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ABSTRACT

VIDEO TRAFFIC MODELING AND DELIVERY

by
Hai Liu

Video is becoming a major component of the network traffic, and thus there has been

a great interest to model video traffic. It is known that video traffic possesses short

range dependence (SRD) and long range dependence (LRD) properties, which can

drastically affect network performance. By decomposing a video sequence into three

parts, according to its motion activity, Markov-modulated self-similar process model

is first proposed to capture autocorrelation function (ACF) characteristics of MPEG

video traffic. Furthermore, generalized Beta distribution is proposed to model the

probability density functions (PDFs) of MPEG video traffic.

It is observed that the ACF of MPEG video traffic fluctuates around three

envelopes, reflecting the fact that different coding methods reduce the data

dependency by different amount. This observation has led to a more accurate

model, structurally modulated self-similar process model, which captures the ACF

of the traffic, both SRD and LRD, by exploiting the MPEG structure. This model is

subsequently simplified by simply modulating three self-similar processes, resulting

in a much simpler model having the same accuracy as the structurally modulated

self-similar process model.

To justify the validity of the proposed models for video transmission, the cell

loss ratios (CLRs) of a server with a limited buffer size driven by the empirical trace

are compared to those driven by the proposed models. The differences are within

one order, which are hardly achievable by other models, even for the case of JPEG

video traffic.



In the second part of this dissertation, two dynamic bandwidth allocation

algorithms are proposed for pre-recorded and real-time video delivery, respectively.

One is based on scene change identification, and the other is based on frame

differences. The proposed algorithms can increase the bandwidth utilization by a

factor of two to five, as compared to the constant bit rate (CBR) service using peak

rate assignment.
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CHAPTER 1

INTRODUCTION

1.1 New Services

Have we ever thought of holding meetings without leaving home? Have we ever

imagined to go shopping at home? We are coming to an age of visual commu-

nications. New kinds of information services are emerging. Information service

providers promise to provide us the following new services:

• Movies on demand (MOD)

• News on demand

• Near video on demand (NVOD)

• Video on World Wide Web

• Personal video conferencing

• Desktop video-telephony

They even promise to provide more advanced video services listed below:

• Broadband video-telephony

• Broadband video conferencing

• Video-surveillance

• Video mail

• Video retrieval

• Existing quality TV distribution

• High definition distribution

1
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• Pay-TV

These services require transmission of a tremendous amount of data. For

example, the delivery of NTSC video requires about 270Mbps. For HDTV, the

required bandwidth is even larger. Such requirement of large bandwidth is very

costly. Customers are willing to pay for these services only if the quality of service

(QoS) can be guaranteed at a reasonable price. The key to successful deployment of

these services is the provision of QoS at a reasonable price

1.2 Video Compression

As pointed out early, video traffic contains a huge amount of data. Large bandwidths

are needed to deliver these data. To be able to deliver video traffic at a reasonable

price, video data must be compressed without significant quality degradation.

Since there is a lot of redundant information among video data, video compression

techniques can be readily used to reduce bandwidth requirements. Many well known

video compression techniques have been proposed:

• DCT coding

• Sub-band coding

• Fractal

• Run length coding

• Wavelet

• Motion estimation

These techniques can substantially reduce the volume of video data.
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1.3 Standards and MPEG

In order for video information to be accessed across a wide range of services and

equipments, international standards for video coding, decoding, and frame structure

have to be specified. MPEG-2 and H.261 are among the most famous standards,

while H.262 is aimed at providing different quality of service for different users on

ATM networks.

Various MPEG versions were developed by Motion Picture Expert Group,

formerly known as ISO/IEC JTC1/SC29/WG11. The first version (MPEG-1) is for

video storage. MPEG-2 has been finalized for higher resolution images and corre-

spondingly higher data rate. Currently the object-based MPEG-4 is being finalized

for better image quality and more functionalities.

The MPEG standards outline compression technologies, define the bit stream

syntax that makes the video stream transmission possible, describe the multiplexing

of video and audio, and stipulate the position of synchronization information. It

basically consists of the following parts:

• Systems

• Video

• Audio

• Compliance

• Software simulation

• Digital storage media-command and control (DSM-CC)

• Real-time interface for system decoders

• DSM Reference Script Format
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The video part defines the basic objects, video stream structure, decoding process,

scalability extensions, profiles and levels. The DCT and motion estimation

techniques are used. Scalabity, profiles and levels are used to provide different

QoS to different services. The image quality is adjusted by receiving equipments

according to their decoding ability.

1.4 Network Technologies

In order to provide these services, the network must be flexible and fast enough to

meet all requirements imposed by these new services. B-ISDN networks promise to

provide such flexibility that allows transmission of voice, data, and video service over

a single network via a single high speed user connection.

To deliver these data to end users, high speed transmission media from local

switches to end users' home are required. There are several options for these

connections. For example, the existing cable infrastructure can be used to deliver

these services because cable TV is deployed almost everywhere. In the area where

cable TV is not available, xDSL (such as ADSL-Asymmetric Digital Subscriber

Line) can exploit the existing telephone network to deliver high bit rate traffic.

As the cost of fiber optics decreases, the fiber may be installed up to some

central points, from which the existing coax cable networks can be connected.

Examples of such kind of connections are FTTC (Fiber to the Curb), FTTB (Fiber

to the Building), and HFC (Hybrid Fiber-Coax). This kind of connection provides

reasonable performance to cost ratio. The highest performance connections in terms

of transmission speed are FTTH (Fiber to the Home).

ATM is the backbone of B-ISDN. It uses cell switching technology to transmit

traffic. The cell has 48 byte payload and 5 byte header. Compared with packet

switching technology, control information contained in the cells is very small. This

is possible because fiber optics can provide low error rate transmission, the end
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terminals have powerful processing ability, and the connection oriented technology

is used. Thus, these switches can operate at high speed. Since the cell size is small,

the switching speed and transmission rate can be sufficiently high that jitter is small

enough to transmit time sensitive traffic such as voice and video.

ATM networks consist of physical, ATM, ATM adaption (AAL), and higher

layers. The physical layer is composed of two sub-layers, the transmission convergence

(TC) and physical media dependent part (PMD), which serves to adopt different

transmission media. ATM layers are used to control traffic flow, to generate and

extract cell header, to translate cell's VPI/VCI , and to multiplex and demultiplex

traffic originated from different sources. AAL is also composed of two sublayers,

convergence sublayer and the segmentation and reassemble sublayer. AALs are used

to adapt different services for ATM transmission. The layers provide flexibility to

ATM network, and facilitate the transmission of many kinds of services over a single

network. Four types of services are defined, and correspondingly, the following four

types of AALs are defined:

• AAL-1, is used to emulate circuit, using constant bit rate transmission to serve

class A services

• AAL-2, using variable bit rate transmission, used to serve class B services

• AAL-3/4, using variable bit rate transmission, connection oriented, is used to

serve class C services

• AAL-5, connectionless data transfer, is used to serve class D services

AAL-1, AAL-2 and AAL-5 can be used to transmit video streams.

Constant bit rate (CBR) transmission is easier to implement from the network

management viewpoint, but at the cost of variable quality of service, and/or at the

cost of network efficiency. Compressed video is variable bit rate (VBR) in nature,
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and hence, it is efficient to transmit compressed video stream by VBR service with

guaranteed quality of service.

1.5 Traffic Parameters and Quality of Service Parameters

In order to use VBR service, customers must provide parameters of their traffic to

the service providers. There has not been a good way so far yet to specify the video

traffic. One way to specify the traffic is to use leaky bucket parameters, such as

burst length, sustained bit rate, and peak bit rate. Another way is to use traffic

models to describe traffic. Traffic parameters are important to the service providers

to allocate resources and calculate charges. Customers must make sure that the

traffic parameters are satisfied so that QoS can be guaranteed.

To guarantee quality of service, QoS parameters must also be specified before

connections are established. For video traffic, the following parameters are usually

specified:

• Cell delay variation tolerance

• Maximum cell delay allowed

• Cell loss ratio (CLR)

• Cell error ratio (CER)

• Severely errored cell block ratio (SECBR)

These parameters are essential and manageable for service providers, but it is

difficult to map the actual quality requirements of customers to these parameters.

There has not been a good way to mapping the quality requirements to those

parameters yet because the relationship between QoS and these parameters has

not been understood thoroughly. For example, the same CLR may result in quite

different QoS for the same video stream. It is still an open research issue.



CHAPTER 2

TRAFFIC MODELS FOR VIDEO TRAFFIC

Traffic models are important to network engineers. They can be used to evaluate

network performance, design admission control algorithms, dynamically allocate

bandwidth, and specify customer traffic. Traffic models are employed in two funda-

mental ways: as part of an analytical model or to drive a network simulation program.

Traditionally, telephony network traffic has been modeled by Poisson processes.

The arrival of telephony customers are essentially independent, and therefore, this

kind of models work well. Moreover, Poisson processes are analytically tractable, and

many results about network performance, such as blocking and delay probability, can

be obtained.

Many years of study on local and wide area network traffic shows that Internet

and ATM traffic are bursty and strongly dependent [1, 2, 3, 4, 5, 6, 7]. These

characteristics have profound impacts on network performance because they affect

the queuing behaviors of networks (see [8] and references in it). In general, the

dependence will degrade the network performance [9] because it often results in buffer

overflow. Empirical studies and statistical analysis on network traffic, gathered from

high speed networks, provide evidence of prevalence of self-similar patterns [1, 6, 5].

Obviously, it is inappropriate to use traditional traffic models to describe ATM and

Internet traffic [7] because tradtional models focus on a very limited range of time

scale while the traffic exhibits correlations over a wide range of time scale.

Recent development of coding standards for digital video, such as H.261, H.262,

H.263, MPEG-2, MPEG-4, has made it feasible to transmit video data over networks.

Transmission of video data over network will be commonplace. Video traffic will be

the dominating part of network traffic, and therefore, it is necessary to model video

traffic. Due to the fact that the contents of a video stream is strongly dependent in

nature, video traffic itself possesses burstiness and long range dependence [5], and

7
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thus new methods to model network traffic, especially methods to model video traffic,

are necessary.

There are two ways to transmit video over network. One way is to control

the quantization steps of encoder so that the output of the encoder is CBR. The

drawback of this method is that the quality of video is variable, especially in cases

with many scene changes and high complex motions. The video quality can vary to

a large extent.

An alternative to CBR is variable bit rate (VBR) transmission. VBR does not

attempt to control the output bit rate of encoder, but produces a variable bit rate

so that video quality can be constant. This makes the bandwidth allocation very

difficult or makes the network utilization very low. To increase network utilization

or statistical multiplexing gain (SMG), good models for VBR video are needed.

To model VBR video traffic accurately, autocorrelations among data should be

taken into consideration. A considerable amount of effort on video modeling has been

reported, which can be classified into statistical models and deterministic models.

The statistical models include:

• Renewal process models

• Markov models

• Transform expand sample (TES) model

• Markov modulated process model

• Histogram -based model

• Auto-regressive models

• Fluid model

• M/G/oo input process model
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• GBAR model

• Long range dependent model or self-similar model

which can be categorized into two classes:

• Short range dependent models (SRD),

• Long range dependence models (LRD).

These models are used to capture two statistical factors: marginal distribution (first-

order statistics) and autocorrelation function (second-order statistics) of traffic data.

LRD models can capture long range dependence, while SRD models can capture

short range dependence. The impact of traffic dependence on queuing performance

measures, such as queue length, waiting time, cell loss rate, can be very dramatic.

It is the common belief that traffic dependence will degrade queuing performance.

