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1 Introduction

Multidimensional (m-D) signal processing has a

variety of applications and the modeling of multiple vari-

ables is carried out traditionally within the real-valued

matrix algebra, while in recent years we have observed

the successful exploitation of hypercomplex numbers

in areas including colour image processing (Pei and

Cheng, 1999; Pei et al., 2004; Sangwine and Ell, 2000;

Parfieniuk and Petrovsky, 2010; Ell et al., 2014; Liu

et al., 2014), vector-sensor array processing (Le Bihan

and Mars, 2004; Miron et al., 2006; Le Bihan et al.,

2007; Tao, 2013; Tao and Chang, 2014; Zhang et al.,

2014; Hawes and Liu, 2015; Jiang et al., 2016a,b), and

quaternion-valued wireless communications (Zetterberg

and Brandstrom, 1977; Isaeva and Sarytchev, 1995; Liu,

2014). The most widely used hypercomplex numbers

are quaternions, with rigorous physical interpretation for

3-D and 4-D rotational problems (Kantor et al., 1989;

Ward, 1997). In particular, for the 3-D case, such as 3-D

altitude and 3-D wind speed, they are usually modeled

with pure quaternions in literature (Jiang et al., 2014; Ja-

hanchahi and Mandic, 2014; Talebi and Mandic, 2015).

However, pure quaternions do not belong to a math-

ematical ring (Allenby, 1991), as the product of two

c⃝Zhejiang University and Springer-Verlag Berlin Heidelberg 2015

pure quaternions is no longer a pure quaternion in gen-

eral. This could indicate redundant computations. For

instance, the adaptive algorithms for 3-D signal filtering,

which are initialised with pure quaternions (Jiang et al.,

2014; Quentin et al., 2014), have to update themselves

with full quaternions and truncate their results from a

full quaternion to a pure quaternion. In terms of the

hypercomplex multiplication alone, 16 real-valued mul-

tiplications and 12 real-valued additions are required to

calculate the product of two full quaternions, while these

two quantities will be reduced to 9 and 6, respectively,

for two numbers of a 3-D ring. Furthermore, we will

see in this paper that pure quaternions can not be used

to model the general 3-D tracking problems.

As a solution, in this paper we introduce a new type

of hypercomplex number termed trinion for 3-D adaptive

filtering and tracking. Trinions form a 3-D ring and are

commutative by definition (Assefa et al., 2011), which

implies that the trinion algebra could be a competitive

candidate for modeling 3-D processes. In our first con-

tribution, a class of trinion-valued least mean squares

(LMS) algorithms is developed to show that trinions are

computationally more efficient than quaternion algebra

for 3-D adaptive filtering applications. Secondly, we

extend the classic Kalman filter (Chui and Chen, 1991;

Li et al., 2015) into the trinion domain for efficient and
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effective 3-D tracking. We will see that for the most

general case, a pure quaternion model will not work,

while trinion algebra provides a convenient and com-

pact solution. For the first contribution, the augmented

second-order statistics are also considered (Adalı and

Schreier, 2014).

This paper is organised as follows. A brief intro-

duction to trinions and the augmented trinion statistics

is provided in Section II. The trinion-valued LMS al-

gorithm and Kalman filter are derived in Section III.

Simulation results are provided in Section IV, followed

by conclusions in Section V.

2 Trinions

A trinion v is a hypercomplex number comprising

one real part and two imaginary parts,

v = va + ıvb + ȷvc , (1)

with the two imaginary units ı and ȷ satisfying (Assefa

et al., 2011)

ı2 = ȷ, ıȷ = ȷı = −1, ȷ2 = −ı , (2)

from which it can be observed that trinions are commu-

tative.

The following is a brief list of properties of trinions

involved in formulating algorithms.

1. The (Euclidean) modulus of v is expressed as

|v| =
√

v2a + v2b + v2c , (3)

and we define the conjugate of v as

v∗ = va − ȷvb − ıvc , (4)

so that |v|2 = ℜ(vv∗), where ℜ(·) denotes the real

part. As a result, for two trinions v1 and v2, we

have (v1v2)
∗ = v∗1v

∗
2 .

2. The complete information of second-order statistics

of a trinion-valued multivariate variable (in a vec-

tor form) v = va + ıvb + ȷvc is contained in the

following six real-valued covariance matrices:

Cvθvϕ
= E{vθv

T
ϕ } ,

(θ, ϕ) ∈ {(a, a), (b, b), (c, c), (a, b), (b, c), (c, a)} .

