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Abstract We propose an algorithm for multivariate Markovian characterisation of

H.264/SVC scalable video traces at the sub-GoP (Group of Pictures) level. A genetic

algorithm yields Markov models with limited state space that accurately capture tem-

poral and inter-layer correlation. Key to our approach is the covariance-based fitness

function. In comparison with the classical Expectation Maximisation algorithm, ours

is capable of matching the second order statistics more accurately at the cost of less

accuracy in matching the histograms of the trace. Moreover, a simulation study shows

that our approach outperforms Expectation Maximisation in predicting performance

of video streaming in various networking scenarios.

Keywords H.264/SVC · traffic characterisation · Markovian arrival process

1 Introduction

A video stream is called scalable if parts of the stream (layers) can be removed such

that the resulting substream forms another valid video stream for some target de-

coder and such that this substream represents the source content at a lower quality

in comparison with the original stream [1–3]. Prime benefits of efficient scalable video

coding for video transmission over packet switched networks include support for het-

erogeneous clients in multicast transmission scenarios and the capability of graceful

degradation of the video quality whenever this is required by the network conditions.

Since a single stream offers the same content in different formats, heterogeneous clients

may decode multicast video streams in their preferred version: preferred spatial resolu-

tion, temporal resolution, or preferred fidelity. Moreover, by service differentiation, the

network can ensure delivery of some substreams of the video stream while discarding

other substreams during network congestion. From the vantage point of the receivers,

the perceived video quality then degrades gracefully during congestion: the spatial or

temporal resolution or the fidelity are temporarily reduced. Although video coding
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standards such as MPEG-2, H.263 and MPEG-4 Visual already support various scala-

bility modes, those have been rarely used in practice due to decreased coding efficiency

and increased coding complexity, issues which the Scalable Video Coding extension

(H.264/SVC) of H.264/AVC now addresses [3].

We consider statistical characterisation of H.264 scalable video coding streams

(H.264/SVC). Sufficiently detailed statistical traffic models are important for network

design and performance evaluation [4]. A good statistical model is one which can pre-

dict one or more performance measures of the real video source in various networking

scenarios. It should lead to comparable performance predictions when used instead of

the actual traces. In addition to accuracy, Liebeherr [5] mentions speed of the charac-

terisation algorithm and simplicity of the stochastic model as desirable properties. A

stochastic model is simple if generation of traces of the model is easy and fast. Finally,

if the model is to be used as input for various performance or queueing analyses, the

mathematical tractability of the associated performance or queueing models is also re-

quired. Obviously, there is a trade-off between the mathematical tractability, and the

accuracy of the traffic models.

Characterisation of variable bit rate video has been an active research area for

almost 20 years; see a.o. the survey by Izquierdo and Reeves [6] on statistical traffic

models for MPEG-1 encoded video. Proposed statistical models include Markovian

processes [7–12], autoregressive processes [13–16], spatial renewal processes [17] and

self-similar processes [18, 19]. From the vantage point of queueing theory, Markovian

processes are the most tractable: the associated queueing behaviour can be investigated

efficiently by means of matrix analytic methods; see for example [20, 21]. Markovian

characterisation of video is also the subject of the present paper. Therefore we first

survey related literature on Markovian modelling of video streams in more detail.

Given some trace — that is, given the sizes of the consecutive frames or of the

consecutive groups of pictures (GoP) — many authors construct Markov processes by

quantisation of the frame or GoP sizes: the size of a frame or GoP is mapped on a

Markovian state. Conti et al. [7] and Conti and Gregori [9] make use of such a quan-

tisation for the Markovian characterisation of MPEG video. The authors in [7] obtain

a Markov chain for the GoPs of an MPEG-1 encoded video by joint quantisation of

the GoP sizes and a moving average of the GoP sizes. This study is then extended

to include characterisation at the frame-level in [9]. In the latter paper, the authors

compare encoding at different quality levels and show that traces at one quality level

can be approximated by applying a deterministic mapping function on the correspond-

ing traces at another quality level. Baey [12] constructs a Discrete Batch Markovian

Arrival Process (DBMAP) for MPEG-4 video by a scene detection algorithm which

depends on quantisation levels. The author considers video traffic at the sub-GoP level

but interlayer correlation is not taken into account. All of the preceding papers consider

single-layer traces. The quantisation approach also extends to traces with multiple lay-

ers. This is e.g. the case for scalable video. Now, the trace specifies the frame size at

each layer; each “sample point” of the trace is a vector whose elements correspond to

the frame (or GoP) sizes at the different layers. For an MPEG-4 trace, Zhao and Ah-

mad [11] use a clustering algorithm to partition the set of (vector-valued) frame sizes

of the trace and associate states of the Markov process with the different partitions.

