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The shape of the loss curve

and

the impact of long-range dependence on network performance

Michel Mandjes� and Nam Kyoo Bootsy

Abstract

Empirical studies showed that many types of network traÆc exhibit long-range dependence (LRD), i.e., bursti-

ness on a wide variety of time-scales. Given that traÆc streams are indeed endowed with LRD properties, a

next question is: what is their impact on network performance?

To assess this issue, we consider a generic source model: traÆc generated by an individual user is modeled

as a uid on/o� pattern with generally distributed on- and o�-times; LRD traÆc is obtained by choosing the

on-times heavy-tailed. We focus on an aggregation of many i.i.d. sources, say n, multiplexed on a FIFO queue,

with the queueing resources scaled accordingly. Large deviations analysis says that the (steady-state) overow

probability decays exponentially in n; we call the corresponding decay rate, as a function of the bu�er size B,

the loss curve.

To get insight into the inuence of the distribution of the on- and o�-times, we list the most signi�cant

properties of the loss curve. Strikingly, for small B, the decay rate depends on the distributions only through

their means. For large B there is no such insensitivity property. In case of heavy-tailed on-times, the decay

of the loss probability in the bu�er size is slower than exponential; this is in stark contrast with light-tailed

on-times, in which case this decay is at least exponential.

To assess the sensitivity of the performance metrics to the probabilistic properties of the input, we compute

the loss curve for a number of representative examples (voice, video, �le transfer, web browsing, etc.), with

realistic distributions and parameters.

Our conclusions on the impact of LRD on the performance can be summarized as follows: (1) If the maximally

tolerable delay is relatively small, there is hardly any di�erence between heavy-tailed and light-tailed inputs;

this gives a theoretical handle on observations that appeared in the literature. Only for very delay tolerant

applications the above-mentioned large B results kick in. (2) The level of aggregation is a signi�cant factor. If

the ratio between the link rate and the peak rate of a single source is high, a high utilization can be achieved,

while at the same time the delay requirements are met; this holds even if the delay requirements are stringent.

Key words: packet networking, long-range dependence, queueing theory, large deviations asymptotics, bu�er

overow, heavy-tailed distributions

1 Introduction

With the advent of high-speed packet-based network technologies { such as the Internet Protocol { an accurate

prediction of the achievable performance becomes extremely useful. In the end, the Quality of Service (mostly

expressed in terms of performance metrics like packet loss, delay, throughput) is what the users experience, and

�Bell Laboratories/Lucent Technologies, 600 Mountain Ave., Room 2C361, P.O. Box 636, Murray Hill, NJ 07974-0636,

USA. Email: michel@research.bell-labs.com. The author is also with CWI, Amsterdam, the Netherlands, and Faculty

of Applied Mathematics, University of Twente, the Netherlands.
yDepartment of Econometrics, Vrije Universiteit, De Boelelaan 1105, Room 1A22, 1081 HVAmsterdam, the Netherlands.

Email: nboots@econ.vu.nl

1



q y j g g

factors that a�ect the network performance. One could think of the inuence of the characteristics of the traÆc

o�ered to the system (particularly its `variability' in time, commonly called burstiness), as well as the features of

the network and its network elements (bu�er sizes, link speeds, routing).

In performance prediction through mathematical modeling, a crucial role is played by the traÆc model. The

common procedure is the following. First traÆc measurements are done. These are used to develop a traÆc model

{ such a model is usually phrased in terms of a stochastic process. Finally, it is calculated what performance is

realized if this traÆc stream feeds into the network { the type of models used are usually queueing models.

Long-range dependence. In other words, misspeci�cations of the traÆc model might cause inaccurate performance

predictions. This explains why the discovery of long-term dependences (in the beginning of the 1990's { a key paper

is Leland et al. [22]) raised considerable concerns. Before, it was generally accepted that short-range dependent

(SRD) source models captured all essential features of network traÆc, i.e., models in which the correlation function

of the arrival process decays exponentially in time. Long-range dependent traÆc, however, would require a slowly

(for instance polynomially) decaying correlation function.

After the discovery of LRD, one wondered what made network traÆc behave like this. A key result here states

that the aggregate of a large number of sources with heavy-tailed on- and/or o�-times looks like an LRD process

[40]. Then it can be argued that an individual user transferring �les tends to resemble a heavy-tailed on/o� uid

source, due to the heavy-tailed distribution of �le sizes. The aggregate of many users leads to LRD traÆc [9, 40].

Queueing results. For SRD sources an extensive body of queueing results is available. Usually one considers the

bu�er overow probability, but due to the constant service rate of the queue, this can be translated easily into

the probability that the delay is longer than a speci�c threshold. Notably, for SRD input the overow probability

decays (roughly) exponentially. The case of statistically identical phase-type on/o� uid sources was explicitly

solved [1, 21]: the overow probability can be expressed in terms of the solution of an eigensystem.

However, for queues fed by a superposition of LRD sources hardly any results were available. Therefore, during the

past, say, �ve years, the focus shifted towards those models. Explicit solutions of the bu�er occupancy distribution

are not known; considerable attention was paid to large-bu�er asymptotics. The earliest results [7, 30] were on

GI/G/1 queues with heavy-tailed service times. For the case of multiple on-o� sources partial results were derived,

see e.g. [4, 5, 19]. Remarkably, in these cases the large-bu�er asymptotics inherit the heavy tail of the service

times (for GI/G/1) or on-times (for superposition of on/o� sources); the tail is in general even heavier than the

service times or on-periods themselves.

Impact on performance. The above results suggest that LRD input (rather than SRD input) indeed leads to per-

formance degradation. However, there are two fundamental objections against the use of large-bu�er asymptotics.

In the �rst place, the convergence is typically slow: only for extremely large bu�ers the asymptotic is accurate.

In the second place, not for all applications the regime of large bu�ers is the most relevant one. Particularly for

real-time applications smaller bu�ers (or: smaller delay thresholds) are more important.

This last point was well-taken in a couple of more practically oriented articles by Ryu and Elwalid [33], Heyman

and Lakshman [18], and Grossglauser and Bolot [17]. Based on mathematical modeling and experiments with real

traÆc traces (the so-called Bellcore trace, VBR (Variable Bit Rate) MPEG video, etc.), they arrive at a common

conclusion: as long as delay requirements are in some sense stringent, only the correlation structure on shorter

time-scales plays a role. Long-term correlations do not have a signi�cant impact, and hence SRD models can be

used.

Analysis. In our study, we succeed in getting a theoretical handle on the result found in [17, 18, 33]. Our analysis

consists of two steps: First we present a versatile queueing model of traÆc multiplexed at a router, and then

we synthesize a number of strong existing structural results. Then we use these results to assess the inuence of
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following.

(i) Our versatile queueing model is the following. We have n i.i.d. sources, feeding into a FIFO queue with

bu�er B and link rate C. A generic source model is considered: traÆc generated by an individual user is

modeled as a uid on/o� pattern with generally distributed on- and o�-times. Notice that this model covers

both LRD (choose heavy-tailed on-times and/or o�-times) and SRD input.

A crucial point is that we do not focus on large-bu�er asymptotics but rather on many-sources asymptotics:

we let the aggregation level n grow large, and at the same time the resources are scaled accordingly: B � nb

and C � nc. Notice that in many practical applications the assumption of many sources is considerably

more realistic than the assumption of large bu�ers (or equivalently: large delay tolerance).

The asymptotics developed by Botvich and DuÆeld [3] state that the overow probability decays exponen-

tially in n. In this paper a major role is played by the resulting decay rate, particularly as a function of b.

The results from [3] enable us to calculate the loss curve I(�), i.e., the decay rate as function of b.

A disadvantage of the use of the Botvich-DuÆeld result is that it is implicit, in that the value of I(b) is

hidden behind a variational problem. Therefore we consider explicit characterizations of the loss curve for

small and large b [3, 24, 25]. Here the fundamental di�erence between LRD and SRD input comes to the

surface. Crucially, for small bu�ers an insensitivity result holds: I(b) depends on the on- and o�-times only

through their means { in other words, SRD and LRD sources (with the same mean on- and o�-times) behave

roughly identically. For large bu�ers however, there is a distinction between SRD sources, where I(b) is

(at least) linear in b, and LRD sources, where I(b) is sublinear (for instance like b�, with � 2 (0; 1), or like

log b). Hence, for LRD input the decay of the loss probability in the bu�er size is slower than exponential;

this is in stark contrast with SRD input, which has at least exponential decay. For the regime of large b

we also have insightful properties of the behavior of the sources during the queue's path to overow, which

again indicate the fundamental di�erences between SRD and LRD input.