(5)

Equivalently, these matrices can be represented by

three trinion-valued covariance matrices,

Cvv = E{vvH},

Cvv
ı = E{vvıH},

Cvv
ȷ = E{vvȷH}, (6)

where (·)H denotes Hermitian transpose and we

have defined two additional mappings (for short-

hand notions only) of v as

vı = vb − ıva − ȷvc ,v
ȷ = vc − ıvb − ȷva . (7)

The real-valued covariance matrices can be easily

retrieved from the trinion-valued ones, namely,

Cvava
=

1

2
ℜ(Cvv + ȷCvv

ı) ,

Cvbvb
=

1

2
ℜ(ıCvv

ȷ − ȷCvv
ı) ,

Cvcvc
=

1

2
ℜ(Cvv − ıCvv

ȷ) ,

Cvavb
=

1

2
ℜ(Cvv

ı + ȷCvv
ȷ) ,

Cvbvc
=

1

2
ℜ(ıCvv − ȷCvv

ȷ) ,

Cvcva
=

1

2
ℜ(Cvv

ı − ıCvv) . (8)

3. The calculation of trinion-valued gradient is im-

portant for adaptive algorithm derivation. In the

complex domain, the gradient is based on the as-

sumption that a function of variable z is a function

of z and its conjugate (Brandwood, 1983; Adalı

and Schreier, 2014). A similar prerequisite in the

quaternion domain is that a function of variable q is

a function of q and its three involutions (Jiang et al.,

2014). The same concept would fail in the trinion

domain, since the trinion involution does not exist

in general, at least to our best knowledge. Hence,

we simply follow the form of the complex-valued

gradient and define the trinion-valued gradients of

a function f(v) with respect to the variable v and

its conjugate by

∇vf =
1

3

(

∇va
f − ȷ∇vb

f − ı∇vc
f
)

,

∇v
∗f =

1

3

(

∇va
f + ı∇vb

f + ȷ∇vc
f
)

. (9)

Since trinions are commutative, the imaginary units

ı and ȷ can be on any side of the real-valued gradients.
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The derivatives of some simple functions can be calcu-

lated, for example,

∂v

∂v
=

∂v∗

∂v∗
= 1 ,

∂v

∂v∗
=

∂v∗

∂v
=

1− ı+ ȷ

3
, (10)

∂ℜ[Tr(VW)]

∂V
=

1

3
WT ,

∂ℜ[Tr(WVH)]

∂V
=

1

3
W∗ ,

∂ℜ[Tr(VWVH)]

∂V
=

1

3
V∗(W∗ +WT) .

(11)

3 Trinion-Valued Filtering Algorithms

3.1 Trinion-Valued LMS Adaptive Algorithm

We consider the filtering of a tri-variate signal based

on the LMS principle (Haykin and Widrow, 2003). The

error is expressed as

e(n) = d(n)−wT(n)x(n) , (12)

where d(n) is the reference signal, w(n) is the weight

vector, x(n) = [x(n), x(n − 1), · · · , x(n − L + 1)]T

is the filter input, and L is the filter length. The cost

function is given by

J(n) = |e(n)|2 . (13)

According to the steepest descent method, we need to

calculate the following gradient (details can be found in

Appendix A)

∇w
∗J(n) =

1

3

[

∇wa
J(n) + ı∇wb

J(n) + ȷ∇wc
J(n)

]

=
2

3
e(n)x∗(n) ,

(14)

yielding the following update equation for the weight

vector

w(n+ 1) = w(n) + µe(n)x∗(n) , (15)

where µ is the step size with the scale factor 2
3

ab-

sorbed into it. This LMS-like algorithm is termed as the

Trinion-valued LMS (TLMS) algorithm.

To account for the complete second-order statistics,

the augmented filtering structure is required, which gives

an output y(n) as

y(n) = waugT(n)xaug(n)

= wT
1 (n)x(n) +wT

2 (n)x
ı(n) +wT

3 (n)x
ȷ(n) ,

(16)

where xaug(n) = [x(n);xı(n);xȷ(n)] and waug(n) =

[w1;w2;w3]. Similarly, we have the following update

equation for the augmented weight vector

waug(n+ 1) = waug(n) + ρe(n)xaug∗(n), (17)

where ρ is the step size. We call this algorithm the

Augmented Trinion-valued LMS (ATLMS) algorithm.

The computational complexities for each update of

the weight vector of the LMS-like filtering algorithms in

the trinion and quaternion domains are shown in Table

I, where the quaternion-valued LMS (QLMS) algorithm

and the augmented QLMS algorithm are based on the

result in (Jiang et al., 2014; Quentin et al., 2014; Tao

and Chang, 2014). Clearly, the trinion model has a much

lower complexity than the quaternion model.

