125´ k0.075,

g3 “ ´0.10´ i0.40` j0.20´ k0.05,

h3 “ `0.025` i0.075´ j0.05´ k0.05,
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g4 “ `0.35` i0.10´ j0.10´ k0.15,

h4 “ ´0.05´ i0.075´ j0.075` k0.175.

For the tests, the input upnq was formed using impulsive Gaussian mixture models to

form non-Gaussian signals as follows [23]:

pupiq “ p0.85Np1.0, 0.01q ` 0.15Np3.0, 0.01qq

`ip0.40Np0.5, 0.01q ` 0.60Np2.5, 0.01qq

`jp0.65Np3.5, 0.01q ` 0.35Np1.5, 0.01qq

`kp0.25Np2.0, 0.01q ` 0.75Np5.5, 0.01qq

(6.43)

And noise vpnq was formed using symmetric unimodal Gaussian distributions as:

pvpiq “ pNp0.0, 0.01qq

`ipNp3.0, 0.01qq

`jpNp1.0, 0.01qq

`kpNp0.5, 0.01qq

(6.44)

where NpmN , σNq denotes the normal (Gaussian) PDF with mean mN and variance σN .

The kernel parameters σ̄ “ 2.24; σ “ 0.55 for the Parzen window with size N “ 10,

are estimated using Silverman’s rule 1.06 ˆmintσY , R{1.34u ˆ N1{5L [40] where σY is

the data standard deviation, L is data dimension, R is the interquartile and N is the

number of samples. The simulation results of Quat-KMEEF algorithm for the nonlinear

channel are shown in Fig.1 to Fig.4. The theoretical upper bound of adaptation step

size could be approximated by η ă 10 using (6.40).

Fig.6.1 and Fig.6.2 show the convergence of the information potential (IP) and error

variance (MSE) of the Quat-KMEEF algorithm with different convergence step η re-
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spectively. Fig.6.3 shows the probability density of error signal real and imaginary

components of the Quat-KMEEF algorithm with step size η “ 0.45 and η “ 1. As

shown in Fig.6.3 the error signal real and imaginary components have symmetric uni-

modal Gaussian distributions. Based on [25], for appropriate subclasses of unimodal

distributions, the variance of error signal (MSE) can be bounded in terms of the en-

tropy power as ceHpeq where Hpeq is the error entropy and c is a positive constant.

Therefore if error entropy Hpeq Ñ ´8 (or information potential IP pnq Ñ `8) the

variance of error signal (MSE) can reach to zero. As shown in Fig.6.1 and Fig.6.2, when

the algorithm information potentials (IP ) converged the corresponding error variances

(MSE) also converged. Fig.6.4 shows the impact of signal to noise ratio (SNR) on con-

vergence misadjustment with step size η “ 1. As shown in Fig.6.4 by increasing the

SNR the convergence misadjustment degrades.
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Fig. 6.1: IP using Symmetric Unimodal Density Noise.
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Fig. 6.2: Mean Square Errors vs. adaptation step size using Symmetric Unimodal
Density Noise.
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Fig. 6.3: Probability Density of Error Signal using Symmetric Unimodal Density Noise.
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Fig. 6.4: Mean Square Errors vs. SNR using Symmetric Unimodal Density Noise

6.3.1.2 Bi-Modal Density Noise

In this experiment we used same test bench as previous section but instead of using

symmetric unimodal density Gaussian Noise, we applied Bi-modal density or Gaussian

mixture distribution noise as bellow [11]:

pvpiq “ p0.90Np0.0, 0.01q ` 0.10Np1.0, 0.01qq

`ip0.70Np3.0, 0.01q ` 0.30Np0.5, 0.01qq

`jp0.45Np1.0, 0.01q ` 0.55Np4.5, 0.01qq

`kp0.80Np0.5, 0.01q ` 0.20Np1.5, 0.01qq

(6.45)

Fig.6.7 shows the algorithm adaptation error when algorithm converged. As shown

in Fig.6.7, the algorithm error signal density is not unimodal. Therefore even after

algorithm converged by minimizing the error entropy (or maximizing information po-

tential IP ), it does not guarantee that error variance (MSE) can converge to zero

due to bi-modal distribution nature of error signal [46]. As shown in Fig.6.5 and

Fig.6.6 when algorithm converges to maximum IP “ 2.1 with (η “ 0.45, 1), the
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variance of error (MSE) reached to -10 dB. Although the information potential of

bi-modal case pIP “ 2.1,MSE “ ´10dBq is slightly smaller than unimodal case

pIP “ 2.9,MSE “ ´25dBq, it penalized the error variance MSE by +15 dB.
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Fig. 6.5: IP using Bi-modal density Noise.
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Fig. 6.6: Mean Square Errors vs. adaptation step size using Bi-modal density Noise.
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Fig. 6.7: Probability Density of Error Signal using Bi-modal density Noise.
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Fig. 6.8: Mean Square Errors vs. SNR using Bi-modal density Noise.
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6.3.2 Four Dimensional Saito Chaotic Circuit

In this experiment we predict the 4 dimensional Saito chaotic circuit time series with

one-step-ahead prediction. The process is given by

»

—

—

–

Bx1
Bτ

By1
Bτ

fi

ffi

ffi

fl

“

»

—

—

–

´1 1

´α1 ´α1β1

fi

ffi

ffi

fl

»

—

—

–

x1 ´ γρ1hpzq

y1 ´ γ
ρ1
β1
hpzq

fi

ffi

ffi

fl

(6.46)

»

—

—

–

Bx2
Bτ

By2
Bτ

fi

ffi

ffi

fl

“

»

—

—

–

´1 1

´α2 ´α2β2

fi

ffi

ffi

fl

»

—

—

–

x2 ´ γρ2hpzq

y2 ´ γ
ρ2
β2
hpzq

fi

ffi

ffi

fl

(6.47)

where hpzq is the normalized hysteresis value given by

hpzq “

$

’

’

&

’

’

%

1 if z ě 1

´1 if z ď ´1

(6.48)

The parameter z, ρ1 and ρ2 are given as z “ x1` x2, ρ1 “ β1{1´ β1 and ρ2 “ β2{1´ β2

where α1 “ 7.5, α2 “ 15, β1 “ 0.16, β2 “ 0.097 and γ “ 1.3 [24].

The parameters for the Quat-KMEEF were η “ 80, σ̄ “ 0.07, and σ “ 2.5, and for the

Quat-KLMS η “ 0.7, σ̄ “ 0.07 were used. Fig.6.9 shows the one-step prediction using

Quat-KMEEF, Quat-KLMS and quadruple real-valued KMEEF algorithms. Fig.6.10 to

Fig.6.13 show the dynamic transition region between iteration 2200 to 2500 of Fig.6.9

for real and imaginary components. As shown in Fig.6.10 to Fig.6.13 the Quat-KMEEF

can predict and track the heavy dynamic transitions of the actual signal much closer

than the Quat-KLMS and quadruple real-valued KMEEF.
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Fig. 6.9: Four Dimensional Saito Chaotic Circuit Time Series Iteration 0 to 5000.
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Fig. 6.10: Real component of Four Dimensional Saito Chaotic Circuit Time Series zoom
in Iteration 2200 to 2500.
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Fig. 6.11: Imaginary i-component of Four Dimensional Saito Chaotic Circuit Time Series
zoom in Iteration 2200 to 2500.
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Fig. 6.12: Imaginary j-component of Four Dimensional Saito Chaotic Circuit Time Series
zoom in Iteration 2200 to 2500.
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Fig. 6.13: Imaginary k-component of Four Dimensional Saito Chaotic Circuit Time
Series zoom in Iteration 2200 to 2500.

6.3.3 Stock Market Prediction

In this experiment four stocks fused into quaternionic model which are XLNX, INTC,

NVDA and AMD. The stock market prices obtained from ”https://finance.yahoo.com”

under Quotes ”Historical Data” tabs for the period of Dec 9, 2012 to Dec9, 2018 with

Daily frequency. We used one step ahead prediction model to predict the ”High” price

of each index at each trading day. To form a quaternion input, the four stocks are fused

in a quaternion form as q “ XLNX ` iINTC` jNV DA`kAMD. Fig.6.14 shows the

simulation results of one step ahead prediction using Quat-KMEEF, Quat-KLMS and

quadruple KMEEF. The parameters for the Quat-KMEEF were η “ 150, σ̄ “ 223, and

σ “ 54.7, for the quadruple real-valued KMEEF were η “ 37.5, σ̄ “ 223, and σ “ 54.7

and for the Quat-KLMS η “ 0.7, σ̄ “ 223 were used. To visualize each algorithm

prediction, we plot the trading days from 1000 to 1200. The zoom area could be any

arbitrary interval. Fig.6.15 to Fig.6.18 show XLNX, INTC, NVDA, AMD stocks ”High”

respectively. As shown in Fig.6.15 to Fig.6.18, the Quat-KMEEF follows the dynamic of

the market (rise or decline of stock) much better than the other two algorithms especially
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during the high fluctuations times. The prediction gains in (dB) of all algorithms are

shown in Table 6.1. The prediction gain is defined as Rp “ 10 logpσ2
y{σ

2
eq where σ2

y and

σ2
e are the estimated variances of the input and the error respectively. The prediction

gain of Quat-KMEEF dominates the other two algorithms Quat-KLMS and quadruple

KMEEF. Therefore the Quat-KMEEF algorithm performs better if there are coupling

or correlation within the components of quaternion 4-Dimensional input versus the

quadruple real-valued KMEEF algorithm.

