564 research outputs found

    Flexible operation of supercritical power plant via integration of thermal energy storage

    Get PDF
    © 2018 The Author(s).This chapter presents the recent research on various strategies for power plant flexible operations to meet the requirements of load balance. The aim of this study is to investigate whether it is feasible to integrate the thermal energy storage (TES) with the thermal power plant steam-water cycle. Optional thermal charge and discharge locations in the cycle have been proposed and compared. Dynamic modeling and simulations have been carried out to demonstrate the capability of TES integration in supporting the flexible operation of the power plant. The simulation software named SimuEngine is adopted, and a 600 MW supercritical coal-fired power plant model is implemented onto the software platform. Three TES charging strategies and two TES discharging strategies are proposed and verified via the simulation platform. The simulation results show that it is feasible to extract steam from steam turbines to charge the TES and to discharge the stored thermal energy back to the power generation processes. The improved capability of the plant flexible operation is further studied in supporting the responses to the grid load demand changes. The results demonstrated that the TES integration has led to much faster and more flexible responses to the load demand changes.Peer reviewe

    Dynamic Model Construction and Control System Design for Canadian Supercritical Water-cooled Reactors

    Get PDF
    The dynamic characteristics of Canadian Supercritical Water-cooled Reactor (SCWR) are significantly different from those of CANDU reactors due to the supercritical water coolant and the once-through direct cycle coolant system. Therefore, it is necessary to study its dynamic behaviour and further design adequate control system. An accurate dynamic model is needed to describe the dynamic behaviour. Moving boundary method is applied to improve numerical accuracy and stability. In the model construction process, three regions have been considered depending on bulk and wall temperature being higher or lower than the pseudo-critical temperature. Benefits of adopting moving boundary method are illustrated in comparison with the fixed boundary method. The model is validated with both steady-state and transient simulation and can accurately predict the dynamic behaviour of the Canadian SCWR. A linear dynamic model, for dynamic analysis and control system design, is obtained through linearization on the nonlinear dynamic models derived from conservation equations. The linearized dynamic models are validated against the full order nonlinear models in both time domain and frequency domain. The open-loop dynamics are also investigated through extensive simulations. Cross-coupling analysis among inputs and outputs is examined using Relative Gain Array (RGA) and Nyquist plots, from which adequate input-output pairings are identified. Cross-coupling at different operating conditions are also evaluated to illustrate the nonlinearities. It can be concluded that the Canadian SCWR is a Multiple Input and Multiple Output (MIMO) system with strong cross-coupling and a high degree of nonlinearity. Due to the existence of strong cross-coupling, the Direct Nyquist Array (DNA) method is used to decouple the system into a diagonal dominance form via a pre-compensator. Three Single Input and Single Output (SISO) compensators are synthesized to the pre-compensated system in the frequency domain. The temperature variation induced by the disturbances at the reactor power and pressure can be significantly reduced. To deal with the nonlinearities, a gain scheduling control strategy is adopted. Different set of controllers are used at different load conditions. The control strategy is evaluated under various operating scenarios. It is shown that gain scheduling control can successfully achieve satisfactory performance for different operating conditions

    Flexible operation of large-scale coal-fired power plant integrated with solvent-based post-combustion CO2 capture based on neural network inverse control

    Get PDF
    Post-combustion carbon capture (PCC) with chemical absorption has strong interactions with coal-fired power plant (CFPP). It is necessary to investigate dynamic characteristics of the integrated CFPP-PCC system to gain knowledge for flexible operation. It has been demonstrated that the integrated system exhibits large time inertial and this will incur additional challenge for controller design. Conventional PID controller cannot effectively control CFPP-PCC process. To overcome these barriers, this paper presents an improved neural network inverse control (NNIC) which can quickly operate the integrated system and handle with large time constant. Neural network (NN) is used to approximate inverse dynamic relationships of integrated CFPP-PCC system. The NN inverse model uses setpoints as model inputs and gets predictions of manipulated variables. The predicted manipulated variables are then introduced as feed-forward signals. In order to eliminate steady-state bias and to operate the integrated CFPP-PCC under different working conditions, improvements have been achieved with the addition of PID compensator. The improved NNIC is evaluated in a large-scale supercritical CFPP-PCC plant which is implemented in gCCS toolkit. Case studies are carried out considering variations in power setpoint and capture level setpoint. Simulation results reveal that proposed NNIC can track setpoints quickly and exhibit satisfactory control performances