Table 1 Computions needed per update of the weight vector

Algorithm Real Real

Multiplications Additions

TLMS 9L+ 3 9L

Augmented TLMS 27L+ 3 27L

QLMS 16L+ 4 16L

Augmented QLMS 64L+ 4 64L

3.2 Trinion-valued Kalman Filter

In this subsection we focus on the Kalman estimate

of a tri-variate vector state xk which evolves by the

following trinion-valued model:

xk = Akxk−1 +Bkuk + ωk (18)

where Ak is the state transition matrix, uk is the in-

put controlled by Bk, and ωk is the state noise. Note

that if the process is modelled with pure quaternions,

the state transition matrix Ak must be real-valued so

that all states evolved are pure quaternion-valued and all

three real-valued sub-states evolve independently with

each other, which would be unrealistic in practice. In

comparison, the trinion-valued state model is not subject

to this constraint and hence more flexible in modelling

tri-variate states.

The observation zk of the state xk is given by

zk = Hxk + υk , (19)

where H is the observation matrix and υk is the mea-

surement noise. Both ωk and υk are assumed to be

zero-mean white-Gaussian, i.e. ωk ∼ N (0,Qk) and
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υk ∼ N (0,Rk). The a priori and a posteriori state

estimates are expressed as

x̂k|k−1 = Akx̂k−1|k−1 +Bkuk , (20)

x̂k|k = x̂k|k−1 +Kk

(

zk −Hx̂k|k−1

)

, (21)

respectively, where x̂k−1|k−1 is the previous state esti-

mate, zk −Hx̂k|k−1 represents the innovation, and Kk

is the unknown Kalman gain matrix and can be found

by minimizing the power of the error

ek|k = xk − x̂k|k = xk −
[

x̂k|k−1 +Kk

(

zk −Hx̂k|k−1

)

]

, (22)

which is

E
{

∥

∥ek|k
∥

∥

2
}

=ℜ
{

Tr
[

cov
(

xk −
(

x̂k|k−1 +Kk

(

zk −Hx̂k|k−1

)

))]}

=ℜ
{

Tr
[

cov
[

(

I−KkH
) (

xk − x̂k|k−1 −Kkvk

)

]]}

.

(23)

Since the noise is independent of the states, we have

E
{

∥

∥ek|k
∥

∥

2
}

=ℜ
{

Tr
[

(

I−KkH
)

cov
(

xk − x̂k|k−1

)

·
(

I−KkH
)H

+Kkcov
(

υk

)

KH
k

]}

, (24)

where the matrix cov(xk − x̂k|k−1) is known as the a

priori error covariance matrix Pk, and it follows

E
{

∥

∥ek|k
∥

∥

2
}

= ℜ
{[

Pk|k−1 −KkHPk|k−1

−Pk|k−1H
HKH

k +KkSkK
H
k

]}

, (25)

where Sk = HPk|k−1H
H + Rk. Taking the partial

derivative of E{||ek|k||
2} with respect to Kk and setting

it to zero, we have

∂E
{

∥

∥ek|k
∥

∥

2
}

∂Kk

= −
∂ℜ

{

Tr
[

KkHPk|k−1

]

}

∂Kk

−
∂ℜ

{

Tr
[

Pk|k−1H
HKH

k

]

}

∂Kk

+
∂ℜ

{

Tr
[

KkSkK
H
k

]

}

∂Kk

= 0 , (26)

which yields (details of the derivation are provided in

Appendix B)

Kk =
1

2
Pk|k−1

(

HH +HT
)

S−1
k . (27)

Since it is assumed that the noise is independent of the

states, we have

Pk|k−1 = cov
(

xk − x̂k|k−1

)

= APk−1|k−1A
H +Qk, (28)

and subsequently we obtain the updated covariance ma-

trix as

Pk =Pk|k−1 −KkHPk|k−1

−Pk|k−1H
HKH

k +KkSkK
H
k (29)

This Kalman-like filter is termed as the Trinion-valued

Kalman Filter (TKF) and is summerised in Table II.

Table 2 Trinion-valued Kalman filter

Predict

x̂k|k−1 = Akx̂k−1|k−1 +Bkuk

Pk|k−1 = APk−1|k−1A
H +Qk

Update

Sk = HPk|k−1H
H +Rk

Kk = 1
2
Pk|k−1

(

HH +HT
)

S−1
k

x̂k|k−1 = x̂k|k−1 +Kk

(

zk −Hx̂k|k−1

)

Pk = Pk|k−1 −KkHPk|k−1

−Pk|k−1H
HKH

k +KkSkK
H
k

4 Simulated Results

In this section, simulation results are provided to

demonstrate the performance of the derived algorithms.