Although a quantisation approach yields Markov processes which capture the sam-

ple size distribution accurately, direct mapping from sizes to states does not always

yield processes that accurately capture the autocorrelation of the trace. Therefore,

some authors no longer apply such a direct mapping and the states of the Markov
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chain no longer have a simple interpretation. A state is then an abstract concept of the

Markov process which is deemed suitable for a trace if it accurately captures a number

of statistics of this trace. Lombardo et al. [8] construct a periodic Markov chain to

account for the periodicity which is induced by the GoP structure of MPEG traces.

A genetic algorithm is used to solve the inverse eigenvalue problem which relates the

approximation of the autocorrelation function of the trace to the state transition prob-

abilities of the Markov process. Moltchanov et al. [10] avoid this inverse eigenvalue

problem by considering Markov chains with additional structure. Finally, Kempken

and Luther [22] consider single-layer H.264 video at the GoP level and use a genetic

algorithm to assign states to the GoPs such that the statistics of the model accurately

approximate those of the trace. These authors show that a genetic approach yields

Markovian models with small state spaces that can capture the time correlation of the

trace accurately.

We here extend the approach of [22] to Markovian characterisation of multi-layered

video at the sub-GoP level. In particular, the different types of frames are grouped into

a number of traffic classes and the H.264/SVC source is investigated at the traffic class

level. As indicated above, only few statistical traffic models focus on the scalability

of the video sources. Existing models describe two layers at most, a base layer and a

(temporal) enhancement layer. However, traffic models for H.264/SVC video need to

take into account the correlation between the base and enhancement layers not only in

the temporal, but also in the spatial and quality scalability dimensions. Capturing the

multi-layered structure of H.264/SVC is the subject of this paper. Key to our approach

is the introduction of the matrix-valued covariance function as a second order statistic

by which the fitness of candidate Markov models is assessed.

The remainder of this paper is organised as follows. In the next section, the

H.264/SVC traces and their statistical properties are introduced. We then focus on

the properties of multivariate Markovian processes in section 3. The genetic algorithm

for video characterisation is presented in section 4 and numerically evaluated in sec-

tion 5. To benchmark our approach, we compare the Markov processes generated by

our approach with those generated by the well known expectation maximisation (EM)

approach [27,31]. Finally conclusions are drawn in section 6.

2 H.264/SVC traces

To investigate the Markov characterisation algorithm described further, we have two

traces at our disposal. These H.264/SVC traces are encoded with the SVC reference

software version JSVM 8.9. The traces “Brotherhood of the Wolf” and “Pirates of

the Caribbean” consist of 13447 GoPs and 12770 GoPs, respectively. Both traces are

encoded into a base layer and a Medium Grain Scalability (MGS) quality enhancement

layer. Within each of these layers there are 5 temporal layers (TL) as depicted in

Figure 1. Both the base and enhancement layer consist of intra-coded (I), inter-coded

(P) and bidirectional coded (B) frames. The arrows indicate decoding dependencies

of the different frames and the subscripts indicate the temporal level (temp. level) of

the frames. Apart from the indicated decoding dependencies, decoding the frames of

the enhancement layer requires the corresponding frames of the base layer. Moreover,

there are also dependencies between GoPs. For H.264/SVC, a GoP is a set of pictures

between two successive frames of the temporal base layer together with the succeeding
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Fig. 1 Group of picture structure of the H.264 traces under consideration.

base layer frame such that GoPs do not necessarily end in an I-frame [3]. For the traces

at our disposal, GoPs alternately end with an I- and a P-frame.

For each layer, there are 16 distinct frames per GoP. The frame rate is equal to 25

frames per second — hence a GoP corresponds to 0.64s — and the spatial dimensions

are equal to 720 × 304 pixels for the base layer as well as for the enhancement layer.

Encoder quality parameters (QP, MeQP1 to MeQP5 and MeQPLP) are set to 31 and

25 for the base layer and the enhancement layer respectively. Further information on

H.264/SVC encoding can be retrieved from [3].

As already mentioned, we investigate the H.264/SVC traces at the traffic class level.