    Design and Implementation of Model Predictive Control Strategies for Improved Power Plant Cycling

    Get PDF
    Design and Implementation of Model Predictive Control Strategies for Improved Power Plant Cycling Xin He With the increasing focus on renewable energy sources, traditional power plants such as coal-fired power plants will have to cycle their load to accommodate the penetration of renewables into the power grid. Significant overshooting and oscillatory performance may occur during cycling operations if classical feedback control strategies are employed for plantwide control. To minimize the impact when power plants are operating away from their designed conditions, model-based optimal control strategies would need to be developed for improved power plant performance during cycling. In this thesis, model predictive control (MPC) strategies are designed and implemented for improved power plant cycling. The MPC strategies addressed correspond to a dynamic matrix control (DMC)-based linear MPC, a classical sequential quadratic programming (SQP)-based nonlinear MPC, a direct transcription-based nonlinear MPC and a proposed modified SQP-based nonlinear MPC. The proposed modified SQP algorithm is based on the backtracking line search framework, which employs a group of relaxed step acceptance conditions for faster convergence. The numerical results for motivating examples, which are selected from literature problem sets, served as proof of concept to verify that the proposed modified SQP has the potential for implementation on high-dimensional systems. To illustrate the tracking performance and computational efficiency of the developed MPC strategies, three processes of different dimensionalities are addressed. The first process is an integrated gasification combined cycling power plant with a water-gas shift membrane reactor (IGCC-MR), which is represented by a first-principles and simplified systems-level nonlinear model in MATLAB. For this application, a setpoint tracking scenario simulating a step increase in power demand, a disturbance rejection scenario simulating a coal feed quality change, and a trajectory tracking scenario simulating a wind power penetration into the power grid are presented. The second application is an aqueous monoethanolamine (MEA)-based carbon capture process as part of a supercritical pulverized coal-fired (SCPC) power plant, whose model is built in Aspen Plus Dynamics. For this system, disturbance rejection scenarios considering a ramp decrease in the flue gas flow rate as well as wind power penetration, and a scenario considering a combination of disturbance rejection and setpoint tracking are addressed. The third process is the entire SCPC power plant with MEA-based carbon capture (SCPC-MEA), which simulation is also built in Aspen Plus Dynamics. Trajectory tracking and disturbance rejection scenarios associated with wind and solar power penetrations are presented for this process. The MPC implementations on the three processes for the different scenarios addressed are successful. The closed-loop results show that the proposed modified SQP-based nonlinear MPC enhances the tracking performance by up to 96% when compared to the DMC-based linear MPC in terms of integral squared error results. The novel approach also improves the MPC computational efficiency by 20% when compared to classical SQP-based and direct transcription-based nonlinear MPCs

    Flexible operation of coal fired power plant integrated with post combustion CO2 capture using model predictive control

    Get PDF
    The growing demand for CO2 capture from coal-fired power plant (CFPP) has increased the need to improve the dynamic operability of the integrated power generation-CO2 capture plant. Nevertheless, high-level operation of the entire system is difficult to achieve due to the strong interactions between the CFPP and post combustion CO2 capture (PCC) unit. In addition, the control tasks of power generation and CO2 removal are in conflict, since the operation of both processes requires consuming large amount of steam. For these reasons, this paper develops a model for the integrated CFPP-PCC process and analyzes the dynamic relationships for the key variables within the integrated system. Based on the investigation, a centralized model predictive controller is developed to unify the power generation and PCC processes together, involving the key variables of the two systems and the interactions between them. Three operating modes are then studied for the predictive control system with different focuses on the overall system operation; power generation demand tracking and satisfying the CO2 capture requirement. The predictive controller can achieve a flexible operation of the integrated CFPP- PCC system and fully exert its functions in power generation and CO2 reduction

    Aeronautical Engineering: A continuing bibliography, supplement 120

    Get PDF
    This bibliography contains abstracts for 297 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1980

    Aeronautical Engineering: A Continuing Bibliography with indexes

    Get PDF
    This bibliography lists 426 reports, articles and other documents introduced into the NASA scientific and technical information system in August 1984. Reports are cited in the area of Aeronautical Engineering. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing operation and performance of aircraft (including aircraft engines) and associated components, equipment and systems

    Aeronautical Engineering: A special bibliography with indexes, supplement 67, February 1976

    Get PDF
    This bibliography lists 341 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1976

    Aeronautical engineering: A continuing bibliography with indexes, supplement 100

    Get PDF
    This bibliography lists 295 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in August 1978
    corecore