whttps://ntrs.nasa.gov/search.jsp?R=19780025092 2020-03-22T02:05:47+00:00Z

NASA SP-7037 (100)

September 1978

No.

COP

Aeronautical Engineering A Continuing Bibliography with Indexes

N

AS

National Aeronautics and Space Administration

Aeronaut *fica*

ACCESSION NUMBER RANGES

Accession numbers cited in this Supplement fall within the following ranges:

STAR (N-10000 Series)	N78-24042—N78-26046
IAA (A-10000 Series)	A78-36170—A78-39782

This bibliography was prepared by the NASA Scientific and Technical Information Facility operated for the National Aeronautics and Space Administration by Informatics Information Systems Company.

0

AERONAUTICAL ENGINEERING

A Continuing Bibliography

Supplement 100

A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in August 1978 in

- Scientific and Technical Aerospace Reports (STAR)
- International Aerospace Abstracts (IAA)

This Supplement is available from the National Technical Information Service (NTIS), Springfield, Virginia 22161, at the price code EO2 (\$475 domestic, \$950 foreign)

-

INTRODUCTION

Under the terms of an interagency agreement with the Federal Aviation Administration this publication has been prepared by the National Aeronautics and Space Administration for the joint use of both agencies and the scientific and technical community concerned with the field of aeronautical engineering. The first issue of this bibliography was published in September 1970 and the first supplement in January 1971 Since that time, monthly supplements have been issued.

This supplement to Aeronautical Engineering -- A Continuing Bibliography (NASA SP-7037) lists 295 reports, journal articles, and other documents originally announced in August 1978 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA)

The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

Each entry in the bibliography consists of a standard bibliographic citation accompanied in most cases by an abstract The listing of the entries is arranged in two major sections, *IAA Entries* and *STAR Entries*, in that order The citations, and abstracts when available, are reproduced exactly as they appeared originally in *IAA* and *STAR*, including the original accession numbers from the respective announcement journals. This procedure, which saves time and money, accounts for the slight variation in citation appearances

Three indexes -- subject, personal author, and contract number -- are included. An annual cumulative index will be published.

AVAILABILITY OF CITED PUBLICATIONS

IAA ENTRIES (A78-10000 Series)

All publications abstracted in this Section are available from the Technical Information Service. American Institute of Aeronautics and Astronautics, Inc (AIAA), as follows Paper copies of accessions are available at \$6.00 per document up to a maximum of 20 pages, the charge for each additional page is \$0.25 Microfiche⁽¹⁾ of documents announced in *IAA* are available at the rate of \$2.50 per microfiche on demand, and at the rate of \$1.10 per microfiche for standing orders for all *IAA* microfiche. The price for the *IAA* microfiche by category is available at the rate of \$1.25 per microfiche plus a \$1.00 service charge per category per issue. Microfiche of all the current AIAA Meeting Papers are available on a standing order basis at the rate of \$1.35 per microfiche

Minimum air-mail postage to foreign countries is \$1.00 and all foreign orders are shipped on payment of pro-forma invoices

All inquiries and requests should be addressed to AIAA Technical Information Service. Please refer to the accession number when requesting publications.

STAR ENTRIES (N78-10000 Series)

One or more sources from which a document announced in *STAR* is available to the public is ordinarily given on the last line of the citation. The most commonly indicated sources and their acronyms or abbreviations are listed below. If the publication is available from a source other than those listed, the publisher and his address will be displayed on the availability line or in combination with the corporate source line.

Avail NTIS Sold by the National Technical Information Service Prices for hard copy (HC) and microfiche (MF) are indicated by a price code followed by the letters HC or MF in the STAR citation Price codes are given in the tables on page vii of the current issue of STAR

Microfiche is available regardless of age for those accessions followed by a # symbol

Initially distributed microfiche under the NTIS SRIM (Selected Research in Microfiche) is available at greatly reduced unit prices. For this service and for information concerning subscription to NASA printed reports, consult the NTIS Subscription Unit

NOTE ON ORDERING DOCUMENTS When ordering NASA publications (those followed by the * symbol), use the N accession number NASA patent applications (only the specifications are offered) should be ordered by the US-Patent-Appl-SN number Non-NASA publications (no asterisk) should be ordered by the AD, PB, or other *report* number shown on the last line of the citation, not by the N accession number. It is also advisable to cite the title and other bibliographic identification

Avail SOD (or GPO) Sold by the Superintendent of Documents, U.S. Government Printing Office, in hard copy The current price and order number are given following the availability line (NTIS will fill microfiche requests, at the standard \$3.00 price, for those documents identified by a # symbol.)

⁽¹⁾ A microfiche is a transparent sheet of film 105 by 148 mm in size containing as many as 60 to 98 pages of information reduced to micro images (not to exceed 26.1 reduction)

- Avail NASA Public Document Rooms Documents so indicated may be examined at or purchased from the National Aeronautics and Space Administration, Public Documents Room (Room 126), 600 Independence Ave, SW, Washington, DC 20546, or public document rooms located at each of the NASA research centers, the NASA Space Technology Laboratories, and the NASA Pasadena Office at the Jet Propulsion Laboratory
- Avail ERDA Depository Libraries Organizations in US cities and abroad that maintain collections of Energy Research and Development Administration reports, usually in microfiche form, are listed in *Nuclear Science Abstracts* Services available from the ERDA and its depositories are described in a booklet, *Science Information Available from the Energy Research and Development Administration* (TID-4550), which may be obtained without charge from the ERDA Technical Information Center
- Avail Univ Microfilms Documents so indicated are dissertations selected from *Dissertation Abstracts* and are sold by University Microfilms as xerographic copy (HC) and microfilm All requests should cite the author and the Order Number as they appear in the citation
- Avail USGS Originals of many reports from the US Geological Survey, which may contain color illustrations, or otherwise may not have the quality of illustrations preserved in the microfiche or facsimile reproduction, may be examined by the public at the libraries of the USGS field offices whose addresses are listed in this introduction. The libraries may be queried concerning the availability of specific documents and the possible utilization of local copying services, such as color reproduction.
- Avail HMSO Publications of Her Majesty's Stationery Office are sold in the U.S. by Pendragon House, Inc. (PHI), Redwood City, California. The U.S. price (including a service and mailing charge) is given, or a conversion table may be obtained from PHI.
- Avail BLL (formerly NLL) British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England Photocopies available from this organization at the price shown (If none is given, inquiry should be addressed to the BLL)
- Avail ZLDI Sold by the Zentralstelle fur Luftfahrtdokumentation und -Information, Munich, Federal Republic of Germany, at the price shown in deutschmarks (DM)
- Avail Issuing Activity, or Corporate Author, or no indication of availability Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document
- Avail U.S. Patent Office Sold by Commissioner of Patents, U.S. Patent Office, at the standard price of 50 cents each, postage free
- Other availabilities If the publication is available from a source other than the above, the publisher and his address will be displayed entirely on the availability line or in combination with the corporate author line

GENERAL AVAILABILITY

All publications abstracted in this bibliography are available to the public through the sources as indicated in the *STAR Entries* and *IAA Entries* sections. It is suggested that the bibliography user contact his own library or other local libraries prior to ordering any publication inasmuch as many of the documents have been widely distributed by the issuing agencies, especially NASA A listing of public collections of NASA documents is included on the inside back cover

SUBSCRIPTION AVAILABILITY

This publication is available on subscription from the National Technical Information Service (NTIS) The annual subscription rate for the monthly supplements is \$45.00 domestic, \$75.00 foreign All questions relating to the subscriptions should be referred to NTIS, Attn Subscriptions, 5285 Port Royal Road, Springfield Virginia 22161

ADDRESSES OF ORGANIZATIONS

American Institute of Aeronautics and Astronautics Technical Information Service 750 Third Ave New York, N Y 10017

British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England

Commissioner of Patents U S Patent Office Washington, D C 20231

Energy Research and Development Administration Technical Information Center P O Box 62 Oak Ridge, Tennessee 37830

ESA-Space Documentation Service ESRIN Via Galileo Galilei 00044 Frascati (Rome) Italy

Her Majesty's Stationery Office P O Box 569, S E 1 London, England

NASA Scientific and Technical Information Facility P O Box 8757 B W | Airport, Maryland 21240

National Aeronautics and Space Administration Scientific and Technical Information Branch (NST-41) Washington, D C 20546

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161 Pendragon House, Inc 899 Broadway Avenue Redwood City, California 94063

Superintendent of Documents U S Government Printing Office Washington, D C 20402

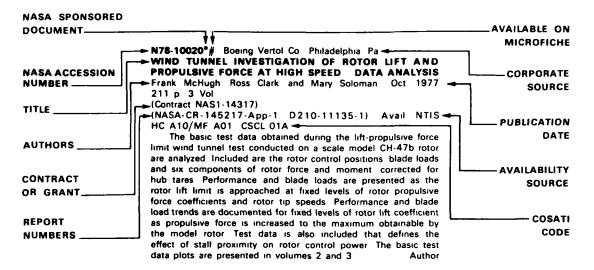
University Microfilms A Xerox Company 300 North Zeeb Road Ann Arbor, Michigan 48106

University Microfilms, Ltd Tylers Green London, England

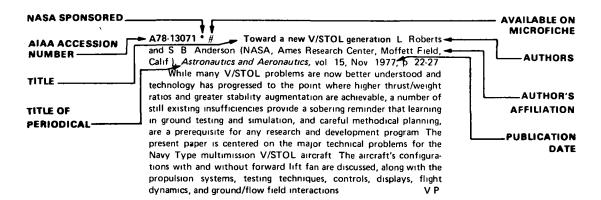
U S Geological Survey 1033 General Services Administration Building Washington, D C 20242

U S Geological Survey 601 E Cedar Avenue Flagstaff, Arizona 86002

U S Geological Survey 345 Middlefield Road Menlo Park, California 94025


U S Geological Survey Bldg 25, Denver Federal Center Denver, Colorado 80225

Zentralstelle fur Luftfahrtdokumentation und -Information 8 Munchen 86 Postfach 880 Federal Republic of Germany


TABLE OF CONTENTS

IAA Entries	
STAR Entries	
Subject Index	A-1
Personal Author Index	B-1
Contract Number Index	C-1

TYPICAL CITATION AND ABSTRACT FROM STAR

TYPICAL CITATION AND ABSTRACT FROM IAA

AERONAUTICAL ENGINEERING

A Continuing Bibliography (Suppl. 100)

SEPTEMBER 1978

IAA ENTRIES

A78-36203 # Characteristics of flow past fuselages and wing-fuselage systems of gliders (Zjawiska opływu kadlubow szybowcow i układow skrzydło-kadlub) J Ostrowski, M Litwinczyk, and L Turkowski Archiwum Budowy Maszyn, vol 25, no 1, 1978, p 91-104 in Polish

Flow visualization tests were conducted on gliders, and the velocity fields in the diffusor regions with positive pressure gradient on the fuselage and wing-fuselage transition were measured Secondary flow effects, influencing the rate of separation, were shown The influence of geometry of the wing-fuselage system on flow separation was studied Different types of separation on the wing near the fuselage are shown in photographs Principles for proper design of fuselage and wing-fuselage transition zone ensuring minimal effect of secondary flows on separation are announced PTH

A78-36204 # Discussion of results of studies on the design of laminar airfoils for stunt gliders (Omowienie wynikow badan zwiazanych z konstruowaniem profilow laminarnych dla szybowcow wyczynowych) J Ostrowski, S Skrzynski, and M Litwinczyk Archiwum Budowy Maszyn, vol 25, no 1, 1978, p 105-120 5 rets In Polish

The main results of several studies dealing with phenomena influencing the properties of laminar airfoils are examined Deflection of the flow in the boundary layer and local separations of the laminar layer (laminar bubbles) were investigated on several airfoils. These phenomena are classified and their influence on the airfoil characteristics is evaluated. The choice of pressure distribution leading to best lift-to-drag ratio is studied.

A78-36205 # Hot-wire velocity measurements in thin boundary layers (Pomiary termoanemometryczne w cienkich warstwach przysciennych) S Skrzynski and M Litwinczyk Archiwum Budowy Maszyn, vol. 25, no. 1, 1978, p. 137-145. 5 refs. In Polish

Hot wire techniques for measurements in the thin boundary layer on a laminar airfoil are studied. Errors in analog measurement of the velocity profile in the boundary layer due to linearization, the rectifying effect of the hot wire anemometer, the effect of the wall on the hot wire probe, and the change in the heat transfer law in the presence of a velocity gradient are analyzed. A special copper plating process for the probes is described.

A78-36210 # Calculation of airfoil drag (Obliczenia oporu profilow lotniczych) Z Nowak Archiwum Budowy Maszyn, vol 25, no 1, 1978, p 213-222 10 refs In Polish

A numerical method based on classical boundary layer theory is proposed for calculating the drag coefficient of airfoils at small angle of attack, Reynolds number of several million, and low subsonic speeds The polar function of the airfoil, that is, the drag coefficient as a function of lift coefficient and Reynolds number, is calculated A point on the polar function curve is determined in two steps (1) for a given value of the lift coefficient, the pressure distribution along the airfoil contour in the flow of an ideal fluid without separation is determined, and (2) for a given Reynolds number, the preceding results are used to calculate momentum losses in the boundary layer PTH

A78-36216 # Remarks on design of supersonic wind tunnels (Uwagi o projektowaniu naddzwiekowych tuneli aerodynamicznych) Z Dzygadlo, J Kaczmarczyk, and A Tarnogrodzki Archiwum Budowy Maszyn, vol 25, no 1, 1978, p 285-294 9 refs In Polish

A brief survey of various design solutions for supersonic wind tunnels is presented. A method of determining the main aerodynamic parameters of a high-pressure continuously acting tunnel is given Remarks on the design of individual parts and auxiliary installations are made. PTH

A78-36279 Aircraft propulsion from the back room /Sixty-sixth Wilbur and Orville Wright Memorial Lecture/ W Hawthorne (Cambridge University, Cambridge, England) Aeronautical Journal, vol 82, Mar 1978, p 93-108 25 refs

A brief review is presented of the early history of jet engines and gas turbines along with a historical review of work done at the RAE Turbine Division Particular attention is given to gas dynamics, axial compressor research and fuel economy BJ

A78-36280 The certification of light aircraft D Stinton (Civil Aviation Authority, Airworthiness Div, Redhill, Surrey, England) Aeronautical Journal, vol 82, Mar 1978, p 109-116

Consideration is given to various aspects of the airworthiness certification of light aircraft according to British Civil Airworthiness Requirements Airworthiness design is discussed along with the tasks of flight testing. It is maintained that adequate test flying should be the standard by which to judge the reliability of light aircraft B J

A78-36323 # Study on problems of terminal site location Y Nagao and I Wakai (Kyoto University, Kyoto, Japan) Kyoto University, Faculty of Engineering, Memoirs, vol 39, Oct 1977, p 548-565 16 refs

The location of a large terminal facility, e.g., an airport, harbor, or truck depot, is considered with reference to the environmental factors which affect it, and its effect, in turn, upon the environment Two cases of land use are presented, single purpose use, and mixed use Linear programming is applied to the problems associated with mixed use, while 0-1 mixed integer programming is applied to single purpose use. Also considered is the role of the government, both in establishing environmental standards, and in the regulation of commerce Attention is given to airport planning, which is discussed in terms of the Japanese Act for Prevention of Negative Effects upon Areas Surrounding Airports, passed in 1967

A78-36366 # Application of the integral-transformation method to three-dimensional unsteady problems of the theory of cascades (Primenenie metoda integral'nykh preobrazovanii k trekhmernym nestatsionarnym zadacham teorii reshetok) G S Lipovoi (Akademiia Nauk Ukrainskoi SSR, Institut Matematiki, Kiev, Ukrainian SSR) In Analytical, numerical and analog methods in problems of heat conductivity Kiev, Izdatel'stvo Naukova Dumka, 1977, p 173-183 7 refs In Russian

The Fourier transformation and the factorization method are used to solve the problem of determining pressure differences on elements of a three-dimensional cascade oscillating harmonically in a subsonic gas flow. The problem is posed for rectangular plates and for plates whose edges are directed to the flow at angles not equal to 90 deg. The method can be extended easily to the case of an immobile multirow cascade with equal spacing, oscillating with equal phase shift and with phase shift in every row. B J

A78-36380 Experimental evaluation of an array technique for zenith to horizon coverage W G Mavroides and R. J Mailloux (USAF, Bedford, Mass) *IEEE Transactions on Antennas and Propagation*, vol AP 26, May 1978, p 403-406 11 refs

An experimental study of a new array concept with application to providing low cost efficient antennas with hemispherical coverage for aircraft to satellite communication links is described. The combined array-surface wave antenna consists of 64 waveguide elements scanned conventionally except at endfire. At endfire the array is shorted to become a corrugated surface-wave antenna and excited by an eight-element feed to provide a directional beam near the horizon. The array is rotated to give hemispherical coverage.

(Author)

A78-36431 Integrally stiffened laminate construction E E House (Lockheed-Georgia Co, Marietta, Ga) (Society for the Advancement of Material and Process Engineering, National Technical Conference, 9th, Atlanta, Ga, Oct 4-6, 1977) SAMPE Journal, vol 14, May-June 1978, p 17 20

Integral stiffening is defined as the occurring of conventional stiffener shapes, e.g., Js, Zs, hats, channels, etc., with the facing plies Attention is given to graphite-epoxy and fiberglass stiffening as it pertains to wing-to-fuselage C-5A fairings Comparisons are made between composite material and honeycomb stiffening. It is found that the former saves weight without jeopardizing safety or performance. It is noted that composite material stiffening was able to reduce life cycle costs by requiring fewer and less costly repairs than honeycombs, requiring only visual inspection (as opposed to X-ray and ultrasonic), and simply by lasting longer. Tooling and manufacturing procedures are also reviewed.

A78-36446 The design of future cockpits for high performance fighter aircraft G Roe (British Aerospace, Future Projects Dept, Kingston-upon-Thames, Surrey, England) *Aeronautical Journal*, vol 82, Apr 1978, p 159-166 8 refs

Means of increasing a pilot's g-tolerance through increasing the recline angle of the seat are discussed, and the corresponding modifications required in cockpit displays and ejector design are considered. In particular, an articulated seat providing the additional recline angle to give a tolerance increase of about 2-g magnitude over present levels is proposed. Optimum locations for flight, sensor and systems data displays are determined on the basis of information requirements for the pilot during takeoff, climb, cruise and other maneuvers. A head-up display for flight information and a head-level display for sensor data are suggested.

A78-36447 The German-Dutch low speed wind tunnel DNW M Seidel and F Jaarsma (Stichting Duits-Nederlandse Windtunnel, Noordoostpolder, Netherlands) Aeronautical Journal, vol 82, Apr 1978, p 167-173 A jointly financed German-Dutch wind tunnel is under development to provide aeronautical testing facilities in the speed range 62-145 m/sec. The flow characteristics of the 6- to 9.5-m cross section wind tunnel include relative deviation of stationary and dynamic pressure across the tunnel section of + or -0.3%, a local deviation of flow direction of + or -0.1 deg, turbulence of 0.1-0.2\%, and local temperature fluctuations of + or -1 C. Among the applications of the facility are studies to improve low-speed characteristics of aircraft, and investigations of engine/airframe interference, aircraft noise, helicopter rotor dynamics, flutter characteristics and the performance of full-scale aircraft components

ЈМВ

A78-36453 System requirements for transition from enroute to approach guidance D H Meyer (Rockwell International Corp , Cedar Rapids, Iowa) *Navigation*, vol 24, Winter 1977-1978, p 312-328 12 refs

The airborne system operational/functional requirements (from navigation using enroute aids to navigation using approach guidance) are examined for the transitional phase of an aircraft flight. In this paper the automated navigation system (based nominally on enroute aids) and the ILS/MLS system capabilities are described, and the complementary nature of each is treated. To achieve the full potential benefits of proposed landing system operations, it is suggested that on-board enroute navigation systems will be an important aid to exploit fully the resulting operational capabilities Proposed microwave landing system capabilities suggest new operational procedures for predefined maneuvers in the terminal area such as close-in captures and complex approach paths. These operational procedures, although only partially available at this time, can be expanded upon based on the operational advantages of the system Equipment configurations are presented to demonstrate the system requirements (Author)

A78-36454 Jeppesen charting for area navigation J E Terpstra (Jeppesen-Sanderson, Denver, Colo) (Institute of Navigation, National Aerospace Meeting, Denver, Colo, Apr 14, 1977) Navigation, vol 24, Winter 1977-1978, p 338 344

Area navigation (RNAV) provides freedom for establishing courses This type of system allows the airplane to proceed via navigational guidance to almost any geographical position without having to overfly a radio navaid This capability requires ingenuity for charting since many routes flown by RNAV-equipped aircraft do not fly on published courses, but prefer to go present position direct to their destination (Author)

A78-36455 Concerning the logical comparison of ATC separation standard assessment models A L Haines (Mitre Corp , Metrek Div , McLean, Va) *Navigation*, vol 24, Winter 1977-1978, p 345-351 6 refs

There exist many models for the determination or assessment of safe separation standards between aircraft flying under an air traffic control (ATC) system Most models fall within the general categories of collision risk or collision avoidance. This paper presents a framework for the qualitative comparison of the logical structure of these several models. Thus the merits and appropriateness of the several models may be more critically evaluated, and better definition of model applicability made. (Author)

A78-36483 # Preliminary experience with the use of the Yak-40 aircraft in studies of cloud physics and artificial modifications (Predvaritel'nyi opyt ispol'zovania samoleta lak-40 v issledovaniiakh po fizike oblakov i aktivnym vozdelstviiam) F la Voit, E E Kornienko, L A Mirmovich, and A I Furman In Artificial modification of clouds and fogs Moscow, Gidrometeoizdat, 1977, p 96-101 in Russian A78-36494 # Reliability of aviation techniques and flight safety (Bezotkaznost' aviatsionnoi tekhniki i bezopasnost' poletov) P A Solomonov Moscow, Izdatel'stvo Transport, 1977 272 p 114 refs In Russian

Basic quantitative flight safety indicators and their determination are discussed. Methods of evaluating the effects of failure involving components of the crew-aircraft-groundbase-flight conditions are analyzed, and on-board and ground-based technical safety procedures are considered with attention directed to the use of objective monitoring procedures. Methods of investigating aviation accidents and component failures are described. M L

A78-36498 Design for flying D B Thurston New York, McGraw-Hill Book Co , 1978 284 p 56 refs \$14 95

Design criteria for civil aviation aircraft are reviewed, with emphasis on FAA handling requirements for flight profiles from takeoff to landing Practical information on changing the speed or climb range of a propeller, equipping an aircraft for IFR flight, and installing position avionics antennas is also presented Among the topics included in the manual are crosswind handling, the advantages of tricycle gear design, the angle-of-attack indicator for approach maneuvers, center-of-gravity determinations, performance comparisons for advanced aircraft designs, powerplant noise reduction, seaplane design, protective coatings for aluminum and steel structural components, and steps required to obtain FAA certification for an aircraft design JMB

A78-36596 * ALC/50/ values for some polymeric materials C J Hilado, H J Cumming, J E Schneider (San Francisco, University, San Francisco, Calif), D A Kourtides, and J A Parker (NASA, Ames Research Center, Moffett Field, Calif) *Journal of Combustion Toxicology*, vol 5, Feb 1978, p 5-10 5 refs Grant No NsG-2039

Apparent lethal concentrations for 50 per cent of the test animals within a 30-min exposure period (ALC/50/) were determined for seventeen samples of polymeric materials, using the screening test method. The materials evaluated included resin-glass composites, film composites, and miscellaneous resins. ALC(50) values, based on weight of original sample charged, ranged from 24 to 110 mg/l Modified phenolic resins seemed to exhibit less toxicity than the baseline epoxy resins. Among the film composites evaluated, only flame modified polyvinyl fluoride appeared to exhibit less toxicity than the baseline polyvinyl fluoride film. (Author)

A78-36621 # Ergonomics in commercial aircraft landing (Ergonomik der Landung eines Verkehrsflugzeugs) R Heinig (Gesellschaft fur Internationalen Flugverkehr mbH, Berlin, East Germany) *Technische-okonomische Information der zivilen Luftfahrt*, vol 13, no 5, 1977, p 264-278 In German

Various aircraft currently in Interflug service (IL-14, -18, 62, An-24, and Tu-134) are evaluated in terms of overall performance during the landing phase, with attention to the demands different system components place on the pilot and flight personnel. The man-machine interface is examined on the basis of navigational and mechanical parameters. Approach speed and angles are considered with regard to minimizing pilot strain, and maximizing both pilot and and recraft reaction time.

A78-36622 # The technical concepts behind the IL-62M /8/ landing gear (Die technische Konzeption der IL-62M /8/ - Fahrwerk) G Dolgushev, N Soin, and V Volobuev (Opytno-Konstruktorskoe Biuro, Moscow, USSR) (Grazhdanskaia Aviatsiia, no 12, 1976) Technisch-okonomische Information der zivilen Luftfahrt, vol 13, no 5, 1977, p 292-296 In German (Translation)

The landing gear of the IL-62M is identical to that of the IL-62 In both aircraft there is a two-wheel nose gear together with a double tandem main gear. Attention is given to the positioning of the center of gravity, noting that it falls behind the main gear in both empty and loaded configurations. The wheels of the nose gear are steerable, and all wheels of the main gear are equipped with hydraulic disk brakes. The shock absorber systems of the main gear and the rear gear are considered especially well engineered. The lowering and retraction, respectively, of the rear landing gear is signaled to the pilot by a bright yellow light and a buzzer. D M.W

A78-36706 * Structural and assembly concepts for large erectable space systems E Katz (Rockwell International Corp., Space Div , Downey, Calif), E T Kruszewski, and E C Naumann (NASA, Langley Research Center, Structures and Dynamics Div., Hampton, Va) In The industrialization of space, Proceedings of the Twenty-third Annual Meeting, San Francisco, Calif, October 18-20, San Diego, Calif, American 1977 Part 1 Astronautical Society, Univelt, Inc., 1978, p. 101-113 (AAS 77-205) This paper presents a summary of studies performed by the Space Division of Rockwell under contract to the Langley Research Center of the NASA The studies specifically addressed requirements and concepts for erectable structures ranging in size from 100 to 300 meters - using the Shuttle Orbiter as the operation/assembly base This paper discusses various types of structural configurations and building block elements and the criteria which influence their designs. A brief review is given concerning the subject of flight control An assembly concept is presented - showing how the Orbiter may be equipped and operated to build large area structures Estimates are also given for cargo bay stowage and mission timelines (Author)

A78-36721 Maritime satellite communications - Where we are and where we're going D W Lipke (COMSAT General Corp, Washington, D C) In The industrialization of space, Proceedings of the Twenty-third Annual Meeting, San Francisco, Calif, October 18-20, 1977 Part 1 San Diego, Calif, American Astronautical Society, Univelt, Inc, 1978, p. 485-490 (AAS 77-257)

The need for high quality, reliable, real-time maritime communications has been recognized for some time. Satellites now offer the opportunity to overcome the long delays and unpredictable quality commonly experienced with HF and MF transmissions. The use of satellites for commercial maritime communications had its origin in 1973 when it was determined that both Navy and commercial maritime requirements could be met with a single satellite system. The ensuing program, known as Marisat, now fulfills both requirements. The status of the Marisat program and the European maritime satellite program (Marots) is reviewed, together with the status of international efforts in the development of a maritime satellite communications system. (Author)

A78-36941 Case of damage involving aircraft and helicopter components of light metal (Schadensfalle an Flugzeug- und Hubschrauberteilen aus Leichtmetall) G Lange Metall, vol 32, May 1978, p. 435-439. In German

In most investigations regarding the cause of damage in the case of aircraft it has to be determined whether a certain component has failed because of fatigue or as a consequence of a forced rupture. The two types of fracture can be distinguished on the basis of macroscopic and microscopic criteria. Macro and microfractography techniques are currently considered as equivalent complementary methods. It appears advisable that a macroscopic fracture analysis precedes an investigation with the scanning microscope. The macroscopic criteria are in many cases sufficient to determine unambiguously the type of fracture An investigation with the scanning microscope becomes vital if for some reason macroscopic fracture characteristics are not available or are not sufficient for an adequate fracture analysis. In many cases the scanning microscope can also provide information in addition to that required for a determination of the type of fracture. It can give indications regarding the origin of cracks or the existence of structural defects. The application of the available investigative techniques is illustrated with the aid of a number of specific cases involving various aircraft and helicopter components. GR

A78-36947 Compressible flow about helicopter rotors B C A Johansson (Forsvarsdepartementet Flygtekniska Forsoksanstalten, Bromma, Sweden) Vertica, vol 2, no 1, 1978, p 1-9 5 refs

A lifting-line theory for a helicopter rotor in vertical climb, hover or slow descent, and a disk approximation for the induced velocity field of a helicopter rotor in forward flight are presented The method of matched asymptotic expansions serves to treat the problem of the vertically moving rotor, series solutions are developed in terms of the ratio of a typical blade chord to the rotor diameter and the ratio of the climb velocity to the tip velocity of the rotor A disk of continuous thrust and in-plane force distributions provide the rotor approximations for the case of forward flight Both methods assume a compressible fluid J M B

A78-36948 A theoretical study of the effect of blade ice accretion on the power-off landing capability of a Wessex helicopter C Young (Royal Aircraft Establishment, Farnborough, Hants, England) (European Rotorcraft and Powered Lift Aircraft Forum, 3rd, Aix-en-Provence, France, Sept. 7-9, 1977) Vertica, vol 2, no 1, 1978, p. 11-25

The effect of rotor blade icing on helicopter performance is investigated, calculations are presented to indicate the maximum torque rise which can be tolerated in forward flight before the helicopter autorotational performance is seriously degraded Various decreases in the lift curve slope, together with increases in the drag of the blade section, are employed to simulate the effects of blade ice The excess torque at engine failure provides a measure of the ability of the helicopter to make a successful power-off landing with iced blades JMB

A78-36949 Flight experiments on aerodynamic features affecting helicopter blade design P Brotherhood and M J Riley (Royal Aircraft Establishment, Farnborough, Hants, England) (European Rotorcraft and Powered Lift Aircraft Forum, 3rd, Aix-en-Provence, France, Sept 7-9, 1977) Vertica, vol 2, no 1, 1978, p 27-42 5 refs

From a continuing program of flight research, several features of blade aerodynamics which are associated with rotor performance limits are discussed. By systematically roughening sections of the leading edge, those parts of the blade which are most sensitive to a reduction in the local value of maximum life coefficient have been identified The results have been used to examine the feasibility of using reflex cambered sections with nose-up pitching moments but attendant reduced value of maximum lift coefficient, in the inboard regions of the blade. In this way, the nose-down moments of highly cambered sections used to advantage nearer the tip may be balanced and control loads reduced From detailed surface pressure measurements near the blade tip, the features of the chordwise pressure distribution attributable to unsteady aerodynamics are studied during retreating blade stall, and three dimensional effects assessed The spanwise and chordwise progression of the 'dynamic stall front' is discussed. Finally, recent tests to examine the detailed distribution of local incidence and stall are described (Author)

A78-36950 IDS - An advanced hingeless rotor system W Jonda and H Frommlet (Messerschmitt-Bolkow-Blohm GmbH, Munich, West Germany) (European Rotorcraft and Powered Lift Aircraft Forum, 3rd, Aix-en-Provence, France, Sept 7-9, 1977) Vertica, vol 2, no 1, 1978, p 61-72 Research supported by the Bundesministerium der Verteidigung

The integrated dynamic system (IDS), a hingeless helicopter rotor design, consists of flexible fiberglass blades with a single bearing for blade pitching motion, the bearing is supported on the stiff titanium rotor hub. The IDS construction permits high control and trimming moments, together with a considerable reduction in moving parts. At present, an economical production scheme for the IDS is under development. Modular integration of subsystems, high degrees of maintainability and reliability, and lower weight and life cycle costs are being sought. A78-36980 Color displays for airborne weather radar R H Aires and G A Lucchi (RCA, Avionics Systems Div , Van Nuys, Calif) *RCA Engineer*, vol 23, Feb -Mar 1978, p 54 60

The basic characteristics of the PriMUS-400 ColoRadar weather radar system are described Rainfall rates in four different ranges are indicated by four different colors on the display A block diagram of the complete system, including antenna, receiver transmitter, and digital indicator, is provided The transmitter has a variable pulse width and the receiver has a very good noise figure Three comparators determine the four levels corresponding to rainfall of four intensity ranges Range and azimuth are collected in polar coordinate format, but displayed in Cartesian format The resolution of the display is four times better than previously available digital storage type indicators PTH

A78-37108 A computer-based system for processing dynamic data R E Harper and F M Reichenbach (United Technologies Corp, Pratt and Whitney Aircraft Group, East Hartford, Conn) ISA Transactions, vol 17, no 1, 1978, p 57-64

Large numbers of dynamic strain measurements are necessary during aircraft gas turbine development to insure product durability A new computer based system for the digital processing of dynamic strain data has just entered service at Pratt & Whitney Aircraft This system features automated handling of calibration and labeling information, and interactive operator communications Special purpose digital devices are used to increase the throughput rate, to perform FFTs and to provide a high quality hard copy readout Expansion to handle other dynamic data, including vibration and pressure, is planned (Author)

A78-37114 Aero engines climb towards better fuel efficiency M Hewish New Scientist, vol 78, May 11, 1978, p 380, 381

The low-by-pass-ratio turbofans of the early 1960s had specific fuel consumptions about 15 percent lower than the previous straight turbojets. The introduction of high-bypass turbofans in the early 1970s led to a further 20 percent reduction. Studies financed by NASA have the objective to reduce fuel consumption by another 12 percent. Gains to be made are related to improved components performance, revised maintenance procedures to reduce deterioration in use, reduced sensitivity to factors which cause performance to fall while the engine is in service, and a modified operating cycle, mainly involving changes in bypass ratio, overall pressure ratio, and turbine inlet temperatures. The integrated fan duct, which provides structural strength and damps out fan noise, contributes to performance of the engine core of R R

A78-37124 A three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment I - The method and its implementation II - Comparison of predictions and measurements K S Kunz and K-M Lee (Mission Research Corp, Albuquerque, N Mex.) *IEEE Transactions* on *Electromagnetic Compatibility*, vol EMC-20, May 1978, p 328-341 14 refs Contract No F29601 76 C-0064

Experimental charge and current measurements have been performed on an aircraft exposed to the transient electromagnetic field of an electromagnetic pulse simulator These data allow a test of the predictive capabilities of the three-dimensional finite difference method for realistic aircraft simulator test problems. The workings of the method and its required inputs and sensitivity to variations in the

A78-37154 # SST flight planning and navigation - The first year's experience T C R Guest (British Airways, London, England) *Journal of Navigation*, vol 31, May 1978, p 250-255, Discussion, p 255-258 The triple inertial navigation system (INS) on board the Concorde has proved a valuable aid in insuring accurate and reliable track-keeping on the complex routes operated by the aircraft The Concorde INS includes a Distance Measuring Equipment (DME) update and a card-reader facility for the insertion of waypoint and DME information Problems in the London-Bahrain route, as well as the London-Washington route, are discussed The use of the false waypoint technique to move the aircraft track and provide better sonic boom protection for a given area is considered The approach to Heathrow Airport with the INS also receives attention J M B

A78-37155 # Fully-automated, pilot-monitored air traffic control R L Ford (Royal Signals and Radar Establishment, Malvern, Worcs, England) *Journal of Navigation*, vol 31, May 1978, p 259 267

An analysis of trends in Air Traffic Management indicates that fully automated pilot-monitored ATC may be the system which will prevail in the future. The advent of airborne collision-avoidance systems and the economic difficulties in maintaining ever larger contingents of air traffic controllers to meet increases in traffic are among the factors which suggest the likelihood of a transfer of strategic and tactical control of air traffic to the flight deck. The fully automated pilot-monitored ATC system would involve development of on-board electron traffic situation displays and a radical redesigning of flight-deck instrumentation to integrate the ATC, naviation and aircraft management systems. J M B

A78-37183 Computer-aided holographic vibration analysis for vectorial displacements of bladed disks K A Stetson and I R Harrison (United Technologies Instrumentation Laboratory, East Hartford, Conn) Applied Optics, vol 17, June 1, 1978, p 1733-1738

Photographs of hologram reconstructions which display vibration modes of bladed disks are digitized and numerically processed to determine translations and rotations of blade segments at radial locations Because the blades are assumed not to move in the radial direction, only two holograms, each with a different sensitivity vector, are required of each vibration mode In addition, a photograph of fringes projected onto the bladed disk is used to determine blade surface contours and compensate for their effect on the holographic fringes (Author)

A78-37246 New model VOR/DME E Chakı, M Yamagıshı, and T Dejima (Tokyo Shibaura Electric Co., Ltd., Toyo, Japan) *Toshiba Review,* Mar -Apr 1978, p. 10-12

A completely solid-state VOR/DME unit has been developed for R-NAV operation Attention is given to the design characteristics of both the VOR unit and the DME unit Major performance data are presented for the two units B J

A78-37297 Analysis of spray combustion in a research gas turbine combustor P B Patil, M Sichel, and J A Nicholls (Michigan, University, Ann Arbor, Mich.) Combustion Science and Technology, vol. 18, no. 1-2, 1978, p. 21-31. 9 refs. U.S. Environmental Protection Agency Grant No. R-802925-02-2

This paper deals with the analysis of liquid fuel spray combustion in an idealized gas turbine combustor. The flow, which is assumed to be one dimensional, is divided into two regions (1) the heat up region and (2) the combustion region. Appropriate nondimensional equations have been solved for each region and the solutions matched at the common boundary. Analytical expressions have been developed for the burning velocity eigenvalue as well as for the solution in the combustion region. The effects of the properties of the fuel and the air as well as effects of the conditions prevalent within the combustor on the solution are discussed. Typical results for JP-4 fuel are presented. The research gas turbine combustor designed and built at The University of Michigan comes very close to satisfying the assumptions made in this analysis. (Author) A78-37341 Modern RF system design for aircraft R A Stampfl (US Naval Material Command, Naval Air Development Center, Warminster, Pa) Archiv fur Elektronik und Ubertragungstechnik, vol 32, May-June 1978, p 247-250

A description is presented of a new system approach, called Tactical Information Exchange System (TIES), which is currently being developed to satisfy RF system design requirements for aircraft Basic developments which make TIES possible are related to the advent of inexpensive surface acoustic wave filters of superior properties, the availability of microprocessors of small size, and the low cost and the great variety of high speed LSI logic. The complexity of the avionics design problem for military aircraft is illustrated with the aid of a table which provides a summary of the kind of function which must be performed. The advantages of TIES are shown by comparing it with the conventional avionics design approach. The state of development of the new system approach is discussed. Currently, a demonstration system with all the required modules is being built.

A78-37406 # Cross-flow characteristics on a cylindrical body at incidence in subsonic flow M L Robinson (Weapons Research Establishment, Adelaide, Australia) Institution of Engineers, Australian Hydraulics and Fluid Mechanics Conference, 6th, Adelaide, Australia, Dec 5-9, 1977, Paper 4 p 5 refs

The flow over a cylindrical body at incidence is examined with special reference to the behavior and role of the attachment line boundary layer Results of previous work on the flow on the leading edges of swept wings are used to establish conditions governing cross-flow behavior on an inclined cylinder Flow observations and measurements of forces and moments on a cylindrical body have confirmed the theoretical prediction that, over a range of Reynolds number encountered in wind tunnel testing, an initially turbulent cross-flow reverts to a predominantly laminar flow at a critical incidence angle Both Reynolds number and conditions on the nose such as roughness greatly influence the critical incidence angle

(Author)

A78-37408 # The computation of the unsteady aerodynamics of bodies near a ground surface G H S Pike (Sydney, University, Sydney, Australia) Institution of Engineers, Australian Hydraulics and Fluid Mechanics Conference, 6th, Adelaide, Australia, Dec 5-9, 1977, Paper 4 p

As a design aid for ground-effect wing aircraft, a technique for computing the steady or unsteady aerodynamic properties of bodies moving above a ground surface has been developed. The computational technique, based on nonlinear aerodynamics rather than the 'small perturbation' method of standard aerodynamic stability theory, is compared to lifting surface theory and experimental data For steady calculations, the nonlinear aerodynamics approach proves superior to lifting surface theory, though for the unsteady case lifting surface theory appears more accurate.

A78-37409 # The next approximation after boundary layer theory A R Oliver (Tasmania, University, Hobart, Australia) Institution of Engineers, Australian Hydraulics and Fluid Mechanics Conference, 6th, Adelaide, Australia, Dec 5-9, 1977, Paper 4 p 10 refs Research supported by the Australian Research Grants Commit tee

A rapid stable solution method for the Navier-Stokes equations in terms of vorticity is developed as a design aid for dealing with unsteady flow effects associated with machine blades. The solution technique is intended to provide an intermediate approximation between thin boundary layer theory and the full Navier-Stokes equations, if used close to the trailing edge of the blade, the solution method may reduce the length over which the full equations need to be applied. The case of laminar flow with zero pressure gradient in two dimensions is treated. A78-37411 # Boundary layer blowing tests on a radial diffuser in low and subsonic Mach range J S de Krasinski (Calgary, University, Calgary, Alberta, Canada) and M Mehra Institution of Engineers, Australian Hydraulics and Fluid Mechanics Conference, 6th, Adelaide, Australia, Dec 5-9, 1977, Paper 5 p 9 refs Research supported by the National Research Council of Canada

Radial diffusers in incompressible flow are shown to exhibit acceptable maximum efficiencies if blowing of the boundary layer at the origin of the entry bells is instituted. Increasing the ratio of the jet velocity at the slot to the entry velocity results in higher stability for the diffusers, the overall efficiency of the diffusers may approach 70% for specified slot area and entry area geometries. Cones of varying angles may be adopted to reduce the initial Mach number to unity at the throat, and thus make the radial diffuser design suited to supersonic diffusion. The quiet operation of the radial diffusers is also noted. J M B

A78-37413 # The turbulent flow through a sudden enlargement at subsonic speeds S Kangovi (National Aeronautical Laboratory, Bangalore, India) and R H Page (Rutgers University, New Brunswick, N J) Institution of Engineers, Australian Hydraulics and Fluid Mechanics Conference, 6th, Adelaide, Australia, Dec 5-9, 1977, Paper 4 p 10 refs

The flow through a sudden enlargement was experimentally investigated in the Mach number range of 0.1 to 0.95 Results include variation of base pressure and recovery pressure with reference Mach number. The upstream influence distance and the locations of reattachment and secondary separation points are also reported. (Author)

A78-37417 # The mean velocity field of unsteady subsonic air jets W H Harch and K Bremhorst (Queensland, University, St Lucia, Australia) Institution of Engineers, Australian Hydraulics and Fluid Mechanics Conference, 6th, Adelaide, Australia, Dec 5-9, 1977, Paper 4 p 17 refs

Mean streamwise velocity data and calculated entrainment rates are presented for a fully pulsed subsonic jet and for a steady subsonic jet with a fully pulsed subsonic coaxial core, both the jets exhaust into stationary air. The same functional relationships used to characterize the mean velocity fields of steady jets are found to apply to the case of the systematically perturbed jets. The perturbed jets appear to establish developed flow regimes more rapidly than steady jets. Thus the perturbed jets exhibit faster growth of the jet half width and a slower decay of the jet centerline velocity, resulting in increased entrainment of the surrounding air. J M B

A78-37423 # Minimisation of relaxation drag E Becker (Darmstadt, Technische Hochschule, Darmstadt, West Germany) and W Ellermeier Institution of Engineers, Australian Hydraulics and Fluid Mechanics Conference, 6th, Adelaide, Australia, Dec 5-9, 1977, Paper 5 p 6 refs

An analytical expression is derived in order to minimize relaxation drag it is noted that thermodynamic relaxation processes caused by a body moving through a fluid induce the production of entropy and the subsequent drag force on the body. The correlation between entropy production and drag is derived for a slender two-dimensional profile moving with a constant velocity. The drag force is represented by a functional of the velocity potential for cases of near-equilibrium and near-frozen flow. The result for the nonequilibrium flow may be used to determine a profile which has the minimum relaxation drag for a given area and lift coefficient.

SCS

A78-37477 Evaluation of airborne radar Doppler processors G A Andrews (U S Navy, Naval Research Laboratory, Washington, D C) In EASCON-77, Electronics and Aerospace Systems Convention, Arlington, Va, September 26-28, 1977, Record New York, Institute of Electronics Engineers, Inc., 1977, p 4-5A to 4-5H. 10 refs

Detection of moving targets from moving platforms is investigated in terms of the effects of platform motion and antenna pattern. Using motion-compensation techniques, the performance of an MTI canceler is evaluated in terms of cascaded combinations of this canceler with additional Doppler processing. The cascaded processors investigated are fast Fourier transform (FFT) filters and optimized Doppler filters. Comparisons are made to determine the best configurations for particular conditions. (Author)

A78-37485 The effect of correlated missed detections, correlated false alarms and interclutter visibility on the performance of an automated radar tracking system R. M O'Donnell (MIT, Lexington, Mass) In EASCON-77, Electronics and Aerospace Systems Convention, Arlington, Va, September 26-28, 1977, Record New York, Institute of Electrical and Electronics Engineers, Inc., 1977, p 10-2A to 10-2I 6 refs USAF-sponsored research

In the specification of radar detection and false alarm performance required to permit good automatic tracker performance, little regard has been given in the past to the need for radar signal processing and thresholding which will ensure that both the false alarms and missed detections fed to the tracker are uncorrelated. The physical phenomena and radar design features which can cause either correlated false alarms or missed detections are rain and ground clutter, angel clutter, blind speeds, missed detections, blind phase problems and poor low velocity Doppler filter response. The effect of interclutter visibility has been found to be significant in enhancing the detection of aircraft flying tangentially through ground clutter Extensive experimental results are presented illustrating these phenomena and their effects on tracking performance (Author)

A78-37486 Dealing with false targets in the Air Traffic Control Radar Beacon System J E Freedman (ARINC Research Corp , Annapolis, Md) In EASCON-77, Electronics and Aerospace Systems Convention, Arlington, Va, September 26-28, 1977, Record New York, Institute of Electrical and Electronics Engineers, Inc., 1977, p 10-3A to 10-3J 15 refs

The generation of false beacon targets in the Air Traffic Control Radar Beacon System (ATCRBS) has long been a problem and a limiting factor to its performance. This paper begins by examining the origins and characteristics of false targets and surveys present preventive and eliminative remedies in terms of their principles of operation and their practical limitations. It is shown that, while improvements have been made and more can be expected, no one remedy will solve all false target problems. The discussion then turns to consideration of software filters as a potentially valuable new tool for eliminating whatever false targets still remain due to the technical, economic, and political limitations of the preventive remedies. The paper describes as an example one candidate filter - a simple algorithm based on detection of duplicate code reports - and examines its potential effectiveness. Conclusions are then drawn regarding the potential role for software filters and their relation to the other false target remedies (Author)

A78-37490 CRT update. J E Wurtz (Litton Industries, Electron Tube Div, San Carlos, Calif) In EASCON-77, Electronics and Aerospace Systems Convention, Arlington, Va, September 26-28, 1977, Record New York, Institute of Electrical and Electronics Engineers, Inc, 1977, p 12-2A to 12-2F 16 refs Innovation in phosphor mixes and advanced tube design have contributed to the continuing wide application of CRTs for TV monitors, oscilloscopes, air traffic control and cockpit displays, as well as for nondirect projection and scanning The advanced gun design adopted for the stringent shock and vibration conditions of airborne displays is discussed, and advanced green-line emitters for CRT airborne displays are mentioned. Use of CRTs to record the output of radars, infrared scanners, scanning electron microscopes and medical scanners is also considered, filter optic coupling makes the CRT especially suitable for film recording. A CRT-based device for superimposing information onto the scene perceived by aircraft pilots from the cockpit is described.

A78-37501 Modern millimeter wave instrumentation radar development and research methodology. J A Scheer, J L Eaves, and N C Currie (Georgia Institute of Technology, Atlanta, Ga) in EASCON 77, Electronics and Aerospace Systems Convention, Arlington, Va, September 26-28, 1977, Record New York, Institute of Electrical and Electronics Engineers, Inc, 1977, p 16-6A to 16-6H 11 refs

A millimeter-wave radar is described, and its various modes of operation are related to the research associated with signal processing techniques. The new system is based on a K-sub-a band radar characterized as state-of-the-art, solid-state, self-contained, portable, coherent, frequency-agile, dual-polarized, and polarization-agile Preliminary hard target and clutter data and analyses are presented and related to the determination of appropriate processing algorithms for target discrimination. M L

A78-37525 Results of the NASA/MARAD L-band satellite navigation experiment B P Gibbs (EG&G/Washington Analytical Services Center, Inc, Riverdale,/Md) In EASCON 77, Electronics and Aerospace Systems Convention, Arlington, Va, September 26-28, 1977, Supplement New York, Institute of Electrical and Electronics Engineers, Inc, 1977, p 25-30 9 refs

During the period from October 1974 to May 1975, the National Aeronautics and Space Administration (NASA) and the Maritime Administration (MARAD) conducted two, independent mobile-vehicle position experiments using the Application Technology Satellites (ATS) 5 and 6 NASA used an FAA aircraft as the mobile platform while MARAD used two commercial ships. This paper summarizes the results of these experiments. The data was analyzed to determine the operational accuracy, the dominant error sources and the potential accuracy of the system. Overall, both experiments demonstrated accuracies of 2 to 30 nautical miles using the 'real time' data. The dominant error source was found to be satellite ephemeris error. Using refined ephemerides (either from trilateration or a two-week prediction from normal ATS-6 tracking), both systems demonstrated accuracies of 2 to 4 nautical miles Random measurement errors generally resulted in less than one nautical mile position error (Author)

A78-37530 # Prediction of the ground effect - Side-line noise from aircraft J E Piercy, T F W Embleton, and R J. Donato (National Research Council, Ottawa, Canada) Acoustical Society of America, Meeting, 93rd, State College, Pa, June 6-10, 1977, Paper 8 p 5 refs

Distance and angle functions are used to calculate the attenua tion due to grass alongside airport runways for JT8-D powered aircraft Attention is given to the aircraft's angle of elevation. It is noted that a large (5-20 dB) attenuation is reported for very small angles (less than 3 deg), due to Lloyd's mirror cancellation, while much smaller (less than 3 dB) attenuation is observed for larger angles, due to ground absorption. The attenuation in the latter case depends much more on distance than on angle. Measurements of the SAE are contrasted with those of the CSIR (Committee of Scientific and Industrial Research) of the Republic of South Africa. D M W A78-37532 # Azimuthal decomposition of the power spectral density of jet noise K Yamamoto and R E A Arndt (Pennsylvania State University, University Park, Pa) Acoustical Society of America, Meeting, 93rd, State College, Pa, June 6-10, 1977, Paper. 20 p

The reported results have been obtained in a research program which was conducted to increase the fundamental understanding of the jet noise generation mechanism which is essential to the development of further advanced techniques of noise reduction. The experiments included measurements of the coherence function of the circumferentially cross correlated signals of jet noise. The coherence functions plotted versus frequency for various azimuthal separation angles are shown in a graph. With an increase of the azimuthal separation angle, the coherency decreases. In the high frequency range the coherency falls off drastically. There is a strong azimuthal coherency over a rather broad range of frequency. The coherence data were sampled at 13 arbitrarily selected frequencies and expanded in terms of a Fourier-series with respect to the azimuthal angle The results of the Fourier decomposition for two different jets are presented Michalke's spectral theory was used for the prediction of the single-azimuthal-frequency component of jet noise G R

A78-37536 # An economic and technical perspective of the turboprop engine in Ag-aviation D C Emmerson (Pratt and Whitney Aircraft of Canada, Ltd, Longueuil, Quebec, Canada) (Canadian Aeronautics and Space Institute, Annual General Meeting, Quebec, Canada, May 18, 1977) Canadian Aeronautics and Space Journal, vol 24, Mar - Apr 1978, p 73-82

The development of turboprop technology for agricultural aircraft is reviewed. Some of the more important technical considerations, cost factors, and productivity questions involved in applying turbines to agricultural aviation are examined. Experience with current turboprop aircraft for agriculture with regard to reliability, time between overhauls, disk life, noise, purchase price, fuel costs, maintenance costs, insurance, payload capacity, and flight performance is discussed.

A78-37537 # Wind tunnel tests of a slotted flapped wing section D J Marsden (Alberta, University, Edmonton, Canada) (Canadian Symposium on Recreational and New Generation Light Aircraft, 2nd, Toronto, Canada, Sept 1976) Canadian Aeronautics and Space Journal, vol 24, Mar - Apr 1978, p 83-91 8 refs Research supported by the National Research Council of Canada and University of Alberta

The slotted flapped wing section that was the subject of wind tunnel tests allows a high wing loading to be used for fast cruising flight and yet retains good climb performance with the flap extended for circling flight. Flow visualization revealed clearly the transition from laminar to turbulent flow Laminar separation followed by reattachment to form a laminar separation bubble was a common mechanism for transition. The position of transition for angle of attack from -4 to 14 deg was plotted for retracted and extended flap, and a sharp stall point was determined. Lift and drag characteristics were obtained, and the effect of leading edge roughness, such as may result from collecting insects on the leading edge, was determined. The extension of the flight regime due to the flap is revealed. The useable lift coefficient range of the section is nearly doubled by the slotted flap.

A78-37538 # Rolls-Royce RB401 turbofan - A new business jet engine for the 1980's P E Peck (Rolls Royce, Ltd, Aero Div, Bristol, England) Canadian Aeronautics and Space Journal, vol 24, Mar - Apr 1978, p 92-97

The new RB401 engine delivers 5400 lb of thrust and is aimed at business jet aircraft for the 1980s. It has a bypass ratio of 4.2.1, and in retrofit applications it will increase aircraft range up to 50% with accompanying improvements in climb and cruise performance It employs conventional straight flow with axial compressors and turbines at an overall pressure ratio of 1641 The selected design point provides an optimum solution in the tradeoff between fuel consumption and powerplant installed thrust and weight. The thermodynamic cycle permits the design of a two-stage low-pressure turbine with the same constant mean radius as the high-pressure turbine and with direct drive to the fan. The fan is a low-hub-tip ratio design giving a mean pressure ratio of 1 72 at cruise conditions and passing 182 lb/sec at takeoff The high-pressure compressor incorporates a constant-diameter casing and blading produced in groups The gas generator features a supersonic nozzle and a single-stage turbine, resulting in 100 C reduction in gas temperature on the rotor blades PTH

A78-37539 # Expansion potential for the local service air carrier 1 Macleod (North Canada Air, Ltd., Prince Albert, Saskatchewan, Canada) (Canadian Aeronautics and Space Institute, Annual General Meeting, Toronto, Canada, May 1976) Canadian Aeronautics and Space Journal, vol 24, Mar -Apr 1978, p 98-104

The paper discusses the possibilities for the expansion of local air service in Northern and Western Canada The prospects for increased mining and tourism in Northern Saskatchewan may call for extension of the local air carrier service. To keep up with competition from surfaces modes of transportation, existing local air services carriers on established routes will have to concentrate on frequency and scheduling of service, fast and reliable baggage handling, and scheduling interfacing. In the process of route development, the local carrier should be allowed greater scope with limited competition on regional and mainline routes. Route transfers should be encouraged Cooperation between local, regional and mainline carriers will be needed A limited and conditional subsidy policy is suggested.

A78-37603 # Electronic aircraft collision avoidance system (Radiotekhnicheskie sistemy preduprezhdeniia stolknovenii samoletov) S I Bychkov, G A Pakholkov, and V N lakovlev Moscow, Izdatel'stvo Sovetskoe Radio, 1977 272 p 60 refs In Russian

The principles of operation and design of airborne electronic collision avoidance systems for aircraft are set forth. The physical basis for the problem of avoiding collisions in midair is studied, and methods of designing and using components and systems for determining the mutual position of two objects and the parameters of their motion are studied. Special attention is given to interacting systems based on interrogation and response, synchronous systems and systems using the signal format and equipment of secondary air traffic control radar.

A78-37613 # Uniqueness in the large' of the solution to the direct problem of the Laval nozzle (O edinstvennosti 'v tselom' reshenila priamoi zadachi sopla Lavalia) E G Shifrin Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, vol 18, Mar Apr 1978, p 509-512 5 refs In Russian

Uniqueness 'in the large' is established for two classes of solutions to the direct problem of the Laval nozzle in the transonic approximation of the equations of motion on the assumption that no shocks are present First it is proved that for a nozzle of infinite length, if the flow acceleration is nonnegative the solution, if any, is unique. Then it is proved that there do not exist two different solutions that are elliptic on the same domain and degenerating on a rectilinear segment of the boundary.