In terms of scalability, this means that we focus on modelling a fixed set of decodable

substreams. Per GoP, there are 32 frames — 16 of the base and 16 of the enhancement

layer — which we partition in the following 4 traffic classes.

– class 1: I and P frames of the base layer.

– class 2: B frames of the base layer.

– class 3: I and P frames of the quality enhancement layer.

– class 4: B frames of the quality enhancement layer.

Note that these traffic classes allow us to study the traces at temporal levels 0 and

4, with or without quality enhancement layer. The aggregate traffic of the following

traffic classes constitute valid substreams: class 1, classes 1 and 2, classes 1 to 3, classes

1 to 4 and class 1, 2 and 4.

Although we focus on the traffic classes defined above in the remainder of this

contribution, our approach can be applied for different sets of traffic classes or for

multivariate traces stemming from other types of sources. From the vantage point of

the characterisation algorithm under consideration, a trace is a sequence of row vectors

X = {Xk , k = 0, . . . , N − 1} where Xk is a row vector of size C whose jth element

Xk,j equals the number of bytes of class j that are generated during GoP k. Here, N
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denotes the total number of GoPs in the trace and C denotes the number of traffic

classes.

Statistics

The algorithm under consideration is based on matching various statistics of trace and

model. The sample mean (row) vector and the C ×C sample covariance matrix of the

trace are defined as

X̄ =
1

N

N−1
X

n=0

Xn and cov(X) =
1

N

N−1
X

n=0

X′
nXn − X̄′X̄ (1)

respectively. Here, primed vectors denote the transposed vectors as usual. Notice that

we use the biased estimator of the covariance matrix. This will hardly influence the

results since the numbers of GoPs N in the traces under consideration are sufficiently

large.

With the trace X we associate the sum traces S(k)(X) = {S(k)
n (X), n = 0, . . . , N−

1}, with,

S
(k)
n (X) =

(n+k) mod N
X

i=n

Xi . (2)

for k = 0, 1, 2, . . .. Further, the (matrix valued) sample covariance function cf(k) maps

k = 0, 1, 2, . . . onto the sample covariance matrix of S(k)(X),

cf(k) =
1

N

N−1
X

n=0

S
(k)
n (X)′S

(k)
n (X) − (k + 1)2X̄′X̄ . (3)

Of particular interest for the statistical characterisation of the video source at the

traffic class level are the scalar valued covariance functions of the aggregated traffic of a

subset of the traffic classes. Let C be any subset of the set of traffic classes {1, 2, . . . , C}
and let XC denote the series

XC =

8

<

:

X

j∈C

Xk,j , k = 0, 1, . . . N − 1

9

=

;

. (4)

The corresponding scalar valued covariance function cfC(k) then relates to the matrix

valued covariance function cf(k) as follows,

cfC(k) = ǫC cf(k)ǫ′C , (5)

with ǫC a row vector of size C whose ith element equals 1 if i is an element of C and 0

if this is not the case.
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3 The multi-class DBMAP

Having introduced the traces and their statistics, we now focus on the Markov model

for these traces. Let q = {qi, i = 0, 1, . . .} denote an irreducible Markov chain defined

on a finite state space K = {1, . . . ,K}. Such a Markov chain is completely characterised

by the transition probabilities γi,j , i, j ∈ K. Further, let Γ = [γi,j ]i,j∈K denote the

K ×K transition matrix of the Markov chain and let π = [π1, . . . , πK ] denote the row

vector of its steady state probabilities. The vector π is the unique normalised solution

of π = πΓ . The Markov chain q is referred to as the modulating Markov chain of the

Discrete Batch-Markovian Arrival Process (DBMAP).

A multi-class DBMAP x = {xk, k = 0, 1, 2, . . .} is a discrete time stochastic process

which takes values in R
C such that the multivariate distribution of xk only depends

on the states qk and qk+1 of the modulating Markov chain (for all k) [21]. Hence,

this process is completely characterised by the transition matrix Γ of the modulat-

ing Markov chain and the doubly indexed set of multivariate distribution functions

{Φi,j(y), i, j ∈ K, y ∈ R
C}. Φi,j(y) = Pr[xk,1 < y1, . . . xk,C < yC |qk = i, qk+1 = j] is

the multivariate distribution of xk given qk = i and qk+1 = j. Here xk,j and yj are

the jth entries of the vectors xk and y respectively.