Although our model is versatile (covering a broad range of traÆc types), it of course has a number of less

realistic properties. In practice, traÆc that is multiplexed on a network will be heterogeneous (rather than

homogeneous), and it will traverse a concatenation of links rather than just one. Also, in our model (unlike

TCP), the rate the users send at does not adapt to the available resources in the network. We will detail

these drawbacks, and argue why our model still captures the essential features.

(ii) Armed with the characteristics of the loss curve, we are in a position to assess the impact of LRD on the

experienced performance. We select a number of scenarios of applications (voice, video, �le transfer, web

browsing, ...), and use traÆc parameters that appeared in the literature and application-dependent delay

requirements.

Then for any value of the maximum delay (that may be exceeded by no more than a small fraction of the

packets) we can compute how many sources of a speci�c type can be admitted on a link with given rate. We

examine to what extent this number is a�ected by the shape of the on- and o�-time distributions (keeping

the mean on- and o�-times �xed).

Our conclusions on the impact of LRD on the performance can be summarized as follows: (i) If the delay

threshold is strict, there is hardly any di�erence between LRD and SRD input. For delay requirements in an

`intermediate' range, the probabilistic law of the input streams plays a role, but the `heaviest tails' do not

necessarily lead to the worst performance. Only for very tolerant delay requirements the large bu�er results,

as mentioned above, kick in. (ii) The level of aggregation is a signi�cant factor. If the ratio between the link

rate and the peak rate of a single source is high (and the sources are not too bursty), a high utilization can

be achieved, while at the same time the delay requirements are met; this holds even if the delay requirements

3
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the (insensitive) small bu�er situation, while still running the system at a fairly eÆcient level.

This paper is organized as follows. Section 2 concentrates on the multiplexing queueing model, and describes the

main properties of the loss curve. Section 3 applies this modeling to assess the impact of the model parameters on

the realized performance. Section 4 reects on important caveats regarding LRD traÆc { particularly illegitimate

reversal of limits leads to misleading results. Section 5 concludes.

2 The shape of the loss curve

This section presents the mathematical model underlying our analysis. The model and preliminaries are provided

by Section 2.1. Structural results on the loss curve are given in Sections 2.2 and 2.3. The main contribution of this

section is that we give a complete overview of the relevant results that provides (on an abstract level) important

insights in the fundamental di�erences between LRD and SRD input. We do so by combining theoretical results

that appeared in [3] and our previous work [24, 25]. In Section 2.4 we comment on the inuence of the correlation

structure of the arrival process on the shape of the loss curve.

2.1 Model and preliminaries

Model. We consider traÆc from n on-o� uid sources feeding into a bu�ered resource. This resource is modeled

as a queue with constant depletion rate C. The traÆc rate of each source alternates between on and o�; during

the on-times traÆc is generated continuously at a (normalized) peak rate of 1. The activity periods constitute

an i.i.d. sequence of random variables, each of them distributed as random variable A with values in IR+. The

silence periods are also an i.i.d. sequence, distributed as random variable S with values in IR+. Both sequences

are mutually independent. De�ne also

A(t) := TraÆc generated by a single source, in steady state, in a time interval of length t.

Later in our analysis we need the following assumption.

Assumption 2.1 The random variables A and S are such that IEA1+�
<1 (for some positive �) and IES <1.

The distribution of A+ S is non-lattice.

This assumption has two major implications { for details we refer to Section 2.1 of [14]. In the �rst place, the fact

that both IEA and IES are �nite ensures that the long-run fraction of time the source spends in the on-state is

p :=
IEA

IEA+ IES
;

and the fraction spent in the o�-state is its complement 1�p. Also, the residual activity period A? is well-de�ned:

conditioned on the process being in the on-state, A? has distribution

FA?(x) := IP(A? � x) =
1

IEA

Z
x

0

IP(A > y)dy;

S
? is de�ned analogously.

Performance measures. We are interested in the probability of the bu�er content exceeding level B, denoted by

p(B;C). Using the constant depletion rate, it is not hard to see how this performance metric can be translated

into the probability that the queueing delay exceeds some prespeci�ed threshold. Unfortunately, only in a few

special cases p(B;C) can be evaluated explicitly. This motivates why we resort to asymptotics.

In this work we choose the asymptotic regime in which the number of sources, say n, grows large. At the same

time we rescale the resources : C � nc and B � nb. This scaling was �rst introduced by Weiss [38] and has

proven to be very powerful, see e.g. [3, 8, 35]. We believe that this scaling is quite natural: network elements of
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many sources seems to be more realistic than the regime of large bu�ers, as the latter regime is not appropriate

for delay-sensitive applications.

We assume that the system is stable and non-trivial: p < c < 1: In the scaled model we de�ne

pn(b; c) := steady-state probability that the bu�er content exceeds level nb.

In particular we will analyze its exponential decay rate (as a function of b, for �xed c):

I(b) := � lim
n!1

1

n
log pn(b; c):

We call this curve the loss curve. The key result on I(b) is given below in Theorem 2.3.

Theorem 2.3 describes the many sources asymptotics for general b. Botvich and DuÆeld [3] proved it under fairly

general conditions, whereas related results were derived in [8, 23, 35]. The result that we use in this paper is a

slight variation of [23], that requires the following mild additional assumption.

Assumption 2.2 Assume inft>0 It(b) is a continuous function of b, where

It(b) := sup
�

�
�(b+ ct)� log IEe�A(t)

�
:

Theorem 2.3 [Loss curve for general b] Under Assumptions 2.1 and 2.2,

I(b) = inf
t>0

It(b) = inf
t>0

sup
�

�
�(b+ ct)� log IEe�A(t)

�
: (1)

For the proof of Theorem 2.3 we refer to Mandjes and Borst [25]. Informally, the following exponential approxi-

mation applies:

pn(b; c) � e
�nI(b)

; n large.

Discussion. Wischik [41] provides useful insight into the heuristics behind Theorem 2.3. He phrases I(b) as an

optimization over all paths of the bu�er leading to overow. His reasoning shows that the optimizing value of t,

in the sequel denoted by t?
b
, can be interpreted as the typical duration from the epoch the bu�er starts to �ll until

overow, given that this busy period leads to overow. Therefore, we will call t?
b
the most likely time to overow.

The most substantial drawback of Theorem 2.3 is its intransparency: its value is concealed behind the inf sup

program. This explains the interest in simple approximations of I(b) for small and large b. In the next two

subsections we review the approximations for small bu�ers (found in [25]) and large bu�ers (see [3, 24]). For large

bu�ers the loss curve is strongly a�ected by the distributions of the on- and o�-times { we explain in detail the

intuition behind this.

2.2 Small bu�ers: insensitivity in the shape of the distribution

The small bu�er implies that the state of any individual source is not likely to change often during the trajectory

to overow, simply because the time to overow is small. This is formalized in the next assumption, which is

satis�ed for a broad class of on- and o�-time distributions { in fact it is enough that the corresponding densities

are bounded.

Assumption 2.4 The probability that the state (i.e., on or o�) of any individual sources makes two or more

transitions in an interval of length t is O(t2), where t # 0.

Now de�ne the following two constants:

�(c) := c log

�
c

p

�
+ (1� c) log

�
1� c

1� p

�
;

and

�(c) := 2

s�
c

IEA
+
1� c

IES

�
log

�
c

1� c
� IES
IEA

�
� 2

�
c

IEA
� 1� c

IES

�
:

The following theorem is proved by Mandjes and Kim [25].
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lim
n!1

1

n
log pn(b; c) = ��(c)� �(c)

p
b+O(b); (2)

under Assumptions 2.1, 2.2, and 2.4.

� Inuence of distributions. Importantly, Theorem 2.5 states that the exponential decay rate depends on the

distribution of the on and o�-times, only through their means IEA; IES. In other words, for given means, and

small b, is not important whether the distributions have heavy tails or exponential tails. Consequently, the small

bu�er results found by Weiss [38] for exponential on/o� sources generalize to general on/o� sources.

� Multiplexing gains. For small bu�ers the loss curve I(b) increases like
p
b. This means that for small bu�ers the

overow probability decreases very fast, so there is a large `marginal bene�t' of an additional unit of bu�er space.

It was already widely recognized that small bu�ers were useful to absorb traÆc uctuations at the packet level

(that are due to the asynchronous arrival of packets). However, the shape of the loss curve for small b states that

even if traÆc is modeled as uid (and hence the packet level is ignored), it is worthwhile to have a small bu�er.

� Path to overow. The time to overow is proportional to
p
b; the proportionality constant is a straightforward

function of IEA, IES, and c, see Eq. 11 of [25]. As for the case with Exponential on- and o�-times [38], the

trajectory to overow looks like a hyperbolic cosine.