A78-37683 * # On the use of relative velocity exponents for jet engine exhaust noise J R Stone (NASA, Lewis Research Center, Cleveland, Ohio) Acoustical Society of America, Meeting, 95th, Providence, R I, May 16-19, 1978, Paper 16 p 14 refs

The effect of flight on jet engine exhaust noise has often been presented in terms of a relative velocity exponent, n, as a function of radiation angle. The value of n is given by the OASPL reduction due to relative velocity divided by 10 times the logarithm of the ratio of relative jet velocity to absolute jet velocity. It is shown in this paper that the exponent n is positive for pure subsonic jet mixing noise and varies, in a systematic manner, as a function of flight conditions and jet velocity. On the basis of calculations from simple empirical models for jet mixing noise, shock noise and internally-generated noise, it is shown that when other sources are present, the resulting uning of n is increased over the range for jet mixing noise, and in some cases negative values of n are obtained. (Author)

A78-37712 The role of meteorology in helicopter icing problems P Ryder (Meteorological Office, Bracknell, Berks, England) Meteorological Magazine, vol 107, May 1978, p 140-147 9 refs

An analysis of helicopter icing is presented The role of the meteorologist in preventing accidents resulting from icing is examined with reference to policy decisions on the need for widescale use of helicopters. It is concluded that the discipline of meteorology is more suited for planning and performing basic research concerning icing rather than in devising some simple means of predicting icing hazards. The responsibility of a meteorologist as an adjunct to a policy decision is considered.

A78-37732 * # Notes on the transonic indicial method D Nixon (NASA, Ames Research Center, Moffett Field, Calif) AIAA Journal, vol 16, June 1978, p 613-616

The indicial method for calculating flutter derivatives for two-dimensional airfoils at transonic speeds is discussed, with particular attention given to the effect of a moving shock on the flow variables in the indicial method. An expression for the pressure coefficient is developed on the basis of an explicit treatment of the shock motion, the pressure distribution may then be calculated for general oscillations through use of the indicial method. Explicit inclusion of the shock motion is not necessary if only the lift and pitching moment coefficients are desired.

A78-37733 # Nonlinear formulation for low-frequency transonic flow W C Chin (Boeing Commercial Airplane Co, Seattle Wash) AIAA Journal, vol 16, June 1978, p 616-618

Two-dimensional unsteady transonic flow past a thin airfoil performing small-amplitude harmonic oscillations is studied in an analysis which takes into account the 'back-interaction' arising from the nonlinear harmonic interplay. The back-interaction phenomenom may have important effects on mean shock jumps and location in low-frequency problems, though the effect is probably less significant for the high-frequency case. The nonlinear analysis demonA78-37743 * # Pressure pulsations on a flat plate normal to an underexpanded supersonic jet L H Back and V Sarohia (California Institute of Technology, Jet Propulsion Laboratory, Pasadena, Calif) AIAA Journal, vol 16, June 1978, p 634-636 Contract No NAS7-100

An experiment was devised to study the interaction between an underexpanded supersonic gas jet and a flat plate, with the plate located in a region in which the interaction produces shock wave and flow fluctuations. Nitrogen gas at ambient stagnation temperature flowed through a convergent nozzle with exit diameter of 2 03 cm and impinged on a square metal plate normal to the jet. Results revealed local peak pressure fluctuations on the plate at nozzle pressure ratios of about 2 and 4 5, with the latter case producing fluctuations of the same order as the mean pressure on the plate, the frequency of the oscillations was as large as 20 kHz. For choked jet flow at ambient pressure higher than atmospheric, the pressure fluctuations would increase accordingly, and adjacent solid structures would therefore be subjected to proportionately higher normal stresses.

A78-37744 * # Round jet in a cross flow - Influence of injection angle on vortex properties D Krausche, R L Fearn (Florida, University, Gainesville, Fla), and R P Weston (NASA, Langley Research Center, Low Speed Aerodynamics Branch, Hampton, Va) A/AA Journal, vol 16, June 1978, p 636, 637 Grant No NGL-10-005-127

A model is developed to infer the properties of a pair of diffuse contrarotating vortices for perpendicular jet injection into the cross flow Attention is given to pressure distribution on the surface where the jet exhausts, especially in terms of V/STOL applications A V/STOL wind tunnel experiment is described, whereby a round jet of air (1016 cm dia) was discharged through a horizontal flat plate into the cross flow of the wind tunnel test section at angles of 45, 60, 75, and 90 deg Results indicate that the effective vortex strength for both velocity ratios is highest near the jet orifice, and decreases as the vortices are swept downstream, at which point the effective vortex spacing increases. In addition, the core radius of the vortex exhibits properties similar to those of the effective vortex spacing D M W

A78-37772 Review of flashback reported in prevaporizing/ premixing combustors S L Plee and A M Mellor (Purdue University, West Lafayette, Ind) *Combustion and Flame*, vol 32, June 1978, p 193 203 42 refs Grant No AF-AFOSR-76 2936

Upstream flame propagation into the fuel preparation tanks of prevaporizing/premixing combustors is discussed, this type of combustor is under consideration for aircraft, ramjet and automotive propulsion systems Classical flashback, autoignition, flame propagation through reversed flow regions of the mixing tube are the phenomena examined A literature review suggests that the latter three mechanisms, rather than classical flashback, are present in noncatalytic combustion systems burning liquid jet fuels and propane This finding is important for development of engine burners capable of simultaneously reducing both oxides of nitrogen and carbon monoxide JMB

A78-37775 # Flow past nonconical wings with separation S V Ramakrishnan and N R Subramanian (National Aeronautical Laboratory, Bangalore, India) *Journal of Aircraft*, vol 15, June 1978, p 383, 384 5 refs

The Brown and Michael (1954) method is extended to evaluate the effect of flow separation on wings of nonconical planform. It is assumed that the spiral vortex sheets that separate from the leading edges can be replaced by two isolated vortices at the cores of the vortex sheets. The boundary conditions on the wing are such that (1) the normal velocity is zero, (2) the velocity is finite at the leading edge, and (3) the conditions in the field are that the disturbances vanish at infinity and the fluid pressure is continuous. The vortex strength increases in the downstream direction, and the increase in vorticity is achieved in this model by a feeding sheet of vorticity in order to satisfy Kelvin's theorem. Although this approximation method yields higher values for the lift coefficient than those obtained from experiments on delta wings, it gives a first approximation for evaluating the vortex lift.

A78-37860 Investigating the efficiency of gas turbines in off-design operation G G Ol'khovskii and N I Ol'khovskaia (Vsesoiuznyi Nauchno-Issledovatel'skii Teplotekhnicheskii Institut, Moscow, USSR) (*Teploenergetika*, vol 24, no 9, 1977, p. 25-29.) *Thermal Engineering*, vol 24, no 9, 1978, p 16-19 8 refs Translation.

Parameters useful in characterizing the efficiency of gas turbines have been studied on the basis of information accumulated while refining the starting and operating performance of multistage gas turbines. Among the parameters discussed are the expansion ratio, the characteristic ratio (on which individual turbine-stage efficiency is strongly dependent), available heat drop, and internal efficiency In addition, the internal capacity of the turbines is obtained from the capacity balance (allowance being made for the capacity of the starting motor). A number of the parameters are monitored for multistage gas turbines from cold start to operational gas temperature.

A78-37873 # Aircraft radar systems (Radiolokatsionnye sistemy letatel'nykh apparatov) P S Davydov, V P Zhavoronkov, G V Kashcheev, V V Krinitsyn, V S Uvarov, and I N--Khresin (Moskovskii Institut Inzhenerov Grazhdanskoi Aviatsii, Moscow, USSR) Moscow, Izdatel'stvo Transport, 1977 352 p 96 refs In Russian

The book deals with various aspects of designing onboard radar systems, calculating and selecting the principal system parameters on the basis of statistical approaches, and assessing system performance. The major topics covered include radar transmitters and antennas, onboard receiver systems, radar displays, automatic radar data processing, Doppler velocity and sideslip meters, radar altimeters, radar adjustment and checking techniques, and the automatic monitoring and documentation of radar parameters V P

A78-37885 # Aircraft auxiliary power units (Vspomogatel'nye silovye ustanovki samoletov) N I Pavlovskii Moscow, Izdatel'stvo Transport, 1977 240 p. In Russian

The design, operation, and maintenance features of the TA-6A and TA-8 auxiliary power units, which serve to start up the turbojet engines of the II 62, Tu-134A and Tu-154 aircraft, are described Descriptions are provided of all the main subsystems of these engines, such as the fuel system, lubrication system, air supply, ignition system, generator, and measuring systems Attention is given to procedures for preparing the engines for operation, starting the engines, regulating the servicing done on the engines, engine installation and removal, and parts replacement PTH A78-37887 # Factorization methods in hydroaeromechanics (Metod faktorizatsii v zadachakh gidroaeromekhaniki) G S Lipovoi Kiev, Izdateľ stvo Naukova Dumka, 1977 120 p 78 refs In Russian

The theory of complex variables is applied in a discussion of factorization methods used in the investigation of nonsteady-state problems in hydromechanics and aeromechanics. Topics include the periodic movement of an infinite or finite wing span along a solid surface, the aperiodic movement of a profile along a solid surface, the aperiodic movement of finite wing spans along a solid surface, the aperiodic movement of finite wing spans along a solid surface, the aperiodic movement of finite wing spans along a solid surface, the aperiodic movement of finite wing spans along a screen, the periodic fluctuations of thin spatial cascades or of multiseries cascades in subsonic gas flows, and the movement of a thin finite depth ML

A78-37979 Laser velocimeter for wind tunnel measurements A Boutier, G Fertin, and J Lefevre (ONERA, Châtillonsous-Bagneux, Hauts-de-Seine, France) *IEEE Transactions on Aerospace and Electronic Systems*, vol AES-14, May 1978, p 441-455 32 refs (ONERA, TP No 1977-63)

Laser velocimetry principles are briefly recalled, the optical and mechanical elements making up a velocimeter are described. Their purpose is to create two laser beams of equal intensity which are focused and crossed in a probe volume where a fringe pattern is formed, the light scattered by submicron particles passing through the volume is collected by an optics rigidly connected to the emitting optics and focused on a photomultiplier. Among the various signal processing techniques, counters are now widely used, in connection with minicomputers. The different means used to determine the velocity sign and to measure simultaneously two components of the velocity components is more a matter of technology and cost than a theoretical problem. The modular operational velocimeter developed at ONERA is described, as examples of application, some typical results obtained in different aerodynamic flows are reported.

(Author)

A78-37987 Evaluation of geometric performance of global positioning system C T Leondes and K Yonezawa (California, University, Los Angeles, Calif) *IEEE Transactions on Aerospace and Electronic Systems*, vol. AES-14, May 1978, p. 533-539, 7 refs

The global positioning system (GPS) is a satellite-based radio navigation system to provide extremely accurate three-dimensional position fixes and system time to users anywhere on the earth at any time regardless of weather conditions. The most significant performance parameter of the GPS is the degree of navigation accuracy which is strongly coupled to the choice of orbit configuration. The 3 x 8 orbit configuration has been considered as an operational GPS which consists of 24 satellites deployed in circular 63 deg inclined, subsynchronous 12-h orbits. In this paper, the geometric performance of several orbit configurations, including a 3 x 8 orbit configuration, is analyzed numerically by altering orbit period and elevation mask, respectively. It is shown that (1) there are a few orbit configurations which are comparable to or better than the baseline 3 x 8 orbit configuration, and (2) for higher elevation mask, the geometric performance can be improved effectively by increasing orbit period to some extent (Author) A78-38083 Halogenated solvent-induced corrosion in hydraulic systems L C Lipp (Hughes Aircraft Co, Culver City, Calif) American Society of Lubrication Engineers, Annual Meeting, 33rd, Dearborn, Mich, Apr 17-20, 1978, Preprint 78-AM-4A-2 8 p 10 refs

Halogenated solvents and water contaminants in MIL-H-5606 hydraulic fluid were found to induce corrosion in systems used to drive radar antennas in the F-14 airplane. The predominant corrosion product found was identified as beta-iron oxide hydroxide. The formation of this unusual iron oxide requires the presence of chlorine or fluorine, water and sufficiently high temperature to provide energy of activation. Analyses of F-14 radar hydraulic systems revealed excessive amounts of trichlorotrifluoroethane, 1,1,1 trichloroethane and water. Investigation of component manufacturing, assembly and cleaning procedures identified the sources of these contaminants. Hot spots in the operating system provided reaction temperature. Process controls limiting halogenated solvents in operating systems and procedures to remove excessive solvent and water contaminants were successfully incorporated to control corrosion.

(Author)

A78-38095 Circumferential seals for use as oil seals P C Stein (Stein Seal Co, Philadelphia, Pa) American Society of Lubrication Engineers, Annual Meeting, 33rd, Dearborn, Mich, Apr 17-20, 1978, Preprint 78-AM-3D-2 7 p

Segmented circumferential rubbing seals have been widely used, especially as main shaft seals for aircraft turbine engines, for well over two decades. They have operated satisfactorily at high performance levels when sealing air and products of combustion. In the presence of substantial amounts of oil, however, particularly with low pressure differentials, they are subject to high oil leakage, due primarily to 'surf-boarding' effects. Incorporation of 'negative-lift' pockets in the bore of the segments effectively prevents the surf-boarding and makes the segmented ring into a convenient and efficient seal for many applications involving both oil rich gaseous environments and those involving solid oil. The paper outlines theoretical considerations, shows their application to a number of seal structures and presents results of laboratory testing under a variety of conditions to define regions of applicability.

A78-38122 Stress intensity factors, for collinear cracks in a stiffened sheet D P Rooke (Royal Aircraft Establishment, Farnborough, Hants, England) and D J Cartwright (Southampton, University, Southampton, England) International Journal of Fracture, vol 14, Apr 1978, p R61-R64 Research supported by the Ministry of Defence (Procurement Executive)

An analytical technique is described for determining the stress intensity factors of large airframe structural elements with stiffeners riveted to them. In such configurations, cracks are initiated at the rivets and grow at right angles to the main stress direction which is parallel to the stiffeners. This results in an array of collinear cracks. S C S

A78-38246 # Titanium and titanium alloys in aircraft maintenance and repair I (Titan und Titanlegierungen bei der Instandhaltung und Instandsetzung von Flugzeugen I) L Ahnert (VEB Kombinat Spezialtechnik, Dresden, East Germany) *Technischokonomische Information der zivilen Luftfahrt*, vol 14, no 1, 1978, p 41-49 8 refs In German Increasing aircraft speeds and engine efficiency (usually involving higher engine temperatures) has led to the widespread use of titanium in aircraft structures. Titanium is noted to combine structural stability with lightweight (specific gravity = 4.5 g/cu cm) and temperature resistance to over 500 C I is noted that the Tu-144 aircraft incorporates approximately 2500 elements of titanium or its alloys. Tables are presented listing various physical properties for Ti-alloys containing AI, Mn, Mo, V, Zr, Cr, and Sn, with attention to thermal stability and creep resistance.

A78-38247 # On the compensation of radio direction finders (Zur Kompensation von Funkkompassen) P Korrell (Gesellschaft fur internationalen Flugverkehr mbH, Berlin, East Germany) Technisch-okonomische Information der zivilen Luftfahrt, vol 14, no 1, 1978, p 50-59 In German

The relationship between local ground conditions and field disturbances in the radio spectrum near the ground is considered with reference to improving the direction finding ability of the standard radio navigation antenna of the ICAO Design and operating characteristics of the antenna are reviewed, and equations are given for the optimum positioning of the antenna coils Emphasis is placed on antenna wave propagation in various airport environments, e.g., tower, runway, taxiway, highway access, etc. Finally, a comparison between the modeling of positioning errors and their measurement is presented.

A78-38248 Calculation of transonic flow through a turbine cascade by the time-step method (Berechnung der transsonischen Stromung durch ebene Turbinengitter nach dem Zeit-Schritt-Verfahren) F Lehthaus VDI-Forschungsheft, no 586, 1978, p 5-24 33 refs In German Research supported by the Bundesministerium fur Wirtschaft

On the basis of conservation laws in integral form for mass, momentum and energy, a procedure for calculating the steady inviscid two-dimensional transonic flow in a turbine cascade by the time-dependent finite element method is developed. Results of computer calculations of pressure distributions on the profile contour and of the cascade characteristics are given for two cascades of strongly different geometry. Calculations are compared with extensive experimental results obtained from using both a planar array and a rotating array. Good agreement is achieved between theory and experiment wherever the assumption of attached flow is reproduced in the experiments. The agreement between calculated and experimental homogeneous Mach number and homogeneous outflow angle was good, while the agreement in the total pressure losses was qualitatively close. PTH

A78-38475 # Aerodynamics of the annular wing (Aerodinamika prstenastog krila) S Pivko *Srpska Akademija Nauka i Umetnosti, Posebna Izdanja,* no 499, *Odeljenje Tekhnichkikh Nauka,* no 12, 1977 103 p 20 refs In Serbian

The aerodynamic properties of three types of annular airfoils are studied theoretically (1) cylindrical annular airfoil with symmetrical sections at zero incidence, (2) annular airfoil with thin cambered sections at zero incidence, and (3) thin cylindrical ring with axis at angle of attack. The cylindrical annular airfoil with symmetric sections is replaced according to the method of singularities by a system of source and sink rings over the mean surface, and the annular foil with thin cambered sections is replaced by a distribution of bound vortex rings on a cylinder. The thin cylindrical wing is replaced by a bound vortex ring of variable strength and by a system of trailing vortices escaping from the trailing edge of the ring sections. Results of graphical integration are compared with some wind tunnel data.

A78-38521 * # High-flying Mini-Sniffer RPV - Mars bound R D Reed (NASA, Flight Research Center, Edwards, Calif) Astronautics and Aeronautics, vol 16, June 1978, p 26-39

The Mini Sniffer is a small unmanned survey aircraft developed by NASA to conduct turbulence and atmospheric pollution measurements from ground level to an altitude of 90,000 ft Carrying a 25-lb air sampling apparatus, the Mini-Sniffer typically cruises for one hour at 70,000 ft before being remotely piloted back to earth A hydrazine monopropellant engine powers the craft, while a PCM telemetering system and a radar transponder provide control func tions Development of a high-performance low-Reynolds-number airfoil could make the research craft suitable for a low-altitude terrain-following mission on Mars J M B

A78-38522 # Grumman's radio-controlled experimental air force B Frisch Astronautics and Aeronautics, vol 16, June 1978, p 40, 41

Construction of V/STOL and forward-swept-wing experimental aircraft models is discussed. The models may provide a good indication of the static stability and control characteristics of aircraft, though they are not generally useful in studying the stall regime and the V/STOL hovering case. Spin testing through use of the foam/balsa/epoxy models is also possible. J M B

A78-38524 # A rising sun in aircraft A E Fuhs (US Naval Postgraduate School, Monterey, Calif) Astronautics and Aeronautics, vol 16, June 1978, p 52-59 5 refs

A survey of the Japanese aircraft industry indicates that in the short term the Japanese will probably sign license agreements to build the F-15 and P-3C, in the longer term (1990-2000), joint commercial aircraft development programs with other nations may place Japan in the fifth rank among world aerospace producers The YS-11, a 64-passenger aircraft first marketed by the Japanese in 1965, resulted in a loss of \$100 million for the manufacturer, despite sales in 13 nations Limited domestic demand for small commercial transports and general aviation aircraft has also contributed to a low level of confidence in the national aerospace industry A quiet STOL craft and a fanjet for short-range domestic flights are principal current development projects of the Japanese national aerospace program J M B

A78-38575 Subisokinetic sampling errors for aircraft turbine engine smoke probes J A Martone (USAF, Armament Development and Test Center, Tyndall AFB, Fla) *Air Pollution Control Association, Journal*, vol 28, June 1978, p 607-609 11 refs

Estimates are made of subisokinetic sampling errors for aircraft turbine engine smoke probes. The aerosol sampling data reported by Martone et al. (1977) are discussed. The study collected samples of submicrometer particles suspended in unheated near-sonic and supersonic free jet. Subisokinetic sampling errors were found for free jet velocities of Mach 0.6, 0.8, 1.26, and 1.27. An expression was derived for the ratio of the sampled aerosol concentration to true freestream aerosol concentration. These data are used to assess the validity of applying Zenker's (1975) results to the prediction of subisokinetic sampling errors in compressible flows. When applied to turbine engine exhausts, it is found that a smoke probe may produce a 15-30% subisokinetic sampling error at a take off engine power setting.

A78-38641 Experimental investigation of gasdynamic processes at sudden start-up of a supersonic nozzle L G Gvozdeva and lu V Zhilin (*PMTF - Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki*, July-Aug 1977, p 66-74) *Journal of Applied Mechanics and Technical Physics*, vol 18, no 4, Jan 20, 1978, p 484-491 15 refs Translation A78-38696 # Remarks on the noise emitted by the jet of a gas turbine engine (Remarques sur le bruit émis par le jet d'un turboréacteur) R Legendre La Recherche Aérospatiale, Mar -Apr 1978, p 53-58 7 refs In French

Without regard for entropy noise, three distinct noise sources are analyzed turbulence, nonhomogeneity of temperature or entropy, and combustion. An equation is obtained in which the state variables are eliminated as far as possible. The form of the equation satisfied by the acoustic agitation potential is obtained so that the three sources mentioned above can be identified.

A78-38698 # Viscous-inviscid coupling - A numerical method and applications to two-dimensional transonic and supersonic flows (Couplage visqueux-non visqueux - Methode numérique et applications aux écoulements bidimensionnels transsoniques et supersoniques) J -C Le Balleur (ONERA, Châtillon-sous-Bagneux, Hauts-de-Seine, France) La Recherche Aérospatiale, Mar - Apr 1978, p 65-76 22 refs In French

An automatic iterative method is proposed for solving twodimensional problems of strong interaction between a perfect fluid and boundary layers. It can be integrated into numerical methods for solving perfect fluid flows by relaxation. The usual direct iteration is stabilized by means of a local underrelaxation coefficient. A new semi-inverse iteration permits extending a direct perfect-fluid calculation to regions of separation. These regions can be multiple and develop on their own. In supersonic regime, a well-posed problem is solved that involves a downstream boundary condition even when the flow does not obey a simple wave law. The method is applied to a supersonic compression ramp and symmetric profiles in transonic flow. PTH

A78-38726 # Local method in rarefied gas aerodynamics R G Barantsev (Leningradskii Gosudarstvennyi Universitet, Leningrad, USSR) Rozprawy Inzynierskie, vol 26, no 1, 1978, p 3-9 10 refs

An approximate method for calculating aerodynamic characteristics of bodies in hypersonic rarefied gas flow is set forth. It is based on assuming that the momentum flux at the body surface is to be determined by the local incidence angle irrespective of the body form. This approximation contains a number of empirical coefficients depending on regime parameters. As a result, the problem is split into two parts first, calculating form functions independent of the flow regime and, second, finding regime coefficients independent of the body form. Treatment with experimental data has shown the local approach to be sufficiently exact for all Knudsen numbers. An extension of the method to finite Mach numbers is also proposed Some advisable trends towards the further development of the local theory are discussed. (Author)

A78-38746 The F-4E Austere HUD/Gunsight project E T Meschko (USAF, Washington D.C.) (Society of Experimental Test Pilots, Annual Mini-Symposium, 8th, San Diego, Calif, Mar 25-27, 1977) Society of Experimental Test Pilots, Technical Review, vol 14, no 1, 1978, p 25-30

The initial phase of the F 4E Austere HUD/Gunsight project consisted of a feasibility study aimed at determining whether a suitable HUD could be installed in the F-4 under the constraints of austerity, i.e., low cost and maximum use of existing or planned avionics. The second phase was verification of the gunsights, using inputs from onboard avionics. The results of the two phases are discussed in the present paper. Fourteen pilots flew the system during a period of three months. They evaluated three air-to air modes and two air-to-ground modes, using the hotline gunsight and the DALCOS gunsight. Both sights proved to be useably accurate, each having its particular advantages, the DALCOS was superior in long range tracking while the hotline was superior in the high aspect angle snapshoot situation. The feasibility of an improved composite sight is examined.

A78-38747 F-5E/F spin avoidance testing R G Thomas (Northrop Corp , Los Angeles, Calif) (Society of Experimental Test Pilots, European Symposium, 9th, Zurich and Lucerne, Switzerland, Apr 27-30, 1977) Society of Experimental Test Pilots, Technical Review, vol 14, no 1, 1978, p 36-46

The spin avoidance tests described were carried out to determine any possible unidentified characteristics of the F-5E/F that would result in departures leading to a spin or unrecoverable flight conditions The primary effort was directed toward placing the aircraft into control forced poststall gyrations of increasing duration and relying on the pilot's judgement to apply recovery control (based on the aircraft feel) to prevent spin entry A 24-ft ring slot parachute was installed on the tail as a provision for recovery whenever aerodynamic control failed. The test phases included tactical maneuvers and stalls performed with normal control inputs, aborted tactical maneuvers and stalls performed with brief aggravated control inputs (lasting less than 1 sec) and also with sustained aggravated control inputs (up to 3 sec) and grossly aggravated control inputs (up to 15 sec, but excluding deliberate spin attempts) The test results are diagrammed, tabulated, and discussed V P

A78-38748 Jaguar and Tornado avionic development testing J J Cockburn (British Aircraft Corp., Ltd., Military Aircraft Div, Weybridge, Surrey, England) (Society of Experimental Test Pilots, European Symposium, 9th, Zurich and Lucerne, Switzerland, Apr 27-30, 1977) Society of Experimental Test Pilots, Technical Review, vol 14, no 1, 1978, p 47-53

The avionic systems of the single-seat Jaguar and two-seat Tornado aircraft are discussed, and the testing of the various stages is described Attention is given to avionic development, integration of the system, function and accuracy measurement in navigation and weapon aiming, pilot workload, and safety aspects of terrain following The aircraft are shown to have great similarities in the pilot-oriented display and actions, but to differ sharply in total sophistication The various displays, particularly HUD's, are examined, along with the solutions reached for each aircraft V P

A78-38749 Planning and procedures for aircraft demonstrations - V/STOL aircraft D M S Simpson (Hawker Siddeley Aviation, Ltd, Kingston-upon-Thames, Surrey, England) (Society of Experimental Test Pilots, European Symposium, 9th, Zurich and Lucerne, Switzerland, Apr 27-30, 1977) Society of Experimental Test Pilots, Technical Review, vol 14, no 1, 1978, p 54-57

Some aspects of demonstrating the Hawker jet V/STOL aircraft are discussed. It is shown that careful performance planning, based on accurate temperature and pressure information is absolutely essential for any demonstration environment. Performance margins depend on loads to be carried and on the environment. Thus, a pad landing in the trees will require more margin than a straightforward approach and landing on an open space. Short term limits and water injection in the engine must be carefully calculated and monitored In preparation for a demonstration, a pilot will spend much time in surveying, analyzing, and considering the possibilities of the exercise not quite going as planned. Attention must be given to such aspects as approaches to and exits from the site, escape routes if difficulties should arise, the surface of the landing area and its surroundings, emergency and rescue services, communications arrangements, and the correct positioning and safety of the spectators V P

A78-38750 Helicopter flight demonstration L Forzani (Aeronautica Militare, Rome, Italy) (Society of Experimental Test Pilots, European Symposium, 9th, Zurich and Lucerne, Switzerland, Apr 27-30, 1977) Society of Experimental Test Pilots, Technical Review, vol 14, no 1, 1978, p 58-62

Flight demonstrations can be generally divided into two categories flights with only the crew on board for a display before spectators who are not particularly interested in the technical details of the machine, and commercial demonstration flights with possible customers (pilots, technicians) on board, in which the demonstration pilot is frequently the co-pilot. The professional and personal qualities required from a test pilot to act as a commercial pilot are examined It is shown that to successfully plan and carry out a demonstration flight it is necessary to carefully follow the sequence of the following five phases assessment of the guest and his requirements, briefing on all the possible points relative to the aspects of the aircraft, carrying out the demonstration flight in a way to please the customer (on the basis of his previous assessment), debriefing, aimed at answering questions and clarifying doubts, and documentation V P

A78-38766 * Photochemistry and dynamics of the ozone layer R G Prinn, F N Alyea, and D M Cunnold (MIT, Cambridge, Mass) In Annual review of earth and planetary sciences Volume 6 Palo Alto, Calif, Annual Reviews, Inc, 1978, p

43-74 91 refs Grant No NsG-2010

The paper presents a broad review of the photochemical and dynamic theories of the ozone layer. The two theories are combined into the MIT three dimensional dynamic-chemical quasi-geostrophic model with 26 levels in the vertical spaced in logarithmic pressure coordinates between the ground and 72-km altitude. The chemical scheme incorporates the important odd nitrogen, odd hydrogen, and odd oxygen chemistry, but is simplified in the sense that it requires specification of the distributions of NO2, OH and HO2. The prognostic equations are the vorticity equation, the perturbation thermodynamic equation, and the global mean and perturbation continuity equations for ozone, diagnostic equations include the hydrostatic equation, the balance condition, and the mass continuity equation.

A78-38773 Soviet landing aid draws FAA scrutiny P J Klass Aviation Week and Space Technology, vol 108, June 12, 1978, p 42, 43, 45, 47

A laser landing system, Glissada, developed by the Soviet Union and supposedly providing visual guidance onto the runway from distances of up to 18 km at night, but in unspecified weather conditions is discussed. Fog is penetrated with the concentric laser beams, whereby the outer ring is propagated in the IR spectrum, and burns a channel for the visible inner ring Attention is given to the possibility of eye damage to the pilot, and it is noted that to reduce laser power to levels dictated by safety rules, the beams would not become visible until 12 sec before the pilot would see existing high intensity runway lights. The FAA is studying the system and its claims. D M W

A78-38782 using a hybrid computer D M Rudnitski and B D MacIsaac (National Research Council, Ottawa, Canada) In Summer Computer Simulation Conference, Chicago, III, July 18-20, 1977, Proceedings Montvale, N J, AFIPS Press, 1977, p 205-210

The reported investigation had the objective to develop the procedures and the software needed to solve a specific data acquisition problem in the area of gas turbine dynamic testing. The obtained results were to be employed to develop design techniques for software and hardware that could modernize the engine test

381

facilities at the National Research Council of Canada A data reduction software package was developed on a hybrid computer to solve the specific problems of rapid turn-around of results in transient testing of gas turbines. This software package proved to be a highly flexible, easy to use package which reduced turn-around time from 2 days to approximately 15 minutes. The software packages are Fortran based and easily transferable to another computer G R

A78-38783 Hybrid computer models as an aid in design of gas turbine control systems for helicopters. R Langton, R M Evans (Aviation Electric, Ltd., Montreal, Canada), and B D MacIsaac (National Research Council, Ottawa, Canada) In Summer Computer Simulation Conference, Chicago, III, July 18-20, 1977, Proceedings Montvale, N J, AFIPS Press, 1977, p 219-227 8 refs

A description is presented of the progress achieved in a program which has the primary aim to develop for control design applications detailed computer models of helicopter propulsion systems. A twin engine system is considered. The primary motivation for the twin engine helicopter is to provide improved operational safety plus the capability of continued operation following a single engine failure. It is necessary to include considerable detail in the engine model to ensure representative power response over the complete load range and flight envelope. It was found that the cost of using a digital computer for such a complex model would have been prohibitive. A hybrid computer system was, therefore, selected. Attention is given to the systems model, aspects of computer model specification, model validation, the 'real time' problem, model use in the design process, and questions of project control.

A78-38788 Time delay measurements for flight simulators R B Ewart (USAF, Aeronautical Systems Div, Wright-Patterson AFB, Ohio) In Summer Computer Simulation Conference, Chicago, III, July 18-20, 1977, Proceedings Montvale, N J, AFIPS Press, 1977, p 727-730

A new method of measuring flight simulator cue time delays has been developed Proper time phasing of simulated cues is a serious problem inherent to the design of modern flight simulators. An accurate method of measuring these time delays is required in order to validate simulator performance. A video tape recorder can be used to simultaneously record pilot cues from flight and visual systems, along with any desired analog signal information. By analyzing each field of video information during playback, an accurate time history of any simulated maneuver can be obtained. This method permits correlation of various pilot cues and is adaptable to both simulator and aircraft. (Author)

A78-38789 * Simulation replay - Implementation and flight simulation applications D F Crane (NASA, Ames Research Center, Moffett Field, Calif) In Summer Computer Simulation Conference, Chicago, III , July 18-20, 1977, Proceedings Montvale, N J , AFIPS Press, 1977, p 731-734

Throughout the aircraft development process flight simulators are used to evaluate design concepts, 'handling' qualities, and operational procedures A modern flight research simulator comprises a cockpit equipped with flight instruments and controls, subsystems to provide visual, motion, and other flight cues, and a digital computer REPLAY is a computer program which enables a user to reproduce the multidimensional flight cues for an entire simulation 'run' Attention is given to simulation fidelity improvement, simulation data recovery, simulation quality assurance, and aircraft systems research. It is pointed out that each of the applications discussed supports aircraft systems research by improving the realism, efficiency, or reliability of the simulation facility A78-38798The impact of flight simulators on U S air-lines D C Killian (American Airlines, Inc., New York, N Y) InSummer Computer Simulation Conference, Chicago, III, July 18-20,1977, ProceedingsMontvale, N J , AFIPS Press,1977, p 887-892

The use of flight simulators by US airlines to conduct flight training and proficiency checks is discussed A survey indicates that 16 US airlines own a total of 70 flight simulators, only two of which are operated without motion All flight crew proficiency checks are at present conducted in visual flight simulators. Training for captains, second officers and flight engineers upgrading their ratings or transitioning to B-747, B-727, B-707 or DC-10 qualification is also conducted to a varying degree on flight simulators. It is estimated that use of the simulators for training and proficiency checks saved 204 million gallons of jet fuel during 1976. J M B

A78-38802 Problems of the theory of strength related to aircraft construction and civil engineering, Structural Mechanics Meeting, Ottobrunn, West Germany, June 1, 2, 1977, Lectures and Discussion Contributions (Probleme der Festigkeitsforschung im Flugzeugbau und Bauingenieurwesen, Strukturmechaniktagung, Ottobrunn, West Germany, June 1, 2, 1977, Vortrage und Diskussionsbeitrage) Edited by M Esslinger and B Geier (Deutsche Forschungs- und Versuchsanstal für Luft- und Raumfahrt, Institut für Strukturmechanik, Braunschweig, West Germany) Braunschweig, Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, 1977 333 p In German \$18 50

The papers in this collection examine the use of new materials in aircraft construction, in particular, fiber-reinforced plastics and composites, and present analyses of strength problems for aircraft and civil engineering structures. Topics covered include sailplanes of carbon-fiber construction, theoretical studies of crash behavior of cell structures, Wohler curves obtained by nonlinear regression analysis, finite element analysis of linear-eleastic wing behavior, CFRP primary structure for aircraft fighter taileron, buckling analysis of fiber wound cylinders, and research philosophy. PTH

A78-38803 # New technologies for aircraft structures (Weiche neuen Technologien gibt es fur Flugzeugstrukturen) O Heise (Messerschmitt-Bolkow-Blohm GmbH, Munich, West Germany) In Problems of the theory of strength related to aircraft construction and civil engineering, Structural Mechanics Meeting, Ottobrunn, West Germany, June 1, 2, 1977, Lectures and Discussion Contributions Braunschweig, Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, 1977, p 5-24 In German

An overview of some promising new technologies for aircraft structures is given Attention is given to new materials, new applications of conventional materials, new joining techniques, and new methods of nondestructive structural component testing PTH

A78-38804 # Saliplanes of carbon-fiber construction (Segelflugzeuge in Kohlefaserkonstruktionen) J Klenner (Akaflieg, Braunschweig, West Germany) In Problems of the theory of strength related to aircraft construction and civil engineering, Structural Mechanics Meeting, Ottobrunn, West Germany, June 1, 2, 1977, Lectures and Discussion Contributions Braunschweig, Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, 1977, p 25-37 In German

The paper gives a brief overview of the development of sailplane structural designs. After a brief mention of early wood and metal construction, attention is focused on the possibilities opened up by construction based on carbon-fiber-reinforced plastics. Brief descriptions of some of the significant sailplanes that emerged with this new technology are given. A78-38805 #Theoretical investigation on the crash behavior
of cell structures (Theoretische Untersuchungen zum Crash-
Verhalten von Zellenstrukturen) FOch (Messerschmitt-
Bolkow-Blohm GmbH, Ottobrunn, West Germany) In Problems of
the theory of strength related to aircraft construction and civil
engineering, Structural Mechanics Meeting, Ottobrunn, West
Germany, June 1, 2, 1977, Lectures and Discussion Contributions
Braunschweig, Deutsche Forschungs- und
Versuchsanstalt fur Luft- und Raumfahrt, 1977, p
38-46 In
German

After a review of some FAR regulations on acceptable inertial loads on passengers during light crashes and some proposed impact conditions during emergency landing, some desirable structural properties during crashes are mentioned, and some general requirements for a suitable computational procedure for estimating crash behavior of cell structures are examined. An analysis method based on an n-mass model of a structure requires considerably more input and computational effor than conventional structural analyses because of the load rates and nonlinear behavior involved. PT H

A78-38807 # Use of structural analysis programs for calculating states of stress in helicopter rotor elements (Einsatz von Strukturrechenprogrammen zur Berechnung von Spannungszustanden in Hubschrauber-Rotorbauteilen) H Auer and R Worndle (Messerschmitt-Bolkow-Blohm GmbH, Ottobrunn, West Germany) In Problems of the theory of strength related to aircraft construction and civil engineering, Structural Mechanics Meeting, Ottobrunn, West Germany, June 1, 2, 1977, Lectures and Discussion Contributions Braunschweig, Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt, 1977, p 57-68 In German

Two examples of using the finite element method for static calculation of complex structural elements under small deformations and linear behavior are worked out. The NASTRAN programming system was used with an isoparametric quadrangular element with eight nodes. The first calculation concerned the rotor mast flange of the BO 105 helicopter, for which the stresses had to be reduced to a small region of the element by suitable design, and a nonjointed rotor head, where the stress distribution in the whole element had to be computed. Computerized graphic displays were a significant tool in the calculations.

A78-38808 # Application of modern methods in civil aircraft construction (Einsatz moderner Bauweisen im zivilen Flugzeugbau) D Schulz (Messerschmitt Bolkow-Blohm GmbH, Hamburg, West Germany) In Problems of the theory of strength related to aircraft construction and civil engineering, Structural Mechanics Meeting, Ottobrunn, West Germany, June 1, 2, 1977, Lectures and Discussion Contributions Braunschweig, Deutsche Forschungs- und Versuci sanstait für Luft- und Raumfahrt, 1977, p 69-89 In German

The paper takes a look at some of the methods of construction and materials that may be expected to find application in the beginning of the 1980s for a new generation of transport aircraft The European Airbus will feature increased use of sandwich and bonded structures, and the role of hot-treated aluminum alloys will be increased The possible areas where fiber-reinforced plastics will find advantageous use are identified PTH A78-38810 # Heavily loaded carbon-fiber-reinforced-plastic primary structure with the Tornado taileron as an example (Hochbelastete KFK-Primarstruktur am Beispiel des Tornado Taileron) W Hartmann (Messerschmitt-Bolkow-Blohm GmbH, Ottobrunn, West Germany) In Problems of the theory of strength related to aircraft construction and civil engineering, Structural Mechanics Meeting, Ottobrunn, West Germany, June 1, 2, 1977, Lectures and Discussion Contributions Braunschweig, Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, 1977, p 102-112 In German

The paper describes an economical carbon-fiber-reinforcedplastic (CFRP) design for the taileron of the Tornado fighter aircraft. The taileron is a sandwich structure consisting of an aluminum honeycomb core bonded between two CFRP sheets. The bearings are taken up by the internal structure, which consists of titanium root rib and CFRP spar rib construction. Secondary structural parts are in the usual metal construction. The design of all these parts and the construction methods used to ensure proper distribution of loads are described. PTH

A78-38811 # Material selection for the Tornado taileron (Werkstoffauswahl fur das Tornado Taileron) K O Sippel (Messerschmitt-Bolkow-Blohm GmbH, Munich, West Germany) In Problems of the theory of strength related to aircraft construction and civil engineering, Structural Mechanics Meeting, Ottobrunn, West Germany, June 1, 2, 1977, Lectures and Discussion Contributions Braunschweig, Deutsche Forschungs- und

Versuchsanstalt fur Luft- und Raumfahrt, 1977, p 113-123 in German

The paper describes the material selection process and the determination of design values for the CFRP stabilizer and elevator assembly for the Tornado fighter aircraft. The discussion covers selection of CFRP prepregs, the wet lamination system, the bonding system, and the tensile tests, pressure tests, tests for interlaminar shear strength, fatigue tests, and aging properties. The main results of all these tests are summarized.

A78-38844 A high-power switching network for a dualmode antenna V J Albanese and D Kerbs (Grumman Aerospace Corp, Bethpage, N Y) *IEEE Transactions on Microwave Theory and Techniques*, vol MTT-26, May 1978, p 348-354 6 refs

A novel hybrid switching network is described in which high levels of RF power (2-3 kW) are controlled and switched over an octave bandwidth in low L band by the use of a relatively low-power level switch matrix used in conjunction with a pair of 8 34-dB (nominal) directional couplers and a phasing network. An alternate design to compactly achieve the same results is also described. The device is for use with a switchable (dual-mode) airborne transmitting antenna. Theoretically predicted performance parameters are graphically presented, along with correlated measured data (Author)

A78-38892 Loss prediction in axial compressors - A bibliographic study (La prediction des pertes dans les compresseurs axiaux - Une etude bibliographique) G K Serovy (Iowa, University, Iowa City, Iowa) and P Bry (ONERA, Châtillon sous-Bagneux, Hauts-de-Seine, France) Entropie, vol 14, Mar -Apr 1978, p 21-28 55 refs In French

The paper reports on procedures for determining losses in axial-flow compressor systems noting both blade section flow turning angles and total pressure losses. The development of component models is outlined with reference to profile losses, losses introduced by shocks, secondary losses, and losses caused by blade nonadaptation. Factors influencing the accuracy of loss estimates are identified, including the choice of optimal loss coefficients and the definition of a uniform flow equivalent to a real heterogeneous flow SCS

A78-38900 Problem-solving with selective plating H E Chandler Metal Progress, vol 113, June 1978, p 39-42

Selective electroplating has been employed as an alternative to vacuum plating in the repair of damaged cadmium coatings on aircraft landing gear. Selective plating is a method of depositing metal from a concentrated electrolyte solution held in an absorbent material covering a portable anode. The electroplating circuit is completed by a cathode lead attached to the workpiece. The selective electroplating process has also been used to repair damaged chromium platings. In general the technique is more rapid and less costly than other metal plating repair methods.

A78-38907 # Influence of the type of corrosion of the aircraft skin on limiting value of the damage (Vliianie vida korrozii obshivki samoleta na predel'nuiu velichinu povrezhdeniia) A E Sultanov and A I Radchenko (Kievskii Institut Inzhenerov Grazhdanskoi Aviatsii, Kiev, Ukrainian SSR) *Fiziko-Khimicheskaia Mekhanika Materialov*, vol 14, Mar - Apr 1978, p 92-96 5 refs In Russian

Fatigue tests were carried out with 270 specimens of 2-mm sheet prepared of D16ATV aluminum alloy. The specimens were artificially corroded in a 3% solution of sodium chloride. It was found that in the case of uniform corrosion, failure occurred by tough fracture. For extensive pitting, the specimens failed by brittle fracture, while in the case of sparse pitting, fracture was of a mixed type. The fatigue life at identical cyclic loads differed appreciably for each type of corrosion.

A78-38978 # Investigations of the transonic flow around oscillating airfoils H Tijdeman Delft, Technische Hogeschool, Doctor in de technische Wettenschappen Dissertation, 1978 151 p 188 refs

Exploratory wind-tunnel experiments in high-subsonic and transonic flow on a conventional airfoil with oscillating flap and a supercritical airfoil oscillating in pitch are described. In the analysis of the experimental results, emphasis is placed upon the typical aspects of transonic flow, namely the interaction between the steady and unsteady flow fields, the periodical motion of the shock waves and their contribution to the overall unsteady airloads. Special attention is paid to the behavior of the supercritical airfoil in its 'shock free' design condition. Moreover, it is discussed to what extent linearization of the unsteady transonic flow problem is allowed if the unsteady field is considered as a small perturbation superimposed upon a given mean steady-flow field. Finally, the current status of unsteady transonic flow theory is reviewed and the present test data are used to evaluate some of the recently developed calculation methods (Author)

A78-38997 # The new system for processing and presenting radar data in the Air Traffic Control Center of Barcelona (El nuevo sistema de proceso y presentacion de datos radar en el ACC-Barcelona) P Tena Lopez *IAA/Ingeniería Aeronáutica y Astronáutica*, vol 30, Apr 1978, p 3-7 in Spanish

In connection with the objective to provide a route control service utilizing radar in the area of the ATC Center of Barcelona, it was decided in October 1976, to undertake an emergency program with the aim to install a data processing and display system for the radar data. The system was to become operational on June 1, 1977. The implementation of this program is discussed. A cost-efficiency analysis was conducted to obtain a basis for the suitable selection of the equipment and the approaches to be used for the new system. Attention is given to aspects of personnel selection, questions regarding radar operation and flight plans, and a schematic diagram showing system organization and operation. The system has the capacity to consider 500 aircraft in flight and 270 radar tracks. G R

A78-39042 # Unsteady heat transfer from a cylinder with radial injection (Nestatsionarnaia teplootdacha ot tsilindra so vduvom) lu I Babenko (Gosudarstvennyi Institut Prikladnoi Khimii, Leningrad, USSR) Inzhenerno-Fizicheskii Zhurnal, vol 34, May 1978, p 923-927 In Russian

A78-39082 The determination of margins of safety for critical aircraft systems G M Smith (Aeroplane and Armament Experimental Establishment, Boscombe Down, Wilts, England) In Electromagnetic compatibility, Proceedings of the Second Symposium and Technical Exhibition, Montreux, Switzerland, June 28-30, 1977 New York, Institute of Electrical and Electronics Engineers, Inc., 1977, p. 65 68

Complex electronic equipment introduced into the flight and engine control systems of aircraft is of vital operational importance and the effects of interference can present a potential hazard for the safety of flight A margin of safety, similar to that quantified for armaments, must, therefore, be established for such equipment. In this case, the margin is between the levels of interference present and those required to produce degradation, or upset of the equipment performance Two forms of interference effects must be considered In one case an equipment output is obtained when none is intended Alternatively, a failure to respond to an intended signal may be observed Existing equipment qualification tests do not provide the information required for a determination of the available safety margins. The development of suitable test methods is discussed. An understanding of the mechanism of the generation of aircraft internal fields and the coupling of these fields to the cables will ultimately be required and is likely to be obtained from work being carried out on electromagnetic pulses GR

A78-39084 Filtering techniques in avionic transmitters A Grabowiecki, A J Kazmierski, and K Kunachowicz (Instytut Lotnictwa, Warsaw, Poland) In Electromagnetic compatibility, Proceedings of the Second Symposium and Technical Exhibition, Montreux, Switzerland, June 28-30, 1977 New York, Institute of Electrical and Electronics Engineers, Inc , 1977, p 73-76 11 refs

The principal electromagnetic compatibility transmitter parameters are considered. The typical transmitter signal spectrum contains not only the principal frequency signal, its harmonics and master oscillator frequency, but also spurious emissions. In designing filters to suppress transients intensive use is made of a combination of passive elements and some nonlinear limiting devices from special zener diodes to resistors having a very high degree of nonlinearity Attention is given to the practical design of broadband, low pass, matching ladder networks. It is pointed out that no significant intermodulation effects due to transients and noise will be observed when dc supply filters will be protected by suitable shunt-type suppressors. G R

A78-39085 Diary of an international team co-ordinating system electromagnetic compatibility of an avionic sub-system R B Rowley, R H Smith (Easams Ltd Camberley, Surrey, England), and J C Kleine (ESG-Elektronik-System-Gesellschaft mbH, Munich, West Germany) In Electromagnetic compatibility, Proceedings of the Second Symposium and Technical Exhibition, Montreux, Switzerland, June 28-30, 1977 New York, Institute of Electrical and Electronics Engineers, Inc., 1977, p 77-82

Electromagnetic compatibility (EMC) testing of the avionics subsystem of a combat aircraft has been conducted by an international group of engineers. The avionics subsystem of the aircraft is extremely complex, most units are subject to 14 EMC tests, while communications equipment undergoes an additional set of five tests Problems in interpreting EM susceptibility standards are given particular attention. The effects of test chamber characteristics on radiated test results are also discussed. J M B A78-39086 Susceptibility testing of airborne equipment -The way ahead N J Carter and J M Thomson (Royal Aircraft Establishment, Farnborough, Hants, England) In Electromagnetic compatibility, Proceedings of the Second Symposium and Technical Exhibition, Montreux, Switzerland, June 28 30, 1977 (A78-39076 16-32) New York, Institute of Electrical and Electronics Engineers, Inc, 1977, p 83-88

The development of realistic susceptibility standards to ensure that aircraft systems function adequately in EM environments is discussed Particular attention is given to the problems of fuselage attenuation, the generation of high EM fields for susceptibility tests, and the repeatability of test results Evidence is presented to show that even for metal-sheathed aircraft, nonuniform shielding may occur, shielding failures in the HF band (2 to 30 MHz) may be particularly damaging, since this is the operational band of a number of powerful transmitters Parallel plates operating at 80 MHz may provide a simple means for generating high field strengths for susceptibility tests. In addition, it is found that the location of monitoring aerials in standard susceptibility trials may affect the repeatability of the results.

A78-39087 EMC control of the tornado aircraft D Ramsbottom (British Aircraft Corp., Warton, England) In Electromagnetic compatibility, Proceedings of the Second Symposium and Technical Exhibition, Montreux, Switzerland, June 28-30, 1977 New York, Institute of Electrical and Electronics

Engineers, Inc , 1977, p 89-94

Electromagnetic compatibility (EMC) testing of the RF transmitters and receivers, electronic equipment and electromechanical equipment of an advanced European combat aircraft is described. In addition to standard EMC testing adopted from U.S. military specifications, signal line conducted susceptibility criteria, audio frequency magnetic tests, and imported and exported spike tests were applied to the aircraft systems. The establishment of singlepoint earthing through use of low audio frequencies, together with local earthing and multiple earthing for RF equipment, is discussed Bonding requirements, lightning strike protection and frequency control also receive consideration.

A78-39088 An approach to EMP testing of complete strike aircraft K S Rodger (Aeroplane and Armament Experimental Establishment, Boscombe Down, Wilts, England) In Electromagnetic compatibility, Proceedings of the Second Symposium and Technical Exhibition, Montreux, Switzerland, June 28-30, 1977

New York, Institute of Electrical and Electronics Engineers, Inc , 1977, ρ 95 98–13 refs

Development of a nuclear EM pulse (NEMP) testing procedure for a strike aircraft is discussed Difficulties arise in NEMP testing because of the low symmetry of aircraft with complex equipment, and because of allowances needed for the proximity of the simulator Models for treating NEMP response of simple cavities, coupled cavities with wires, and wires behind screens without cavities are reviewed Since transient NEMP causes many components to fail by energy overload, it may be possible to stipulate protection requirements with some ease J M B

A78-39101 Assessment procedure application utilizing UHF transistor RF pulse susceptibility data J J Whalen (New York, State University, Buffalo, N Y) In Electromagnetic compatibility, Proceedings of the Second Symposium and Technical Exhibition, Montreux, Switzerland, June 28-30, 1977 New York, Institute of Electrical and Electronics Engineers, Inc, 1977, p 317-322 11 refs

A procedure is demonstrated for determining the distance from a high-power UHF transmitter at which the UHF transistor in a receiver RF amplifier may be damaged by intense EM radiation incident on the receiver antenna. The procedure can be applied to RF pulse susceptibility data for UHF transistors. In an example, an L-band radar with a transmitter power of 1 MW is found to be a potential source of damage to a UHF transistor 110 meters away Application of the damage assessment procedure to an EM compatibility study of a ground control approach radar and an aircraft equipped with a UHF receiver is mentioned. J M B A78-39105 * Aircraft measurement of radio frequency noise at 121 5 MHz, 243MHz and 406MHz R E Taylor (NASA, Goddard Space Flight Center, Greenbelt, Md) and J S Hill (RCA Service Co, Inc, Springfield, Va) In Electromagnetic compatibility, Proceedings of the Second Symposium and Technical Exhibition, Montreux, Switzerland, June 28-30, 1977 New York, Institute of Electrical and Electronics Engineers, Inc, 1977, p 353-356 5 refs

An airborne survey measurement of terrestrial radio-frequency noise over U S metropolitan areas has been made at 121 5, 243 and 406 MHz with horizontal polarization monopole antennas Flights were at 25,000 feet altitude during the period from December 30, 1976 to January 8, 1977 Radio noise measurements, expressed in equivalent antenna-noise temperature, indicate a steady-background noise temperature of 572,000 K, at 121 5 MHz, during daylight over New York City This data is helpful in compiling radio-noise temperature maps, in turn useful for designing satellite-aided, emergency-distress search and rescue communication systems

(Author)

A78-39109 EMP induced currents on a simplified missile theory and experiment K S Rodger (Aeroplane and Armament Experimental Establishment, Boscombe Down, Wilts, England) In Electromagnetic compatibility, Proceedings of the Second Symposium and Technical Exhibition, Montreux, Switzerland, June 28 30, 1977 New York, Institute of Electrical and Electronics Engineers, Inc., 1977, p. 377-382 5 refs

To improve understanding of the EM pulse hazard to aircraft and airborne systems, experimental and theoretical investigations of the currents induced by a nuclear EM pulse in a simply modeled airborne missile have been conducted. The model includes a two-wire transmission line external to the cylindrical missile but terminating in two internal resistors. Frequency-domain expressions for the currents induced in the loads are transformed by analytical means into the time domain. The analytical evaluations are in adequate agreement with the experimental data, except for the first nanosec of the EM pulse.

A78-39135 * On the optimization of discrete structures with aeroelastic constraints S C McIntosh, Jr (Nielsen Engineering and Research, Inc., Mountain View, Calif.) and H Ashley (Stanford University, Stanford, Calif.) *Computers and Structures*, vol. 8, May 1978, p. 411-419 22 refs Contract No F49620-77 C-0055, Grant No NGL-05-020 243

The paper deals with the problem of dynamic structural optimization where constraints relating to flutter of a wing (or other dynamic aeroelastic performance) are imposed along with conditions of a more conventional nature such as those relating to stress under load, deflection, minimum dimensions of structural elements, etc. The discussion is limited to a flutter problem for a linear system with a finite number of degrees of freedom and a single constraint involving aeroelastic stability, and the structure motion is assumed to be a simple harmonic time function. Three search schemes are applied to the minimum-weight redesign of a particular wing the first scheme relies on the method of feasible directions, while the other two are derived from necessary conditions for a local optimum so that they can be referred to as optimality-criteria schemes. The results suggest that a heuristic redesign algorithm involving an optimality criterion may be best suited for treating multiple constraints with large numbers of design variables SD

A78-39182 # Optimal digital simulation of aircraft via random search techniques G O Beale (Babcock and Wilcox Co, Lynchburg, Va) and G Cook (Virginia, University, Charlottesville, Va) Journal of Guidance and Control, vol 1, July-Aug 1978, p 237-241 11 refs

This paper discusses a technique for the development of a discrete time integration operator to be used in the simulation process. The integration operator can be optimized for a particular system subjected to a set of specified inputs. The class of systems being investigated are those which can be represented by a set of state equations. A discrete time integration operator with certain free parameters is hypothesized. An adaptive random search optimization technique is used to find the optimum values for these parameters. Examples are presented to show the effectiveness of this technique (Author).

A78-39183 # Testing of the YC-14 flight control system software D L Martin and D Gangsaas (Boeing Co, Seattle, Wash) (American Institute of Aeronautics and Astronautics, Guidance and Control Conference, Hollywood, Fla, Aug 8-10, 1977, Paper 77-1077) Journal of Guidance and Control, vol 1, July-Aug 1978, p 242 247

The YC-14 tactical transport aircraft uses three channels of digital flight control electronics (FCE) to provide fail-operational, fail-safe augmentation of the basic flight control characteristics. This paper discusses the system-level testing performed to verify the software prior to first flight and then prior to flights using modified versions of the software. Testing is performed in two phases the FCE are connected to a simulation of the aircraft systems with no aircraft dynamics (open loop), and the FCE are connected to a simulation of the aircraft dynamics with simulated sensor inputs (closed loop). A semiautomatic testing facility used for data management and control of the tests is described.