0 500 1000 1500
Trading days, n

0

10

20

30

40

50

60

70

80

X
LN

X

signal
Quat-KLMS
Quat-KMEEF
KMEEF

(a) XLNX.
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(c) NVDA.
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Fig. 6.14: Stocks ”High” Trading days Dec9 2012 to Dec9 2018.
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Fig. 6.15: XLNX ”High” Trading days 1000 to 1200
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Fig. 6.16: INTC ”High” Trading days 1000 to 1200
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Fig. 6.17: NVDA ”High” Trading days 1000 to 1200
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Fig. 6.18: AMD ”High” Trading days 1000 to 1200

Table 6.1: Prediction Gain (dB)

Quat-KMEEF KMEEF Quat-KLMS

XLNX 19.32 16.52 17.02
INTC 20.79 18.06 15.9
NVDA 30.44 25.88 29.52
AMD 27.05 23.75 10.09
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6.4 Conclusion

We have shown the derivation and convergence analysis of a quaternion kernel adap-

tive algorithm (Quat-KMEEF) based on minimum error entropy with fiducial point

[17]. The algorithm is based on information theoretic learning (ITL) cost function.

The gradient is derived based on quaternion RKHS using GHR calculus. Algorithm

using minimum error entropy may converge to set of optimal weights without having

zero mean error. Traditionally, to make the mean of output error equal to zero, the

output during testing session was biased with the mean of errors of training session.

However, for non-symmetric or heavy tails error PDF the estimation of error mean

is problematic. Using augmented maximum information potential cost function with

fiducial point enable online learning without biasing the output during testing session.

Simulation results are used to show the behavior of the new algorithm (QKMEEF)

when signal is non-Gaussian in presence of unimodal noise versus bi-modal noise distri-

butions. It shows that in case of unimodal noise distribution, minimizing error entropy

(maximizing information potential) results much lower error variance (MSE) versus the

bi-modal case, which confirms the theory that in unimodal Gaussian distribution case

the MSE could be bounded in terms of the entropy power. Simulation results show that

the Quat-KMEEF can track and predict the 4-Dimensional non stationary signals where

there are correlations between components better than quadruple real-valued KMEEF

and Quat-KLMS algorithms.
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Chapter 7

Quaternion Stochastic Information
Gradient Algorithm for Nonlinear
Adaptive Systems

In this chapter, we develop a kernel adaptive filter for quaternion data, using stochastic

information gradient (SIG) cost function based on the information theoretic learning

(ITL) approach. The new algorithm (QKSIG) is useful for quaternion-based kernel

applications of nonlinear filtering. Adaptive filtering in quaterion domain intrinsically

incorporates component-wise real valued cross-correlation or the coupling within the di-

mensions of the quaternion input. We apply generalized Hamilton-real (GHR) calculus

that is applicable to quaternion Hilbert space for evaluating the cost function gradi-

ent. The QKSIG algorithm minimizes Shannon’s entropy of the error between the filter

output and desired response and minimizes the divergence between the joint densities

of input-desired and input-output pairs. The SIG technique reduces the computational

complexity of the error entropy estimation. Here, ITL with SIG approach is applied to

quaternion adaptive filtering for three different reasons. First, it reduces the algorithm

computational complexity compared to our previous work quaternion kernel minimum

error entropy algorithm (QKMEE). Second, it improves the filtering performance by con-

sidering the coupling within the dimensions of the quaternion input. Third, it performs

better in biased or non-Gaussian signal and noise environments due to ITL approach.

We present convergence analysis and steady-state performance analysis results of the

new algorithm (QKSIG). Simulation results are used to show the behavior of the new
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algorithm QKSIG in quaternion non-Gaussian signal and noise environments compared

to the existing ones such as quadruple real-valued kernel stochastic information gradient

(KSIG) and quaternion kernel LMS (QKLMS) algorithms.

To illustrate the relations of this work (QKSIG) to the previous ones (LMS, KLMS,

QKLMS, MEE, KMEE, QKMEE), we summarized the algorithms characteristics in

Table.7.1 based on their applications conditions. These conditions could be signal and

noise environments and domains such as Gaussian or non-Gaussian, real or quaternion

and linear or non-linear environments.

Table 7.1: Algorithms comparison based on their applications conditions

criterion signal/noise domain linear/non-linear

LMS MSE Gaussian real linear
KLMS MSE Gaussian real non-linear

QKLMS MSE Gaussian quaternion non-linear
MEE ITL non-Gaussian real linear

KMEE ITL non-Gaussian real non-linear
QKMEE ITL non-Gaussian quaternion non-linear
QKSIG ITL non-Gaussian quaternion non-linear

The QKSIG algorithm leverages the ITL and SIG properties in three different ways.

First, it reduces the algorithm computational complexity compared to our previous

work QKMEE due to SIG. Second, it improves the filtering performance by considering

the coupling within the dimensions of the quaternion input due to quaternion augmented

statistics compared to quadruple real-valued inputs. Third, it performs better in biased

or non-Gaussian signal and noise environments due to ITL approach compared to MSE

criteria.
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7.1 Shannon’s Entropy and Parzen Window

Shannon’s entropy [32], for a quaternion random variable e can be defined as

HSpeq “ ´

ż

H

pepεq log pepεqdε “ Eper´ log pes (7.1)

where pe is probability distribution function (PDF) of quaternion random variable e

defined as

ż

H

pepεqdε “ 1, @ε P H pepεq ě 0.

In our previous work (QKMEE) [13], we proposed quaternion minimum error entropy

algorithm based on the order–2 Renyi’s entropy function. In practice the entropy func-

tion is not accessible since it is a function of the PDF of relative random variable e. The

entropy can be estimated by using some specific method such as the Parzen window.

Parzen window approximates the unknown PDF of the underlying samples of a random

variable.

For a set of N statistically independent random samples teiu
N
i“1 of quaternion random

variable e, the Parzen window [47] computes the estimate of the PDF pe as

p̂epεq “
1

N

N
ÿ

l“1

κσpε´ elq (7.2)

where κσ is quaternion-extended Gaussian kernel [25].

The κσ can be defined as
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κσpx´ yq “
4

?
2πσ

exp

„

´1

2σ2

ˆ

pxr ´ yrq
2
` pxi ´ yiq

2

` pxj ´ yjq
2
` pxk ´ ykq

2

˙

“
4

?
2πσ

exp

„

´1

2σ2
|x´ y|2



where x and y are quaternion numbers P H in forms of

x “ xr ` ixi ` jxj ` kxk and y “ yr ` iyi ` jyj ` kyk [25].

The stochastic approximation of (7.1) can be done by dropping the expectation and

evaluating its argument at the most recent sample of random variable e [48]. Therefore,

the stochastic approximation of (7.1) at time n can be written as

ĤS,npeq “ ´ log

»

—

–

1

N

N
ÿ

l“1

κσ

ˆ

epnq ´ epn´ lq

˙

fi

ffi

fl

. (7.3)

Training algorithm using error entropy will converge to a set of optimal weights. These

optimal weights may not yield zero-mean error, since entropy does not change with the

mean of the error distribution [3]. This can be fixed by biasing the system output to

the desired signal to make the error mean equal to zero. However, for non-symmetric or

heavy tails error PDF, estimation of error mean is problematic. In supervised learning

the goal is to make most of the errors equal to zero. We can construct naturally an

augmented criterion so that it minimizes the error entropy while locating the peak of

the error PDF at the origin [18]. This can be done by minimizing the function (7.3)

with respect to a fiducial point epn´N´1q “ 0, where tepiquni“0 are the errors produced

by adaptive filter [18]. Minimizing function (7.3) with respect to a fiducial point is the
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same as minimizing augmented cost function Jnpeq (7.4) in quaternion domain which

is constructed by adding a fiducial point epn ´ N ´ 1q “ 0 to the equation (7.3). The

augmented cost function Jnpeq can be defined as

Jnpeq “ ´ log

»

—

–

1

pN ` 1q

¨

˚

˝

κσpepnqq

`

N
ÿ

l“1

κσpepnq ´ epn´ lqq

˛

‹

‚

fi

ffi

fl

(7.4)

where @l : 0 ď l ď N epn´ lq P H.

Based on the stochastic approximation cost function in quaternion domain (7.4), we

develop Quaternion Kernel Stochastic Information Gradient Algorithm in the next sec-

tion.