First, simulations are performed using the TLMS

and ATLMS algorithms for wind speed prediction based

on data from the surface-level anemometer readings pro-

vided by Google (Google), and the wind speed measured

on May 31, 2011 is used as an example.

The learning curves averaged over 150 trials of the

proposed algorithms are shown in Fig. 1, compared

with the quaternion-based QLMS and AQLMS algo-

rithms, where the step size is 6× 10−5, the filter length

is 8, the prediction step is 1, and all algorithms are

initialised with an all-zero filter coefficients. It can be

observed that both augmented algorithms (AQLMS and

ATLMS) have a similar faster convergence rate than the

original ones (QLMS and TLMS), since they have taken

the complete second-order statistics into consideration.

Besides, the proposed TLMS algorithm has a slightly

better performance than the QLMS algorithm, while the

ATLMS algorithm is comparable with the AQLMS al-

gorithm. However, we should bear in mind that the
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proposed trinion-based algorithms have a much lower

computational complexity, as shown in Table I.

In the next, we test the TKF algorithm with syn-

thetic data generated by the following model:

xk =

[

x1
k

x2
k

]

=

[

1 + 0.3ı+ 0.3ȷ 0.1 + 0.2ı+ 0.1ȷ

−0.1 1 + 0.1ı+ 0.2ȷ

]

xk−1 + ωk,

zk =

[

1 + 0.7ı+ 0.5ȷ 0.5 + 0.4ı+ 0.1ȷ

0.2 + 0.3ı+ 0.4ȷ 1 + 0.2ı+ 0.5ȷ

]

xk + υk,

ωk ∼ N (0,Q) , υk ∼ N (0,R), Q = R =

[

4 0

0 4

]

,

x0 =

[

2.5 + 2ı+ ȷ

3ı+ 4ȷ

]

,

(30)

where we can see that the three sub-state vectors

xka,xkb,xkc evolve dependently, and the observation

zk is a linear mixture of them. The filtered results are

plotted in Fig. 2 (for xka), Fig. 3 (for xkb), and Fig.

4 (for xkc). The errors in modulus before and after fil-

tering are depicted in Fig. 5. We can observe from the

results that TKF can track the system state xk effectively.

5 Conclusion

A trinion-valued model for filtering and tracking

of three-dimensional signals has been proposed, with

corresponding algorithms derived, including two LMS-

type algorithms (trinion-valued LMS and its augmented

version) for adaptive filtering, and a Kalman filtering

algorithm for tracking. Simulation results have shown

that the trinion model is a competitive candidate for

three-dimensional signal processing with merits of re-
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duced computational complexity (related to its compact-

ness) and effective modeling of more complicated three-

dimensional processes (related to its closure property).

A Calculation of the gradient in (14)

We can expand the cost function J(n) as

J = (da −w
T
a xa +w

T
b xc +w

T
c xb)

2

+ (db −w
T
a xb −w

T
b xa +w

T
c xc)

2

+ (dc −w
T
a xc −w

T
b xb −w

T
c xa)

2, (31)

where we have dropped the time index for convenience.

Then we can calculate the gradients with respect to each

part of the weight vector, i.e.

∇wa
J = 2

[

(xax
T
a + xbx

T
b + xcx

T
c )wa

+(xbx
T
a + xcx

T
b − xax

T
c )wb

+(xcx
T
a − xax

T
b − xbx

T
c )wc

−(daxa + dbxb + dcxc)
]

(32)

∇wb
J = 2

[

(xax
T
b + xbx

T
c − xcx

T
a )wa

+(xcx
T
c + xax

T
a + xbx

T
b )wb

+(xcx
T
b − xax

T
c + xbx

T
a )wc

+(daxc − dbxa − dcxb)
]

(33)

∇wc
J = 2

[

(xax
T
c − xbx

T
a − xcx

T
b )wa

+(xbx
T
c − xcx

T
a + xax

T
b )wb

+(xax
T
a + xcx

T
c + xbx

T
b )wc

+(daxb + dbxc − dcxa)
]

(34)

Finally, the gradient of J(n) is obtained by merging

(32)–(34) into (14),

∇w
∗J(n) =

2

3
e(n)x∗(n) . (35)

B Calculation of the Kalman gain matrix

We know from (11) and (26) that

−
1

3
PT

k|k−1H
H−

1

3
P∗

k|k−1H
T+

1

3
Kk

(

S∗
k + ST

k

)

= 0 .

(36)

Since Sk and Pk|k−1 are both Hermitian, i.e.

S∗
k = ST

k , P∗
k|k−1 = PT

k|k−1 , (37)

we have

−
1

3
P∗

k|k−1H
H −

1

3
P∗

k|k−1H
T +

2

3
KkS

∗
k = 0 , (38)

which yields (27).
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