A78-39186 # Optimal flare in presence of wind shears B G Kunciw (USAF, Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio) Journal of Guidance and Control, vol 1, July-Aug 1978, p 284-286 6 refs

A control law for the flare of an aircraft on automatic approach in the presence of wind shear is derived to minimize longitudinal dispersion and sink rate deviation at touchdown. The flare is determined on the basis of linear optimal control theory and a model of the pilot's performance in handling pitch rate, airspeed and elevator position. Range from the ideal (no-wind) touchdown point, as determined by a microwave landing system, also figures in the optimal flare control. A digital computer test run of the optimal flare control law for a C-135 aircraft shows significant reductions in longitudinal touchdown and sink rate dispersions as compared to results obtained with a conventional autopilot. J M B

A78-39188 # Study of magnetic noise in the Ka-26 helicopter (Izuchenie magnitnykh pomekh vertoleta Ka-26) A E Vatsuro and V S Tsirel' *Geofizicheskaia Apparatura*, no 62, 1977, p 68-78 5 refs In Russian

A method of measuring the magnetic noise produced by the Ka-26 helicopter is described, and some measurement results are given and discussed. On the basis of ground and in-flight studies, the optimal location for attaching the sensitive element of the proton aeromagnetometer was selected, and the magnitude and stability of the magnetic noise were determined. Significant decrease in the course deviation was obtained through use of a rigid component compensator.

A78-39189 # Prospects for using new flight vehicles in aerophysical studies (Perspektivy ispol'zovanila novykh letatel'nykh apparatov na aerogeofizicheskikh rabotakh) G D Krivolapov and V la Fridland *Geofizicheskaia Apparatura*, no 62, 1977, p 78-83 In Russian

The flight characteristics and technical specifications of potential aircraft for use in aerophysical studies are examined and compared with those of the currently used An-2 airplane and Mi-4 helicopter. Two airplanes considered are the An-28, a two-turboprop aircraft with convertible undercarriage (floats or skis), and the L-410, also powered by two turboprop engines, and designed for servicing local airlines. These planes are discussed in terms of length of flight with payload of 1000 kg, range of photographing velocities and altitudes, static ceiling, and climb rate. The Ar. 28 is already available in a version for geological photographic surveying. Two helicopters briefly examined are the Ka-25 with gas turbine engines, especially suited for research over water, and the Mi-2 and Mi-8 helicopters

РТН

A78-39393 # British Airways Tri-Star - Present and future T Ford Aircraft Engineering, vol 50, May 1978, p 23, 24, 26, 27 Both TriStar 1 and the longer range TriStar-500 aircraft are considered together in terms of check-out, maintenance, and overhaul requirements Attention is given to a breakdown of the aircraft into area zones for periodic evaluation. It is noted that since the TriStars in service with British Airways are often maintained at airfields outside Britain, e.g., Paris, Bahrein, integration and uniformity of maintenance procedures are essential Finally, the TriStar RB 211 engine is examined in terms of life cycle, down time, and engine removals. D M W

A78-39395 # Lighter-than-air concepts and recent developments E F Strother (Florida Institute of Technology, Melbourne, Fla) AIAA Student Journal, vol 16, Summer 1978, p 10-16

Lighter than air (LTA) vehicles are considered in terms of two broad categories fully buoyant and partially buoyant Included in the first category are rigid, pressure nonrigid, and pressure rigid hulls Among partially buoyant LTAs are hybrid vehicles, e.g., Aerocrane and Helistat, which use rotors as well as gas for lift, and lifting body hull designs. Attention is given both to the historical development of the airship, beginning with Graf Zeppelin, and to the energy and ecological advantages of LTAs in current applications. A two phase NASA design program leading to the production of an 100 ton payload LTA is outlined, stressing flight stability, safety, maneuverability, and reliability as a means of passenger and freight transport in otherwise inaccessible regions, especially in the third world

DMW

A78-39396 # Airships - The next generation and beyond F Morse (Boston University, Boston, Mass) AIAA Student Journal, vol 16, Summer 1978, p 20-25

Developments currently in the design stage for LTA (lighter than air) vehicles are reviewed with reference to a 12 million cu ft rigid airship. The ship would be inflated with helium, have a skin of aluminized Kevlar fabric, a gross lift of 800,000 lbs (equal to that of a Boeing 747), and be used for both short and long range passenger and freight applications. A set of 18 Tedlar lined helium cells would be equipped with automatic pressure valves for lift control and maneuvering. Propellers would be located in the slipstream for optimized L/D ratio. Attention is given to LH2 and nuclear fuel as propulsion material. Also discussed are the possibilities of substituting. Be for AI in the rigid structure, thus greatly increasing payload, and of an ion drive using the boundary layer surrounding the hull in flight.

A78-39540 # Deformation curve of rotary airfoil blades M Nenadovich Académie Serbe des Sciences et des Arts, Bulletin, Classe des Sciences Techniques, vol 58, no 12, 1977, p 57-61 An integral differential equation is presented for the deflection curve of a rotary airfoil blade for any external load. The equation can be solved analytically by an operator method. For conventional blade designs, the equation is readily reducible to an easily soluble simple differential equation, the bending moment produced by aerodynamical loads of the rotary airfoil blades is approximated by second-order polynomials, and the differential equation is solved by computer techniques.

A78-39579 # Prediction of the aerodynamic characteristics of an aircraft on the basis of the comparison of results for a calibration model in various large transonic wind tunnels (Prévision des caractéristiques aérodynamiques d'un avion d'après la comparaison des résultats sur une maquette étalon dans diverses grandes souffleries transsoniques) P Poisson-Quinton and X Vaucheret (ONERA, Châtillon-sous-Bagneux, Hauts-de-Seine, France) (NATO, AGARD, Réunion sur les Méthodes de Prévision des Performances des Avions, Paris, France, Oct 11-13, 1977) ONERA, TP no 1978-22, 1978 18 p 19 refs In French

The main transonic wind tunnels in the US, Canada, Great Britain, the Netherlands and France were used to study the aerodynamic characteristics of a calibration model representing a transport aircraft. The accuracy of the wind-tunnel measurements in predicting aerodynamic characteristics over a range of Mach and Reynolds numbers was the focus of the tests. Drag level, lift/drag ratio, longitudinal stability, pitch-up onset, spanwise pressure distributions, shock wave locations, and boundary layer transition and separation locations were among the aerodynamic properties investigated. A Reynolds number above about 2 million appeared to ensure accurate results for the predictions.

A78-39580 # Combustion in gas turbine engines - A review of ONERA recent works M Barrere (ONERA, Châtillon sous-Bagneux, Hauts-de-Seine, France) (Combustion Institute, General Conference, West Lafayette, Ind , Apr 3-5, 1978) ONERA, TP no 1978 25, 1978 28 p 12 refs

Results obtained at ONERA in the field of combustion in turbomachines (main combustor and reheat combustor) are summarized in a three part study. The first part concerns the recirculation zone, with experiments without combustion in order to investigate the basic aerodynamic phenomena, and with combustion in a stirred reactor in order to acquire data on chemical kinetics Theoretical models of this zone are also mentioned. The second part is devoted to the turbulent propagation of the flame, the structure of which (pressure, velocity, composition) is given for various upstream conditions of equivalence ratio and velocity. The results obtained are compared to a theoretical model taking into account the chemical production in a turbulent medium. The third part concerns the heat transfer at the wall in a region of active combustion. The experimental results obtained are compared to a two dimensional model which accounts reasonably well for the flow field, but yields a somewhat different flux distribution at the wall (Author)

A78-39582 # Cobalt-base alloys produced by powder metallurgy for compressor and turbine disks (Alliages à base de cobalt élaborés par métallurgie des poudres pour disques de compresseurs et turbines) M Marty and A Walder (ONERA, Châtillon-sous-Bagneux, Hauts-de-Seine, France) (*Symposium Européen de Métallurgie des Poudres, 5th, Stockholm, Sweden, June 4-8, 1978) ONERA, TP* no 1978-7, 1978 7 p In French

Cobalt-base alloys containing high concentrations of chromium carbides have been produced by powder metallurgy for application to compressor and turbine disks. Micrographic structural studies of the CoCrC alloy, as well as a survey of the role of aging temperature on the hardness of the alloy, are reported Low-cycle fatigue resistance investigations of the alloy are also discussed. The powder metallurgy production technique results in cobalt-base alloys with a high degree of ductility, though problems remain in obtaining optimal carbide dispersions. J M B

A78-39596 Fatigue crack propagation of titanium alloys under dwell-time conditions P J Bania (Avco Corp., Avco Lycoming Stratford Div., Stratford, Conn.) and D Eylon (Cincinnati, University, Cincinnati, Ohio) Metallurgical Transactions A - Physical Metallurgy and Materials Science, vol. 9A, June 1978, p. 847-855. 13 refs. USAF-supported research

An experimental study was carried out to assess the fatigue crack growth (FCG) behavior of titanium alloys with a variety of compositions, microstructures, textures, and interstitial contents with a view toward gaining insight into the most important parameters which may contribute to the dwell-time effect at peak load under fatigue cycling with a 5-min dwelling time. A near-alpha alloy (TI-11) and an alpha + beta alloy (TI-6AI-4V) are examined Three specimen forms of TI-6AI-4V are considered a cross-rolled 50 mm thick plate, a highly textured 7 mm thick standard-grade plate, and a highly textured 7 mm thick low-interstitial plate. No adverse effect on the FCG rate is detected for fatigue cycling with a 5-min dwell at peak load. Similar fracture surface patterns, e.g., ductile vs. cleavage-like features, are observed for the dwell and nondwell test specimens Reduced FCG rate in Ti-6AI-4V is attributed solely to an increase in crack-path tortuosity, probably due to a crack tip blunting mechanism operating during the dwell period of the load cycle S D

A78-39632 Flight-testing of a continuous laser remote sensing system (Flugerprobung eines kontinuierlichen Laser-Fernmess-Systems) W Wiesemann (Battelle Institut, Frankfurt am Main, West Germany) In Laser 77 opto electronics, Proceedings of the Conference, Munich, West Germany, June 20 24, 1977

Guildford, Surrey, England, IPC Science and Technology Press, Ltd , 1977, p 756 762 In German

Flight testing of a lidar system developed for airborne remote sensing of trace gases is described. The flight test involved a CO2 laser, the signal-to-noise ratio of the system and the effects of various reflective surfaces (streets, forests, bodies of water) on the quality of the laser signal were assessed. Quantitative measurement of the specific absorption properties of atmospheric pollutants through use of the airborne lidar is also discussed. J M B

A78-39674 A relative motion analysis of horizontal collision avoidance J W Andrews (MIT, Lexington, Mass) SAFE Journal, vol 8, Summer 1978, p 20-23 U S Department of Transportation Contract No FA77 WAI 432, Contract No F19628-78 C-0002

In the design of automated collision avoidance systems, it is difficult to devise resolution strategies which are valid for the wide range of aircraft speeds and collision geometries which may be encountered in normal flight. This is especially true with regard to collision avoidance in the horizontal plane A technique for the analysis of horizontal relative motion between aircraft is discussed and the results are applied to the collision avoidance problem. The aircraft pair are described in terms of a dynamic system for which the actual motion is decomposed into pure nonturning (rectilinear) motion and pure turning motion. By expressing the projected miss distance as a fraction of range, a set of miss distance contours may be constructed which allow determination of the effect of heading changes upon the ultimate closest approach. Inspection of these contours allows identification of geometries in which specific resolution strategies are appropriate. The heading change required to achieve a given miss distance is readily determined (Author)

A78-39772 # On lift of delta wings with leading-edge vortices at low speeds M Hayashida, M Sato, and K Matsuoka (Osaka Prefecture, University, Sakai, Japan) Osaka Prefecture, University, Bulletin, Series A - Engineering and Natural Sciences, vol 26, no 2, 1977, p 37-51 19 refs

A vortex model of the delta wing is considered Analysis is performed in a Trefftz plane at an infinite distance behind the wing In calculating the velocity potential due to the vortices leaving the wing the work performed by the pressure or the energy spent on rolling up is neglected. Lift and induced drag coefficients and the maximum lift coefficient are computed for cases with and without leading edge separation. PTH

Page Intentionally Left Blank

STAR ENTRIES

N78-24042# Defense Systems Management School Fort Belvoir Va

THREE DEGREE INTERMEDIATE LEVEL MAINTENANCE OF NAVY AERONAUTICAL MATERIALS

Robert Edward Bates Jr 9 Nov 1977 79 p refs

(AD-A052389) Avail NTIS HC A05/MF A01 CSCL 01/5 This report discusses the development implementation and impact of the concept of three degree maintenance relative to the traditional maintenance policy of three levels of maintenance for Navy aeronautical materials An additional management tool specifically designed to supplement efforts directed towards improving the maintenance support posture of aeronautical materials at the intermediate level of maintenance results from the development of three degree maintenance concept A formal methodology is provided to supplement management capability on an individual equipment/component basis to (1) classify maintenance functions within levels and by activity (2) assign maintenance responsibility to a specific level and activity (3) assign maintenance tasks consistent with complexity, depth, scope and range of work to be performed and (4) ensure optimum use of limited resources Author (GRA)

N78-24043*# Rockwell International Corp Los Angeles Calif AERODYNAMIC PRELIMINARY ANALYSIS SYSTEM PART 2 USER'S MANUAL AND PROGRAM DESCRIP-TION

P Divan, K Dunn and J Kojima Apr 1978 192 p (Contract NAS1-14686)

(NASA-CR-145300) Avail NTIS HC A09/MF A01 CSCL 01A

A comprehensive aerodynamic analysis program based on linearized potential theory is described. The solution treats thickness and attitude problems at subsonic and supersonic speeds Three dimensional configurations with or without jet flaps having multiple nonplanar surfaces of arbitrary planform and open or closed slender bodies or noncircular contour are analyzed Longitudinal and lateral-directional static and rotary derivative solutions are generated. The analysis is implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Nominal case computation time of 45 CPU seconds on the CDC 175 for a 200 panel simulation indicates the program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and Author evaluation studies

N78-24046*# National Aeronautics and Space Administration Langley Research Center Langley Station Va

POWERED-LIFT AERODYNAMICS AND ACOUSTICS

Washington 1976 502 p refs Conf held at Hampton Va., 24-26 May 1976 (NASA SP-406) Avail NTIS HC A22/MF AU1 CSCL 01A

 (NASA SP-406) Avail NITS HC A22/MF A01 CSCL 01A Powered lift technology is reviewed Topics covered include (1) high lift aerodynamics (2) high speed and cruise aerodynamics (3) acoustics (4) propulsion aerodynamics and acoustics (5) aerodynamic and acoustic loads and (6) full-scale and flight research

 $\textbf{N78-24047}^{*}\#$ Joint Inst for Acoustics and Flight Sciences Hampton, Va

OVERVIEW OF POWERED-LIFT TECHNOLOGY

John P Campbell In NASA Langley Res Center Powered-Lift Aerodyn and Acoustics 1976 p 1-27 refs

Avail NTIS HC A22/MF A01 CSCL 01A

The concept and application of powered lift and the effects of some fundamental design variables are discussed. A brief chronology of significant developments in the field is also presented and the direction of research efforts in recent years is indicated. All powered iff concepts are included but emphasis is on the two externally blown schemes which involve blowing either above or below the wing and which are utilized in the YC-14 and YC-15 aircraft Aerodynamics and vehicle design are emphasized. The areas of acoustics propulsion and loads are briefly considered.

N78-24048*# National Aeronautics and Space Administration Langley Research Center Langley Station, Va

UPPER-SURFACE-BLOWING FLOW-TURNING PERFORM-ANCE

William C Sleeman, Jr and Arthur E Phelps III (Army Air Mobility R and D Lab Hampton, Va) In its Powered-Lift Aerodyn and Acoustics 1976 p 29-43 refs

Avail NTIS HC A22/MF A01 CSCL 01A

Jet exhaust flow-turning characteristics were determined for systematic variations in upper-surface blowing exhaust nozzles and trailing-edge flap configuration variables from experimental wind-off (static) flow studies For conditions with parallel flow exhausting from the nozzle jet height (as indicated by nozzle exit height) and flap radius were found to be the most important parameters relating to flow turning Nonparallel flow from the nozzle, as obtained from an internal roof angle and/or side spread angle had a large favorable effect on flow turning Comparisons made between static turning results and wind tunnel aerodynamic studies of identical configurations indicated that static flow-turning results can be indicative of wind-on powered lift performance for both good and poor nozzle-flap combinations but for marginal designs can lead to overly optimistic assessment of powered lift potential Author

N78-24049*# National Aeronautics and Space Administration Langley Research Center, Langley Station Va

RESULTS OF STATIC TESTS OF A 1/4 SCALE MODEL OF THE BOEING YC-14 POWERED LIFT SYSTEM

James L Hassell Jr In its Powered-Lift Aerodyn and Acoustics 1976 p 45-62 refs

Avail NTIS HC A22/MF A01 CSCL 01A

One quarter scale static ground tests of the Boeing YC-14 powered lift system were conducted for correlation with full scale test results The 1/4 scale model utilized a JT-15D turbofan engine to represent the CF6-50D engine employed on the YC-14 advanced medium STOL transport prototype aircraft. The tests included evaluation of static turning performance, static surface pressure and temperature distributions, fluctuating loads and accelerations of portions of the wing flaps and fuselage Results are presented for the landing flap configuration over an appropriate range of fan pressure ratio as affected by several variables including ground height and vortex generator modifications. Static turning angles of the order of 60 deg were obtained. The highest surface pressures and temperatures were concentrated over the upper surface of the flaps in the region immediately aft of the upper surface blown nozzle Author

N78-24050*# National Aeronautics and Space Administration Langley Research Center Langley Station Va

SUMMARY OF LOW-SPEED AERODYNAMIC CHARACTER-ISTICS OF UPPER-SURFACE-BLOWN JET-FLAP CONFIG-URATIONS

Arthur E Phelps, III (Army Air Mobility R and D Lab Hampton Va) Joseph L Johnson Jr and Richard J Margason *In its* Powered-Lift Aerodyn and Acoustics 1976 p 63-87 refs

Avail NTIS HC A22/MF A01 CSCL 01A

The results of recent wind tunnel investigations to provide fundamental information on the upper surface blown (USB) jet flap concept demonstrated that the USB concept provides good high-lift performance. It is shown that the low speed performance is dependent upon the jet turning angle and turning efficiency and on the use of proper leading and trailing edge treatment to prevent premature flow separation. The best means of achieving good turning performance in any particular USB application must be determined from overall operational considerations in which high speed performance structures and noise as well as low speed performance are evaluated. The large diving moments generated at high lift coefficients can be trimmed satisfactorily with a large, conventional horizontal tail, a high tail position is best from longitudinal stability considerations. Large rolling and yawing moments are introduced with the loss of an engine but these moments can be trimmed satisfactorily through the use of asymmetrical boundary layer control and through the use of spoiler and rudder deflection as needed.

N78-24051*# National Aeronautics and Space Administration Langley Research Center Langley Station Va

APPLICATION OF POWERED-LIFT CONCEPTS FOR IMPROVED CRUISE EFFICIENCY OF LONG-RANGE AIRCRAFT

Paul L Coe Jr and Paul G Fournier *In its* Powered-Lift Aerodyn and Acoustics 1976 p 89-101 refs

Avail NTIS HC A22/MF A01 CSCL 01A

Results of studies conducted to explore the use of powered lift concepts for improved low speed performance of long range subsonic and supersonic cruise vehicles are summarized. It is indicated that powered lift can provide significant improvements in low speed performance as well as substantial increases in cruise efficiency and range for both subsonic and supersonic cruise configurations.

N78-24052*# National Aeronautics and Space Administration Langley Research Center, Langley Station, Va

COMPARISON OF AERODYNAMIC THEORY AND EXPERI-MENT FOR JET-FLAP WINGS

Thomas G Gainer Long P Yip and Raymond P Vogler /n its Powered-Lift Aerodyn and Acoustics 1976 p 103-118 refs

Avail NTIS HC A22/MF A01 CSCL 01A

Aerodynamic theory predictions made for a jet flapped wing were compared with experimental data obtained in a fairly extensive series of tests in the Langley V/STOL tunnel. The tests were made on a straight rectangular wing and investigated two types of jet flap concepts a pure jet flap with high jet deflection and a wing with blowing at the knee of a plain trailing edge flap. The tests investigated full and partial span blowing for wing aspect ratios of 80 and 55 and momentum coefficients from 0 to about 4 The total lift drag and pitching moment coefficients predicted by the theory were in excellent agreement with experimental values for the pure jet flap even with the high jet deflection. The pressure coefficients on the wing and hence the circulation lift coefficients were underpredicted however, because of the linearizing assumptions of the lanar theory The lift drag and pitching moment coefficients as well as pressure coefficients were underpredicted for the wing with blowing over the flap because of the failure of the theory to account for the interaction effect of the high velocity jet passing over the flap Author

 $\textbf{N78-24053}^{*}\#$ Army Air Mobility Research and Development Lab Hampton, Va

EXTERNALLY BLOWN FLAP IMPINGEMENT PARAMETERS

Danny R Hoad In NASA Langley Res Center Powered Lift Aerodyn and Acoustics 1976 p 119-134 refs

Avail NTIS HC A22/MF A01 CSCL 01A

The performance of two externally blown flap (EBF) wind tunnel models was compared with an engine exhaust flap impingement correlation parameter. One model was a four engine EBF triple slotted flap transport Isolated engine wake surveys were conducted to define the wake properties of five separate engine configurations for which performance data were available. The other model was a two engine EBF transport for which the engine wake properties were estimated. The correlation parameter was a function of engine exhaust dynamic pressure at the flap location area of engine exhaust flap impingement total exhaust area at the flap location, and engine thrust. The distribution of dynamic pressure for the first model was measured however the distribution for the second model was assumed to be uniform Author

N78-24054*# National Aeronautics and Space Administration Langley Research Center Langley Station Va

SOME MEASUREMENTS OF AN EBF POWERED-LIFT WAKE

William G Johnson Jr *In its* Powered-Lift Aerodyn and Acoustics 1976 p 135-143 refs

Avail NTIS HC A22/MF A01 CSCL 01A

Results from a wind tunnel investigation in which velocity vector measurements were obtained in the near wake of an externally blown flap powered lift configuration were analyzed These measurements were used to develop spanwise distributions for the momentum strength and location of the engine exhaust stream tube with the results used as input parameters to one jet flap analytical method. It is shown that a comparison of the momentum coefficients obtained from forward speed wake surveys with the predicted values from static force data results in a good correlation which verifies the use of the flap thrust recovery factor as a means of predicting the momentum strength at the flap trailing edge Also when wake survey distributions of momentum strength and direction are used as input parameters to one analytical jet flap method the results show reasonable agreement between the experimental data and analytical results Author

N78-24055*# National Aeronautics and Space Administration Langley Research Center Langley Station Va AERODYNAMIC CHARACTERISTICS IN GROUND PROXIM-

James L Thomas James L Hassell Jr and Luat T Nguyen

James L Thomas James L Hassell Jr and Luat T Nguyen In its Powered-Lift Aerodyn and Acoustics 1976 p 145-158 refs

Avail NTIS HC A22/MF A01 CSCL 01A

Results from recent investigations in the Langley V/STOL tunnel of an externally blown flap and an upper surface blown flap configuration in ground proximity are presented Comparisons of longitudinal aerodynamic characteristics indicate that in ground proximity, drag is reduced for both configurations, but changes in lift are configuration dependent Steady state analyses of the landing approach indicate an increase in flight path angle for both configurations in ground proximity because of the drag reduction Dynamic analyses with a fixed-base simulator indicate that the resultant flight path during landing approach is dependent on the initial flight path angle and the control technique used Author

N78-24056*# National Aeronautics and Space Administration Langley Research Center Langley Station Va

DISTRIBUTED UPPER-SURFACE BLOWING CONCEPT

Paul G Fournier and Paul L Coe, Jr $\$ *In its* Powered-Lift Aerodyn and Acoustics 1976 p 159-164 refs

Avail NTIS HC A22/MF A01 CSCL 01A

A low speed investigation was conducted in the Langley V/STOL tunnel to determine the powered lift aerodynamic performance of a distributed upper surface blown propulsive lift transport model. The model used blowing slots across the span of the wing to produce a thin jet efflux near the leading edge and at the knee of the trailing edge flap (internally blown jet flap). Results indicate that these concepts have both good propulsive related lift and low drag due to lift characteristics because of uniform spanwise propulsive thrust. The leading edge blowing concept provides low speed lift characteristics which are competitive with the flap-hinge-line blowing concept and does not require additional leading edge treatment for prevention of abrupt stall.

N78-24057*# Lockheed-Georgia Co Marietta CRUISE AERODYNAMICS OF USB NACELLE/WING GEOMETRIC VARIATIONS

John A Braden, John P Hancock, and Kenneth P Burdges *In* Nasa Langley Res Center Powered-Lift Aprodyn and Acoustics 1976 p 165-181

(Contract NAS1-13871)

Avail NTIS HC A22/MF A01 CSCL 01A

Experimental results are presented on aerodynamic effects of geometric variations in upper surface blown nacelle configurations at high speed cruise conditions. Test data include both force and pressure measurements on two and three dimensional models powered by upper surface blowing nacelles of varying geometries. Experimental results are provided on variations in nozzle aspect ratio nozzle boattail angle and multiple nacelle installations. The nacelles are ranked according to aerodynamic drag penalties as well as overall installed drag penalties. Sample effects and correlations are shown for data obtained with the pressure model.

N78-24058*# National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio

EFFECTS OF NOZZLE DESIGN AND POWER ON CRUISE DRAG FOR UPPER-SURFACE-BLOWING AIRCRAFT

Edward T Meleason In NASA Langley Res Center Powered-Lift Aerodyn and Acoustics 1976 p 183-196 refs.

Avail NTIS HC A22/MF A01 CSCL 01A

A high speed wind tunnel investigation was conducted on a series of upper surface blowing nozzles with D-shaped exits installed on a representative short haul aircraft model Both two and four engine configurations were investigated Powered engine simulators were used to properly represent nacelle flows Large differences in cruise drag penalties associated with the various nozzle designs were seen Some geometric parameters influencing nozzle cruise drag are identified Author

N78-24059*# National Aeronautics and Space Administration Langley Research Center Langley Station Va THEORETICAL PREDICTIONS OF JET INTERACTION

EFFECTS FOR USB AND OWB CONFIGURATIONS

C Edward Lan (Kansas Univ) and James F Campbell In its Powered-Lift Aerodyn and Acoustics 1976 p 197-211 refs

(Grant NsG-1139)

Avail NTIS HC A22/MF A01 CSCL 01A

A wing jet interaction theory is presented for predicting the aerodynamic characteristics of upper surface blowing and over wing blowing configurations. For the latter configurations a new jet entrainment theory is developed. Comparison of predicted results with some available data showed good agreement. Some applications of the theory are also presented.

N78-24060*# Lockheed-Georgia Co Marietta USB FLOW CHARACTERISTICS RELATED TO NOISE GENERATION

W H Brown and N N Reddy In NASA Langley Res Center Powered-Lift Aerodyn and Acoustics 1976 p 213-226 refs

Avail NTIS HC A22/MF A01 CSCL 01A

The effects of nozzle and flap geometry on upper surface blown flow field characteristics related to noise generation were examined experimentally using static models. Flow attachment and spreading characteristics were observed using flow visualization techniques. Velocity and turbulence profiles in the trailing edge wake were measured using hot-wire anemometry and the effects of the geometric variables on peak velocity and turbulence intensity were determined. It is shown that peak trailing edge velocity is a function of the ratio of flow length to modified hydraulic diameter.

N78-24061*# Lockheed-Georgia Co Marietta CHARACTERISTICS OF USB NOISE

J S Gibson and N Searle In NASA Langley Res Center Powered-Lift Aerodyn and Acoustics 1976 p 227-239

(Contract NAS1-13870)

Avail NTIS HC A22/MF A01 CSCL 01A

An extensive series of noise measurements for a variety of geometric and operational parameters was made on models of upper surface blowing (USB) powered lift systems. The data obtained were analyzed and the effects and trends of parametric

variation defined The buildivior and nature of USB noise and the design of USB systems with low noise characteristics is examined Author

N78-24062*# Lockheed-Georgia Co Marietta ANALYTICAL DEVELOPMENTS FOR DEFINITION AND PREDICTION OF USB NOISE

N N Reddy and C K W Tam ${\it In}$ NASA Langley Res Center Powered-Lift Aerodyn and Acoustics 1976 p 241-262 refs

(Contract NAS1-13870)

Avail NTIS HC A22/MF A01 CSCL 01A

A systematic acoustic data base and associated flow data are used in identifying the noise generating mechanisms of upper surface blown flap configurations of short takeoff and landing aircraft Theory is developed for the radiated sound field of the highly sheared flow of the trailing edge wake An empirical method is also developed using extensive experimental data and physical reasonings to predict the noise levels Author

N78-24063*# National Aeronautics and Space Administration Lewis Research Center, Cleveland Ohio

ANALYTICAL MODELING OF UNDER-THE-WING EXTER-NALLY BLOWN FLAP POWERED-LIFT NOISE

Daniel J McKinzie Jr /n NASA Langley Res Center Powered-Lift Aerodyn and Acoustics 1976 p 263-282 refs

Avail NTIS HC A22/MF A01 CSCL 01A

The sound field produced by the interaction of a subsonic let with a large-scale model of the under the wing externally blown flap in an approach attitude was analyzed. The analysis was performed to obtain a better understanding of the dominant noise sources and the mechanisms governing the peak sound pressure level frequencies of the broadband spectra. An analytical expression is derived which incorporates two available theories and experimental data, the expression predicts the sound field along a circular arc of approximately 120 deg measured from the upstream jet axis in the fly-over plane. The analysis compares favorably with test results obtained from two large-scale models one using cold air from a conical nozzle and the other using hot gas from a TF-34 turbofan engine having a conical exhaust nozzle with a 12 lobe internal forced mixer. The frequency at which the peak sound pressure level occurs appears to be governed by a phenomenon which produces periodic formation and shedding of large-scale turbulence structures from the nozzle Author lip

N78-24064*# Bolt Beranek and Newman Inc Cambridge Mass

USB NOISE REDUCTION BY NOZZLE AND FLAP MODIFI-CATIONS

Richard E Hayden In NASA Langley Res Center Powered-Lift Aerodyn and Acoustics 1976 p 283-305 refs

Avail NTIS HC A22/MF A01 CSCL 01A

The development of concepts for reducing upper surface blown flap noise at the source through flap modifications and special nozzles is reviewed. In particular recent results obtained on the aerodynamic and acoustic performance of flaps with porous surfaces near the trailing edge and multi-slotted nozzles are reviewed. Considerable reduction (6-10 db) of the characteristic low frequency peak is shown. The aerodynamic performance is compared with conventional systems and prospects for future improvements are discussed. Author

N78-24065*# Bolt Beranek and Newman Inc Cambridge Mass

EBF NOISE REDUCTION THROUGH NOZZLE/FLAP

Y Kadman and K L Chandiramani In NASA Langley Res Center Powered-Lift Aerodyn and Acoustics 1976 p 307-324

refs Sponsored by NASA

Avail NTIS HC A22/MF A01 CSCL 01A

Results are presented of an experimental and analytical study of the dependence of externally blown flap (EBF) noise on the relative position and shape of engine exhaust nozile Tests, conducted on a 1/15 scale model of a triple-slotted EBF system indicate that a significant reduction (of up to 10 to 15 db for no forward speed case and of up to 5 to 10 db for forward speed case) is possible in the low frequency (around 63 Hz) region of the noise spectrum of the full scale device for small nozile/flap separation distances. The overall acoustic performance measured in PNdb does not exhibit significant reductions. The analysis of the EBF noise is carried out for two limiting airfoil in a free jet. The analytical results also suggest that low frequency noise can be reduced by placing the nozile close to the flow turning elements.

N78-24066*# National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio

OVERVIEW OF THE OCSEE PROGRAM

Carl C Ciepluch In NASA Langley Res Center Powered-Lift Aerodyn and Acoustics 1976 p 325-333 refs

Avail NTIS HC A22/MF A01 CSCL 01A

Externally blown flap and upper surface blown flap powered lift concepts were investigated in the Quiet Clean Short-Haul Experimental Engine Program and briefly discussed along with propulsion system requirements Noise limits, emission standards, thrust requirements and thrust-to-weight ratios are among the factors considered J M S

N78-24067*# National Aeronautics and Space Administration Lewis Research Center Cleveland Ohio

ACOUSTIC DESIGN OF THE QCSEE PROPULSION SYSTEMS

Irvin J Loeffler Edward B Smith (GE Co Fairfield Conn) and Harry D Sowers (GE Co Fairfield, Conn) In NASA Langley Res Center Powered-Lift Aerodyn and Acoustics 1976 p 335-356 refs

Avail NTIS HC A22/MF A01 CSCL 01A

Acoustic design features and techniques employed in the Quiet Clean Short-Haul Experimental Engine (QCSEE) Program are described The role of jet/flap noise in selecting the engine fan pressure ratio for powered lift propulsion systems is discussed The QCSEE acoustic design features include a hybrid inlet (near-sonic throat velocity with acoustic treatment) low fan and core pressure ratios low fan tip speeds gear-driven fans high and low frequency stacked core noise treatment multiple-thickness treatment, bulk absorber treatment, and treatment on the stator vanes The QCSEE designs represent and anticipated acoustic technology improvement of 12 to 16 PNdb relative to the noise levels of the low-noise engines used on current wide-body commercial jet transport aircraft Author

N78-24068*# General Electric Co Philadelphia, Pa INLET/NACELLE/EXHAUST SYSTEM INTEGRATION FOR THE QCSEE PROPULSION SYSTEMS

John T Kutney In NASA Langley Res Center Powered-Lift Aerodyn and Acoustics 1976 p 357-367

Avail NTIS HC A22/MF A01 CSCL 01A

The key features of the integrated propulsion systems developed for short haul aircraft are discussed including the high Mach number fixed geometry near sonic infet the variable area nozzles thrust reversing systems and aircraft accessory location The roles and interplay of each element are considered and comparisons are made with conventional state-of-the-art technology Author

N78-24069*# National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio

INLET TECHNOLOGY FOR POWERED-LIFT AIRCRAFT Roger W Luidens In NASA Langley Res Center Powered-Lift

Aerodyn and Acoustics 1976 p 369-385 refs

Avail NTIS HC A22/MF A01 CSCL 01A

The concepts analytical tools and experimental data available for designing inlets for powered lift aircraft are discussed. It is shown that inlets can be designed to meet noise distortion and cruise drag requirements at the flight and engine operating conditions of a powered lift aircraft. The penalty in pressure recovery for achieving the required noise suppression was 0.3 percent.

N78-24070*# National Aeronautics and Space Administration Lewis Research Center Cleveland Ohio REVERSE-THRUST TECHNOLOGY FOR VARIABLE-PITCH

FAN PROPULSION SYSTEMS

David A Sagerser John W Schaefer and Donald A Dietrich In NASA Langley Res Center Powered-Lift Aerodyn and Acoustics 1976 p 387-402 refs

Avail NTIS HC A22/MF A01 CSCL 01A

Tests conducted to develop the technology necessary to meet the unique reverse-thrust performance requirements of a variable pitch fan propulsion system are discussed. The losses and distortion associated with the air entering the fan and core compressor from the rear of the engine, the direction of fan blade pitch rotation for best reverse-thrust aeroacoustic performance and engine response and operating characteristics during forward- to reverse-thrust transients are among the factors studied The test results of several scale fan models as well as a full-size variable pitch fan engine are summarized. Results show the following a flared exhaust nozzle makes a good reverse-thrust inlet acceptable core inlet duct recovery and distortion levels in reverse flow were demonstrated adequate thrust levels were achieved forward- to reverse-thrust response time achieved was better than the goal thrust and noise levels strongly favor reverse through feather pitch and finally, flight-type inlets make the establishment of reverse flow more difficult Author

N78-24071*# General Electric Co, Philadelphia Pa ACOUSTICS AND AERODYNAMICS OF OVER-THE-WING THRUST REVERSERS

Dale L Stimpert and Robert C Ammer $\it In$ NASA Langley Res Center Powered-Lift Aerodyn and Acoustics 1976 p 403-414 refs

Avail NTIS HC A22/MF A01 CSCL 01A

As part of the Quiet Clean Short-Haul Experimental Engine Program model tests were conducted to determine the effects of thrust reverser geometric parameters on noise and reverse thrust The acoustic tests used a 1/6 scale model thrust reverser while the aerodynamic performance tests used a 1/12 scale model reverser Parameters which were varied in both tests include blocker spacing, blocker height, lip angle and lip length The impact of these parameters on peak sideline noise and reverse thrust performance is discussed Author

N78-24072*# National Aeronautics and Space Administration Langley Research Center Langley Station Va

MEASURED AND CALCULATED STEADY AERODYNAMIC LOADS ON A LARGE-SCALE UPPER-SURFACE BLOWN MODEL

Boyd Perry III and Michael R Mendenhall (Nielsen Engineering and Res Inc Mountain View Calif) *In its* Powered-Lift Aerodyn and Acoustics 1976 p 415-428 refs

Avail NTIS HC A22/MF A01 CSCL 01A

Static aerodynamic loads measurements from wind tunnel tests of a full-scale upper surface blown jet flap configuration are presented. The measured loads are compared with calculations using a method for predicting longitudinal aerodynamic characteristics of upper surface blown jet flap configurations. Author

N78-24073*# National Aeronautics and Space Administration Langley Research Center, Langley Station Va ACOUSTIC-LOADS RESEARCH FOR POWERED-LIFT CONFIGURATIONS

James A Schoenster Conrad M Willis James C Schroeder, and John S Mixson *In its* Powered-Lift Aerodyn and Acoustics 1976 p 429-443 refs

Avail NTIS HC A22/MF A01 CSCL 01A

Data presented from large-scale model tests with jet engines having thrusts of 9 kN (2000 lb) and 36 kN (8000 lb) include acoustic loads for an externally blown wing and flap induced by a TF34 jet engine, an upper surface blown (USB) aircraft model in a wind tunnel and two USB models in static tests. Comparisons of these results with results from acoustic loads studies on configurations of other sizes are made and the implications of these results on interior noise and acoustic fatigue are discussed Author

N78-24074*# Virginia Univ Charlottesville INVESTIGATIONS OF SCALING LAWS FOR JET IMPINGE-MENT

J B Morton J K Haviland G D Catalano and W W Herling Langley Res Center Powered-Lift Aerodyn and In NASA Acoustics 1976 p 445-463 refs

Avail NTIS HC A22/MF A01 CSCL 01A

The statistical properties of tangential flows over surfaces were investigated by two techniques. In one, a laser-Doppler velocimeter was used in a smoke-laden jet to measure one-point statistical properties, including mean velocities, turbulent intensities intermittencies autocorrelations and power spectral densities. In the other technique, free stream and surface pressure probes connected to 1/8 inch microphones were used to obtain single point rms and 1/3 octave pressures as well as two point cross correlations the latter being converted to auto spectra, amplitude ratios phase lags and coherences The results of these studies support the vortex model of jets give some insights into the effects of surface impingement, and confirm that jet diameter and velocity are the scaling parameters for circular jets while Reynolds number is relatively unimportant Author

N78-24076*# Boeing Co., Seattle Wash USB ENVIRONMENT MEASUREMENTS BASED ON FULL-SCALE STATIC ENGINE GROUND TESTS

M B Sussman D L Harkonen, and J B Reed In NASA Langley Res Center Powered-Lift Aerodyn and Acoustics 1976 p 479-496 refs

Avail NTIS HC A22/MF A01 CSCL 01A

Flow turning parameters static pressures surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive lift test configuration. The test components included a flightworthy CF6-50D engine nacelle and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system Results based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation to help delineate certain discrepancies with model data, and to establish a basis for future flight test comparisons Author

N78-24077*# National Aeronautics and Space Administration Langley Research Center Langley Station Va

TABULATED PRESSURE MEASUREMENTS OF A NASA SUPERCRITICAL-WING RESEARCH AIRPLANE MODEL WITH AND WITHOUT FUSELAGE AREA-RULE ADDITIONS AT MACH 0 25 TO 1 00

Charles D Harris and Dennis W Bartlett Dec 1972 263 p refs

(NASA-TM-X-2634 L-8443) Avail NTIS HC A12/MF A01 CSCL 01A

Basic pressure measurements were made on a 0.087-scale model of a supercritical wing research airplane in the Langley 8 foot transonic pressure tunnel at Mach numbers from 0.25 to 1 00 to determine the effects on the local aerodynamic loads over the wing and rear fuselage of area-rule additions to the sides of the fuselage. In addition pressure measurements over the surface of the area-rule additions themselves were obtained at angles of sideslip of approximately - 5 deg 0 deg and 5 deg to aid in the structural design of the additions. Except for representative figures, results are presented in tabular form without analysis Author

N78-24078*# National Aeronautics and Space Administration Langley Research Center, Langley Station, Va WIND-TUNNEL INVESTIGATION OF BASIC AERODY-

.

NAMIC CHARACTERISTICS OF A SUPERCRITICAL-WING **RESEARCH AIRPLANE CONFIGURATION**

Dennis W Bartlett and Richard J Re Washington Feb 1972 109 o refs

(NASA-TM-X-2470 L-7979) Avail NTIS HC A06/MF A01 CSCL 01A

Transonic pressure tunnel and transonic tunnel tests were performed to determine the aerodynamic characteristics of a 0 087 scale model of a supercritical wing research airplane configuration at Mach numbers from 0.25 to 1.30. The investigation included tests to determine the basic longitudinal aerodynamic characteristics the lateral-directional aerodynamic characteristics for sideslip angles of 0 deg and + or - 2 5 deg and the effects of Reynolds number and aeroelasticity Author

N78-24079*# National Aeronautics and Space Administration Langley Research Center Langley Station, Va

WIND-TUNNEL MEASUREMENTS OF AERODYNAMIC LOAD DISTRIBUTION ON AN NASA SUPERCRITICAL-WING RESEARCH AIRPLANE CONFIGURATION

Charles D Harris Washington Feb 1972 226 p refs (NASA-TM-X-2469 L-7982) Avail NTIS HC A11/MF A01

CSCI 01A Wind tunnel tests have been conducted on a research airplane model with an NASA supercritical wing to define the general character of the flow over the wing and to aid in structural design of the full scale airplane Pressure measurements were made at Mach numbers from 0.25 to 1.30 for sideslip angles from -2 50 deg to 2 50 deg over a moderate range of angles of attack and dynamic pressures. Except for representative figures, the results are presented in tabular form without detailed analysis Author

N78-24080*# National Aeronautics and Space Administration Langley Research Center Langley Station, Va

AERODYNAMIC CHARACTERISTICS OF AN NASA SUPERCRITICAL-WING RESEARCH AIRPLANE MODEL WITH AND WITHOUT FUSELAGE AREA-RULE ADDITIONS AT MACH 0 25 TO 1 00

Dennis W Bartlett and Charles D Harris Washington Dec 1972 133 p refs

(NASA-TM-X-2633 L-8422) Avail NTIS HC A07/MF A01 CSCL 01A

Transonic pressure tunnel tests at Mach numbers from 0 25 to 1 00 were performed to determine the effects of area-rule additions to the sides of the fuselage on the aerodynamic characteristics of a 0.087 scale model of an NASA supercriticalwing research airplane. Presented are the longitudinal aerodynamic force and moment characteristics for horizontal-tail deflection angles of -2 5 deg and -5 deg with the side fuselage area-rule additions on and off the model The effects of the side fuselage area-rule additions on selected wing and fuselage pressure distributions at near-cruise conditions are also presented. Author

N78-24084*# National Aeronautics and Space Administration, Washington, D C

INVESTIGATIONS OF THE INFLUENCE OF THE PROFILE THICKNESS OF THE COMPRESSIBLE PLANE FLOW THROUGH COMPRESSOR CASCADES

Jurgen Bahr Apr 1978 31 p refs Transl into ENGLISH from Forsch Ingenieurw (West-Germany) v 30 no 1 1964 p 14-25 Transl by SCITRAN Santa Barbara, Calif (Contract NASw-2791)

(NASA-TM-75277) Avail NTIS HC A03/MF A01 CSCL 01A Flow-through cascade of an aircraft turbine compressor is studied experimentally over wide range of Reynolds numbers and subsonic Mach numbers it was found that deterioration of flow properties due to decreasing Reynolds numbers is less noticeable on thin profiles than on thick ones, however thick profiles are advantageous in compressors designed for efficient partial load behavior because thick profiles have a relatively large range of usable inlet flow angles Author

N78-24085*# National Aeronautics and Space Administration Washington, D C

METHODS AND RESULTS OF BOUNDARY LAYER MEAS-UREMENTS ON A GLIDER

Wilhelm Van Nes May 1978 12 p. refs Transl into FNGLISH of the annual book Bericht ueber Messmethoden und Messeigebenisse bei Flugmessungen in der Grenzschicht" West Germany, Der Wissenschaftlichen Gesellschaft fuer Luftfahrt E.V. 1961 p. 255-259 Translation was announced as A63-21852 Transl by Kanner (Leo) Associates, Redwood City Calif. Original doc prep. by Leichtbau and Flugtechnik GmbH. Duisburg. West Germany.

(Contract NASw-2790)

(NASA-TM-75294) Avail NTIS HC A02/MF A01 CSCL 01A Boundary layer measurements were carried out on a glider under natural conditions Two effects are investigated the effect of inconstancy of the development of static pressure within the boundary layer and the effect of the negative pressure difference in a sublaminar boundary layer. The results obtained by means of an ion probe in parallel connection confirm those results obtained by means of a pressure probe. Additional effects which have occurred during these measurements are briefly dealt with Author.

N78-24089# ARO Inc, Arnold Air Force Station, Tenn SIMPLIFIED INPUT FOR CERTAIN AERODYNAMIC NOSE CONFIGURATIONS TO THE GRUMMAN QUICK-GEOMETRY SYSTEM A KWIKNOSE USER'S MANUAL Final Report, Jan - Sep 1977 Frederick Schope AEDC Feb 1978 96 p refs

NTIS

 Frederick
 Schope
 AEDC
 Feb
 1978
 96 p
 refs

 (ARO Proj
 V33A-A8A)
 (AD-A051425,
 AEDC-TR-77-89)
 Avail

 HC
 A05/MF
 A01
 CSCL
 20/4

This report is a user's manual for a FORTRAN computer program KWIKNOSE which for certain axisymmetric and nonaxisymmetric nose configurations provides simplified geometric input to the Grumman QUICK-geometry system, which in turn provides geometric information to various numerical flow codes. For a wide variety in choice of input parameters, KWIKNOSE sets up the QUICK input for an arbitrary sequence of conical and ogival sections. In this process KWIKNOSE performs the tedious computations necessary to locate the intersection points of successive arcs and to insert optional fillets or rounds over nontangent intersections. In addition, the code is capable of inserting arbitrary multiple slicing planes into the top, bottom, and side of the vehicle. Slicing plane intersections may be filleted or rounded Thus for a minimum of input and manual calculation by the user KWIKNOSE is tailored to modeling the geometry of a sliced multiconic vehicle capped with an asymmetrically ablated nose. This manual provides check cases for the various geometry options, a description of input and output and a listing of the source deck Author (GRA)

N78-24090# Air Force Systems Command Wright-Patterson AFB Ohio Foreign Technology Div

NONLINEAR THEORY OF A BEARING SURFACE OF ARBITRARY EXTENT

A N Panchenkov 12 Oct 1977 17 p refs Transl into ENGLISH from Gidrodinamika Bolshikh Skorostey (USSR) no 3, 1967 p 21-30

(AD-A051385, FTD-ID(RS)T-1567-77) Avail NTIS HC A02/MF A01 CSCL 01/3

Difficulties encountered in the nonlinear problem of a wing of small extent in liquid and gas are primarily related to the complexity of the phenomena arising in a fluid when the motion of a wing of small extent moves with a large angle of attack. The formation of strong turbulent eddies at the leading and lateral edges, the large stream angle of taper and the formation of a turbulent region behind the wing all result in the hydromechanical characteristics of the wing being nonlinear with respect to the angle of attack, so that the nonlinearity with its attendant increase in the lift of the wing, is substantial even at small angles of attack A mathematical analysis was conducted to obtain theoretical results from the nonlinear theory. N78-24094# Auburn Univ Ala Engineering Experiment Station

AN AERODYNAMIC ANALYSIS OF DEFORMED WINGS IN SUBSONIC AND SUPERSONIC FLOW Final Report, Jan -Dec 1977

John E Burkhalter and James W Purvis Mar 1978 76 p refs

(Grant DAAG29-77-G-0067)

(AD A052449 ARO 14802 1-A-E) Avail NTIS HC A05/MF A01 CSCI 20/4

The research effort for the past year involved the development of theoretical prediction methods for the aerodynamic loading on a wing with a full span elevon. The methods are based on lifting surface Kernel function formulations in both subsonic and supersonic potential flow. The unique idea in both cases is the closed form-finite summation manner in which the Kernel function integral is solved. This method of solution avoides Manglerand Cauchy type singularity problems encountered in classical numerical integration approaches and leads to stable rapidly convergent solutions. In subsonic flow, an existing Kernel function method for planar wings was modified by adding and assumed pressure loading function to account for the presence of the elevon. The assumed pressure loading distribution led to exact closed form solutions for section and total coefficients on the wing however for the case of the deflected elevon some numerical integration procedures were required. Results of these computations agree very well with experimental data. In the supersonic Mach number regime a lifting Kernel function method similar to the subsonic approach was developed for the planar wing case, but with appropriate Mach cone regions of integration taken into account. Various assumed pressure loading functions all weighted by exact theoretical results were required for different wing shapes. Numerical results produced stable (nonoscillatory) solutions which agreed well with experimental data even for very low aspect ratio triangular wings

Author (GPA)

N78-24096# Texas A&M Univ College Station THE DEVELOPMENT AND APPLICATION OF A SIMPLE METHOD FOR DETERMINING UNSTEADY AIRLOADS IN SUBSONIC COMPRESSIBLE FLOW Final Technical Report, 1 Jun 1974 - 31 Dec 1977

Balusu M Rao Vijayvardhan Elchuri Paul R Schatzle and Larry J McQuien Feb 1978 100 p refs

(Grants DAHC04-74-G-0184 DAAG29-76-G-0241) (AD-A052417 ARO-11695 2-E) Avail NTIS HC A05/MF A01 CSCL 20/4

A numerical lifting surface method based on velocity potential formulation is applied for predicting aerodynamic loads in steady and unsteady flows for fixed as well as rotary wings. The theory and the numerical procedures are validated by comparing with other analytical and experimental results. The techniques developed resulted in very efficient computational schemes GRA

N78-24098# Boeing Commercial Airplane Co Seattle Wash APPLICATION OF LAMINAR FLOW CONTROL TO LARGE SUBSONIC MILITARY TRANSPORT AIRPLANES Final Technical Report, Mar 1976 - Feb 1977

Robert M Kulfan and John D Vachal Jul 1977 150 p refs (Contract F33615-76-C-3035 AF Proj 1476)

(AD-A052422 D6-45148 AFFDL-TR-77-65) Avail NTIS HC A07/MF A01 CSCL 01/3

A preliminary design study has been made to investigate the impact of the application of laminar flow control on the performance weight fuel consumption and economics of a large transport airplane designed to carry a heavy payload (350 000 lb) for a long range (10 000 nmi) The study was conducted in three phases in the first phase conceptual design investigations were conducted to identify the features of an LFC airplane optimized to accomplish the mission objectives A reference turbulent airplane also was developed in this phase Design and analysis studies were made to develop the final LFC configuration. This configuration was sized to determine the gross weight engine size wing area and fuel requirements necessary to achieve the design mission. Various performance trade and sensitivity studies were conducted for the turbulent and LFC airplanes in the third phase. Life-cycle and operating cost evaluations were also made. A valid assessment of an LFC airplane must be preceded by an extensive design development and flight test program. Consequently, this study focused on identifying the relative benefits from applying LFC and on the sensitivities of these relative benefits to the current major LFC uncertainty items GRA

N78-24099# Princeton Univ N J Dept of Aerospace and Mechanical Sciences

EXPERIMENTAL INVESTIGATION OF AERODYNAMIC CHARACTERISTICS OF A TRACKED RAM AIR CUSHION VEHICLE Interim Report, Sep 1973 - Dec 1976

H C Curtiss Jr and W F Putnam Jan 1978 112 p refs (Contract DOT-TSC-682)

(PB-277674 DOT-TSC-OST-77-35 AMS-TR-1318 DOT-TSC-OST-78 1) Avail NTIS HC A06/MF A01 CSCL 01A

The results of an experimental and theoretical investigation of the longitudinal aerodynamic characteristics of a tracked ram air cushion vehicle are presented Experiments were conducted both in a wind tunnel with a model and section of guideway and with the same model propelled along a 300 foot guideway Experimental results are presented for the dependence of the lift drag and pitching moment of the model on model height above the guideway and winglet gap providing basic data necessary for the analysis of longitudinal stability and ride qualities of the concept. The stability derivatives determined from the moving model experiments agreed well with the wind tunnel results A theory is presented which shows good agreement with the experimental results for the stability derivatives. Author

N78-24102# Civil Aeronautics Board Washington D.C. AIRPORT ACTIVITY STATISTICS OF CERTIFICATED ROUTE AIR CARRIERS Semiannual Report

30 Jun 1977 310 p Prepared jointly with Federal Aviation Administration Washington D C

(AD-A052728) Avail NTIS HC A14/MF A01 CSCL 01/5 This report furnishes airport activity of the Certificated Route Air Carriers Included in the data are passenger enplanements tons of enplaned freight express and mail Both scheduled and non-scheduled service and domestic and international operations are included. These data are shown by airport and carrier Departures by airport, carrier and type of operation and type of aircraft are also included GRA

N78-24105# Lincoln Lab Mass Inst of Tech Lexington VERIFICATION OF DABS SENSOR SURVEILLANCE PERFORMANCE (ATCRBS MODE) AT TYPICAL ASR SITES THROUGHOUT CONUS

W I Wells 20 Dec 1977 51 p refs

(Contract DOT-FA72WAI-261 F19628 78-C-0002 FAA Prot 034-241-012) NTIS

(AD-A051128 FAA-RD-77-113) Avail HC A04/MF A01 CSCL 17/7

A transportable measurement facility (TMF) incorporating antenna r-f and reply processing elements of a discrete address beacon system (DABS) sensor was sited at and in the vicinity of several FAA terminal ASR's throughout the United States Data collected at these sites were thoroughly analyzed to verify the design of the DABS sensor and to establish the need for design refinements. Data pertaining to DABS and ATCRBS mode range and azimuth accuracy and to the total ATCRBS m de reply processing performance are presented Both range and azimuth accuracies for the DABS sensor are shown to be a factor of four or five better than those provided by existing ARTS (BI-4) interrogators and that the average blip/scan ratio is 98% or better dropping only a few percentage points in crossing track situations Author

N78-24107# Air Force Systems Command Wright-Patterson AFB Ohio Foreign Technology Div

BASES OF RADIO DIRECTION FINDING, PART 1

S Kukes and M Ye Starik 22 Dec 1977 523 p Transl into ENGLISH of the book. Osnovy Radiopelengatsii. Moscow Sovetskoye Radio press 1964 p 1-516

(AD-A051951 FTD-ID(RS)T-2232-77-Pt-1) Avail NTIS HC A22/MF A01 CSCL 17/3

Radio direction finders are widely used in air and marine transport for the solution of navigational problems (position finding of movable object flight toward airport ships in distress and so forth) they are applied also for other target/purposes (research on the questions of radiowave propagation observation of space vehicles and so forth) Known direction-finding methods are continuously being improved increasingly more difficult methods are being developed and progress is made toward increasing the accuracy and sensitivity as new direction-finding methods improved theory the frequency band and the field of application of direction finders are increased. All the enumerated questions are illuminated in periodic technical literature however until now have not been systematized. In this book are presented the general theory of direction finding procedures of calculation of direction finders and their cell/elements and the errors of direction finding for their elimination GRA

N78-24111# Rome Univ (Italy) School of Aerospace Engineering

USE OF SIMULATION TECHNIQUES IN THE PROBLEM OF AIR TRAFFIC CONTROL [L'USO DELLE TECNICHE DI SIMULAZIONE NEL PROBLEMA DEL CONTROLLO DEL TRAFFICO AEREO]

C Bottiglieri and A DiCola Oct 1976 60 p refs In ITALIAN ENGLISH summary Presented at the 24th Intern Conf on Commun Geneva 11-13 Oct 1976

(Quad-Calc-Elett-21) Avail NTIS HC A04/MF A01

The air-traffic control involves a series of necessarily interconnected problems whose solution needs a charged system to work out the information and to plan the decisions with coordination. The use of simulation techniques with which the system is divided into simple parts and a sensibility of system is defined as regards some traffic configurations and flow of information. A scheme of the construction of the pertinent model and its testing with computer is suggested. This scheme also can be adopted for an ample class of other traffic system (motor, railway systems) it is reported on an application to a traffic system of simple structure Author (ESA)

N78-24112 Case Western Reserve Univ Cleveland, Ohio AIRCRAFT SIZE AND AIR TRANSPORT COSTS Ph D Thesis

David John Nicol 1977 302 p Avail Univ Microfilms Order No 78-00554

A model of aircraft-related costs was developed which permits consideration of each major cost component in order to determine whether unit operating costs are lower for larger aircraft. Utilization of capacity is included as a decision variable and can assume values between zero and some maximum practical limit Economies of scale with respect to aircraft size were found to exist for jet aircraft but they are not inevitable nor a persistent phenomenon For smaller aircraft operating on long flights the potential for cost decreases can be considerable. As larger aircraft are considered however this potential steadily diminishes in importance to the extent that little potential for further reductions in unit cost appears to be available beyond the size corresponding to the largest aircraft in current commercial use

Dissert Abstr

N78-24113# McDonnell-Douglas Corp St Louis, Mo AV-8B COMPOSITE WING GOVERNMENT/INDUSTRY BRIEFING

13 Apr 1978 164 p Prepared in cooperation with Naval Air Systems Command Washington, D C

Avail NTIS HC A08/MF A01

Outlined in this document is the overall review of aircraft and wing configurations for various types of aircraft. The document presents the engineering design and specifications dealing with structure, composite materials, loads wind pressure wing skin, etc. The assemblage, quality control and fabrication of wing structures are reviewed.