7.2 Quaternion Stochastic Information Gradient Al-

gorithm Derivation

For the quaternion kernel stochastic information gradient adaptive algorithm, the goal

is to minimize the cost function Jnpeq (7.4) with respect to free parameter wn as

min
@wnPH

Jnpeq

s.t. epnq “ dpnq ´ yn

yn “ă Φpunq,wn ą“ wH
n ϕn

(7.5)
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where dpnq is desired signal, un input vector and ϕn= Φpunq. The Φp.q is the kernel

map to a QRKHS [25] defined as

Φpuq “Φpur ` iui ` juj ` kukq

“ φpur,ui,uj,ukq ` iφpur,ui,uj,ukq

` jφpur,ui,uj,ukq ` kφpur,ui,uj,ukq

where φ is the feature map of real kernel κ defined as

φpur,ui,uj,ukq “κσ̄p., pur,ui,uj,ukqq

and the κσ̄ for two quaternion vectors u and u1 of length d expressed as

κσ̄ppur,ui,uj,ukq, pu
1
r,u

1
i,u

1
j,u

1
kqq “ κ̄σ̄pu,u

1
q

“ exp

„

´σ´2
d
ÿ

l“1

∣∣∣ur,l ´ u1r,l∣∣∣2 `∣∣∣ui,l ´ u1i,l∣∣∣2
`

∣∣∣uj,l ´ u1j,l∣∣∣2 `∣∣∣uk,l ´ u1k,l∣∣∣2 .
Minimizing the cost function Jnpeq (7.4) can be done by using unconstrained optimiza-

tion algorithms such as gradient descent with update rule as [11]

wn`1 “wn ´ η∇w˚nJnpeq

“wn ´ η

¨

˚

˝

BJnpeq

Bwn

˛

‹

‚

H
(7.6)

where H is Hermitian transpose (conjugate transpose) and η is adaptation step size.
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The gradient of the cost function Jnpeq (7.4) can be calculated based on the following

equation (the full derivation of gradient using GHR calculus can be found in Appendix

A)

∇w˚nJnpeq “

¨

˚

˝

BJnpeq

Bwn

˛

‹

‚

H

“

ˆ

´1

4σ2

˙

ˆ

»

—

–

¨

˚

˝

κσ

ˆ

epnq

˙

epnqϕHn

`

N
ÿ

l“1

„

κσpepnq ´ epn´ lqq



ˆ

„

epnq ´ epn´ lq

„

ϕHn ´ ϕ
H
n´l



˛

‹

‚

ˆ
1

κσpepnqq `
řN
l“1 κσpepnq ´ epn´ lqq

fi

ffi

fl

H

(7.7)

where epn´ lq = dpn´ lq ´wH
n ϕn´l are a posteriori errors for all l : 1 ď l ď N .

By setting w0 “ 0 in equation (7.6), we can obtain filter output weight at time n as
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wn “ pη{4σ
2
q

n´1
ÿ

p“0

»

—

–

¨

˚

˝

κσ

ˆ

eppq

˙

eppqϕHp

`

N
ÿ

l“1

„

κσ

ˆ

eppq ´ epp´ lq

˙

ˆ

„

eppq ´ epp´ lq

„

ϕHp ´ ϕ
H
p´l



˛

‹

‚

ˆ
1

κσpeppqq `
řN
l“1 κσpeppq ´ epp´ lqq

fi

ffi

fl

H

.

(7.8)

The weight update equation (7.8) includes the products of errors with Hermitian trans-

pose of the input vectors ϕp´l in QRKHS for @l : 1 ď l ď N as

epp´ lqϕHp´l “

„

dpp´ lq ´wH
p´lϕp´l



ϕHp´l

“ dpp´ lqϕHp´l ´wH
p´lϕp´lϕ

H
p´l

“ dpp´ lqΦpup´lq
H
´wH

p´lΦpup´lqΦpup´lq
H .

(7.9)

The covariance term Φpup´lqΦpup´lq
H in (7.9) indicates that the augmented statistics

of quaternion input vector is inherent to the QKSIG algorithm.

By substituting the weight update in the equation yn “ wH
n ϕn and using properties of

QRKHS and kernel trick to replace the inner product of two vectors with quaternion

kernel κ̄σ̄, we can simplify the equation in kernel form as
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yn “ ζ
n´1
ÿ

p“0

»

—

–

¨

˚

˝

κσ

ˆ

eppq

˙

eppqκ̄σ̄pup,unq

`

N
ÿ

l“1

„

κσpeppq ´ epp´ lqq



ˆ

„

eppq ´ epp´ lq

„

κ̄σ̄pup,unq ´ κ̄σ̄pup´l,unq



˛

‹

‚

ˆ
1

κσpeppqq `
řN
l“1 κσpeppq ´ epp´ lqq

fi

ffi

fl

(7.10)

where ζ “ η{σ2.

Based on equation (7.10), the pseudo code for QKSIG could be summarized in Algorithm

1 table.

Algorithm 2 QKSIG Algorithm
Input: signal and desired tpui, dpiqqu

8
i“1

Output: Estimate desired output ˆdpnq “ yn at time n, Residual epnq
1: Initialization The kernel parameters σ̄,σ and ζ “ η{σ2

2: while pun, dpnqq, available do
3: {calculate filter output at iteration n}

yn “ ζ
n´1
ÿ

p“0

«˜

κσ

´

eppq
¯

eppqκ̄σ̄pup,unq

`

N
ÿ

l“1

”

κσpeppq ´ epp´ lqq
ı

ˆ

”

eppq ´ epp´ lq
ı”

κ̄σ̄pup,unq ´ κ̄σ̄pup´l,unq

ı

¸

ˆ
1

κσpeppqq `
řN
l“1 κσpeppq ´ epp´ lqq

ff

4: epnq “ dpnq ´ yn {calculate error at iteration n}
5: n “ n` 1
6: end while
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7.3 Computational Complexity

Compared with the existing quaternion minimum error entropy algorithm QKMEE

[13], the proposed QKSIG algorithm requires less computational cost. In the newly

proposed QKSIG algorithm, the cost function uses linear combination of the kernel

of error samples. In the previous work, QKMEE [13], the cost function used was the

quadratic combination of the kernel of the error samples. To calculate the computational

complexity of the proposed QKSIG algorithm, we need to calculate total number of real

additions and real multiplications of the filter output equation (7.10). For this purpose,

we suppose the input vector un has the length equal to L. The kernel evaluation κ̄σ̄ [25]

requires 4L real multiplications and 8L´ 1 real additions.

Table 7.2: The number of real-valued operations for the QKMEE and QKSIG algo-
rithms, for input length equal to L

real multiplications real additions

QKMEE npN ` 1q2p8L` 9q npN ` 1q2p16L` 14q

QKSIG n
”

pN ` 1qp8L` 10q ` 4
ı

npN ` 1qp16L` 22q

For a fair comparison in terms of computational complexity, we consider the computation

cost of real multiplications. As one can observe from Table 7.2, the QKSIG and QKMEE

algorithms have OpnNLq and OpnN2Lq computational complexity respectively.

7.4 Convergence Analysis

The goal of the convergence analysis is to find a range for learning step size η in equation

wn`1 “wn ´ η∇w˚nJnpeq (7.11)
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where the QKSIG algorithm converges to optimal set of weights.

To study the convergence of QKSIG algorithm, we consider an approach using the

energy conservation relation [49]. The weight error at iteration n` 1 can be defined as

vn`1 “ w0
´wn`1

“ w0
´ pwn ´∆wnq

“ vn `∆wn

“ vn `
η

4σ2
∇w˚nJnpeq

“ vn ´ γpnq

„

κσ

ˆ

epnq

˙

epnqϕHn `ΛpnqΨd
H
pnq

H

(7.12)

where w0 is the optimal weight and

Ψdpnq “ rϕn ´ ϕn´1, ..., ϕn ´ ϕn´N s,

Λpnq “

„

κσpepnq´ epn´ 1qqpepnq´ epn´ 1qq, ..., κσpepnq´ epn´Nqqpepnq´ epn´Nqq



and

γpnq “ η
4σ2 ˆ

1

κσpepnqq`
řN
l“1 κσpepnq´epn´lqq

.

For checking energy conservation, we initially find a priori and a posteriori errors:

ean “ vHn ϕn and epn “ vHn`1ϕn defined as
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epn “ vHn`1ϕn

“ ean ´
η

4σ2

ˆ

¨

˚

˝

κσ

ˆ

epnq

˙

epnqϕHn ϕn

`

N
ÿ

l“1

„

κσ

ˆ

epnq ´ epn´ lq

˙

ˆ

„

epnq ´ epn´ lq

„

ϕHn ϕn ´ ϕ
H
n´lϕn



˛

‹

‚

ˆ
1

κσpepnqq `
řN
l“1 κσpepnq ´ epn´ lqq

.