To describe network traffic, the models should not only capture the first-order

statistics, but also the second-order statistics. Almost all modern traffic models take

into consideration the traffic dependence to some extent. The difference between

SRD and LRD models are the extent to which the dependence is considered.

Because of the statistical nature of network traffic, deterministic models are

not so popular as statistical models. A few deterministic models have been reported.

Two models found in the literatures are D-BIND and (a, p) models.

A traffic model is a key element in network analysis and simulation. Clear

understanding of traffic characteristics is the most important step toward the success

of network evaluation. For the sake of good understanding of traffic modeling, some

of the existing traffic models will be presented in details in the following sections.

2.1 Renewal Process Models

Traditional traffic can be described by a random point process. A random point

process ψ  = {tn : n ≥ 1} is a sequence of random points 4, at which an event
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occurred, where

with tn→ ∞as n→ ∞.

The point process has two equivalent processes: counting process and inter-

arrival process. The counting process {N (t) : t ≥ 0} for ψ  denotes the number of

points that fall in the interval (0, t]. Let Tn = t n  -tn-1 i , then the process φ  = {T :

n > 0} is the inter-arrival process. Furthermore, if φis i.i.d, then this random point

process is called a renewal process.

Since renewal processes are analytically tractable, they have been traditionally

used as traffic models. Poisson Process is a special case of renewal process. Due to

the fact that Poisson processes have some elegant properties, they have been used

widely in telephone industry. A Poisson process is an independent increment process.

Its inter-arrival process is exponentially distributed, thus making it memoryless, and

greatly simplifying the analysis of a queuing system.

It is believed that traffic burstiness can be explained to a large extent by two

factors: the shape of marginal distribution and autocorrelation [9]. Strong positive

autocorrelations are strong resources of burstiness. The autocorrelation of renewal

processes, however, vanishes for all non zero lags, and therefore they fail to model

modern network traffic.

Phase-type renewal process is an important special renewal process [9]. Its

associated arrival process can be modeled as the time spent for a continuous Markov

process {C(t) : 0 < t < ∞ }, whose state space is {0, 1, , m} and has an absorbing

state, to go to absorption. To get a sample of the process A n , start the Markov

process C with the initial distribution it, the elapsed time is the value of the sample

A. All the samples are obtained from the same initial distribution 7. This kind of

model is analytically tractable.
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2.2 Transform Expanded Sample Models

Transform expanded sample techniques are a kind of non-linear regression, which

can be used to capture the marginal distribution and the ACF of an empirical traffic

data simultaneously [10, 11, 12, 13, 14]. The TES model was used to model various

types of ATM traffic, including H.261 coded video conference traffic, JPEG coded

video, and MPEG coded video. A TES random process is generated from the so

called background process by two transformations. Let {Un, : n = 0, 1, .. .} be

the background random process with FB being the distribution, then the model

is generated by the following formula:

where F is the desired distribution function. F -1 is the inverse of F. Ur, defines a

random walk on the unit circle using modulo-1 (fractional part) arithmetic, defined

as x = 1 — [x], [x] is the largest integer less or equal to x. The desired distribution

is often expressed in the form of a histogram. If the distribution of U n is uniform,

the formula to generate the model data becomes:

There are two different TES models: TES+ and TES - , differed by the

background process adopted. The background process used in generating TES+

models is given by

where < x > is the fractional part of x. U0 is uniformly distributed on [0, 1) and

Vn : n = 1, 2, ..., is i.i.d with marginal distribution Fv and is called the innovation

function. The background process used in generating TES - model is given by:
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These background processes are Markovian with uniform distribution. 14, used here

should be independent of U0 .

In general, MI is obtained from distribution F u , which is typically restricted

to step functions in order to simplify the parameter search. The most simple method

to get MI is given by:

where Z., are i.i.d and uniformly distributed on [0, 1) . L and R can be replaced by

a and 0 as follows:

and

which are more convenient for use because a controls the magnitude of the autocor-

relation function and φ  controls the oscillations.

A "smoothing" operation or stitching transformation may be applied to Un

before the inverse transformation F -1 is applied, so that the traffic model seems

more "Homogeneous." The stitching function has the following form:

and thus, the formula for TES model is given by:

All the TES background processes are Markovian and uniformly distributed on [0, 1)

regardless the innovation methods used, and that the inversion method can ensure

that we can always transform the background process to the desired distribution,

that is, the TES models always have the distribution F regardless of F vandξused.

This decouples the fitting of marginal distribution and autocorrelation functions.
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Through appropriate selection of ξ  and Ft) , some autocorrelation functions can be

fitted very well.

2.2.1 Video Conference Model Using TES Model

Melamed et al. developed a model for the number of bits per group-of-blocks (GOB)

using TES models [12, 13]. They found that the bit rate data contained a significant

periodic component at the GOB level. They modeled the periodic component by:

and removed it from the empirical data, where K, ωi , A, and Bi were estimated from

the empirical trace. The residual process then becomes:

where X, is the number of bits per GOB. The residual process was modeled by TES

process with parameters α  = 0.5, φ  = 0.3 and ξ  = 0.5 for stitching.

2.2.2 Generalized TES Model

In the previous model, the innovation process is i.i.d. Instead of using i.i.d innovation

process, Lazar et al. used a TES process with an innovation process which was not

i.i.d, but depended on scene changes [15]. The scene change process was incorporated

into the innovation process as:

where MI is i.i.d with uniform distribution on [0, 1). Wn is i.i.d with Bernoulli

distribution, and was used to model scene changes. Scene length has a geometric

distribution with parameter:

where Ln , is the duration of a scene, E[Ln] is the expected value of L.
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For MPEG coded video, the video frame can be classified into I, P, and B

frames according to the GOP pattern. Each frame was modeled by a separate TES

model. The model uses the background process U+ for I, B frames, and U- for P

frames. It requires nine parameters, and is not analytical. The model captures SRD

[16].

2.3 Markovian Models

Like Poisson processes, Markov processes have been studied extensively by mathe-

maticians. Let {St : t e R} be a continuous time random process with a sample

space Q, then the process is said to be a Markov process if:

for any t 1 < t2 < • • • < to and any xi E R.

Unlike a renewal process, a Markov process does introduce certain dependence,

and is thus an important class of modern traffic models. Markov chain models are

more suitable to model traffic which can be divided into discrete states. The slotted

system traffic can be modeled as a Markov chain [9], whose states correspond to the

number of successive idle slots separating successive arrivals. The number of arrivals

between the idle slots itself can also be modeled by a Markov process.

2.3.1 Markov Chain Model

The most representive one using Markov chain to model video traffic was developed

by D. P. Heyman [17]. The traffic data used was a 30 minute video conference

sequence with no scene change. There were three persons talking in the video. The

model was created as follows. Let X,-, be the number of cells per frame, Yn be the

integer part of Xn /10. They proposed to model {Yn : n = 1, 2, • • • , N} as a Markov
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chain with transition matrix P, whose element p i , is estimated by:

The transition matrix for the random process Yn can be approximated by:

P =  ρI + (1 - ρ)Q 	 (2.17)

where p is the autocorrelation at lag 1. I is the identity matrix. Each row of Q

consists of probability density function of the empirical data. Each row of Q has the

probabilities (fo, , fK , Fk), defined by:

where K is the peak rate in cells per frame, p and q were obtained from empirical

data by approximating fi from the histogram of the traffic data. In this case, the

model is called discrete autoregressive (DAR(1)) model.

DAR(1) was also used by D. P. Heyman to model VBR broadcast video traffic

[18]. Scene changes were taken into consideration, and identified by the second

difference:

where Xi is the number of cells in the ith frame. When A i is negative and large

enough, a scene change is said to occur.

Frame sizes in every scene were modeled as a Markov chain or DAR, while

the number of cells for the frame immediately following a scene change frame was

estimated by:

where {c m } are independent and identically distributed normal random variables with

zero mean. Xn is the number of cells in the nth scene change frame, and Yr, is the

number of cells in the frame next to the nth scene change frame.
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Scene length and scene changes were modeled as independent processes with

some kinds of distributions, such as Gamma, Weibull and generalized Pareto distri-

butions. No one distribution is applicable to all kind of traffic.

Instead of using the states of Markov chain to represent different bit rates, the

states of a Markov chain can also be used to represent different deviations from mean

value. This kind of model was proposed by Pancha and EI Zarki [19].

2.3.2 Markov Renewal Process (MRP)

Markov renewal process is more general than Markov process, and it is more suitable

to model video traffic than Markov chain mentioned before. A Markov renewal

process consists of two parts, a Markov chain MI and its associated arrival time

process {T, I, subject to the condition that {Mn+1, τn+1} depends only on IMO.

Since the arrival time may have any distribution, the Markov renewal process is

more versatile. One method to use Markov renewal process to model video traffic

is to use the Markov chain to model the scene changes of the video while using the

associated arrival process to model the scene length.

Lucantoni, et al. proposed a Markov renewal process [20], in which the rates

of video streams were divided into 40 equidistant levels and assigned a state in the

Markov chain to each level. Geometric distribution were fitted to sojourn time at

each level. The difference between this kind of models and MMPP models is that,

for MRP, the bit rate is fixed at each level instead of being probabilistic. Compared

with DAR models, sample paths generated by this kind of model are more similar

to empirical trace.

2.3.3 Markov Arrival Process (MAP)

Markov arrival process [9] is one kind of renewal process with tractability and versa-

tility. The inter arrival process for MAP is a phase type renewal process. Unlike

the phase-type process introduced before, MAP uses different initial distributions
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for different samples. The initial distributions for restarting the Markov process in a

MAP process depend on the previous transient state from which the Markov process

enters into the absorption states. MAP process obeys the superposition rule, that

is, the superposition of two independent MAPs results in a MAP. This property is

quite useful in evaluating the performance of multiplexers because the multiplexed

traffic can still be modeled as a single MAP model.

2.3.4 Markov Modulated Poisson Process

Markov modulated processes [21] are used widely in video traffic modeling. A Markov

modulated process is a random process whose parameters (such as arrival rate and

mean) are controlled (modulated) by a Markov process. They can be used to capture

the randomness at different scale, and therefore, are versatile to capture traffic

characteristics.

Let M(t) be a continuous Markov process with state space {1, 2, ... , m}. If the

probability law of a process is determined by the state of the current state of M(t)

completely, then the process is called a Markov modulated process. The Markov

modulated process can be classified by the processes modulated. The most well

known one is Markov modulated Poisson process.

Markov modulated Poisson processes are used widely in traffic modeling [22,

23, 24]. A Markov modulated Poisson process is a doubly stochastic process where

the arrival rate of a Poisson process is defined by the state of a Markov chain, and

therefore, called Markov modulated Poisson process. A two state MMPP is shown

in Fig. 2.1.

This process introduces some correlations between successive inter-arrival

time, and therefore can capture the bursty characteristics of video traffic to some

extent. It is a special case of a MAP process, and enjoys the feature of tractable

queuing analysis. Important properties of queuing systems can be derived. Like a
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Figure 2.1 Two state MMPP

MAP process, the MMPP obeys superposition law, that is, the superposition of two

MMPPs is still a MMPP. The property is very useful in the queuing performance

analysis of multiplexed traffic.

With different number of states of the modulating Markov chain, the MMPP

can be used to model different traffic [25, 24, 22]. The simplest case is to use MMPP

to model On-OFF traffic. In this case, the arrival rate during the OFF period is

zero, while the arrival process during the ON period is the arrival rate of traffic.

This model is sometime denoted interrupted Poisson Process (IPP). Another simple

example is to use two state MMPP to model video traffic with two different arrival

rates. This is the so called Switched Poisson Process (SPP). An n-state MMPP was

used to model the aggregated voice traffics, each with an ON-OFF behavior.