2.3 Large bu�ers: linear and sublinear loss curve

For large bu�ers no insensitivity result applies. We recapitulate two results, namely the result for light-tailed

on-times (giving rise to SRD input) by Botvich and DuÆeld [3] and the result for heavy-tailed on-times (giving

rise to LRD input) by Mandjes and Borst [24]. These results state that the shape of the distribution of the

activity period essentially determines the shape of the loss curve for large b.

We need a formal classi�cation of probability distributions. Particularly, we rely on the concept of subexponential

distributions, de�ned below in De�nition 2.6 and reviewed in detail in the appendices of [5]. The heavy-tailed

distributions we use in this paper are in the class of subexponential distributions. We also de�ne the class of

subexponentially varying distributions.

De�nition 2.6 [Heavy-tailed distributions] Suppose

IP(X +X
0
> t)

IP(X > t)
! 2; t!1;

where X and X
0 are i.i.d. random variables. With FX(�) := IP(X � x), we say that X has a subexponential

distribution, or FX (�) 2 S. Suppose the function vX(�) := � log IP(X > t) is regularly varying of index h (at

in�nity), that is,

vX(yt)

vX(t)
! y

h
; t!1;

for all y > 0. If vX (�) is regularly varying of index h 2 [0; 1), we say that X has a subexponentially varying

distribution, or FX (�) 2 V.

Unfortunately, the exact relation between the classes S and V is not clear. The most important heavy-tailed

distributions (like Pareto, Lognormal, and Weibull) are in both of them. A well-known implication [5, Lemma

7.2 and 7.3] of FX(�) 2 S is that for all positive �,

e
�tIP(X > t)!1; as t!1: (3)

- Light tails. First we review the case of light-tailed on-times, due to [3]. De�ne

�
? := sup

n
� : lim

t!1

t
�1 log IEe�(A(t)�ct) � 0

o
: (4)
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lim
b!1

I(b)� �
?
b = �;

under Hypotheses 1.(i)-(iv) of [3], and assuming that � := � limt!1 log IEe�
?(A(t)�ct) exists.

The crucial assumption here is Hypothesis 1.(iii) of [3], i.e., there exists a positive � such that IEe�(A(t)�ct) < 1

for all t large enough. For on-o� sources with subexponential on-time, because of (3), for � > 0 and t large:

IEe�A(t) � p IP(A?
> t) e�t � e

�ct;

here we focused on the probability that the source is on at time 0 and stays on during [0; t]. Therefore

Theorem 2.7 is not applicable if the bursts are heavy-tailed.

- Heavy tails. The following theorem, from [24], covers the case of heavy-tailed on-times.

Theorem 2.8 [Loss curve for large b { heavy-tailed on-times] If FA?(�) 2 S \ V:

lim
b!1

I(b)

v(b)
=

8>>><
>>>:

c�p

1�p
if h = 0;�

c�p

1�p

��
1

1�h

��
h

1�h
(c� p)

�
�h

if h 2 (0; 1) and
�
c�p

1�p

��
1

1�h

�
� 1;�

1
1�c

�h
if h 2 (0; 1) and

�
c�p

1�p

��
1

1�h

�
> 1;

with v(t) := � log IP(A?
> t), under Assumptions 2.1 and 2.2.

� Inuence of distributions. If the on-times are not heavy-tailed, Theorem 2.7 applies, even if the o�-times are

heavy-tailed. Hence I(b) is asymptotically linear in b, implying that the decay of the loss probability in the bu�er

size is essentially exponential. An alternative expression for �? is

sup
n
� : IEe�A(1�c)IEe��Sc � 1

o
;

cf. [13, 39]. In other words, in this regime, the loss curve depends on the entire distributions of A and S.

If the on-times are heavy-tailed, according to Theorem 2.8, I(b) more or less looks like v(b). Hence I(b) is

sublinear, i.e., the decay of the overow probability is slower than exponential. More precisely, I(b) looks like

log b for Pareto on-times, and like b�, � 2 (0; 1), for Weibull on-times. Notice that the asymptotics depend on the

distribution of S only through its mean.

� Multiplexing gains. It was already mentioned that for small b the overow probability decreases fast in b. From

Theorems 2.7 and 2.8, we conclude that this marginal bene�t is smaller for larger b, since the loss curve increases

only linearly or even sublinearly.

Notice that Theorem 2.7 is a more accurate than Theorem 2.8, in that the former gives a function f(�) such that

I(b) � f(b) tends to a constant, whereas the latter gives a function g(�) such that I(b)=g(b) tends to a constant.

Theorem 2.7 nicely describes (for light-tailed input) the multiplexing gain that can be achieved on top of bu�erless

multiplexing, as opposed to the crude `e�ective bandwidth approximation' I(b) � �
?
b, see the introduction of

Botvich and DuÆeld [3] and Choudhury, Lucantoni, and Whitt [6].

� Path to overow. The theoretical results of this section enable us to get a better qualitative understanding of

the most likely way for bu�er overow to occur.

- For systems with light-tailed on-times, detailed analyses are available. It is well understood that the sources

must behave according to a di�erent statistical law in order to �ll a large bu�er: The on-periods are

longer and the o�-periods shorter than during average behavior. More precisely: the on- and o�-times are

exponentially twisted. Essentially, during the path to overow, all sources behave according to the same

`new' statistical law, cf. the seminal paper of Weiss [38], and more recent articles [2, 27].
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di�erent. During a path to overow, there are two types of sources. A �rst group sends at peak rate the

entire time from an empty system to overow. Another group alternates between on and o�, in such a

way that they e�ectively contributing at mean rate (i.e., these sources behave according to their normal

statistical law). Note that this in stark contrast with the behavior exhibited by light-tailed sources; as

described above in that case all sources essentially behave in the same way, and alternate between on and

o�, e�ectively sending at a higher rate than their mean rate.

The validity of this intuition is supported by the following heuristic calculation. Consider the situation of

n homogeneous on-o� sources with FA?(�) 2 S \ V . Let us follow the above intuition, and let K be the

number of sources that send at peak rate. An approximation for the loss probability is

p(B;C) � max
K:K+(n�K)p>C

IP

�
A
?
>

B

K + (n�K)p� C

�K
; K 2 f0; : : : ; ng:

Putting K � nk,

1

n
log pn(b; c) � � min

k:k+(1�k)p>c
k � v

�
b

k + (1� k)p� c

�
� � min

k:k+(1�k)p>c
k � (k + (1� k)p� c)�hv(b): (5)

The minimum is reached for

k
? = min

��
c� p

1� p

��
1

1� h

�
; 1

�
: (6)

Inserting k
? into (5) this indeed directly leads to the decay rate given in Theorem 2.8. Notice that k? can

be interpreted as the fraction of sources that send at peak rate during the entire path to overow.

- Examples. We give three examples of sources with essentially di�erent trajectories to overow. The o�-times

are assumed to be exponentially distributed.

1. Light-tailed on-times. A and S are exponentially twisted. Following [2], for large b,

t
?

b
� IE �A+ IE�S

(1� c)IE �A� cIE �S
; where IE �A :=

IEAe�
?
A(1�c)

IEe�
?A(1�c)

and IE �S :=
IESe��

?
Sc

IEe��
?Sc

:

2. Pareto on-times. It is easily checked that if the on-periods are Pareto distributed, then FA?(�) 2 V
with h = 0; we assume that v(t) � (� � 1) log t for an � > 1. As h = 0, according to (6) a fraction

k
? = (c�p)(1�p)�1 send at peak rate essentially during the entire path to overow, whereas the remaining

fraction (1� c)(1 � p)�1 contribute at mean rate p (by alternating between on and o� with their `normal'

statistical law). An easy calculation gives aggregate input rate c. In other words: if h = 0, then the net

input rate will be only slightly larger than 0. This suggests that [24] t?
b
should grow faster than linearly in

b. In fact, Mandjes and Borst [24] show that t?
b
= bf(b), with f(�) such that log(bf(b))=f(b) ! 1 (with b

large). Thus f(b) is clearly smaller than polynomial, but larger than a constant. It is easily checked that

for A Lognormal we have similar behavior.

3. Weibull on-times. Here A has a cumulative distribution function exp[�t�], which leads to a v(�) function
which is regularly varying of index �, with � 2 (0; 1): From (6) it is seen that the net input rate is positive,

thus leading to a time to overow that is essentially linear in the bu�er size, with t
?

b
k
?(1 � c) � b. If h is

close to 1, then all sources will have long bursts (as k? = 1).