(7.13)

Based on energy conservation relation, both sides of equation (7.12) should have same

energy, thus the energy can be expressed as

‖vn`1‖2
F “

∥∥∥∥∥vn ´ γpnq

„

κσ

ˆ

epnq

˙

epnqϕHn `ΛpnqΨd
H
pnq



∥∥∥∥∥
2

F

(7.14)

where ‖.‖2
F is the norm in QRKHS defined as ‖v‖2

F “ă v,v ą“ vHv.

By expanding equation (7.14) we can write
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vHn`1vn`1

“

˜

vHn ´ γpnq

„

κσ

ˆ

epnq

˙

epnqϕHn `ΛpnqΨd
H
pnq



¸

ˆ

˜

vn ´ γpnq

„

κσ

ˆ

epnq

˙

ϕne
˚
pnq `ΨdpnqΛ

H
pnq



¸

“ vHn vn

´ 2γpnqRe

˜

κσ

ˆ

epnq

˙

vHn ϕne
˚
pnq ` vHn ΨdpnqΛ

H
pnq

¸

` γ2
pnq

˜

κ2
σ

ˆ

epnq

˙

epnqϕHn ϕnepnq
˚

` 2Re

ˆ

κσ

ˆ

epnq

˙

epnqϕHn ΨdpnqΛ
H
pnq

˙

`ΛpnqΨd
H
pnqΨdpnqΛ

H
pnq

¸

.

(7.15)

By taking expectation of both sides of equation (7.15) we can obtain

E

»

—

–

‖vn`1‖2
F

fi

ffi

fl

“ E

»

—

–

‖vn‖2
F

fi

ffi

fl

´ 2E

»

—

–

γpnqRe

˜

κσ

ˆ

epnq

˙

vHn ϕne
˚
pnq ` vHn ΨdpnqΛ

H
pnq

¸

fi

ffi

fl

` E

«

γ2
pnqκ2

σ

ˆ

epnq

˙

epnqϕHn ϕnepnq
˚

` 2γ2
pnqRe

ˆ

κσ

ˆ

epnq

˙

epnqϕHn ΨdpnqΛ
H
pnq

˙

` γ2
pnqΛpnqΨd

H
pnqΨdpnqΛ

H
pnq

ff

.

(7.16)

For convergence, the energy of the weight error vector should gradually reduce per
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iteration or

E

»

—

–

‖vn`1‖2
F

fi

ffi

fl

ă E

»

—

–

‖vn‖2
F

fi

ffi

fl

. (7.17)

Therefore, the algorithm converges if the following inequality could be satisfied

´ 2E

»

—

–

γpnqRe

˜

κσ

ˆ

epnq

˙

vHn ϕne
˚
pnq ` vHn ΨdpnqΛ

H
pnq

¸

fi

ffi

fl

` E

«

γ2
pnqκ2

σ

ˆ

epnq

˙

epnqϕHn ϕnepnq
˚

` 2γ2
pnqRe

ˆ

κσ

ˆ

epnq

˙

epnqϕHn ΨdpnqΛ
H
pnq

˙

` γ2
pnqΛpnqΨd

H
pnqΨdpnqΛ

H
pnq

ff

ă 0.

(7.18)

After algorithm convergence, Λ converged to 0. Thus, we can simplify (7.18) as

´2η

4σ2
E

»

—

–

κσ

ˆ

epnq

˙

|ean|
2

κσpepnqq `
řN
l“1 κσpepnq ´ epn´ lqq

fi

ffi

fl

`
η2

16σ4
E

« κ2
σ

ˆ

epnq

˙

|epnq|2‖ϕn‖2
F

pκσpepnqq `
řN
l“1 κσpepnq ´ epn´ lqqq

2

ff

ă 0

(7.19)
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or

0 ă η ă 8σ2
pN ` 1q

E

»

—

–

|epnq|2

fi

ffi

fl

E

«

|epnq|2‖ϕn‖2
F

ff .
(7.20)

By assuming that ‖ϕn‖2
F is independent of |ean|

2, we next obtain

0 ă η ă 8σ2
pN ` 1q

E

»

—

–

|epnq|2

fi

ffi

fl

E

«

|epnq|2
ff

E

«

‖ϕn‖2
F

ff .
(7.21)

Thus, using kernel trick ϕHn ϕn “ 4κ̄σ̄pun,unq and substituting it in (7.21) we can con-

clude that in order to guarantee the algorithm convergence the step size η should be

0 ă η ă
8σ2pN ` 1q

4κ̄σ̄pun,unq
. (7.22)

7.5 Steady-state Performance

To analyze the steady state performance of the QKSIG algorithm using the energy con-

servation, we employed the same method of analysis described in [49]. The estimation

error of QKSIG is given by epnq “ ean`v where ean is a priori defined in previous section

as ean “ vHn ϕn and epn “ vHn`1ϕn.
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The steady-state MSE can be defined as follows

MSE “ limnÑ8E

„

|epnq|2


“ limnÑ8E

„

|ean|
2



` σv
2

where limnÑ8E

„

|ean|
2



is the excess MSE (EMSE) resulting from a mismatch between

the estimated value and true value of the system weight vector [49].

Based on the a priori and a posteriori errors relation described in previous section

(7.13), at the the steady state pnÑ 8q we can obtain the following

epn “ ean ´
η

4pN ` 1q2σ2
ˆ epnq‖ϕn‖2

F

“ ean ´
η

4pN ` 1q2σ2
ˆ pean ` vq‖ϕn‖

2
F

“ ean ´ θpe
a
n ` vq‖ϕn‖

2
F

(7.23)

where θ “ η
4pN`1q2σ2 . Therefore, by evaluating the energies on both sides of (7.23) we

can obtain

|epn|
2
“ |ean|

2
´ θ|ean|

2‖ϕn‖2
F ´ θe

a
nv
˚‖ϕn‖2

F

´ θ|ean|
2‖ϕn‖2

F ´ θve
a
n
˚‖ϕn‖2

F

` θ2

ˆ

|ean|
2
` eanv

˚
` vean

˚
`‖ϕn‖2

F

˙

‖ϕn‖4
F .

(7.24)

Noting noise v is independent of ϕn. By taking expectation of both sides of (7.24), and
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assuming E

„

|epn|
2



“ E

„

|ean|
2



at steady state pnÑ 8q we can obtain

2E

„

|ean|
2



“ θE

„

‖ϕn‖2
F|e

a
n|

2



` θE

„

‖ϕn‖2
F‖v‖

2
H



“θE

„

‖ϕn‖2
F|e

a
n|

2



` θE

„

‖ϕn‖2
F



E

„

‖v‖2
H



“θE

„

‖ϕn‖2
F|e

a
n|

2



` θE

„

‖ϕn‖2
F



σv
2.

(7.25)

By assuming that ‖ϕn‖2
F is independent of |ean|

2, we next obtain

E

„

|ean|
2



“

θE

„

‖ϕn‖2
F



σv
2

2´ θE

„

‖ϕn‖2
F

 . (7.26)

Therefore, the EMSE and MSE in this case can be calculated as

EMSE “limnÑ8E

„

|ean|
2



“

˜ θE

„

‖ϕn‖2
F



2´ θE

„

‖ϕn‖2
F



¸

σv
2

“

˜ θE

„

4κ̄σ̄pun,unq



2´ θE

„

4κ̄σ̄pun,unq



¸

σv
2

“

˜

2θκ̄σ̄pun,unq

1´ 2θκ̄σ̄pun,unq

¸

σv
2

(7.27)
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MSE “limnÑ8E

„

|ean|
2



` σv
2

“

˜2´ θE

„

‖ϕn‖2
F



` θE

„

‖ϕn‖2
F



2´ θE

„

‖ϕn‖2
F



¸

σv
2

“

˜

2

2´ θE

„

‖ϕn‖2
F



¸

σv
2

“

˜

2

2´ θE

„

4κ̄σ̄pun,unq



¸

σv
2

“

˜

1

1´ 2θκ̄σ̄pun,unq

¸

σv
2.

(7.28)

7.6 Simulation Results

7.6.1 Quaternion Nonlinear Channel Estimation

In these experiments, we show the behavior of QKSIG algorithm when signal is non-

Gaussian in presence of symmetric unimodal and bi-modal noises in quaternion domain.

Also, we present comparison between new QKSIG algorithm and the previous one QK-

MEE in terms of performance, computational complexity and execution time.