2.3.5 Markov Modulated TES Model

The bulk of previous work in video source modeling has been confined to short

sequences of empirical data or video conference. There are few scene changes in

these videos. To take into consideration of scene changes, Markov modulated TES

model was proposed by B. Melamed [8]. The modeling of full length movies consists

of the following five steps:



19

• Segment the full movies into several scenes.

• Cluster the scenes into a number of classes (smaller than the number of scenes).

• Assign a class tag to each scene.

• Model the bit rate of each class by a TES model.

• Model scene length as a renewal process

The transition from one class to another class is dominated by a Markov

process, and therefore, the model for the whole movie is a Markov renewal modulated

TES model. The movie was classified into four classes, and thus the model is a four

state Markov renewal modulated TES model.

2.3.6 Markov Modulated Autoregressive Models

The Markov modulated autoregressive (AR) model was proposed by Yegenoglu et.

al [26]. Bit rates of the video stream were quantized into N levels. Each level was

assigned to a different state in a Markov chain. Corresponding to each state, there

is an AR(1) process whose parameters are determined by the states, and therefore,

for each state i, there are a unique set of coefficients for the AR processes.

Suppose Yn is the number of bits of the nth frame. The state of the Markov

chain at time n is X7., (Xn E {0, 1, • • • N — 1}). The number of bits at time n +1 is

given by:

where a(i) is the autocorrelation at lag 1 and state i, and G is a Gaussian random

variable. 1u and a are mean and variance of the Gaussian process, respectively. These

parameter can be obtained as follows:
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where, D, v, and i are estimated from empirical data using the formulae.

From the formulae we can see that the traffic rates at the same level are modeled

by AR processes, while the number of bits for the first frame after a level change is

the sample of a Gaussian process.

2.4 Histogram Based Model

Histogram based models were used to model the VBR video traffic at the cell level

[27]. They are applicable to the case when the traffic is smoothed using uniform

smoothing mode or deterministic smoothing mode. Results were obtained based on

the assumption that inter-arrival time within a frame is Poisson distributed. Under

this assumption, the system behaves approximately like an M/D/1/K queue on the

frame-by-frame basis. For different frames, the cell arrival rate may be different.

Ignoring the transient queuing behavior, the queuing performance for every

frame can be obtained as a function of A from the M/D/1/K system. The

performance of the system can be obtained by conditioning the performance over

the range of A.

Suppose the buffer occupancy is p(n|λ = λI ) under the condition that the

arrival rate is A i-, then the buffer occupancy distribution would be

where p(λ = λI ) is the histogram of arrival rate A, and N is the number of intervals

(bins) in the bit rate histogram.
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2.5 Auto-Regressive Models

Auto-regressive processes have been used extensively in modeling VBR video traffic.

Auto-regressive models introduce the dependence while keeping the randomness at

some extent. Intuitively, the size of one frame depends on the size of the preceding

frames. Perhaps this is the reason that the auto-regressive models were used exten-

sively. An AR process of order p has the following form:

It can be easily verified that the autocorrelation function (ACF) of an AR(p) process

can be expressed as:

where p is the ACF at lag n.

ARMA processes have also been used to model video traffic. An ARMA process

is given by:

In general, for video conference, the traffic can be modeled as AR(1) models

[17, 28]. If scene changes are included in the video, every scene can be modeled by

an AR model, and the scene length can be modeled by another process.

2.5.1 Autoregressive Models at Cell Level

The AR(1) models, proposed by Maglaris et al, [29] and Nomura at al [30], have the

following form:

where Xn  is the number of cells in the nth frame, and En is an i.i.d white Gaussian

noise process.
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2.5.2 Autoregressive Moving Average (ARMA) Models

Grunenfelder, et al [31] developed a model, from a four second video conference

sequence, for the number of cells generated by an encoder. The random process, X i ,

representing the number of cells, is given by:

where v i is white noise. The parameters for the model were estimated from the

long-term mean, variance and auto-covariance of the empirical sequence. The coeffi-

cients, hk , of the MA part were obtained from Fourier analysis. g(.) is a zero-mean

nonlinearity function, which has the form of aVi + b. This model requires 10003

parameters.

2.5.3 Composite AR and Markov Chain Model

Ramamurthy and Sengupta proposed a composite model consisting of three

processes, two of which were AR processes and the other was Markov chain [32].

One of the AR processes was used to match short range dependence, while the other

was used to match long range dependence. Markov chain was used to capture scene

changes. The model has the following form:

where

and
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A i and Bi are normally distributed. Zi is used to generate extra bits to simulate a

scene change. Ci is normally distributed, whose mean and variance values depend

on Ki . Ki is the state of a Markov chain with Ki E 0,1,21. The model for scene

change is shown in Fig. 2.2. The Markov process is used to generate the two frames

following a scene change, that were observed to have larger frame size than other

frames. The scene was assumed to have binomial distribution.

Figure 2.2 Markov Chain of scene change process.

2.6 "Scenic" Model

Frater et al. [33] proposed a model based on scene change. This model can be seen

as a generation of DAR(1). Scene changes were also identified, but with a slightly

different formula. A combination of median and averaging filters were used to detect

scene changes. It models VBR video in the following way:

1. The sequence of scene lengths is i.i.d and has the distribution p(x) = a/xn+b2,

where a and b are constants, and n is estimated from the empirical trace.

2. The sequence of mean rate for every scene is i.i.d and has negative binomial

distribution;

3. When there is sufficient jump in the bit rate, there is definitely a scene change;

4. Within a scene, the sequence of number per frame is i.i.d;

5. The variation of the bit rate within a scene can be ignored.
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6. The process controlling the scene length and the process generating bit rates

were independent.

The frame size in every scene was modeled as a DAR process, and the time spent at

each level has negative-binomial distributions. No Markovian chain was used, and

significantly better results were obtained.

2.7 Fluid Models

Unlike the models introduced so far, fluid models treat traffic as a fluid stream

[34], that is, cells arrive continuously, not at discrete time. The fluid approach can

capture the burstiness of ATM traffic, and is thus appropriate for ATM traffic. In

most cases, fluid models have two states: ON and OFF. The durations of ON and

OFF are random and i.i.d. The traffic arrives at constant rate during the On period

while there is no traffic during the OFF period. The distribution of ON and OFF

period are different. They may be exponentially distributed or heavy-tail distributed.

Obviously, it is suitable to model traffic on large scale.

Although the fluid model is conceptually simple and analytically tractable, it

is also beneficial for simulations because enormous savings in computing can be

obtained, due to the fact that infeasible cell arrival simulation can be replaced

by feasible simulations of fluid models with comparable accuracy. In the queuing

context, the waiting time is the time needed to clear the buffer, while the loss proba-

bility can be calculated in terms of overflow volumes.

A Markov modulated fluid model can also be used to model traffic with different

arrival rates [35]. Its queuing performance can be analyzed as Markov modulated

constant rate traffic. This kind of model is more suitable for VBR video traffic. To

model VBR video traffic, the arrival rate is often quantized into several bins, with

each corresponding to one constant rate. Histogram for each constant rate and the

probability from one rate to another rate can be obtained from the empirical trace.
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2.8 M/G/∞  Input Process Model

In an M/G/∞  queuing system, the number of busy servers is a random process.

An M/G/∞  input process can be defined by an M/G/oo queuing system, and its

ACF form can be controlled by choosing the distribution of service time [36]. The

M/G/∞  input process was proposed as a model of VBR intra-coded video streams.

An M/G/∞  input process can be defined as follows: For the discrete-time

M/G/∞  queue system, the arrival is an i.i.d Poisson process with mean rate λ . Let

the number of customers arrived during the slot [n, n + 1) be ξ i±i . All the customers

arrived during this period will be served at the beginning of the next slot, that is,

the customers arrived in the slot [n, n + 1) will be served at the beginning of slot

[n + 1, n + 2). Suppose the service time is i.i.d with a common distribution G, and

the service time for customer i arrived in the slot [n, n+1) is σ n+i , i , i = 1, 2, ...,ξ

i

n+1.

Initially, there are b0 - customers in the system, and the time needed to serve these

customers are σ 0 , 1 , σ0,2 , ... , σ0 ,b, . If σ0 ,i σ0,2, ..., σ0 ,b0.  are mutually independent,

the process bn , which is the number of customers in the system at time n, is then

called an M/G/ ∞  input process.

The ACF of bn can have many kinds of forms, depending on the distribution

of G used. When G is a Pareto distribution, the process possesses long range

dependence[36]. In general, bn is not stationary, but there exists a stationary and

ergodic process bn* such that :

and the stationary and ergodic version bn* was used to model the video traffic. If

the distribution of service time G is Weibull-like, the ACF has the form ρ k = e-β√k,

which provides a good fit to the empirical ACF. The ACF is summable, and therefore,

it is a SRD model.
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2.9 GBAR Model

GBAR model was proposed by D. P. Heyman [37]. The GBAR model is formed

by two random variables, one with Gamma distribution and the other with Beta

distribution. The gamma random variable, denoted as Ga(β, λ ), has the following

distribution:

The Beta random variable, denoted as Be(p, q), has the following distribution:

It is well known that the sum of two independent gamma random variables with

distribution Ga(α, λ) and Ga(β, λ ) is still a gamma variable with distribution Ga(

α + β, λ), and the product of two independent Beta variables with distribution Be(α , '

β - α)andGa(β, λ) is a gamma random variable with distributionGa(α, λ). From the

results, if Xn-1 has Ga(α, λ ) distribution, An has Be(α , β - α ) distribution, and Bn

has Ga(β  - α,  distribution, and if the three variables are mutually independent,

then the variable:

is still a gamma random variable with distribution Ga(β, λ). The process {Xn} is

stationary with autocorrelation function:

The process {X,} is a AR(1) process, and hence, is called GBAR(1) process.

The mean and variance of process {X,} are β/λ  and β/λ 2 . They can be

estimated from empirical data. Suppose that the mean and variance of the empirical

data are m and v, then λ  and β  can be estimated by:
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and

The parameter a can be estimated from the autocorrelations of the empirical data

by equation (2.42). Assume that the data have the property:

for some sufficiently large K, then

The GBAR model can accurately predict the cell loss rate and mean queue size for

video conferences coded with H.261 based coder. It is more accurate than the DAR

model.

2.10 Long Range Dependent Models

ACFs of the models introduced so far have exponential forms. Such ACFs are

summable, that is, E i°,'±. 0 pk < co. The power spectrums are bounded at low

frequency. Recently, a number of studies supported by extensive statistic analysis

indicate the presence of persistent correlations over a large scale. Actually, it has

been found that such phenomenon occurs quite often in nature [38, 39], such as

rainfall, the annual growth of tree rings, hydraulics, and economics. This kind of

phenomenon is also found in ATM, LAN, WAN, and VBR video traffic, and is well

described by long range dependence processes [40, 6, 5, 41].

A long range dependence process has a ACF that is not summable, i.e.,

o pk = cc. Its power spectrum at low frequency is unbounded and approaches

infinity as the frequency approaches zero [42]. It has been argued that the queuing

performance of network in the presence of LRD traffic can not be evaluated accurately

by Markov models. There are evidences that the presence of long term correlations
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will degrade the queuing performance [43]. New models having LRD behavior should

be used to model network traffic and capture the LRD characteristics.

2.10.1 Fractional ARIMA Model (FARIMA)

Fractional ARIMA process is a generalized ARIMA process [44, 45, 46]. ARIMA

is an incremental process which is defined by a difference operator. Let A be the

difference operator, then:

The operation can be iterated as follows:

and

where n is an integer. Xk is the so-called ARIMA process. If the difference equation

above is generalized to the non-integer case, then a fractional ARIMA process is

obtained. The generation can be done by Gamma function in the following way:

where 	 (di) 	 is generalized factorial function.

is the gamma function.