 $\textbf{N78-24116}^{*}\#$ National Aeronautics and Space Administration, Washington D C

DRAG REDUCTION FOR GLIDERS

F X Wortmann May 1978 16 p refs Transl into ENGLISH from Aero-Revue Original language document announced as A66-15200 and A66-15198 Transl by Scientific Translation Service, Santa Barbara, Calif

(Contract NASw-2791)

(NASA-TM-75293) Avail NTIS HC A02/MF A01 CSCL 01C The article discusses the causes of drag in gliders The importance of maintaining laminar flow is emphasized. The problems of surface (or lack of) smoothness are outlined Author

N78-24117*# Systems Technology Inc., Mountain View Calif STUDY OF A SAFETY MARGIN SYSTEM FOR POWERED-LIFT STOL AIRCRAFT Final Report, Dec 1976 - Jan 1978

Robert K Heffley and Wayne F Jewell May 1978 160 p refs

(Contract NAS2-9418)

(NASA-CR-152139, STI-1095-1) Avail NTIS HC A08/MF A01 CSCL 01C

A study was conducted to explore the feasibility of a safety margin system for powered-lift aircraft which require a backside piloting technique. The objective of the safety margin system was to present multiple safety margin criteria as a single variable which could be tracked manually or automatically and which could be monitored for the purpose of deriving safety margin status. The study involved a pilot-in-the-loop analysis of several safety margin system concepts and a simulation experiment to evaluate those concepts which showed promise of providing a good solution. A system was ultimately configured which offered reasonable compromises in controllability, status information content and the ability to regulate the safety margin at some expense of the allowable low speed flight path envelope.

N78-24118# Kaman Aerospace Corp , Bloomfield, Conn

ADVANCED DEVELOPMENT OF A HELICOPTER ROTOR ISOLATION SYSTEM FOR IMPROVED RELIABILITY VOLUME 1 SUMMARY REPORT Final Report, Jun. 1972 - Feb. 1976

Robert Jones and Joseph H McGarvey Dec 1977 70 p refs (Contract DAAJ02-72-C-0082, DA Proj 1F1-63204-DB-38) (AD-A051318, R-1396-1-Vol-1 USAAMRDL-TR-77-23A) Avail NTIS HC A04/MF A01 CSCL 01/3

This report includes the results of the analytical and experimental phases of a helicopter rotor isolation reliability and maintainability (R and M) program on a UH-1 helicopter, which was modified through the addition of a Dynamic Antiresonant Vibration Isolator (DAVI) The final flight test phase demonstrated that the DAVI-modified vehicle had substantially lower vibration levels than the standard vehicle. Vertically the two-per-rev vibration level was reduced to less than one-fifth that of the standard vehicle through the transition speed range and less than one-half at high speeds. An R and M analysis indicated the Army could realize an annual cost savings of approximately \$12,000 000 if 1000 Army UH-1Hs were equipped with DAVI isolation systems. This savings is predicated on the following assumptions (1) vibration-induced failures will be reduced in proportion to the vibration reduction afforded by the DAVI isolation system, and (2) the UH-1Hs are utilized at the rate of 20 flight-hours per month GRA

N78-24119# Kaman Aerospace Corp., Bloomfield, Conn ADVANCED DEVELOPMENT OF A HELICOPTER ROTOR ISOLATION SYSTEM FOR IMPROVED RELIABILITY. VOLUME 2 DETAILED REPORT Final Report, Jun 1972 -Feb 1976

Robert Jones Dec 1977 256 p refs (Contract DAAJ02-72-C-0082 DA Proj 1F1-63204-DB-38) (AD-A051319, R-1396-2-Vol-2 USAAMRDL-TR-77-238) Avail NTIS HC A12/MF A01 CSCL 01/3 For abstract see N78-24118

N78-24120# Naval Air Development Center Warminster Pa Aircraft and Crew Systems Technology Directorate EVALUATION OF A LIP-SEAL HYDRAULIC FITTING FOR THE F-14 AIRCRAFT Final Report

 THE F-14 AIRCRAFT Final Report

 D O Bagwell 15 Dec 1977 10 p

 (AD-A051159 NADC-77292-60)

 Avail

 NTIS

 HC A02/MF A01

A new type of lip-seal fitting was evaluated for possible use on the F-14 aircraft. This fitting would be used interchangeably with the Resistoflex Dynatube which is now being exclusively used Impulse, proof burst, repeat assembly and flexure testing was completed on representative samples. Three samples of sizes 6 mm 9 mm, 13 mm and 25 mm were tested in accordance with MIL-F-18280 and Grumman Aerospace Company specification SP-G-017A. They successfully passed all tests. Compatibility with the Resistoflex Dynatube connector is established and it is recommended that this fitting be used interchangeably with the Dynatube fitting. Author (GRA)

N78-24122# Boeing Vertol Co., Philadelphia, Pa HEAVY LIFT HELICOPTERS ADVANCED TECHNOLOGY COMPONENT PROGRAM HUB AND UPPER CONTROLS Final Report, Jul. 1971 - Jul 1975

Sep 1977 194 p refs (Contract DAAJ01-71-C-0840)

(AD-A051348 USAAMRDL-TR-77-37) Avail NTIS HC A09/MF A01 CSCL 01/3

The Heavy Lift Helicopter Advanced Technology Component (ATC) development program was conducted by the Boeing Vertol Company for the US Army from July 1971 through July 1975 As a part of this program, an advanced rotor hub and upper controls system design was developed and demonstrated to be satisfactory for application to the XCH-62 Prototype HLH The ATC hub and upper control component development/ demonstration activities included the flap/lag pitch elastomeric bearing frequency selective lag damper, and shear bearing development efforts manufacturing techniques development, fretting inhibitor evaluation safe-life fail-safe, and endurance testing of major hub and upper control components whill tower tests and integrated rotor-drive system tests GRA

N78-24124# Lockheed-California Co Burbank

FORMULAS FOR TAKEOFF PERFORMANCE P3-A, B AND C AIRPLANES Final Report

Joseph G Carnillo and William M Purdy 1 Feb 1978 26 p refs

(Contract N00014-77-C-0461)

(AD-A052354 LR-28461) Avail NTIS HC A03/MF A01 CSCL 01/2

The increase in program steps to more than 200 and larger memory storage of handheld computers appears to make practical their use in preflight planning of military missions by flight crews Such application would provide greater accuracy and enhance efficient utilization of airplane capability Contract No N00014-77-C-0461 authorized development of formulas to calculate takeoff field length requirements and pertinent airspeeds and powerplant performance to test the feasibility of this application. This report contains formulas for the performance items authorized by the contract. It is recommended that they be programmed for use with a handheld computer and that computer solutions be evaluated for flight planning for service missions of P-3 airplanes. N78-24125# Army Armament Research and Development Command Watervliet N Y Benet Weapons Lab

VIBRATIONS OF A HELICOPTER ROTOR BLADE USING FINITE ELEMENT UNCONSTRAINED VARIATIONAL FORMULATIONS

J J Wu and C N Shen Sep 1977 30 p refs (DA Proj 1L1-61102-AH-45)

(AD-A052670 AD-E400118 ARLCB-TR-77038) Avail NTIS HC A03/MF A01 CSCL 01/3

In the past several years a numerical method has been developed which is a generalized Rayleigh-Ritz finite element discretization using the combined concept of Lagrange multipliers and adjoint variables. This approach enables one to deal with problems associated with nonconservative forces coupling effects and all types of boundary conditions in a routine fashion, and it appears promising in solving the vibration and dynamic stability problems associated with the complicated equations of a helicopter rotor blade. This paper presents the first application of the general method of the vibration problem of such a rotor blade. The numerical results from some demonstrative examples show that instability of flutter can occur in the range of operational rotor speed due to the coupled motion of flapping and root torsion without any aerodynamic force, if the torsional spring (or the pitch control link) is not sufficiently stiff. This instability does not appear to have been reported previously GRA

N78-24126# Boeing Vertol Co Philadelphia, Pa

FINITE ELEMENT ANALYSIS FOR COMPLEX STRUCTURES, HELICOPTER TRANSMISSION HOUSING STRUCTURAL MODELING Final Report, Jul 1975 - May 1977

R W Howells and J J Sciarra Jan 1978 216 p refs (Contract DAAJ02-75-C-0053, DA Proj 1F2-62209-AH-76) (AD-A052759 D210-11232-1 USAAMRDL-TR-77-32) Avail NTIS HC A10/MF A01 CSCL 01/3

The objective of the Finite Element Analysis for Complex Structures program was to develop and demonstrate a comprehensive finite element analytical technique with the capability and flexibility for analyzing helicopter transmission housings made of metal and/or composite materials. The work encompassed the study of thermal distortion and stress and deflection due to static and dynamic loads load path definition, dynamic response and the control of structural energy distribution. The results were used to optimize strength and weight and to assess operational housing life, fail safety/safe life and reliability. Some emphasis was placed on heat transfer analyses. Additional objectives were to integrate this housing analysis method with existing methods to form a comprehensive transmission analysis and to validate these design tools so that they might be applied to future transmission configurations. A finite element model and analytical methods were applied to analyze a CH-47C helicopter's forward rotor transmission and also to define design modifications for structural optimization GRA

N78-24127# Avions Marcel Dassault-Breguet Aviation Saint-Cloud (France)

ENERGY SAVINGS AN AIRCRAFT CONSTRUCTOR'S VIEWPOINT [LES ECONOMIES D'ENERGIE POINT DE VUE D'UN AVIONNEUR]

Philippe Amblard Paris Assoc Aeron et Astronautique de France 1977 17 p In FRENCH Presented at the 13th Intern Aeron Congr Paris, 2-3 Jun 1977

(AAAF-NT-77-24 ISBN-2-7170-0449-1) Avail NTIS HC A02/MF A01, CEDOCAR Paris FF 15 (France and EEC) FF 19 (others)

The possibility of designing aircraft with reduced fuel consumption is examined. Present day techniques reviewed include engines with high dilution ratio supercritical airfoils mass reduction by using composite materials for secondary structures and economic flight control. Future techniques include use of composite materials for main structural elements, and active control. Some projects discussed briefly are the Boeing 7X7 Lockheed L-1011-600A, Falcon 50 and Mercure 200 ESA

N78-24128# Association Aeronautique et Astronautique de France Paris

HELICOPTERS AND ENERGY SAVINGS [LES HELICOP-TERES ET LES ECONOMIES D'ENERGIE]

Georges Petit 1977 35 p In FRENCH Presented at the 13th Intern Aeron Congr Paris, 2-3 Jun 1977

(AAAF-NT-77-25 ISBN-2-7170-0450-5) Avail NTIS HC A03/MF A01, CEDOCAR, Paris FF 25 (France and EEC) FF 29 (others)

Possibilities of reducing the energy consumption of helicopters are discussed. The order of magnitude of the problem is the part helicopters play in total energy consumption was established. The share of fuel consumption in comparison with total operational costs is dealt with. The energy balance of the helicopters Gazelle Dauphin and Puma is presented. Proposals for energy reduction are made which might lead to a 30% reduction due to engine improvements and 15% reduction resulting from aerodynamic improvements. Finally a comparison with competitive aircraft, is vertical takeoff aircraft is made.

N78-24129# Air France Paris

AN OPERĂTOR'S VIEWPOINT HOW TO REDUCE THE FUEL CONSUMPTION IN AERONAUTICAL MAINTENANCE [LE POINT DE VUE D'UN EXPLOITANT. COMMENT REDUIRE LA CONSOMMATION DE CARBURANT DANS L'ENTRETIEN AERONAUTIQUE]

P Kleitz Assoc Aeron et Astronautique de France 1977 42 p In FRENCH Presented at the 13th Intern Aeron Congr. Paris 2-3 Jun 1977

(AAAF-NT-77-26 ISBN-2-7170-0451-3) Avail NTIS HC A03/MF A01 CEDOCAR Paris FF 25 (France and EEC) FF 29 (others)

Possibilities for airline companies to reduce aircraft fuel consumption are indicated Changes that influence fuel consumption most (mass change performance change, and deterioration of engine performance) are outlined ESA

N78-24130# Societe Francaise d Equipments pour la Navigation Aerienne Velizy-Villacoublay (France)

EQUIPMENT PERMITTING FUEL SAVINGS DURING APPROACH [UN EQUIPEMENT PERMETTANT D'ECONOM-ISER LE CARBURANT EN APPROCHE]

J Sicre Paris Assoc Aeron et Astronautique de France 1977 13 p In FRENCH Presented at the 13th Intern Aeron Congr Paris 2-3 Jun 1977

(AAAF-NT-77-27 ISBN-2-7170-0452-1) Avail NTIS HC A02/MF A01 CEDOCAR, Paris FF 15 (France and EEC) FF 19 (others)

Possibilities for airline companies to reduce aircraft fuel consumption are indicated Changes that influence fuel consumption most (mass change performance change and deterioration of engine performance) are outlined ESA

N78-24131# Association Aeronautique et Astronautique de France Paris

SUPERSONIC TRANSPORTATION FACED WITH ENERGY SAVINGS [LE TRANSPORT SUPERSONIQUE FACE AUX ECONOMIES D'ENERGIE]

G Cormery 1977 20 p In FRENCH Presented at the 13th Intern Aeron Congr., Paris 2-3 Jun 1977

(AAAF-NT-77-28, ISBN-2-7170-0453-X) Avail NTIS HC A02/MF A01, CEDOCAR Paris FF 15 (France and EEC) FF 19 (others)

Energy savings aspects for supersonic aircraft are dealt with Topics include air transportation and energy, supersonic transportation and air transportation short and medium term technological innovation, and long term technological innovation ESA

N78-24132*# Research Triangle Inst, Research Triangle Park, N C

GENERAL AVIATION AVIONICS EQUIPMENT MAINTE-NANCE Final Report

C D Parker and J B Tommerdahl May 1978 71 p refs (Contract NAS1-14939)

RTI/1464/00-00F) (NASA-CR-145342, NTIS Avail HC A04/MF A01 CSCL 01D

Maintenance of general aviation avionics equipment was investigated with emphasis on single engine and light twin engine general aviation aircraft. Factors considered include the regulatory agencies, avionics manufacturers avionics repair stations, the statistical character of the general aviation community, and owners and operators. The maintenance, environment, and performance, repair costs, and reliability of avionics were defined. It is concluded that a significant economic stratification is reflected in the maintenance problems encountered, that careful attention to installations and use practices can have a very positive impact on maintenance problems, and that new technologies and a general growth in general aviation will impact maintenance

Author

N78-24133# Institute for Defense Analyses Arlington, Va Cost Analysis Group

ON SETTING AVIONIC SUBSYSTEM UNIT PRODUCTION **COST GOALS** Final Report

David C Weimer Oct 1977 79 p refs

(Contract DAHC15-73-C-0200)

(AD-A051337, AD-E500020, IDA/HQ-77-19573, P-1280) Avail NTIS HC A05/MF A01 CSCL 14/1

Major avionics subsystems for candidate aircraft developed under the Design-to-Cost (DTC) acquisition concept were analyzed to gain additional insight into the critical production cost goal-setting process. The candidate aircraft sample consisted of the Air Force F-16 and A-10 the Navy F-18 and the Army Advanced Attack Helicopter A total of 23 avionics subsystems assigned to the candidate aircraft were investigated. It was found that only six of the 23 subsystems met Department of Defense criteria for authentic DTC programs. The other subsystems were developed and acquired by airframe prime contractors on a competitive fixed-price basis with priced options for production In these programs competitive pricing replaced DTC goal-setting Based upon limited research findings it was concluded that subcontractor goal-setting was usually masked by competitive pricing practices the resulting development programs did not have the schedule, cost and design tradeoff flexibility to properly pursue the cost goal. It also was concluded that the goal establishment process as observed for those 6 subsystems examined, was effective and did include appropriate important criteria for goal selection GRA

flight monitor and data recorder utilizing magnetic bubble memory. is reported. Component selection, software design and magnetic bubble storage system construction and testing are discussed Difficulties encountered both in software and bubble testing are reviewed, with results and remaining work summarized Magnetic bubble memory technology is reviewed and its potential as a reliable, dense, low cost non-volatile recording medium is noted It is proposed that the microprocessor be utilized as a flight monitoring as well as a recording device to detect and report imminent extremis situations GRA

N78-24137*# National Aeronautics and Space Administration Lewis Research Center Cleveland Ohio

ON THE USE OF RELATIVE VELOCITY EXPONENTS FOR JET ENGINE EXHAUST NOISE

James R Stone 1978 17 p refs Presented at 95th Meeting of Acoust Soc of Am Providence R | 16-19 May 1978 (NASA-TM-78873 E-9605) Avail NTIS HC A02/MF A01 CSCL 20A

The effect of flight on jet engine exhaust noise has often been presented in terms of a relative velocity exponent, n, as a function of radiation angle. The value of n is given by the OASPL reduction due to relative velocity divided by 10 times the logarithm of the ratio of relative jet velocity to absolute jet velocity. In such terms classical subsonic jet noise theory would result in a value of n being approximately 7 at 90 degree angle to the jet axis with n decreasing but remaining positive, as the inlet axis is approached and increasing as the jet axis is approached However, flight tests have shown a wide range of results including negative values of n in some cases. In this paper it is shown that the exponent n is positive for pure subsonic jet mixing noise and varies in a systematic manner as a function of flight conditions and jet velocity Author

N78-24138*# National Aeronautics and Space Administration Lewis Research Center, Cleveland Ohio

DESIGN AND PRELIMINARY RESULTS OF A SEMITRANS-PIRATION COOLED (LAMILLOY) LINER FOR A HIGH-PRESSURE HIGH-TEMPERATURE COMBUSTOR

Jerrold D Wear, Arthur M Trout, John M Smith and Robert E Jones 1978 13 p refs To be presented at the 14th Propulsion Conf Las Vegas Nev 25-27 Jul 1978 sponsored by AIAA and SAE

(NASA-TM-78874, E-9607) Avail NTIS HC A02/MF A01 CSCL 21E

A Lamilloy combustor liner was designed fabricated and tested in a combustor at pressures up to 8 atmospheres. The liner was fabricated of a three layer Lamilloy structure and designed to replace a conventional step louver liner. The liner is to be used in a combustor that provides hot gases to a turbine cooling test facility at pressures up to 40 atmospheres The Lamilloy liner was tested extensively at lower pressures and demonstrated lower metal temperatures than the conventional liner, while at the same time requiring about 40 percent less cooling air flow Tests conducted at combustor exit temperatures in excess of 2200 K have not indicated any cooling or durability problems with the Lamilloy linear Author

N78-24135# Naval Postgraduate School Monterey Calif DESIGN AND CONSTRUCTION OF A FLIGHT MONITOR AND DATA RECORDER MS Thesis Dennis Leland Kane Dec 1977 96 p refs (AD-A052405) Avail NTIS HC A05/MF A01 CSCL 14/3

The design and preliminary testing of a microcomputer based

N78-24142*# National Aeronautics and Space Administration Washington D C

FUNDAMENTAL ASPECTS OF THE AERODYNAMICS OF TURBOJET ENGINE COMBUSTORS

M Barrere Apr 1978 35 p refs Transl into ENGLISH from Rev Fr Mecan (France) 3d and 4th Quarters 1975 p 55-68 Translation was announced as A76-39181 Transl by Kanner (Leo) Associates Redwood City Calif Original doc prep by **ONERA** Paris (Contract NASw-2790)

ONERA-TP-1976) (NASA-TM-75287 NTIS Avail HC A03/MF A01 CSCL 21E

Aerodynamic considerations in the design of high performance combustors for turbojet engines are discussed. Aerodynamic problems concerning the preparation of the fuel-air mixture the recirculation zone where primary combustion occurs, the secondary combustion zone and the dilution zone were examined An aerodynamic analysis of the entire primary chamber ensemble was carried out to determine the pressure drop between entry and exit The aerodynamics of afterburn chambers are discussed A model which can be used to investigate the evolution of temperature pressure and rate and efficiency of combustion the length of the chamber was developed Author

N78-24143# Naval Research Lab Washington D C NUMERICAL PARAMETRIC STRESS ANALYSIS OF THE TF-30 TURBINE ENGINE THIRD-STAGE FAN-BLADE/DISK DOVETAIL REGION Final Report

L A Beaubien Jan 1978 36 p refs (AD-A051299 AD-E000121 NRL-MR-3671) Avail NTIS HC A03/MF A01 CSCL 21/5

A two-dimensional finite element parametric analysis was conducted for the disk/blade dovetail region of the TF-30 turbine engine assuming purely radial (centrifugal) loading of the blade A graphical boundary matching procedure was used to determine a likely disk/blade interface force distribution. This distribution produced a stress concentration factor (SCF) of 5.3 in the disk fillet relative to the average stress in the neck section of the disk in addition the SCF was found to decrease with decreasing interface friction. Parametric modification of the disk fillet resulted in a maximum SCF reduction of 27%, achieved with a fillet radius of three times the present one. For all studied combinations of interface force distribution coefficient of friction and fillet geometry the point of maximum tensile stress occurred farther into the fillet (away from the contact region) than the point at which cracks appear to initiate (near or just into the inboard edge of the contact area) However, different combinations of interface force and fillet geometry result in different degrees of spread of the tensile stress concentration from the fillet area into the contact area. Finally, the effects of some assumed interface force perturbations due to non-radial (non-centrifugal) loading are discussed Author (GRA)

N78-24144# Systems Control Inc Palo Alto Calif Aeronautical and Marine Systems Div

F100 MULTIVARIABLE CONTROL SYNTHESIS PROGRAM. VOLUME 1 DEVELOPMENT OF F100 CONTROL SYSTEM Final Report, 1 Aug 1975 - 31 Dec 1976 Ronald L DeHoff W Earl Hall, Jr., Richard J Adams and Narendra

K Gupta Jun 1977 328 p refs 2 Vol (Contract F33615-75-C-2053 AF Proj 3066)

AFAPL-TR-77-35-Vol-1) (AD-A052420 Avail NTIS HC A15/MF A01 CSCL 21/5

The objective of the F100 multivariable controls program was to demonstrate modern control design methodology applied to a state-of-the-art aircraft turbine over its entire flight envelope Linear quadratic regulator design methods were used to develop feedback gains for a series of operating points. Reference schedules were used to translate pilot and ambient inputs to reference point specifications. A transient controller produced smooth and rapid transitions from one operating point to another A variable structure integral trim system produced specified steady-state performance and limit accommodation in the presence of simulated degradation effects and instrument errors. The resulting control logic was extensively tested on a hybrid simulation of the F100 turbofan and will be used to control an engine in an altitude test cell. The details of the design procedure linear model analysis and a summary of digital and hybrid simulation tests results are presented in this report Author (GRA)

N78-24145# Systems Control Inc., Palo Alto Calif Aeronautical and Marine Systems Drv

F100 MULTIVARIABLE CONTROL SYNTHESIS PROGRAM VOLUME 2 APPENDICES A THROUGH K Final Report, 1 Aug 1975 - 31 Dec 1976

Ronald L DeHoff W Earl Hall Jr , Richard J Adams and Narendra K Gupta Jun 1977 507 p refs (Contract F33615-75-C-2053 AF Proj 3066) AFAPL-TR-77-35-Vol-2) NTIS (AD-A052346 Avail

HC A22/MF A01 CSCL 21/5 For Abstract see N78-24144

N78-24146# Aeronautical Research Labs Melbourne (Australia) VIBRATION INVESTIGATION OF HELICOPTER ENGINE **COOLING FAN**

N S Swansson and G A Duke Mar 1977 22 p refs (AD-A047081 ARL/ME-363) Avail NTIS HC A02/MF A01 CSCL 21E

An investigation into the cause of the unacceptably high incidence of fatigue failure of blades in the engine cooling fan fitted to Sioux helicopters led to a search for resonant frequencies of the fan blades. Tests on a stationary fan and in a rotating rig showed resonant vibration at various fan speeds in particular, high stresses were generated by a second shaft order resonance close to the normal operating speed A modification to overcome the problem was proposed, consisting of a stainless steel shroud fitted over the blade tips. Tests showed that this modification reduced stresses to a negligible level and the mechanical soundness of the scheme was confirmed by an endurance run followed by an overspeed test. The modified fan was fitted to a helicopter and measurements comparing its cooling performance with a standard fan showed only small differences Author (GRA)

N78-24149# Massachusetts Inst of Tech Cambridge Gas Turbine Lab

STUDIES ON TRANSONIC TURBINE WITH FILM-COOLED BLADES Annual Report, 1 Jul 1976 - 30 Jun 1977

N Adams F Hajjar R F Topping and J F Louis Sep 1977 123 p refs

(Contract N00014-76-C-0253)

(AD-A052423 Rept-77-1) Avail NTIS HC A06/MF A01 CSCL 13/7

During the fourth year of the contract further advances were made towards the goal of gathering the heat transfer and aerodynamics flow data necessary for a good understanding of the performance of film-cooled highly-loaded transonic turbine blading Surface Mach number and heat transfer rate distributions were determined for a reference transonic airfoil over a range of exit Mach numbers for inlet incidence angle variation of + or - 15 deg. An evaluation and comparison of all cascade data collected so far was then conducted Progress was also made in the investigation of the effects of unsteadiness on transonic airfoil aerodynamics and heat transfer Author (GRA)

N78-24150# Texas A&M Univ College Station Dept of Industrial Engineering

REPLACEMENT PROCESS ANALYSIS AN INTERIM **REPORT ON REPLACEMENT MODELS** Interim Report, 1 Oct 1977 - 1 Feb 1978

Po-Wen Hu and Laurence L George 30 Jan 1978 38 p refs

(Grant AF-AFOSR-3501-78)

(AD-A052411 AFOSR-78-0679TR) NTIS Avail HC A03/MF A01 CSCL 21/5

This report describes models for the aircraft engine replacement processes and models for the probability distribution of engine ages at failure. Potential uses of these models for predicting replacement requirements are discussed. Also models for the randomness of flying hours on different aircraft are proposed for the study of the effect on replacement models which assume each aircraft flies an equal share of a flying hour program. The first section briefly describes the problem of computing replace ment requirements for a fleet of aircraft. The second section describes several models of engine lives ages at replacement

N78-24153# National Aviation Facilities Experimental Center Atlantic City N J

EVALUATION OF A 100-WATT ELEVATED HIGH-INTENSITY RUNWAY EDGE LIGHT Final Report, Jun 1975 - Jul 1977

Raymond E Johnston and E Leon Reamer Mar 1978 19 p refs

(FAA Proj 072-424-500)

(AD-A051651 FAA-NA-77-47 FAA-RD-77-176) Avail NTIS HC A02/MF A01 CSCL 01/5

The purpose of this project is to evaluate a newly designed evaluated, high intensity runway edge light using a 100 watt lamp as its light source rather than the standard 200 watt lamp to determine if the lower wattage lamp and fixture combination would be satisfactory for category 1 and category 2 low-visibility operations where a Federal Aviation Administration Specification type L-862 runway edge light fixture would be required. Pilot opinion during flight tests indicates that an installed group A version of the experimental runway edge light unit is visually adequate for category 1 weather operations and should be adequate for category 2 operations Group A lights however did not meet the Office of Airport Programs Specifications for L-862 runway edge lights An improved group B version will meet both requirements, since it satisfactorily passed the L-862 photometric specifications Author

N78-24154# National Aviation Facilities Experimental Center Atlantic City N J

FEASIBILITY STUDY FOR SIMULATION OF AN AIRPORT TOWER CONTROL ENVIRONMENT Final Report, May 1976 - Mar 1977

Helen W Hamilton Feb 1978 84 p refs

(FAA Proj 216-102-100)

(AD-A051174 FAA-NA-77-33 FAA-RD-77-190) Avail NTIS HC A05/MF A01 CSCL 01/2

The feasibility and desirability of developing an airport tower control simulation training facility at the FAA Academy was investigated Training program needs were assessed and the state-of-the-art in simulation technology was surveyed. Several large-scale airport tower and ship's bridge simulators are described and evaluated from an operational and engineering viewpoint also a number of flight simulators and image generation and projection systems are considered with regard to the applicability of the concepts to the FAA training requirements Computer generated image systems versus other imaging technologies are discussed with reference to realism requirements capability for efficient generation of instructional materials and for objective student evaluation. The large number of visual-scene simulation. facilities presently in use or under contract development for a wide variety of uses indicates that a tower control application is entirely feasible Author

N78-24155# Department of Transportation Washington, D C ATC Systems Div

PROJECT PLAN TOWER AUTOMATED GROUND SURVEIL-LANCE SYSTEM DEVELOPMENT PROGRAM Development Plan, FY 1978

M E Perie Jan 1978 18 p refs

(AD-A051621 FAA-RD-78-4) Avail NTIS HC A02/MF A01 CSCL 17/9

The tower automated ground surveillance system (TAGS) is designed to provide automation support for air traffic controllers in the tower cab and increase surface traffic handling capacity minimize delays and provide all-weather control and guidance for the airport surface traffic control (ASTC) system The TAGS system having a clear uncluttered presentation of each target and its identity will eliminate voice channel saturation and permit ground control capacity in bad visibility to equal that in good visibility TAGS will also become the baseline automation system to increase ASTC system capacity in the future air traffic control system

N78-24156# Institute for Defense Analyses Arlington Va Science and Technology Div

COST-EFFECTIVENESS OF FLIGHT SIMULATORS FOR MILITARY TRAINING VOLUME 1 USE AND EFFECTIVE-NESS OF FLIGHT SIMULATORS Final Report, Apr 1976 -Jul 1977

Jesse Orlansky and Joseph String Aug 1977 167 p refs (Contract DAHC15-73-C-0200)

(AD-A052801 AD-E500013 IDA/HQ-77-19470

P-1275-Vol-1) Avail NTIS HC A08/MF A01 LSLL 01/1

Flight simulators cost less to operate than do aircraft estimates range from 5 to 20 percent. Many studies have shown that skills learned in flight simulators can be performed successfully in aircraft i.e. the use of flight simulators for training purposes saves flight time. The critical issue is whether the amount of flight time saved by the use of simulators is worth their cost The cost-effectiveness of flight simulators for training has been demonstrated only in a few recent studies which report that the procurement cost of simulators can be amortized in a few years Current R and D about flight simulators centers about the need for motion and wide angle visual display systems. Flight simulators have achieved their greatest use by the military so far in undergraduate flight training. Their greatest potential for future savings lies in transition and continuation training which account for the major costs of military flying. Consistent methods of data collection and cost estimating not now available are needed to evaluate the cost-effectiveness of alternative flight training programs including the use of various types of simulators part-task trainers new instructional strategies and the like. The report provides a preliminary cost model which identifies the data needed to develop cost estimates for use in costeffectiveness analyses of flight training Author (GRA)

N78-24158# AIResearch Mfg Co, Phoenix Ariz ADVANCED TECHNOLOGY SERVICING EQUIPMENT FOR ARMY AIRCRAFT Final Report R R Mejdrich Dec 1977 192 p

(Contract DAAJ02-76-C-0042, DA Proj 1F2-62209-AH-76)

(AD-A052652, ArResearch-31-24918 USAAMRDL-TR-77-33) Avail NTIS HC A09/MF A01 CSCL 01/5

The purpose of this effort was to define an advanced Ground Power Unit (GPU) to service AAH and UTTAS helicopters The GPU was to be lightweight air-transportable, highly mobile, and use aircraft equipment wherever possible The program included the following activities Aircraft requirements verification trade-off analyses to select specific components, design and component compatability verification and preparation of specification and layout drawings defining conceptual design Author (GRA)

N78-24159# Civil and Environmental Engineering Development Office Tyndall AFB Fla Detachment 1 ADTC NONDESTRUCTIVE PAVEMENT EVALUATION Final Report.

1 Oct 1976 - 30 Sep 1977 B M Das Oct 1977 23 p refs

(AD-A052707, CEEDO-TR-77-41) Avail NTIS HC A02/MF A01 CSCL 01/5

Research has been in progress for about 10 years to develop a compatible pavement evaluation procedure for airfields based on nondestructive tests. A successful nondestructive pavement evaluation technique will reduce the time of closure of various airfield facilities needed to conduct destructive tests required for conventional pavement evaluation. This study provides a comparison of the projected pavement life of several airfield features estimated by nondestructive and destructive pavement evaluation procedures. For aircraft and gross loads on similar pavement sections the nondestructive evaluation procedure yields higher numbers of allowable operations as compared to that obtained by the destructive test evaluation technique at this point in the research effort. Follow-on research is planned which will cause the two evaluation procedures to yield more closely compatible numbers Author (GRA)

N78-24292*# National Aeronautics and Space Administration, Washington D C CARBON FIBER STUDY

[1977] 43 p

(NASA TM-79449) Avail NTIS HC A03/MF A01 CSCL 11D A coordinated Federal Government action plan for dealing with the potential problems arising from the increasing use of graphite fiber reinforced composite materials in both military and civilian applications is presented. The required dissemination of declassified information and an outline of government actions to minimize the social and economic consequences of proliferated composite materials applications were included.

N78-24320# Air Force Inst of Tech Wright-Patterson AFB Ohio

AN ATOMIC FLUORESCENCE SYSTEM USING A CONTIN-UUM SOURCE FOR THE RAPID DETERMINATION OF WEAR METALS IN JET ENGINE LUBRICATING OILS M S Theses - Fla Univ

Robert L Vaughn Mar 1978 65 p refs

(AD-A052721 AFIT-CI-78-53) Avail NTIS HC A04/MF A01 CSCL 07/4

A brief review is presented of atomic absorption and atomic fluorescence methods of trace wear-metal analysis of jet engine lubricating oil The theory of atomic fluorescence in flames is presented for the case of a continuum excitation source. A system for atomic fluorescence measurements is described that employs an electrically-heated graphite rod and a N2O/C2H2 flame atomizer with a 300-W Eimac xenon arc as the continuum excitation source. With this system, small samples (1 microliter) having complex matrices can be analyzed rapidly, conveniently and with no pretreatment Analytical calibration curves are given for Cr. Al and Mo and these metals are determined in synthetic and real jet engine lubricating oils. The determinations of these elements are evaluated with respect to the accuracy and repeatability criteria of the Interservice Oil Analysis Program Author (GRA).

N78-24344# Aluminum Co of America Alcoa Center Pa EXPLORATORY DEVELOPMENT FOR DESIGN DATA ON STRUCTURAL ALUMINUM ALLOYS IN REPRESENTATIVE AIRCRAFT ENVIRONMENTS Final Report, 1 May 1974 -30 Apr 1977

D J Brownhill R E Davies G E Nordmark and B M Ponchel Jul 1977 197 p refs

(Contract F33615-74-C-5089 AF Proj 7381)

(AD-A052809, AFML-TR-77-102) Avail NTIS HC A09/MF A01 CSCL 11/6

The mechanical properties fracture toughness, fatigue, fatigue-crack growth rates in three environments and corrosion characteristics of 10 lots each of 2048-T851 7050-T7351 and 7475-T7351 plate and 2219-T852 hand forgings have been evaluated Data for establishing MIL-HDBK-5 values, including modulus of elasticity and stress-strain are presented GRA

N78-24348# Army Materials and Mechanics Research Center Watertown Mass

TRIP STEELS PROMISE HIGH RELIABILITY HARDWARE

Kenneth H Abbott Feb 1978 18 p

(AD-A052765 AMMRC-MS-78-2) Avail NTIS HC A02/MF A01 CSCL 11/6

Based on a review of the properties of typical TRIP steels a discussion is presented of possible Army applications for this new material Problems related to component fabrication and specification controls are presented and a brief outline of a recommended R and D program is included Author (GRA) N78-24369*# National Aeronautics and Space Administration Lewis Research Center Cleveland Ohio

IMPACT OF FUTURE FUEL PROPERTIES ON AIRCRAFT ENGINES AND FUEL SYSTEMS

R A Rudey and J S Grobman 1978 33 p refs To be presented at Lecture Ser 96 Paris Munich and London 12-20 Oct 1978 sponsored by AGARD

(NASA-TM-78866, E-9597) Avail NTIS HC A03/MF A01 CSCL 21D

This paper describes and discusses the propulsion-system problems that will most likely be encountered if the specifications of hydrocarbon-based jet fuels must undergo significant changes in the future and correspondingly the advances in technology that will be required to minimize the adverse impact of these problems. Several investigations conducted are summarized illustrations are used to describe the relative effects of selected fuel properties on the behavior of propulsion-system components and fuel systems. The selected fuel properties are those that are most likely to be relaxed in future fuel specifications illustrations are also used to describe technological advances that may be needed in the future. Finally the technological areas needing the most attention are described and programs that are under way to address these needs are briefly discussed.

Author

N78-24370*# National Aeronautics and Space Administration Lewis Research Center Cleveland Ohio

CHARACTERISTICS AND COMBUSTION OF FUTURE HYDROCARBON FUELS

R A Rudey and J S Grobman 1978 26 p Proposed for presentation at Lecture Series 96 Paris Munich London 12-20 Oct 1978 sponsored by AGARD

(NASA-TM-78865 E-9596) Avail NTIS HC A03/MF A01 CSCL 21D

As the world supply of petroleum crude oil is being depleted the supply of high-quality crude oil is also dwindling. This dwindling supply is beginning to manifest itself in the form of crude oils containing higher percentages of aromatic compounds sulphur, nitrogen and trace constituents. The result of this trend is described and the change in important crude oil characteristics as related to aircraft fuels, is discussed. As available petroleum is further depleted the use of synthetic crude oils (those derived from coal and oil shale) may be required. The principal properties of these syncrudes and the fuels that can be derived from them are described. In addition to the changes in the supply of crude oil increasing competition for middle-distillate fuels may require that specifications be broadened in future fuels. The impact that the resultant potential changes in fuel properties may have on combustion and thermal stability characteristics is illustrated and discussed in terms of ignition soot formation carbon deposition flame radiation, and emissions Author

N78-24380*# Jet Propulsion Lab, Calif Inst of Tech, Pasadena PERFORMANCE EVALUATION OF A CATALYTIC PARTIAL OXIDATION HYDROGEN GENERATOR USING TURBINE ENGINE FUELS Final Report, 1 Oct 1976 - 30 Apr 1977 Richard M Clayton Oct 1977 43 p refs

(Contract MIPR-FY14557-601611)

(AD-A047355 AFAPL-TR-77-62) Avail NTIS HC A03/MF A01 CSCL 21/4

Operation of a catalytic partial oxidation reactor under simulated turbine engine idle power air state conditions, using a conventional aviation turbine fuel (JP-5) and an unconventional fuel (blend of JP-5/xylene), is shown to produce a fuel gas' stream of near theoretical equilibrium composition at very fuel-rich A/F ratios in the range of 50-56. The combustibles in the fuel gas comprise about 6% H2 and 93% CO by mass and therefore the fuel gas exhibits superior lean-burning qualities relative to the fuel gas exhibits superior lean-burning qualities

relative to the fuel feed stock. The concept of using the very fuel-rich partial oxidation process as a first stage of a two-stage combustion system for onboard processing of broadened specification fuels to improve their combustion characteristics is discussed For the nonoptimal reactor design used excessive catalyst bed temperatures and a propensity for solid carbon deposition in the bed were observed These phenomena are not fully understood and need further elucidation Thermal reactor schemes (without catalysts) may be more advantageously applied to aviation turbine engines but these schemes also require additional investigation to delineate design requirements

Author (GRA)

N78-24385# National Bureau of Standards Washington, D C **PROBLEMS IN WORLD-WIDE STANDARDIZATION OF THE** UNITS OF HEIGHT MEASUREMENT Interim Report Judith F Gilsinn Feb 1978 23 p refs (Contract DOT-FA76WAI-594)

(AD-A051150 NBSIR-77-1386 FAA-EM-78-2) Avail NTIS HC A02/MF A01 CSCL 17/7

The US commitment to a voluntary conversion to metric units raises changeover problems in the fields of air traffic control and airspace management. Current practice in altitude measurement and the rules for height maintenance now in effect worldwide are discussed Four desirable features are given for an altitude measurement system, encompassing both the units of height measurement and the designation of cruising levels. Three alternative bases for the design of such a system are described and related to the desirable characteristics. Problems associated with each of the approaches were examined and the many factors to be considered and the many interrelationships involved were studied Author

N78-24391* National Aeronautics and Space Administration Pasadena Office Calif

THIN CONFORMAL ANTENNA ARRAY FOR MICROWAVE **POWER CONVERSIONS** Patent

Richard M Dickinson, inventor (to NASA) (JPL) Issued 14 Mar 1978 8 p Sponsored by NASA

(NASA-Case-NPO-13886-1 US-Patent-4,079 268 US-Patent-Appl-SN-730045, US-Patent-Class-307-151,

US-Patent-Class-361-395, US-Patent-Class-343-700MS) Avail US Patent Office CSCL 09C

A structure of a circularly polarized thin conformal antenna array which may be mounted integrally with the skin of an aircraft employs microstrip elliptical elements and interconnecting feed lines spaced from a circuit ground plane by a thin dielectric layer. The feed lines are impedance matched to the elliptical antenna elements by selecting a proper feedpoint inside the periphery of the elliptical antenna elements. Diodes connected between the feed lines and the ground plane rectify the microwave power and microstrip filters (low pass) connected in series with the feed lines provide dc current to a microstrip bus Low impedance matching strips are included between the elliptical elements and the rectifying and filtering elements

Official Gazette of the U.S. Patent Office

N78-24418# Naval Ocean Systems Center, San Diego, Calif PERSPECTIVE RADAR DISPLAY SYSTEM TV-LIKE PRESENTATION ON CRT PROVIDES HIGHER LATERAL POSITION AND LATERAL MOTION SENSITIVITY THAN A PPI Technical Report, Mar - Dec 1977

L G Harris 17 Jan 1978 21 p (AD-A052342, NOSC/TR-198) Avail NTIS HC A02/MF A01 CSCL 14/2

The data rate and display format of a conventional navigation radar/PPI display are adequate for most purposes but have limitations in certain close-range applications such as precision maneuvers in low-visibility conditions. At close ranges the PPI format bunches the close targets near the center of the scope where the inherent azimuth resolution is poorest. Close targets may make several degrees of change in relative bearing before the change is noticeable on the PPI display Also, a small change in heading of 'own ship' is not immediately apparent on a PPI display Radar Systems Company has developed a Perspective Radar Display System which provides a perspective presentation on a cathode ray tube of the volume of space being scanned by an electromechanical scanning (nonrotating) radar antenna This type of display has higher lateral position and lateral motion sensitivity than a PPI display. It has the additional capability of varying the apparent altitude of perspective This report covers a technical and operational evaluation of the Perspective Radar Display System to determine its effectiveness as an aid to piloting for precision maneuvers in low-visibility conditions, for collision avoidance intercept solution, and shadowing, and for aiding SEAL team cast and recovery Author (GRA) operations

N78-24515* National Aeronautics and Space Administration Langley Research Center Langley Station Va NON-DESTRUCTIVE METHOD FOR APPLYING AND

REMOVING INSTRUMENTATION ON HELICOPTER ROTOR BLADES Patent

Walt C Long and Milton L Williams inventors (to NASA) Issued 4 Apr 1978 8 p Filed 19 Apr 1977 Supersedes N77-22452 (15 - 13 p 1725)

(NASA-Case-LAR-11201-1 US-Patent-4 082 001

US-Patent-Appl-SN-788705 US-Patent-Class-73-756

US-Patent-Class-73-456 US-Patent-Class-416-61

US-Patent-Class-416-144) Avail US Patent Office CSCL

14B A nondestructive method of applying and removing instrumentation on airfoils Official Gazette of the U.S. Patent Office

N78-24544* National Aeronautics and Space Administration Lyndon B Johnson Space Center Houston Tex STATOR ROTOR TOOLS Patent

Donald D Diamond inventor (to NASA) (Serv-Air Inc Houston Tex) Issued 14 Mar 1978 6 p Filed 8 Nov 1976 Supersedes N77-13062 (15 - 04 p 0426) Sponsored by NASA

(NASA-Case-MSC-16000-1, US-Patent-4,078,290, US-Patent-Appl-SN-739915 US-Patent-Class-29-252

US-Patent-Class-29-244, US-Patent-Class-29-23 5,

US-Patent-Class-29-156 8R) Avail US Patent Office CSCL 13

An apparatus and method for removing and reinserting base member segments in an arcuate slot in an engine part are described Each base member separately includes blades or stators holding the engine part in place while manipulating fingers or an arm onto an interfitting abutting relationship with most of the blades A torque force is applied to the base of the blades to move a base member relative to such an arcuate slot

Official Gazette of the U.S. Patent Office

N78-24556# Pratt and Whitney Aircraft Group, West Palm Beach Fla Government Products Div

DEVELOPMENT OF MAINSHIFT HIGH SPEED CYLINDRI-CAL ROLLER BEARINGS FOR GAS TURBINE ENGINES Interim Report, 1 Oct 1975 - 1 Apr 1977

P F Brown L J Dobek F C Hsing, and J R Miner Apr 1977 121 p refs

(Contract N00140-76-C-0383)

(AD-A052351 PWA-FR-8615) Avail NTIS HC A06/MF A01 CSCL 21/5

This combined analytical and experimental program is aimed at generating a manual that will permit the design of 3.0 MDN cylindrical roller bearings. The roller bearing analysis will be correlated with the results from a series of bearing tests designed to determine, by statistical methods the effect of geometrical variables on bearing performance. An existing quasi-static design optimization system has been upgraded and the basic analyses for use in developing a program to predict the dynamic behavior

of roller bearing components are nearly complete. A study identified a total of thirty separate bearing parameters that can influence roller skewing and skidding Two groups of 124 mm roller bearing designs were then prepared using statistical design techniques and incorporating parameters from the list of thirty Fabrication of full-scale bearing hardware was completed and testing was initiated on the first group of bearings

Author (GRA)

N78-24557# United Technologies Corp Stratford Conn Sikorsky Aircraft Div

ADVANCED OVERRUNNING CLUTCH TECHNOLOGY Progress Report, 14 Mar - 14 Jun. 1976 Jules G Kish Dec 1977 316 p refs

(Contract DAAJ02-74-C-0028, DA Proj 1F2-62209-AH-76) (AD-A052635 USAAMRDL-TR-77-16) Avail NTIS HC A14/MF A01 CSCL 01/3

This report documents a study to find overrunning clutch concepts suitable for use in helicopters. Ten designs were selected for in-depth evaluation and from these three were selected for fabrication and testing the spring the sprag and the ramp-roller clutches These performed satisfactorily in the tests, and a design guide was compiled for them (USAAMRDL-TR-77-18)

Author (GRA)

N78-24587# Societe Nationale Industrielle Aerospatiale Suresnes (France) Lab Central

CAN FATIGUE CRACKS BE DETECTED IN AN EARLY **STAGE BY ACOUSTIC EMISSION? APPLICATION TO HIGH RESISTANCE LIGHT ALLOYS USED IN AERONAUTICS**

C Bathias B Brintet and G Sertour Paris Assoc Aeron et Astronautique de France 1977 11 p refs in FRENCH ENGLISH summary Presented at the 8th World Conf on Nondestructive Testing Cannes France 6-11 Sep 1976

(AAAF-NT-77-35 ISBN-2-7170-0460-2) Avail NTIS HC A02/MF A01 CEDOCAR Paris FF 15 (France and EEC) FF 19 (others)

A study carried out on different types of test pieces (shot blasted anodized notched) has shown that acoustic emission provides an accurate method for following fatigue damage up ESA to crack initiation

N78-24755# Toronto Univ (Ontario) Inst for Aerospace Studies

THE EFFECTS OF WIND SHEAR ON AIRCRAFT FLIGHT PATH AND METHODS FOR REMOTE SENSING AND REPORTING OF WIND SHEAR AT AIRPORTS

Gaston Beaulieu Feb 1978 61 p refs

(UTIAS-TN-216 CN-ISSN-0082-5263) Avail NTIS HC A04/MF A01

Strong wind shear can cause large flight path disturbances with modern jet transport aircraft. The meteorological conditions causing wind shear and aircraft response to wind shear are described in general terms to provide a basic understanding of the wind shear phenomenon. The dynamic response of an aircraft/pilot system to wind shear is explained based on one hundred approaches flown with a simple flight simulator in very strong wind shear. The basic philosophy of flight control displays and integrated automatic flight control systems is discussed with regard to enhanced flight path and airspeed control under extreme wind shear conditions. Wind shear remote sensors now under development are briefly described with their limitations advantages and disadvantages. A complete description of an airborne display for wind shear information and a proposed acoustic Doppler installation in an airport environment conclude the present investigation Author

N78-24808*# New York Univ N Y Courant Inst of Mathematical Sciences

NUMERICAL CALCULATION OF TRANSONIC FLOW PAST A SWEPT WING BY A FINITE VOLUME METHOD

Antony Jameson Dec 1977 25 p refs Presented at the 3d IFIP Conf on Computing Methods in Appl. Sci. and Eng. Versailles. France 1973

(Grants NGR-33-016-167 NGR-33-016-201 Contracts N00014-77-C-0032 EY-76-C-02-3077)

(NASA-CR-157012) Avail NTIS HC A02/MF A01 CSCL 09B

The utility of numerical methods for predicting transonic flows over wings and bodies is well established. The computer program FLO22 based on a method presented earlier has actually been widely used to calculate the aerodynamic performance of wings of transport aircraft. Provided that a correction is made for the displacement effect of the viscous boundary layer this code has been found to give predictions which are accurate enough to serve as a useful design guide. The main disadvantages of the scheme used in FLO22 are the use of nonconservative difference formulas which result in a failure to satisfy conservation of mass across shock waves and the difficulty of finding suitable transformations of coordinates to permit the treatment of more complex geometric configurations. The method described here is an attempt to overcome these shortcomings while retaining the successful features of the previous method. The basic idea is to use a discrete approximation which directly represents a balance of the mass flow through small volume elements. This leads to a relatively simple treatment of the potential flow equation in conservation form Author

N78-24897*# National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio

ACOUSTIC EVALUATION OF A NOVEL SWEPT-ROTOR FAN

James G Lucas Richard P Woodward and Michael J Mackinnon 1978 24 p refs Proposed for Presentation at 11th Fluid and Plasma Dyn Conf Seattle 10-12 Jul 1978 sponsored by AIAA

(NASA-TM-78878 E-9612 AIAA-Paper-78-1121) Avail NTIS HC A02/MF A01 CSCL 20A

Inlet noise and aerodynamic performance are presented for a high tip speed fan designed with rotor blade leading edge sweep that gives a subsonic component of inlet Mach number normal to the edge at all radii. The intent of the design was to minimize the generation of rotor leading edge shock waves thereby minimizing multiple pure tone noise. Sound power level and spectral comparisons are made with several high-speed fans of conventional design Results show multiple pure tone noise at levels below those of some of the other fans and this noise was initiated at a higher tip speed. Aerodynamic performance of the fan did not meet design goals for this first build which applied conventional design procedures to the swept fan geometry Author

N78-24899# DyTec Engineering, Inc. Huntington Beach Calif ATMOSPHERIC-ABSORPTION ADJUSTMENT PROCEDURE FOR AIRCRAFT FLYOVER NOISE MEASUREMENTS Final Report, May - Sep 1977

Alan H Marsh Dec 1977 89 p refs

(W1-77-5660-1)

(AD-A051700, DyTec-R-7705, FAA-RD-77-167) Avail NTIS HC A05/MF A01 CSCL 20A

An analytical method was developed for adjusting measured aircraft noise levels for differences in atmospheric absorption between test and reference meteorological conditions along the sound propagation path. The method is based on the procedure in the proposed American National Standard ANS S126 for calculating pure-tone sound absorption as a function of the frequency of the sound and the temperature, humidity, and pressure of the air Measured aircraft noise levels are assumed to be 1/3-octave-band sound pressure levels A computer program was written in FORTRAN IV to carry out the calculations. The operation of the computer program, the required input data, and all symbols and terms used in the program are described A program listing of source statements is provided Recommendations are given for applying the method to routine processing of aircraft noise measurements.