7.6.1.1 Symmetric Unimodal Gaussian Noise

The QKSIG algorithm was simulated for a nonlinear channel with symmetric unimodal

Gaussian noise. The channel consists of the quaternion filter, i.e.,
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zpnq “ g˚1upnq ` g
˚
2u

i
pnq ` g˚3u

j
pnq ` g˚4u

k
pnq

` h˚1upn´ 1q ` h˚2u
i
pn´ 1q ` h˚3u

j
pn´ 1q ` h˚4u

k
pn´ 1q

(7.29)

and non-linearity, i.e.,

ypnq “ zpnq ` az2
pnq ` bz3

pnq ` vpnq (7.30)

where vpnq is Symmetric unimodal density Gaussian noise described later. Coefficients

g1, ..., g4, h1, ..., h4, a, b, and noise vpnq are all quaternion valued. The coefficients used

were [23]

a “ 0.075` i0.35` j0.1´ k0.05,

b “ ´0.025´ i0.25´ j0.05` k0.03,

g1 “ ´0.40` i0.30` j0.15´ k0.45,

h1 “ 0.175´ i0.025` j0.1` k0.15,

g2 “ ´0.35´ i0.15´ j0.05` k0.20,

h2 “ 0.15´ i0.225` j0.125´ k0.075,

g3 “ ´0.10´ i0.40` j0.20´ k0.05,

h3 “ `0.025` i0.075´ j0.05´ k0.05,

g4 “ `0.35` i0.10´ j0.10´ k0.15,

h4 “ ´0.05´ i0.075´ j0.075` k0.175.
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For the tests, the input upnq was formed using impulsive Gaussian mixture models to

form non-Gaussian signals as follows [23]:

pu “ p0.85Np1.0, 0.01q ` 0.15Np3.0, 0.01qq

`ip0.40Np0.5, 0.01q ` 0.60Np2.5, 0.01qq

`jp0.65Np3.5, 0.01q ` 0.35Np1.5, 0.01qq

`kp0.25Np2.0, 0.01q ` 0.75Np5.5, 0.01qq

(7.31)

And noise vpnq was formed using symmetric unimodal Gaussian distributions as:

pv “ pNp0.0, 0.01qq

`ipNp3.0, 0.01qq

`jpNp1.0, 0.01qq

`kpNp0.5, 0.01qq

(7.32)

where NpmN , σNq denotes the normal (Gaussian) PDF with mean mN and variance σN .

The kernel parameters σ̄ “ 2.24; σ “ 0.55 for the Parzen window with size N “ 10,

are estimated using Silverman’s rule 1.06 ˆmintσY , R{1.34u ˆ N1{5D [50] where σY is

the data standard deviation, D is data dimension, R is the interquartile and N is the

number of samples. The simulation results of the QKSIG algorithm for the nonlinear

channel are shown in Fig.1 to Fig.4. The theoretical upper bound of adaptation step size

could be approximated using inequality (7.22) as η ă r
8˚0.552˚p10`1q

4
s “ r6.65s “ 7 ă 8.

Fig.7.1 and Fig.7.2 show the convergence of the normalized entropy (NEntropy) and

mean-squared-error (MSE) of the QKSIG algorithm with different convergence step size

η respectively. The results are ensemble-averaged over 20 realizations with 60-samples
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moving average window. As shown in Fig.7.2, the algorithm using step size η “ 0.1

generates higher MSE compared to η “ 1. Therefore, higher MSE yields higher vari-

ance in error probability distributions. The higher variance also can be seen in Fig.7.3

where all error probability distributions are uni-modal with higher variance with η “ 0.1.

Fig.7.4 shows the impact of signal to noise ratio (SNR) on convergence misadjustment

with step size η “ 1. The results are ensemble-averaged over 20 realizations with

60-samples moving average window. As shown in Fig.7.4 by increasing the SNR the

convergence misadjustment degrades.
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Fig. 7.1: Normalized Entropy using Symmetric Unimodal Gaussian Noise.
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Fig. 7.2: Mean Squared Error vs. adaptation step size using Symmetric Unimodal
Gaussian Noise.
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Fig. 7.3: Probability Density of Error Signal using Symmetric Unimodal Gaussian Noise.

Table 7.3 shows the comparison between new QKSIG algorithm and the previous one
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QKMEE in terms of performance, computational complexity and execution time. For

this purpose, the first 4000 out of 5000 samples are used for training and another 1000

samples are used for testing session with different convergence step sizes. As one can

observe, both QKSIG and QKMEE algorithms approximately have same performance

based on testing mean-squared-errors (MSE). The QKSIG algorithm average running

time for one iteration is almost 10 times faster than QKMEE algorithm which is con-

sistent with computational complexity order with N “ 10 and input vector size L “ 5.

As a result, QKSIG has same performance as QKMEE with lower computational com-

plexity and average execution time.
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Fig. 7.4: Mean Squared Error vs. SNR using Symmetric Unimodal Density Noise

Table 7.3: Performance comparison of QKSIG and QKMEE with different step sizes in
nonlinear channel Estimation

Parameter Testing MSE Computation Average running
complexity time (one iteration) (ms)

QKSIG η “ 0.1 0.6898 ˘ 0.0278 OpnNLq 36.398
η “ 1 0.0329 ˘ 0.0029
η “ 4 0.0338 ˘ 0.0033
η “ 7 0.0477 ˘ 0.005

QKMEE η “ 0.1 0.6230 ˘ 0.0383 OpnN2Lq 331.48
η “ 1 0.0332 ˘ 0.0029
η “ 4 0.0340 ˘ 0.0033
η “ 7 0.0469 ˘ 0.0049
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7.6.1.2 Bi-Modal Density Noise

In this experiment we used same test bench as previous section but instead of using

symmetric unimodal density Gaussian noise, we applied Bi-modal density or Gaussian

mixture distribution noise as below [23]:

pv “ p0.90Np0.0, 0.01q ` 0.10Np1.0, 0.01qq

`ip0.70Np3.0, 0.01q ` 0.30Np0.5, 0.01qq

`jp0.45Np1.0, 0.01q ` 0.55Np4.5, 0.01qq

`kp0.80Np0.5, 0.01q ` 0.20Np1.5, 0.01qq

(7.33)

Fig.7.5 and Fig.7.6 show the convergence of the normalized entropy (NEntropy) and

mean-squared-error (MSE) of the QKSIG algorithm with different convergence step size

η respectively. The results are ensemble-averaged over 20 realizations with 60-samples

moving window average. Fig.7.7 shows the algorithm adaptation error when algorithm

converged. As shown in Fig.7.7, the algorithm error signal density is bi-modal with

heavy tails. As shown in Fig.7.2 and Fig.7.6 when algorithm converges to minimum

entropy, the unimodal case has better mean-squared-error MSE “ ´25dB compared

with bi-modal case which has MSE “ ´10dB.
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Fig. 7.5: Normalized Entropy using Bi-modal density Noise.
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Fig. 7.6: Mean Squared Error vs. adaptation step size using Bi-modal density Noise.
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Fig. 7.7: Probability Density of Error Signal using Bi-modal density Noise.
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Fig. 7.8: Mean Squared Error vs. SNR using Bi-modal density Noise.
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7.6.2 Adaptive Line Enhancement

In this experiment, we show the advantage of using ITL over MSE criterion in non-

Gaussian environment such as real-world electroencephalogram (EEG) data in quater-

nion domain. For this purpose, one-step ahead linear prediction is used to enhance a real-

world electroencephalogram (EEG) data, corrupted with 50Hz power-line interference.

The data was recorded from 8 electrodes for 30 seconds and sampled at 256Hz according

to the 10-20 system. The electrode positions used were Fp1, Fp2, C3, C4, O1, O2, vEOG,

hEOG. The data was collected for raising the eyebrows. The signals were grouped based

on pattern similarity (i.e., Fp1 and Fp2 are symmetrically located, signals C3 and C4,

etc.), and eight signals were considered a tuple of quaternion inputs.

The eight input signals are divided into two consecutive quaternion inputs: pFp1 `

iC3` jO1` kvEOGq and pFp2` iC4` jO2` khEOGq [5].

The QKSIG algorithm was simulated with Parzen window size N “ 10. The parame-

ters for the QKSIG η “ 0.7, σ̄ “ 2.24 and σ “ 0.736 were chosen and for the QKLMS

η “ 0.35, σ̄ “ 2.24 were used.

Fig.7.9 shows the performance of algorithms measured based on the prediction gain.

The prediction gain can be described as Rp “ 10 logpσ2
y{σ

2
eq where σ2

y and σ2
e are the

average power of the input and output error respectively.

As shown in Fig.7.9, the QKSIG has better steady state prediction gain (around 6 to

7 dB more) than QKLMS. Even though, both QKSIG and QKLMS algorithms are

operating in quaternion domain, the QKSIG are using ITL criterion for filtering instead

of MSE criterion used by QKLMS. Therefore, QKSIG minimizes the divergence between

input-output and input-desired joint PDF and yields better performance. QKMEE
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algorithm gives similar performance as QKSIG as shown in Fig.7.9.
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Fig. 7.9: Prediction gain

7.6.3 Stock Market Prediction

In this experiment, we demonstrate that why it is important to simultaneously con-

sider non-Gaussian distributions and quaternion domains. For this reason, we use stock

market indices time series which have non-stationary and non-Gaussian nature. This

experiment shows first, the advantage of using quaternion over the quadruple real-

valued filtering and the second, the advantage of using ITL over MSE criterion in non-

Gaussian environment such as stock market prediction. For this purpose, four US Stock

Indices fused into quaternionic model which are NASDAQ Composite pIXICq, Dow

Jones Industrial Average pDJIq, Russell 2000 pRUT q and SNP pGSPCq. The US In-

dices obtained from ”https://finance.yahoo.com” under Quotes ”Historical Data” tabs

for the period of Feb 8, 2012 to Feb9, 2018 with Daily frequency. We used one-step-

ahead prediction model to predict the ”High” price of each index at each trading day.