To illustrate the inuence of the distributions, we conclude this section with characteristic graphs of I(b) and t
?

b

as functions of b. In Figure 1 we compare light-tailed (Geometric), Pareto, and Weibull on-times. For numerical

ease, we use slotted time; consequently the I(b) curve does not quite look like a square root for small b. It can be

veri�ed that for large b, I(b) is indeed linear for Geometric bursts, log-like for Pareto, and polynomial for Weibull.

Notice the superlinear behavior of t?
b
for Pareto on-times.
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Figure 1: I(b) and t
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, as functions of b.
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A general conjecture is that, if the packet arrivals are negatively (positively) correlated on time scale t
?

b
, then

the loss curve is convex (concave) at b. Empirical motivation for this conjecture can be found in [3, Section

4.4]. There a discrete-time queue is considered, fed by sources with Geometric(q1) on-times and Geometric(q2)

o�-times. They found that depending on the correlation structure, the loss curve has a convex or concave shape.

More precisely, for q1 + q2 > 1 (negative correlation) they showed convexity, for q1 + q2 < 1 concavity (positive

correlation).

In the cases described in the previous subsections the loss curve is concave, due to the positive correlations of

the inputs that satisfy the assumptions of Theorems 2.7 and 2.8. However, it is possible to construct on-o�

uid sources with negative correlations, for instance by taking deterministic on and o�-times. In the literature

signi�cant attention has been paid to this type of `adversarial traÆc' [15].

From the formulas reviewed in the previous subsections we also conclude that the level of correlation determines

the level of concavity. For b = 0 the curve is highly concave (second derivative is1), for larger b (and consequently

longer associated time scale) the concavity is less pronounced. In the light-tailed case the concavity vanishes: the

loss curve has a linear asymptote. This is in line with the observation that for light-tailed activity periods there

is indeed hardly any correlation left on the relevant time-scale (which is proportional to b), due to the short-range

dependent character of the sources. In the heavy-tailed case the loss curve could be still quite concave (log b for

Pareto, b� for Weibull), because on the relevant time scale still considerable positive correlations exist.

3 Numerical evaluations

Section 2 indicated that for small bu�ers LRD hardly a�ects queueing performance, whereas for large bu�ers it

does. Hence, it is of crucial importance to identify which of these two regimes applies in realistic situations. To

that end, our approach is the following. We �rst list a number of relevant applications (voice, video, �le transfer,

web browsing, etc.). The corresponding traÆc characteristics (in terms of our on-o� model) and performance

requirements are identi�ed from empirical studies, e.g., [9, 31]. Then we compute, for di�erent values of the link

rate C, how many ows can be accepted without violating the performance criterion, varying the shape of the

distributions (but leaving the mean on- and o�-times constant). Clearly, this statistic gives important insight into

the impact of the traÆc characteristics.

This section is organized as follows. We start by presenting the related literature in Section 3.1, and indicate

where we depart from their approach. Then we describe in Section 3.2 the traÆc scenarios and performance

requirements. In Section 3.3 we assess the impact of the traÆc characteristics for the described traÆc scenarios.

Section 3.4 presents the conclusions.

3.1 Literature on the impact of LRD

Before we present our own approach, and its results, we �rst briey review a number of important contributions

on the impact of LRD.

Ryu and Elwalid [33]. In this paper attention is focused on multiplexed real-time VBR video sources (with

purposes like video conferencing, etc.). The main conclusion is that the long-term correlations do not a�ect the

performance { short-term correlations are dominant, and therefore Markov modeling is adequate. The main reason

behind this lies in the rather strict delay requirement (in the order of 20 { 30 ms per queue) imposed by real-time

video. The performance metric used is the probability that the delay exceeds the upper bound mentioned above,

which can be translated into the probability that the bu�er content exceeds some speci�c level. It can be argued

that the strict delay constraint implies, loosely speaking, that the bu�er has little memory, such that long tails

cannot have a signi�cant impact. The analysis relies on the notion of critical time-scale, i.e., the number of

10
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this number is small.

Heyman and Lakshman [18]. The authors also consider real-time VBR video, and not surprisingly, the conclusion

of the paper is similar to the one of [33]. LRD does not a�ect the bu�er occupancy distribution signi�cantly,

and Markovian models suÆce to accurately predict performance. Only knowledge of the mean and variance

of the marginal distribution and the lag-1 autocorrelations are required. The authors advocate the use of the

(short-range dependent model) DAR(1), i.e., a discrete autoregressive model of order 1.

Grossglauser and Bolot [17]. The authors conclude that the amount of correlation required is determined by

the time-scales that are typical for the system under consideration. This justi�es the use of Markov models (or

self-similar models, as long as they have the right correlation structure up to the `correlation horizon'). This in

line with the �ndings from [18, 33]. Grossglauser and Bolot [17] consider the packet loss rate rather than the

probability that the delay exceeds some critical value. The authors also conclude that, in order to decrease the

loss rate, it is much more eÆcient to adjust the marginal distribution of the rate than to use large bu�ers. The

authors propose a modulated uid traÆc model of which a special case is constituted by a superposition of on-o�

sources.

Evaluation. The studies mentioned [17, 18, 33] have a strongly empirical character, supported by mathematical

modeling. Both [18] and [33] exclusively address real-time video, although the same question (`what is the impact

of LRD?') is of great importance for other applications. Below we will de�ne a broader set of applications.

The interesting point of [33] is the notion of critical time scale, i.e., the number of time-lags that contribute to

the overow probability. The authors use large deviations theory to support this { the role of the critical time

scale is comparable to t
?

b
in our analysis, and the correlation horizon identi�ed in [17].

As noted above, the model of [17] covers on-o� sources. However, they assume that the distributions of the bursts

and the silences are identical, which seems to be quite restrictive. Clearly, our model does not have this constraint.

The performance metric used in [17] is the packet loss ratio, instead of the probability of exceeding some delay

level. This does not seem to be so adequate, as the authors mention that the bu�er that they consider is so

large that packets can have a delay of a few seconds. Evidently, in applications like real-time applications, it is

usually not desirable that packets experience delays of that order. Therefore we prefer the probability of the delay

exceeding some prede�ned bound (considerably smaller than a few seconds).

From the above, we conclude that there is a need for a uni�ed modeling that covers a broader set of applications

(apart from video also applications like audio, �le transfer, etc.). In the next subsection we detail the approach

that is followed in the present paper.

3.2 Approach

We will use the results of the previous section to shed some light on the impact of LRD. For the sake of convenience

we choose slotted time. An important advantage of discrete time is that it is easy to evaluate the moment

generating functions recursively (as described in Appendix A). At the same time, Theorem 2.3 goes through.

Also the theorems on small and large bu�ers are essentially still valid, given that the number of packets per burst

is large (because then there is little di�erence between the discrete-time model and the uid model).

Performance measure. The metric we use is the probability pD of the packet delay exceeding some maximum {

this probability must be small, typically in the order of 10�4� 10�5: The delay probability can be translated into

the overow probability of Section 2: with delay requirement D, we must have that pn(cD; c) � pD:

11
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number of sources that can be admitted to achieve this performance target, it is clear that j is an increasing

function of D. As follows easily from Theorem 2.3,

j = inf
k2IN

sup
�

�
�(CD + Ck) + log pD

log IE exp(�A(k))

�
: (7)

Alternatively, we can choose n large (and as before B � nb and C � nc), and Æ such that exp[�nÆ] = pD. Then,

j = nJ(D), with

J(D) := inf
k2IN

sup
�

�
�(cD + ck)� Æ

log IE exp(�A(k))

�
:

Note that in this case j rather than n denotes the number of sources. We call this curve (as a function of D)

the acceptance curve. We will assess the impact of the distributions of the on- and o�-times on the basis of this

acceptance curve. In Appendix B we derive that it is, for small D, insensitive to higher moments of the activities

and silences (just like the loss curve is).

Applications. The source models we present below do not intend to describe the stochastic behavior of the traÆc

ow as accurately as possible. However, we believe that the capture the essential features, such that we can

draw general conclusions on the impact of the source characteristics. Table 1 summarizes the source models and

performance requirements.

� Scenario 1: Voice, non-real-time audio. Due to its interactive character, voice has very strict delay require-

ments, typically in the order of a few ms per hop (router). We will consider voice with silence suppression,

leading to on-o� streams, with mean on and o�-times in the order of a second. We will choose the parame-

ters given in Sriram and Whitt [36]: activities of mean length 352 ms, and silences of mean length 650 ms,

and a peak rate of 32 kbit/s. In the experiments below, we will vary the distribution of the activities and

silences.

As opposed to voice, non-real-time audio (for instance broadcast) does not impose severe delay constraints.

One could think of a delay requirement up to 1 s per router. For reasons of simplicity we use the same

traÆc characteristics as those described above for coded voice.