N78-24900*# Boeing Commercial Airplane Co., Seattle Wash LOW FREQUENCY CABIN NOISE REDUCTION BASED ON THE INTRINSIC STRUCTURAL TUNING CONCEPT THE THEORY AND THE EXPERIMENTAL RESULTS, PHASE 2 G SenGupta Mar 1978 104 ρ refs Sponsored in part by NASA

(Contract F33657-72-C-0829)

(NASA-CR-145262 D6-44283, D748-10113-3) Avail NTIS HC A06/MF A01 CSCL 20A

Low frequency cabin noise and sonically induced stresses in an aircraft fuselage may be reduced by intrinsic tuning of the various structural members such as the skin stringers, and frames and then applying damping treatments on these members. The concept is also useful in identifying the key structural resonance mechanisms controlling the fuselage response to broadband random excitation and in developing suitable damping treatments for reducing the structural response in various frequency ranges The mathematical proof of the concept and the results of some

N78-24903*# Boeing Vertol Co., Philadelphia, Pa EVALUATION OF THE ANNOYANCE DUE TO HELICOPTER ROTOR NOISE Final Report

Harry Sternfeld Jr and Linda Bukowski Doyle Washington NASA Jun 1978 74 p refs

(Contract NAS1-14192)

,

(NASA-CR-3001) Avail NTIS HC A03/MF A01 CSCL 20A A program was conducted in which 25 test subjects adjusted the levels of various helicopter rotor spectra until the combination of the harmonic noise and a broadband background noise was judged equally annoying as a higher level of the same broadband noise spectrum. The subjective measure of added harmonic noise was equated to the difference in the two levels of broadband noise. The test participants also made subjective evaluations of the rotor noise signatures which they created. The test stimuli consisted of three degrees of rotor impulsiveness, each presented at four blade passage rates Each of these 12 harmonic sounds was combined with three broadband spectra and was adjusted to match the annoyance of three different sound pressure levels of broadband noise Analysis of variance indicated that the important variables were level and impulsiveness Regression analyses indicated that inclusion of crest factor improved correlation between the subjective measures and various objective or physical measures Author

N78-24999# Defense Systems Management School Fort Belvoir Va

LIFE COST MANAGEMENT, METHODOLOGY, AND CASE STUDIES

Andrew H Berard Oct 1977 64 p refs (AD-A052388) Avail NTIS HC A04/MF A01 CSCL 14/1

This study project examines the management policies that have initiated O and S cost control and the progress made on O and S costing methodology Costing guidelines prepared by LMI are summarized to provide the reader with an overview of the guidelines content and a preview of CAIG O and S costing methodology guidelines The RAND report on LCC analysis for aircraft turbine engines provides analysis methods that allows performance to be assessed with the present technology and determines cost and schedule risks. Further commercial operational and maintenance practices are reviewed for military applicability Three case studies representative of LCC management techniques are discussed in detail showing the impact of logistics alternatives, reliability by design, and maintainability features that contribute towards reduced O and S costs and lower LCC The cases were selected from a LCC Seminar held on 29 Sept 1977 The Army's Black Hawk program, Navy's F-18 program and the Air Force's ARC-164 program are the three case studies selected important lessons learned on all three of the case studies should serve as models for other programs to follow that are concerned with LCC procurement The results of the case studies provide positive indications that LCC management does work and can provide affordable systems Author (GRA)

N78-25048*# National Aeronautics and Space Administration Wallops Station, Wallops Island Va

PRECISION POSITIONAL DATA OF GENERAL AVIATION AIR TRAFFIC IN TERMINAL AIR SPACE

W E Melson Jr L C Parker A M Northam (Computer Sciences Corp Wallops Island Va.), and R P Singh (Computer Sciences Corp Wallops Island Va.) May 1978 13 p

(NASA-RP-1020) Avail NTIS HC A02/MF A01 CSCL 02A Three dimensional radar tracks of general aviation air traffic at three uncontrolled airports are considered Contained are data which describe the position-time histories, other derived parameters and reference data for the approximately 1200 tracks All information was correlated such that the date time flight number and runway number match the pattern type aircraft type, wind visibility and cloud conditions Author

N78-25050# Arine Research Corp Annapolis Md LOGISTICS AND OPERATIONAL EFFECTIVENESS OF THE P-3 AIRCRAFT Final Summary Report Mar 1979 - 37

Mar 1978 37 p (Contract N00019-77-C-0309)

(AD-A052239 Rept-1701-01-1-1728) Avail NTIS HC A03/MF A01 CSCL 01/3

This report summarizes a 12-month logistics, engineering, and program analysis effort performed by ARINC Research Corporation for the Naval Air Systems Command It describes the activities that provided the P-3 Project Manager with an independent and objective evaluation of factors affecting the P-3's operational availability and logistic support posture. The effort consisted primarily of analysis tasks for the major P-3 modification programs integrated logistic support toreign military sales programs operational readiness programs and P-3 site transition Author (GRA)

N78-25051# Administrative Sciences Corp Alexandria Va NAVAL AIRCRAFT OPERATING AND SUPPORT COST MODEL - FISCAL YEAR 1976 REVISION Mar 1978 84 p (Contract N00014-77-C-0180)

(AD-A053180 ASC-R-116) Avail NTIS HC A05/MF A01 CSCL 01/3

This report documents the revisions of a parametric model for estimating Naval aircraft operating and support costs developed by Administrative Sciences Corporation. The model provides an estimate of average annual and life cycle O and S costs based on aircraft physical characteristics and basic program parameters using parametric cost-estimating relationships cost factors and throughputs and has been used to support numerous cost analyses prepared for CAIG review as well as other special studies such as the Naval Escort Force Mix Study and the Sea Based Air Study. It is updated often in order to remain responsive to each particular analysis to reflect the changing nature of Naval aviation, and simply to remain timely This report reflects the status of the model after incorporation of all FY1976 data. The bulk of the report is concerned with providing a clear concise and complete definition of each cost element and the way it is estimated by the model GRA

N78-25054*# Vought Corp Hampton Va PANELING TECHNIQUES FOR USE WITH THE VORLAX COMPUTER PROGRAM

Glenn L Martin Apr 1978 23 p ref

(Contract NAS1-13500)

(NASA-CR-145364) Avail NTIS HC A02/MF A01 CSCL 01A

A method is presented for determining the geometric input data required by the VORLAX computer program in order to accurately model an aircraft configuration. Techniques are described for modeling each of the major components of a configuration and for joining these individual components into a complete configuration. The effects of trailing vortex filaments and methods of avoiding their intersection with downstream panels are also discussed. The methods presented here are applicable to most conventional aircraft configurations Author

N78-25055*# National Aeronautics and Space Administration Hugh L Dryden Flight Research Center Edwards Calif

FLIGHT-MEASURED PRESSURE CHARACTERISTICS OF AFT-FACING STEPS IN HIGH REYNOLDS NUMBER FLOW AT MACH NUMBERS OF 2 20, 2 50, AND 2 80 AND COMPARISON WITH OTHER DATA

Sheryll Goecke Powers May 1978 38 p refs (NASA-TM-72855 H-956) Avail NTIS HC A03/MF A01 CSCL 01A

The YF-12 airplane was studied to determine the pressure characteristics associated with an aft-facing step in high Reynolds number flow for nominal Mach numbers of 2 20, 2 50 and 2.80 Base pressure coefficients were obtained for three step heights The surface static pressures ahead of and behind the step were measured for the no-step condition and for each of the step heights A boundary layer rake was used to determine the local boundary layer conditions. The Reynolds number based on the length of flow ahead of the step was approximately 10 to the 8th power and the ratios of momentum thickness to step height ranged from 0.2 to 1.0 Base pressure coefficients were compared with other available data at similar Mach numbers. and at ratios of momentum thickness to step height near 10 In addition the data were compared with base pressure coefficients calculated by a semiempirical prediction method. The base pressure ratios are shown to be a function of Reynolds number based on momentum thickness. Profiles of the surface pressures ahead of and behind the step and the local boundary layer conditions are also presented Author

N78-25056*# Polytechnic Inst of New York Aerodynamics Labs

A FINITE-STEP METHOD FOR ESTIMATING THE SPAN-WISE LIFT DISTRIBUTION OF WINGS IN SYMMETRIC, YAWED, AND ROTARY FLIGHT AT LOW SPEEDS Final Report

A R Krenkel Jun 1978 107 p refs

(Grants NsG-1107 NsG-1300)

NTIS (NASA-CR-157043 Poly-M/AE-78-17) Avail HC A06/MF A01 CSCL 01A

The finite-step method was programmed for computing the span loading and stability derivatives of trapezoidal shaped wings in symmetric, yawed and rotary flight Calculations were made for a series of different wing planforms and the results compared with several available methods for estimating these derivatives in the linear angle of attack range. The agreement shown was generally good except in a few cases. An attempt was made to estimate the nonlinear variation of lift with angle of attack in the high alpha range by introducing the measured airfoil section data into the finite-step method. The numerical procedure was found to be stable only at low angles of attack Author

N78-25057*# Nielsen Engineering and Research Inc., Mountain View Calif

HIGH ANGLE CANARD MISSILE TEST IN THE AMES **11-FOOT TRANSONIC WIND TUNNEL**

Avail

NTIS

Richard G Schwind Jun 1978 81 p refs (Contract NAS2-9211) (NASA-CR-2993 NEAR-TR-134)

HC A05/MF A01 CSCL 01A

Four blunted ogive-cylinder missile models with a length-todiameter ratio of 104 were tested at transonic speeds and large angles of attack. The configurations are body body with tail panels, body with canards and body with canards and tails Forces and moments from the entire model and each of the eight fins were measured over the pitch range of 20 deg to 50 deg and 0 deg to 45 deg roll Canard deflection angles between 0 deg and 15 deg were tested Exploratory vapor screen flow visualization testing was also performed. Sample force and moment data are reported along with observations from the vapor screen tests Author

N78-25058*# National Aeronautics and Space Administration Langley Research Center Langley Station Va A DISTRIBUTED VORTEX METHOD FOR COMPUTING THE

VORTEX FIELD OF A MISSILE

Raymond L Barger Jun 1978 19 p refs

(NASA-TP-1183 L-11963) Avail NTIS HC A02/MF A01 CSCL 01A

Vortex sheet development in the flow field of a missile was investigated by approximating the sheets in the cross-flow plane with short straight-line segments having distributed vorticity. In contrast with the method that represents the sheets as lines of discrete vortices this distributed vortex method produced calculations with a high degree of computational stability Author

N78-25059*# National Aeronautics and Space Administration Langley Research Center Langley Station Va

AERODYNAMIC CHARACTERISTICS AT MACH NUMBER 02 OF A WING-BODY CONCEPT FOR A HYPERSONIC RESEARCH AIRPLANE

James L. Dillon and Theodore R. Creel Jr. Jun 1978 48 p refs

(NASA-TP-1189 L-12063) Avail NTIS HC A03/MF A01 CSCL 01A

The static aerodynamic characteristics were studied on a model wing-body concept for a high-speed research airplane in a low-turbulence pressure tunnel. The experiment consisted of configuration buildup from the basic body by adding a wing center vertical tail three-module scramjet and six-module scramjet engine The test Mach number was 02 at Reynolds numbers based on fuselage length ranging from 2.78 x 1 million to 23 x 2 million. The test angle-of-attack range was approximately -5 to 30 deg at constant angles of sideslip of 0 deg and 4 deg The elevons were deflected from 5 deg to -15 deg Roll and yaw control were investigated Author

N78-25060*# National Aeronautics and Space Administration Langley Research Center Langley Station Va

EFFECTS OF SPANWISE NOZZLE GEOMETRY AND LOCATION ON THE LONGITUDINAL AERODYNAMIC CHARACTERISTICS OF A VECTORED-ENGINE-OVER-WING CONFIGURATION AT SUBSONIC SPEEDS

Laurence D Leavitt and Long P Yip May 1978 78 p refs (NASA-TP-1215 L-12015) Avail NTIS HC A05/MF A01 CSCL 01A

A V/STOL tunnel study was performed to determine the effects of spanwise blowing on longitudinal aerodynamic characteristics of a model using a vectored-over-wing powered lift concept. The effects of spanwise nozzle throat area internal and external nozzle geometry and vertical and axial location were investigated These effects were studied at a Mach number of 0 186 over an angle-of-attack range from 14 deg to 40 deg A high pressure air system was used to provide jet-exhaust simulation Engine nozzle pressure ratio was varied from 1.0 (jet off) to approximately 375 Author

N78-25067# National Technical Information Service Springfield Va

PARACHUTES AND DECELERATORS, VOLUME 2 BIBLIOGRAPHY WITH ABSTRACTS Progress Report, 1974 - Mar 1978

Guy E Habercom Jr Apr 1978 286 p Supersedes NTIS/PS-77/0317 NTIS/PS-76/0259 and NTIS/PS-75/224 (NTIS/PS-78/0320 NTIS/PS-77/0317 NTIS/PS-76/0259, NTIS/PS-75/224) Avail NTIS HC \$28 00/MF \$28 00 CSCL 01C

Citations describe devices such as towplates ballutes servoactuators patented mechanisms semiautomatic openers and release systems. This document discusses inflatable supersonic autorotor retrorocket and other structures Descent characteristics trajectories aerodynamic reefing shroud line and snatch forces and flare engineering are included Also presented are materials on flight testing models wind tunnel tests and computer aided design Applications are to target drone retrieval air drop and delivery coastal upwelling sewage water tracking and mine ventilation GRA

N78-25068*# Virginia Univ Charlottesville Research Labs for the Engineering Sciences SURVEY OF AIR CARGO FORECASTING TECHNIQUES

Final Report A R Kuhlthan and R S Vermuri May 1978 159 p refs (Contract NAS1-14908)

(NASA-CR-145329 UVA/528156/CE78/110) Avail NTIS HC A08/MF A01 CSCL 05A

Forecasting techniques currently in use in estimating or predicting the demand for air cargo in various markets are discussed with emphasis on the fundamentals of the different forecasting approaches References to specific studies are cited when appropriate The effectiveness of current methods is evaluated and several prospects for future activities or approaches are suggested Appendices contain summary type analyses of about 50 specific publications on forecasting and selected bibliographies on air cargo forecasting air passenger demand forecasting and general demand and modalsplit modeling

Author

N78-25069*# National Aeronautics and Space Administration Langley Research Center Langley Station Va

PRELIMINARY ANALYSIS OF HUB AND SPOKE AIR FREIGHT DISTRIBUTION SYSTEM

Allen H Whitehead Jr Apr 1978 36 p refs

(NASA-TM-72656) Avail NTIS HC A03/MF A01 CSCL 01C A brief analysis is made of the hub and spoke air freight distribution system which would employ less than 15 hub centers world wide with very large advanced distributed-load freighters providing the line-haul delivery between hubs. This system is

compared to a more conventional network using conventionallydesigned long-haul freighters which travel between numerous major airports. The analysis calculates all of the transportation costs including handling charges and pickup and delivery costs The results show that the economics of the hub/spoke system are severely compromised by the extensive use of feeder aircraft to deliver cargo into and from the large freighter terminals. Not only are the higher costs for the smaller feeder airplanes disadvantageous but their use implies an additional exchange of cargo between modes compared to truck delivery. The conventional system uses far fewer feeder airplanes and in many cases, none at all. When feeder aircraft are eliminated from the hub/spoke system however that system is universally more economical than any conventional system employing smaller line-haul aircraft Author

N78-25071*# National Aeronautics and Space Administration Ames Research Center, Moffett Field Calif

NASA AVIATION SAFETY REPORTING SYSTEM Quarterly Report, 1 Apr - 30 Jun 1977

Apr 1978 62 p Prepared in cooperation with Battelle Columbus Labs Mountain View Calif

(NASA-TM-78476 A-7373 QR-5) NTIS Avail HC A04/MF A01 CSCL 02A

Reports describing various types of communication problems are presented along with summaries dealing with judgment and decision making Concerns relating to the ground proximity warning system are summarized and several examples of true terrain proximity warnings are provided. An analytic study of reports relating to profile descents was performed. Problems were found to be associated with charting and graphic presentation of the descents with lack of uniformity of the descent procedures among facilities using them and with the flight crew workload engendered by profile descents particularly when additional requirements are interposed by air traffic control during the execution of the profiles. A selection of alert bulletins and responses to them were reviewed Author

N78-25077# Nationaal Lucht-en Ruimtevaartlaboratorium Amsterdam (Netherlands)

A NON-STATIONARY MODEL FOR ATMOSPHERIC TURBULENCE PATCHES FOR THE PREDICTION OF AIRCRAFT DESIGN LOADS

R Noback 19 Nov 1976 67 p refs (NLR-TR-76131-U ICAF-999) Avail NTIS HC A04/MF A01 A model for atmospheric turbulence is proposed. It is assumed that atmospheric turbulence appears in patches and that within the patches the turbulence can be described as a modulated Gaussian process Statistical properties of the model and of atmospheric turbulence are compared. Using data from various sources a probability distribution function for patch lengths was derived and the relation between patch intensity and patch length was investigated Author

N78-25078*# Kansas Univ Center for Research Inc Lawrence A STUDY OF COMMUTER AIRPLANE DESIGN OPTIMIZA-TION Status Report

Bob Van Keppel Han Eysink Jim Hammer Kevin Hawley Paul Meredith and J Roskam 12 May 1978 457 p refs (Grant NsG-2145)

(NASA-CR-157210 KU-FRL-313-5 SR-4) Avail NTIS HC A20/MF A01 CSCL 01C

The usability of the general aviation synthesis program (GASP) was enhanced by the development of separate computer subroutines which can be added as a package to this assembly of computerized design methods or used as a separate subroutine program to compute the dynamic longitudinal lateral-directional stability characteristics for a given airplane Currently available analysis methods were evaluated to ascertain those most appropriate for the design functions which the GASP computerized design program performs Methods for providing proper constraint and/or analysis functions for GASP were developed as well as the appropriate subroutines.

$\textbf{N78-25079}^{*} \#$ National Aeronautics and Space Administration Langley Research Center Langley Station Va

PRELIMINARY STUDY OF A LARGE SPAN-DISTRIBUTED-LOAD FLYING-WING CARGO AIRPLANE CONCEPT

Lloyd S Jernell May 1978 105 p refs (NASA-TP-1158 L-11943) Avail NTIS

(NASA-TP-1158 L-11943) Avail NTIS HC A06/MF A01 CSCL 01C

An aircraft capable of transporting containerized cargo over intercontinental distances is analyzed. The specifications for payload weight density and dimensions in essence configure the wing and establish unusually low values of wing loading and aspect ratio. The structural weight comprises only about 18 percent of the design maximum gross weight Although the geometric aspect ratio is 4.53 the winglet effect of the wing-tip-mounted vertical tails increase the effective aspect ratio to approximately 7.9 Sufficient control power to handle the large rolling moment of inertia dictates a relatively high minimum approach velocity of 315 km/hr (170 knots) The airplane has acceptable spiral Dutch roll and roll-damping modes A hardened stability augmentation system is required. The most significant noise source is that of the airframe. However, for both take-off and approach the levels are below the FAR-36 limit of 108 db The design mission fuel efficiency is approximately 50 percent greater than that of the most advanced currently operational large freighter aircraft. The direct operating cost is significantly lower than that of current freighters the advantage increasing Author as fuel price increases

N78-25080*# Sikorsky Aircraft Stratford Conn OIL-AIR MIST LUBRICATION FOR HELICOPTER GEARING Final Report

 F
 McGrogan
 Dec
 1976
 52 p
 refs

 (Contract NAS3-18538)
 (NASA-CR-135081
 SER-50959)
 Avail

 HC
 A04/MF
 A01
 CSCL
 01C

The applicability of a once-through oil mist system to the lubrication of helicopter spur gears was investigated and compared to conventional jet spray lubrication. In the mist lubrication mode cooling air was supplied at 366K (200 F) to the out of mesh location of the gear sets. The mist air was also supplied at 366K (200 F) to the radial position mist nozzle at a constant rate of 0 0632 mol/s (3 SCFM) per nozzle. The lubricant contained in the mist air varied between 32 - 44 cc/hour. In the recirculating jet spray mode the flow rate was varied between 1893 -2650 cc/hour Visual inspection revealed the jet spray mode produced a superior surface finish on the gear teeth but a thermal energy survey showed a 15 - 20% increase in heat generated The gear tooth condition in the mist lubrication mode system could be improved if the cooling air and lubricant/air flow ratio were increased. The test gearbox and the procedure used are Author described

N78-25081# Kaman Avidyne Burlington Mass

MODELING OF THE UH-1B TAIL BOOM FOR ANALYSIS BY THE NASTRAN COMPUTER PROGRAM Final Report, 19 Apr - 19 Oct 1976

Raffi P Yeghiayan Feb 1978 52 p

(Contract DAAD05-76-C-0763)

(AD-A052303 KA-TR-139 ARBRL-CR-00358) Avail NTIS HC A04/MF A01 CSCL 01/3

A representative tail boom of the UH-1B helicopter is modeled for dynamic structural analysis by the NASTRAN computer program. The finite-element model employs beam and plate elements to construct the structural model, which will subsequently be used to study the effects of simulated nuclear detonations subjecting the model to blast overpressure exposure with and without thermal effects. The lower mode shapes and frequencies of the structural model are generated and presented as a validation check. Author (GRA)

N78-25082# Cleveland Pneumatic Tool Co Ohio GRAPHITE COMPOSITE LANDING GEAR COMPONENT UPPER DRAG BRACE HARDWARE FOR F-15 AIRCRAFT Final Report, Jul 1975 - Jan 1977

	d Walter W Fricker		160 p
(Contract F33615-7	5-C-3152 AF Proj	1369)	
(AD-A052764	AFFDL-TR-77-88)	Avai	I NTIS
HC A06/MF A01	CSCL 01/3		

This report summarizes work performed to design fabricate and test a graphite epoxy composite material upper drag brace suitable for direct replacement of the current titanium upper drag brace for the F-15 aircraft landing gear assembly Design fabrication test procedures test results and failure analysis are presented in detail. The composite material brace failed at less than design load. The program established at the present time that drag braces and similar landing gear hardware can not be satisfactorily fabricated from graphite epoxy material for use as a direct replacement of existing metallic hardware in some applications. The volume and shape of available space in these direct replacement applications does not normally allow the use of optimum graphite epoxy material design and fabrication techniques. However as demonstrated by the successful development of a graphite epoxy side brace suitable for direct replacement of existing metallic hardware on the A-37B aircraft weight and cost saving applications to current aircraft are feasible Therefore each potential application must be individually evaluated. Work is required to improve analytical fabrication. and nondestructive inspection techniques for graphite epoxy materials It can be reasonably expected that current and future efforts by the Air Force industry and the educational community aimed at these improvements will increase the profitable application of graphite epoxy material to landing gear hardware Author (GRA)

N78-25083# Air Force Inst of Tech Wright-Patterson AFB Ohio School of Engineering

AN INVESTIGATION OF THE TRACKING PERFORMANCE OF THE FIRE FLY MANUAL DIRECTOR GUNSIGHT FOR AIR-TO-AIR GUNNERY M & Thesis

David L Frostman Dec 1977 179 p refs (AD-A053348 AFIT/GGC/EE/77-5) Avail NTIS HC A09/MF A01 CSCL 19/5

The tracking performance of the Fire Fly manual director gunsight is evaluated during the terminal phase of air-to-air gunnery using the F-106 aircraft as the test bed A digital simulation of the closed loop tracking task is performed. The multi-axis analytical pilot model is adapted for use in the F-106/Fire Fly gunsight simulation A set of nominal pilot model parameter values determined by root locus analysis is used in simulating the tracking performance of the Fire Fly gunsight against targets in constant altitude constant airspeed constant rate turns at bank angles of 30 60 and 70 degrees tracking error responses are found to have characteristics similar to those observed in the tracking responses obtained from man-in-the-loop simulation studies. The dependence of the tracking error responses on the pilot model parameter values is demonstrated by simulation runs in which several pilot model parameter values are varied GRA

N78-25084# Naval Air Test Center Patuxent River Md ENVIRONMENTAL REQUIREMENTS FOR SIMULATED HELICOPTER/VTOL OPERATIONS FROM SMALL SHIPS AND CARRIERS

NTIS

C W Woomer and R L Williams 12 Apr 1978 35 p refs (AD-A053078 NATC-TM-78-2-RW) Avail NTIS HC A03/MF A01 CSCL 05/9

Helicopter/VTOL operations from ships create demanding flying qualities and performance requirements. The environment in which takeoff and landing evolutions must occur has a significant influence on these tasks. Aircraft and simulator designers each in their own way must make appropriate provisions for environmental factors such as visual landing aids (VLA) ship motion turbulence relative wind and ground effect The paper discusses the specific requirements for the simulated environment to satisfactorily provide training for shipboard takeoff and landing. Test techniques to validate trainer fidelity in flying qualities performance and environmental simulation are discussed The specific subject of calligraphic visual systems is extensively covered including a report on the current state-of-theart as related to the at-sea environment. Finally, the utilization of a high-fidelity trainer is explored for research as well as for expanded fleet training GRA

N78-25085# Grumman Aerospace Corp Bethpage N Y DEMONSTRATION OF ACOUSTIC EMISSION SYSTEM FOR DAMAGE MONITORING OF FULL SCALE METALLIC AIRCRAFT STRUCTURES DURING FATIGUE TESTING Final Report, Aug 1976 - Jul 1977

Alan D Hencken and Charles R Horak Sep 1977 82 p (Contract F33615-76-C-3073) AFFDL-TR-77-87) (AD-A053108

Avail NTIS HC A05/MF A01 CSCL 01/3

This report describes the acoustic emission monitoring work performed on a full scale metallic aircraft wing carry through structure of the swing wing bomber type. The structure was monitored during fatigue testing with a Grumman developed system The program was designed to prove the feasibility of using a real time acoustic emission monitoring system to detect and locate crack propagation in a full scale complex airframe structure during fatigue cycling. The report includes a description of the Acoustic Emission System operation and the concepts of noise discrimination used on fatigue tests. The installation and monitoring techniques used on the fatigue test are described The test results the problems associated with monitoring the complex structure the conclusions and system monitoring recommendations are also discussed in this report Author (GRA)

N78-25086# Army Test and Evaluation Command Aberdeen Proving Ground Md

TEST OPERATIONS PROCEDURES PHYSICAL CHARAC-TERISTICS AVIATION MATERIAL

Roy L Miller 29 Nov 1977 15 p Supersedes the aviation portions of TOP-1-3-5

(AD-A053196 TOP-7-3-500 TOP-1-3-5) NTIS Avail HC A02/MF A01 CSCL 15/5

This document identifies testing methods and techniques necessary to determine the degree to which Army aviation materiel's physical characteristics are determined. Author (GRA)

N78-25087# Rockwell International Corp Los Angeles Calif PRELIMINARY DESIGN OF LOW-COST TITANIUM STRUC-TURE Final Report, Apr 1976 - Sep 1977

J K Pulley Sep 1977 160 p refs (Contract F33615-76-C-3066)

(AD-A053327 NA-77-389 AFFDL-TR-77-81) Avail NTIS HC A08/MF A01 CSCL 01/3

Results of a study program to evaluate the application of advanced titanium fabrication techniques to the Air Force B-1 bomber engine nacelle structure for improvements in cost and weight are presented. There are five items for the study. Two of them are primary structure one of which is a removable access panel. The remaining three items are secondary structure Superplastic forming with concurrent diffusion bonding including expanded sandwich were investigated Weight savings range up to 49 percent Potential weight savings are 362 pounds per aircraft Cost savings range up to 69 percent resulting in a potential savings of up to \$48 622 800 for 240 aircraft

Author (GRA)

N78-25088*# National Aeronautics and Space Administration Hugh L Dryden Flight Research Center Edwards Calif

AIR SPEED AND ATTITUDE PROBE Patent Application Merle A Economu inventor (to NASA) Filed 30 May 1978 13 p

(NASA-Case-FRC-11009-1 US-Patent-Appl-SN-910708) Avail NTIS HC A02/MF A01 CSCL 01D

A probe was designed which can be mounted on a data boom and extended in parallel with the longitudinal axis of symmetry of an aircraft to provide local air speed and aircraft attitude intelligence. The probe employs both static pressure and total pressure transducers mounted in a tubular body supported for wind induced angular displacement about an axis normally related to the longitudinal axis of the aircraft NASA

N78-25089* National Aeronautics and Space Administration Lewis Research Center Cleveland Ohio

GAS TURBINE ENGINE WITH RECIRCULATING BLEED Patent

Arthur P Adamson inventor (to NASA) (GE Cincinnati Ohio) Issued 11 Apr 1978 5 p Filed 14 Jun 1976 Sponsored by NASA

(NASA-Case-LEW-12452-1 US-Patent-4,083 181

US-Patent-Appl-SN-695513, US-Patent-Class-60-39 52

US-Patent-Class-60-226R) Avail US Patent Office CSCL 21E

Carbon monoxide and unburned hydrocarbon emissions in a gas turbine engine are reduced by bleeding hot air from the engine cycle and introducing it back into the engine upstream of the bleed location and upstream of the combustor inlet. As this hot inlet air is recycled the combustor inlet temperature rises rapidly at a constant engine thrust level. In most combustors, this will reduce carbon monoxide and unburned hydrocarbon emissions significantly. The preferred locations for hot air extraction are at the compressor discharge or from within the turbine whereas the preferred reentry location is at the compressor inlet Official Gazette of the U.S. Patent Office

N78-25090* National Aeronautics and Space Administration Lewis Research Center Cleveland Ohio

COUNTER PUMPING DEBRIS EXCLUDER AND SEPARA-**TOR** Patent

Lawrence P Ludwig inventor (to NASA) Issued 18 Apr 1978 5 p Filed 31 Mar 1976 Supersedes N76-20487 (14 - 11 p 1394)

(NASA-Case-LEW-11855-1 US-Patent-4 084 825

US-Patent-Appl-SN-672222 US-Patent-Class-277-25

US-Patent-Class-277-134) Avail US Patent Office CSCL 21E

A dirt separator and excluder for removing entrained debris from gas turbine shaft seals is described. A helical groove pattern is constructed on the rotating shaft with the pumping-pattern such that it tends to pump seal pressurizing gas toward the gas turbine seal. A second helical groove pattern is provided on the stationary housing or counter rotating member coaxial with the shaft and this pattern is designed to provide pumping in the direction opposite from that of the groove pattern on the shaft Gas with entrained debris entering this grooved area will be subjected to high centrifugal forces due to the swirl motion induced by the groove pattern and the rotation of the shaft This debris is centrifuged outwardly into the outer groove pattern on the housing or counter rotating member Because the outer groove pattern has a pumping direction opposite from that of the seal dirt is pumped away from the seal and can be collected in a suitable debris trap remote from the seal location

Official Gazette of the U.S. Patent Office

N78-25091 Ecole Polytechnique Federale de Lausanne (Switzerland) Inst de Thermique Appliquee

DEPOSITION OF FINE PARTICLES IN THE OPENING OF FILM-COOLED GAS TURBINE BLADES

Jean-Claude Mevillot Zurich Juris-Verlag 1975 197 p refs In FRENCH ENGLISH summary

(EPFL-ITA-2 ISBN-3-260-04048-X) Avail Juris-Verlag Sw Fr 16

The film cooled blades of high temperature gas turbines have tiny cooling air-openings on the blade surface which could eventually get blocked by deposition of fine particles contained in the hot gas formed e.g. in the combustion chamber. To study the risk of blockage two fundamental problems must be treated. The trajectories of the particles near the blades and in the cooling-air holes for which the impinging mass-rate is calculated for statistical distributions of the particle size and the problem of adhesion in order to decide whether the particle adheres or is repelled after impact are both studied. The governing parameters for both problems are defined together with the probable order of magnitude for application. All results are presented in a dimensionless manner in order to facilitate the transposition to any practical case. The theoretical results were verified on several experimental stands. As a result only the cooling holes near the leading hedge of blades risk being blocked by particles If the cooling air flows correctly little is to be feared from dry solid particles (carbon) Weaker particles existing e.g. during the starting of the combustion can be more dangerous In any case particles less than 1.5 diameter will not reach the cooling hole walls Author (ESA)

N78-25092*# Pennsylvania State Univ University Park Dept of Aerospace Engineering

RESEARCH ON THE STATICALLY THRUSTING PROPELLER Final Report, Mar 1970 - Jun 1978

Joseph J Eisenhuth Jun 1978 41 p refs

(Grant NGL-39-009-172)

(NASA-CR-157214) Avail NTIS HC A03/MF A01 CSCL 01A

Methods for calculating the induced flow at propeller blades were analyzed by treating the wake formation as an initial problem in time. An unsteady vortex lattice technique was applied to the wake formation and the vortex core size was studied. B B

N78-25093# National Aerospace Lab Tokyo (Japan) A HIGH-PRESSURE, SECTOR-SHAPED MODEL COMBUS-TOR TEST FACILITY FOR DEVELOPMENT OF TURBOFAN ENGINES

Kunio Suzuki Kenji Nishio Shoji Horiuchi Mamoru Koshinuma Yujiro Kabe and Kyuzo Ishihara Nov 1977 32 p refs In JAPANESE ENGLISH summary

(NAL-TR-517) Avail NTIS HC A03/MF A01

A high-pressure blow-down type turbine combustor test facility is reported that has a capacity of up to 30 atm of air from ambient temperature to 720 K. The test section can supply an airflow rate of either 10 kg/s in weight or 0.6 cu m/s in volume at the maximum. The combustor inlet temperature and pressure are independently regulated. Test duration is limited to between 60 and 100 seconds depending on the experimental condition. Control of the facility and experimental measurements are conducted by a minicomputer.

N78-25094# National Aerospace Lab Tokyo (Japan) ACOUSTICS AND PERFORMANCE OF HIGH-SPEED, UNEQUALLY SPACED FAN ROTORS

Shoichi Fujii Hideo Nishiwaki and Katsumi Takeda Feb 1977 20 p. refs. In JAPANESE ENGLISH summary

(NAL-TR-526) Avail NTIS HC A02/MF A01

The effects of uneven blade spacing on the acoustic and aerothermodynamic characteristics of high-speed high-pressureratio fan rotors were measured at two selected spacing configurations A test rig consisting of inlet guide vanes and transonic rotor blades was employed to explore the redistribution of harmonics sound energy into a series of multiple tones of lower sound pressure level. The measured data indicated that a 10 percent modulated rotor exhibited a six to eight decibel decrease in sound pressure level as compared with the original first blade passage frequency harmonic Disadvantages in aerodynamic performance resulting from spacing modulation were not unfavorable for 10 percent modulated blades. However with 5 percent modulated blades, serious deterioration in aerodynamic performance was observed particularly near the blade tip section which produced an unfavourable acoustic signature. A calculation method assuming a pulse event for each blade sound pressure provided agreeable results with the measured data Author N78-25095# National Mechanical Engineering Research Inst Pretoria (South Africa) Aeronautics Research Unit

PERFORMANCE TESTS AND DESIGN MODIFICATIONS OF A WANKEL TYPE ROTARY COMBUSTION AUTOMOBILE ENGINE IN ORDER TO DETERMINE ITS SUITABILITY FOR AIRCRAFT APPLICATION

E R Leeman A J VanWyk and I S Myburgh Jun 1977 19 p refs

(CSIR-ME-1521) Avail NTIS HC A02/MF A01

Performance tests and design modifications are reported for a standard production Mazda RX2 automobile engine of the Wankel type in order to make it suitable for aircraft applications Author

N78-25096# Maxwell Labs Inc Woburn Mass Utility Products Div

INDUCTOR NETWORK DEVELOPMENT FOR AIRCRAFT HIGH POWER SUPPLIES Final Report, Jan 1974 - Feb 1977

J Tenko R L Bryan S Ghoshroy L M Lontai and O K Sonju Apr 1977 248 \ensuremath{p}

(Contract F33615-74-C-20 AF Proj 3145)

(AD-A052750 AFAPL-TR-77-15) Avail NTIS HC A11/MF A01 CSCL 10/2

This report presents the results of a study program undertaken to perform a comparative analysis of several approaches to the generation of high electrical power by storing tens to hundreds of kilojoules of energy in a compact superconducting inductive system with efficient extraction in short bursts at high repetition rates The critical factors for the comparison were the weight volume dissipation and reliability of the system and components for various operating regimes characterized by pulse power repetition rate and pulse shape. Research and development work hitherto undertaken in the U.S. and abroad indicate the engineering feasibility of operating inductive storage systems storing ten to perhaps one hundred kilojoules of energy with extraction rates of tens of pulses per second at pulse durations of the order of a few hundred microseconds with state-of-the-art technology The major effort of this study was directed towards developing analytical tools to predict the performance of superconducting coils at repetition rates of 100 - 1000 pps with pulse discharge times of 20 - 40 microseconds and to evaluate the relative merits of different circuit configurations for storage and extraction of energy at high average power (3 - 10 MW) At frequencies of a few hundred pulses per second it appears that inductive storage has a distinct advantage over capacitive storage at power levels of the order 1 - 10 MW GRA

N78-25097# McDonnell Aircraft Co St Louis Mo VARIABLE CYCLE ENGINE EVALUATIONS FOR SUPER-SONIC V/STOL FIGHTERS PHASE 2 AND 3 TECHNICAL REPORT Final Report, Jun 1975 - Mar 1978 J E Cupstid and D G Glennie Apr 1978 153 p refs

(Contract N00140-75-C-0034)

(AD-A053361) Avail NTIS HC A08/MF A01 CSCL 21/5 Variable cycle engines (VCE) have been evaluated using advanced V/STOL fighter designs The VCE payoffs were assessed in terms of total weapon system cost effectiveness and results indicate that they offer potential benefits in supersonic V/STOL fighters A systematic engine/airframe evaluation procedure was developed and used to assess interactions for advanced engine concepts in L - L/C aircraft designs. The evaluation procedure provides a rapid and inexpensive technique for evaluating engine concepts considering a large matrix for engine and airframe design and sizing variables. The procedure was used to establish a parametric data base using both fixed cycle turbofans and variable geometry turbine turbojets Specific engine/airframe designs were then selected for detailed comparisons Engine/airframe design evaluations were also conducted using a variable cycle turbofan engine capable of being used with both L - L/C and L/C aircraft These aircraft designs were compared to the fixed cycle turbofan and variable geometry turbine turbojet aircraft designs in terms of TOGW performance life cycle cost and operational flexibil-Author (GRA) itv

N78-25098# McDonnell Aircraft Co St Louis Mo VARIABLE CYCLE ENGINE EVALUATIONS FOR SUPER- SONIC V/STOL FIGHTERS MANAGEMENT SUMMARY **REPORT** Final Summary Report, Jun 1975 - Mar 1978 J E Cupstid and D G Glennie Apr 1978 58 p refs (Contract N00140-75-C-0034)

(AD-A053362) Avail NTIS HC A04/MF A01 CSCL 21/5 For abstract see N78-25097

N78-25099# National Technical Information Service, Springfield Va

AIRCRAFT SONIC BOOM EFFECTS ON BUILDINGS A BIBLIOGRAPHY WITH ABSTRACTS Progress Report, 1964 - Feb 1978

Guy E Habercom Jr Mar 1978 77 p Supersedes NTIS/PS-77/ 0219 NTIS/PS-77/0176 2 Vol (NTIS/PS-78/0239 NTIS/PS-77/0219 NTIS/PS-76/0176)

Copyright Avail NTIS HC \$28 00/MF \$28 00 CSCL 20A

Research findings are cited on the effects of sonic booms on buildings structural components forms windows and walls Test-house investigations are included along with damage analysis and vibration response. Documentation is made on residential buildings. Other topics contained in the volume range from theory to failure analysis. Sonic boom propagation and effects on biological forms including human responses are cited in separate bibliographies GRA

N78-25100# National Technical Information Service Springfield Va

AIRCRAFT SONIC BOOM STUDIES ON AIRCRAFT FLIGHT, AIRCRAFT DESIGN, AND MEASUREMENT A BIBLIOGRAPHY WITH ABSTRACTS Progress Report, 1964 - Feb 1978

Guy E Habercom Jr Mar 1978 187 p Supersedes NTIS/PS-77/0218 NTIS/PS-76/0175 2 Vol (NTIS/PS-78/0238 NTIS/PS-77/0218 NTIS/PS-76/0175)

Copyright Avail NTIS HC \$2800/MF \$2800 CSCL 20A The reports discuss aerodynamic design of aircraft and wings flight characteristics and maneuvers supersonic transport characteristics acoustic fields and noise measurement government policies and regulations meteorological parameters shock waves and supersonic and hypersonic wind tunnel tests along with other theoretical and general investigations. Structural and biological effects are documented in separate published searchers GRA

N78-25101*# National Aeronautics and Space Administration Langley Research Center Langley Station Va

MODAL CONTROL THEORY AND APPLICATION TO AIRCRAFT LATERAL HANDLING QUALITIES DESIGN S Srinathkumar Jun 1978 63 p refs

(NASA-TP-1234 L-12177) Avail NTIS HC A04/MF A01 CSCL 01C

A multivariable synthesis procedure based on eigenvalue/ eigenvector assignment is reviewed and is employed to develop a systematic design procedure to meet the lateral handling qualities design objectives of a fighter aircraft over a wide range of flight conditions The closed loop modal characterization developed provides significant insight into the design process and plays a pivotal role in the synthesis of robust feedback systems. The simplicity of the synthesis algorithm yields an efficient computer aided interactive design tool for flight control system synthesis Author

N78-25135*# National Aeronautics and Space Administration Langley Research Center Langley Station Va ENVIRONMENTAL EFFECTS ON COMPOSITES FOR

AIRCRAFT

Richard A Pride May 1978 24 p refs Presented at CTOL Transport Technol Conf Hampton Va 28 Feb - 3 Mar 1978 Published in NASA-CP-2036

(NASA-TM-78716 L-12288) Avail NTIS HC A02/MF A01 CSCL 11D

A number of ongoing long-term environmental effects programs for composite materials are evaluated. The flight service experience was evaluated for 142 composite aircraft components after more than 5 years and 1 million successful component flight hours Ground-based outdoor exposures of composite material coupons after 3 years of exposure at 5 sites have reached equilibrium levels of moisture pickup which are predictable. Solar ultraviolet-induced material loss is discussed for these same exposures. No significant degradation was observed in residual strength for either stressed or unstressed specimens or for exposures to aviation fuels and fluids Author

N78-25199# Nationaal Lucht-en Ruimtevaartlaboratorium Amsterdam (Netherlands)

HEAT TREATMENT STUDIES OF ALUMINUM ALLOY TYPE 7050 FORGINGS THE EFFECT OF HEAT TREATMENT ON A VARIETY OF ENGINEERING PROPERTIES Interim Report

L Schra and H P vanLeeuwen 19 Jan 1976 131 p (NLR-TR-76008-U IR-2) Avail NTIS HC A07/MF A01

The effect of variety of heat treatments on various engineering properties was studied with the aim to derive an optimum heat treatment. The engineering properties comprised Vickers hardness short-time tensile strength fatigue crack propagation resistance fracture toughness and stress corrosion resistance The test results were compared with those obtained in earlier investigations on the older forging alloys of American and British origin 7079 and DTD 5024 and on the newly developed German forging alloy AZ74.61 The performance of the alloy 7050 proved to be generally superior to that of AZ74 61 and far superior to that of 7079 and DTD 5024 However it was found that quenching in boiling water leads to relatively inferior fracture toughness and stress corrosion properties while in the SCC resistant condition the alloy proved to be very susceptible to general corrosive attack if exposed to an aggressive environment Author

N78-25235*# Gordian Associates Inc. New York COMPUTER MODEL FOR REFINERY OPERATIONS WITH EMPHASIS ON JET FUEL PRODUCTION VOLUME 3 **DETAILED SYSTEMS AND PROGRAMMING DOCUMENTA-TION Final Report**

Daniel N Dunbar and Barry G Tunnah 27 Jun 1978 53 p (Contract NAS3-20620)

(NASA-CR-135335 Rept-1099-1-Vol-3) NTIS Avail HC A04/MF A01 CSCL 21D

The FORTRAN computing program predicts flow streams and material energy and economic balances of a typical petroleum refinery, with particular emphasis on production of aviation turbine fuels of varying end point and hydrogen content specifications The program has a provision for shale oil and coal oil in addition to petroleum crudes. A case study feature permits dependent cases to be run for parametric or optimization studies by input of only the variables which are changed from the base case Author

N78-25239# Exxon Research and Engineering Co Linden N J Government Research Lab

EVALUATION OF METHODS TO PRODUCE AVIATION TURBINE FUELS FROM SYNTHETIC CRUDE OILS, PHASE 3, VOLUME 3 Final Report, 24 Apr 1976 - 30 Apr 1977 William F Taylor J L Kaufman E C Brown A R Cunningham and C A Smith Jun 1977 88 p refs (Contract F33615-74-C-2036 AF Proj 3048) (AD-A053106 EXXON/GRU 3PEA 77-Vol-3 AFAPL-TR-75-10-Vol-3) Avail NTIS HC A05/MF A01 CSCL 21/4

An engineering planning study was made of the effect of processing shale oil in a refinery processing both shale oil and petroleum to a full product slate including jet fuel. This study was part of an overall program whose object was to investigate the feasibility of producing aviation turbine fuels from synthetic crude oils. In this Phase 3 engineering planning study the results and conclusions of the Phase 1 state-of-the-art assessment and Phase 2 pilot plant experimental study were further investigated The Exxon RESCUE Linear Program for Refinery Planning was used to provide a framework for the analysis The study which involved a number of arbitrary but well-defined assumptions was done in the context of a grass roots refinery processing shale oil and petroleum in segregated operations. Shale oil processing was restricted to distillation and hydrotreating of the kerosene and gas oil fractions whereas petroleum processing involved a full spectrum of refinery processes with a relatively high level of conversion of heavier fractions to lighter fractions GRA to meet a high motor gasoline demand

N78-25240# Exxon Research and Engineering Co Linden N J Government Research Lab

ALTERNATE FUELS NITROGEN CHEMISTRY Final Technical Report, 19 Oct 1976 - 20 Oct 1977

John W Frankenfeld and William F Taylor Nov 1977 62 p refs

(Contract N00019-76-C-0675)

(AD-A053299 EXXON/GRUS 1KWC 77) Avail NTIS HC A04/MF A01 CSCL 21/4

An investigation of the effects of nitrogen compounds on sediment formation was initiated. Several different nitrogen compounds were studied-including 2.5-dimethylpyrrole indole carbazole and a number of aromatic and aliphatic amines. The diluent employed was purified n-decane All of the compounds caused darkening of the fuel although appreciable amounts of sediment were formed only with the pyrrole derivatives. The sediment formation was found to be strongly catalyzed by light and by organic acids. Some phenols retarded the sedimentation A start was made toward characterizing the sediment obtained from 2.5-dimethylpyrrole. It appeared to be a low molecular weight oligomer of partially oxidized pyrrole units Author (GRA)

N78-25359*# Aeronautical Research Associates of Princeton Inc N J

APPLICATION OF SECOND-ORDER TURBULENT MODEL-ING TO THE PREDICTION OF RADIATED AERODYNAMIC SOUND

Alan J Bilanin and Joel E Hirsh Jun 1978 76 p refs (Contract NAS2-8832)

(NASA-CR-2994) Avail NTIS HC A05/MF A01 CSCL 20D The Ribner formulation of the generation of aerodynamic sound is coupled with predictions of second-order velocity correlations and integral scale to estimate the sound radiated from several complicated jet flows. In particular it is shown that the sound radiated from a cold swirling jet is greater than from its nonswirling equal thrust counterpart. The noise radiated from the flow field of a multitube suppressor was estimated and compared with an equal thrust diameter Gaussian jet. It is Author shown that the multitube concept is indeed quieter

N78-25453# National Aerospace Lab Tokyo (Japan) Second Airframe Div

RELATIONSHIP BETWEEN SCATTER OF FATIGUE LIFE AND S-N CURVE OF 2024-T4 AIRCRAFT STRUCTURAL ALUMINUM ALLOY SPECIMENS WITH A SHARP NOTCH (Kt EQUALS 825) UNDER A CONSTANT TEMPERATURE AND HUMIDITY CONDITION

Toshiyuki Shimokawa and Yasumasa Hamaguchi Oct 1977 14 p refs Repr from J of the Japanese Soc for Strength and Fracture of Mater (Japan) v 10 no 2 1975 (NAL-TR-412T) Avail NTIS HC A02/MF A01

The accumulated effect of all factors producing fatigue life scatter which is found in a fatigue test by nominally identical specimens subjected to nominally identical repeated stresses is regarded as an error in applied stress. Equivalent stress is defined as the sum of applied stress and the error in applied stress This concept is used for analyzing the results of a series of fatigue tests on aircraft structural aluminum alloy specimens with a sharp notch under a constant temperature and humidity condition The interrelationship between scatter of equivalent stress and fatigue life scatter is discussed. It is shown that equivalent stresses are distributed in almost normal distribution and their standard deviation is nearly constant regardless of stress level and that fatigue life distribution has a strong correlation to the slope and shape of S-N curve Author

N78-25454# Technion - Israel Inst of Tech Haifa Dept of Aeronautical Engineering

THE DAMAGE SUM IN FATIGUE OF STRUCTURE COMPO-NENTS

Alfred Buch 1978 15 p refs Repr from Eng Fracture Mech (England) v 10 1978 p 233-247 (ICAF-1032) Avail NTIS HC A02/MF A01

The effect of loading spectrum parameters and type of tested specimen was studied from the viewpoints of deviations from Miner's rule and of the value of the minimum cycle ratio sum at failure A minimum cycle sum may be chosen for sufficiently high values of spectrum parameters sigma max and sigma min The increase of the cycle ratio sum with the parameters of the spectrum is connected with the effect of increased strain hardening and residual compressive stresses. Some complex effects of sigma max and of the failure stress level on the damage sum were observed which cannot be explained by the residual stress concept A normal and a reversed loading sequence effect was established in two-stress level tests Author

N78-25455# Israel Aircraft Industries Ltd Lod ANALYTICAL AND EXPERIMENTAL FATIGUE PROGRAM FOR THE KFIR MAIN AND NOSE LANDING GEARS

B Abraham 1977 7 p refs Repr from Israel J of Tech (Israel) v 15 1977 p 70-78 Presented at the 19 ISR Ann Conf on Aviation and Astronautics Israel 1977 Avail NTIS HC A02/MF A01

The fatigue program began in the detail phase next came the development of loading spectra used for analysis and test A fatigue analysis was then performed for several suspected critical locations on both gears. A flight-by-flight test was performed on both landing gears with the aim of demonstrating four service lifetimes of operation. Design modifications were introduced based on the results of these tests. Rational inspection and replacement intervals were established for the main and

nose gear some of which require monitoring of aircraft. Author

N78-25466# Naval Postgraduate School Monterey Calif AN EXPERIMENTAL STUDY TO DETERMINE THE REDUC-TION IN ULTIMATE BENDING MOMENT OF A COMPOSITE PLATE DUE TO AN INTERNAL DELAMINATION M S Thesis

Robert Gary Sprigg Dec 1977 38 p refs

(AD-A052662) Avail NTIS HC A03/MF A01 CSCL 20/11 The purpose of this study was to determine experimentally the effects of internal delaminations in a graphite-epoxy composite plate on the plate's ultimate bending moment. The experiments were conducted using 4 inch by 7 inch specimens with a balanced 0 or - 45 90, 8 ply layup. The delaminations were created by inserting a thin teflon disc between two lamina during layup preparation. The location of the disc i e delamination was varied in each test and two disc sizes were considered. The test results revealed that delaminations located near an outer surface resulted in a greater reduction in the ultimate moment than those located near the center of the layup Furthermore the reduction in ultimate bending moment was found to be independent of the disc size. The tendency for the internal delaminations to propagate at relatively low load levels was observed and recorded Author (GRA) N78-25545*# National Aeronautics and Space Administration Langley Research Center Langley Station Va

PROGRESS ON COAL-DERIVED FUELS FOR AVIATION SYSTEMS

Robert D Witcofski May 1978 27 p refs Presented at CTOL Transport Technol Conf Hampton Va 28 Feb - 3 Mar 1978 Published in NASA-CR-2036

(NASA-TM-78696 L-12275) Avail NTIS HC A03/MF A01 CSCL 21D

Synthetic aviation kerosene (Syn Jet-A) liquid methane (LCH4) and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels Liquid hydrogen aircraft configurations their fuel systems and their ground requirements at the airport are identified These aircraft appear viable particularly for long haul use, where aircraft fueled with coal derived LH2 would consume 9 percent less coal resources than would aircraft fueled with coal derived LH2 would consume of manufacture to airports may pose problems Synthetic JET-A would appear to cause fewer concerns to the air transportation industry Of the three candidate fuels LCH4 is the most energy efficient to provide both the most efficient utilization of coal resources and the least expensive ticket as well

N78-25787# National Technical Information Service Springfield Va

AEROSPACE COMPUTER SYSTEMS PART 1 AVIONICS APPLICATIONS, VOLUME 2 A BIBLIOGRAPHY WITH ABSTRACTS Progress Report, 1976 - Jan 1978

William E Reed Mar 1978 208 p Supersedes NTIS/PS-77/ 0126, NTIS/PS-76/0042

(NTIS/PS-78/0289, NTIS/PS-77/0126 NTIS/PS-76/0042) Copyright Avail NTIS HC \$28.00/MF \$28.00 CSCL 09B

This updated bibliography contains 203 abstracts of research reports on onboard data processing equipment as well as navigation and guidance computers for aircraft applications Fifty-two of the abstracts are new entries to the previous edition Author

N78-25827*# Avco Lycoming Div, Stratford Conn YF 102 IN-DUCT COMBUSTOR NOISE MEASUREMENT, VOLUME 1 Final Report, 24 Jul 1976 - 31 Aug 1977 Craig A Wilson Nov 1977 72 p refs 3 Vol (Contract NAS3-20052)

(NASA-CR-135404-Vol-1 LYC-77-56-Vol-1) Avail NTIS HC A04/MF A01 CSCL 20A

The combustion chamber from a YF 102 gas turbine engine was instrumented with semi-infinite acoustic wave guide probes and installed in a test rig to complement the combustor noise test. These combustor rig tests are described and the recorded data are listed. Internal dynamic pressure level measurements were made at the same locations and at the same operating conditions of the NASA YF 102 test. In addition, the combustor was operated at various off-designed points where one parameter at a time was varied. Background noise recordings were made to determine the magnitude of facility or test rig noise present Author

N78-25829*# Avco Lycoming Div Stratford Conn YF 102 IN-DUCT COMBUSTOR NOISE MEASUREMENT, VOLUME 3 Final Report Craig A Wilson Nov 1977 194 p 3 Vol (Contract NAS3-20052) (NASA-CR-135404-Vol-3, LYC-77-56-Vol-3) Avail NTIS HC A09/MF A01 CSCL 20A

For abstract see N78-25827

N78-25831*# United Technologies Research Center East Hartford, Conn

EXPERIMENTAL ASSESSMENT OF THEORY FOR REFRAC-TION OF SOUND BY A SHEAR LAYER Final Report

Robert H Schlinker and Roy K Amiet Jun 1978 122 p refs (Contract NAS1-14973)

(NASA-CR-145359) Avail NTIS HC A06/MF A01 CSCL 20A

The refraction angle and amplitude changes associated with sound transmission through a circular open-jet shear layer were studied in a 0.91 m diameter open jet acoustic research tunnel Free stream Mach number was varied from 01 to 04 Good agreement between refraction angle correction theory and experiment was obtained over the test Mach number frequency and angle measurement range for all on-axis acoustic source locations For off-axis source positions good agreement was obtained at a source-to-shear layer separation distance greater than the jet radius. Measureable differences between theory and experiment occurred at a source-to-shear layer separation distance less than one jet radius. A shear layer turbulence scattering experiment was conducted at 90 deg to the open jet axis for the same free stream Mach numbers and axial source locations used in the refraction study. Significant discrete tone spectrum broadening and tone amplitude changes were observed at open jet Mach numbers above 0.2 and at acoustic source frequencies greater than 5 kHz. More severe turbulence scattering was observed for downstream source locations Author

N78-25832*# Massachusetts Inst of Tech Cambridge Fluid Dynamics Research Lab

THE EFFECT OF TIP VORTEX STRUCTURE ON HELICOPTER NOISE DUE TO BLADE/VORTEX INTERACTION

Thomas L Wolf and Sheila E Widnall Mar 1978 94 p refs (Grant NsG-2142)

(NASA-CR-152150 MIT-78-2) Avail NTIS HC A05/MF A01 CSCL 20A

A potential cause of helicopter impulsive noise commonly called blade slap is the unsteady lift fluctuation on a rotor blade due to interaction with the vortex trailed from another blade The relationship between vortex structure and the intensity of the acoustic signal is investigated. The analysis is based on a theoretical model for blade/vortex interaction. Unsteady lift on the blades due to blade/vortex interaction is calculated using linear unsteady aerodynamic theory and expressions are derived for the directivity, frequency spectrum and transient signal of the radiated noise. An inviscid rollup model is used to calculate the velocity profile in the trailing vortex from the spanwise distribution of blade tip loading A few cases of tip loading are investigated and numerical results are presented for the unsteady lift and acoustic signal due to blade/vortex interaction. The intensity of the acoustic signal is shown to be quite sensitive to changes in tip vortex structure Author

N78-25840# National Technical Information Service Springfield Va

NONLINEAR ACOUSTICS A BIBLIOGRAPHY WITH ABSTRACTS Progress Report, 1966 - Feb 1978

George W Reimherr Mar 1978 141 p Supersedes NTIS/PS-77/0203 NTIS/PS-76/0235 NTIS/PS-75/351 COM-74-10868

(NTIS/PS-78/0240 NTIS/PS-77/0203 NTIS/PS-76/0235 NTIS/PS-75/351 COM-74-10868) Copyright Avail NTIS HC \$28 00/MF \$28 00 CSCL 20A

This updated bibliography contains 135 abstracts 18 of which are new entries to the previous edition Topics covered include nonlinear acoustic theory and applications to sound transmission in the atmosphere underwater solids liquids and gases Nonlinear relationships are presented for shock tubes, sonar equipment sonic booms acoustic defectors sound generators acoustic delay lines porous materials pipes ducts and jet engine noise GRA N78-25966*# City Coll of the City Univ of New York AN ADAPTIVE LEARNING CONTROL SYSTEM FOR AIRCRAFT

Ralph Mekel and Solomon Nachmias Apr 1978 222 p refs (Grant NsG-1169) (NASA-CR-156930) Avail NTIS HC A10/MF A01 CSCL

05A

A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition, (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in Author flight conditions

N78-25970# Defense Systems Management School Fort Belvoir Va

DOCTRINE VERSUS CAPABILITIES A PROJECT MANAG-ER'S DILEMMA WITH THE CH-47 HELICOPTER

Billy V Genter Nov 1977 37 p refs (AD-A052376 PMC-77-2) Avail NTIS HC A03/MF A01 CSCL 01/3

This report examines an existing dilemma facing the CH-47 Modernization PM The dilemma is the conflict between the tactical doctrine and the CH-47 external load capabilities including the near term modernized capabilities. The external load limitations are defined and future technology to improve the CH-47 capabilities is identified. Two promising external load carrying concepts are highlighted. The primary recommendation is for the user to question if the external load NOE all weather day-night Author (GRA) capability is a valid requirement

N78-25974# Air Force Inst of Tech Wright-Patterson AFB Ohio School of Engineering

A STUDY OF THE F-4 PROGRAM MANAGEMENT RESPON-SIBILITY TRANSFER (PMRT) FROM THE AIR FORCE SYSTEMS COMMAND TO THE LOGISTICS COMMAND M S Thesis

Wesley K Darrell Dec 1977 155 p refs (AD-A052903 AFIT/GSM/SM/77D-19) Avail

NTIS HC A08/MF A01 CSCL 01/3

The increasing costs of weapon systems have created a demand for more efficient program management. The Air Force organizational structure for acquiring and supporting weapon systems results in two commands sharing this responsibility. The Air Force Systems Command is responsible for research development procurement and production The Air Force Logistics Command is responsible for supply maintenance and other logistical support. Program management responsibility transfers from the Systems Command to the Logistics Command at some point in the acquisition cycle. This transition has in the past resulted in confusion duplication and fragmented responsibility. In an effort to provide for more efficient program management during program transition the Program Management Responsibility Transfer concept was initiated in 1975 The F-4 program was the first program to transfer under this new concept The purpose of this study is to provide a critical analysis of the new transfer process through a study of the F-4 transfer GRA

N78-25979*# Stanford Univ Calif Dept of Civil Engineerina

AIR FREIGHT DEMAND MODELS AN OVERVIEW

Jarir S Dajani and Gerald W Bernstein May 1978 31 p refs

(NCAZ-OR745-720)

Avail NTIS HC A03/MF A01 CSCL (NASA-CR-152148) 05C

A survey is presented of some of the approaches which have been considered in freight demand estimation. The few existing continuous time computer simulations of aviation systems. are reviewed with a view toward the assessment of this approach as a tool for structuring air freight studies and for relating the different components of the air freight system. The variety of available data types and sources without which the calibration validation and the testing of both modal split and simulation models would be impossible are also reviewed Author

N78-25985*# United Technologies Research Center East Hartford Conn

APPLICATIONS OF ADVANCED TRANSPORT AIRCRAFT IN DEVELOPING COUNTRIES Contractor Report, Mar 1977 - Apr 1978

F W Gobetz R J Assarabowski and A A LeShane May 1978 340 p refs

(Contract NAS1-14795)

(NASA-CR-145343 R78-912839-14) NTIS Avail HC A15/MF A01 CSCL 05A

Four representative market scenarios were studied to evaluate the relative performance of air-and surface-based transportation systems in meeting the needs of two developing contries Brazil and Indonesia which were selected for detailed case studies The market scenarios were remote mining low-density transport tropical forestry and large cargo aircraft serving processing centers in resource-rich remote areas. The long-term potential of various aircraft types together with fleet requirements and necessary technology advances is determined for each application. Author

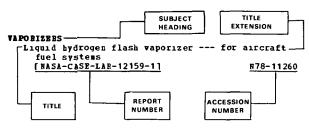
N78-25986*# Delco Electronics Santa Barbara Calif ELECTROMECHANICAL FLIGHT CONTROL ACTUATOR, VOLUME 2 Final Report Jan 1978 192 p 3 Vol (Contract NAS9-14952) R78-1-Vol-2) (NASA-CR-151734 NTIS Avail HC A09/MF A01 CSCL 13F

Schematic diagrams are given for both the four-channel electromechanical actuator and the single-channel power electronics breadboard. Detailed design data is also given on the gears used in the differential gearbox and a copy of the operations manual for the system is included. Performance test results are given for the EMA motor and its current source indicator the drive control electronics and the overall system The power converter waveform test results are also summarized Author

N78-25987*# Delco Electronics Santa Barbara Calif ELECTROMECHANICAL FLIGHT CONTROL ACTUATOR, **VOLUME 3** Final Report

Jan 1978 188 p 3 Vol (Contract NAS9-14952) (NASA-CR-151735

R78-1-Vol-3) Avail NTIS HC A09/MF A01 CSCL 13F


The design verification tests which were conducted on the electromechanical actuator are described. A description is also given of the power components tests which were conducted to aid in selecting the power transistors for use in the single-channel power electronics breadboard and the results of tests which were conducted on the power electronics breadboard Author

SUBJECT INDEX

AERONAUTICAL ENGINEERING / A Continuing Bibliography (Suppl 100)

SEPTEMBER 1978

Typical Subject Index Listing

The title is used to provide a description of the subject matter. When the title is insufficiently descriptive of the document content a title extension is added separated from the title by three hyphens. The NASA or AIAA accession number is included in each entry to assist the user in locating the abstract in the abstract section of this supplement. If applicable, a report number is also included as an aid in identifying the document.