To form a quaternion input, the four indices are fused in a quaternion form [51] as

q “ IXIC ` iDJI ` jRUT ` kGSPC. Table IV shows the simulation results of one-

step-ahead prediction using QKSIG, QKLMS and quadruple real-valued KSIG.
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As shown in Table 7.4, the prediction gain of QKSIG dominates the quadruple real-

valued KSIG for each index. The quadruple real-valued KSIG are using four separate

real domain KSIG filters, one for each index, without considering the cross-correlation

or coupling among the four indices (or dimensions). By combining all four indices as

a quaternion and using QKSIG algorithm, intrinsically takes into account the cross-

correlation or coupling among them and yields better prediction gain for each index.

Table 7.4 also shows the advantage of using ITL instead of MSE criterion in non-

Gaussian environment. The prediction gain of QKSIG dominates the QKLMS for each

index. Even though, both QKSIG and QKLMS algorithms are operating in quaternion

domain, the QKSIG are using ITL criterion for filtering instead of MSE used by QKLMS.

Therefore, it is advantages for better prediction to use QKSIG instead of the QKLMS

and quadruple real-valued KSIG algorithms.

Table 7.4: Prediction Gain (dB)

QKSIG QKMEE KSIG QKLMS

IXIC 34.87 32.77 31.15 28.05
DJI 33.83 31.15 30.12 26.44
RUT 33.98 32.01 30.24 13.07

GSPC 34.38 32.25 30.72 18.39

7.7 Conclusion

We have shown the derivation and convergence analysis of a quaternion kernel adaptive

algorithm. The resulting algorithm is the QKSIG algorithm. The new algorithm (QK-
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SIG) minimizes the error stochastic information gradient (SIG) cost function which is

based on the information theoretic learning (ITL). A gradient of cost function is derived

using GHR calculus in quaternion RKHS. The new algorithm (QKSIG) is beneficial in

three different ways. First, reduces computational complexity as compared to our pre-

vious work QKMEE. Second, improves the filtering performance by taking into account

the coupling within the dimensions of the quaternion input compared to quadruple

real-valued inputs. Third, performs better in biased or non-Gaussian signal and noise

environments compared to MSE criteria. Minimizing error entropy, minimizes the diver-

gence between the joint densities of input-desired and input-output pairs (Appendix B).

Simulation results show that there are advantages for better prediction to use QKSIG

instead of the QKLMS and quadruple real-valued KSIG algorithms in simultaneously

non-Gaussian distributions and quaternion environments. Future research will extend

QKSIG algorithm for widely-linear case.
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Chapter 8

Quaternion Stochastic Information
Gradient Algorithm with Self
Adjusting Step-size for Nonlinear
Adaptive Systems

In this chapter, we develop a kernel adaptive filter for quaternion data, based on stochas-

tic information gradient (SIG) cost function with self adjusting step-size. The new algo-

rithm (QKSIG-SAS) is based on the information theoretic learning (ITL) approach and

could be useful for quaternion based kernel applications of nonlinear filtering. In chap-

ter 7, we developed the quaternion stochastic information gradient algorithm (QKSIG)

[20], which minimizes Shannon’s entropy of the error between the filter output and de-

sired response and reduces the entropy estimation computational complexity. The new

algorithm (QKSIG-SAS) has faster speed of convergence as compared to our previous

work algorithm QKSIG in non-stationary environments.
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8.1 The Quaternion Stochastic Information Gradi-

ent Algorithm with Self Adjusting Step-size Deriva-

tion

For the quaternion kernel adaptive filter based on minimum error entropy, the goal is

to minimize the cost function JSAS,npeq [52] with respect to free parameter wn as

min
@wnPH

JSAS,npeq “ pJnp0q ´ Jnpeqq
2

s.t. epnq “ dpnq ´ yn

yn “ă Φpunq,wn ą“ wH
n ϕn

(8.1)

where dpnq is desired signal, un input vector, ϕn= Φpunq and Φp.q is the kernel map to

a QRKHS [25] defined as:

Φpuq “Φpur ` iui ` juj ` kukq

“ φpruTr uTi uTj qTk s
T
q ` iφpruTr uTi uTj uTk s

T
q

` jφpruTr uTi uTj uTk s
T
q ` kφpruTr uTi uTj uTk s

T
q

where φ is the feature map of real kernel κ defined as:

φpur, ui, uj, ukq “κp., ur, ui, uj, ukq.

Minimizing the cost function JSAS,npeq can be done with unconstrained optimization
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algorithm such as gradient descent algorithm as

wn`1 “wn ´ η∇w˚nJSAS,npeq

“wn ` 2ηpJnp0q ´ Jnpeqq∇w˚nJnpeq

“wn ` 2ηpJnp0q ´ Jnpeqq

¨

˚

˝

BJnpeq

Bwn

˛

‹

‚

H

“wn ` 2ηpnq

¨

˚

˝

BJnpeq

Bwn

˛

‹

‚

H

(8.2)

where ηpnq “ 2ηpJnp0q ´ Jnpeqq is adaptation step size.

By setting w0 “ 0, we can obtain filter output weight as

wn “ ζpnq
n´1
ÿ

p“0

»

—

–

¨

˚

˝

κσ

ˆ

eppq

˙

eppqϕHp

`

N
ÿ

l“1

„

κσ

ˆ

eppq ´ epp´ lq

˙

ˆ

„

eppq ´ epp´ lq

„

ϕHp ´ ϕ
H
p´l



˛

‹

‚

ˆ
1

κσpeppqq `
řN
l“1 κσpeppq ´ epp´ lqq

fi

ffi

fl

H

(8.3)

where ζpnq “ ηpnq{4σ2 and epn´ lq = dpn´ lq ´wH
n ϕn´l are a posteriori errors for all

l : 1 ď l ď N .

By substituting the weight update in the yn “ wH
n ϕn and using properties of Quaternion
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Reproducing Kernel Hilbert Space (QRKHS) and the ’kernel trick’ to replace the inner

product of two vectors with quaternion kernel κ̄σ̄, we can simplify the equation in kernel

form as

yn “ ζpnq
n´1
ÿ

p“0

»

—

–

¨

˚

˝

κσ

ˆ

eppq

˙

eppqκ̄σ̄pup,unq

`

N
ÿ

l“1

„

κσpeppq ´ epp´ lqq



ˆ

„

eppq ´ epp´ lq

„

κ̄σ̄pup,unq ´ κ̄σ̄pup´l,unq



˛

‹

‚

ˆ
1

κσpeppqq `
řN
l“1 κσpeppq ´ epp´ lqq

fi

ffi

fl

(8.4)

8.2 Switching Scheme Between Adaptive Algorithms

The QKSIG-SAS algorithm gradient update step size converge to zero near the op-

timum point of error entropy surface [52]. This property stall the gradient descent

algorithm and tracking of weight update of the QKSIG-SAS algorithm. The combina-

tion of QKSIG-SAS and QKSIG algorithms enable the system to update the weight

vector due to small changes in error entropy surface which is crucial for tracking sig-

nals in non-stationary environments. In order to determine to switching time between

two algorithms to maximize the speed of convergence an analytical criterion needs to be

developed. The dynamics of adaptation can be understood in terms of energy minimiza-

tion in the context of Lyapunov stability theory [53]. Simply, the faster the Lyapunov

energy decreases, the faster we are getting towards the optimal solution, especially since

our energy function is based on the criterion that needs to be optimized. The general
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switching time is determined as:

BJSAS,npeq

Bwn

∆wn “
BJSIG,npeq

Bwn

∆wn (8.5)

Or

´ 4ηpJnp0q ´ Jnpeqq
2

∥∥∥∥BJnpeqBwn

∥∥∥∥2

F

“ ´ηSIG

∥∥∥∥BJnpeqBwn

∥∥∥∥2

F

(8.6)

The QKSIG-SAS should be used when the following condition satisfied:

´ 4ηpJnp0q ´ Jnpeqq
2

∥∥∥∥BJnpeqBwn

∥∥∥∥2

F

ą ´ηSIG

∥∥∥∥BJnpeqBwn

∥∥∥∥2

F

(8.7)

or

Jnpeq ą Jnp0q ` 0.5
a

pηSIG{ηq

or

Jnpeq ă Jnp0q ´ 0.5
a

pηSIG{ηq

(8.8)
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8.3 Simulation Results

8.3.1 Quaternion Nonlinear Channel Estimation

8.3.1.1 Symmetric Unimodal Density Noise

The QKSIG-SAS algorithm was simulated for a nonlinear channel with symmetric uni-

modal Gaussian noise. The channel consisted of the quaternion filter, i.e.,

zpnq “ g˚1upnq ` g
˚
2u

i
pnq ` g˚3u

j
pnq ` g˚4u

k
pnq

` h˚1upn´ 1q ` h˚2u
i
pn´ 1q ` h˚3u

j
pn´ 1q ` h˚4u

k
pn´ 1q

(8.9)

and nonlineraity, i.e.,

ypnq “ zpnq ` az2
pnq ` bz3

pnq ` vpnq (8.10)

where vpnq is Symmetric unimodal density Gaussian noise described later. Coefficients

g1, ..., g4, h1, ..., h4, a, b, and noise vpnq are all quaternion valued.The coefficients used

were

a “ 0.075` i0.35` j0.1´ k0.05,

b “ ´0.025´ i0.25´ j0.05` k0.03,
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g1 “ ´0.40` i0.30` j0.15´ k0.45,

h1 “ 0.175´ i0.025` j0.1` k0.15,

g2 “ ´0.35´ i0.15´ j0.05` k0.20,

h2 “ 0.15´ i0.225` j0.125´ k0.075,

g3 “ ´0.10´ i0.40` j0.20´ k0.05,

h3 “ `0.025` i0.075´ j0.05´ k0.05,

g4 “ `0.35` i0.10´ j0.10´ k0.15,

h4 “ ´0.05´ i0.075´ j0.075` k0.175.