� Scenario 2: VBR video. Several studies describe the statistical behavior of variable bit rate MPEG video

{ an overview of available models is given in Section 3.2 of Rose [32]. Jelenkovi�c, Lazar, and Semret [20]

examine the traces from [32]. We will use a simpli�ed version of the model of [20]: sources with two levels

of activity, so-called scenes. These scenes have mean lengths of about 9 seconds, i.e., 18.75 so-called Groups

of Pictures (GOPs), where a GOP corresponds to 0.5 s. The distributions of the scenes are i.i.d.: for

both activity levels the density of the duration is Pareto with tail-parameter in the order of 2.5 (i.e., the

probability of a scene exceeding level x roughly looks like x�1:5). The traÆc rate at the high activity level

could be about 800 kbit/s (about 4 � 105 bits per GOP), and 400 kbit/s (about 2 � 105 bits per GOP).

Notice that the model presented in [20] is more accurate, as it identi�es a uid model as described above

(on a somewhat longer time-scale), but also a detailed model for the short time-scale. Also they distinguish

more than just two activity levels (four levels, with traÆc rates of 230, 440, 680 and 1180 kbit/s). We

believe however that our two-level model captures the main e�ects { notice that a queue fed by sources with

two activity levels can be analyzed by the on-o� models of this paper (by adjusting the peak rate and the

link rate).

The delay requirements are quite stringent in case of real-time video (e.g., video conferencing), in the order

of a few ms per hop; for broadcast video one could think of delays up to 1 s per hop.

� Scenario 3: Web browsing. A �rst important observation is that we should distinguish between packet

delay and �le transfer delay. The former is the delay an individual packet experiences, whereas the latter is

12



application IEA in s IES in s peak rate (minimum rate) in kbit/s

voice/audio 0.352 0.650 32

VBR video 9.0 9.0 800 (400)

web browsing (i/ii/iii) 0.01/0.10/0.50 10 3000/300/60

roughly the delay between the request and the arrival of the last bit { we focus on the former. Packet delay

requirements (per router) could be thought of as in the order of a few tens of ms.

An important contribution to the distribution of �le sizes is by Crovella and Bestavros [9]. They do extensive

statistical analysis of WWW document sizes. They �nd a heavy-tailed distribution, where the tail of the

complementary distribution function is of Pareto-type of index 1.0 up to 1.3, and with mean in the order

of a few thousand bytes, see [9, Table 1]; comparable �gures are given by Paxson and Floyd [31] for ftp

connections on the Internet.

As motivated in [9, Section 5] the traÆc generated by a web browsing user could be described as an on-o�

source: the on-times are the transfers, the o�-times are the think-times. The mean on-times depend of

course on the peak rate at which the �le arrives at the router. In our calculations below we will use (i) a

high peak rate (in the order of 3000 kbit/s), (ii) a medium peak rate (in the order of 300 kbit/s), and (iii)

a low peak rate (in the order of 60 kbit/s). We take a think-time with mean 10 s.

The idea is to plot the acceptance curve for the traÆc pro�les described above, for di�erent distributions of the

on- and o�-times. We will do that for di�erent values of the link rate C. Then, by visual inspection, for any delay

requirement, we can conclude whether or not the speci�c distributions play a role or not. Based on Theorem 2.5

and Appendix B we expect that for small D there will hardly be any di�erence, but Theorems 2.7 and 2.8 indicate

that for larger D the curves will diverge. The interesting question is: is there any di�erence at the practically

relevant values of D?

Evaluation of the approach. The approach described above o�ers a uni�ed framework for evaluation of the impact

of LRD under realistic circumstances. Obviously the model does not capture all e�ects that play a role in practice.

Below we present a number of these drawbacks, and argue why we think that our results are still applicable.

� TraÆc is homogeneous. In practice, network traÆc is composed from a number of heterogeneous sources. As

explained in [3, p. 300] it is possible to calculate the loss curves of heterogeneous superpositions of sources.

For the sake of clarity we will restrict ourselves in the numerical experiments below to homogeneous input.

We expect that heterogeneous input will lead to similar �gures.

� No (feedback) rate control taken into account. Real-time video and interactive voice are not likely to be

transported by a feedback-based protocol. However for the other (non-real-time) applications there will be

a role played by TCP { this protocol provides the sender with information on the state of congestion, on

the basis of which he can adapt the rate at which he sends.

In other words, for instance for a �le transfer the pattern of packet arrivals is not on-o�, on a detailed time-

scale. However, as justi�ed in [9, Section 5.2.1] on a somewhat longer time-scale the rough approximation by

an on-o� uid source applies. Also, notice that it is possible to explicitly model TCP-like feedback control

mechanisms by uid models, e.g. the one examined by Mandjes and Mitra [26]. For reason of conciseness

with did not use these models here.

� Single link instead of network model. We consider just a single link, but of course the end-to-end delay is

the metric the user is interested in. One could take this into account by approximating the end-to-end delay

13
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a delay larger than D is �, then (under an independence assumption), the probability that the end-to-end

delay is larger than ND is much smaller than �. In Van der Wal et al. [37] a method is explained how to

generate more realistic estimates on the end-to-end delay.

� Drawbacks of the traÆc model. Although the traÆc model is rather generic (since the on and o�-times are

general), some remarks can be made here. As indicated above, for VBR video a model with more than

just two levels could be more suitable. It should be emphasized that these more complicated models can in

principle be treated by the same large deviations machinery.

We also assume that sources are stationary: their statistical behavior is constant in time. Therefore, we could

not deal with the cases described in [9], where Pareto-distributed �le size are described with parameter 0.9.

3.3 Numerical results

In this section we present graphs of the acceptance curve j(D) corresponding to the scenarios described in Section

3.1. This is done for di�erent on-time distributions (as we saw in Section 2 that the distribution of the o�-time

does not really a�ect the shape of the loss curve). We also varied the link rate C, thus allowing di�erent levels of

multiplexing.

The on- and o�-times are IN-valued random variables. Like in Figure 1, we choose the following distributions:

� Weibull(�; �) distribution (`moderately' heavy tail) with

IP(A = k) = e
�[�(k�1)]

� � e
�[�k]

�

(0 < � < 1; � > 0):

In the experiments the �, which determines the heaviness of the tail of the distribution, is �xed at 0.4. The

� is chosen such that the mean has the right value.

� Pareto distribution (`very' heavy tail) with

IP(A = k) = [�=(� + k � 1)]
� � [�=(� + k)]

�
(�; � > 0):

The index parameter � determines the heaviness of the tail of the distribution. In the numerical exam-

inations, � has a application-speci�c value. The � is chosen such that the distribution has the desired

mean.

� Geometric(q1) distribution (light tail) with

P (A = k) = (1� q1)
k�1

q1 (0 < q1 < 1):

The mean of this distribution is 1=q1:

We take Geometric(q2) o�-times with

IP(B = k) = (1� q2)
k�1

q2 (0 < q2 < 1):

We evaluate three sizes of the link rate, namely 45 Mbit/s (aggregation level), and 150 Mbit/s and 600 Mbits/s

(backbone). We take the delay exceedance probability pD equal to 10�5 and we choose the packet size equal to

300 bytes. For our computations we use the convention that one Kbyte equals 1024 bytes.

As mentioned in Section 3.2, in our VBR video model traÆc generated by a single source is not on-o�, but rather

is the rate alternating between two positive levels. For implementation purposes we normalize the peak rate to 1

(in the VBR video model we normalize the di�erence between the peak rate and the minimum rate to 1) and we

scale the link rate, the minimum rate (in case of the VBR video model) and the mean of the on- and o�-times

accordingly.
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rate. For this reason we also plot the line C=p in the pictures. As said before, a scheme for the computation of

IE exp(�A(k)) and the acceptance curve are given in Appendix A.