It can be verified that the ACF of FARIMA process has the following form:

If 0 < d < 0.5, the process exhibits LRD.
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Fractional ARIMA process can be approximated by linear process of the form:

where Ei is an i.i.d random variable. Ei may be Gaussian or non-Gaussian. For

Gaussian FARIMA(0,d,0),

ck can be iteratively obtained as follows:

k is N(0, a). d can be estimated from empirical data, and it is the only parameter

required by the model..

2.10.2 Fractional Gaussian Noise Model (FGN)

FGN is obtained from stationary increments of a fractional Brownian motion (FBM).

Fraction Brownian motion BH (t) is a Gaussian process with the following properties

[44]:

1. E[BH (t)] = 0

2. BH (0) = 0

3. BH (t + 6) — BH (t) has the distribution N(0, σ|δ|H)

4. BH (t) is an increment independent process

5. E[BH (t)BH (s)] = σ2/2(|t|2H + |S|2H - |t - s|2H.

where 0 < H <1 is the Hurst parameter. It is clear that var[BH(t)] = σ2|t|2H

The increment is known as FGN. Let G H (t) be the increment of B H (t) that is,

GH (t) = 1/δ(BH(t+δ) -BH(t)),thenG H (t)is a stationary process with the following

properties:
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1. GH (t) has distribution N(0, σδ H- ')

2. E[GH (t + τ)GH(t)] = σ2H(2H - 1)|t|2H-2 for τ >> t.

For the discrete case, the ACF of the FGN is given by:

If 0.5 < H < 1, then, as k → ∞, ρ k → H(2H -1)k2H-2, and the FGN exhibits

LRD. H is the only parameter required for this model.

2.11 Deterministic Models

The models introduced so far are statistical models. In general, most statistic models

are not powerful enough to capture the burstiness, or they are too complicated to

analyze, and therefore are difficult to be used for connection admission control (CAC)

[47]. Furthermore, if network resources are allocated based on statistical models, it

is often impossible to provide clients guaranteed QoS.

Deterministic models have no such drawbacks. If traffic is modeled by

deterministic models, then CAC can be easily implemented, and the end-to-end

performance can be easily guaranteed. The drawbacks of deterministic traffic

models are that the number of required parameters may be very large, and if the

network is managed based on deterministic models, its efficiency may be very low.

A deterministic traffic model is one that parametrically describes the worst

case behavior of a traffic stream. It provides deterministic upper bound on each

source's arrivals, and thus, network resources are allocated based on the worst case

requirements.

A number of deterministic models have been proposed and some of which have

been adopted by ATM, such as leaky-bucket or (a, p) models, and (peak-rate, bursty-

length, average-rate) models. Those models are well known already. In this section,
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we only describe the deterministic bounding interval-length dependent (D-BIND)

model.

The task to define a deterministic model for video traffic is to find a traffic

constraint function. Let A i (t i , t2 ) be the total number of bits arriving on connection

j in the interval [t 1 , t2], if Asi (t, s) ≤  bj (t), Vs, t > 0, then bi (t) is a traffic constraint

function.

The D-BIND model uses several rate-interval pair (Rk , Ik ). Rk is a bounding

rate or worst case rate over interval I k . It is clear that the model can capture traffic

burstiness at different time scale. Using the pairs of parameters, a bounding function

for traffic can be obtained as:

where Ik-i ≤  t ≤  Ik . It is a piecewise linear upper-bound function.



CHAPTER 3

SELF-SIMILAR PROCESS

3.1 Introduction

Recent studies and statistical analysis of high-quality, high-resolution traffic,

supported by extensive measurements, have revealed a new phenomenon, which is

an important ramification to network modeling, design, and management [6, 36, 8].

It is found, in the analysis of hundreds of millions of observed packets on several

Ethernet LAN's at the Bellcore Morristown Research and Engineering Center, and

in the analysis of a few millions of observed frame data of VBR video, that the video

traffic appears to be statistically self-similar, that is, the statistical characteristics

of traffic seem to be similar at any time scale. Self-similar traffic is characterized by

"burstiness" across an extremely wide range of time scale. Unlike any other random

processes, the aggregation of self-similar processes still has the characteristics of self-

similarity. This is contrary to the common belief that the burstiness will disappear

after the aggregation of many traffic streams.

Self-similar process is one kind of LRD process and the self-similar phenomenon

can also be found in many disciplines, such as hydraulics and economics. Hurst found

the phenomenon when he studied the long-term storage in water reservoirs [38].

Statistical self-similarity manifests itself in a variety of different ways: a spectral

density function that diverges at the origin, and a non-summable autocorrelation

function.

The indication of self-similar phenomenon in network traffic spurred an on

going debate on whether self-similar models should be used in network performance

evaluation and resource management. Some of the results support the view that self-

similarity has drastic impact on queuing performance [48, 49, 50, 51, 43], while other

results support the view that self-similarity has little impact on queuing performance

because of the fact that the buffer capacity is limited in practice [52].
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More work is required to demonstrate the validity of self-similar models. For

example, the following questions need to be answered [6]: 1) What is the physical

explanation of self-similarity; 2) What is the impact of self-similarity on network

and protocol design and performance analysis. Analytical techniques need to be

developed to analyze the impact of self-similarity on network performance.

3.2 Self-Similarity

Self-similarity is not a new idea. It is used commonly in the theory of fractals

and chaos. Self-similarity is a concept extended from the shape similarity in basic

geometry. A figure is said to be self-similar if the figure is composed of small figures

with the similar shape, and the small figure is composed of even smaller figures with

the similar shape, and so on (see Fig.3.1 for a self-similar figure).

Figure 3.1 An example of self-similar picture

The concept of self-similarity is adopted to a random process to describe the

phenomenon that the process has the same statistical characteristics at any time

scale. Now let us consider a stationary process X = {Xn, : n = 1, 2, ...} with mean
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μ and variance μσ2. The autocorrelation function and the variance of X are denoted

as:

and

X is said to be SRD if Σ κ=∞ k=0 r(k) is finite; otherwise, the process is said to be

LRD [42].

Let X defined above have the following autocorrelation function:

where 0 < β  < 1, and L is a slowly varying function as k → ∞ , i.e., liml→∞  L(tx) I L(t;

1 for all x > 0. Consider the aggregated process

where

X is said to be exactly second-order self-similar if

and

for all m E {1, 2, 3, • • •} and k E {0, 1, 2, • • •} [42]. Here, r(m) (k) is the autocorrelation

function of X(m ) . In fact, Equation (3.5) is sufficient to define a self-similar process,

since Equations (3.3) and (3.6) can be derived from Equation (3.5). The statement

that Equation (3.5) is sufficient to define an exact self-similar process follows directly

from the following statements [42].
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Statement 1 Process X satisfies condition (3.5) , if and only if its autocorrelation

function is:

Statement 2 For the autocorrelation function r(k) = g(k), the following limiting

equation holds:

where

Statement 3 Process X satisfies the condition;

if the condition (3.5) holds or if r(k) = g(k) for 0 < /3 < 1.

Statements 1 and 3 tell us that Equation (3.5) and Equation (3.6) are

equivalent. Statement 2 implies that Equation (3.3) and Equation (3.5) are

equivalent. Condition (3.5) gives explicit expression for r(k). This expression

only allows L(k) to be some constants, but not to be any slowly varying function.

The following statement yields the spectral density function of a self-similar

process.

Statement 4 Process X satisfies the condition (3.5) if and only if its spectral density

function is:

where c is a constant given by normalization, ∫1/2 -(1/2) f (λ )dλ  = σ2.

From the above discussion, the following definition of exactly second order

self-similar process is obtained [42].
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Definition 1 Process X is called exactly second-order self-similar with parameter

H = 1 - β/2,0 < β  < 1, if its autocorrelation function is (3.7), i.e., r(k) = g(k).

It is apparent that a self-similar process is a kind of LRD process. Since empirical

video traffic exhibits self-similarity and long range dependence, it is intuitive to use

self-similar processes to model video traffic. This is one of the most often used

processes to capture LRD of video traffic.

Hurst parameter H = 1 - β /2, (0 < β  < 1) is used to measure the similarity

of a process. It is the only parameter needed to describe a second-order self-similar

process. For a process with self-similarity, 1/2 < H < 1.

3.3 Asymptotically Second-order Self-Similar Process

Besides the exact second-order self-similar process, the so called asymptotically

second-order self-similar process is also commonly used in video traffic model. The

asymptotically second-order self-similar process is defined as [42]:

Definition 2 Process X is called asymptotically second-order self-similar with

parameter H = 1 - β /2, 0 < β < 1, if for all k E {1, 2, . .},

The asymptotically second-order self-similar process has the following properties:

Statement 5 if

where 0 < c < ∞  is a constant, then

where c is also a constant.
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Statement 6 If (3.12) holds, then

Processes generated by F-ARIMA algorithm are asymptotically self-similar.

3.4 Estimation of Hurst Parameter

Many methods for estimating the self-similarity parameter H or the intensity of

long-range dependence in a time series are available, some of which are described in

details by Beran in his book [44]. The methods encountered often are aggregated

variance method, the R/S method, Periodogram Method, and Whittle estimator

method. Two of them are described here.

3.4.1 Aggregated Variance Method

The aggregated method estimates the Hurst parameter based on the aggregated

process described by Equation (3.2). For successive values of m, get the corre-

sponding aggregated process X(m), estimate the variances of the process X ( m ) for

each m using the following formula,

and then plot the logarithm of the VarX(m ) versus log m, where N is the length of

the time series. If the process is self-similar, the plot should form a straight line,

with slope β  = 2H - 2, -1 ≤  β  < 0. By measuring the slope, the Hurst parameter H

can be obtained. This method can be used to estimate H of the F-ARIMA process

and FGN process.

3.4.2 Absolute Values of the Aggregated Series

For this kind of method, the following values are calculated for every m,
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then the logarithm of this value is plotted versus log m. If the process is self-similar,

the plot should be a line with slope H — 1.



CHAPTER 4

MODELING VIDEO TRAFFIC USING MARKOV-MODULATED
SELF-SIMILAR PROCESSES

4.1 Introduction

Some statistical traffic models introduced in Chapter 2 can be categorized into two

classes:

• Short Range Dependence (SRD) models,

• Long Range Dependence (LRD) models.

They are used to capture two statistical factors: marginal distribution (first-order

statistics) and autocorrelation function (second-order statistics) of traffic data. LRD

models can capture long range dependence, while SRD models can capture short

range dependence.

While the importance of long range dependence is arguable, the impact of short

term autocorrelation in traffic processes on queuing performance of finite buffer can

be very drastic (see [8] and references in it). Simulation results show that the queuing

performance of network with strong and weak autocorrelation traffic may be quite

different.

Thus, a model should capture not only the first-order statistics, but also

the second-order statistics. SRD models (such as DAR(1), MMRP, Fluid Flow,

and Regression models) can capture short-term autocorrelation, but fail to capture

long-term dependence. LRD models, on the other hand, can capture long-term

dependence, but underestimate the short term dependence.

The importance of long range dependence is among the most arguable issues

in video modeling. Most of the results, however, support the view that LRD has

drastic impact on queuing performance [48, 49, 50, 51]. Only a few results support

the view that LRD has little impact on queuing performance [43]. It is at least not

harmful to capture the LRD by a traffic model.