Notice that in the literature DBMAPs only take values in N
C
+. The process de-

scribed here is somewhat more general but we will also refer to it as a DBMAP. Of

course, one may discretise the traffic model for performance evaluation purposes. The

resulting process is then a DBMAP as described in the literature.

In the remainder, we make some additional assumptions. Namely, (i) the process

xk at time k only depends on the state qk and not on the transition qk → qk+1 and

(ii) for a given state qk , the random vector xk is multivariate normally distributed.

Hence, the process (xk, qk) is completely characterised by the transition matrix Γ and

the following mean vectors and covariance matrices in the different states i ∈ K,

µi = E[xk|qk = i] , Ωi = E[x′kxk|qk = i] − µ′iµi . (6)

Neither of these assumptions limit the applicability of our approach. It is well known

that for every DBMAP there exists a DBMAP with the same characteristics such that

the distributions only depend on the state and not on the transitions (although this

comes at the cost of a larger state space) [23]. Further, the Gaussian assumption is

not crucial for our approach. The methodology easily extends to non-Gaussian distri-

butions as shown further. This assumption however allows for a fair comparison with

the expectation-maximisation approach in Section 5. Moreover, the numerical results

indicate that the Gaussian assumption does not impact the accuracy of the models in

predicting buffer performance. Finally, notice that the normal distribution takes neg-

ative values with a positive probability. This probability will however turn out to be

negligibly small for the DBMAPs that are generated by the characterisation algorithms.

Characteristics

We now retrieve some characteristics of the process x in terms of the characteristics

Γ , π, µi and Ωi of the multi-class DBMAP. The mean value vector µ and covariance

matrix Ω are given by,

µ = E[xk] =
X

i∈K

πiµi , Ω = E[(xk − µ)′(xk − µ)] =
X

i∈K

πi(Ωi + µ′iµi) − µ′µ . (7)
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Further, let s(k) = {s(k)
n , n = 0, 1, 2, . . .} denote the sum process corresponding to x.

Here s
(k)
n is defined as,

s
(k)
n =

n+k
X

i=n

xi . (8)

The matrix valued covariance function Θ(k) of the DBMAP then maps k on the co-

variance matrix of the process s(k),

Θ(k) = E[(sn(k) − E[sn(k)])′(sn(k) − E[sn(k)])] . (9)

We can recursively calculate Θ(k) as follows. Since we have sn(k) = sn(k − 1) + xn+k

and by conditioning on the states of the modulating Markov chain, one shows that the

covariance function is obtained recursively by the following expressions,

Θ(k) = Θ(k − 1) + Ψ(k) + Ψ(k)′ , Θ(0) = Ω , (10)

with,

Ψ(k) =
X

i,j∈K

ψi(k − 1)′µjγi,j , (11)

and,

ψl(k) = µl +
X

j∈K

ψj(k − 1)γj,l , ψl(0) = µlπl , (12)

for k = 1, 2, . . . and for l ∈ K.

As for the traces, the scalar valued covariance functions of the aggregated traffic of

subsets of the traffic classes can be expressed in terms of the covariance function Θ(k).

For any subset C of the traffic classes, let xC denote following scalar valued DBMAP,

xC =

8

<

:

X

j∈C

xk,j , k = 0, 1, 2, . . .

9

=

;

. (13)

The scalar valued covariance function of xC then equals,

ΘC(k) = ǫCΘ(k)ǫ′C . (14)

Recall that ǫC denotes a row vector of size C whose ith element equals 1 if i is an

element of C and 0 if this is not the case.

4 Genetic characterisation

With the statistics of the trace and the characteristics of the model established, we now

introduce the genetic algorithm. The genetic approach under consideration exploits the

fact that Markovian characterisation is almost trivial if not only the trace, but also the

states of the modulating Markov chain are known. That is, given the trace X and a

sequence of states Q = {Qk, k = 0, . . . , N −1} associated to the consecutive GoPs, one
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easily constructs a multi-class DBMAP by counting state transitions and by calculating

conditional moments. We find the following DBMAP characteristics,

Ni =

N−1
X

k=0

1(Qk = i) ,

γi,j =
1

Ni

N−1
X

k=0

1(Qk = i, Q(k+1) mod N = j) ,

µi =
1

Ni

N−1
X

k=0

Xk1(Qk = i) ,

Ωi =
1

Ni

N−1
X

k=0

X′
kXk1(Qk = i) − µ′iµi . (15)

In the former expressions 1(·) denotes the standard indicator function which evaluates

to 1 if its argument is true and to 0 if this not the case. For counting the state tran-

sitions, it is assumed that the trace is played in a loop. That is, we also count the

transition from sample N − 1 to sample 0. Under this assumption, it is easy to show

that the mean vector and the covariance matrix of the DBMAP with parameters as

given in equation (15) match the sample mean and sample covariance matrix of the

trace.