For the tests, the input upnq was formed using impulsive Gaussian mixture models to

form non-Gaussian signals as follows [23]:

pupiq “ p0.85Np1.0, 0.01q ` 0.15Np3.0, 0.01qq

`ip0.40Np0.5, 0.01q ` 0.60Np2.5, 0.01qq

`jp0.65Np3.5, 0.01q ` 0.35Np1.5, 0.01qq

`kp0.25Np2.0, 0.01q ` 0.75Np5.5, 0.01qq

(8.11)

And noise vpnq was formed using symmetric unimodal Gaussian distributions as:

pvpiq “ pNp0.0, 0.01qq

`ipNp3.0, 0.01qq

`jpNp1.0, 0.01qq

`kpNp0.5, 0.01qq

(8.12)

where NpmN , σNq denotes the normal (Gaussian) PDF with mean mN and variance σN .

The kernel parameters σ̄ “ 2.24; σ “ 0.55 for the Parzen window with size N “ 10,
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are estimated using Silverman’s rule 1.06 ˆ mintσY , R{1.34u ˆ N1{5L [46] where σY

is the data standard deviation, L is data dimension, R is the interquartile and N is

the number of samples. The simulation results of the QKSIG-SAS algorithm for the

nonlinear channel are shown in Fig.8.1 to Fig.8.2.

Fig.8.1 and Fig.8.2 show the convergence of the normalized entropy (NEntropy) and

mean-squared-error (MSE) of the QKSIG-SAS, QKSIG and Switching (combination of

the QKSIG-SAS and QKSIG algorithms).
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Fig. 8.1: Normalized Entropy of QKSIG-SAS, Switching and QKSIG algorithms
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Fig. 8.2: Mean Squared Error of QKSIG-SAS, Switching and QKSIG algorithms
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8.4 Conclusion

We have shown the derivation and convergence analysis of a quaternion kernel adaptive

algorithm based on stochastic information gradient cost function with self-adjusting step

size. The algorithm is based on information theoretic learning (ITL) cost function min-

imizing error entropy. The resulting algorithm is the QKSIG-SAS algorithm. The GHR

calculus was used to derive the gradient of error entropy in quaternion domain. Simula-

tion results show that the new algorithm (QKSIG-SAS) has faster speed of convergence

as compared to QKSIG algorithm in non-stationary environments.
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Chapter 9

Summary and Future Work

In this thesis we performed a study as well as developed algorithms for the kernel

adaptive filters for quaternion domain data, based on information theoretic learning cost

functions which could be useful for quaternion based kernel applications of nonlinear

system filtering. The initial chapters (Chapter 2 and 3) describe the background theories

of information theoretic learning, kernel adaptive filter theory and quaternion data and

related properties. The later chapters (Chapter 4 to 8) presented the new research

results and algorithms from the work performed.

Chapter 4 showed the derivation and demonstration of convergence of quaternion kernel

minimum error entropy algorithm (QKMEE). The algorithm is based on information

theoretic learning (ITL) cost function. A gradient was derived based on GHR calculus

applied on quaternion RKHS. Algorithm using minimum error entropy may converge to

set of optimal weights without having zero mean error. Therefore, to make the mean

of output error equal to zero, the output during testing session was biased with the

mean of errors of training session. It was shown that the QKMEE algorithm performed

better with non-Gaussian signal and noise environment compared to QKLMS which is

based on the MSE criteria adaptive filter. Also the results showed that minimizing error

entropy could result in more concentrated error probability distribution PDF compared

to MSE criterion.

Chapter 5 showed the derivation and convergence analysis of a quaternion kernel normal-

ized minimum error entropy adaptive algorithm (QKNMEE). The algorithm is based on
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information theoretic learning (ITL) cost function. We showed that the convergence of

QKNMEE is very fast and outperforms the existing QKMEE and QKLMS algorithms.

The convergence analysis showed that convergence step-size is independent of kernel

size. Also it was shown that the convergence rate of the QKNMEE is independent of

the input power and the kernel size.

Chapter 6 showed the derivation and convergence analysis of quaternion kernel mini-

mum error entropy with fiducial point (QKMEEF) algorithm. Algorithm using mini-

mum error entropy may converge to a set of optimal weights without having zero mean

error. Traditionally, to make the mean of output error equal to zero, the output during

testing session was biased with the mean of errors of training session. However, for

non-symmetric or heavy tails error PDF the estimation of error mean is problematic.

Using augmented maximum information potential cost function with fiducial point en-

able online learning without biasing the output during testing session. It was shown

the behavior of the new algorithm (QKMEEF) when signal is non-Gaussian in pres-

ence of unimodal and bi-modal noise distributions. It showed that in case of unimodal

noise distribution, minimizing error entropy (maximizing information potential) results

in much lower error variance (MSE) versus the bi-modal case, which confirms the the-

ory that in unimodal Gaussian distribution case the MSE could be bounded in terms

of the entropy power. Also it was shown that the QKMEEF can track and predict the

4-Dimensional non stationary signals where there are correlations between components

better than quadruple real-valued KMEEF and QKLMS algorithms.

Chapter 7 showed the derivation and convergence analysis of quaternion kernel stochas-

tic information gradient (QKMEE-SIG) algorithm. The new algorithm (QKMEE-SIG)

minimizes the error stochastic information gradient cost function which is based on

information theoretic learning (ITL) approach. A gradient of cost function is derived

using GHR calculus in quaternion RKHS. The new algorithm (QKSIG) is beneficial in
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three different ways. First, reduces computational complexity as compared to our pre-

vious work QKMEE. Second, improves the filtering performance by taking into account

the coupling within the dimensions of the quaternion input compared to quadruple

real-valued inputs. Third, performs better in biased or non-Gaussian signal and noise

environments compared to MSE criteria. Minimizing error entropy, minimizes the diver-

gence between the joint densities of input-desired and input-output pairs (Appendix B).

Simulation results show that there are advantages for better prediction to use QKSIG

instead of the QKLMS and quadruple real-valued KSIG algorithms in simultaneously

non-Gaussian distributions and quaternion environments.

Chapter 8 showed the derivation and convergence analysis of quaternion kernel stochas-

tic information gradient algorithm with self-adjusting step size (QKSIG-SAS) algorithm.

It was shown that the QKSIG-SAS algorithm has faster speed of convergence compared

to QKSIG algorithm in non-stationary environments.

Future work could involve applying more optimization techniques to speed up the con-

vergence rate of adaptive filters such as fixed-point technique. Further, we can modify

the developed algorithms by applying the adaptive kernel size method to make the al-

gorithm adjust the kernel size adaptively and as a result speed up the convergence rate

of the algorithms.

All the newly developed algorithms could be applied in areas such as Machine Learning

and Deep Learning in quaternion domain. Recently, an increasing interest has been

shown on quaternion neural networks (QNN) such as feed forward neural networks

(QFFNN), quaternion recurrent neural networks (QRNN) and quaternion convolutional

neural network (QCNN) [54, 55, 56, 57]. Based on our knowledge, the cost functions for

all the existing QNN, in supervised learning are based on MSE criterion which minimizes

the mean-squared-error of neural network. Alternatively, by applying the information

theoretic learning cost functions one can develop new algorithms in QNN area.
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Appendix A

To derive the gradient of cost function Jnpeq (7.4), we define functions f : H Ñ H and

gl : HÑ R as

fpxq “ exppxq (A.1)

glpwnq “
|́epnq ´ epn´ lq|2

2σ2
. (A.2)

To simplify the notation for function gl in our derivative for a given l, 1 ď lď N , we

define gpwnq “ glpwnq “ ´
|epnq´epn´lq|2

2σ2 .