39
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Most of the work in video source modeling had been largely confined to a short

period of video sequence and video conference. The scene change or drastic motion

frames are rare in these sequences. As a result, bit rates are relatively low and bit

rate changes are rather small compared with that of full motion movies.

The M/G/oo input process model is a compromise between LRD and SRD

models [36]. Simulation results were found to be better than those of self-similar

process when the switch buffer is relatively small. Better results than those of

DAR(1) model was found when the buffer size is large. The results were obtained

from JPEG and MPEG-2 I sequences. As will be shown below, ACF of MPEG

sequences is quite different from that of JPEG sequence or that of I sequences. In our

opinion, it is almost impossible to accurately capture the ACF of MPEG compressed

data by a simple function such as the exponential function, and thus this method

fails to capture the second-order statistics of MPEG sequences.

Markov-Renewal-Modulated TES (transform expand sample) models was used

to model JPEG encoded motion pictures. One of the drawbacks of TES approach is

that the ACF of a TES process for lags beyond one can not be derived analytically. It

can only be obtained by searching in the parameter space, and thus good results can

hardly be guaranteed [36]. One of the important tasks of traffic modeling is to obtain

an analytical model so that the network performance can be obtained analytically.

TES model fails to provide such an analytical model.

The ACF of MPEG and JPEG coded video sequences are quite different, and

the models used so far for video sequence can not characterize the MPEG coded

video. We propose to model MPEG compressed video sequence by the Markov

modulated self-similar processes. The basic idea behind our proposed model is to

decompose the original video sequence into several sequences that can be modeled by

self-similar processes. It has been found that video traffic possesses self-similarity,

and thus it is natural to model video traffic by self-similar processes. Self-similar
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processes have very simple ACF forms, and therefore, are easier to analyze than

other kinds of processes. The model tries to capture the SRD of the MPEG coded

video by a Markov process, and the LRD by a self-similar process.

4.2 Empirical Data and ACF

The empirical data used here was MPEG-I coded data of Star Wars'. The source

contains materials ranging from low complexity/motion scenes to those with high

and very high actions.

The data file consists of 174,136 integers, whose values are frame sizes (bits

per frame). The movie length is approximately 2 hours at 24 frames per second.

The original video was captured as 408 lines by 508 pels, and then interpolated to

240 x352 (Luminance - Y), and 120 x176 (Chrominance - U and V). Every frame

was partitioned into blocks of 8x 8 pixels. These data blocks were transformed

using discrete cosine transform (DCT). After the DCT transformation, coefficients

were quantized and Huffman coded. Run length coding was further used to reduce bit

rate. Motion estimation techniques were used to compress data volume. The frames

were organized as follows: IBBPBBPBBPBB IBBPBB... , i.e., 12 frames in a Group

of Pictures (GOP). I frames are those which use intra frame coding method (without

motion estimation), P frames are those which use inter frame coding technique (with

motion estimation), and B frames are predicted using both forward and backward

prediction.

The ACF of frame size of MPEG coded Star War is shown in Fig 4.1, and it

is quite different from the ACF of frame size of JPEG coded movies Star Wars (see

Fig 4.2). The ACF of MPEG coded data fluctuates around an envelope, reflecting

the fact that, after the use of motion estimation techniques, the dependence between

'The MPEG-I coded data were the courtesy of M.W.Garrett of Bellcore and M.Vetterli
of UC Berkeley.
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frames is reduced. This characteristic should be taken into consideration in modeling

MPEG coded video sequences. We propose to use different self-similar processes with

different ACF to reflect the fluctuation of ACFs. The basic idea behind this method

is to divide the sequence into three different sequences, each modeled by a separate

self-similar process. The transition among these processes is governed by a Markov

chain, whose transition matrix can be obtained from empirical data.

Figure 4.1 ACF of MPEG compressed video Star Wars

Figure 4.2 ACF of JPEG compressed video Star Wars
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4.3 Classification of MPEG Data

It is apparent that the ACF of MPEG compressed video traffic can not be approx-

imated by a single function r (k) = k-β because this kind of function decreases

monotonously, while the ACF of a MPEG compressed video traffic fluctuates

drastically. By comparing the JPEG compressed data and the MPEG compressed

data, we may find that bit rate variation of the MPEG compressed video sequence

is larger than that of the JPEG compressed video sequence. We therefore suggest

to divide the traffic data into three different parts inactive part, active part, and

the most active part (authors in [27] also pointed out that a video bit rate process

has three main components: a slowly changing component, a more quickly changing

component, and an impulsive component). Suppose f (i) is the number of bits in the

ith frame. The video traffic can be classified as follows

1. If f (i + 1) / f (i) > T, i = 2, 3, ... then f (i +1) belongs to the non-inactive part;

otherwise, f (i + 1) belongs to the inactive part, where T is a threshold value.

2. Similarly, the non-inactive part can be classified into the active and most active

part.

Taking these three data sets as three different random processes, we can calculate

their ACFs.

4.4 Modeling of Classified Data

The ACF of each process is very different (as shown in Fig. 4.3, 4.4 and 4.5) from

that of the original sequence. The fluctuation is no longer that big. We have used

k-β, e-βk and e-β√k , corresponding to the ACFs of a self-similar process, a Markov

process, and an M/G/∞  input process, respectively, to approximate ACFs of these

three processes. It is quite clear that k --β is a better approximation of ACFs of these
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Figure 4.3 ACF of the inactive part of Star Wars

classified data, and we therefore use self-similar processes s 1 , 82 , and s 3 to model

these processes, respectively.

Using the least square method, we obtained )3 = 0.3321, 0.3069, and 0.4396

for the active, inactive, and most active part, respectively. The corresponding Hurst

parameters for these processes are H = 0.8339, 0.8465, and 0.7802.

Beta distribution [53] is used to model the marginal distributions of these

processes. The marginal distribution of a Beta distribution process has the following

form

where 7 and n are shape parameters, and [μ0, μ1 ] is the domain where the distribution

is defined.

Beta distribution is quite versatile and can be used to model random processes

with quite different shapes of marginal distributions. The following formulae are



Figure 4.4 ACF of the active part of Star Wars
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Figure 4.5 ACF of the most active part of Star Wars
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Figure 4.6 CDF of the inactive part and the corresponding Beta distribution

used to derive the parameters of Beta distribution [53]:

where

and N is the number of data in the data set. Using the classified data sets, γ  =

1.6179, η  = 13.7810 for the inactive process, γ = 1.7977, η  = 12.1980 for the active

process, and γ  = 5.3550, η = 11.4134 for the most active process. The marginal

distributions of the empirical data and corresponding Beta distributions are shown

in Fig. 4.6, 4.7, and 4.8.



Figure 4.7 CDF of the active part and the corresponding Beta distribution
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Figure 4.8 CDF of the most active part and corresponding Beta distribution



48

Figure 4.9 A Markov modulated self-similar process model for MPEG video

4.5 Modeling the MPEG Data

To model the whole data set, we need a process to govern the transition among the

processes s 1 , s2 , and s 3 obtained above. Markov chain is often used because of its

simplicity.

Using Markov chain as the dominating process, our model for MPEG video

traffic can be described by the state diagram shown in Fig 4.9, where state Si, S2,

and S3 correspond to the three respective self-similar processes. At state S i , bit

rates are generated by process s i . The transition probability from Si to S3 can be

estimated from the empirical data as follows:

where, Ni is the total number of times that the system goes through state S i , Nii is

the number of times that the system make transition to state Sj from state S. For

the Star Wars video, the following transition matrix

is obtained. This matrix is useful for the synthesis of video traffic.
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4.6 Video Traffic Synthesis

To synthesize video traffic using our model requires self-similar traffic generator.

Some methods are available to generate approximate self-similar traffic. Two

of the most commonly used methods are exactly self-similar fractional Gaussian

noise (FGN) [44] and asymptotically self-similar fractional autoregressive integrated

moving-average (F-ARIMA) process [44]. F-ARIMA can be used to match any

kind of ACF. It takes a long time to generate the video traffic since F-ARIMA is

an iterative process . The F-ARIMA process can be generated by the following

algorithm [5, 38, 39]:

1. Generate X0 from a Gaussian distribution N(0, v o ). Set initial values No =

0, Do = 1

2. For k = 1, 2, • • • , N — 1, calculate Oki, j = 1, 2, • • • , k iteratively using the

following formulae

Finally, each Xk is chosen from N(m k , vk ). In this way, we obtain a process X with

ACF approximating to r (k)

To generate a self-similar process approximately, autocorrelation function can

be calculated in a recursive way as
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where d = H - 0.5.

ACFs of F-ARIMA and FGN generated traffic are less than k -13 for small k. To

compensate the under estimation of ACFs of a self-similar process, Equation (4.13)

used to generate F-ARIMA traffic can be enlarged for small k. New self-similar

traffic generators need to be devised so that more exact self-similar traffic can be

generated.

Distribution of these data is Gaussian. For the data to be Beta distributed,

the following mapping can be used

where Xk is a self-similar Gaussian process, FN is the cumulative probability of the

normal distribution, and Fβ-1 is the inverse cumulative probability function of the

Beta model.

Video traffic can be synthesized by a combination of the three obtained self-

similar processes via a Markov process, whose transition matrix was given in the last

section (see Fig. 4.10 for a traffic example). In the empirical data trace, the size of

I frame is often larger than the size of P frame and B frame, implying that a large

frame is often followed by several small frames. It is shown in Fig. 4.10 that the

traffic generated by our model can capture this kind of characteristic. A piece of the

empirical traffic trace is shown in Fig. 4.11

4.7 Cell Loss Rate of Network

Cell Loss Rate (CLR) is an important queuing performance of an ATM network.

To justify the queuing performance of our model, our synthetic traffic was used as

the source traffic to an ATM switch with a limited buffer size. The performance is

compared to the same system using empirical data as the source traffic. A single

arrival process is assumed in our simulation, and its service rate is assumed to be



Figure 4.10 Traffic generated by model
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Figure 4.11 A piece of empirical traffic trace
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Table 4.1 CLRs for different service rate and buffer size
Buffer size(cells) 4000cells/s 6000cells/s 9000cells/s

Trace Model Trace Model Trace Model
20 2.24E-2 9.95E-2 2.09E-3 2.30E-2 1.50E-4 4.25E-4
40 1.24E-2 7.43E-2 1.36E-3 1.34E-2 8.07E-5 1.34E-4
60 6.81E-3 5.44E-2 9.72E-4 9.25E-3 7.19E-6 2.28E-5
100 2.30E-3 2.72E-2 4.57E-4 2.91E-3 0 0
200 3.55E-4 4.22E-3 1.00E-5  3.40E-5 0 0
400 6.14E-5 6.40E-4 0 0 0 0

constant. To simplify the simulation process, the time is sliced. Every slice is used

to transmit one cell (48 bytes). We also assume that cells in a frame must arrive

at the switch during the period of this frame. This corresponds to the case that no

traffic shaping is applied. Cells are dropped when the switch buffer overflows.

Based on the switch model, performance at different service rates and buffer

sizes is examined. Simulation results using empirical data and traffic model are

shown in Table 4.1. The results show that the CLRs obtained using video trace and

our proposed model are very close for both high and low service rates.



CHAPTER 5

MODELING VIDEO TRAFFIC USING STRUCTUALLY
MODULATED SELF-SIMILAR PROCESSES

5.1 Introduction

Most models appeared in the literatures are confined to JPEG coded sequences,

which are far from common use than MPEG coded sequences. Since characteristics

of MPEG coded traffic are quite different from those of JPEG coded video traffic,

models for JPEG traffic are not suitable for MPEG traffic. Therefore, new models

need to be explored to model MPEG coded video sequences.