Α

23	
ABSORPTION SPECTROSCOPY	
An atomic fluorescence system using a cont:	auua
source for the rapid determination of weat	IT
metals in jet engine lubricating oils	
FAD-A0527211	N78-24320
ABSTRACTS	
Parachutes and decelerators, volume 2. A	
bibliography with abstracts	
[NTIS/PS-78/0320]	N78-25067
ACOUSTIC EMISSION	
Can fatigue cracks be detected in an early	stage
by acoustic emission? Application to high	7h
resistance light alloys used in aeronaut	.cs
A-0461, A-026N T6	
[AAAF-NT-77-35]	N78-24587
Demonstration of acoustic emission system f	or
damage monitoring of full scale metallic	
aircraft structures during fatigue testin	a
[AD-A053108]	N78-25085
ACOUSTIC HEASUREHENTS	
Acoustic evaluation of a novel swept-rotor	fan →
noise reduction in turbofan engines	
[NASA-TM-78878]	N78-24897
ACOUSTIC PROPERTIES	110 14051
Powered-Lift Aerodynamics and Acoustics	
conferences	
(NASA-SP-406]	N78-24046
ACOUSTIC SCATTERING	N/6 24040
Experimental assessment of theory for refra	ct lon
of sound by a shear layer	
(NASA-CR-145359]	N78-25831
ACOUSTICS	110-2001
Acoustic design of the QCSEE propulsion sys	*****
ACOUSTIC design of the QCSEE propulsion sys	N78-24067
We have a second of a bible second which a	
Nonlinear acoustics. A bibliography with a [NTIS/PS-78/0240]	N78-25840
ACTUATORS	
ACTUATORS Electromechanical flight control actuator,	volume 2
ACTUATORS Electromechanical flight control actuator, [NASA-CB-151734]	volume 2 N78-25986
ACTUATORS Electromechanical flight control actuator, [NASA-CR-151734] Electromechanical flight control actuator,	volume 2 N78-25986 volume 3
ACTUATORS Electromechanical flight control actuator, [NASA-CR-151734] Electromechanical flight control actuator, [NASA-CR-151735]	volume 2 N78-25986
ACTUATORS Electromechanical flight control actuator, [NASA-CE-151734] Electromechanical flight control actuator, [NASA-CE-151735] ABROACOUSTICS	volume 2 N78-25986 volume 3 N78-25987
ACTUATORS Electromechanical flight control actuator, [NASA-CR-151734] Electromechanical flight control actuator, [NASA-CR-151735] AEROACOUSTICS Powered-Lift Aerodynamics and }coustics	volume 2 N78-25986 volume 3 N78-25987
ACTUATORS Electromechanical flight control actuator, [NASA-CR-151734] Electromechanical flight control actuator, [NASA-CR-151735] AEROACOUSTICS Powered-Lift Aerodynamics and }coustics conferences	volume 2 N78-25986 volume 3 N78-25987
ACTUATORS Electromechanical flight control actuator, [NASA-CE-151734] Electromechanical flight control actuator, [NASA-CE-151735] ABCOACOUSTICS Powered-Lift Aerodynamics and }coustics conferences [NASA-SP-406]	volume 2 N78-25986 volume 3 N78-25987
ACTUATORS Electromechanical flight control actuator, [NASA-CB-151734] Electromechanical flight control actuator, [NASA-CR-151735] AEROACOUSTICS Powered-Lift Aerodynamics and }coustics conferences [NASA-SP-406] Accoustics and aerodynamics of over-the-wing	volume 2 N78-25986 volume 3 N78-25987
ACTUATORS Electromechanical flight control actuator, [NASA-CE-151734] Electromechanical flight control actuator, [NASA-CE-151735] ABCOACOUSTICS Powered-Lift Aerodynamics and }coustics conferences [NASA-SP-406]	volume 2 N78-25986 volume 3 N78-25987 N78-24046 ; thrust
ACTUATORS Electromechanical flight control actuator, [NASA-CB-151734] Electromechanical flight control actuator, [NASA-CR-151735] AEROACOUSTICS Powered-Lift Aerodynamics and }coustics conferences [NASA-SP-406] Accoustics and aerodynamics of over-the-wing	volume 2 N78-25986 volume 3 N78-25987

AERODYNAMIC CHARACTERISTICS Discussion of results of studies on the design of laminar airfoils for stunt gliders A78-36204 Remarks on design of supersonic wind tunnels A78-36216 Flight experiments on aerodynamic features affecting helicopter blade design 178-36949 Wind tunnel tests of a slotted flapped wing section 178-37537 Aerodynamics of the annular wind A78-38475 Local method in rarefied gas aerodynamics 178-38726 Prediction of the aerodynamic characteristics of an aircraft on the basis of the comparison of results for a calibration model in various large transonic wind tunnels [ONERA, TP NO. 1978-22] Aerodynamic preliminary analysis system. A78-39579 Part 2: User's manual and program description [NASA-CR-145300] N78-24043 Powered-Lift Aerodynamics and Acoustics -conferences N78-24046 [NASA-SP-406] Summary of low-speed aerodynamic characteristics of upper-surface-blown jet-flap configurations N78-24050 Comparison of aerodynamic theory and experiment for jet-flap wings N78-24052 Aerodynamic characteristics in ground proximity N78-24055 Theoretical predictions of jet interaction effects for USB and OWB configurations N78-24059 Wind-tunnel investigation of basic aerodynamic characteristics of a supercritical-wing research airplane configuration [NASA-TM-X-2470] Aerodynamic characteristics of an NASA N78-24078 supercritical-wing research airplane model with and without fuselage area-rule additions at Mach 0.25 to 1.00 [NASA-TM-X-2633] N78-24080 Experimental investigation of aerodynamic characteristics of a tracked ram air cushion vehicle N78-24099 [PB-277674] Fundamental aspects of the aerodynamics of turbojet engine combustors [NASA-TM-75287] N78-24142 Aerodynamic characteristics at Mach number 0.2 of a wing-body concept for a hypersonic research aırplane FNASA-TP-11891 N78-25059 Effects of spanwise nozzle geometry and location on the longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration at subsonic speeds [NASA-TP-1215] N78-25060 Preliminary study of a large span-distributed-load flying-wing cargo airplane concept [NASA-TP-1158] N7.8-25079 Acoustics and performance of high-speed, unequally spaced fan rotors [NAL-TR-526] AERODYNAMIC COEFFICIENTS N78-25094 On lift of delta wings with leading-edge vortices at low speeds A78-39772 AERODYNAMIC CONFIGURATIONS Design for flying --- Book 178-36498

Simplified input for certain aerodynamic nose configurations to the Grumman guick-geometry system. A KWIKNOSE user's manual [AD-A051425] N78-24089 [AU-AUJ1425] N78-24 Aircraft sonic boom: Studies on aircraft flight, aircraft design, and measurement. A bibliography with abstracts [NTIS/PS-78/0238] N78-25 N78-25100 AERODYNAMIC DRAG Calculation of airfoil drag A78-36210 Minimisation of relaxation drag A78-37423 Effects of nozzle design and power on cruise drag for upper-surface-blowing aircraft N78-24058 Drag reduction for gliders [NASA-TM-75293] N78-24116 ABRODYNAMIC LOADS Deformation curve of rotary airfoil blades A78-39540 Measured and calculated steady aerodynamic loads on a large-scale upper-surface blown model N78-24072 Wind-tunnel measurements of aerodynamic load distribution on an NASA supercritical-wing research airplane configuration [NASA-TM-X-2469] N78-24079 The development and application of a simple method for determining unsteady airloads in subsonic compressible flow [AD-A052417] N78-24096 AERODYNAMIC NOISE Azimuthal decomposition of the power spectral density of jet noise A78-37532 Remarks on the noise emitted by the jet of a gas turbine engine A78-38696 Acoustic-loads research for powered-lift configurations N78-24073 Acoustics and performance of high-speed, unequally spaced fan rotors [NAL-TR-526] N78-25094 Application of second-order turbulent modeling to the prediction of radiated aerodynamic sound [NASA-CR-2994] N78-25359 The effect of tip vortex structure on helicopter noise due to blade/vortex interaction [NASA-CR-152150] N78-25 N78-25832 AERODYNAMIC STABILITY The computation of the unsteady aerodynamics of bodies near a ground surface A78-37408 **AERODYNAMICS** The turbulent flow through a sudden enlargement at subsonic speeds A78-37413 Factorization methods in hydroaeromechanics ---Russian book 178-37887 Laser velocimeter for wind tunnel measurements A78-37979 ABROELASTICITY On the optimization of discrete structures with aeroelastic constraints A78-39135 Deformation curve of rotary airfoil blades A78-39540 AEROLOGY The role of meteorology in helicopter icing problems x78-37712 Prospects for using new flight vehicles in aerophysical studies A78-39189 AERONAUTICAL ENGINEERING Application of modern methods in civil aircraft construction A78-38808 Cobalt-base alloys produced by powder metallurgy for compressor and turbine disks [ONERA, TP NO. 1978-7] 178-39582 ABROSPACE SYSTEMS Aerospace computer systems. Part 1: Avionics applications, volume 2. A bibliography with abstracts [NTIS/PS-78/0289] N78-25787

SUBJECT INDEX

ABROTHERBODY NAMICS Unsteady heat transfer from a cylinder with radial injection A78-39042 AGRICULTURE An economic and technical perspective of the turboprop engine in Ag-aviation A78-37536 AIR CARGO Survey of air cargo forecasting techniques [NASA-CR-145329] ₩78-25068 Preliminary analysis of hub and spoke air freight distribution system [NASA-TM-72656] N78-25069 Air freight demand models: An overview [NASA-CR-152148] AIR FLOW N78-25979 Oil-air mist lubrication for helicopter gearing [NASA-CR-135081] N78-25080 Gas turbine engine with recirculating bleed [NASA-CASE-LEW-12452-1] N78-25089 AIR JETS The mean velocity field of unsteady subsonic air jets A78-37417 AIR NAVIGATION System requirements for transition from enroute to approach guidance A78-36453 AIR POLLUTION Flight-testing of a continuous laser remote sensing system A78-39632 AIR SAMPLING Subisokinetic sampling errors for aircraft turbine engine smoke probes A78-38575 AIR TRAFFIC Expansion potential for the local service air carrier A78-37539 Airport activity statistics of certificated route air carriers [AD-A052728] N78-24102 AIB TRAFFIC CONTROL Concerning the logical comparison of ATC separation standard assessment models A78-36455 Fully-automated, pilot-monitored air traffic control 178-37155 Dealing with false targets in the Air Traffic Control Radar Beacon System A78-37486 The new system for processing and presenting radar data in the Air Traffic Control Center of Barcelona 178-38997 A relative motion analysis of horizontal collision avoidance A78-39674 Verification of DABS sensor surveillance performance (ATCRBS mode) at typical ASR sites throughout CONUS [AD-AÓ51128] N78-24105 Use of simulation techniques in the problem of air traffic control [QUAD-CALC-ELETT-21] N78-24111 Peasibility study for simulation of an airport tower control environment [AD-A051174] N78-241 Project Plan: Tower automated ground surveillance N78-24154 system development program [AD-A051621] N78-24155 Problems in world-wide standardization of the units of height measurement [AD-A051150] N78-24385 Perspective radar display system: TV-like presentation on CRT provides higher lateral position and lateral motion sensitivity than a PPI [AD-A052342] N78-24 Precision positional data of general aviation air traffic in terminal air space N78-24418 [NASA-RP-1020] N78-25048 NASA aviation safety reporting system [NASA-IM-78476] N78-25071 AIR TRANSPORTATION Reliability of aviation techniques and flight safety --- Russian book A78-36494

AIRCHAPT DESIGN

Airport activity statistics of certificate	d route
air carriers [AD-A052728]	N78-24102
Pircraft size and air transport costs	
Supersonic transportation faced with energy	N78-24112
[AAAF-NT-77-28]	N78-24131
AIRBORNE EQUIPMENT	
Color displays for airborne weather radar	A78-36980
Evaluation of airborne radar Doppler proces	
	A78-37477
CRT update for airborne displays	A78-37490
Hodern millimeter wave instrumentation rada	
development and research methodology	A78-37501
Susceptibility testing of airborne equipment	
wayahead	
An approach to BMP testing of complete str	A78-39086
aircraft	IVG
	478-39088
Aircraft measurement of radio frequency no: 121.5 MHz, 243MHz and 406MHz	ise at
izito unzy zysinz anu yvonnz	A78-39105
Study of magnetic noise in the Ka-26 helic	opter
Flight-testing of a continuous laser remotion	A78-39188
sensing system	c
	A78-39632
AIRBORNE/SPACEBORNE COMPUTERS Testing of the YC-14 flight control system	Coftware
[AIAA PAPER 77-1077]	A78-39183
Aerospace computer systems. Part 1: Avio	
applications, volume 2. A bibliography abstracts	with
[NTIS/PS-78/0289]	N78-25787
AIRCRAFT	
Thin conformal antenna array for microwave conversions	power
[NASA-CASE-NPO-13886-1]	N78-24391
AIRCRAFT ACCIDENTS	
Reliability of aviation techniques and flig	ght safety
Reliability of aviation techniques and flig Russian book	ght safety A78-36494
Russian book Optimal flare in presence of wind shears	A78-36494
Russian book	A78-36494 for
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS	A78-36494 for A78-39186
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic	A78-36494 for A78-39186 que for
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS	A78-36494 for A78-39186 que for
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ABTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links	A78-36494 for A78-39186 que for
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACH SPACING	A78-36494 for A78-39186 que for to
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ABTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links	A78-36494 for A78-39186 que for to
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACE SPACING Concerning the logical comparison of ATC separation standard assessment models	A78-36494 for A78-39186 que for to
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACE SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCRAFT CARRIERS	A78-36494 for A78-39186 que for to A78-36380
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACE SPACING Concerning the logical comparison of ATC separation standard assessment models	A78-36494 for A78-39186 gue for to A78-36380 A78-36455
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACE SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCRAFT CARRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers	A78-36494 for A78-39186 Jue for to A78-36380 A78-36455 ips and
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACH SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCRAFT CARRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078]	A78-36494 for A78-39186 gue for to A78-36380 A78-36455
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACE SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCRAFT CARRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078] AIRCRAFT COMUNICATION A three-dimensional finite-difference solution	A78-36494 for A78-39186 Jue for to A78-36380 A78-36455 ips and N78-25084 tion of
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACH SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCEAFT CARRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078] AIRCEAFT COMBUNICATION A three-dimensional finite-difference solut the external response of an aircraft to a	A78-36494 for A78-39186 que for to A78-36380 A78-36455 ips and N78-25084 tion of
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACH SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCRAFT CABRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078] AIRCRAFT COMBUNICATION A three-dimensional finite-difference soluti the external response of an aircraft to a complex transient EM environment. I - The	A78-36494 for A78-39186 que for to A78-36380 A78-36455 ips and N78-25084 tion of a method
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACH SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCEAFT CARRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078] AIRCEAFT COMBUNICATION A three-dimensional finite-difference solut the external response of an aircraft to a	A78-36494 for A78-39186 que for to A78-36380 A78-36455 ips and N78-25084 tion of a method of
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACH SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCRAFT CABRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078] AIRCRAFT COMMUNICATION A three-dimensional finite-difference solut the external response of an aircraft to a complex transient EM environment. I - The and its implementation. II - Comparison of predictions and measurements	A78-36494 for A78-39186 que for to A78-36380 A78-36455 ips and N78-25084 tion of a method of A78-37124
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACE SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCRAFT CARRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078] AIRCRAFT COMUNICATION A three-dimensional finite-difference solution the external response of an aircraft to a complex transient EM environment. I - The and its implementation. II - Comparison of predictions and measurements Modern RF system design for aircraft ta	A78-36494 for A78-39186 que for to A78-36380 A78-36455 ips and N78-25084 tion of a method of A78-37124
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACH SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCRAFT CABRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078] AIRCRAFT COMBUNICATION A three-dimensional finite-difference solut the external response of an aircraft to a complex transient EM environment. I - The and its implementation. II - Comparison of predictions and measurements Modern RF system design for aircraft ta information exchange system	A78-36494 for A78-39186 que for to A78-36380 A78-36455 ips and N78-25084 tion of a method of A78-37124 actical A78-37341
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array techniq zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACE SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCRAFT CARRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078] AIRCRAFT COMUNICATION A three-dimensional finite-difference solution the external response of an aircraft to a complex transient EM environment. I - The and its implementation. II - Comparison of predictions and measurements Modern RF system design for aircraft ta information exchange system Assessment procedure application utilizing	A78-36494 for A78-39186 Jue for to A78-36380 A78-36455 ips and N78-25084 tion of a method of A78-37124 A78-37341 DHF
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACH SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCRAFT CARRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078] AIRCRAFT CONSUMULATION A three-dimensional finite-difference solut the external response of an aircraft to a complex transient EM environment. I - The and its implementation. II - Comparison of predictions and measurements Modern RF system design for aircraft ta information exchange system Assessment procedure application utilizing transistor RF publes susceptibility data-	A78-36494 for A78-39186 gue for to A78-36380 A78-36455 ips and N78-25084 tion of A78-37124 actical A78-37341 UHF
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array techniq zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACE SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCRAFT CARRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078] AIRCRAFT COMUNICATION A three-dimensional finite-difference solution the external response of an aircraft to a complex transient EM environment. I - The and its implementation. II - Comparison of predictions and measurements Modern RF system design for aircraft ta information exchange system Assessment procedure application utilizing	A78-36494 for A78-39186 Jue for to A78-36380 A78-36455 ips and N78-25084 tion of a method of A78-37124 actical A78-37341 UHP RMC
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACE SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCEAFT CARRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078] AIRCRAFT COMBUNICATION A three-dimensional finite-difference solut the external response of an aircraft to a complex transient EM environment. I - The and its implementation. II - Comparison of predictions and measurements Modern RF system design for aircraft ta information exchange system Assessment procedure application utilizing transistor RF pulse susceptibility data- studies of approach radar and of aircraft UHF-receiver	A78-36494 for A78-39186 gue for to A78-36380 A78-36455 ips and N78-25084 tion of A78-37124 actical A78-37341 UHF
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACH SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCRAFT CABRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078] AIRCRAFT COMMUNICATION A three-dimensional finite-difference solut the external response of an aircraft to a complex transient EM environment. I - The and its implementation. II - Comparison of predictions and measurements Modern RF system design for aircraft ta information exchange system Assessment procedure application utilizing transistor RF pulse susceptibility data studies of approach radar and of aircraft	A78-36494 for A78-39186 Jue for to A78-36380 A78-36455 ips and N78-25084 tion of a method of A78-37124 actical A78-37341 UHP RMC
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACH SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCRAFT CARRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078] AIRCRAFT COMBUNICATION A three-dimensional finite-difference solut the external response of an aircraft to a complex transient EM environment. I - The and its implementation. II - Comparison of predictions and measurements Modern RF system design for aircraft ta information exchange system Assessment procedure application utilizing transistor RF pulse susceptibility data - studies of approach radar and of aircraft UHF-receiver NASA aviation safety reporting system [NASA-TH-78476] AIRCRAFT COMPARTMENTS	A78-36494 for A78-39186 Jue for to A78-36380 A78-36455 ips and N78-25084 tion of A78-37124 A78-37124 A78-37341 UHF A78-39101 N78-25071
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACE SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCRAFT CABRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078] AIRCRAFT COMBUNICATION A three-dimensional finite-difference solut the external response of an aircraft to a complex transient EM environment. I - The and its implementation. II - Comparison of predictions and measurements Modern RF system design for aircraft ta information exchange system Assessment procedure application utilizing transistor RF pulse susceptibility data studies of approach radar and of aircraft UHF-receiver NASA aviation safety reporting system [NASA-TH-78476] AIRCRAFT CONPARTMENTS Low frequency cabin noise reduction based of	A78-36494 for A78-39186 Jue for to A78-36380 A78-36455 ips and N78-25084 tion of a method of A78-37124 A78-37341 UHF BMC A78-39101 N78-25071 on the
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACH SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCRAFT CARRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078] AIRCRAFT COMBUNICATION A three-dimensional finite-difference solut the external response of an aircraft to a complex transient EM environment. I - The and its implementation. II - Comparison of predictions and measurements Modern RF system design for aircraft ta information exchange system Assessment procedure application utilizing transistor RF pulse susceptibility data - studies of approach radar and of aircraft UHF-receiver NASA aviation safety reporting system [NASA-TH-78476] AIRCRAFT COMPARTMENTS	A78-36494 for A78-39186 Jue for to A78-36380 A78-36455 ips and N78-25084 tion of a method of A78-37124 A78-37341 UHF BMC A78-39101 N78-25071 on the
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACH SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCRAFT CABRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078] AIRCRAFT COMMUNICATION A three-dimensional finite-difference solut the external response of an aircraft to a complex transient EM environment. I - The and its implementation. II - Comparison of predictions and measurements Modern RF system design for aircraft ta information exchange system Assessment procedure application utilizing transistor RF pulse susceptibility data studies of approach radar and of aircraft UHF-receiver NASA aviation safety reporting system [NASA-TH-78476] AIRCRAFT COMPARTMENTS Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise	A78-36494
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACE SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCRAFT CARRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078] AIRCRAFT COMBUNICATION A three-dimensional finite-difference soluti the external response of an aircraft to a complex transient EM environment. I - The and its implementation. II - Comparison of predictions and measurements Modern RF system design for aircraft ta information exchange system Assessment procedure application utilizing transistor RF pulse susceptibility data studies of approach radar and of aircraft UBF-receiver NASA aviation safety reporting system [NASA-TH-78476] AIRCRAFT COMPARTMENTS Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-TH-78476]	A78-36494 for A78-39186 Jue for to A78-36380 A78-36455 ips and N78-25084 tion of a method of A78-37124 A78-37341 UHF BMC A78-39101 N78-25071 on the
Russian book Optimal flare in presence of wind shears aircraft in automatic approach AIRCRAFT ANTENNAS Experimental evaluation of an array technic zenith to horizon coverage aircraft satellite communication links AIRCRAFT APPROACH SPACING Concerning the logical comparison of ATC separation standard assessment models AIRCRAFT CABRIERS Environmental requirements for simulated helicopter/VTOL operations from small shi carriers [AD-A053078] AIRCRAFT COMMUNICATION A three-dimensional finite-difference solut the external response of an aircraft to a complex transient EM environment. I - The and its implementation. II - Comparison of predictions and measurements Modern RF system design for aircraft ta information exchange system Assessment procedure application utilizing transistor RF pulse susceptibility data studies of approach radar and of aircraft UHF-receiver NASA aviation safety reporting system [NASA-TH-78476] AIRCRAFT COMPARTMENTS Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise	A78-36494 for A78-39186 Jue for to A78-36380 A78-36455 ips and N78-25084 tion of a method of A78-37124 A78-37341 UHF

AV-8B composite wing government/industry briefing N78-20113 Paneling techniques for use with the VORLAX Computer program [NASA-CR-145364] N78-25054 AIRCRAPT CONSTRUCTION MATERIALS Integrally stiffened laminate construction A78-36431 ALC/50/ values for some polymeric materials ---Apparent Lethal Concentration fire toxicity A78-36596 Case of damage involving aircraft and helicopter components of light metal A78-36941 Application of modern methods in civil aircraft construction A78-38808 Reavily loaded carbon-fiber-reinforced-plastic primary structure with the Tornado taileron as an example 178-38810 Material selection for the Tornado taileron A78-38811 Influence of the type of corrosion of the aircraft skin on limiting value of the damage A78-38907 Test operations procedures physical characteristics aviation material [AD-A053196] [vironmental effects on composites for aircraft N78-2 N78-25086 Environmental N78-25135 AIBCRAFT CONTROL F-5E/F spin avoidance testing A78-38747 The effects of wind shear on aircraft flight path and methods for remote sensing and reporting of wind shear at airports [UTIAS-TN-216] N78-24755 AIRCRAFT DESIGN Characteristics of flow past fuselages and wing-fuselage systems of gliders A78-36203 Discussion of results of studies on the design of laminar airfoils for stunt gliders A78-36204 Calculation of airfoil drag A78-36210 The design of future cockpits for high performance fighter aircraft A78-36446 Design for flying --- Book A78-36498 The computation of the unsteady aerodynamics of bodies near a ground surface A78-37408 Flow past nonconical wings with separation 178-37775 Theoretical investigation on the crash behavior of cell structures --- aircraft structural design A78-38805 Material selection for the Tornado taileron 178-38811 Airships - The next generation and beyond A78-39396 Deformation curve of rotary airfoil blades A78-39540 Aerodynamic preliminary analysis system. Part 2: User's manual and program description [NASA-CR-145300] N78-24043 A non-stationary model for atmospheric turbulence patches for the prediction of aircraft design loads [NLR-TR-76131-0] N78-25077 A study of commuter airplane design optimization [NASA-CR+157210] N78-2 N78-25078 Preliminary study of a large span-distributed-load flying-wing cargo airplane concept [NASA-TP-1158] N78-25079 Aircraft sonic boom: Studies on aircraft flight, aircraft design, and measurement. A bibliography with abstracts [NTIS/PS-78/0238] ₦78-25100 Modal control theory and application to aircraft lateral handling qualities design [NASA-TP-1234] N78-25101

λ-3

AIRCRAFT DETECTION The effect of correlated missed detections, correlated false alarms and interclutter visibility on the performance of an automated radar tracking system A78-37485 AIRCRAFT ENGINES Aircraft propulsion from the back room /Sixty-sixth Wilbur and Orville Wright Memorial Lecture/ A78-36279 Aero enginés climb towards better fuel efficiency A78-37114 Rolls-Royce RB401 turbofan - A new business jet engine for the 1980's 178-37538 Aircraft auxiliary power units --- Russian book A78-37885 Subisokinetic sampling errors for aircraft turbine engine søoke probes A78-38575 Replacement process analysis: An interim report on replacement models [AD-A052411] N78-24150 An atomic fluorescence system using a continuum source for the rapid determination of wear metals in jet engine lubricating oils [AD-A052721] N78-24320 Impact of future fuel properties on aircraft engines and fuel systems [NASA-TM-78866] N78-24369 Performance tests and design modifications of a Wankel type rotary combustion automobile engine in order to determine its suitability for aircraft application [CSIR-ME-1521] N78-25095 Inductor network development for aircraft high power supplies
[AD-A052750] N78-25096 AIRCRAFT EQUIPMENT The technical concepts behind the IL-62M /8/ landıng gear A78-36622 Modern RF system design for aircraft --- tactical information exchange system A78-37341 Air speed and attitude probe [NASA-CASE-FRC-11009-1] N78-25088 AIRCRAFT FUELS Characteristics and combustion of future hydrocarbon fuels --- aircraft fuels [NASA-TM-78865] N78-24370 Evaluation of methods to produce aviation turbine fuels from synthetic crude oils phase 3, volume 3 [AD-A053106] N78-25239 Progress on coal-derived fuels for aviation systems [NASA-TM-78696] N78-2554 N78-25545 AIRCRAFT HYDBAULIC SYSTEMS Halogenated solvent-induced corrosion in hydraulic systems --- hydraulic drives for aircraft radar antennas [ASLE PREPRINT 78-AM-4A-2] A78-38083 AIRCRAFT INDUSTRY A rising sun in aircraft --- Japanese commercial aircraft development programs A78-38524 AIRCRAFT INSTRUMENTS Aircraft radar systems --- Russian book A78-37873 AIRCRAFT LANDING Ergonomics in commercial aircraft landing A78-36621 A theoretical study of the effect of blade ice accretion on the power-off landing capability of a Wessex helicopter 178-36948 Sowiet landing and draws FAA scrutiny --- laser approach guidance A78-38773 AIRCRAFT MAINTENANCE Titanium and titanium alloys in aircraft maintenance and repair. I A78-38246 Problem-solving with selective plating --- for aircraft metal coating repair A78-38900 British Airways Tri-Star - Present and future A78-39393

SUBJECT INDEX

Three degree intermediate level maintenance of Navy aeronautical materials [AD-A052389] N78-24042 General aviation avionics equipment maintenance [NASA-CR-145342] N78-N78-24132 Naval aircraft operating and support cost model -Fiscal Year 1976 revision [AD-A053180] N78-25051 AIRCRAFT MANEUVERS F-5E/F spin avoidance testing A78-38747 ATECEAFT MODELS Grumman's radio-controlled experimental air force A78-38522 EMP induced currents on a simplified missile theory and experiment A78-39109 AIRCRAFT NOISE Atmospheric-absorption adjustment procedure for aircraft flyover noise measurements --- computer program N78-24899 FAD-A051700] Aircraft sonic boom: Effects on buildings. A bibliography with abstracts [NTIS/PS-78/0239] N78-25099 Aircraft sonic boom: Studies on aircraft flight, aircraft design, and measurement. A bibliography with abstracts [NTIS/PS-78/0238] N78-25100 AIRCRAFT PARTS Case of damage involving aircraft and helicopter components of light metal A78-36941 AIRCRAFT PERFORMANCE The design of future cockpits for high performance fighter aircraft A78-36446 The German-Dutch low speed wind tunnel DNW A78-36447 Planning and procedures for aircraft demonstrations - V/STOL aircraft A78-38749 Simulation replay - Implementation and flight simulation applications A78-38789 AIRCRAFT PILOTS Fully-automated, pilot-monitored air traffic control 178-37155 AIRCRAFT RELIABILITY The certification of light aircraft A78-36280 AIRCRAFT SAFETY Electronic aircraft collision avoidance system ---Russian book A78-37603 The role of meteorology in helicopter icing problems A78-37712 On the compensation of radio direction finders --antenna optimization in airport environments A78-38247 The impact of flight simulators on U.S. airlines A78-38798 The determination of margins of safety for critical aircraft systems --- electromagnetic interference effects on flight and engine controls A78-39082 Study of a safety margin system for powered-lift STOL aircraft [NASA-CR-152139] N78-24117 AIRCRAFT STABILITY F-5E/F spin avoidance testing A78-38747 AIRCRAFT STRUCTURES Stress intensity factors, for collinear cracks in a stiffened sheet --- aircraft structures A78-38122 Titanum and titanum alloys in aircraft maintenance and repair. I A78-38246 Problems of the theory of strength related to aircraft construction and civil engineering; Structural Mechanics Meeting, Ottobrunn, West Germany, June 1, 2, 1977, Lectures and Discussion Contributions A78-38802 New technologies for aircraft structures A78-38803 .

.

On the optimization of discrete structures	s with
aeroelastic constraints	A78-39135
Can fatigue cracks be detected in an early	
by acoustic emission? Application to h	
resistance light alloys used in aeronau A-U461, A-U26N T6	lics
[AAAF-NT-77-35]	N78-24587
Low frequency cabin noise reduction based	
intrinsic structural tuning concept: T	
and the experimental results, phase 2	jet
aırcraft noise [NASA-CR-145262]	N78-24900
The damage sum in fatigue of structure con	
aircraft structures	
[ICAF-1032] AIRCRAFT WAKES	N78-25454
Some measurements of an EBF powered-lift	ake
-	N78-24054
AIRPOIL PROFILES	
Discussion of results of studies on the de laminar airfoils for stunt gliders	esign of
idminut difforis for scene griders	A78-36204
Hot-wire velocity measurements in thin bo	ındary
layers	170 20005
Calculation of airfoil drag	A78-36205
curculation of arriver aray	A78-36210
Aerodynamics of the annular wing	
Invoctionations of the torong flow	A78-38475
Investigations of the transonic flow arous oscillating airfoils Thesis	Da
	A78-38978
AIRPOILS	
The next approximation after boundary layer	
machine blade associated unsteady f	A78-37409
Notes on the transonic indicial method	
dimensional airfoil flutter derivative o	alculation
AV-8B composite wing government/industry 1	A78-37732
ky-ob composite wing government/industry h	N78-24113
AIRFRAME MATERIALS	
Way bast - Teacas for seasoff about the	
New technologies for aircraft structures	
	A78-38803
Heat treatment studies of aluminum allow f	vpe 7050
Heat treatment studies of aluminum alloy f forgings. The effect of heat treatment variety of engineering properties	ype 7050 on a
Heat treatment studies of aluminum alloy (forgings. The effect of heat treatment variety of engineering properties [NLR-TR+76008-0]	vpe 7050
Heat treatment studies of aluminum alloy forgings. The effect of heat treatment variety of engineering properties [NLR-TR+76008-0] AIRPANES	ype 7050 on a N78-25199
Heat treatment studies of aluminum alloy (forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-U] AIRPRAMES Exploratory development for design data on	xype 7050 on a ₩78-25199
Heat treatment studies of aluminum alloy f forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-0] AIRFANMES Exploratory development for design data or structural aluminum alloys in represents aircraft environments	xype 7050 on a ₩78-25199 httve
Heat treatment studies of aluminum alloy of forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-0] AIRPRAMES Exploratory development for design data on structural aluminum alloys in represents aircraft environments [AD-A052809]	<pre>xype 7050 on a w78-25199 dtive w78-24344</pre>
Heat treatment studies of aluminum alloy of forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-0] AIRPRAMES Exploratory development for design data on structural aluminum alloys in represents aircraft environments [AD-A052809] Demonstration of acoustic emission system	xype 7050 on a w78-25199 htive w78-24344 for
Heat treatment studies of aluminum alloy forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-0] AIRPRAMES Exploratory development for design data on structural aluminum alloys in represents aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue tests	<pre>xype 7050 on a w78-25199 ttive ttive x78-24344 for c. </pre>
Heat treatment studies of aluminum alloy (forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-U] AIRPRAMES Exploratory development for design data or structural aluminum alloys in represents aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-A053108]	<pre>xype 7050 on a w78-25199 ttive n78-24344 for 5</pre>
 Heat treatment studies of aluminum alloy f forgings. The effect of heat treatment variety of engineering properties [NLR-TR+76008-0] AIRFRAMES Exploratory development for design data or structural aluminum alloys in represents aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-A053108] AIRLINE OPERATIONS 	xype 7050 on a w78-25199 dtive w78-24344 for c.ng w78-25085
Heat treatment studies of aluminum alloy (forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-U] AIRPRAMES Exploratory development for design data or structural aluminum alloys in represents aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-A053108]	xype 7050 on a w78-25199 dtive w78-24344 for c.ng w78-25085
 Heat treatment studies of aluminum alloy f forgings. The effect of heat treatment variety of engineering properties [NLR-TR+76008-0] AIRFRAMES Exploratory development for design data or structural aluminum alloys in represents aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-A053108] AIRLINE OPERATIONS Expansion potential for the local service carrier 	<pre>ype 7050 on a w78-25199 ttive n78-24344 for </pre>
 Heat treatment studies of aluminum alloy of forgings. The effect of heat treatment variety of engineering properties [NLR-TR+76008-0] AIRPRAMES Exploratory development for design data on structural aluminum alloys in represente aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-A053108] AIRPIANS AIRPIANS AIRPIANS AIRPIANS 	<pre>ype 7050 on a N78-25199 titve N78-24344 for ung N78-25085 air A78-37539 rtlines</pre>
 Heat treatment studies of aluminum alloy of forgangs. The effect of heat treatment variety of engineering properties [NLR-TR-76008-0] AIRPRAMES Exploratory development for design data or structural aluminum alloys in representa aircraft environments [AD-8052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-8053108] AIRLINE OPERATIONS Expansion potential for the local service carrier The impact of flight simulators on U.S. as 	<pre>xype 7050 on a w78-25199 httve n78-24344 for w78-25085 air a1r a78-37539 crlines a78-38798</pre>
 Heat treatment studies of aluminum alloy f forgings. The effect of heat treatment variety of engineering properties [NLR-TR+76008-0] AIRFRAMES Exploratory development for design data or structural aluminum alloys in represents aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-A053108] AIRLINE OPERATIONS Expansion potential for the local service carrier 	<pre>xype 7050 on a w78-25199 httve n78-24344 for w78-25085 air a1r a78-37539 crlines a78-38798</pre>
 Heat treatment studies of aluminum alloy of forgangs. The effect of heat treatment variety of engineering properties [NLR-TR-76008-0] AIRPRAMES Exploratory development for design data or structural aluminum alloys in representa aircraft environments [AD-8052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-8053108] AIRLINE OPERATIONS Expansion potential for the local service carrier The impact of flight simulators on U.S. as 	<pre>xype 7050 on a w78-25199 ative w78-24344 for w78-25085 air A78-37539 critical A78-38798 wre A78-39393</pre>
 Heat treatment studies of aluminum alloy f forgings. The effect of heat treatment variety of engineering properties [NLE-TR-76008-0] AIRFRAMES Exploratory development for design data or structural aluminum alloys in represents aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-A053108] AIRLINE OPERATIONS Expansion potential for the local service carrier The impact of flight simulators on U.S. a: British Airways Tri-Star - Present and fut Aircraft size and air transport costs 	xype 7050 on a N78-25199 httve N78-24344 for n78-25085 alr A78-37539 rtlines A78-37539 sure A78-39393 N78-24112
 Heat treatment studies of aluminum alloy f forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-U] AIRPRAMES Exploratory development for design data or structural aluminum alloys in represente aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-A053108] AIRLIME OPERATIONS Expansion potential for the local service carrier The impact of flight simulators on U.S. a: British Airways Tri-Star - Present and fur Aircraft size and air transport costs An operator's viewpoint: How to reduce the service carrier 	xype 7050 on a N78-25199 httve N78-24344 for n78-25085 alr A78-37539 rtlines A78-37539 sure A78-39393 N78-24112
 Heat treatment studies of aluminum alloy f forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-U] AIRFANMES Exploratory development for design data or structural aluminum alloys in represente aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-A053108] AIRLINE OPERATIONS Expansion potential for the local service carrier The impact of flight simulators on U.S. as British Airways Tri-Star - Present and fut Aircraft size and air transport costs An operator's viewpoint: How to reduce th consumption in aeronautical maintenance [AAR-NT-77-26] 	xype 7050 on a N78-25199 httve N78-24344 for n78-25085 alr A78-37539 rtlines A78-37539 sure A78-39393 N78-24112
 Heat treatment studies of aluminum alloy f forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-U] AIRPRAMES Exploratory development for design data or structural aluminum alloys in represente aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallin aircraft structures during fatigue tests [AD-A053108] AIRLINE OPERATIONS Expansion potential for the local service carrier The impact of flight simulators on U.S. an British Airways Tri-Star - Present and fut Aircraft size and air transport costs An operator's viewpoint: How to reduce th consumption in aeronautical maintenance [AAP-NT-77-26] AIRPORT BEACONS 	<pre>ype 7050 on a N78-25199 httve N78-24344 for N78-25085 alr A78-37539 itlines A78-38798 ivre A78-38798 ivre A78-39393 N78-24112 ie fuel N78-24129</pre>
 Heat treatment studies of aluminum alloy of forgangs. The effect of heat treatment variety of engineering properties [NLR-TR-76008-0] AIRPRAMES Exploratory development for design data or structural aluminum alloys in represente aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallice aircraft structures during fatigue test: [AD-A053108] AIRLINE OPERATIONS Expansion potential for the local service carrier The impact of flight simulators on U.S. a: British Airways Tri-Star - Present and fur Aircraft size and air transport costs An operator's viewpoint: How to reduce th consumption in aeronautical maintenance [AAAP-NT-77-26] AIRPORT BEACONS On the compensation of radio direction fail 	<pre>xype 7050 on a w78-25199 ative w78-24344 for w78-25085 air A78-37539 critic A78-38798 critic A78-38798 sure A78-38393 w78-24112 ative w78-24129 aders</pre>
 Heat treatment studies of aluminum alloy f forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-U] AIRPRAMES Exploratory development for design data or structural aluminum alloys in represente aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallin aircraft structures during fatigue tests [AD-A053108] AIRLINE OPERATIONS Expansion potential for the local service carrier The impact of flight simulators on U.S. an British Airways Tri-Star - Present and fut Aircraft size and air transport costs An operator's viewpoint: How to reduce th consumption in aeronautical maintenance [AAP-NT-77-26] AIRPORT BEACONS 	<pre>xype 7050 on a w78-25199 ative w78-24344 for w78-25085 air A78-37539 critic A78-38798 critic A78-38798 sure A78-38393 w78-24112 ative w78-24129 aders</pre>
 Heat treatment studies of aluminum alloy of forgangs. The effect of heat treatment variety of engineering properties [NLR-TR-76008-0] AIRPRAMES Exploratory development for design data or structural aluminum alloys in represente aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-A053108] AIRLINE OPERATIONS Expansion potential for the local service carrier The impact of flight simulators on U.S. as British Airways Tri-Star - Present and fur Aircraft size and air transport costs An operator's viewpoint: How to reduce th consumption in aeronautical maintenance [AAAP-NT-77-26] AIRPORT BEACONS On the compensation of radio direction fai antenna optimization in airport environt 	<pre>ype 7050 on a w78-25199 ative N78-24344 for</pre>
 Heat treatment studies of aluminum alloy if forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-0] AIRFRAMES Exploratory development for design data or structural aluminum alloys in represente aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-A053108] AIRLINE OPERATIONS Expansion potential for the local service carrier The impact of flight simulators on U.S. a: British Airways Tri-Star - Present and fut Aircraft size and air transport costs An operator's viewpoint: How to reduce th consumption in aeronautical maintenance [AAP-NT-77-26] AIRPORT BEACONS On the compensation of radio direction film antenna optimization in airport environ AIRPORT PLANNING 	<pre>xype 7050 on a w78-25199 ative N78-24344 for w78-25085 air A78-37539 air A78-37539 crimes A78-38798 sure A78-38798 avre A78-38129 more sure A78-24112 more fuel N78-24129 aders ents A78-38247 on</pre>
 Heat treatment studies of aluminum alloy if forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-U] AIRPRAMES Exploratory development for design data or structural aluminum alloys in represente aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metalling aircraft structures during fatigue test: [AD-A053108] AIRLINK OPERATIONS Expansion potential for the local service carrier The impact of flight simulators on U.S. as British Airways Tri-Star - Present and fut Aircraft size and air transport costs An operator's viewpoint: How to reduce th consumption in aeronautical maintenance [AAF-NT-77-26] AIRPORT BEACONS On the compensation of radio direction fin antenna optimization in airport environmental effects on airport, harbeit 	<pre>xype 7050 on a w78-25199 ative N78-24344 for w78-25085 air A78-37539 air A78-37539 crimes A78-38798 sure A78-38798 avre A78-38129 more sure A78-24112 more fuel N78-24129 aders ents A78-38247 on</pre>
 Heat treatment studies of aluminum alloy if forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-0] AIRFRAMES Exploratory development for design data or structural aluminum alloys in represente aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-A053108] AIRLINE OPERATIONS Expansion potential for the local service carrier The impact of flight simulators on U.S. a: British Airways Tri-Star - Present and fut Aircraft size and air transport costs An operator's viewpoint: How to reduce th consumption in aeronautical maintenance [AAP-NT-77-26] AIRPORT BEACONS On the compensation of radio direction film antenna optimization in airport environ AIRPORT PLANNING 	<pre>xype 7050 on a w78-25199 ative N78-24344 for w78-25085 air A78-37539 air A78-37539 crimes A78-38798 sure A78-38798 avre A78-38129 more sure A78-24112 more fuel N78-24129 aders ents A78-38247 on</pre>
 Heat treatment studies of aluminum alloy f forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-U] AIRPRAMES Exploratory development for design data on structural aluminum alloys in represents aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallin aircraft structures during fatigue test: [AD-A053108] AIRLIME OPERATIONS Expansion potential for the local service carrier The impact of flight simulators on U.S. as British Airways Tri-Star - Present and fut Aircraft size and air transport costs An operator's viewpoint: How to reduce th consumption in aeronautical maintenance [AAP-NT-72-26] AIRPORT BEACONS On the compensation of radio direction fin antenna optimization in airport environ Aitepoet PLANNING Study on problems of terminal site locatic environmental effects on airport, harbei truck depot AIRPORT SURPACE DETECTION EQUIPHENT 	<pre>ype 7050 on a N78-25199 httve N78-24344 for ing N78-25085 air A78-37539 itlines A78-38798 itlines A78-38798 N78-24112 n78-24112 n78-24129 oders</pre>
 Heat treatment studies of aluminum alloy if forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-0] AIRPRAMES Exploratory development for design data or structural aluminum alloys in represente alurcaft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-A053108] AIRLINE OPERATIONS Expansion potential for the local service carrier The impact of flight simulators on U.S. as British Airways Tri-Star - Present and fut Aircraft size and air transport costs An operator's viewpoint: How to reduce th consumption in aeronautical maintenance [AAAP-NT-77-26] AIRPORT BLACOMS Study on problems of terminal site locatic environmental effects on airport, harboit truck depot AIRPORT SURPACE DETECTION EQUIPHENT Project Plan: Tower automated ground survemental effects on airport survemental surveme	<pre>ype 7050 on a N78-25199 httve N78-24344 for ing N78-25085 air A78-37539 itlines A78-38798 itlines A78-38798 N78-24112 n78-24112 n78-24129 oders</pre>
 Heat treatment studies of aluminum alloy if forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-0] AIRFRAMES Exploratory development for design data or structural aluminum alloys in represents [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-A053108] AIRLINE OPERATIONS Expansion potential for the local service carrier The impact of flight simulators on U.S. as British Airways Tri-Star - Present and fut Aircraft size and air transport costs An operator's viewpoint: How to reduce th consumption in aeronautical maintenance [AAP-NT-77-26] AIRPORT BEACONS On the compensation of radio direction fin antenna optimization in airport environ AIRPORT PLANNING Study on problems of terminal site locatic environmental effects on airport, harbeit truck depot 	<pre>ype 7050 on a N78-25199 httve N78-24344 for ing N78-25085 air A78-37539 itlines A78-38798 itlines A78-38798 N78-24112 n78-24112 n78-24129 oders pents A78-38247 on or A78-36323</pre>
 Heat treatment studies of aluminum alloy if forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-0] AIRPRAMES Exploratory development for design data or structural aluminum alloys in represente alurcaft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-A053108] AIRLINE OPERATIONS Expansion potential for the local service carrier The impact of flight simulators on U.S. as British Airways Tri-Star - Present and fut Aircraft size and air transport costs An operator's viewpoint: How to reduce th consumption in aeronautical maintenance [AAAP-NT-77-26] AIRPORT BLACOMS Study on problems of terminal site locatic environmental effects on airport, harboit truck depot AIRPORT SURPACE DETECTION EQUIPHENT Project Plan: Tower automated ground survemental effects on airport survemental surveme	<pre>ype 7050 on a w78-25199 htive N78-24344 for ing N78-25085 air A78-37539 rilines A78-38798 arr A78-38798 arr A78-39393 w78-24112 he fuel N78-24129 hders ents A78-38247 on cor A78-36323 yeillance</pre>
 Heat treatment studies of aluminum alloy if forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-0] HIRFAMMES Exploratory development for design data or structural aluminum alloys in represente aircraft environments [AD-A052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-A053108] HIRLINE OPERATIONS Expansion potential for the local service carrier The impact of flight simulators on U.S. as British Airways Tri-Star - Present and fut Aircraft size and air transport costs An operator's viewpoint: How to reduce th consumption in aeronautical maintenance [AAP-NT-77-26] HIRPORT BLACONS On the compensation of radio direction fin antenna optimization in airport environ AIRPORT SUBPACE DETECTION EQUIPHENT Project Plan: Tower automated ground surveystem development program [AD-A051621] AIRPORT FOWERS Peasibility study for simulation of an air 	<pre>ype 7050 on a N78-25199 Ative N78-24344 for N78-25085 air A78-37539 air A78-37539 A78-38798 vire A78-38798 vire A78-39393 N78-24112 ne fuel N78-24129 oders ents A78-38247 on c or A78-36323 yeillance N78-24155</pre>
 Heat treatment studies of aluminum alloy if forgings. The effect of heat treatment variety of engineering properties [NLR-TR-76008-0] AIRPRAMES Exploratory development for design data or structural aluminum alloys in represents alurcaft environments [AD-8052809] Demonstration of acoustic emission system damage monitoring of full scale metallic aircraft structures during fatigue test: [AD-8053108] AIRLINE OPERATIONS Expansion potential for the local service carrier The impact of flight simulators on U.S. as British Airways Tri-Star - Present and fut Aircraft size and air transport costs An operator's viewpoint: How to reduce th consumption in aeronautical maintenance [AAAP-NT-77-26] AIRPORT BEACONS On the compensation of radio direction fin antenna optimization in airport environmental effects on airport, harbed truck depot AIRPORT SURPACE DETECTION EQUIPHENT Project Plan: Tover automated ground survisystem development program [AD-8051621] AIRPORT BERS 	<pre>ype 7050 on a N78-25199 Ative N78-24344 for N78-25085 air A78-37539 air A78-37539 A78-38798 vire A78-38798 vire A78-39393 N78-24112 ne fuel N78-24129 oders ents A78-38247 on c or A78-36323 yeillance N78-24155</pre>