With the above notation the gradient of cost function Jnpeq (7.4) can be written as

BJnpeq

Bwn

“

´

¨

˚

˚

˚

˝

B

„

κσ

ˆ

epnq

˙

Bwn
`

B

„

řN
l“1 κσ

ˆ

epnq´epn´lq

˙

Bwn

κσpepnqq `
řN
l“1 κσpepnq ´ epn´ lqq

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

´4?
2πσ

B

„

expt´
|epnq|2

2σ2
u



Bwn
`

´4?
2πσ

B

„

řN
l“1 expt´

|epnq´epn´lq|2

2σ2
u



Bwn

κσpepnqq `
řN
l“1 κσpepnq ´ epn´ lqq

˛

‹

‹

‹

‚

“

´4?
2πσ

Bexpp
|́epnq|2

2σ2
q

Bwn
` ´4?

2πσ

řN
l“1

B

„

fpglpwnqq



Bwn

κσpepnqq `
řN
l“1 κσpepnq ´ epn´ lqq

.

(A.3)
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For a given l, the partial derivative can be calculated with GHR chain rule as

B

„

fpglpwnqq



Bwn

“

B

„

fpgpwnqq



Bwn

“
ÿ

vPt1,i,j,ku

Bf

Bgv
Bgv

Bwn

.

(A.4)

Using properties of the left GHR derivatives and exponential function properties, we

can simplify (A.4) as follow

ÿ

vPt1,i,j,ku

Bf

Bgv
Bgv

Bwn

“ exppgq
Bg

Bwn

. (A.5)

To calculate the derivative of function g, we can expand it as follow

gpwnq “
|́epnq ´ epn´ lq|2

2σ2

“
´1

2σ2
|epnq ´ epn´ lq|2

“
´1

2σ2

„

pepnq ´ epn´ lqqpepnq ´ epn´ lqq˚


“
´1

2σ2

„

pepnq ´ epn´ lqqpe˚pnq ´ e˚pn´ lqq



“
´1

2σ2

„

|epnq|2 `|epn´ lq|2 ´ epnqe˚pn´ lq

´ epn´ lqe˚pnq



.

(A.6)

Therefore, we can find partial derivative of g using GHR calculus as below

153



Bg

Bwn

“

ˆ

´1

2σ2

˙„

B|epnq|2

Bwn

`
B|epn´ lq|2

Bwn

´
Bepnqe˚pn´ lq

Bwn

´
Bepn´ lqe˚pnq

Bwn



.

(A.7)

By substituting epn´ lq = dpn´ lq´wH
n ϕn´l in (A.7) and using GHR calculus, we can

compute each partial derivative of (A.7) as

B|epn´ lq|2

Bwn

“
Bepn´ lqe˚pn´ lq

Bwn

“ epn´ lq
Be˚pn´ lq

Bwn

`
Bepn´ lq

Bw
e˚pn´lq
n

e˚pn´ lq

(A.8)

where

Be˚pn´ lq

Bwn

“ ´ϕHn´l
Bwn

Bwn

“ ´ϕHn´l. (A.9)

Using the left GHR derivatives rules summarized in [58], Bq
Bqv˚

v “ ´1
2
v˚, the second term

of (A.8) can be calculated as

Bepn´ lq

Bw
e˚pn´lq
n

e˚pn´ lq “ ´
BwH

n ϕn´l

Bw
e˚pn´lq
n

e˚pn´ lq

“ ´wH
n

Bϕn´l

Bw
e˚pn´lq
n

e˚pn´ lq ´
BwH

n

Bw
ϕn´le˚pn´lq
n

ϕn´le
˚
pn´ lq

“ 0`
1

2

ˆ

ϕn´le
˚
pn´ lq

˙H

“
1

2
epn´ lqϕHn´l.

(A.10)
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By substituting (A.9) and (A.10) in (A.8) we can obtain

B|epn´ lq|2

Bwn

“ ´
1

2
epn´ lqϕHn´l. (A.11)

Using the same method, the other terms of (A.7) can be calculated. By substituting all

partial derivatives, we can simplify (A.7) as below

Bg

Bwn

“

ˆ

´1

2σ2

˙

¨

˚

˝

´
1

2
epnqϕHn `´

1

2
epn´ lqϕHn´l

`
1

2
epnqϕHn´l `

1

2
epn´ lqϕHn

˛

‹

‚

“

ˆ

1

4σ2

˙„

epnq ´ epn´ lq

„

ϕHn ´ ϕ
H
n´l



.

(A.12)

Therefore, by substituting (A.12) in (A.4) we can obtain

B

„

fpglpwnqq



Bwn

“
ÿ

vPt1,i,j,ku

Bf

Bgv
Bgv

Bwn

“

ˆ

1

4σ2

˙

ˆ

¨

˚

˝

exppglpwnqq

ˆ

„

epnq ´ epn´ lq

„

ϕHn ´ ϕ
H
n´l



˛

‹

‚

.

(A.13)
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Without loss of generality with replacing (A.6) by

gpwnq “
|́epnq|2

2σ2
(A.14)

we can show the following equation

Bexpp
|́epnq|2
2σ2 q

Bwn

“

ˆ

1

4σ2

˙

¨

˚

˝

expp
´|epnq|2

2σ2
qepnqϕHn

˛

‹

‚

. (A.15)

By substituting (A.13) and (A.15) in (A.3) we can obtain

BJnpeq

Bwn

“

´4?
2πσ

Bexpp
|́epnq|2

2σ2
q

Bwn
` ´4?

2πσ

řN
l“1

B

„

fpglpwnqq



Bwn

κσpepnqq `
řN
l“1 κσpepnq ´ epn´ lqq

“

ˆ

´1

4σ2

˙

ˆ
4

?
2πσ

ˆ

¨

˚

˝

expp
´|epnq|2

2σ2
qepnqϕHn

`

N
ÿ

l“1

exppglpwnqq ˆ

„

epnq ´ epn´ lq

„

ϕHn ´ ϕ
H
n´l



˛

‹

‚

ˆ
1

κσpepnqq `
řN
l“1 κσpepnq ´ epn´ lqq

(A.16)

Therefore the gradient of the cost function Jnpeq can be calculated based on the following
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equation

∇w˚nJnpeq “

¨

˚

˝

BJnpeq

Bwn

˛

‹

‚

H

“

ˆ

´1

4σ2

˙

ˆ

»

—

–

¨

˚

˝

κσ

ˆ

epnq

˙

epnqϕHn

`

N
ÿ

l“1

„

κσpepnq ´ epn´ lqq



ˆ

„

epnq ´ epn´ lq

„

ϕHn ´ ϕ
H
n´l



˛

‹

‚

ˆ
1

κσpepnqq `
řN
l“1 κσpepnq ´ epn´ lqq

fi

ffi

fl

H

(A.17)
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Appendix B

Lemma 4. Minimizing Shannon’s entropy of quaternion random variable e from quater-

nion adaptive system (B.1), minimizes Kullback-Leibler divergence [59] between the

joint probability distribution of the input-desired and input-output of adaptive system.

Proof. Suppose we have the following minimization problem:

min
@wPH

HSpeq “ ´

ż

H

pepεq log pepεqdε “ Eer´ log pes

s.t. e “ d´ y

y “ă u,w ą“ wHu

(B.1)

where u is the system input vector, y is the system output, d is desired signal and

pe is probability distribution function of quaternion random variable e. Based on the

problem definition (B.1), we can deduce the following PDF equation

pe|wpeq “ py|u,wpd´ e|uq. (B.2)
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Therefore, minimizing Shannon entropy of error can be written as

min
@wPH

´

ż

H

pe|wpεq log pe|wpεqdε

“ min
@wPH

´

ż

H

py|u,wpd´ ε|uq log py|u,wpd´ ε|uqdε

“ min
@wPH

ż

H

py|u,wpy|uq log py|u,wpy|uqdy

” min
@wPH

ż

H

py|u,wpy|uq log py|u,wpy|uqdy.

ż

H

pupxqdx

“ min
@wPH

ż

H

ż

H

py|u,wpy|xqpupxq log py|u,wpy|xqdydx

“ min
@wPH

ż

H

ż

H

py,u|wpy, xq log py|u,wpy|xqdydx

” min
@wPH

ż

H

ż

H

ż

H

py,u|wpy, xq log
py,u|wpy, xq

pu,dpx, ζq
dydxdζ

(B.3)

where py,u is the input-output joint PDF and pu,d is the input-desired joint PDF.

Thus, from (B.3) we can conclude that minimizing Shannon entropy of error mini-

mizes the Kullback-Leibler divergence between the joint probability distribution of the

input-desired and input-output as:

min
@wPH

´

ż

H

pepεq log pepεqdε

” min
@wPH

ż

H

ż

H

ż

H

py,u|wpy, xq log
py,u|wpy, xq

pu,dpx, ζq
dydxdζ

“ min
@wPH

DKLppy,u|w||pu,dq.

(B.4)
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