In [54], a unified approach was proposed to model both MPEG and JPEG

coded video traffic. To model MPEG coded data, a background process (a process

which will be transformed to three different processes) need to be searched. There

is not a good way to search for the background processes, and therefore, the method

can not be used to systematically model MPEG video traffic.

In [55], I, P, and B frames were modeled separately. I frames were described

by three parts: scene length, average I frame size over a scene, and variations from

the average frame size for the scene. P and B frames were modeled as i.i.d processes.

As we will show, I, P, and B frames are not i.i.d but LRD processes. Since B and P

frames occupy a very large portion of the whole sequence and B the size of frames is

also rather large, we believe that the impact of B and P frames can not be ignored,

and it is inappropriate to model P and B frames as i.i.d processes.

Although the proposed Markov modulated self-similar processes model introduced

in the last chapter tried to capture the LRD and SRD characteristics of video, the

pattern of the ACF of MPEG coded video, such as the fluctuation of the ACF,

however, can be matched better by exploiting the MPEG structure.

In this chapter, we propose a new model, structurally modulated, self-similar

processes that are shown to be able to capture both SRD, LRD, and the fluctuation of

53
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the ACF. Traffic data are decomposed into several parts according to the MPEG data

structure, each modeled as a self-similar process rather accurately. These processes

are then modulated structurally in a manner similar to how the frames are grouped

into the GOP (Group of Pictures) pattern.

5.2 ACF of Empirical Data

As mentioned in last chapter, the ACF of frame size of MPEG coded Star War

(shown again in Fig 5.1) fluctuates around three envelopes, reflecting the fact that,

after the use of motion estimation and forward/backward prediction techniques, the

dependence between frames is reduced. This characteristic should be taken into

consideration in modeling MPEG coded video sequences.

It is clear that the ACF of MPEG coded video sequences varies with the pattern

of GOP, that is, it has the same pattern as GOP, and therefore, we propose to

decompose the sequence into I, P, B 1 , B2 7 - 7 B8 according to the GOP pattern, and

model each part by a different self-similar process.

Figure 5.1 ACF of MPEG compressed video of Star Wars

5.3 Modeling MPEG Traffic

In order to model MPEG coded data, we decompose the MPEG traffic into 10 sub-

sequences XI, Xp, XB1, XB2 , ..., and XB 8. XI consists of all I frames, Xp consists of
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all P frames, the first B frames in all GOPs constitute XB1 , the second B frames in all

GOPs constitute XB2 , and so on. We have used k-β , e-βk and e-β√k , corresponding

to the ACFs of a self-similar process, a Markov process, and an M/G/∞  input

process, respectively, to approximate ACFs of these processes (see Fig. 5.2 to 5.11).

The mean square errors are shown in Table 5.1. It is quite obvious that self-similar

processes are better choices. We therefore use self-similar processes to model these

data.

Figure 5.2 Approximation for ACF of I frames by : LRD, M/G/oo, and Markov
processes

Figure 5.3 Approximation for ACF of P frames by : LRD, M/G/ ∞ , and Markov
processes

Using least squares method, we obtain β  = 0.4663, 0.3546, 0.4468, 0.4779,

0.4294, 0.4656, 0.4380, 0.4682, 0.4465, and 0.4606 for Xi , XP , XB1 , XB2 , • • •, and
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Figure 5.4 Approximation for ACF of B 1 frames by : LRD, M/G/oo, and Markov
processes

Figure 5.5 Approximation for ACF of B2 frames by : LRD, M/G/oo, and Markov
processes

XB8 , respectively. The corresponding Hurst parameters for these processes are H =

0.7668, 0.8227, 0.7766, 0.7610, 0.7853, 0.7672, 0.7810, 0.7659, 0.7768, and 0.7697.

To model marginal distributions of these processes, the Beta distributions

introduced in the last chapter are used. Using these formulae, η= 1.5237, 1.5699,

1.4172, 1.3016, 1.6858, 1.6329, 1.7276, 1.4218, 4.0585, 1.5402, and γ= 12.7263,

11.1939, 8.1089, 8.1604, 11.8499, 13.9278, 12.2180, 8.6536, 10.4233, 11.1768 are

obtained for Xi, Xp, XB1 , XB 2 , • • •, and X 138 , respectively.
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Figure 5.6 Approximation for ACF of B3 frames by : LRD, M/G/∞ , and Markov
processes

Figure 5.7 Approximation for ACF of B4 frames by : LRD, M/G/∞ , and Markov
processes

By combining XI , XP, XB1, XB 2 ,• • •, and XB8 in a manner similar to the GOP

pattern, a model for MPEG coded traffic is obtained. This model can be used to

generate traffic data.

5.4 Generating Traffic Data

To generate video traffic, we need to generate self-similar traffic first. F-MARIA is

used again to produce self-similar Gaussian random processes. For data to be Beta
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Figure 5.8 Approximation for ACF of B5 frames by : LRD, M/G/∞ , and Markov
processes

Figure 5.9 Approximation for ACF of B6 frames by : LRD, M/G/∞ , and Markov
processes

distributed, the following mapping is used once again:

where Xk is a self-similar Gaussian process, FN is the cumulative probability of the

normal distribution, and F-1β is the inverse cumulative probability function of the

Beta model.

Simply following the GOP pattern, we can combine these self-similar processes

to generate traffic data. A piece of traffic data generated is shown in Fig. 5.12. The

corresponding ACF is shown in Fig. 5.13. Fig. 5.14 shows the ACF of traffic data
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Figure 5.10 Approximation for ACF of B7 frames by : LRD, M/G/ ∞ , and Markov
processes

Figure 5.11 Approximation for ACF of B8 frames by : LRD, M/G/∞ , and Markov
processes

generated by our model (large scale version). It is clear that LRD , SRD and the

fluctuation can be captured by this model.

5.5 Cell Loss Rate

Cell Loss Rate (CLR) is an important queuing performance of an ATM network.

To justify the queuing performance of our model, our synthetic traffic was used as

the source traffic to an ATM switch with a limited buffer size. The performance is

compared to the same system using empirical data as the source traffic. A singl€



60

Table 5.1 Least square errors obtained by self-similar process, Markov and M/G/ ∞
methods

I P B1 B2 B3 B4 B5 B6 B7 B8

LRD 0.46 0.35 0.45 0.48 0.43 0.47 0.44 0.47 0.45 0.46
M/G/∞ 5.13 12.3 5.40 4.80 6.23 5.19 5.83 5.05 5.03 5.34
Markov 7.98 21.0 9.45 7.30 11.1 8.12 10.2 7.95 7.22 8.75

Figure 5.12 Traffic data generated by our model

arrival process is assumed in our simulation, and its service rate is assumed to be

constant. To simplify the simulation process, the time is sliced. Every slice is used

to transmit one cell (48 bytes). We also assume that cells in a frame must arrive

at the switch during the period of this frame. This corresponds to the case that no

traffic shaping is applied. Cells are dropped when the switch buffer overflows.

Based on the switch model, performance at different service rates and buffer

sizes is examined. The simulation results using empirical data and traffic model are

shown in Table 5.2. As shown, CLR obtained based on our proposed model is very

close to that based on the empirical data, and the results are better than the results

obtained by Markov modulated self-similar process models.



Figure 5.13 ACF of traffic data generated by our model
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Figure 5.14 ACF of traffic data generated by our model (large scale version)

Table 5.2 CLRs for different service rate and buffer size
Buffer size(cells) 4000cells/s 6000cells/s 9000cells/s

Trace Model Trace Model Trace Model
20 2.24E-2 6.57E-2 2.09E-3 1.15E-2 1.50E-4 1.63E-4
40 1.24E-2 4.61E-2 1.36E-3 6.75E-3 8.07E-5 4.94E-5
60 6.81E-3 3.13E-2 9.72E-4 3.69E-3 7.19E-6 1.02E-5
100 2.30E-3 1.28E-2 4.57E-4 1.01E-3 0 0
200 3.55E-4 5.61E-4 1.00E-5 3.60E-6 0 0
400 6.14E-5 0 0 0 0 0



CHAPTER 6

A SIMPLER VIDEO TRAFFIC MODEL FOR MPEG VIDEO

6.1 Introduction

In the previous chapter , we proposed a structurally modulated self-similar process,

which depends on the decomposition of MPEG sequences into I, P, B 1 , B2, ...

according to the GOP structure. Through careful analysis we found that the first

frame in the data file of Star wars provided by Dr. Garrett was not the I frame but

the second B frame after the I frame. After the removal of the first several B and P

frames, we obtain a file in which the first frame corresponds to the I frame. After

editing the data file, we decompose the data into I, P, and B frames and calculate

the ACF of I, P, and B frames. We find that the whole sequence of B frames can be

modeled by a self-similar process. That means that the earlier model we proposed,

although works well, can be further simplified.

In this chapter, we propose a simpler model for MPEG coded video, in which

the original sequences are decomposed into three parts, each of which can be modeled

by a self-similar process. Compared with the model introduced in the previous

chapter, the model is rather simple.

6.2 Modeling MPEG Traffic

In order to model MPEG coded data, we decompose the MPEG traffic into three

sub-processes, Xi, XP, XB. X/ consists of all I frames, Xp consists of all P frames,

and XB consists of all B frames. We have used k- β , e-βk , and e-β√k corresponding to

the ACFs of a self-similar process, a Markov process, and an M/G/ ∞  input process,

respectively, to approximate ACFs of these processes. The ACF of each sub-process

and its approximation by Markov process, M/G/∞  process, and self-similar process

are shown in Fig. 6.1 to 6.3. The sums of squares of errors obtained by the three

kinds of methods are tabulated in Table 6.1. It is quite obvious that self-similar
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Table 6.1 Least square errors obtained by self-similar process, Markov and M/G/∞
methods

I P B
LRD 1.5820 0.6630 0.5987
M/G/∞ 5.0527 12.8669 13.7523
Markov 7.2517 25.4433 32.0705

processes are better choices. We therefore use self-similar processes to model these

data.

Figure 6.1 Approximation for ACF of I frames by : LRD, M/G/ ∞ , and Markov
processes.

Using the least squares method, β  = 0.4662, 0.3404, 0.3040 are derived for X i ,

Xp, XB, respectively. The corresponding Hurst parameters for these processes are

H = 0.7669, 0.8296, 0.8480, respectively.

6.3 Matching CDF of I, P, and B Frames

To model marginal distributions of these processes, we again use Beta distributions

which have the following form of probability density function:
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Figure 6.2 Approximation for ACF of P frames by : LRD, M/G/ ∞ , and Markov
processes.

where γ  and η  are shape parameters, and [ μ0 ,μ1 ] is the domain where the distribution

is defined. They can be estimated by the following formulae [53]:

where

and N is the number of data in the data set. Using these formulae, γ  = 4.0605,

1.6605, 1.6431, and η  = 10.4273, 12.0277, 14.0742 are derived for XI, XP, XB,

respectively. The CDF of the three parts and their corresponding approximation by

Beta distribution are shown from Fig. 6.4 to 6.6 .
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Figure 6.3 Approximation for ACF of B frames by : LRD, M/G/oo, and Markov
processes.

6.4 Synthesis of Video Traffic and Simulation Results

By combining XI , Xp, XB in a manner similar to the GOP pattern, a model for

MPEG coded traffic is obtained. This model can be used to generate traffic data.

Fig. 6.7 shows a trace of the empirical video traffic, and the trace generated by

our model is shown in Fig. 6.8. It is clear that the traffic generated by our model

is very similar to the empirical trace itself. For the real MPEG trace, the frame

pattern is IBBPBBPBBPBBIBB• • •. Generally speaking, in the same GOP, I frames

are larger than P frames, while P frames are larger than B frames. This pattern

is demonstrated by the traffic generated by our proposed model, and therefore, our

model can capture this feature accurately. Since traffic is random, the appropri-

ateness of a traffic model should be judged by its statistical properties rather than

the mere similarity between these two figures. This can be demonstrated by the ACF

of the generated traffic shown in Fig. 6.9.



