257 research outputs found

    A genetic approach to Markovian characterisation of H.264 scalable video

    Get PDF
    We propose an algorithm for multivariate Markovian characterisation of H.264/SVC scalable video traces at the sub-GoP (Group of Pictures) level. A genetic algorithm yields Markov models with limited state space that accurately capture temporal and inter-layer correlation. Key to our approach is the covariance-based fitness function. In comparison with the classical Expectation Maximisation algorithm, ours is capable of matching the second order statistics more accurately at the cost of less accuracy in matching the histograms of the trace. Moreover, a simulation study shows that our approach outperforms Expectation Maximisation in predicting performance of video streaming in various networking scenarios

    Dynamic bandwidth allocation in ATM networks

    Get PDF
    Includes bibliographical references.This thesis investigates bandwidth allocation methodologies to transport new emerging bursty traffic types in ATM networks. However, existing ATM traffic management solutions are not readily able to handle the inevitable problem of congestion as result of the bursty traffic from the new emerging services. This research basically addresses bandwidth allocation issues for bursty traffic by proposing and exploring the concept of dynamic bandwidth allocation and comparing it to the traditional static bandwidth allocation schemes

    Video traffic modeling and delivery

    Get PDF
    Video is becoming a major component of the network traffic, and thus there has been a great interest to model video traffic. It is known that video traffic possesses short range dependence (SRD) and long range dependence (LRD) properties, which can drastically affect network performance. By decomposing a video sequence into three parts, according to its motion activity, Markov-modulated self-similar process model is first proposed to capture autocorrelation function (ACF) characteristics of MPEG video traffic. Furthermore, generalized Beta distribution is proposed to model the probability density functions (PDFs) of MPEG video traffic. It is observed that the ACF of MPEG video traffic fluctuates around three envelopes, reflecting the fact that different coding methods reduce the data dependency by different amount. This observation has led to a more accurate model, structurally modulated self-similar process model, which captures the ACF of the traffic, both SRD and LRD, by exploiting the MPEG structure. This model is subsequently simplified by simply modulating three self-similar processes, resulting in a much simpler model having the same accuracy as the structurally modulated self-similar process model. To justify the validity of the proposed models for video transmission, the cell loss ratios (CLRs) of a server with a limited buffer size driven by the empirical trace are compared to those driven by the proposed models. The differences are within one order, which are hardly achievable by other models, even for the case of JPEG video traffic. In the second part of this dissertation, two dynamic bandwidth allocation algorithms are proposed for pre-recorded and real-time video delivery, respectively. One is based on scene change identification, and the other is based on frame differences. The proposed algorithms can increase the bandwidth utilization by a factor of two to five, as compared to the constant bit rate (CBR) service using peak rate assignment

    On the time scales in video traffic characterization for queueing behavior

    Get PDF
    To guarantee quality of service (QoS) in future integrated service networks, traffic sources must be characterized to capture the traffic characteristics relevant to network performance. Recent studies reveal that multimedia traffic shows burstiness over multiple time scales and long range dependence (LRD). While researchers agree on the importance of traffic correlation there is no agreement on how much correlation should be incorporated into a traffic model for performance estimation and dimensioning of networks. In this article, we present an approach for defining a relevant time scale for the characterization of VER video traffic in the sense of queueing delay. We first consider the Reich formula and characterize traffic by the Piecewise Linear Arrival Envelope Function (PLAEF). We then define the cutoff interval above which the correlation does not affect the queue buildup. The cutoff interval is the upper bound of the time scale which is required for the estimation of queue size and thus the characterization of VER video traffic. We also give a procedure to approximate the empirical PLAEF with a concave function; this significantly simplifies the calculation in the estimation of the cutoff interval and delay bound with little estimation loss. We quantify the relationship between the time scale in the correlation of video traffic and the queue buildup using a set of experiments with traces of MPEG/JPEG-compressed video. We show that the critical interval i.e. the range for the correlation relevant to the queueing delay, depends on the traffic load: as the traffic load increases, the range of the time scale required for estimation for queueing delay also increases. These results offer further insights into the implication of LRD in VER video traffic. (C) 1999 Elsevier Science B.V. Ail rights reserved