As mentioned before, we aim to find a model whose statistical properties closely

match the corresponding statistics of the trace. In view of the introduction of the

state assignment sequence Q, finding a multi-class DBMAP corresponds to finding a

sequence Q such that the statistical properties of the derived DBMAP closely match

the statistical properties of the trace. Sample mean and sample variance are matched

automatically. To capture temporal correlation, the authors of [22] match the auto-

correlation function of the DBMAP with the autocorrelation function of the trace.

However, the autocorrelation of a DBMAP depends on the covariance matrix Ω of the

DBMAP but not on the distinct covariance matrices Ωi corresponding to the different

states of the DBMAP. Hence, since it is our objective to accurately capture the cor-

relation between the different traffic classes, the autocovariance function is of no use.

Instead, we here focus on matching the sample covariance function of the trace with

the covariance function of the DBMAP. In accordance with equations (10) to (12), the

covariance function does depend on the matrices Ωi.

Given the length of the trace N and the number of states of the Markov chain

K, there are KN possible sequences Q of state assignments. For the traces under

consideration and for a Markov state space of size K = 3 this means that there are

more than 106000 possible sequences Q of state assignments. The size of the set of

possible solutions clearly makes it infeasible to find the best solution by testing all

possible solutions. We therefore use a genetic algorithm to search the space of all

possible state assignments more efficiently.

Genetic algorithm

A genetic algorithm is a search and optimisation procedure inspired by Darwin’s the-

ory of evolution, see e.g. [24–26] for introductions on genetic algorithms. A genetic
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algorithm transforms a set of candidate solutions into a new set of solutions using the

Darwinian principle of reproduction and survival of the fittest. Candidate solutions are

referred to as chromosomes: a generation of chromosomes is transformed into a new

generation by means of mutation and crossover of chromosomes of the given genera-

tion (reproduction). Moreover, only the best chromosomes are retained (survival of the

fittest).

In the present context, a chromosome is a sequence Q of state assignments to

the consecutive GoPs. Its fitness measures the accuracy of the match of the covariance

function of the DBMAP with the sample covariance function of the trace. In particular,

the fitness of a chromosome Q is defined as follows,

fitness(Q) =

 

1

L

L
X

k=1

|w(cf(k) −Θ(k))w′|
!−1

. (16)

Here cf(k) is the sample covariance function of the trace as given in equation (3), L

is the maximal lag for which the covariance function of the DBMAP and the sample

covariance function of the trace are compared and Θ(k) is the covariance function of

the DBMAP. The latter can be obtained by means of equations (10) to (12) in terms

of the vectors π and µi (i = 1, . . . ,K) and the matrices Γ and Ωi (i = 1, . . . ,K) that

characterise the multi-class DBMAP. For a given chromosome Q, these vectors and

matrices are given in equation (15). Finally, w is a weight row vector. Notice that a

high fitness indicates an accurate match of covariance and sample covariance functions.

The row vector w in equation (16) allows one to assign different weights to the

various elements of the covariance matrix. In particular, one can assign weights to the

variance functions of aggregated traffic from subsets of the traffic classes as follows.

For all i, let αi denote the weight assigned to the variance function of the aggregated

traffic class Ci (Ci ⊆ {1, 2, . . . , C} is a subset of the set of traffic classes). In view

of property (5) of sample covariance functions and in view of property (14) of the

covariance function of a DBMAP, we obtain the following weight vector,

w =
X

i

√
αi ǫCi

. (17)

Recall that ǫCi
is a row vector of size C whose ith element equals 1 if i is an element

of C and 0 if this is not the case. An example weight vector is determined in Section 5.

Given the fitness function, the execution of the genetic algorithm can be sum-

marised as follows. First, a random generation of G chromosomes is created. Each

chromosome is created by randomly assigning states to the consecutive GoPs. Then,

the following substeps are performed until a sufficiently fit chromosome is found.

1. Calculate the fitness of each chromosome in the current generation. The fitness of

the generation is defined as the fitness of the fittest chromosome of the generation.