Figure 6.4 CDF of I frames and its approximation by Beta distribution.
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Figure 6.5 CDF of P frames and its approximation by Beta distribution.



Figure 6.6 CDF of I frames and its approximation by Beta distribution.
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Figure 6.7 A trace of the empirical traffic data.



Figure 6.8 Traffic data generated by our model
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Figure 6.9 ACF of traffic data generated by our model



CHAPTER 7

DYNAMIC BANDWIDTH ALLOCATION FOR PRERECORDED
VIDEO DELIVERY

7.1 Introduction

It is well known that ATM network can be used to transmit many kinds of traffic

with guaranteed quality of service. Video traffic has been predicted to be the major

component of future broadband network traffic, and therefore, an efficient video

traffic transmission mechanism for ATM network is important to network operators.

Bit stream of video traffic produced by a Codec, however, is naturally VBR (variable

bit rate). For example, the ratio of the peak-to-average bit rate may be as large as 12

for Star wars. For such kind of traffic, it is very difficult to meet the QoS parameters

(such as delay and cell loss ratio) while keeping high network utilization.

To improve network utilization, some bit rate control [56] and traffic shaping

algorithms [57],[58] were developed. Owing to the stringent delay requirement,

traffic shaping techniques have limited effect on network utilization. Bit rate control

methods, on the other hand, can be used to improve network utilization, but at the

cost of varying video quality.

Another choice to improve network utilization is to use dynamic bandwidth

allocation algorithms. This kind of algorithms allows users to dynamically reserve or

adjust network resources. When the reserved resource is not enough for the user to

transmit its traffic, a renegotiation can be initiated to ask for more resource. If the

reserved resource is more than enough, some bandwidth can be released. In such a

way, network utilization can be improved significantly.

One major class of dynamic resource management algorithms is based

on parameter measurements. Several measurement based dynamic bandwidth

allocation algorithms, which initiate their renegotiation processes based on the
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actual measurement of the cell loss ratio (CLR) or user parameters (UPs), have been

proposed [59, 60]. To manage resources, RAI cells may be required.

In [60], the CLR was calculated up to the current period, and the service rate

for the next period was adjusted based on the current CLR. Owing to the difficulty

for assessing the CLR on line and the indirect relationship of the current CLR and UP

with the future bandwidth requirements, these approaches are not effective enough

to enhance QoS and improve network utilization.

Another major class of algorithms is based on prediction techniques. It

is mainly used for real-time video transmission. For these algorithms, the user

parameters or bit rate were predicted based on the available information, and

resources were allocated based on the predicted results. It is important to predict

these parameter accurately so that network resources can be used efficiently.

In [61], VBR service was proposed to be used, and therefore the QoS can be

guaranteed. The leaky bucket parameters (peak rate, sustain rate) were adjusted

based on UPs calculated for every GOP. UPs can be inherently inaccurate because

they were calculated from previous GOPs. To reduce the buffer size, the source

quantization step was adjusted on line. The drawback of this algorithm is that the

user parameters (peak rate, sustain rate, and bursty length ) need to be renegotiated

for each GOP, which is a big burden to network management.

Adas [62] proposed to use adaptive linear prediction to support dynamic

bandwidth reallocation. It is claimed that by predicting the average bit rate of the

next GOP and allocating bandwidth based on the predicted results, the network

utilization can be improved by a factor of 1.9-3.0 [62]. Since the bit rate variation

is very high, it is very difficult to predict the average bit rate in the next GOP

accurately, and the prediction error can be very large. The required number of

renegotiation is also very large.
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A new algorithm is proposed here, which is applicable to pre-recorded video, in

which a renegotiation process is initiated only when a scene change occurs. It is well

know that bit rate changes dramatically only when scene change occurs, and thus,

renegotiation is necessary only at that time. Intuitively, the renegotiation frequency

should be lower compared with that of Reininger's and Adas' algorithms [62, 61].

The CLR can be guaranteed to be zero if the maximum bandwidth for every scene

can be satisfied.

7.2 Scene Change Identification

A representative portion of an empirical video trace is plotted in Fig. 7.1. The vertical

axis represents the number of bits per frame, and the horizontal axis represents the

corresponding frames. It is clear that the data appears to be composed of stationary

segments. Average bit rate of every segment changes abruptly from one segment to

another. Visually, these abrupt transitions coincide with scene changes [8].

Figure 7.1 Video traffic of Star Wars

To detect scene changes in the empirical trace, the algorithm introduced in [8]

is adopted. A scene change is declared if the change of the number of bits between



72

successive frames exceeds certain threshold in a sustained manner. Denotes X, as

the number of bits in the nth frame, and Jmin the threshold. Define J, as follows:

The indicator function for the nth frame is then given by

where Lmin is the minimal scene length in frames. The frame whose indicator function

is one corresponds to a scene change. It was experimently found that for video star

wars, Jmin = 5000, and Lmin, = 2.

7.3 Dynamic Bandwidth Allocation Based on Scene Changes

For MPEG coded video movies, the ratio of peak rate to average rate is very large. If

CBR service is used to transmit MPEG video traffic, it is difficult to guarantee QoS

while keeping bandwidth utilization high. Owing to the fact that network utilization

must be low if the bandwidth is allocated to a value equal to the peak rate, and the

delay or the CLR will be high if average bit rate is allocated.

It is intuitive that the bit rate change during a scene is not large, and hence,

low CLR, small delay, and high network utilization can be expected. Based on this

premise, the following dynamic bandwidth allocation algorithm is proposed:

1. Identify the scene change.

2. If scene change occurs, determine the maximum bandwidth needed (which can

be found in advance for stored video).

3. Initiate a negotiation process for the maximum bandwidth for this scene.

4. Go to Step 1.
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Note that the maximum bandwidth for every scene should be determined and stored

beforehand. During the retrieval process, if a scene change is detected, the maximum

bandwidth for the new scene can be read and the bandwidth can be allocated for

this scene.

Let C be the maximum number of bits that can be transmitted by the channel,

and M be the total number of bits transmitted. The bandwidth utilization factor is

defined as:

For the star wars video, if peak bit rate is used in CBR service, the utilization

factor is 0.0842. Using the proposed method, the utilization factor is 0.1962 (an

improvement by a factor of 2.3). Compared with Reininger's method [61], the renego-

tiation frequency can be reduced by a factor of 7 if our proposed method is used.

Compared with Adas's method [62], the number of renegotiation is reduced by a

factor of 7 while the CLR is zero.

7.4 Improving Bandwidth Utilization

The algorithm introduced above achieves zero CLR at the expense of a lower

bandwidth utilization. The bandwidth utilization can be improved by using a

buffer. To improve network utilization, the following procedure is proposed.

1. Identify the scene change.

2. If scene change occurs, determine the mean bandwidth X i of this scene.

3. Initiate a negotiation process to acquire bandwidth βXi  for this scene, where

> 1 is a constant.

4. Go to step 1.
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The average bandwidth for every scene should be determined off-time. For stored

video traffic, it is very easy to find the average bit rate of each scene.

Suppose that the movie has N scenes. Xi is the mean frame size of the ith

scene, and L 2 is the number of frames in the ith scene. Then,

and

where M is the total number of bits of the movie, and C is the maximum number

of bits that the source can transmit. It is clear that the bandwidth utilization is the

reciprocal of 3.

Video trace star wars is used in our simulations. The data file for the trace

consists of 174,136 integers, whose values are frame sizes (bits per frame). The largest

frame has 185267 bits, and the smallest one has 476 bits. This is a good representative

movie sequence for benchmark comparison. It contains materials ranging from low

complexity/motion scenes to those with high and very high actions.

In Fig.7.2, the relationship between CLR and buffer size is illustrated for

different values of The value of i3 varies from 2 to 9 with a step size of 0.5.

When i3 is larger than 9, the CLR becomes zero for any buffer size. The curve at

the top corresponds to ,3 2. Compared with CBR service, CLR can be reduced by

an order of 2-3 using our proposed techniques with fixed buffer size and bandwidth

utilization. Likewise, with fixed CLR and bandwidth utilization, the buffer size can

be reduced by a factor of 2-4.
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Figure 7.2 CLR versus buffer size under different network utilization factors (β
changes from 2 to 9 with a step size of 0.5 from top to bottom)

7.5 Minimizing Renegotiations

In general, the network should renegotiate its bandwidth as frequently as possible to

achieve maximum network utilization. Too many renegotiations are, however, a big

burden to network management, and therefore, it is desirable to reduce the number

of renegotiations as small as possible. Most of the scenes are short. The mean bit

rates among the consecutive scenes vary only a little, and thus we can further reduce

the number of renegotiations. Two methods are proposed. If a new renegotiation

process is triggered only when the mean bit rate of scenes changes drastically, the

renegotiation frequency can be reduced while bandwidth utilization and CLR are

kept almost unchanged. The frequency can also be reduced by combining consecutive

scenes whose lengths are smaller than LT, thus resulting in longer scene length. In

this case, only the scene identification algorithm defined in Section 7.2 needs to be

modified as:
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where L(n) is the length of the nth scene, LT is the threshold used to the combined

scene, that is, the consecutive scenes which are shorter than LT are combined

together. To reduce the number of renegoations, we can also keep the definition

of Sn unchanged, but let Lmin to be LT instead of 2, which was used in [8].

The second negoation reduction method is employed in our simulation. When

the values of LT used in our simulation are 12, 20, 50, 100, 200, 300, 400, 500, 1000,

the number of renegotiations after scene combinations become 1730, 1520, 888, 620,

422, 273, 228, 133, respectively. CLR versus buffer size for different β are shown

in Fig. 7.3 to Fig. 7.5, corresponding to LT = 100, 300, and 1000, respectively. In

these figures, different curve corresponds to different β, which varies from 2 to 10

from top to the bottom, with a step size of 0.5. The 3-D plots shown in Fig. 7.6- 7.8

correspond to CLR versus buffer size and LT for j3 = 4, 6, 8. The performance is

kept almost unchanged even for the case of LT = 300, in which case, the number

of renegotiations is 273, which is almost 11 times smaller than that needed using

the algorithm introduced in Section 7.3. Only when LT is larger than 300, the

performance begins to degrade gracefully for the case of small β. For such a long

movie, 273 renegotiations are not a heavy burden to network management.

Simulations also demonstrate that, if the other two performance parameters are

fixed, then bandwidth utilization can be improved by a factor of 2 to 5, the buffer

size can be reduced by a factor of 2 to 4, and the CLR can be reduced by an order

of 2 to 3. Through scene combination techniques, the frequency of renegotiation

can be reduced significantly, i.e, the renegotiation cost is kept small. The proposed

algorithms can be efficiently used for video delivering.
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Figure 7.3 CLR versus buffer size when LT = 100. j3 changes from 2 to 9 with a
step size of 0.5 from top to bottom

Figure 7.4 CLR versus buffer size when LT = 300. /3 changes from 2 to 9 with a
step size of 0.5 from top to bottom
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Figure 7.5 CLR versus buffer size when LT = 1000. β  changes from 2 to 9 with a
step size of 0.5 from top to bottom

Figure 7.6 CLR versus buffer size and LT, p = 4



Figure 7.7 CLR versus buffer size and LT, ρ  = 6
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Figure 7.8 CLR versus buffer size and LT, ρ  = 8



CHAPTER 8

DYNAMIC BANDWIDTH ALLOCATION FOR REAL-TIME VIDEO
DELIVERY

8.1 Introduction

The algorithms introduced in the last chapter, though can be used to deliver real-time

video with some modification, the bandwidth utilization, however, is not expected

to be high due to the fact that the frame size may change drastically in real-time

video delivery even if there is no scene change.