    Architectural support for ubiquitous access to multimedia content

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores (Telecomunicações). Faculdade de Engenharia. Universidade do Porto. 200

    Quantifying the impact of daily and seasonal variation in sap pH on xylem dissolved inorganic carbon estimates in plum trees

    Get PDF
    In studies on internal CO2 transport, average xylem sap pH (pH(x)) is one of the factors used for calculation of the concentration of dissolved inorganic carbon in the xylem sap ([CO2*]). Lack of detailed pH(x) measurements at high temporal resolution could be a potential source of error when evaluating [CO2*] dynamics. In this experiment, we performed continuous measurements of CO2 concentration ([CO2]) and stem temperature (T-stem), complemented with pH(x) measurements at 30-min intervals during the day at various stages of the growing season (Day of the Year (DOY): 86 (late winter), 128 (mid-spring) and 155 (early summer)) on a plum tree (Prunus domestica L. cv. Reine Claude d'Oullins). We used the recorded pH(x) to calculate [CO2*] based on T-stem and the corresponding measured [CO2]. No statistically significant difference was found between mean [CO2*] calculated with instantaneous pH(x) and daily average pH(x). However, using an average pH(x) value from a different part of the growing season than the measurements of [CO2] and T-stem to estimate [CO2*] led to a statistically significant error. The error varied between 3.25 +/- 0.01% under-estimation and 3.97 * 0.01% over-estimation, relative to the true [CO2*] data. Measured pH(x) did not show a significant daily variation, unlike [CO2], which increased during the day and declined at night. As the growing season progressed, daily average [CO2] (3.4%, 5.3%, 7.4%) increased and average pH(x) (5.43, 5.29, 5.20) decreased. Increase in [CO2] will increase its solubility in xylem sap according to Henry's law, and the dissociation of [CO2*] will negatively affect pH(x). Our results are the first quantifying the error in [CO2*] due to the interaction between [CO2] and pH(x) on a seasonal time scale. We found significant changes in pH(x) across the growing season, but overall the effect on the calculation of [CO2*] remained within an error range of 4%. However, it is possible that the error could be more substantial for other tree species, particularly if pH(x) is in the more sensitive range (pHx > 6.5)

    An Efficient Statistical Multiplexing Method for H.264 VBR Video Sources for Improved Traffic Smoothing

    Full text link

    Designing new network adaptation and ATM adaptation layers for interactive multimedia applications