2. Create a new generation of G− 1 chromosomes by the following operations:

(a) Mutation: randomly choose a chromosome of the current generation with prob-

ability inversely proportional to the fitness of the chromosome. Then either (i)

change a random continuous block of state assignments to a randomly chosen

state or (ii) reverse a random continuous block of state assignments. Add this

new (mutated) chromosome to the new generation.
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(b) Crossover: randomly choose two chromosomes of the current generation with

probability inversely proportional to the fitness of these chromosomes. Inter-

change the state assignments of a randomly chosen sub-part of the state assign-

ments. Add the fittest of these new chromosomes to the new generation.

3. Copy the fittest chromosome of the current generation to the new generation.

Notice that step 3 implies that the fitness of consecutive generations never decreases.

The genetic characterisation algorithm is numerically evaluated in the next Section.

5 Numerical results

We now evaluate the genetic video characterisation approach by some numerical ex-

amples. We here focus on the characterisation of the trace “Brotherhood of the Wolf”.

Qualitatively similar results were obtained for the trace ”Pirates of the Caribbean” but

are omitted for brevity. In addition, similar results were also obtained for these traces

with the GoPs partitioned into different sets of traffic classes.

For all examples, the fitness of a chromosome is based on the (sample) covariance

functions of lag L = 1 up to lag L = 10 and a generation consists of G = 10 chromo-

somes. We assign the same weight to all decodable substreams: class 1, class 1 and 2,

class 1 and 3, class 1 to 3 and all classes constitute decodable substreams. Hence, the

weight vector is set to

w = [5 3 3 1] = [1 0 0 0] + [1 1 0 0] + [1 0 1 0] + [1 1 1 0] + [1 1 1 1] .

To assess the accuracy of our approach, we benchmark our genetic approach against

the well-known maximum likelihood approach. This approach optimises the parame-

ters of a stochastic model such that the likelihood that the model generates the trace

is maximal. In particular, the maximum likelihood problem under consideration is a

maximum likelihood problem with incomplete data in the sense that only the sample

points of the trace but not the Markov states of the modulating chain are known. A

well known optimisation algorithm for this type of problems is the expectation max-

imisation (EM) algorithm [27]. More specifically, Liporace’s EM algorithm is used [28].

This is a Baum-Welch type algorithm (see a.o. Baum et al. [29] and Welch [30]) for mul-

tivariate hidden Markov models. Liporace assumes that the multivariate distributions

associated with the different states belong to a certain class of multivariate continuous

distributions which includes the multivariate normal distribution, hence its applicabil-

ity to the DBMAP characterisation at hand. This algorithm suffers some arithmetic

underflow issues which are most easily addressed by rescaling, see [31]. The interested

reader is referred to the references above for more information on the EM algorithm.

Expectation Maximisation is a local likelihood maximisation algorithm. Let Υ =

{Λ, µi, Ωi, i ∈ K} denote the parameter set of the DBMAP. Given an initial parameter

set Υ0, the EM algorithm recalculates this parameter set, thereby converging to a

set which locally maximises the likelihood. To avoid local maxima, we have applied

random restart. In the examples below, we have repeated the EM algorithm 100 times

and retained the parameter set corresponding to the highest likelihood. The initial

parameter set Υ0 is chosen randomly as follows:

– The transition matrix is obtained by normalising the rows of a matrix whose entries

are independent random variables, uniformly distributed in (0, 1].
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Fig. 2 Histogram and probability density
functions for aggregated data of class 1 and
2 and chains with 3 states.
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Fig. 3 Histogram and probability density
functions for aggregated data of class 1 and
2 and chains with 5 states.
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Fig. 4 Histogram and probability density
functions for aggregated data of all classes
and chains with 3 states.
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Fig. 5 Histogram and probability density
functions for aggregated data of all classes
and chains with 5 states.

– For each i in K, let Ui and Ûi denote diagonal matrices whose diagonal entries

are independent random variables, uniformly distributed in (0, 2]. We then set

µi = X̄ Ui and Ωi = Ûi cov(X) Ûi.