In this chapter, algorithms which can be used to improve bandwidth utilization

for non-interactive real-time video transmission are proposed. If the renegotiation

is triggered by video sources, the prediction is not necessary because one or two

frames can be delayed for non-interactive real-time video delivery. The algorithms

introduced in this chapter require a delay of one to two frames.

8.2 Dynamic Bandwidth Allocation for Real Time MPEG Video
Transmission

As pointed out earlier, if the renegotiation is initiated by the video source (or Codec),

the bandwidth allocation may be implemented more easily and the allocation may

be more efficient because the frame size is known before transmission.

Suppose the current transmission rate is R bits per second, the size of the frame

that will be transmitted is S bits, and the frame refresh rate is N frame per second.

The bandwidth reallocation can be carried out in the following way:

• if | —N x S| < δ , transmission rate S is kept unchanged,

• R = S x N, otherwise,

where 6 is a threshold.

The value of 6 affects the bandwidth utilization, the required buffer size, renego-

tiation frequency, and cell loss ratio. In order to increase bandwidth utilization and
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Table 8.1 The number of renegotiations and bandwidth utilization
1000 2000 3000 4000

FREQ. 71007 67229 63557 60197
Util. 0.9992 0.9988 0.9986 0.9982

decrease CLR, the value of S should be small; on the other hand, to achieve a small

number of renegoations, the value of 6 should be large enough. To justify the effect

of 5, an ATM switch with a limited buffer size is simulated for different values of δ .

Simulation results are shown in Fig. 8.1.

Figure 8.1 CLR versus buffer size for dynamic bandwidth allocation

From the simulation results we can see that to achieve satisfactory CLR, the

value of δ should be very small, implying that a large number of renegotiations is

needed. From the figure, when the buffer size is large enough, the CLR decreases

rapidly, implying that buffering is effective in reducing CLR. This is difficult to

achieve by CBR service. The actual bandwidth allocation for δ = 1000 is shown in

Fig. 8.2.

The renegotiation frequency and bandwidth utilization for different thresholds

are shown in Table 8.1
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Figure 8.2 Actually allocated bandwidth

8.3 Reducing the Number of Renegotiations

Although the bandwidth utilization through the dynamic bandwidth allocation

discussed above is high, the renegotiation is still a big burden to network management.

To reduce the renegotiation frequency while keeping the bandwidth utilization

reasonably high, an algorithm based on I frames is introduced in the this section.

Through the analysis of the MPEG video trace we find that I frames often

have large frame sizes, and B frames have small frame sizes. Most of the time,

when I frame size changes significantly, P and B frame size also change significantly,

implying that the increase or decrease of I frame size often indicates the increase or

decrease of P and B frame sizes, and therefore, we can base on I frames to allocate

bandwidth to improve QoS and network utilization.

To allocate bandwidth, the algorithm requires to hold on I frames to determine

the size of I frames. When I frame size changes significantly, a renegotiation can be

triggered to ask for reallocation of bandwidth.

Suppose the I frame of the kth GOP is just ready to be transmitted. Let Ik be

the size of the I frame of the kth GOP, R be the transmission rate for the previous
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GOP, and S be a threshold, then the dynamic bandwidth allocation algorithm can

be stated as follows:

• if |Ik — R/N| < δ, then the transmission rate remains unchanged.

• if |k — R/N| ≥ δ, then R = Ik x N,

where N is the number of frames need to be transmitted per second.

Since only I frames need to be checked, the negotiation frequency can be

reduced significantly. Since the size of I frames is the largest in a GOP most of the

time, the bandwidth allocated is very close to the largest one needed for a period,

and therefore the CLR can be kept small. The negotiation frequency and bandwidth

utilization are tabulated in Table 8.2 while the CLR for different values of δ are

shown in Fig. 8.3. The results demonstrate that the renegotiation frequency can be

reduced significantly.

Figure 8.3 CLR versus buffer size for different value of δ

The actual bandwidth allocated when S = 3000 is shown in Fig. 8.4. For

δ=1000, 10000, and 25000, the CLR almost remains unchanged even whenδchanges

significantly, implying that the number of renegoations can be reduced significantly

without degrading the CLR performance.



Figure 8.4 Actually allocated bandwidth when 6=5000

Table 8.2 The number of renegotiations and bandwidth utilization
6 1000 10000 15000 20000
FREQ. 9208 2479 1694 1211
Util. 0.2584 0.2583 0.2588 0.2589

8.4 Increasing Bandwidth Utilization

As mentioned earlier, most of the time, I frames have the largest frame size in the

respective GOPs, i.e., that most of the time the bandwidth is not used efficiently.

From the analysis of the empirical trace, the difference between B frames for each

GOP is not large. We can use this characteristic to increase bandwidth utilization.

Again suppose that 'k is the size of the I frame of the kth GOP, Bk is the

size of the B frame immediately following the I frame in the kth GOP, and R is the

transmission rate for the previous GOP, and 6 is a threshold. Assuming these two

frames are ready for transmission, then the dynamic bandwidth allocation algorithm

can be altered as follows:
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Table 8.3 The number of renegotiations and bandwidth utilization
6 1000 7000 11000 19000
FREQ. 8113 2482 1611 763
Util. 0.3511 0.3508 0.3503 0.3515

• otherwise R = [Bk + α (Ik - Bk ) ] x N,

where δ is still the threshold, and α  is a parameter which can be used to adjust the

trade off between CLR and bandwidth utilization.

In general, the value of a should be less than one in order to have high

bandwidth utilization. The value of α , however, can be larger than one if very good

CLR performance is needed. The CLR performance for different α  and δ are shown

In Fig. 8.5 and Fig. 8.6, . The renegotiation frequency and bandwidth utilization

for δ = 0.7 are shown in Table 8.3. The actual bandwidth allocated for the case

δ=9000 andα= 0.7 is shown in Fig. 8.7

Figure 8.5 CLR performance versus buffer size with a = 0.7, 6=1000, 9000, 17000,
and 25000, respectively
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Figure 8.6 CLR performance versus buffer size with a = 0.8, 6=1000, 9000, 17000,
and 25000, respectively

Figure 8.7 Actually allocated bandwidth when 6=9000 and a=0.8



CHAPTER 9

CONCLUSIONS

9.1 Summary

In this dissertation, several MPEG coded video traffic models have been developed.

The performance in terms of MMSE and CLR are calculated and simulated.

It is well known that video traffic has short range dependence and long range

dependence. Traffic dependence has drastic effect on cell loss ratio and other network

performance. To capture LRD and SRD, a Markov-modulated self-similar process

model has been proposed to capture ACF characteristics of video traffic.

The PDF of traffic has strong impact on network performance. To describe

video traffic accurately, the PDF of traffic should be captured very well. To model

MPEG coded traffic, we have proposed to use generalized Beta distribution to model

the PDFs of MPEG video traffic. The results demonstrated that generalized Beta

functions match well to the distribution of MPEG video traffic.

The ACF of MPEG video traffic fluctuates around three envelopes, implying

the facts that different coding methods reduce the data dependence by different

amount. To model the traffic more accurately, a structurally modulated self-similar

process model has been proposed. This model can capture the ACF of MPEG video

traffic very well, and therefore it is a very accurate traffic model for MPEG video

traffic.

To justify the performance of the proposed models, the self-similar traffic is

generated by F-ARIMA algorithm. Through the simulation of an ATM switch with

a limited buffer size, the CLR obtained by empirical trace and traffic models are

compared. The difference between CLRs obtained by traffic models and empirical

trace are within one order, which is hardly achievable by other models, even for the

case of JPEG coded videos.
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Although accurate, the traffic model proposed in Chapter 5 is complicated. To

simplify the traffic model, a simpler traffic model was proposed. The traffic model

consists of three self-similar processes. Simulation results showed that not only the

ACF of video traffic can be captured accurately, the GOP pattern can also be re-

produced. This is a better traffic model in the sense that it can not only capture

the ACF and PDF of video traffic, but the traffic generated by this model is more

"similar" to the empirical trace.

A good traffic model is only the first step to design a good network. To

make the network utilization high, a good network management policy is required.

Video traffic is bursty. The peak-rate to average-rate ratio is very large. It is very

difficult to achieve high bandwidth utilization with guaranteed quality of service.

To increase bandwidth utilization and guarantee quality of service, an efficient

bandwidth allocation algorithm has been proposed for delivery of pre-recorded video

sequence. The algorithms have been proved to be efficient in increasing bandwidth

utilization, reducing buffer size and reducing CLR.

For real-time video traffic, it is even more difficult to achieve high bandwidth

utilization because of the time limitation and unavailability of information needed.

In order to increase bandwidth utilization for real-time video with no interactivity,

an algorithm based on I and B frames was proposed. For a reasonable renego-

tiation frequency, the bandwidth utilization can be improved by the use of dynamic

bandwidth allocation algorithms.

9.2 Future Work

Generation of traffic data using self-similar processes is time consuming. It is

favorable for industry to use simple and accurate traffic model. A simpler traffic

model is more attractive. P and B frames have some relations with I frame. It is

possible to develop models for B and P frames based on the traffic model of I frames.
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Interactive video transmission over ATM is more attractive for the enter-

tainment industry. An efficient video transmission algorithm with little delay needs

to be developed. Nonlinear prediction algorithm, such as neuron networks, may be

used to predict bandwidth needed for video transmission because the change of frame

size itself is not linear.



APPENDIX A

LIST OF ACRONYMS

AAL ATM Adaptation Layer

ACF Auto-Correlation Function

ADSL Asymmetric Digital Subscriber Line

AR Auto-Regressive

ARIMA Auto-Regressive Integrated Moving Average

ARMA Auto-Regressive Moving Average

ATM Asynchronous Transfer Mode

B-ISDN Broadband Integrated Service Digital Network

CAC Call Admission Control

CBR Constant Bite Rate

CDF Cumulative Distribution Function

CDV Cell Delay Variation

CER Cell Error Ratio

CLR Cell Loss Ratio

DAR Discrete Auto-Regressive

D-BIND Deterministic Bounding Interval Length Dependent

DCT Discrete Cosine Transformation

DSM Digital Storage Media
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DSM-CC Digital Storage Media Command and Control

FARIMA Fractional ARIMA

FGN Fractional Gaussion Noise

FTTB Fiber to the Building

FTTC Fiber to the Curb

FTTH Fiber to the Home

GOP Group of Pictures

HDTV High Definition Television

HFC Hybrid Fiber Coax

ISDN Integrated Service Digital Network

JPEG Joint Picture Expert Group

LAN Local Area Network

LRD Long Range Dependence

MPEG Motion Picture Expert Group

MAP Markov Arrival Process

MMPP Markov Modulated Poisson Process

MMSSP Markov Modulated Self-Similar Process

MOD Movies On Demand

MRP Markov Renewal Model

NVOD Near Video On Demand
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PDF Probability Density Function

PMD Physical Media Dependent

QoS Quality of Service

SECBR Severely Error-ed Cell Block Ratio

SMG Statistical Multiplexing Gain

SPP Switched Poisson Process

SRD Short Range Dependence

TC Transmission Convergence

TES Transform Expand Samples

VBR Variable Bit Rate

VC Virtual Circuit

VCI Virtual Circuit Identifier

VOD Video On Demand

VP Virtual Path

VPI Virtual Path Identifier
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