3650

3700

3750

3800

3850

3900

3950

4000

4050

4100

4150

0 0.2 0.4 0.6 0.8 1

j(D)

D (in seconds)

voice/audio (C = 45 Mbit/s)

Pareto(2.5,6.411)
Geometric(0.2081)
Weibull(0.4,0.8058)

C/(mean rate)

12800

12900

13000

13100

13200

13300

13400

13500

13600

13700

0 0.2 0.4 0.6 0.8 1

j(D)

D (in seconds)

voice/audio (C = 150 Mbit/s)

Pareto(2.5,6.411)
Geometric(0.2081)
Weibull(0.4,0.8058)

C/(mean rate)

53000

53200

53400

53600

53800

54000

54200

54400

54600

54800

0 0.2 0.4 0.6 0.8 1

j(D)

D (in seconds)

voice/audio (C = 600 Mbit/s)

Pareto(2.5,6.411)
Geometric(0.2081)
Weibull(0.4,0.8058)

C/(mean rate)

15



3650

3700

3750

3800

3850

3900

3950

4000

4050

4100

4150

0 0.005 0.01 0.015 0.02 0.025 0.03

j(D)

D (in seconds)

voice/audio (C = 45 Mbit/s)

Pareto(2.5,6.411)
Geometric(0.2081)
Weibull(0.4,0.8058)

C/(mean rate)

12800

12900

13000

13100

13200

13300

13400

13500

13600

13700

0 0.005 0.01 0.015 0.02 0.025 0.03

j(D)

D (in seconds)

voice/audio (C = 150 Mbit/s)

Pareto(2.5,6.411)
Geometric(0.2081)
Weibull(0.4,0.8058)

C/(mean rate)

53000

53200

53400

53600

53800

54000

54200

54400

54600

54800

0 0.005 0.01 0.015 0.02 0.025 0.03

j(D)

D (in seconds)

voice/audio (C = 600 Mbit/s)

Pareto(2.5,6.411)
Geometric(0.2081)
Weibull(0.4,0.8058)

C/(mean rate)

16



64

66

68

70

72

74

76

78

0 0.1 0.2 0.3 0.4 0.5

j(D)

D (in seconds)

VBR video (C = 45 Mbit/s)

Pareto(1.5,2303.3)
Geometric(0.000651)
Weibull(0.4,0.002155)

C/(mean rate)

230

235

240

245

250

255

260

0 0.1 0.2 0.3 0.4 0.5

j(D)

D (in seconds)

VBR video (C = 150 Mbit/s)

Pareto(1.5,2303.3)
Geometric(0.000651)
Weibull(0.4,0.002155)

C/(mean rate)

970

975

980

985

990

995

1000

1005

1010

1015

1020

1025

0 0.1 0.2 0.3 0.4 0.5

j(D)

D (in seconds)

VBR video (C = 600 Mbit/s)

Pareto(1.5,2303.3)
Geometric(0.000651)
Weibull(0.4,0.002155)

C/(mean rate)

17



2000

4000

6000

8000

10000

12000

14000

16000

0 0.05 0.1 0.15 0.2

j(D)

D (in seconds)

web browsing (i) (C = 45 Mbit/s)

Pareto(1.2,2.452)
Geometric(0.078125)
Weibull(0.4,0.8058)

C/(mean rate)

20000

25000

30000

35000

40000

45000

50000

55000

0 0.05 0.1 0.15 0.2

j(D)

D (in seconds)

web browsing (i) (C = 150 Mbit/s)

Pareto(1.2,2.452)
Geometric(0.078125)
Weibull(0.4,0.8058)

C/(mean rate)

140000

150000

160000

170000

180000

190000

200000

210000

0 0.05 0.1 0.15 0.2

j(D)

D (in seconds)

web browsing (i) (C = 600 Mbit/s)

Pareto(1.2,2.452)
Geometric(0.078125)
Weibull(0.4,0.8058)

C/(mean rate)

18



10000

11000

12000

13000

14000

15000

16000

0 0.05 0.1 0.15 0.2

j(D)

D (in seconds)

web browsing (ii) (C = 45 Mbit/s)

Pareto(1.2,2.452)
Geometric(0.078125)
Weibull(0.4,0.8058)

C/(mean rate)

40000

42000

44000

46000

48000

50000

52000

0 0.05 0.1 0.15 0.2

j(D)

D (in seconds)

web browsing (ii) (C = 150 Mbit/s)

Pareto(1.2,2.452)
Geometric(0.078125)
Weibull(0.4,0.8058)

C/(mean rate)

185000

190000

195000

200000

205000

210000

0 0.05 0.1 0.15 0.2

j(D)

D (in seconds)

web browsing (ii) (C = 600 Mbit/s)

Pareto(1.2,2.452)
Geometric(0.078125)
Weibull(0.4,0.8058)

C/(mean rate)

19



13500

14000

14500

15000

15500

16000

16500

0 0.05 0.1 0.15 0.2

j(D)

D (in seconds)

web browsing (iii) (C = 45 Mbit/s)

Pareto(1.2,2.452)
Geometric(0.078125)
Weibull(0.4,0.8058)

C/(mean rate)

48500

49000

49500

50000

50500

51000

51500

52000

52500

53000

53500

54000

0 0.05 0.1 0.15 0.2

j(D)

D (in seconds)

web browsing (iii) (C = 150 Mbit/s)

Pareto(1.2,2.452)
Geometric(0.078125)
Weibull(0.4,0.8058)

C/(mean rate)

205000

206000

207000

208000

209000

210000

211000

212000

213000

214000

215000

216000

0 0.05 0.1 0.15 0.2

j(D)

D (in seconds)

web browsing (iii) (C = 600 Mbit/s)

Pareto(1.2,2.452)
Geometric(0.078125)
Weibull(0.4,0.8058)

C/(mean rate)

20



In this section we discuss the inuence of the shape of the on-time distribution on the acceptance curve, as follows

from the graphs in Section 3.3. We also conclude that the level of aggregation (i.e., the size of the link rate) is an

important factor; below we comment on its impact.

The on-time distribution. A general conclusion is that the relevance of the on-time distribution strongly depends

on the delay requirement D. As can be seen from the graphs, for stringent delay requirements the on-time

distribution does not play a role at all; in fact we are in the small bu�er regime. When the delay threshold

increases the shape of the on-time distribution becomes more important. However, from the results for voice and

video we conclude that here the heaviness of the tail is certainly not the only determining factor, since the graph

of the Pareto distribution lies above the graph of the Weibull distribution (although for large enough delay this is

no longer the case, according to Theorem 2.8). Apparently, detailed information on the shape of the distribution

(not necessarily the tail) has signi�cant impact.

For web browsing, presumably due to the large o�-times (and consequently the large peak-to-mean ratio), the large

bu�er regime is reached rather quickly. Consequently the positioning of the graphs for the di�erent distributions

is as expected: Pareto is worse than Weibull, which is worse than Geometric.

Level of aggregation. From the above �gures we can draw the following general conclusion regarding the level of

aggregation. If the ratio between the link rate and the peak rate of a single source is high (and the sources are

not too bursty), a high utilization can be achieved, while at the same time the delay requirements are met; this

holds even if the delay requirements are stringent.

Consequently, in traÆc engineering one could use tight delay requirements, corresponding to the (insensitive)

small bu�er situation, while still running the system at a fairly eÆcient level. One could even resort to the

zero bu�er case (`rate-envelope multiplexing') if the resulting eÆciency is suÆciently high. From the graphs we

conclude that the rate-envelope multiplexing utilization for voice and video is in the range 80-90%. Similar results

hold for (ii) and (iii) of the web browsing model. Scenario (i) however leads to a poor utilization, particularly

when C = 45 Mbit/s; this is due to the extremely high peak-to-mean ratio).

Clearly, if one is satis�ed with the rate-envelope multiplexing utilization, distributions do not play a role at all.

Only in case of a low level of aggregation (low link rates, for instance in the access network), in conjunction

with (extremely) bursty input, this leads to a low eÆciency. Then it could be worthwhile to exploit the bu�er

(equivalently: to allow for signi�cant delay) in the traÆc engineering guidelines. Unfortunately, this requires

information about the on-time distribution, which is more detailed than just the mean. The graphs suggest that

the eÆciency can be increased considerably, even by a conservative choice of the on-time distribution (Weibull

for voice and video, Pareto for web browsing).

4 On the impact of long-range dependence on network performance

With the theoretical results of Section 2, as well as the numerical results of Section 3 in mind, we are in a position

to give a well-founded assessment of the inuence of long-range dependence on network performance.

The structure we use in this section is the following. We phrase a number of statements that have some truth,

but whose validity is more subtle. We detail the extent to which the statement holds, and where more care needs

to be taken. Some of the arguments are perhaps already known in the literature; the text below is intended to

give a complete account on this issue.

Claim 4.1 If sources with heavy-tailed inactivity periods are multiplexed, this leads to performance degradation,

in the sense that the tail of the queue length distribution is heavier than exponential.
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that these are non-exponential { for instance Feldmann [16] describes that interarrival times of TCP connections

can be accurately modeled by a heavy-tailed Weibull distribution.

Now consider the situation that a large number of sources with heavy-tailed o�-times are multiplexed. From

the formulae of Section 2, it is not hard to see that this hardly a�ects the queue's tail behavior: (1) In case the

on-times have a light tail, we get from Theorem 2.7 that the queue size distribution decays exponentially in the

bu�er size; (2) If on the other hand the on-times have a subexponential tail, Theorem 2.8 indicates that the queue

size distribution mimics the heavy tail of the residual activity period; the o�-time is represented just by its mean.