In Figures 2 to 5, the density functions of the models are compared with the his-

togram of the trace. Note that the histogram is rescaled by the bin size to facilitate

comparison. Figures 2 and 3 show the density functions and histograms of the ag-

gregated data of class 1 and 2 and for DBMAPs with 3 and 5 states respectively. In

these figures as well as in the following ones, we always benchmark our genetic ap-

proach against the EM approach. With 3 states and for either approach, we already

note a reasonable visual correspondence between histogram and density functions, de-

spite the limited size of the state space. Extending the state space to 5 states visually

yields a better match for both approaches. This is also confirmed by calculation of the

Cramèr-von Mises distance dCvM and Kolmogorov distance dK between the cumula-

tive distribution function of the DBMAPs and the empirical cumulative distribution

function [32], see Table 1. These distances are defined as follows,

dCvM =

Z ∞

−∞

(Fn(x) − F (x))2dF (x) , dK = sup
x

|Fn(x) − F (x)| ,
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(a) Cramèr-von Mises distance

genetic EM
3 5 10 3 5 10

class 1–2 0.009364 0.0033198 0.0018828 0.011228 0.0059986 0.0035118
class 1–4 0.011575 0.0052250 0.0028004 0.012861 0.0061486 0.0036272

(b) Kolmogorov distance

genetic EM
3 5 10 3 5 10

class 1–2 0.016521 0.0081553 0.0051796 0.021887 0.0131525 0.0073455
class 1–4 0.020549 0.0132269 0.0078226 0.023441 0.0136937 0.0070517

Table 1 Distance between empirical distribution functions and distribution functions of the
models
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Fig. 6 Covariance function of model and
trace for chains with 3 states
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Fig. 7 Covariance function of model and
trace for chains with 5 states

with F (x) and Fn(x) the distribution function of the DBMAP and the empirical distri-

bution function of the trace, respectively. As can be seen from this table, the distance

decreases upon adding states for both approaches. This is not unexpected for EM.

The maximum likelihood principle of the EM approach takes into account the com-

plete distribution function in each state. Since DBMAPs with more states allow for

more flexibility, a closer match can be found. For the genetic optimisation procedure,

the improvement is somewhat unexpected. The genetic approach does not take into

account the complete distribution; optimisation is based on the first two moments in

each state. Nevertheless, the distance (Cramèr-von Mises and Kolmogorov) between

distribution and empirical distribution decreases by adding more states and is even

somewhat smaller than EM. Figures 4 and 5 show histogram and density functions

of the aggregated data of all classes, again for chains with 3 and 5 states. The corre-

sponding distance between distribution and empirical distribution are also tabulated in

Table 1. Also in this case, more states yield better correspondence between histogram

and density functions for both approaches. Moreover, the match further improves by

adding even more states as can be seen from Table 1 where the distance is also tabu-

lated for 10 state DBMAPs. Other results, not shown here, confirm that the distance

decreases for EM for DBMAPs with increasing state space. However, the distance may

or may not decrease for the genetic approach.
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In Figures 6 and 7 the covariance functions of various decodable subtraces are de-

picted for the models generated by the genetic and the EM approach. As opposed to

the quality of the match of the histograms, the genetic approach clearly outperforms

the EM approach. As figure 6 shows, 3 states are not sufficient to visually match the

variance function of the trace with either approach. However, by extending the state

space to 5 states, the variance function of the genetic approach is visually almost indis-

tinguishable from the variance function of the trace. Results not shown here confirm

that extending the state space more yields an even better match. In all cases, the

genetic approach outperforms the EM approach.

Although a close match of various statistics is desirable, the accuracy of the models

in predicting queueing behaviour is the main objective of traffic characterisation. To

assess the accuracy of the DBMAP models of H.264/SVC video for performance eval-

uation, we compare queueing performance measures by means of trace and DBMAP

based simulations. In particular, the queueing system under consideration is a discrete-

time finite capacity first-in-first-out multi-server queueing system with partial buffer

sharing (PBS). The slot time of the discrete-time queueing system is set to the length

of a GoP and all traffic stemming from the different video sources is packetised into

fixed length packets of 1500 bytes. Different sources are multiplexed before entering

the queue. Given the bandwidth BW of the output line in Mbit/s and the GoP length

g in ms, one easily calculates the number of packets P that can leave the queueing

system during a slot, P = ⌈BW g/12⌉. In the remainder, all performance measures are

obtained by simulating the PBS queue over 108 GoPs. For the trace based simulations,

the same trace is played over and over. However, a new offset value is randomly chosen

every time the trace finishes.

In figures 8 to 10 the probability mass functions of the queue content of the different

traffic classes are depicted. Both results from trace based simulations and from model

based simulations are depicted. The models are either generated by the genetic ap-

proach or by the EM approach, as indicated. The bandwidth of the output line equals

8Mbit/s and the queue can store up to 200 packets, excluding the packets that leave

the queue during the slot. Class 2, 3 and 4 packets are accepted as long as the buffer is

less than 90%, 80% and 70% occupied respectively. Input traffic comes from 4 sources,

either from the trace or the model.