Project Plan: Tower automated ground surveillance system development program [AD-A051621] R78-24155 Airport activity statistics of certificated route air cartners R78-24155 [AD-A052728] R78-24102 The effects of vind shear on aircraft flight path and methods for remote sensing and reporting of wind shear at airports R78-24755 [UTIAS-TR-216] R78-24755 Precision positional dat of general aviation air traffic in terminal air space R78-24755 [UTIAS-TR-216] R78-25048 AIRSHES Lighter-than-air concepts and recent developments i78-39395 Airsheps - The next generation and beyond AT8-39396 Airsheps - The next generation and beyond A18-39396 Airsheps - The next generation and beyond are advant noise A78-37683 Air speed and attritude probe [NAS-CASZ-PRC-11009-1] R78-25088 Airsheps - The next generation and beyond attribute alloss and are advant and a tribute (AD-A051150] R78-24344 A18-24344 A18-2439 A18-24390 N78-24345 A1900 ALLOTS Influence of he type of corrosion of the aircraft skin on limiting value of the damage A78-3807 Frictural aluminum alloys in representative aircraft environments N78-24349 (NE-TR-76008-U] N78-24349 Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties N78-25199 [NE-TR-76008-U] N78-24349 Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering treatment and humidity condition [NE-TR-76008-U] N78-2519 [NE-TR-76008-U] N78-25057 ANGLOM angle common with a constant temperature and humidity condition [NE-TR-76008-U] N78-25057 ANGLOM angle common A185 A18-2519 [NE-TR-76008-U] N78-25057 ANGLAM Angle common A185 A1	
<pre>[AD-AD51621] F78-24155 Airport activity statistics of certificated route air carriers F78-24102 The effects of vind shear on aircraft flight path and methods for remote sensing and reporting of wind shear at airports F78-24102 [UTIAS-TN-216] F78-25048 Airships-10 1 terminal air space [MAS-RP-1020] F78-25048 Airships - The next generation and beyond Airships - The next generation and the angle (NAI-CASE-FRC-11009-1] N78-25088 AirtHWH ALLOYS Influence of the type of corrosion of the aircraft skin on limiting value of the damage Aircraft environeents [NAI-TH-A052003] N78-24344 Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties (NAI-TH-A052003] N78-25434 Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatent on a variety of engineering properties (NAI-TH-A052003] N78-25453 Airten Angle Court and taneen a array technique for zenith to horizon coverage aircraft to satellite communication links Ar8-380475 Airtens AESIGE Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite compuncation</pre>	Project Plan: Tower automated ground surveillance
Alreport activity statistics of certificated route air carriers [AD-A053728]N78-20102The effects of wind shear on aircraft flight path and methods for remote sensing and reporting of wind shear at airports [UTLAS-TM-216]N78-20102Precision positional data of general aviation air traffic in terminal air space [NEAS-TR-21020]N78-20105N78-2000 <t< td=""><td></td></t<>	
 All Carriers [N-A053728] N78-20102 The effects of wind shear on aircraft flight path and methods for remote sensing and reporting of wind shear at airports [UTIAS-TM-216] N78-20755 Precision positional data of general aviation air traffic in terminal air space [MISA-RP-1020] N78-20763 Airships - The next generation and beyond Airships Influence of the type of corrosson of the air case of heat tracted Airships Influence of the type of corrosson of the aircraft shin on limiting value of the damag Airships Influence of the type of corrosson of the aircraft Air-3052003 N78-24384 Reattrate studies of aluminum alloy type 7050 forgings, The effect of heat treatsent on a variety of engineering properties (NLE-TR-76008-U] N78-24394 Heat treatsent studies of aluminum alloy type 7050 forgings, The effect of heat reatsent on a variety of engineering properties (NLE-TR-76008-	
[AD-A052728] The effects of wind shear on aircaff Hight path and methods for remote sensing and reporting of wind shear at airports The sensing and reporting of wind shear at airports The sensing and reporting of [UTIAS-TN-216] The sensitive sensing and reporting of [UTIAS-TN-216] The sensitive sensing and report developments infinitive sensitive sensiti	
The effects of wind shear on aircraft flight path and sethods for remote sensing and reporting of wind shear at airports [UTIS-TR-216] N78-24755 Precision positional data of general aviation air traffic in terminal air space N78-25048 ATESHTPS Lighter-than-air concepts and recent developments iN8-N93955 Airshps - The next generation and beyond ATE-39395 Airshps - The next generation and beyond ATE-39395 Airshps - The next generation and beyond ATE-39395 Airshps - The next generation and beyond ATE-39395 AirspEED ATE-37663 Air speed and attitude probe [NAS-CASE-RC-11009-1] N78-25088 AITTUDE Problems in world-wide standardization of the units of height measurement [ADE-3051150] N78-24385 AIDHING ALLOTS Influence of the type of corrosion of the aircraft skin on liniting value of the damage ATE-33907 Exploratory development for design data on structural alumann allogs in representative aircraft environments [ADE-3052803] N78-24344 Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [NE-R-7600-0] N78-25199 Relationship between scatter of fatigue life and 5-N curve of 204-T4 aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NA-CR-293] N78-25057 ANTELR OF ATTACK High angle canter missile test in the Ames 11-foot transonic wind tunnel [NAS-CR-293] N78-25057 ANTENNA BENTS Thin conformal antenna array for microwave power conversions [NAS-CR-293] N78-26330 On the compensation of radio direction finders antenna optimization in airport environments ATE-384475 ANTENNA BENTS Thin conformal antenna array for microwave power conversions [NAS-CR-293] N78-26330 On the compensation of radio direction finders antenna optimization in airport environments ATE-38447 ANTENNA BENTS Thin conformal antenna array for microwave power conversions [NAS-CR28-NPC-13886-1] N78-26330 On the compensation of radio direction finders antenna optimization in airport environments	air carriers [ND-N052728]
and methods for remote sensing and reporting of wind shear at airports [UTIAS-TR-216] N78-24755 Precision positional data of general aviation air traffic in terminal air space [MASA-RP-1020] N78-25048 AIBSBIPS Lighter-than-air concepts and recent developments A78-39395 Airships - The next generation and beyond AIBSPED On the use of relative velocity erponents for jet engine exhaust noise A78-37663 Air speed and attitude probe [MASA-CASE-PRC-11009-1] N78-25068 HITTOP Problems in world-wide standardization of the units of height measurement [AD-A051150] N78-24385 AICHANG ALLONS Influence of the type of corrosion of the aircraft skin on limiting value of the damage A78-38907 Exploratory development for design data on structural aluminum alloys in representative aircraft environments [AD-A052093] Relationship Deveen scatter of fatigne life and S-R curve of 2024-Th aircraft structural aluminum alloy specimes with a sharp notch (Kt equals 8.25) under a constant temperature and huminum alloy specimes with a sharp notch (Kt equals 8.25) under a constant temperature and huminum alloy specimes with a sharp notch (Kt equals 8.25) under a constant temperature and huminum alloy specimes with a sharp notch (Kt equals 8.25) under a constant temperature and huminum alloy specimes with a sharp notch (Kt equals 8.25) under a constant temperature and huminum alloy specimes with a sharp notch (Kt equals 8.25) Arcodynamics of the annular wing Arcodynamics of Arcoso coverage aircraft to satellite communication links Are-36300 On the compensation of radio direction finders antenna optimization in airport environmeents Are-38849 ArtEMAN ABDAYS Verification of DAES sensor surv	
<pre>[UTIAS-TH-216] N78-23755 Precision positional data of general aviation air traffic in terminal air space [MASA-RP-1020] N78-25048 AIRSPERS Lighter-than-air concepts and recent developments A78-39395 Airships - The next generation and beyond ATRSPERD A78-39396 AIRSPERD A1000 [MI-TR-412T] N78-25453 AIRSPERD ATACAGE A78-38475 AIRSPERD ATACAGE A78-38475 AIRSPERD ATACAGE A78-38475 AIRSPERD A78-38475 AIRSPERD</pre>	and methods for remote sensing and reporting of
Precision positional data of general aviation air traffic in terminal air space [MSA-BP-1020] N78-25048 AIRSHEPS Lighter-than-air concepts and recent developments Airships - The next generation and beyond AT8-39395 Airships - The next generation and beyond AT8-39396 Do the use of relative velocity erponents for jet engine exhaust noise Air speed and attitude probe [MSA-CASE-PRC-11009-1] N78-25088 AITSTOP Problems in worldwide standardization of the units of height measurement [AD-A051150] N78-24385 AILUMEND ALLOIS Influence of the type of corrosion of the aircraft skin on limiting value of the damage AT8-38007 Exploratory development for design data on structural aluminum alloys in representative aircraft environments [AD-A052109] N78-24344 Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [MLR-TR-76008-0] N78-25199 Relationship between scatter of fatigue life and S-N curve of 2024-TA aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and husdity condition [MAL-TR-112T] N78-25057 AMDIEE OF ATTACT High angle canard missile test in the Ames 11-foot transonic wind tunnel [MASA-CAS2-2933] N78-25057 AMTENNA ABBATS Thin conformal antenna array for microwave power conversions [MASA-CAS2-N80-13886-1] N78-24391 ANTERNA DESIGN Expensental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links N78-38475 ArtENNA DESIGN Propoker switching network for a dual-mode antenna optimization in airport environments AT8-38844 ANTENNA HEATIS Verification of DABS sensor surveillance performance (MICRBS mode) at typical ASR sites throughout conus (AD-A051128] N78-24091 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38473 APBENGIMENT Soviet landing aid draws FAA scrutiny laser approach guidance A78-38773 APBENGIMATION Nonlinear th	
<pre>traffic in terminal air space [MASA-RP-1020] N78-25048 ATBSHIPS Lighter-than-air concepts and recent developments A78-39395 Airships - The next generation and beyond A78-39396 ATBSPED On the use of relative velocity erponents for jet engine erhaust noise A78-37603 Air speed and attitude probe [MASA-CASE-PRC-11009-1] N78-25088 AIIIITUDE Problems in world-wide standardization of the units of heaght measurement [AD-A051150] N78-24385 AIGMANNALLOTS Influence of the type of corrosion of the aircraft skin on limiting value of the damage A78-38907 Exploratory development for design data on structural aluminum alloys in representative aircraft environments [AD-A05209] N78-24349 Reat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [MI-TR-76008-0] N78-25493 N86LEOF ATTACCASE structural aluminum alloy specimens with a sharp notch (Rt equals 8.25) under a constant temperature and hubity condition [MI-TR-412T] N78-25493 ANGLE OF ATTACCASE specifies A18-5867 ANTENNA ABENS The compensation of main aircraft structural alumine alloy specimens with a sharp notch (Rt equals 8.25) under a constant temperature and hubity condition [MI-TR-412T] N78-25493 ANGLE OF ATTACCASE-PRO-13886-1] ANTENNA DESIGE Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links N78-36475 ANTENNA DESIGE Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links N78-38493 ANESMA DESIGE Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links N78-38493 ANESMA DESIGE Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links N78-38493 ANESMA DESIGE Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links N78-38494 ANESMA ANESMA DESIGE EXperimental evaluation</pre>	
[MASA-RP-1020] N78-25088 ATRSMIPS Lighter-than-air concepts and recent developments Airships - The next generation and beyond ATR-33395 Airsspeen Ar8-33395 Airsspeen Ar8-33395 Airsspeen Ar8-33395 Airsspeen Ar8-33395 Airspeed and attitude probe [MASA-CASE-PRC-11009-1] N78-25088 Air speed and attitude probe [MASA-CASE-PRC-11009-1] N78-25088 Airtrope Ar8-25088 Airs of height measurement [AD-0551150] N78-24385 AIDMINUM ALLOYS Influence of the type of corrosion of the aircraft skin on limiting value of the damage Ar8-38907 Exploratory development for design data on structural aluanum alloys in representative aircraft environments N78-24344 Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properies [MLR-TR-76008-0] N78-25199 Relationship between scatter of fatigue life and S-W curve of 2024-TA aircraft structural aluanum alloy specimes with a sharp notch (Kt equals 8.25) under a constant temperature and husdity condition [MAL-TR-121] N78-25057 AMSLE OF ATTACE High angle canard missile test in the Ames 11-foot transonic wind tunnel [MASA-CAS2-2933] N78-25057 AMSLE OF ATTACE High angle canard missile test in the Ames 11-foot transonic wind tunnel [MASA-CAS2-1993] N78-25057 AMSLE OF ATTACE High angle canard missile test in the Ames 11-foot transonic wind tunnel [MASA-CAS2-1993] N78-24391 AMSA-CAS2-N80-13886-1] N78-24391 AMSA-CAS2-N80-13886-1] N78-24391 AMSA-CAS2-N80-13886-1] N78-24391 AMSENN ABBAYS Thin conformal antenna array for microwave power conversions [MASA-CAS2-N80-13886-1] N78-38494 AMSENN ABSATS Thin conformal antenna array for microwave power conversions [MASA-CAS2-N80-13886-1] N78-38494 AMSENN ABSATS Thin conformal antenna array for microwave power conversions [MASA-CAS2-N80-13886-1] N78-38494 AMSENN ABSATS Thin conformal antenna frang for microwave power conversions [MASA-CAS2-1909] N78-340715 AP8-38494 AMSENN ADDIATOM PATTENS Verification of DASS sensor surveillance perform	
Lighter-than-air concepts and recent developments Airships - The next generation and beyond A78-39395 AIRSPEED On the use of relative velocity erponents for jet engine exhaust noise Air speed and attitude probe (NASA-CASE-PRC-11009-1) Problems in world-wide standardization of the units of height measurement (AD-A051150] N78-20385 LIUGHIOM ALLOYS LIUGHIOM ALLOYS LIUGINGM Control and the damage Ar8-38907 Structural aluminum alloys in representative aircraft environments (AD-A052093) Relationship between scatter of fatigue life and S-N curve of 2024-TM aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition (NL-TR-1721) N78-25493 N78-25493 Relationship between scatter of fatigue life and S-N curve of 2024-TM aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition (NL-TR-127] N78-25493 ANTENNA ABRAYS Thin conformal antenna array for microwave power conversions (MASA-CR-2933) N78-24391 MYEENM ABRAYS Thin conformal antenna array for microwave power conversions (MASA-CR-2931) N78-24391 MYEENM ABRAYS Thin conformal antenna array for microwave power conversions (MASA-CRE-NRO-13866-1) N78-38475 MYEDIM ABRAYS Profinental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links PR-36380 On the compensation of radio direction finders antenna optimization in airport environments A78-38849 ANTENNA HABIAYS Verification of DABS sensor surveillance performance (ATCRBS mode) at typical ASE sites throughout CONDS (AD-36373 APPENDIMION Nollinear theory of a bearing surface of arbitrary extent (AD-053136) N78-24090 V distributed vorter method for computing the vorter field of a missile	[NASA-RP-1020] N78-25048
Airships - The next generation and beyondA78-39395AIRSPEDOn the use of relative velocity erponents for jet engine exhaust noiseA78-39396Air speed and attitude probe [NASA-CASE-PRC-11009-1]N78-25088AITTUDE Problems in world-wide standardization of the units of height measurement [AD-051150]N78-24385ALUHING ALLOYSN78-24385Influence of the type of corrosion of the aircraft skin on limiting value of the damage arrest environments [AD-052003]N78-24344Reat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [NR-R-76008-0]N78-25199Relationship between scatter of fatigue life and buildity condition [NR-CR-2993]N78-25159AGLE OF ATTACK Hang angle canard missile test in the Ames 11-foot transonic wind tunnel [NR-CR-2993]N78-25057ANTENNA MENYS Thin conformal antenna array for microwave power conversions [NR-CR-2993]N78-224391ANTENNA DESIGG EXPENDENTIAL explicition links (NR-CR-2993]N78-224391ANTENNA DESIGG EXPENDENTIAL explicition links (NR-CR-2993)N78-224391ANTENNA DESIGG EXPENDENTIAL explicition from enroute to antenna optimization in airport environments A78-388475ANTENNA ADDIATION PATTERNS (AD-ADS1120)N78-24384Antenna optimization in airport environments (AR-243931Antenna optimization in airport environments (AR-243931)Antenna optimization in airport environments (AR-243931)Antenna optimization in airport environments (AR-2438475)Antenna optimization in airport environm	
Airships - The next generation and beyond AT8-39396 AIRSPEED A78-39396 On the use of relative velocity exponents for jet engine exhaust noise A78-37683 Air speed and attitude probe [NASA-CASE-PRC-11009-1] N78-25088 HITITOD N78-24385 HITITOD N78-24385 HIDITHOM ALLOTS N78-24385 HIDITHOM ALLOTS N78-24385 HIDITHOM ALLOTS N78-24385 Alugative and the type of corrosion of the aircraft skin on limiting value of the damage A78-38907 Exploratory development for design data on structural aluminum alloys in representative aircraft environments N78-24384 Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties N78-25199 Relationship between scatter of fatigue life and S-R curve of 2024-T4 aircraft structural aluminum alloy specimens with a sharp notch (Rt equals 8.25) under a constant temperature and humidity condution [N78-25557 ANGLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CR-2993] N78-25557 ANTENA ABRAYS Thin conformal antenna array for microwave power conversions [NASA-CR-2993] N78-25431 ANTENA ABRAYS Thin conformal antenna array for microwave power conversions [NASA-CR-2993] N78-24391 ANTENA ABRAYS Thin conformal antenna array for microwave power conversions [NASA-CR-2993] N78-24391 ANTENMA ABRAYS Thin conformal antenna array for microwave power conversions [NASA-CR-2993] N78-24391 ANTENNA ABRAYS Thin conformal antenna array technique for zenith to horizon coverage aircraft to strent approach guidance N78-38844 ANTENNA RADIATION PATTERMS Verification of DABS sensor surveillance perforemance (MICRBS mode) at typical ASR sites throughout	
AIRSPED On the use of relative velocity erponents for jet engine exhaust noise A78-37683 Air speed and attitude probe [NASA-CASE-PRC-11009-1] N78-25088 HITTOD Problems in world-wide standardization of the units of height measurement [AD-A051150] N78-24385 HUMHING ALLOTS Influence of the type of corrosion of the aircraft skin on limiting value of the damage A78-38907 Exploratory development for design data on structural aluminum alloys in representative aircraft environments [AD-A052103] N78-24344 Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [NE-RP-76008-0] N78-25199 Relationship between scatter of fatigue life and S-K curve of 2024-T& aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NAI-TE-412T] N78-25453 INGLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel [NSA-CR2-2993] N78-25057 INFUNA PLATES Areodynamics of the annular wing A78-38475 MISIE OF ATTACK ANG-2052-NPO-13866-1] N78-24391 Interma Define evaluation of an airay technique for zenith to horizon coverage aircraft to satellite communication links A78-38849 On the compensation of radio direction finders aircling to satellite communication links A78-38849 A78-38849	
On the use of relative velocity erponents for jet engine exhaust noise Are-37683 Air speed and attitude probe [NASA-CASE-PRC-11009-1] NTETNOP Problems in world-wide standardization of the units of height measurement [AD-AD51150] NT8-24385 ALUMINUM ALLOYS Influence of the type of corrosion of the aircraft skin on limiting value of the damage Ar8-38907 Exploratory development for design data on structural aluminum alloys in representative aircraft environments [AD-AD52809] Relationship between scatter of fatigue life and S-R curve of 2024-T4 aircraft structural aluminum alloy specimes with a sharp notch (Rt equals 8.25) under a constant temperature and humidity condition [NAL-TR-4127] NT8-25453 ANGLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel [NAL-R-2933] NT8-2557 ANTENNA ABBAYS Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13866-1] NT8-24391 ATTENNA MENYS ATTENNA MENYS Thin conformal antenna array technique for zenit to horizon coverage aircraft to stellite communication links NT8-36380 On the compensation of radio direction finders antenna optimization in airport environments [NASA-CASE-NPO-13866-1] NTENNA HEATES Ar8-38494 ATTENNA MENYS Verification of DABS sensor surveillance performance (ATCRNS mode) at typical ASR sites throughout CONDS [AD-161120] NT8-24095 APEROACE CONTROL System requirements for transition from enroute to approach guidance NT8-3873 APEROACE CONTROL System requirements for transition from enroute to approach guidance NT8-3873 APEROXIMION Nollnear theory of a bearing surface of arbitrary ertent [AD-35185] NT8-24090 A distributed vortex method for computing the vorter field of a missule	
engine exhaust noiseA78-37683Air speed and attitude probeN78-25088NITTODEN78-25088Problems in world-wide standardization of the units of height measurementN78-24385IDSTINDN78-24385Influence of the type of corrosion of the aircraft skin on limiting value of the damage aircraft environmentsN78-24385Rate and treatment studies of aluminum alloys in representative aircraft environmentsN78-24344Reat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties (NL-RP-7608-0]N78-25199Relationship between scatter of fatigue life and s-K curve of 2024-T8 aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 0.25) under a constant temperature and humidity condition (NL-RP-4008-0]N78-25453MGLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel (NSA-CA2-2993)N78-25453AMGLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel (NSA-CA2-2993)N78-24391AMILE Compensation of an array for microwave power conversions (NSA-CA2E-NEPO-13866-1)N78-24391Andersen Desized of the annular wing AF8-38207A78-38475Anterna optimization of radio direction finders antenna optimization in airport environments AF8-38207N78-24391Anterna optimization of radio direction finders antenna optimization in airport environments AF8-38207N78-24391Anterna optimization of radio direction finders antenna optimization in airport environments AF8-38207N78-38494 <td< td=""><td></td></td<>	
Air speed and attitude probe [NASA-CASE-PRC-11009-1]N78-25088ALTITUDEProblems in world-wide standardization of the units of height measurement [AD-A051150]N78-24385ALUMINUM ALLOYSN78-24385Influence of the type of corrosion of the aircraft skin on limiting value of the damage arrest aluminum alloys in representative aircraft environments [AD-A052803]N78-24344Reat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [NE-RA-6068-0]N78-25434Relationship between scatter of fatigue life and S-R curve of 2024-T4 aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NAL-TR-412T]N78-25453MGEL OF ATTACK Ingh angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CR-2993]N78-25057ANTENNA ABEAYS Thin conformal antenna array for microwave power conversions [NASA-CR-2993]N78-24391ANTENNA ABEAYS Thin conformal antenna array for microwave power conversions [NASA-CR-2993]N78-24391ANTENNA ABEAYS Thin conformal antenna array for microwave power conversions [NASA-CR-2993]N78-24391ANTENNA ABEAYS Thin conformal antenna array for microwave power conversions [NASA-CR-2993]N78-2438475ANTERNA ABEAYS Thin conformal antenna array for microwave power conversions [NASA-CR-2993]N78-24391ANTERNA ABEAYS Thin conformal antenna array for microwave power conversions [NASA-CR-289-13866-1]N78-38475ANTERNA ABEAYS Thin conformal antenna array for microwave power con	
<pre>[NASA-CASE-PRC-11009-1] N78-25088 ALITITOD Problems in world-wide standardization of the units of height measurement [AD-A051150] N78-24385 ALUMINUM ALLOYS Infiluence of the type of corrosion of the aircraft skin on limiting value of the damage A78-38907 Exploratory development for design data on structural aluminum alloys in representative aircraft environments [AD-A052809] N78-24344 Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [NEA-TR-76008-U] N78-25199 Relationship between scatter of fatigue life and S-N curve of 2024-T4 aircraft structural aluminum alloy specimes with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NAI-TR-412T] N78-25453 HGLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel [NAI-TR-412T] N78-25057 ANNULAR PLATES Aerodynamics of the annular wing A78-38475 ATEBNA ABEAYS Thin conformal antenna array for microwave power conversions [NAS-CAS2-N90-13886-1] N78-24391 ANTERNA DESIGN Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communcation links A78-38844 ANTENNA RADIATION PATTERNS Verification of DABS sensor surveillance performance (ATCRBS mode) at typical ASE sites throughout CONUS [AD-A05128] N78-24105 APPBOACH CONTEOL System requirements for transition from enroute to approach guidance A78-38773 APPBOTIBATION Nonlinear theory of a bearing surface of arbitrary ertent [AD-A051285] Sites Computer Surface of arbitrary ertent [AD-A051285] N78-24090 A distributed vorter method for computing the vorter field of a missile </pre>	A78-37683
ALTITUDEProblems in world-uide standardization of the units of height measurement [AD-A051150]N78-24385LUMHING ALLOTSN78-24385Influence of the type of corrosion of the aircraft skin on limiting value of the damage A78-38907N78-24385Exploratory development for design data on structural aluminum alloys in representative aircraft environments [AD-A052809]N78-24344Reat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [NL-TA-76008-0]N78-25199Relationship between scatter of fatigue life and S-N curve of 2024-TA aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NL-TR-412T]N78-25453MGLE OF ATTACKHigh angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CR-2993]N78-25057NHULAR PLATES Aerodynamics of the annular wing Are-38475N78-24391ATERNA ABBAYS Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13866-1]N78-24391ATERNA ABBAYS Therema alution of an array technique for zenith to horizon coverage aircraft to satellite communication links Are-38247A high-power switching network for a dual-mode antenna for airborne transmitter application Are-38844ANTENNA ADDIATION PATTERNS Verification of DABS sensor surveillance performance (ATCBBS mode) at typical ASE sites throughout CONUS [AD-A051285]N78-24090A high-power switching network for a dual-mode antenna for airborne transmitor from enroute to approach guidance performance (ATCBBS	
Problems in world-wide standardization of the units of height measurement [AD-A051150] N78-24385 ALUMINUM ALLOIS Influence of the type of corrosion of the aircraft skin on limiting value of the damage A78-38907 Exploratory development for design data on structural aluminum alloys in representative aircraft environments [AD-A052809] N78-24344 Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a wariety of engineering properties [NLB-TR-76008-U] N78-25199 Relationship between scatter of fatigue life and S-N curve of 2024-T4 aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NAL-TR-412T] N78-25453 AGLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CB-2933] N78-25057 INFULAR PLATES Aerodynamics of the annular wing A78-38475 Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13886-1] N78-24391 MTERNA ABBAIS Thir conformal antenna array technique for zenith to horizon coverage aircraft to satellite communication links N78-38495 ATTENNA DESIGM Arge-mental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links N78-38844 ATTENNA ADDIATION PATTERNS Verification of DABS sensor surveillance performance (ATCRBS mode) at typical ASE sites throughout CONUS [AD-A051126] N78-24105 AF8-36453 Soviet landing aid draws FAB scrutiny laser approach guidance N78-36453 Soviet landing aid draws FAB scrutiny laser approach guidance N78-36773 APFBORIE CONTROI Nonlinear theory of a bearing surface of arbitrary ertent [AD-A051385] N78-24090 4 distributed vorter method for computing the vorter field of a missile	
<pre>[AD-A051150] N78-24385 ALUMINM ALLOTS Influence of the type of corrosion of the aircraft skin on limiting value of the danage A78-38907 Exploratory development for design data on structural aluminum alloys in representative aircraft environments [AD-A052809] N78-24344 Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [NLB-TR-76008-U] N78-25199 Pelationship between scatter of fatigue life and S-N curve of 2024-T& aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NA-TR-4121] N78-25453 AGCLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CR-2993] N78-25057 INNULAR PLATES AFCLE OF ATTACK High angle constant ving A78-38475 ANTENNA ABBAYS Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13866-1] N78-24391 ANTENNA DESIGM Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links A78-36380 On the compensation of radio direction finders antenna optimization in airport environments A78-38844 ANTENNA ADDIATION PATTERS Verification of DABS sensor surveillance performance (ATCRBS mode) at typical ASE sites throughout CONUS [AD-A051126] N78-24105 APFBOACE CONTEOL System requirements for transition from enroute to approach guidance A78-38773 APFBORIE CONTEOL System requirements for transition from enroute to approach guidance A78-363773 APFBORIE CONTEOL Nonlinear theory of a bearing surface of arbitrary ertent [AD-A051385] N78-24090 4 distributed vorter method for computing the vorter field of a missile</pre>	Problems in world-wide standardization of the
ALURIFUR ALLOYS Influence of the type of corrosion of the aircraft Influence of the type of corrosion of the aircraft A78-38907 Exploratory development for design data on structural alumnum alloys in representative aircraft environments A78-24344 [AD-A052809] M78-24344 Reat treatment studies of alumnum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [NL-TA-76008-0] N78-25199 Relationship between scatter of fatigue life and S-N curve of 2024-T4 aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NAL-TR-412T] NRDLE OF ATTACK N78-25453 High angle canard missile test in the Ames 11-foot transonic wind tunnel [NAS-CR-2933] N78-25057 ANTENN ABEATS A78-38475 ATTENN ABEATS Thin conformal antenna array for microwave power conversions [NAS-CASE-NPO-13866-1] N78-24391 ANTENNA DESIGN Pre-36300 On the compensation of radio direction finders antenna optimization in airport environments A78-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38247 A	
Influence of the type of corrosion of the aircraft skin on limiting value of the damage A78-38907 Exploratory development for design data on structural aluminum alloys in representative aircraft environments [AD-A052809] N78-24344 Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [NLB-TB-76008-0] N78-25199 Relationship between scatter of fatigue life and S-N curve of 2024-T4 aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NA-TB-412T] N78-25453 MGLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CR-2993] N78-25057 ANNOLAF PLATES Aerodynamics of the annular wing A78-38475 MTENNA ABBAYS Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13886-1] N78-24391 ANTENNA DESIGN Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links A78-36300 On the compensation of radio direction finders antenna optimization in airport environments A78-36844 ANTENNA ADDIATION PATTERNS Verification of DABS sensor surveillance performance (ATCRBS mode) at typical ASR sites throughout CONUS [AD-A051126] N78-24105 APPROACH COBTROL System requirements for transition from enroute to approach guidance A78-38773 APPROTINATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missule	
skin on limiting value of the damage A78-38907 Exploratory development for design data on structural aluminum alloys in representative aircraft environments [AD-A052809] N78-24344 Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [NL-TR-76008-0] N78-25199 Relationship between scatter of fatigue life and S-N curve of 2024-74 aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NAL-TR-4127] N78-25453 HGCLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CR-2993] N78-25057 HNULAR FLATES Aerodynamics of the annular wing A78-38475 Thin conformal antenna array for microwave power conversions [NASA-CR-2993] N78-24391 INTENNA DEBIGS Bighering evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links N78-36380 On the compensation of radio direction finders antenna optimization in airport environments N78-38844 ANTENNA RADIATION PATTERNS Verification of DABS sensor surveillance performance (ATCCBS mode) at typical ASS sites throughout CONUS [AD-A051128] N78-24105 IPPROACE CONTROL System requirements for transition from enroute to approach guidance A78-38773 APPENDIMENTION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missule	
Exploratory development for design data on structural alumnum alloys in representative aircraft environments [AD-A052809] N78-24344 Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [NL-TR-76080-0] N78-25199 Relationship between scatter of fatigue life and S-N curve of 2024-T4 aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NAI-TR-412T] N78-25453 MGLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CR-2993] N78-25057 ANNOLAR PLATES Aerodynamics of the annular wing Ar8-38475 MTENNA ABBAYS Thin conformal antenna array for microwave power conversions [NASA-CR-2993] N78-24391 MTENNA DESIGM Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links Ar8-38640 On the compensation of radio direction finders antenna optimization in airport environments Ar8-38844 MTENNA HADIATION PATTENS Verification of DATS sensor surveillance performance (ATCRBS mode) at typical ASE sites throughout CONDS [AD-A051128] N78-24105 APPROXIME CONTON System requirements for transition from enroute to approach guidance A78-36873 APPROXIMINION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missile	skin on limiting value of the damage
structural alumnum alloys in representative aircraft environments [AD-A052809] N78-24344 Reat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [NL=TR-7608-0] N78-25199 Relationship between scatter of fatigue life and S-N curve of 2024-T4 aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NA-TR-412T] N78-25453 MGLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel [NA-CR-293] N78-25057 HNULAR PLATES Aerodynamics of the annular wing A78-38475 Thin conformal antenna array for microwave power conversions [NASA-CLSE-MPO-13886-1] N78-24391 AFTENNA DESIGM Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links A78-36300 On the compensation of radio direction finders antenna optimization in airport environments A78-38844 ATTENNA BAIATION PATTENS Verification of DAES sensor surveillance performance (ATCRES mode) at typical ASE sites throughout CONUS [AD-A051128] N78-24105 APPROACE CONTROL System requirements for transition from enroute to approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missule	
aircraft environments [AD-A052809] N78-24344 Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [NLR-TR-76008-0] N78-25199 Relationship between scatter of fatigue life and S-N curve of 2024-T& aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NAL-TR-412T] N78-25453 ANGLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel [NAS-CR-2993] N78-25057 ANNULAR PLATES Aerodynamics of the annular wing AT8-38475 ANTENNA ABBAYS Thin conformal antenna array for microwave power conversions [NAS-CRS-NPO-13886-1] N78-24391 ANTENNA DESIGN Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links A78-38207 A high-power switching network for a dual-mode antenna optimization in airport environments A78-38207 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38644 ANTENNA HADIATION PATTERNS Verification of DABS sensor surveillance performance (ATCRBS mode) at typical ASE sites throughout CONUS [AD-A051128] N78-24105 Soviet landing aid draws FAA scrutiny laser approach guidance A78-38773 APPROXINATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 \ distributed vorter method for computing the vorter field of a missile	
Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [NLR-TR-76008-U] N78-25199 Relationship between scatter of fatigue life and S-N curve of 2024-T4 aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NAL-TR-412T] N78-25453 ANGLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel [NSA-CR-2993] N78-25057 ANNULAR PLATES Aerodynamics of the annular wing Ar8-38475 Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13886-1] N78-24391 ANTENNA DESIGN Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links Ar8-36380 On the compensation of radio direction finders antenna optimization in airport environments Ar8-38644 ANTENNA BEDIATION PATTERNS Verification of DAES sensor surveillance performance (ATCRES mode) at typical ASE sites throughout CONDS [AD-AD51128] N78-24105 APPENACH CONTON APPENACH CONTON APPENACH CONTON (AD-AD51128] N78-24105 APPENACH CONTON APPENACH CONTON APPENACH CONTON (AD-AD51385] N78-24090 A distributed vorter method for computing the vorter field of a missile	aircraft environments
forgings. The effect of heat treatment on a variety of engineering properties [NLR-TR-76008-0] N78-25199 Relationship between scatter of fatigue life and S-W curve of 2024-74 aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NL-TR-4127] N78-25453 ANGLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel [NSA-CR-2993] N78-25057 ANTENNA ABBAYS Aerodynamics of the annular wing A78-38475 ATTENNA ABBAYS Thin conformal antenna array for microwave power conversions [NSA-CASE-NPO-13886-1] N78-24391 ANTENNA ABBAYS Difference (and the analy of a array technique for zenith to horizon coverage aircraft to satellite communication links A78-36380 On the compensation of radio direction finders antenna optimization in airport environments A78-38844 ANTENNA HADIATION PATTERNS Verification of DAES sensor surveillance performance (ATCRES mode) at typical ASE sites throughout CONDS [AD-A051128] N78-24105 APPROACE CONTROL System requirements for transition from enroute to approach guidance A78-36453 Soviet landing aid draws FAA scrutiny laser approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 4 distributed vorter method for computing the vorter field of a missile	
<pre>variety of engineering properties [NLR-TR-76008-U] N78-25199 Relationship between scatter of fatigue life and S-N curve of 2024-T4 aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NL-TR-412T] N78-25453 MGLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CR-2993] N78-25057 ANNULAR PLATES Aerodynamics of the annular wing Are-38475 ANTENNA ABBAYS Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13886-1] N78-24391 ANTENNA DESIGW Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links A78-36300 On the compensation of radio direction funders antenna optimization in airport environments A78-363844 ANTENNA HADIATION PATTERNS Verification of DAES sensor surveillance performance (ATCRES mode) at typical ASE sites throughout CONOS [AD-A051128] N78-24105 APPBOACE CONTROL System requirements for transition from enroute to approach guidance A78-36873 APPBOXIMENTION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missile</pre>	
<pre>[NLB-TR-76-000-U] N78-25199 Relationship between scatter of fatigue life and S-R curve of 2024-T4 aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NAL-TR-412T] N78-25453 ANGLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CE-2993] N78-25057 ANNULAR PLATES Aerodynamics of the annular wing A78-38475 Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13886-1] N78-24391 ANTENNA ABBAYS This compensation of an array technique for zenith to horizon coverage aircraft to satellite communication links A78-36380 On the compensation of radio direction finders antenna optimization in airport environments A78-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38844 ANTENNA HADIATION PATTENNS Verification of DABS sensor surveillance performance (ATCRES mode) at typical ASR sites throughout CONUS [AD-A051128] N78-24105 APPROACH CONTEOL System requirements for transition from enroute to approach guidance A78-36873 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] S78-24090 A distributed vorter method for computing the vorter field of a missile</pre>	
S-N curve of 2024-T4 aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NAL-TR-412T] N78-25453 ANGLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CB-2993] N78-25057 ANNULAR PLATES Aerodynamics of the annular wing [NASA-CB-2993] N78-25057 ANTENNA ABBAYS Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13886-1] N78-24391 ANTENNA DESIGN Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links N78-36380 On the compensation of radio direction finders antenna optimization in airport environments N78-36247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38844 ANTENNA BADIATION PATTERNS Verification of DAES sensor surveillance performance (ATCRES mode) at typical ASR sites throughout CONIS [AD-A051128] N78-24105 APPROACH CONTROL System requirements for transition from enroute to approach guidance N78-36473 Soviet landing aid draws FAA scrutiny laser approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missile	[NLR-TR-76008-U] N78-25199
alugnum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NAL-TR-412T] N78-25453 ANGLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CR-2993] N78-25057 ANNULAR PLATES Aerodynamics of the annular wing A78-38475 Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13886-1] N78-24391 ANTENNA ABBAYS Thin conformal evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links A78-36380 On the compensation of radio direction finders antenna optimization in airport environments A78-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38844 ANTENNA BADIATION PATTERNS Verification of DABS sensor surveillance performance (ATCRES mode) at typical ASR sites throughout CONUS [AD-A051128] N78-24105 APPROACH CONTEOL System requirements for transition from enroute to approach guidance A78-36453 Soviet landing aid draws FAA scrutiny laser approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missile	Relationship between scatter of fatigue life and
humidity condition [NAL-TR-412T]N78-25453ANGLE OF ATTACKHigh angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CB-2993]N78-25057ANNULAR PLATES Aerodynamics of the annular wingA78-38475APTENNA ABBAYSA78-38475Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13886-1]N78-24391ANTENNA DESIGNExperimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication linksA78-36380On the compensation of radio direction finders antenna optimization in airport environments A78-38844A78-38844ANTENNA BADIATION PATTERNS Verification of DAES sensor surveillance performance (ATCRES mode) at typical ASE sites throughout CONUS [AD-AO51128]N78-24105APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-AO51385]N78-24090 4 distributed vorter method for computing the vorter field of a missile	S-N CUIVE OF 2024-14 diffrant Structural aluminum alloy specimens with a sharp notch (Kt
humidity condition [NAL-TR-412T]N78-25453ANGLE OF ATTACKHigh angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CB-2993]N78-25057ANNULAR PLATES Aerodynamics of the annular wingA78-38475APTENNA ABBAYSA78-38475Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13886-1]N78-24391ANTENNA DESIGNExperimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication linksA78-36380On the compensation of radio direction finders antenna optimization in airport environments A78-38844A78-38844ANTENNA BADIATION PATTERNS Verification of DAES sensor surveillance performance (ATCRES mode) at typical ASE sites throughout CONUS [AD-AO51128]N78-24105APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-AO51385]N78-24090 4 distributed vorter method for computing the vorter field of a missile	equals 8.25) under a constant temperature and
ANGLE OF ATTACK High angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CR-2993] NFR-25057 ANNULAR FLATES Aerodynamics of the annular wing ATE-38475 Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13886-1] NTENNA DESIGN Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links N78-36380 On the compensation of radio direction finders antenna optimization in airport environments A78-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38844 ANTENNA BADIATION PATTERNS Verification of DAES sensor surveillance performance (ATCRBS mode) at typical ASE sites throughout CONUS [A)-A051128] NFENA APPROXIMATION Nonlinear theory of a bearing surface of arbitrary aproach guidance A78-38773 APPROXIMITION Nonlinear theory of	humidity condition
High angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CH-2993] N78-25057 ANNULAR PLATES Aerodynamics of the annular wing Ar8-38475 ANTENNA ABBAYS Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13886-1] N78-24391 ANTENNA DESIGN Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links Ar8-36380 On the compensation of radio direction finders antenna optimization in airport environments Ar8-36247 A high-power switching network for a dual-mode antenna for airborne transmitter application Ar8-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application Ar8-38844 ANTENNA BADIATION PATTERNS Verification of DABS sensor surveillance performance (ATCRBS mode) at typical ASR sites throughout CONUS [AD-A051128] N78-24105 APPROACH CONTROL System requirements for transition from enroute to approach guidance Ar8-38773 APPROACH CONTROL System requirements for transition from enroute to approach guidance Ar8-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missile	
<pre>transonic wind tunnel [NASA-CR-2993] N78-25057 AWNULAR PLATES Aerodynamics of the annular wing A78-38475 ArtENNA ABBATS Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13886-1] N78-24391 ANTENNA DESIGN Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links A78-36380 On the compensation of radio direction finders antenna optimization in airport environments A78-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38844 ANTENNA RADIATION PATTERNS Verification of DAES sensor surveillance performance (ATCRES mode) at typical ASE sites throughout CONUS [AD-A051128] N78-24105 APPROACH CONTEDL System requirements for transition from enroute to approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vortex method for computing the vortex field of a missile</pre>	
ANNULAR PLATES Aerodynamics of the annular wing A78-38475 ANTENNA ABBAYS Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13886-1] N78-24391 ANTENNA DESIGN Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links A78-36380 On the compensation of radio direction finders antenna optimization in airport environments A78-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38844 ANTENNA RADIATION PATTERNS Verification of DAES sensor surveillance performance (ATCRES mode) at typical ASR sites throughout CONUS [AD-A051128] N78-24105 APPROACH CONTROL System requirements for transition from enroute to approach guidance paproach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missile	transonic wind tunnel
Aerodynamics of the annular wing A78-38475 ANTENNA ABBAYS Thin conformal antenna array for microwave power conversions [NSA-CASE-NPO-13886-1] N78-24391 ANTENNA DESIGN Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links A78-36380 On the compensation of radio direction finders antenna optimization in airport environments A78-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38844 ANTENNA RADIATION PATTERNS Verification of DAES sensor surveillance performance (ATCRBS mode) at typical ASE sites throughout CONUS [AD-A051128] N78-24105 APPROACH CONTROL System requirements for transition from encoute to approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missile	
A78-38475 ANTENNA ABBAYS Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13886-1] N78-24391 ANTENNA DESIGN Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links A78-36380 On the compensation of radio direction finders antenna optimization in airport environments A78-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38844 ANTENNA RADIATION PATTERNS Verification of DAES sensor surveillance performance (ATCRBS mode) at typical ASE sites throughout CONUS [AD-A051128] N78-24105 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missile	
Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13886-1] N78-24391 ANTENNA DESIGN Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links A78-36380 On the compensation of radio direction finders antenna optimization in airport environments A78-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38844 ANTENNA RADIATION PATTERNS Verification of DAES sensor surveillance performance (ATCRBS mode) at typical ASE sites throughout CONUS [AD-A051128] N78-24105 APPROACH CONTROL System requirements for transition from enroute to approach guidance A78-36453 Soviet landing aid draws PAA scrutiny laser approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missile	A78-38475
CONVERSIONS [NASA-CASE-NPO-13886-1] N78-24391 ANTENNA DESIGN Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links N78-36380 On the compensation of radio direction finders antenna optimization in airport environments A78-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38844 ANTENNA RADIATION PATTERNS Verification of DAES sensor surveillance performance (ATCRBS mode) at typical ASE sites throughout CONUS [AD-A051128] N78-24105 A78-386453 Soviet landing aid draws FAA scrutiny laser approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missile	
[NASA-CASE-NPO-13886-1] ANTENNA DESIGN Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links 778-36380 On the compensation of radio direction finders antenna optimization in airport environments A78-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38844 ANTENNA EADIATION PATTERNS Verification of DAES sensor surveillance performance (ATCRES mode) at typical ASR sites throughout CONUS [AD-A051128] N78-24105 APPROACH CONTROL System requirements for transition from enroute to approach guidance paproach guidance A78-36453 Soviet landing aid draws FAA scrutiny laser approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missile	
Experimental evaluation of an array technique for zenith to horizon coverage aircraft to satellite communication links A78-36380 On the compensation of radio direction finders antenna optimization in airport environments A78-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38844 ANTENNA RADIATION PATTERNS Verification of DAES sensor surveillance performance (ATCRBS mode) at typical ASR sites throughout CONUS [AD-A051128] N78-24105 APPROACH CONTROL System requirements for transition from enroute to approach guidance A78-38873 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missile	[NASA-CASE-NPO-13886-1] N78-24391
<pre>zenith to horizon coverage aircraft to satellite communication links 778-36380 On the compensation of radio direction finders antenna optimization in airport environments 778-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38844 ANTENNA RADIATION PATTERNS Verification of DABS sensor surveillance performance (ATCRBS mode) at typical ASR sites throughout CONUS [AD-A051128] N78-24105 APPROACH CONTROL System requirements for transition from enroute to approach guidance paproach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missile</pre>	
satellite communication links 178-36380 On the compensation of radio direction finders antenna optimization in airport environments A78-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38844 ANTENNA BADIATION PATTERNS Verification of DABS sensor surveillance performance (ATCRBS mode) at typical ASR sites throughout CONUS [AD-A051128] N78-24105 A78-36453 Soviet landing aid draws PAA scrutiny laser approach guidance A78-36453 Soviet landing aid draws PAA scrutiny laser approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missile	
A78-36380 On the compensation of radio direction finders antenna optimization in airport environments A78-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38844 ANTENNA RADIATION PATTERNS Verification of DAES sensor surveillance performance (ATCRBS mode) at typical ASR sites throughout CONUS [AD-A051128] N78-24105 APPROACH CONTROL System requirements for transition from enroute to approach guidance P78-36453 Soviet landing aid draws FAA scrutiny laser approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missile	
antenna optimization in airport environments A78-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38844 ANTENNA BADIATION PATTERNS Verification of DABS sensor surveillance performance (ATCRBS mode) at typical ASR sites throughout CONUS [AD-A051128] N78-24105 APPROACH CONTROL System requirements for transition from enroute to approach guidance A78-36453 Soviet landing aid draws PAA scrutiny laser approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missile	»78-36380
A 78-38247 A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38844 ANTENNA RADIATION PATTERNS Verification of DABS sensor surveillance performance (ATCRBS mode) at typical ASR sites throughout CONUS [AD-A051128] N78-24105 APPROACH CONTROL System requirements for transition from enroute to approach guidance A78-36453 Soviet landing aid draws FAA scrutiny laser approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missile	
<pre>A high-power switching network for a dual-mode antenna for airborne transmitter application A78-38844 ANTENNA BADIATION PATTERNS Verification of DABS sensor surveillance performance (ATCRBS mode) at typical ASR sites throughout CONUS [AD-A051128] N78-24105 APPROACH CONTROL System requirements for transition from enroute to approach guidance A78-36453 Soviet landing aid draws FAA scrutiny laser approach guidance A78-36453 Soviet landing aid draws FAA scrutiny laser approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vortex method for computing the vortex field of a missile</pre>	
A78-38844 ANTENNA RADIATION PATTERNS Verification of DABS sensor surveillance performance (ATCRBS mode) at typical ASR sites throughout CONUS [AD-A051128] N78-24105 APPROACH CONTROL System requirements for transition from enroute to approach guidance A78-36453 Soviet landing aid draws FAA scrutiny laser approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vorter method for computing the vorter field of a missile	A high-power switching network for a dual-mode
ANTENNA RADIATION PATTERNS Verification of DAES sensor surveillance performance (ATCRES mode) at typical ASR sites throughout CONUS [AD-A051128] N78-24105 APPROACH CONTROL System requirements for transition from enroute to approach guidance A78-36453 Soviet landing aid draws FAA scrutiny laser approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vortex method for computing the vortex field of a missile	
<pre>Verification of DABS sensor surveillance performance (ATCRBS mode) at typical ASR sites throughout CONUS [AD-A051128] N78-24105 APPROACH CONTROL System requirements for transition from enroute to approach guidance A78-36453 Soviet landing aid draws PAA scrutiny laser approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vortex method for computing the vortex field of a missile</pre>	
performance (ATCRBS mode) at typical ASE sites throughout CONUS [AD-A051128] N78-24105 APPROACH CONTROL System requirements for transition from enroute to approach guidance A78-36453 Soviet landing aid draws FAA scrutiny laser approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vortex method for computing the vorter field of a missile	
[AD-A051128] N78-24105 APPROACH CONTROL System requirements for transition from enroute to approach guidance Soviet landing aid draws FAA scrutiny laser approach guidance N78-36453 APPROXIMATION NR8-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 N distributed vortex method for computing the vortex field of a missile	performance (ATCRBS mode) at typical ASR sites
APPROACH CONTROL System requirements for transition from enroute to approach guidance 50viet landing aid draws FAA scrutiny laser approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vortex method for computing the vortex field of a missile	
System requirements for transition from enroute to approach guidance x78-36453 Soviet landing aid draws FAA scrutiny laser approach guidance x78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vortex method for computing the vortex field of a missile	
>78-36453 Soviet landing aid draws PAA scrutiny laser approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vortex method for computing the vortex field of a missile	System requirements for transition from enroute to
Soviet landing aid draws PAA scrutiny laser approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vortex method for computing the vortex field of a missile	
approach guidance A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vortex method for computing the vortex field of a missile	
A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vortex method for computing the vortex field of a missile	
Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vortex method for computing the vortex field of a missile	
extent [AD-A051385] N78-24090 & distributed wortex method for computing the wortex field of a missile	A78-38773
[AD-A051385] N78-24090 A distributed vortex method for computing the vortex field of a missile	A78-38773
A distributed vortex method for computing the vortex field of a missile	A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary
	A78-38773 APPROXIBATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090
[0A SA-12-1105] 0/0-25030	A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vortex method for computing the
	A78-38773 APPROXIMATION Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 A distributed vortex method for computing the vortex field of a missile

AREA NAVIGATION

ARBA NAVIGATION Jeppesen charting for area navigation A78-36454 New model VOR/DME A78-37246 ATHOSPHERIC ATTENUATION Atmospheric-absorption adjustment procedure for aircraft flyover noise measurements --- computer program AD-A0517001 N78-24899 ATMOSPHERIC CHEMISTRY Photochemistry and dynamics of the ozone layer **Å78-38766** ATMOSPHERIC MODELS Photochemistry and dynamics of the ozone layer **Å78-38766** ATHOSPHERIC TURBULENCE A non-stationary model for atmospheric turbulence patches for the prediction of aircraft design loads [NLR-TR-76131-0] N78-25077 ATS 5 Results of the NASA/MARAD L-band satellite navigation experiment A78-37525 ATS 6 Results of the NASA/NARAD L-band satellite navigation experiment A78-37525 ATTACK AIRCBAFT An approach to EMP testing of complete strike aircraft A78-39088 ATTITUDE INDICATORS Air speed and attitude probe [NASA-CASE-FRC-11009+1] N78-25088 AUTOMATIC FLIGHT CONTROL Fully-automated, pilot-monitored air traffic control A78-37155 AUTOMATION The effect of correlated missed detections, correlated false alarms and interclutter visibility on the performance of an automated radar tracking system A78-37485 AUXILIARY POWER SOURCES Aircraft auxiliary power units --- Russian book A78-37885 AVTONICS Modern RF system design for aircraft --- tactical information exchange system A78-37341 Electronic aircraft collision avoidance system ---Russian book A78-37603 The F-4E Austere HOD/Gunsight project A78-38746 Jaguar and Tornado avionic development testing A78-38748 The determination of margins of safety for critical aircraft systems --- electromagnetic interference effects on flight and engine controls A78-39082 Filtering techniques in avionic transmitters A78-39084 Diary of an international team co-ordinating system electromagnetic compatibility of an avionic sub-system A78-39085 Susceptibility testing of airborne equipment - The way ahead A78-39086 EMC control of the tornado aircraft A78-39087 General aviation avionics equipment maintenance [NASA-CR-145342] N78-24132 On setting avionic subsystem unit production cost goals --- contract management and procurement policy FAD-A0513371 N78-24133 Aerospace computer systems. Part 1: Avionics applications, volume 2. A bibliography with abstracts [NTIS/PS-78/0289] N78-25787 AXIAL FLOW TUBBINES Calculation of transonic flow through a turbine cascade by the time-step method

В

B-1 ATRCRAFT Preliminary design of low-cost titanium structure --- B-1 allcraft engine nacelles [AD-A053327] N78-25087 BASE PRESSURE Flight-measured pressure characteristics of aft-facing steps in high Reynolds number flow at Mach numbers of 2.20, 2.50, and 2.80 and comparison with other data [NASA-TM-72855] N78-250 N78-25055 BENDING MOMENTS An experimental study to determine the reduction in ultimate bending moment of a composite plate due to an internal delamination [AD-A052662] N78-25466 BIBLIOGRAPHIES Parachutes and decelerators, volume 2. A bibliography with abstracts [NTIS/PS+78/0320] N78-25067 Aircraft sonic boom: Effects on buildings. A bibliography with abstracts [NTIS/PS-78/0239] N78-25099 Aircraft sonic boom: Studies on aircraft flight, aircraft design, and measurement. A bibliography with abstracts [NTIS/PS-78/0238] N78-25100 Aerospace computer systems. Part 1: Avionics applications, volume 2. A bibliography with abstracts [NTIS/PS-78/0289] N78-25787 Nonlinear acoustics. A bibliography with abstracts [NTIS/PS-78/0240] BLADE TIPS N78-25840 The effect of tip vortex structure on helicopter noise due to blade/vortex interaction [NASA-CR-152150] N78-25 BO-105 HELICOPTER N78-25832 IDS - An advanced hingeless rotor system A78-36950 BODY-WING CONFIGURATIONS Characteristics of flow past fuselages and wing-fuselage systems of gliders A78-36203 Aerodynamic characteristics at Mach number 0.2 of a wing-body concept for a hypersonic research aırplane [NASA-TP-1189] N78-25059 BOUNDARY LAYER CONTROL Boundary layer blowing tests on a radial diffuser in low and subsonic Mach range A78-37411 Application of laminar flow control to large subsonic military transport airplanes FAD-A0524221 N78-24098 BOUNDARY LAYER FLOW Hot-wire velocity measurements in thin boundary layers A78-36205 BOUNDARY LAYER STABILITY Calculation of airfoil drag A78-36210 BOUNDABY LAYER TRANSITION The next approximation after boundary layer theory --- machine blade associated unsteady flow effects A78-37409 BOUNDARY LAYERS Methods and results of boundary layer measurements on a glider [NASA-TM-75294] N78-24085 BRAKES (FOR ARRESTING MOTION) Parachutes and decelerators, volume 2. A bibliography with abstracts [NTIS/PS-78/0320] N78-25067 BUILDINGS Aircraft sonic boom: Effects on buildings. A bibliography with abstracts [NTIS/PS-78/0239] N78-25099 BURNING RATE Analysis of spray combustion in a research gas turbine combustor

A78-37297

A78-38248

COMMUNICATION BQUIPMENT

С C-15 AIRCRAFT Overview of powered-lift technology --- as used on the YC-14 aircraft and C-15 aircraft N78-24047 CALIBRATING Prediction of the aerodynamic characteristics of an aircraft on the basis of the comparison of results for a calibration model in various large transonic wind tunnels [ONERA, TP NO. 1978-22] A78-39579 CANARD CONFIGURATIONS High angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CR-2993] N78-25057 CARBON FIBER BEINFORCED PLASTICS Sailplanes of carbon-fiber construction A78-38804 Heavily lcaded carbon-fiber-reinforced-plastic primary structure with the Tornado taileron as an example 178-38810 Material selection for the Tornado taileron A78-38811 CARBON FIBERS Carbon fiber study [NASA-TM-79449] 178-24292 CARGO AIRCRAPT Survey of air cargo forecasting techniques [NASA-CE-145329] N78-25068 Preliminary analysis of hub and spoke air freight distribution system [NASA-TM-72656] N78-25069 Preliminary study of a large span-distributed-load flying-wing cargo airplane concept [NASA-TP-1158] N78-25079 Doctrine versus capabilities: A project manager's dilemma with the CH-47 helicopter [AD-A052376] N78-25970 CASCADE FLOW Application of the integral-transformation method to three-dimensional unsteady problems of the theory of cascades 178-36366 Calculation of transonic flow through a turbine cascade by the time-step method A78-38248 Investigations of the influence of the profile thickness of the compressible plane flow through compressor cascades [NASA-TM-75277] N78-24084 CATALYTIC ACTIVITY Performance evaluation of a catalytic partial oxidation hydrogen generator using turbine engine fuels [AD-A047355] N78-24380 CATHODE BAY TUBES CRT update --- for airborne displays 178-37490 Perspective radar display system: TV-like presentation on CRT provides higher lateral position and lateral motion sensitivity than a PPI AD-A052342] N78-24418 CERTIFICATION The certification of light aircraft A78-36280 CH-47 BELICOPTES Doctrine versus capabilities: A project manager's dilemma with the CH-47 helicopter [AD-A052376] ₩78-25970 CHARTS Jeppesen charting for area navigation A78-36454 CIVIL AVIATION Expansion potential for the local service air carrier A78-37539 Application of modern methods in civil aircraft construction A78-38808 Precision positional data of general aviation air traffic in terminal air space [NASA-RP-1020] 878-25008 CLEARANCES Acoustics and performance of high-speed, unequally spaced fan rotors [NAL-TR-526] N78-25094

Compressible flow about helicopter rotors A78-36947 CLOUD SEEDING Preliminary experience with the use of the Yak-40 aircraft in studies of cloud physics and artificial modifications 278-36483 CLUTCHES Advanced overrunning clutch technology --- for use in helicopters [AD-A052635] N78-24557 CLUTTER The effect of correlated missed detections, correlated false alarms and interclutter visibility on the performance of an automated radar tracking system A78-37485 COAL LIQUEPACTION [NASA-TM-78696] N78-2554 N78-25545 COBALT ALLOYS Cobalt-base alloys produced by powder metallurgy for compressor and turbine disks [ONERA, TP NO. 1978-7] A78-39582 COCRPITS The design of future cockpits for high performance fighter aircraft A78-36446 COLLISION AVOIDANCE Concerning the logical comparison of ATC separation standard assessment models A78-36455 Fully-automated, pilot-monitored air traffic control A78-37155 Electronic aircraft collision avoidance system --Russian book A78-37603 A relative motion analysis of horizontal collision avoldance A78-39674 COLOR PHOTOGRAPHY Color displays for airborne weather radar £78-36980 COMBUSTION CHAMBBRS Analysis of spray combustion in a research gas turbine combustor 178-37297 Review of flashback reported in prevaporizing/premixing combustors A78-37772 Combustion in gas turbine engines - A review of ONERA recent works [ONERA, TP NO. 1978-25] Design and preliminary results of a A78-39580 semitranspiration cooled (Lamilloy) liner for a high-pressure high-temperature combustor [NASA-TM-78874] Fundamental aspects of the aerodynamics of N78-24138 turbojet engine combustors [NASA-TM-75287] N78-24142 A high-pressure, sector-shaped model combustor test facility for development of turbofan engines [NAL-TR-517] N78-25093 [NAL-TR-51/] YP 102 in-duct combustor noise measurement, volume 1 [NASA-CR-135404-V0L-1] N78-25827 YP 102 in-duct combustor noise measurement, volume 3 [NASA-CR-135404-V0L-3] N78-25829 COMBUSTION BYPICIBNCY Combustion in gas turbine engines - A review of ONERA recent works [ONERA, TP NO. 1978-25] A78-39580 COMBUSTION PRODUCTS Characteristics and combustion of future hydrocarbon fuels --- aircraft fuels [NASA-TM-78865] N78-24370 COMMBRCIAL AIRCBAFT Ergonomics in commercial aircraft landing A78-36621 A rising sun in aircraft --- Japanese commercial aircraft development programs A78-38524 Energy savings. [AAAF-NT-77-24] An aircraft constructor's viewpoint 178-24127 COMBUNICATION BQUIPEENT Test operations procedures physical characteristics aviation material N78-25086 [AD-A053196]