We conclude that a possibly heavy tail of the o�-time does not contribute to non-exponential tail behavior of the

queue.

Claim 4.2 The Hurst parameter is a valuable measure of long-range dependence. The higher it is, the fatter the

tail of the queue size distribution, i.e., the worse the experienced QoS.

The statement is formally true: Consider fractional Brownian motion (FBM) BH(t) with Hurst parameter H ,

i.e., the Gaussian process with zero mean, stationary increments and correlation structure

IE (BH(s) � BH(t)) =
1

2

�
s
2H + t

2H � js� tj2H
�
:

For a queue fed by this process it is known that the queue-length distribution has a Weibull-like tail with tail

parameter 2(1�H). In other words, roughly the asymptotic relation

IP

�
sup
t>0

BH(t)� Ct > B

�
� exp

�
��B2(1�H)

�
applies [28, 29]. In other words, indeed, a higher H leads to performance degradation.

However, a number of limit results that appeared in the literature might lead to some confusion here. Consider

on-o� sources of which either the on-times are of Pareto-type (of index �on) or the o�-times of Pareto-type (of

index �o� ), or both. Loosely speaking, in [40] it was show that the aggregation of many of these sources looks

like FBM with

H =
1

2
� (3�min(�on; �o�)):

The exact de�nition of this convergence is given in detail in [40] { it should be noted that both the number of

sources is large and time is rescaled. This would suggest that the loss curve of a large number of these sources

looks like b2(1�H)
: However, from Theorem 2.8 we know that it behaves as (�on � 1) log b: Apparently, the limits

that are taken (large aggregation, large bu�er, time rescaling) do not commute.

Notice also that in case of Exponential on-times and Pareto o�-times, the aggregate still converges to FBM,

whereas Theorem 2.7 gives that the overow probability decays exponentially in the bu�er size.

Claim 4.3 If the on-times of the sources are heavy-tailed, so is the queue-length distribution.

This claim needs to be stated a little more precisely. As shown by Dumas and Simonian [14], the overow

probability decays exponentially in the bu�er size as long as the peak rates of the sources with heavy-tailed

on-times plus the mean rates of the sources with Exponential on-times is below the link rate. If this is not the

case, then the statement is formally true, in the sense that the overow probability decays in a subexponential

way in the bu�er size.

However, as the experiments in Section 3 showed, in practical terms, in hardly any scenario the large bu�er

regime is reached; the small bu�er regime seems to be more relevant as long as the on-times are not endowed with

extremely heavy tails, the delay requirement is not extremely loose, and there is a reasonable level of aggregation.

Claim 4.4 The loss probabilities in a multiplexing system are determined by the tails of the distributions of

activity and silence periods of the sources.
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which the correlations do not signi�cantly a�ect the overow probability. In other words: Markovian models

that capture the short-term correlations (up to the critical time-scale) are well-suited to predict the overow

probability. The exact shapes of the tails of the distributions of the on and o�-times are therefore of minor

importance. By `realistic scenarios' we again mean that tails are not extremely fat, the delay requirement is

somewhat stringent, and there is a fair amount of multiplexing. One could expect that in practical scenarios,

the distribution `at the left hand side' could be more relevant, i.e., the probability of extremely short on- and

o�-times. It could be seen easily that there could be important that with relatively high probability there is an

extremely small interarrival times or silence periods (for a given mean).

Based on our objections to Claims 4.1 up to 4.4, clearly the statement `Long range dependence leads to performance

degradation' is not universally true.

5 Conclusions

Starting from the generic on-o� source model, we have assessed the impact of long-range dependence (LRD) on

queueing performance. Importantly, this impact crucially depends on the performance criterion imposed. If the

delay requirement is `tight', the situation is insensitive in the distributions of the bursts and silences. The second

relevant factor is the so-called `level of aggregation': if the link rate is large compared to the peak rate of the

source (which is not too large compared to the mean rate of the source), a fairly high utilization can be achieved,

even when the delay requirements are tight.

Therefore, a strategy could be to use tight delay requirements, corresponding with an insensitive solution. Only

in special cases (`loose' delay requirements, extremely bursty traÆc, a small link rate compared to the peak

rate), it is worthwhile to explicitly take into account the bu�er when determining the maximum number of ows

acceptable.

A main conclusion we can draw is that the claim that LRD leads to performance degradation does certainly not

hold in general: The impact of LRD on network performance is strongly parametrized by the level of aggrega-

tion and the delay requirement { LRD in the presence of fairly high level of aggregation and a stringent delay

requirement hardly leads to performance degradation.

We have also discussed the most important theoretical results on the impact of LRD on queueing performance. The

most theoretical results have been derived for queues with large bu�ers. Then indeed LRD leads to performance

degradation in the sense that heavy-tailed on-periods implies a heavy-tailed queue size distribution. But as we

already mentioned, only in very special cases the assumption of large bu�ers is realistic. Note that heavy-tailed

o�-periods and light-tailed on-periods imply a light-tailed queue size distribution, although the aggregate of such a

process does yield fractional Brownian motion. Hence in this case LRD does not lead to performance degradation.

Appendix A. Computation of the loss curve and the acceptance curve

In this appendix we indicate how to compute the loss curve for the case that A and S are discrete random

variables. In this case the distribution of the residual activity period A
? is given by

IP(A?
> k) =

1

IEA

1X
l=k

IP(A > l):

A similar result holds for the residual silence distribution. Abbreviate

ak := IP(A = k);

a
?

k
:= IP(A? = k);

sk := IP(S = k);

s
?

k
:= IP(S? = k):
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can be done recursively, as follows. Clearly, in evident notation,

IEe�A(k) = pIEA?e
�A(k) + (1� p)IES?e

�A(k)
:

Both terms can be evaluated as follows:

IEA?e
�A(k) =

k�1X
i=1

a
?

i
e
�iIESe

�A(k�i) +

1X
i=k

a
?

i
e
�k

; IES?e
�A(k) =

k�1X
i=1

s
?

i
IEAe

�A(k�i) +

1X
i=k

s
?

i
;

where

IEAe
�A(j) =

j�1X
i=1

aie
�iIESe

�B(j�i) +

1X
i=j

aie
�j

; IESe
�A(k) =

j�1X
i=1

siIEAe
�A(j�i) +

1X
i=j

si:

If the process alternates between two positive levels (rather than just on-o�), it is convenient to write A(k) as

a on-o� part B(k) plus a part that is linear in k. This is done as follows. Let rm denote the minimum rate, let

rp denote the peak rate, and de�ne r := rp � rm. We can rewrite A(k) as rmk + rB(k), where B(k) is traÆc

generated by an on-o� source with peak rate 1.

Loss curve and acceptance curve. When calculating I(b), the variational problem

inf
k2IN

sup
�

�
�(b+ ck)� log IEe�A(k)

�
has to be solved. It is easy to �nd �(k), i.e., the optimizing argument of the inner optimization for �xed k. This

is because the function is convex in �; there is a unique optimizer in IR+: Then the in�mum over k has to be

computed | there is no nice concavity property, unfortunately.

When calculating j(D) in (7), we lack the convexity property of the optimization over �. However, the complexity

of the numerical procedure turns out to be comparable to that of the loss curve.

The main e�ort in computing the acceptance curve numerically consists of computing the moment generating

function IEexp(�A(k)) for various combinations of � and k: In order to compute this moment generating function

for a given k, one has to compute for all l = 1; : : : ; k � 1. It is not hard to see that hence the complexity of

computing IEexp(�A(k)) equals O(
P

k

l=1 O(l)) = O(k2). Call the optimizing k in (7) k?. Since for �xed D the

maximum value of k is approximately k?; the complexity of computing j(D) is roughly O(k?2):

Recall from Section 2.3 that for Weibull and Geometric on-times k? grows linearly in D; and for Pareto on-times

the growth of k? is even superlinear in D: Thus the computing time for j(D) increases rapidly for large D. For

this reason we choose interrupt our calculations for D equal to some kmax:We chose kmax = 1500 in our numerical

computations.

An approximation for the acceptance curve for higher delays can be obtained by increasing the packet size.

E�ectively, this rede�nes the time unit: the interarrival time of packets (within a burst) increases. In this way

the rapid growth of k? (as function of D) can be controlled.