The genetic approach yields a reasonable match which improves by increasing the

size of the state space. Visually, the match is already quite accurate for 5 states while

the 10-state model predicts the density function of the queue size very accurately. In

contrast, only for the DBMAP with 10 states, we visually get a good match by the

EM approach (except for the class 2 packets where the match remains poor). Further,

notice that the model based probability mass function of most traffic classes takes

smaller values than the trace based probability mass function. This implies that the

DBMAP models overestimate the probability that there are no packets (of the class

under consideration) in the buffer and underestimate the packet loss probability.

Finally, in Figure 11, the packet loss ratios (PLR) of the different traffic classes are

depicted versus the number of sources (every source is the trace or model of “Brother-

hood of the Wolf”) that are multiplexed in the PBS buffer. Table 2 also displays the

absolute values (abs) of the PLR of models and trace as well as the relative values

(rel) of the models with respect to the value of the trace for the simulation with 4

sources. The output line of the PBS queue has a fixed bandwidth of 12Mbit/s and

DBMAPs with 10 states are considered. Again, the genetic approach outperforms the

EM approach which is in correspondence with the observations for the probability mass
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Fig. 8 Probability mass function of the
queue content of the different classes (3
states).
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Fig. 9 Probability mass function of the
queue content of the different classes (5
states).

trace EM genetic
abs abs rel abs rel

class 1 1.38e-7 4.66e-8 0.338 9.11e-8 0.660
class 2 5.50e-4 1.55e-4 0.282 4.39e-4 0.798
class 3 1.64e-3 5.61e-4 0.342 1.39e-3 0.848
class 4 3.49e-3 1.37e-3 0.392 2.96e-3 0.848

Table 2 Packet loss ratio of the different classes (10 states) and 4 sources.

functions. It is well known that the decay rate of the probability mass function of the

queue content of a queue is a good estimator for the decay rate of the packet loss ratio

(as a function of the queue size) [33]. Hence, an accurate assessment of the packet loss

ratio requires an accurate match of the probability mass function.

6 Conclusions and extensions

In this contribution we proposed multi-class DBMAPs to characterise H.264/SVC scal-

able video at the sub-GoP level. We showed that — by means of a genetic algorithm

— multi-class DBMAPs with a limited state space can be found that accurately cap-

ture the characteristics of the video traces. In comparison with the EM approach, the

models can more accurately predict performance measures of the traces in various

queueing scenarios. In general, the size of the state space of the DBMAP will be key

for obtaining accurate results. In all cases, adding states yield more accurate results.

However, if the model is to be combined with a numerical queueing analysis, a larger
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state space results in an increase of the computational effort and there is a trade-off

between accuracy and computational effort.

We conclude with some possible extensions of the methodology presented here.

In the paper, the restriction is imposed that all conditional distribution functions Φi

are multivariate normal distributions. This restriction allows one to limit the num-

ber of parameters of the DBMAP but comes at the cost of a less accurate match of

the histograms and density functions as shown in Figures 2 and 3. Since the genetic

approach results in a series Q of state assignments to the consecutive samples of the

trace, one easily retrieves ”conditional“ histograms of the sample points of the trace

corresponding to a particular state. Given these conditional histograms, a more accu-

rate description of these conditional distribution functions may be possible. The most

accurate description is obtained when the conditional histograms are used as condi-

tional density functions. In this particular case, a perfect match of density functions

and histograms is obtained.

The fact that the genetic approach results in a series Q of state assignments to the

consecutive samples of the trace, also allows us to investigate the trace at the frame

level or at any other sub-GoP level. Let Zk denote the vector whose different elements

correspond to the sizes of the different frames of the kth GoP and let Z denote the

sequence {Zk , k = 0, . . . , N − 1}. In view of the GoP structure displayed in figure

1, every element Zk of the series Z is a vector of size 32. Taking into account the

correlation between the different frames, it is reasonable to assume that the temporal

correlation of the trace can be captured by investigating the temporal correlation of

a limited number of traffic classes. Hence, the series X can be used to characterise

temporal correlation which results in a series Q of state assignments. The series Q and



16

Z can then be combined to obtain a 32 dimensional DBMAP which characterises the

trace at the frame level. The same reasoning can be repeated to characterise the trace

at any other sub-GoP level.
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