    Get PDF
    Multimedia services, audiovisual applications composed of a combination of discrete and continuous data streams, will be a major part of the traffic flowing in the next generation of high speed networks. The cornerstones for multimedia are Asynchronous Transfer Mode (ATM) foreseen as the technology for the future Broadband Integrated Services Digital Network (B-ISDN) and audio and video compression algorithms such as MPEG-2 that reduce applications bandwidth requirements. Powerful desktop computers available today can integrate seamlessly the network access and the applications and thus bring the new multimedia services to home and business users. Among these services, those based on multipoint capabilities are expected to play a major role.    Interactive multimedia applications unlike traditional data transfer applications have stringent simultaneous requirements in terms of loss and delay jitter due to the nature of audiovisual information. In addition, such stream-based applications deliver data at a variable rate, in particular if a constant quality is required.    ATM, is able to integrate traffic of different nature within a single network creating interactions of different types that translate into delay jitter and loss. Traditional protocol layers do not have the appropriate mechanisms to provide the required network quality of service (QoS) for such interactive variable bit rate (VBR) multimedia multipoint applications. This lack of functionalities calls for the design of protocol layers with the appropriate functions to handle the stringent requirements of multimedia.    This thesis contributes to the solution of this problem by proposing new Network Adaptation and ATM Adaptation Layers for interactive VBR multimedia multipoint services.    The foundations to build these new multimedia protocol layers are twofold; the requirements of real-time multimedia applications and the nature of compressed audiovisual data.    On this basis, we present a set of design principles we consider as mandatory for a generic Multimedia AAL capable of handling interactive VBR multimedia applications in point-to-point as well as multicast environments. These design principles are then used as a foundation to derive a first set of functions for the MAAL, namely; cell loss detection via sequence numbering, packet delineation, dummy cell insertion and cell loss correction via RSE FEC techniques.    The proposed functions, partly based on some theoretical studies, are implemented and evaluated in a simulated environment. Performances are evaluated from the network point of view using classic metrics such as cell and packet loss. We also study the behavior of the cell loss process in order to evaluate the efficiency to be expected from the proposed cell loss correction method. We also discuss the difficulties to map network QoS parameters to user QoS parameters for multimedia applications and especially for video information. In order to present a complete performance evaluation that is also meaningful to the end-user, we make use of the MPQM metric to map the obtained network performance results to a user level. We evaluate the impact that cell loss has onto video and also the improvements achieved with the MAAL.    All performance results are compared to an equivalent implementation based on AAL5, as specified by the current ITU-T and ATM Forum standards.    An AAL has to be by definition generic. But to fully exploit the functionalities of the AAL layer, it is necessary to have a protocol layer that will efficiently interface the network and the applications. This role is devoted to the Network Adaptation Layer.    The network adaptation layer (NAL) we propose, aims at efficiently interface the applications to the underlying network to achieve a reliable but low overhead transmission of video streams. Since this requires an a priori knowledge of the information structure to be transmitted, we propose the NAL to be codec specific.    The NAL targets interactive multimedia applications. These applications share a set of common requirements independent of the encoding scheme used. This calls for the definition of a set of design principles that should be shared by any NAL even if the implementation of the functions themselves is codec specific. On the basis of the design principles, we derive the common functions that NALs have to perform which are mainly two; the segmentation and reassembly of data packets and the selective data protection.    On this basis, we develop an MPEG-2 specific NAL. It provides a perceptual syntactic information protection, the PSIP, which results in an intelligent and minimum overhead protection of video information. The PSIP takes advantage of the hierarchical organization of the compressed video data, common to the majority of the compression algorithms, to perform a selective data protection based on the perceptual relevance of the syntactic information.    The transmission over the combined NAL-MAAL layers shows significant improvement in terms of CLR and perceptual quality compared to equivalent transmissions over AAL5 with the same overhead.    The usage of the MPQM as a performance metric, which is one of the main contributions of this thesis, leads to a very interesting observation. The experimental results show that for unexpectedly high CLRs, the average perceptual quality remains close to the original value. The economical potential of such an observation is very important. Given that the data flows are VBR, it is possible to improve network utilization by means of statistical multiplexing. It is therefore possible to reduce the cost per communication by increasing the number of connections with a minimal loss in quality.    This conclusion could not have been derived without the combined usage of perceptual and network QoS metrics, which have been able to unveil the economic potential of perceptually protected streams.    The proposed concepts are finally tested in a real environment where a proof-of-concept implementation of the MAAL has shown a behavior close to the simulated results therefore validating the proposed multimedia protocol layers

    A New CAC Method Using Queuing Theory

    Get PDF
    The CAC (Connection Admission Control) method plays an important role in the ATM (Asynchronous Transfer Mode) network environment. The CAC is the first step in the prevention of congested states in the network topology, and conducts to the optimal network resources utilization. The paper is aimed to propose an enhancement for a convolution method that is one of the statistical CAC methods used in ATM. The convolution method uses a buffer-less assumption in the estimation of the cell loss. Using formulas for the G/M/1 queuing system, the cell loss can be estimated as the buffer overflow probability. In this paper, the proposed CAC method is compared with other three statistical CAC methods, and conclusions regarding the exploitation of the CAC method are presente
    corecore