Appendix B. Acceptance curve for small delays

In this appendix we derive a generic property of the acceptance curve. For small values of D we expect that

the number of sources to be admitted grows rapidly, based on the square root in Theorem 2.5. Then, for small

b = cD, we have to solve

J(D) � �
�

c

J(D)

�
+ J(D) � �

�
c

J(D)

�
�
s

b

J(D)
= Æ:

Let us try the approximation J(D) � J(0) +K
p
b for some positive constant K. Abbreviate

�J := �

�
c

J(0)

�
; �

0

J
:= �

0

�
c

J(0)

�
; �J := �

�
c

J(0)

�
; �

0

J
:= �

0

�
c

J(0)

�
:
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Æ = (J(0) +K

p
b) � �

�
c

J(0) +K
p
b

�
+ (J(0) +K

p
b) � �

�
c

J(0) +K
p
b

�
�
s

b

J(0) +K
p
b

= (J(0) +K

p
b) �
 
�

�
c

J(0)
� cK

J2(0)

p
b

�
+ �

�
c

J(0)
� cK

J2(0)

p
b

�
�
s

b

J(0)

!

= (J(0) +K

p
b) �
 
�J �

cK

J2(0)

p
b�
0

J
+

�
�J �

cK

J2(0)

p
b�
0

J

�
�
s

b

J(0)

!

= Æ +
p
b

�
K�J �

cK

J(0)
�
0

J
+
p
J(0)�J

�
:

This gives us

K =

�
�
0

J

c

J(0)
� �J

��1 �p
J(0)�J

�
=

�
log

�
1� p

1� c=J(0)

���1 �p
J(0)�J

�
:

As K is a �nite positive number, our initial guess J(D) � J(0) + K
p
b turns out to hold. Interestingly, the

acceptance curve is insensitive in the higher moments of activities and silences (just like the loss curve is). This is

an immediate consequence of the fact that J(0) only depends on the on- and o�-times through p, and �J through

IEA and IES. We notice that the acceptance curve grows rapidly for small b, namely like
p
b.

References

[1] D. Anick, D. Mitra, and M. Sondhi. Stochastic theory of a data-handling system with multiple sources.

The Bell System Technical Journal, 61: 1871 { 1894, 1982.

[2] S. Asmussen and R. Rubinstein. Steady state rare event simulation in queueing models and its complexity

properties. In J. Dshalalow (ed.), Advances in queueing theory, theory, methods and open problems, 429 {

461, CRC Press, Boca Raton, USA, 1995.

[3] D. Botvich and N. Duffield. Large deviations, the shape of the loss curve, and economies of scale in

large multiplexers. Queueing Systems, 20: 293 { 320, 1995.

[4] O. Boxma. Fluid queues and regular variation. Performance Evaluation, 27 & 28: 699{712, 1996.

[5] O. Boxma and V. Dumas. Fluid queues with long-tailed activity period distributions. Computer Commu-

nications, 21: 1509 { 1529, 1998.

[6] G. Choudhury, D. Lucantoni, and W. Whitt. Squeezing the most out of ATM. IEEE Transactions on

Communications, 44: 203 { 217, 1996.

[7] J. Cohen. Some results on regular variation for distributions in queueing and uctuation theory. Journal of

Applied Probability, 10: 343{353, 1973.

[8] C. Courcoubetis and R. Weber. Bu�er overow asymptotics for a bu�er handling many traÆc sources.

Journal of Applied Probability, 33: 886 { 903, 1996.

[9] M. Crovella and A. Bestavros. Self-similarity in World Wide Web traÆc: evidence and possible causes.

IEEE/ACM Transactions on Networking, 5: 835 { 846, 1997.

[10] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Jones and Bartlett, Boston,

1993.

[11] N. Duffield. Queueing at large resources driven by long-tailed M/G/1-modulated processes. Queueing

Systems, 28: 245 { 266, 1998.

25



[ ] g p g g

queue, with applications. Proceedings of the Cambridge Philosophical Society, 118: 363 { 374, 1995.

[13] N. Duffield and W. Whitt. Large deviations of inverse processes with nonlinear scalings. Annals of

Applied Probability, 8: 995 { 1026, 1998.

[14] V. Dumas and A. Simonian. Asymptotic bounds for the uid queue fed by subexponential on-o� sources.

Preprint.

[15] A. Elwalid, D. Mitra, and R. Wentworth. A new approach for allocating bu�ers and bandwidth to

heterogeneous, regulated traÆc in an ATM node. IEEE Journal on Selected Areas in Communications, 13:

1115 { 1127, 1995.

[16] A. Feldmann. Characteristics of TCP connection arrivals. Internal memorandum AT&T Labs, available at

http://www.research.att.com/~anja/feldmann/papers.html# traffic

[17] M. Grossglauser and J.-C. Bolot. On the relevance of long-range dependence in network traÆc.

IEEE/ACM Transactions on Networking, 7: 629 { 640, 1999.

[18] D. Heyman and T. Lakshman. What are the implications of long-range dependence for VBR traÆc

engineering? IEEE/ACM Transactions on Networking, 4: 301 { 317, 1996.

[19] P. Jelenkovi�c and A. Lazar. Asymptotic results for multiplexing on-o� sources with subexponential

on-times. To appear in: Advances in Applied Probability, 1999.

[20] P. Jelenkovi�c, A. Lazar, and N. Semret. The e�ect of multiple time scales and subexponentiality in

MPEG video streams on queueing behavior. IEEE Journal on Selected Areas in Communications, 15: 1052

{ 1071, 1997.

[21] L. Kosten. Stochastic theory of data-handling systems with groups of multiple sources. In H. Rudin and

W. Bux (eds.), Performance of Computer-Communication Systems, 321 { 331, Elsevier, Amsterdam, 1984.

[22] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the self-similar nature of Ethernet traÆc.

IEEE/ACM Transactions on Networking, 2: 1 { 15, 1994.

[23] N. Likhanov and R. Mazumdar. Cell loss asymptotics in bu�ers fed with a large number of independent

stationary sources. Proceedings IEEE Infocom, 339 { 346, 1998.

[24] M. Mandjes and S. Borst. Overow behavior in queues with many long-tailed inputs. To appear in

Advances in Applied Probability, CWI report PNA-R9911, available at

http://www.cwi.nl/static/publications/reports/PNA-1999.html

[25] M. Mandjes and J.H. Kim. Large deviations for small bu�ers: an insensitivity result. To appear inQueueing

Systems, Microsoft Research technical report MSR-TR-99-39, available at

http://www.research.microsoft.com/scripts/pubdb/trpub.asp

[26] M. Mandjes and D. Mitra. A simple model of network access: feedback adaptation of rates and admission

control. Submitted.

[27] M. Mandjes and A. Ridder. Finding the conjugate of Markov uid processes. Probability in the Engi-

neering and Informational Sciences, 9: 297 { 315, 1995.

[28] L. Massouli�e and A. Simonian. Large bu�er asymptotics for the queue with FBM input. Journal of

Applied Probability, 36: 894 { 906, 1999.

26



[ ] g p Q g y , ,

[30] A. Pakes. On the tail of waiting time distributions. Journal of Applied Probability, 12: 555{564, 1975.

[31] V. Paxson and S. Floyd.Wide area traÆc: the failure of Poisson modeling. IEEE/ACM Transactions on

Networking, 3: 226 { 244, 1995.

[32] O. Rose. TraÆc modeling of variable bit rate MPEG video and its impact on ATM networks. Ph.D. thesis,

University of W�urzburg, Germany, 1997.

[33] B. Ryu and A. Elwalid. The importance of long-range dependence of VBR video traÆc in ATM traÆc

engineering: myths and realities. Computer Communication Review, 26: 3 { 14, 1996.

[34] A. Shwartz and A. Weiss. Large deviations for performance analysis, queues, communication, and com-

puting. Chapman and Hall, New York, 1995.

[35] A. Simonian and J. Guibert. Large deviations approximation for uid queues fed by a large number of

on/o� sources. IEEE Journal of Selected Areas in Communications, 13: 1017 { 1027, 1995.

[36] K. Sriram and W. Whitt. Characterizing superposition arrival processes in packet multiplexers for voice

and data. IEEE Journal on Selected Areas in Communications, 4: 833 { 846, 1986.

[37] K. van der Wal, M. Mandjes, and H. Bastiaansen. Delay performance analysis of the new internet

services with guaranteed QoS. Proceedings of the IEEE, 85: 1947 { 1957, 1997.

[38] A. Weiss. A new technique of analyzing large traÆc systems. Advances of Applied Probability, 18: 506 {

532, 1986.

[39] W. Whitt. Tail probabilities with statistical multiplexing and e�ective bandwidth in multi-class queues.

Telecommunication Systems, 2: 71 { 107, 1994.

[40] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson. Self-similarity through high-variability: sta-

tistical analysis of Ethernet LAN traÆc at the source level. Computer Communication Review, 25: 100 {

113, 1995.

[41] D. Wischik. Sample path large deviations for queues with many inputs. Submitted to: Annals of Applied

Probability, 1999.

27