CLIEBING PLIGHT

<u>1-7</u>

COMMUNICATION NETWORKS

COMMUNICATION NETWORKS Maritime satellite communications - Where we are and where we're going [AAS 77-257] A78-36721 COMMUNICATION SATELLITES Maritime satellite communications - Where we are and where we're going [AAS 77-257] A78-36721 COMPLEX VARIABLES Factorization methods in hydroaeromechanics ---Russian book A78-37887 COMPONENT RELIABILITY Case of damage involving arrcraft and helicopter components of light metal A78-36941 The damage sum in fatigue of structure components --- aircraft structures [ICAF-1032] N78-25454 COMPOSITE MATERIALS New technologies for aircraft structures A78-38803 Environmental effects on composites for aircraft [NASA-TM-78716] N78-2 N78-25135 COMPOSITE STRUCTURES An experimental study to determine the reduction in ultimate bending moment of a composite plate due to an internal delamination [AD-A052662] N78-25 N78-25466 COMPRESSIBLE FLOW Compressible flow about helicopter rotors A78-36947 Investigations of the influence of the profile thickness of the compressible plane flow through compressor cascades [NASA-TM-75277] N78-24084 The development and application of a simple method for determining unsteady airloads in subsonic compressible flow [AD-A052417] N78-24096 COMPRESSOR BLADES Investigations of the influence of the profile thickness of the compressible plane flow through compressor cascades [NASA-TM-75277] N78-24084 COMPRESSOR BPPICIENCY Loss prediction in axial compressors - A bibliographic study A78-38892 COMPRESSOR ROTORS Acoustics and performance of high-speed, unequally spaced fan rotors ſNAL-TR-526] N78-25094 COMPRESSORS Cohenerstons Cobalt-base alloys produced by powder metallurgy for compressor and turbine disks [ONERA, TP NO. 1978-7] A78-39 COMPUTER PROGRAMMING A78-39582 Design and construction of a flight monitor and data recorder --- component selection and software design [AD-A052405] N78-24135 COMPUTER PROGRAMS Use of structural analysis programs for calculating states of stress in helicopter rotor elements A78-38807 Simplified input for certain aerodynamic nose configurations to the Grumman guick-geometry system. A KWIKNOSE user's manual [AD-A051425] N78-24089 Use of simulation techniques in the problem of air traffic control [QUAD-CALC-ELETT-21] N78-24111 Atmospheric-absorption adjustment procedure for allcraft flyover noise measurements --- computer program [AD-A051700] N78-24899 Naval aircraft operating and support cost model -Piscal Year 1976 revision [AD-A053180] N78-25 N78-25051 Paneling techniques for use with the VOBLAX computer program N78-25054 Computer model for refinery operations with emphasis on jet fuel production. Volume 3: Detailed systems and programming documentation [NASA-CE-135335] N78-2 N78-25235

SUBJECT INDEX

COMPUTER SYSTEMS PROGRAMS Reduction of transient gas turbine test data using a hybrid computer A78-38782 Testing of the IC-14 flight control system software [AIAA PAPER 77-1077] A78-3918 Aerospace computer systems. Part 1: Avionics A78-39183 applications, volume 2. A bibliography with abstracts [NTIS/PS-78/0289] COMPUTER TECHNIQUES N78-25787 Computer-aided holographic vibration analysis for vectorial displacements of bladed disks A78-37183 Formulas for takeoff performance P3-A, B and C airplanes [AD-A052354] COMPUTERIZED DESIGN N78-24124 Hybrid computer models as an aid in design of gas turbine control systems for helicopters A78-38783 On the optimization of discrete structures with aeroelastic constraints A78-39135 A study of commuter airplane design optimization [NASA-CR-157210] N78-2 N78-25078 COMPUTERIZED SIMULATION Hybrid computer models as an aid in design of gas turbine control systems for helicopters A78-38783 Time delay measurements for flight simulators A78-38788 A/ Simulation replay - Implementation and flight simulation applications A78-38789 Use of simulation techniques in the problem of air traffic control [QUAD-CALC-ELETT-21] N78-24111 Modeling of the UH-1B tail boom for analysis by the NASTRAN computer program [AD-A052303] N78-25081 CONCORDE AIRCRAFT SST flight planning and navigation - The first year's experience A78-37154 CONFERENCES Problems of the theory of strength related to aircraft construction and civil engineering; Structural Mechanics Meeting, Ottobrunn, West Germany, June 1, 2, 1977, Lectures and Discussion Contributions A78-38802 Powered-Lift Aerodynamics and Acoustics --conferences [NASA-SP-406] CONTRACT HANAGEMENT N78-24046 On setting avionic subsystem unit production cost goals --- contract management and procurement policy [AD-A051337] N78-24133 CONTROL SUBPACES Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 Heavy lift helicopters. Advanced Technology component program: Hub and upper controls [AD-A051348] N N78-24122 CONTROL THEORY Modal control theory and application to aircraft lateral handling qualities design [NASA-TP-1234] N78-25101 CONTROLLABILITY Nodal control theory and application to aircraft lateral handling gualities design [NASA-TP-1234] N78-25101 CONTROLLERS P100 multivariable control synthesis program. Volume 1: Development of P100 control system [AD-A052420] N78-24144 P100 multivariable control synthesis program. Volume 2: Appendices A through K [AD-A052346] N7 N78-24145 CONVECTIVE BEAT TRANSPER Combustion in gas turbine engines - A review of ONEBA recent works [ONERA, TP NO. 1978-25] A78-39580

DIGITAL SYSTEMS

CONVERGENT-DIVERGENT NOZZLES Uniqueness 'in the large' of the solution to the direct problem of the Laval nozzle A78-37613 COOLING Vibration investigation of helicopter engine cooling fan [AD-A047081] N78-24146 COOLING PINS Vibration investigation of helicopter engine cooling fan [AD-A047081] N78-24146 CORBOSION BESISTANCE Balogenated solvent-induced corrosion in hydraulic systems --- hydraulic drives for aircraft radar antennas **FASLE PREPRINT 78-AM-4A-21** A78-38083 CORROSION TESTS Influence of the type of corrosion of the aircraft skin on limiting value of the damage A78-38907 COST ABALYSIS Aircraft size and air transport costs N78-24112 COST EFFECTIVERESS Cost-effectiveness of flight simulators for effectiveness of flight simulators [AD-A052801] Volume 1: Use and N78-24156 COST ESTIMATES Life cost management, methodology, and case studies [AD-A052388] N78-24999 Naval aircraft operating and support cost model -Fiscal Year 1976 revision [AD-A053180] N78-250 N78-25051 COSTS On setting avionic subsystem unit production cost goals --- contract management and procurement policy (AD-A0513371 N78-24133 COUPLED MODES A high-power switching network for a dual-mode antenna --- for airborne transmitter application A78-38844 COUPLERS A high-power switching network for a dual-mode antenna --- for airborne transmitter application A78-38844 CRACK INITIATION Stress intensity factors, for collinear cracks in a stiffened sheet --- aircraft structures A78-38122 Can fatigue cracks be detected in an early stage by acoustic emission? Application to high resistance light alloys used in aeronautics --A-U461, A-U26N T6 [AAAP-NT-77-35] N78-24587 CRACK PROPAGATION Patigue crack propagation of titanium alloys under dwell-time conditions A78-39596 CRACKS Analytical and experimental fatigue program for the Kfir main and nose landing gears N78-25455 CRASE LANDING Theoretical investigation on the crash behavior of cell structures --- aircraft structural design A78-38805 CROSS FLOR Cross-flow characteristics on a cylindrical body at incidence in subsonic flow A78-37406 Round jet in a cross flow - Influence of injection angle on wortex properties A78-37744 CRUDE OTL Impact of future fuel properties on aircraft engines and fuel systems [NASA-TH-78866] N78-24369 Computer model for refinery operations with emphasis on jet fuel production. Volume 3: Detailed systems and programming documentation [NASA-CR-135335] N78-25235 [MASA-CH-130305] Evaluation of methods to produce aviation turbine fuels from synthetic crude oils phase 3, volume 3 [AD-A0531061 N78-25239

CRUISING PLIGHT Application of powered-lift concepts for improved cruise efficiency of long-range aircraft N78-24051 Cruise aerodynamics of USB nacelle/wing geometric variations N78-24057 Effects of nozzle design and power on cruise drag for upper-surface-blowing aircraft N78-24058 CYLINDRICAL BODIES Cross-flow characteristics on a cylindrical body at incidence in subsonic flow A78-37406 Unsteady heat transfer from a cylinder with radial injection A78-39042 Development of mainshift high speed cylindrical roller bearings for gas turbine engines [AD-A052351] N78-24556 D DATA PROCESSING A computer-based system for processing dynamic data --- from aircraft gas turbine engine strain measurements A78-37108 The new system for processing and presenting radar data in the Air Traffic Control Center of Barcelona **▶78-38997** DECELERATION Equipment permitting fuel savings during approach [AAAF-NT-77-27] N78-24 N78-24130 DELABINATING An experimental study to determine the reduction in ultimate bending moment of a composite plate due to an internal delamination [AD-A052662] DELTA WINGS N78-25466 Flow past nonconical wings with separation A78-37775 On lift of delta wings with leading-edge vortices at low speeds A78-39772 DEBAND (ECONOMICS) Air freight demand models: An overview [NASA-CR-152148] N78-25979 DEPOSITION Deposition of fine particles in the opening of film-cooled gas turbine blades [EPFL-ITA-2] N78-25091 DESIGN ANALYSIS Pemarks on design of supersonic wind tunnels A78-36216 Design for flying --- Book 178-36498 Life cost management, methodology, and case studies [AD-A052388] N78-24999 Preliminary study of a large span-distributed-load flying-wing cargo airplane concept [NASA-TP-1158] N78-25079 DEVELOPING NATIONS Applications of advanced transport aircraft in developing countries [NASA-CR-145343] N78-25985 DIGITAL BADAR SYSTEMS The effect of correlated missed detections, correlated false alarms and interclutter visibility on the performance of an automated radar tracking system A78-37485 Dealing with false targets in the Air Traffic Control Radar Beacon System A78-37486 Alrcraft radar systems --- Russian book 178-37873 DIGITAL SIMULATION Optimal digital simulation of aircraft via random search techniques ▶78-39182 DIGITAL SYSTEMS A computer-based system for processing dynamic data --- from aircraft gas turbine engine strain measurements A78-37108 An adaptive learning control system for aircraft [NASA-CR-156930] N78-2 N78-25966

DIRECTIONAL ANTENNAS

SUBJECT INDER

DIRECTIONAL ANTENNAS On the compensation of radio direction finders --antenna optimization in airport environments A78-38247 DISCRETE ADDRESS BEACON SYSTEM Verification of DABS sensor surveillance performance (ATCRES mode) at typical ASR sites throughout CONUS [AD-AÓ51128] N78-24105 DISPLACEMENT MEASUREMENT Computer-aided holographic vibration analysis for vectorial displacements of bladed disks 178-37183 DISPLAY DEVICES The design of future cockpits for high performance fighter aircraft A78-36446 Color displays for airborne weather radar A78-36980 CRT update --- for airborne displays A78-37490 DISTANCE REASORING BOUTPHENT New model VOR/DME A78-37246 DOPPLER RADAR Evaluation of airborne radar Doppler processors A78-37477 DRAG REDUCTION Drag reduction for gliders [NASA-TH-75293] N78-24116 DYNABIC CHARACTBRISTICS Reduction of transient gas turbine test data using a hybrid computer Oil-air mist lubrication for helicopter gearing N78-25080 178-38782 [NASA-CR-135081] DYNAHIC HODELS Photochemistry and dynamics of the ozone layer Å78-38766 DYNAMIC RESPONSE A computer-based system for processing dynamic data --- from aircraft gas turbine engine strain measurements A78-37108 DYNAMIC STRUCTURAL ANALYSIS A computer-based system for processing dynamic data --- from aircraft gas turbine engine strain measurements A78-37108 On the optimization of discrete structures with aeroelastic constraints A78-39135 Modeling of the UH-1B tail boom for analysis by the NASTRAN computer program [AD-A052303] N78-25081 Ε EARTH RESOURCES SURVEY AIRCRAFT Prospects for using new flight vehicles in aerophysical studies A78-39189 ECONOMIC ANALYSIS An economic and technical perspective of the turboprop engine in Ag-aviation A78-37536 EIGENVALUES Modal control theory and application to aircraft lateral handling qualities design [NASA-TP-1234] N78-25101 BIGENVECTORS Modal control theory and application to aircraft lateral handling gualities design [NASA-TP-1234] N78-25101 ELECTRIC CURRENT EMP induced currents on a simplified missile theory and experiment A78-39109 ELECTROMAGNETIC COMPATIBILITY Filtering techniques in avionic transmitters 178-39084 Diary of an international team co-ordinating system electromagnetic compatibility of an avionic sub-system A78-39085 EMC control of the tornado aircraft A78-39087

Assessment procedure application utilizing UHP transistor RF pulse susceptibility data --studies of approach radar and of aircraft --- ERC DEF-receiver A78-39101 ELECTRONAGNETIC INTERFERENCE The determination of margins of safety for critical aircraft systems --- electromagnetic interference effects on flight and engine controls A78-39082 Susceptibility testing of airborne equipment - The way ahead A78-39086 ELECTROMAGNETIC NOISE Study of magnetic noise in the Ka-26 helicopter A78-39188 ELECTRONAGNETIC NOISE MEASUREMENT Aircraft measurement of radio frequency noise at 121.5 MHz, 243MHz and 406MHz A78-39105 ELECTROMAGNETIC PULSES A three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment. I - The method and its implementation. II - Comparison of predictions and measurements A78-37124 An approach to EMP testing of complete strike aircraft A78-39088 Assessment procedure application utilizing UHF transistor RP pulse susceptibility data --- EMC studies of approach radar and of aircraft UHF-receiver **∆78-39101** EMP induced currents on a simplified missile theory and experiment A78-39109 ELECTROMECHANICAL DEVICES Electromechanical flight control actuator, volume 2 [N3SA-CR-151734] N78-2598 Electromechanical flight control actuator, volume 3 N78-25986 [NASA-CR-151735] N78-25987 BLECTRONIC CONTROL Testing of the IC-14 flight control system software [AIAA PAPER 77-1077] A78-3918. ELECTRONIC EQUIPHENT Modern RP system design for aircraft --- tactical 178-39183 information exchange system A78-37341 Electronic aircraft collision avoidance system ---Russian book A78-37603 ELECTRONIC EQUIPMENT TESTS Jaguar and Tornado avionic development testing A78-38748 Diary of an international team co-ordinating system electromagnetic compatibility of an avionic sub-system A78-39085 Susceptibility testing of airborne equipment - The way ahead A78-39086 EMC control of the tornado aircraft A78-39087 An approach to EMP testing of complete strike aircraft A78-39088 BLECTROPLATING Problem-solving with selective plating --- for aircraft metal coating repair A78-38900 BEDFIRE ARRAYS Experimental evaluation of an array technique for zenith to horizon coverage --- aircraft to satellite communication links A78-36380 ENERGY CONSUMPTION Helicopters and energy savings [AAAF-NT-77-25] N78-24128 Supersonic transportation faced with energy savings [AAAF-NT-77-28] EWERGY CONVERSION REFICIENCY Investigating the efficiency of gas turbines in off-design operation --- multistage experimental data A78-37860

SUBJECT INDEX

PAST FOURIER TRANSFORMATIONS

ENERGY SOURCES Computer model for refinery operations with emphasis on jet fuel production. Volume 3: Detailed systems and programming documentation [NASA-CE-135335] N78-2 178-25235 Evaluation of methods to produce aviation turbine fuels from synthetic crude oils phase 3, volume 3 [AD-A053106] N78-25239 ENERGY STORAGE Inductor network development for aircraft high power supplies [AD-A052750] N78-25096 ENGINE CONTROL The determination of margins of safety for critical aircraft systems --- electromagnetic interference effects on flight and engine controls A78-39082 ENGINE DESIGN Aero engines climb towards better fuel efficiency A78-37114 Rolls-Royce RB401 turbofan - A new business jet engine for the 1980's 178-37538 Investigating the efficiency of gas turbines in off-design operation --- multistage experimental 178-37860 Loss prediction in axial compressors - A bibliographic study A78-38892 Acoustic design of the OCSEE propulsion systems N78-24067 Fundamental aspects of the aerodynamics of turbojet engine combustors [NASA-TM-75287] N78-24142 Preliminary design of low-cost titanium structure --- B-1 aircraft engine nacelles [AD-A053327] N78-25087 [AD-A05327] Performance tests and design modifications of a Wankel type rotary combustion automobile engine in order to determine its suitability for aircraft application [CSIR-ME-1521] N78-25 N78-25095 ENGINE INLETS Inlet/nacelle/erhaust system integration for the QCSEE propulsion systems N78-24068 Inlet technology for powered-lift aircraft N78-20069 ENGTHE NOTSE On the use of relative velocity exponents for jet engine exhaust noise A78-37683 Remarks on the noise emitted by the jet of a gas turbine engine A78-38696 ENGINE STARTERS Aircraft auxiliary power units --- Russian book A78-37885 ENVIRONMENT EFFECTS Study on problems of terminal site location ---environmental effects on airport, harbor or truck depot A78-36323 A three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment. I - The method and its implementation. II - Comparison of predictions and measurements 178-37124 Environmental effects on composites for aircraft [NASA-TH-78716] N78-2 ENVIRONMENT PROTECTION N78-25135 Study on problems of terminal site location ---environmental effects on airport, barbor or truck depot 178-36323 ESTINATING A finite-step method for estimating the spanwise lift distribution of wings in symmetric, yaved, and rotary flight at low speeds [NASA-CR-157043] N78-25 N78-25056 BIHAUST DIFFUSERS Boundary layer blowing tests on a radial diffuser in low and subsonic Mach range A78-37411 EXHAUST GASES Gas turbine engine with recirculating bleed [NASA-CASE-LEW-12452-1] N78-25089

PERADST NOZZLES Opper-surface-blowing flow-turning performance N78-24048 EXHAUST SYSTEMS Inlet/nacelle/exhaust system integration for the QCSEE propulsion systems 178-24068 EXHAUST VELOCITY On the use of relative velocity exponents for jet engine exhaust noise A78-37683 EXTERNALLY BLOWN PLAPS Externally blown flap impingement parameters N78-24053 Some measurements of an EBP powered-lift wake 878-24054 Analytical modeling of under-the-wing externally blown flap powered-lift noise N78-24063 ERF noise reduction through nozzle/flap positioning N78-24065 EXTREMELY HIGH FREQUENCIES Modern millimeter wave instrumentation radar development and research methodology A78-37501

F

P-4 AIRCRAFT	
The F-4E Austere HOD/Gunsight project	
	A78-38746
A study of the F-4 Program Management	
Responsibility Transfer (PMRT) from the P	
Porce Systems Command to the Logistics Co	
[AD-A052903]	N78-25974
F-5 AIRCRAFT	
F-5E/F spin avoidance testing	
i saye open allocance tobully	178-38747
D. 48 1700000	110 20141
P-14 AIRCBAFT	e
Evaluation of a lip-seal hydraulic fitting	for the
P-14 aircraft	
[AD-A051159]	N78-24120
P-15 AIRCRAFT	
Graphite composite landing gear component:	Upper
drag brace hardware for P-15 aircraft	
	N78-25082
[AD-A052764]	N70-20002
F-100 AIBCRAFT	
F100 multivariable control synthesis progra	
Volume 1: Development of P100 control sy	stem
[AD-A052420]	N78-24144
F100 multivariable control synthesis progra	
Volume 2: Appendices A through K	
	N78-24145
[AD-A052346]	N/0-24143
P-102 AIRCRAFT	
YP 102 in-duct combustor noise measurement,	
[NASA-CR-135404-VOL-1]	N78-25827
YF 102 in-duct combustor noise measurement,	, volume 3
[NASA-CR-135404-VOL-3]	N/8-25829
[NASA-CR-135404-VOL-3]	N78-25829
P-106 AIRCRAFT	
P-106 AIRCRAFT An investigation of the tracking performance	ce of
F-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for	ce of
P-106 AIRCRAFT An investigation of the tracking performance	ce of
F-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for	ce of
P-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery [AD-A053348]	ce of
P-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery (AD-A053348) FACTOB ANALISIS	ce of : N78-25083
F-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery (AD-A053348) FACTOR AWALYSIS Factorization methods in hydroaeromechanics	ce of : N78-25083
P-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery (AD-A053348) FACTOB ANALISIS	ce of 7 N78-25083 5
F-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery [AD-A053348] FACTOR ANALISIS Pactorization methods in hydroaeromechanics Bussian book	ce of : N78-25083
F-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery [AD-A053348] FACTOR AWALYSIS Factorization methods in hydroaeromechanics Bussian book FAILURE AWALYSIS	ce of ₩78-25083 \$ &78-37887
F-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery [AD-A053348] FACTOR ANALISIS Pactorization methods in hydroaeromechanics Bussian book	ce of ₩78-25083 \$ &78-37887
F-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery [AD-A053348] FACTOR AWALYSIS Factorization methods in hydroaeromechanics Bussian book FAILURE AWALYSIS	ce of ₩78-25083 \$ &78-37887
 F-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery	ce of №78-25083 5 №78-37887 ght safety
 F-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery	ce of 78-25083 5 A78-37887 ght safety A78-36494
 F-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery	ce of 78-25083 5 A78-37887 ght safety A78-36494
 F-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery	e of N78-25083 S A78-37887 ght safety A78-36494 ponents
 P-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery	ce of 78-25083 5 A78-37887 ght safety A78-36494
F-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery (AD-A053348) FACTOR AWALYSIS Pactorization methods in hydroaeromechanics Bussian book PAILURE AWALYSIS Reliability of aviation techniques and flig Russian book The damage sum in fatigue of structure comp aircraft structures [ICAF-1032] FAILURE HODES	ce of N78-25083 A78-37887 ght safety A78-36494 conents N78-25454
 P-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery	ce of N78-25083 A78-37887 ght safety A78-36494 conents N78-25454
P-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery (AD-A053348) PACTOR NALTSIS Pactorization methods in hydroaeromechanics Russian book PAILURE ANALYSIS Reliability of aviation techniques and flig Russian book The damage sum in fatigue of structure comp aircraft structures [ICAP-1032] PAILURE MODES Graphite composite landing gear component:	ce of N78-25083 A78-37887 ght safety A78-36494 conents N78-25454
P-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery [AD-A053348] PACTOB NHALYSIS Pactorization methods in hydroaeromechanics Russian book PAILURE ANALYSIS Reliability of aviation techniques and flig Bussian book The damage sum in fatigue of structure comp aircraft structures [ICAP-1032] PAILURE MODES Graphite composite landing gear component: drag brace hardware for P-15 aircraft	ce of N78-25083 A78-37887 ght safety A78-36494 conents N78-25454
P-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery [AD-A053348] PACTOR AWALYSIS Factorization methods in hydroaeromechanics Bussian book PAILURE AWALYSIS Reliability of aviation techniques and flig Bussian book The damage sum in fatigue of structure comp aircraft structures [ICAP-1032] FAILURE MODES Graphite composite landing gear component: drag brace hardware for P-15 aircraft [AD-A052764]	e of N78-25083 A78-37887 ght safety A78-36494 conents N78-25454 Upper
P-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery (AD-A053348) PACTOR NALTSIS Pactorization methods in hydroaeromechanics Bussian book PAILURE ANALYSIS Reliability of aviation techniques and flig Bussian book The damage sum in fatigue of structure comp aircraft structures [ICAP-1032] FAILURE MODES Graphite composite landing gear component: drag brace hardware for P-15 aircraft [AD-A052764] FANS	ee of N78-25083 s A78-37887 ght safety A78-36494 onents N78-25454 Upper N78-25082
P-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery [AD-A053348] PACTOB HALTSIS Pactorization methods in hydroaeromechanics Bussian book PAILURE ANALYSIS Reliability of aviation techniques and flig Bussian book The damage sum in fatigue of structure comp aircraft structures [ICAP-1032] PAILURE MODES Graphite composite landing gear component: drag brace hardware for P-15 aircraft [AD-A052764] FMNS Wumerical parametric stress analysis of the	e of N78-25083 s A78-37687 ght safety A78-36494 ponents N78-25454 Upper N78-25082 e TF-30
P-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery [AD-A053348] PACTOB AWALYSIS Pactorization methods in hydroaeromechanics Bussian book PAILURE AWALYSIS Reliability of aviation techniques and flig Bussian book The damage sum in fatigue of structure comp aircraft structures [ICAP-1032] FAILURE MODES Graphite composite landing gear component: drag brace hardware for P-15 aircraft [AD-A052764] PANS Numerical parametric stress analysis of the turbine engine third-stage fan-blade/disb	e of N78-25083 s A78-37687 ght safety A78-36494 ponents N78-25454 Upper N78-25082 e TF-30
 P-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery [AD-A053348] PACTOR NMALTSIS Pactorization methods in hydroaeromechanics Bussian book PAILURE ANALYSIS Reliability of aviation techniques and flighter and fly and the damage sum in fatigue of structure component: [ICAP-1032] FAILURE MODES Graphite composite landing gear component: drag brace hardware for P-15 aircraft [AD-8052764] FARS Numerical parametric stress analysis of the turbine engine third-stage fan-blade/disk dovetail region	<pre>ce of N78-25083 s A78-37887 ght safety A78-36494 ponents N78-25454 Upper N78-25082 s TF-30</pre>
P-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery [AD-A053348] PACTOB HWALYSIS Pactorization methods in hydroaeromechanics Russian book PAILURE ANALYSIS Reliability of aviation techniques and flig Bussian book The damage sum in fatigue of structure comp aircraft structures [ICAP-1032] PAILURE MODES Graphite composite landing gear component: drag brace hardware for P-15 aircraft [AD-A052764] FMNS Wumerical parametric stress analysis of the turbine engine third-stage fan-blade/dis) dovetail region [AD-A051299]	e of N78-25083 s A78-37687 ght safety A78-36494 ponents N78-25454 Upper N78-25082 e TF-30
 P-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery [AD-A053348] PACTOR NMALTSIS Pactorization methods in hydroaeromechanics Bussian book PAILURE ANALYSIS Reliability of aviation techniques and flighter the damage sum in fatigue of structure component: aircraft structures [ICAP-1032] FAILURE MODES Graphite composite landing gear component: drag brace hardware for P-15 aircraft [AD-A052764] FARS Numerical parametric stress analysis of the turbine engine third-stage fan-blade/disk dovetail region	<pre>ce of N78-25083 s A78-37887 ght safety A78-36494 ponents N78-25454 Upper N78-25082 s TF-30</pre>
P-106 AIRCRAFT An investigation of the tracking performance the fire fly manual director gunsight for air-to-air gunnery [AD-A053348] PACTOB HWALYSIS Pactorization methods in hydroaeromechanics Russian book PAILURE ANALYSIS Reliability of aviation techniques and flig Bussian book The damage sum in fatigue of structure comp aircraft structures [ICAP-1032] PAILURE MODES Graphite composite landing gear component: drag brace hardware for P-15 aircraft [AD-A052764] FMNS Wumerical parametric stress analysis of the turbine engine third-stage fan-blade/dis) dovetail region [AD-A051299]	<pre>ce of N78-25083 s A78-37887 ght safety A78-36494 ponents N78-25454 Upper N78-25082 s TP-30 x78-24143</pre>

PATIGUE (MATERIALS)

FATIGUE (MATERIALS) Fatigue crack propagation of titanium alloys under dwell-time conditions 178-39596 Analytical and experimental fatigue program for the Kfir main and nose landing gears N78-25455 PATIGUE LIFE Relationship between scatter of fatigue life and S-N curve of 2024-T4 aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [N&L-TR-412T] N78-N78-25453 The damage sum in fatigue of structure components --- aircraft structures [ICAF-1032] N78-25454 PATIGUE TESTS Influence of the type of corrosion of the aircraft skin on limiting value of the damage A78-38907 Can fatigue cracks be detected in an early stage by acoustic emission? Application to high resistance light alloys used in aeronautics ---A-U461, A-U26N T6 [AAAF-NT-77-35] N78-24587 damage monitoring of full scale metallic aircraft structures during fatigue testing [AD-A053108] **ท**ี่78-25085 FEASIBILITY ANALYSIS The F-4E Austere HUD/Gunsight project A78-38746 FIGHTER AIRCRAFT The design of future cockpits for high performance fighter aircraft A78-36446 Heavily loaded carbon-fiber-reinforced-plastic primary structure with the Tornado taileron as an example A78-38810 Diary of an international team co-ordinating system electromagnetic compatibility of an avionic sub-system A78-39085 FILM COOLING Studies on transonic turbine with film-cooled blades [AD-A052423] N78-24149 Deposition of fine particles in the opening of film-cooled gas turbine blades [EPFL-ITA-2] N78-25091 FINITE DIFFERENCE THEORY > three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment. I - The method and its implementation. II - Comparison of predictions and measurements A78-37124 PINITE ELEMENT METHOD Vibrations of a helicopter rotor blade using finite element unconstrained variational formulations [AD-A052670] N78-24125 Finite element analysis for complex structures, helicopter transmission housing structural modeling [AD-A052759] N78-24126 Numerical parametric stress analysis of the TF-30 turbine engine third-stage fan-blade/disk dovetail region [AD-A05 1299] N78-24143 FIRE CONTROL In investigation of the tracking performance of the fire fly manual director gunsight for air-to-air gunnery [AD-A053348] N78-25083 FIRE POINT ALC/50/ values for some polymeric materials --LC/50/ values for some polymetric matteries Apparent Lethal Concentration fire toxicity A78-36596 PITTINGS Evaluation of a lip-seal hydraulic fitting for the F-14 aircraft [AD-A051159] N78-24120 FLAME PROPAGATION Peview of flashback reported in prevaporizing/premixing combustors

SUBJECT INDEX

FLARES Optimal flare in presence of wind shears --- for aircraft in automatic approach 178-39186 PLASHBACK Review of flashback reported in prewaporizing/premixing combustors A78-37772 PLAT PLATES Pressure pulsations on a flat plate normal to an underexpanded supersonic jet 178-37743 FLIGHT CHARACTERISTICS Design for flying --- Book A78-36498 Helicopter flight demonstration A78-38750 FLIGHT CONTROL The determination of margins of safety for critical aircraft systems --- electromagnetic interference effects on flight and engine controls A78-39082 Testing of the IC-14 flight control system software [AIAA PAPER 77-1077] A78-3918 A78-39183 Electromechanical flight control actuator, volume 2 [NASA-CR-151734] N78-25986 Electromechanical flight control actuator, volume 3 [NASA-CR-151735] N78-25987 [NASA-CR-151735] FLIGHT PATHS The effects of wind shear on aircraft flight path and methods for remote sensing and reporting of wind shear at airports [UTIAS-TN-216] ₩78-24755 PLIGHT PLANS SST flight planning and navigation - The first year's experience A78-37154 FLIGHT RECORDERS Design and construction of a flight monitor and data recorder --- component selection and software design [AD-A052405] N78-24135 FLIGHT ROLES NASA aviation safety reporting system [NASA-TM-78476] N78-25071 PLIGHT SAPETY Concerning the logical comparison of ATC separation standard assessment models A78-36455 Reliability of aviation techniques and flight safety --- Russian book A78-36494 NASA aviation safety reporting system [NASA-TM-78476] FLIGHT SINULATION N78-25071 Simulation replay - Implementation and flight simulation applications A78-38789 Optimal digital simulation of aircraft via random search techniques 178-39182 Testing of the TC-14 flight control system software [AIAA PAPER 77-1077] A78-3918 A78-39183 PLIGHT SINULATORS Time delay measurements for flight simulators 178-38788 The impact of flight simulators on U.S. airlines A78-38798 Cost-effectiveness of flight simulators for military training. Volume 1: Use and military training. Volume 1: Use effectiveness of flight simulators [AD-A052801] N78-24156 Environmental requirements for simulated • helicopter/VTOL operations from small ships and carriers [AD-A053078] N78-25084 FLIGHT TESTS The certification of light aircraft A78-36280 Flight experiments on aerodynamic features affecting helicopter blade design A78-36949 The F-4E Austere HUD/Gunsight project A78-38746 F-5E/F spin avoidance testing A78-38747 Flight-testing of a continuous laser remote sensing system A78-39632

A78-37772

FLIGET TIME The impact of flight simulators on U.S. airlines A78-38798 FLOW CHARACTERISTICS Characteristics of flow past fuselages and wing-fuselage systems of gliders A78-36203 The German-Dutch low speed wind tunnel DNW A78-36447 Cross-flow characteristics on a cylindrical body at incidence in subsonic flow A78-37406 USB flow characteristics related to noise generation N78-24060 Characteristics of USB noise N78-24061 PLOW DISTRIBUTION Minimisation of relaxation drag A78-37423 A distributed wortex method for computing the vortex field of a missile [NASA-TP-1183] ₦78-25058 FLOW EQUATIONS Calculation of transonic flow through a turbine cascade by the time-step method 178-38248 PLOW GEOBETRY Discussion of results of studies on the design of laminar airfoils for stunt gliders A78-36204 PLOW MEASUREMENT Hot-wire velocity measurements in thin boundary layers A78-36205 PLOW THEORY Investigations of the transonic flow around oscillating airfoils --- Thesis 178-38978 FLOW VELOCITY Laser velocimeter for wind tunnel measurements A78-37979 FLUID FLOW Research on the statically thrusting propeller [NASA-CR-157214] N78-25092 FLUID INJECTION Unsteady heat transfer from a cylinder with radial injection A78-39042 PLUID BECHANICS Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 FLUORESCENCE An atomic fluorescence system using a continuum source for the rapid determination of wear metals in jet engine lubricating oils [AD-A052721] N78-24320 PLUTTER ANALYSIS Notes on the transonic indicial method --- for two dimensional airfoil flutter derivative calculation A78-37732 Nonlinear formulation for low-frequency transonic flow A78-37733 FLY BY WIRE CONTROL An adaptive learning control system for aircraft [NASA-CR-156930] N78-25966 FORCE DISTRIBUTION A finite-step method for estimating the spanwise lift distribution of wings in symmetric, yawed, and rotary flight at low speeds [NASA-CE-157043] N78-25056 PORBCASTING Survey of air cargo forecasting techniques [NASA-CB-145329] N78-25068 PORGING Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [NLR-TR-76008-U] N78 N78-25199 PORNULAS (MATEEMATICS) Formulas for takeoff performance P3-A, B and C airplanes [AD-A052354] N78-24124 FOURIER ANALYSIS Azimuthal decomposition of the power spectral density of jet noise A78-37532

FRACTORE MECHANICS Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties
[NLR-TR-76008-0] N78-25199 PRACTURE STRENGTE Case of damage involving aircraft and helicopter components of light metal A78-36941 Influence of the type of corrosion of the aircraft skin on limiting value of the damage A78-38907 FUEL CORBUSTION Analysis of spray combustion in a research gas turbine combustor A78-37297 Investigating the efficiency of gas turbines in off-design operation --- multistage experimental data A78-37860 Characteristics and combustion of future hydrocarbon fuels --- aircraft fuels [NASA-TH-78865] N78-24370 Performance evaluation of a catalytic partial oxidation hydrogen generator using turbine engine fuels [AD-A047355] PUEL CONSUMPTION N78-24380 Aero engines climb towards better fuel efficiency A78-37114 The impact of flight simulators on U.S. airlines A78-38798 Energy savings. [AAAF-NT-77-24] An aircraft constructor's viewpoint N78-24127 Helicopters and energy savings [AAAP-NT-77-25] N78-24128 An operator's viewpoint: How to reduce the fuel consumption in aeronautical maintenance [AAAF-NT-77-26] N78-24129 PUEL SPRAYS Analysis of spray combustion in a research gas turbine combustor A78-37297 FUEL SYSTERS Impact of future fuel properties on aircraft engines and fuel systems [NASA-TM-78866] N² N78-24369 PUSELÁGES Characteristics of flow past fuselages and wing-fuselage systems of gliders A78-36203 Aerodynamic characteristics of an NASA supercritical-wing research airplane model with and without fuselage area-rule additions at Mach 0.25 to 1.00

G

N78-24080

[NASA-TM-X-2633]

GAS DYNAHICS

Experimental investigation of gasdynamic processes at sudden start-up of a supersonic nozzle 178-386#1 GAS INJECTION Gas turbine engine with recirculating bleed [NASA-CASE-LEW-12452-1] N78-25089 GAS JETS Pressure pulsations on a flat plate normal to an underexpanded supersonic jet A78-37743 GAS TUBBINE ENGINES Aircraft propulsion from the back room /Sixty-sixth Wilbur and Orville Wright Memorial Lecture/ A78-36279 A computer-based system for processing dynamic data - from aircraft gas turbine engine strain measurements A78-37108 Analysis of spray combustion in a research gas turbine combustor 178-37297 Investigating the efficiency of gas turbines in off-design operation --- multistage experimental data 178-37860 Aircraft auxiliary power units --- Russian book A78-37885

SUBJECT INDEX

Subisokinetic sampling errors for aircraft turbine engine smoke probes A78-38575 Combustion in gas turbine engines - A review of ONERA recent works [ONERA, TP NO. 1978-25] A78-Development of mainshift high speed cylindrical A78-39580 roller bearings for gas turbine engines [AD-A052351] N78-24556 Gas turbine engine with recirculating bleed [NASA-CASE-LEW-12452-1] N78-25089 Deposition of fine particles in the opening of film-cooled gas turbine blades [EPFL-ITA-2] N78-25091 YF 102 in-duct combustor noise measurement, volume 1 [NASA-CR-135404-VOL-1] N78-25827 YF 102 in-duct combustor noise measurement, volume 3 [NASA-CR-135404-VOL-3] N78-25829 GAS TURBINES Hybrid computer models as an aid in design of gas turbine control systems for helicopters A78-38783 GEARS Oil-air mist lubrication for helicopter gearing [NASA-CR-135081] N78-N78-25080 GENERAL AVIATION AIRCRAFT Rolls-Royce RB401 turbofan - A new business jet engine for the 1980's A78-37538 A rising sun in aircraft --- Japanese commercial aircraft development programs 178-38524 General aviation avionics equipment maintenance [NASA-CR-145342] N78-24132 study of commuter airplane design optimization [NASA-CR-157210] N78-2 A N78-25078 GEOPHYSICS Study of magnetic noise in the Ka-26 helicopter 178-39188 Prospects for using new flight vehicles in aerophysical studies A78-39189 GLASS FIBER REINFORCED PLASTICS Integrally stiffened laminate construction A78-36431 GLIDERS Characteristics of flow past fuselages and wing-fuselage systems of gliders A78-36203 Discussion of results of studies on the design of laminar airfoils for stunt gliders A78-36204 Wind tunnel tests of a slotted flapped wing section A78-37537 Sailplanes of carbon-fiber construction A78-38804 Methods and results of boundary layer measurements on a glider [NASA-TH-75294] N78-24085 GLOBAL POSITIONING SYSTEM Evaluation of geometric performance of global positioning system A78-37987 GOALS On setting avionic subsystem unit production cost goals --- contract management and procurement policy [AD-A051337] GOVERHMENT PROCUREMENT A study of the P-4 Program Management Responsibility Transfer (PMRT) from the Air Force Systems Command to the Logistics Command (ADD-10620021 N78-24133 [AD-A052903] N78-25974 GRAPHITE Carbon fiber study [NASA-TM-79449] N78-24292 GRAPHITE-EPOXY COMPOSITE MATERIALS Integrally stiffened laminate construction A78-36431 Graphite composite landing gear component: drag brace hardware for P-15 aircraft Opper [AD-A052764] N78-25082 GROUND BASED CONTROL Project Plan: Tower automated ground surveillance system development program [AD-A051621] N78-24155 GROUND RPPRCT Aerodynamic characteristics in ground proximity N78-24055

GROUND EFFECT (AERODYNAMICS) The computation of the unsteady aerodynamics of bodies near a ground surface A78-37408 Prediction of the ground effect - Side-line noise from aircraft A78-37530 GROUND EFFECT MACHINES Experimental investigation of aerodynamic characteristics of a tracked ram air cushion vehicle [PB-277674] N78-24099 GROUND OPERATIONAL SUPPORT SYSTEM Test operations procedures physical characteristics aviation material [AD-A053196] N78-25086 GROUND SUPPORT BOUIPHENT Advanced technology servicing equipment for army aircraft [AD-A052652] N78-24158 GROUND TESTS USB environment measurements based on full-scale static engine ground tests N78-20076 GRUSSAN AIRCRAFT Grumman's radio-controlled experimental air force A78-38522 GUNFIRE An investigation of the tracking performance of the fire fly manual director gunsight for air-to-air gunnery [AD-A053348] GUST LOADS N78-25083 A non-stationary model for atmospheric turbulence patches for the prediction of aircraft design loads [NLR-TR-76131-0] ₩78-25077

Η

HALOGENATION

Ralogenated solvent-induced corrosion in hydraulic systems --- hydraulic drives for aircraft radar antennas [ASLE PREPRINT 78-AM-4A-2] A78-38083 HARRIBE AIBCRAFT Planning and procedures for aircraft demonstrations - V/STOL aircraft A78-38749 HAULING Preliminary analysis of hub and spoke air freight distribution system [NASA-TM-72656] N78-25069 HEAD-TP DISPLATS The F-4E Austere HUD/Gunsight project A78-38746 HEAT TRANSPER Unsteady heat transfer from a cylinder with radial injection **A78-39042** HEAT TREATEBRT Reat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [NLB-TR-76008-U] N78-251 N78-25199 HEAVY LIFT HELICOPTERS Heavy lift helicopters. Advanced Technology component program: Hub and upper control [AD-A051348] N78-24122 HEIGHT Problems in world-wide standardization of the units of height measurement [AD-A051150] N78-24385 HELICOPTER DESIGN Plight experiments on aerodynamic features affecting helicopter blade design A78-36949 IDS - An advanced hingeless rotor system A78-36950 Use of structural analysis programs for calculating states of stress in helicopter rotor elements A78-38807 Heavy lift helicopters. Advanced Technology component program: Hub and upper controls [AD-A051348] N78-24122

INSTRUMENT BERORS

HELICOPTEB ENGINES	
Vibration investigation of helicopter engineer	ne
cooling fan [AD-A047081]	N78-24146
HELICOPTER PERFORMANCE A theoretical study of the effect of blade	100
accretion on the power-off landing capab	
a Wessex belicopter	A78-36948
Belicopter flight demonstration	A78-38750
Study of magnetic noise in the Ka-26 helic	opter A78-39188
Prospects for using new flight vehicles in aerophysical studies	A70-39100
• •	A78-39189
HELICOPTEES Compressible flow about helicopter rotors	
•	A78-36947
The role of meteorology in helicopter icin	A78-37712
Hybrid computer models as an aid in design turbing control systems for helicopters	
Advanced development of a helicopter rotor	1 78-38783
isolation system for improved reliability	y -
Volume 1: Summary report [AD-A051318]	N78-24 11 8
Pinite element analysis for complex struct helicopter transmission housing structura	
modeling	
[AD-A052759] Helicopters and energy savings	N78-24126
[AAAP-NT-77-25]	N78-24128
Vibration investigation of helicopter engi- cooling fan	ne
[AD-A047081]	N78-24146
Advanced technology servicing equipment for aircraft	
[AD-A052652] Non-destructive method for applying and rea	N78-24158 moving
instrumentation on helicopter rotor blad	es
[NASA-CASE-LAR-11201-1] Advanced overrunning clutch technology	N78-24515 for use
in helicopters	N78-24557
[AD-A052635] Evaluation of the annoyance due co helicop	
rotor dolse [NASA-CR-3001]	N78-24903
Oil-air mist lubrication for helicopter gea [NASA-CR-135081]	aring 178-25080
The effect of tip vorter structure on helic	
noise due to blade/vortex interaction [NASA-CR-152150]	N78-25832
HIGH PRESSURE	
Design and preliminary results of a semitranspiration cooled (Lamilloy) line:	r for a
high-pressure high-temperature combustor [NASA-TM-78874]	N78-24138
HIGH SPEED	
Development of mainshift high speed cylinds roller bearings for gas turbine engines	rical
[AD-A052351]	N78-24556
HIGH TEMPERATURE Design and preliminary results of a	
semitranspiration cooled (Lamilloy) line high-pressure high-temperature combustor	r for a
[NASA-TH-78874]	N78-24138
EOLOGBANNETBY Computer-aided holographic vibration analy:	sis for
vectorial displacements of bladed disks	▲78-37183
HOLOGRAPHIC INTERPEROMETRY	
Computer-aided holographic vibration analy: vectorial displacements of bladed disks	sis for
-	A78-37183
HORIZON Experimental evaluation of an array techniq	
zenith to horizon coverage aircraft + satellite communication links	to
	A78-36380
HORIZONTAL FLIGHT A relative motion analysis of horizontal co	ollision
avoldance	178-39674
HOT-WIRE ANEMONETEES	
Hot-wire velocity measurements in thin bour layers	ngar y
-	178-36205

HUBS Heavy lift helicopters. Advanced Technology component program: Hub and upper controls [AD-A051348] N N78-20122 BUMAN FACTORS ENGINEERING Ergonomics in commercial aircraft landing A78-36621 BUBAN TOLERANCES Evaluation of the annoyance due to helicopter rotor noise [NASA-CR-3001] HIBRID COMPUTERS N78-24903 Reduction of transient gas turbine test data using a hybrid computer A78-38782 Hybrid computer models as an aid in design of gas turbine control systems for helicopters A78-38783 SYDRAULIC BOUTPERST Evaluation of a lip-seal hydraulic fitting for the P-14 aircraft [AD-1051159] N78-24120 HYDROCARBON FUELS Characteristics and combustion of future hydrocarbon fuels --- aircraft fuels [NASA-TM-78865] N78-24370 BYDRODYNAMICS Factorization methods in hydroaeromechanics ---**Bussian** book A78-37887 HYPERSONIC AIRCRAFT Aerodynamic characteristics at Mach number 0.2 of a wing-body concept for a hypersonic research airplane [NASA-TP-1189] N78-25059 HYPERSONIC PLON Local method in rarefied gas aerodynamics A78-38726

1

ICE FORMATION A theoretical study of the effect of blade ice accretion on the power-off landing capability of a Wessex helicopter A78-36948 The role of meteorology in helicopter icing problems A78+37712 TL-62 ATRCBAPT The technical concepts behind the IL-62# /8/ landing gear A78-36622 THAGE BOTION COMPENSATION Evaluation of airborne radar Doppler processors A78-37477 IN-FLIGHT MONITORING Fully-automated, pilot-monitored air traffic control A78-37155 INDUCTORS Inductor network development for aircraft high power supplies [AD-A052750] N78-25096 INERTIAL NAVIGATION SST flight planning and navigation - The first year's experience A78-37154 INLET PLOW Acoustic evaluation of a novel swept-rotor fan --noise reduction in turbofan engines [NASA-TM-78878] N78-24897 Gas turbine engine with recirculating bleed [NASA-CASE-LEW-12452-1] N78-25089 INSTRUMENT APPROACH Equipment permitting fuel savings during approach [AAAP-NT-77-27] N78-24 N78-20130 INSTRUMENT COMPENSATION On the compensation of radio direction finders --antenna optimization in airport environments A78-38247 Study of magnetic noise in the Ka-26 helicopter A78-39188 INSTRUMENT BERORS Subisokinetic sampling errors for aircraft turbine engine smoke probes A78-38575

[NASA-TH-75294]

INTEGRAL TRANSFORMATIONS Application of the integral-transformation method to three-dimensional unsteady problems of the theory of cascades A78-36366 INTERNATIONAL COOPERATION A rising sun in aircraft --- Japanese commercial aircraft development programs A78-38524 Diary of an international team co-ordinating system electromagnetic compatibulity of an avionic sub-system A78-39085 INTERNATIONAL SYSTEM OF UNITS Problems in world-wide standardization of the units of height measurement [AD-A051150] N74 N78-24385 INVISCID FLOW Viscous-inviscid coupling - A numerical method and applications to two-dimensional transonic and supersonic flows A78-38698 ION PROBES Methods and results of boundary layer measurements on a glider

J

N78-24085

JAGUAR ATRCRAFT Jaguar and Tornado avionic development testing A78-38748 JET AIRCRAFT Aircraft propulsion from the back room /Sixty-sixth Wilbur and Orville Wright Memorial Lecture/ A78-36279 JET AIRCRAFT NOISE Prediction of the ground effect - Side-line noise from allcraft A78-37530 On the use of relative velocity exponents for jet engine exhaust noise A78-37683 Remarks on the noise emitted by the jet cf a gas turbine engine A78-38696 USB flow characteristics related to noise generation N78-24060 Characteristics of USB noise N78-24061 Analytical developments for definition and prediction of USB noise N78-24062 Analytical modeling of under-the-wing externally blown flap powered-lift noise N78-24063 On the use of relative velocity exponents for jet engine exhaust noise [NASA-TM-78873] N78-24137 Low frequency cabin noise reduction based on the Intrinsic structural tuning concept: The theory and the experimental results, phase 2 --- jet aircraft noise [NFSA-CR-145262] N78-249 N78-24900 JET BNGINE PUELS Performance evaluation of a catalytic partial oxidation hydrogen generator using turbine engine fuels [AD-A047355] N78-24380 Computer model for refinery operations with emphasis on jet fuel production. Volume 3: Detailed systems and programming documentation [NASA-CR-135335] N78-25235 Alternate fuels nitrogen chemistry [AD-A053299] N78-25240 JET ENGINES Stator rotor tools [NASA-CASE-MSC-16000-1] N78-24544 JET EXHAUST On the use of relative velocity exponents for jet engine exhaust noise A78-37683 On the use of relative velocity exponents for jet engine exhaust noise [NASA-TM-78873] N78-24137 Gas turbine engine with recirculating bleed [NASA-CASE-LEW-12452-1] N78-25089

SUBJECT INDEX

JET FLAPS Comparison of aerodynamic theory and exper for jet-flap wings	
JET PLON	N78-24052
Azlmuthal decomposition of the power spect density of jet noise	
Round jet in a cross flow - Influence of i angle on vortex properties	A78-37532 njection
Remarks on the noise emitted by the jet of turbine engine	A78-37744 a gas
-	A78-38696
JET INPINGENENT Externally blown flap impingement paramete	rs N78-24053
Investigations of scaling laws for jet imp	
JP-4 JET FUEL Analysis of spray combustion in a research	
turbine combustor	
	A78-37297
L-1011 AIECBAPT	
British Airways Tri-Star - Present and fut	ure
LANINAB FLOW	A78-39393
Application of laminar flow control to lar subsonic military transport airplanes	ge
[AD-A052422]	N78-24098
Drag reduction for gliders [NASA-TM-75293]	N78-24116
LAMINAR PLOW AIRPOILS Discussion of results of studies on the de	sign of
laminar airfoils for stunt gliders	-
Hot-wire velocity measurements in thin bou layers	A78-36204 ndary
LAGINATES	A78-36205
Integrally stiffened laminate construction	A78-36431
LANDING AIDS Soviet landing aid draws PAA scrutiny	
approach guidance	A78-38773
LANDING GEAR	
The technical concepts behind the IL-62M / landing gear	
Graphite composite landing gear component: drag brace bardware for F-15 aircraft	A78-36622 Upper
[AD-A052764] Analytical and experimental fatigue progra	N78-25082 m for
the Kfir main and nose landing gears	₩78-25455
Structural and assembly concepts for large	
erectable space systems [AAS 77-205]	A78-36706
LASER APPLICATIONS Flight-testing of a continuous laser remot	P
sensing system	
LASER DOPPLER VELOCIMETERS	A78-39632
Laser velocimeter for wind tunnel measurem	ents A78-37979
Soviet landing and draws FAA scrutiny approach guidance	laser
LEADING EDGES	A78-38773
On lift of delta wings with leading-edge w	ortices
at low speeds	A78-39772
LETHALITY ALC/50/ values for some polymeric material	s
Apparent Lethal Concentration fire toxic	

LIFE (DURABILITY) Nondestructive pavement evaluation [AD-A052707] LIFE CYCLE COSTS N78-24159

Integrally stiffened laminate construction A78-36431

Naval aircraft operating and support cost model -Fiscal Year 1976 revision [AD-A053180] N78-25051 LIPT Minimisation of relaxation drag 178-37423 Flow past nonconical wings with separation A78-37775 Experimental investigation of aerodynamic characteristics of a tracked ram air cushion vehicle [PB-277674] N78-24099 finite-step method for estimating the spanwise and rotary flight at low speeds [NASA-CR-157043] N78-25 N78-25056 LIPT AUGBENTATION Powered-Lift Aerodynamics and Acoustics --conferences [NASA-SP-406] N78-24046 Overview of powered-lift technology --- as used on the YC-14 aircraft and C-15 aircraft N78-24047 Upper-surface-blowing flow-turning performance N78-24048 Results of static tests of a 1/4 scale model of the Boeing YC-14 powered-lift system N78-24049 Summary of low-speed aerodynamic characteristics of upper-surface-blown jet-flap configurations N78-24050 Application of powered-lift concepts for improved cruise efficiency of long-range aircraft N78-24051 Comparison of aerodynamic theory and experiment for jet-flap wings N78-24052 Externally blown flap impingement parameters N78-24053 Some measurements of an EBF powered-lift wake N78-24054 Aerodynamic characteristics in ground proximity N78-24055 Distributed upper-surface blowing concept N78-24056 Cruise aerodynamics of USB nacelle/wing geometric variations N78-24057 Effects of nozzle design and power on cruise drag for upper-surface-blowing aircraft N78-24058 Theoretical predictions of jet interaction effects for USB and OWB configurations N78-24059 USB flow characteristics related to noise generation N78-24060 Characteristics of USB noise N78-24061 Analytical developments for definition and prediction of USB noise N78-24062 alytical modeling of under-the-wing externally blown flap powered-lift noise N78-24063 USB noise reduction by nozzle and flap modifications N78-24064 ERF noise reduction through nozzle/flap positioning N78-24065 Overview of the QCSEE program N78-24066 Acoustic design of the QCSEE propulsion systems N78-24067 Inlet/nacelle/exhaust system integration for the QCSEE propulsion systems N78-24068 Inlet technology for powered-lift aircraft N78-24069 Reverse-thrust technology for variable-pitch fan propulsion systems N78-24070 Reasured and calculated steady aerodynamic loads on a large-scale upper-surface blown model N78-24072 Acoustic-loads research for powered-lift configurations N78-24073 Investigations of scaling laws for jet impingement N78-24074

USB environment measurements based on full-scale static engine ground tests N78-24076 LIFT DEAG BATIO Nonlinear theory of a bearing surface of arbitrary extent FAD-A0513851 N78-24090 LIGHT AIBCRAPT The certification of light aircraft 178-36280 LIGHT ALLOYS Can fatigue cracks be detected in an early stage by acoustic emission? Application to high resistance light alloys used in aeronautics ---A-U461, A-U26N T6 [AAAF-NT-77-35] N78-24 N78-24587 LINBAR PROGRAMMING Study on problems of terminal site location --environmental effects on airport, harbor or truck depot ₽78-36323 LOAD DISTRIBUTION (PORCES) Acoustic-loads research for powered-lift configurations N78-24073 LOGISTICS MANAGEMENT Three degree intermediate level maintenance of Navy aeronautical materials [AD-A052389] N78-24042 Life cost management, methodology, and case studies [AD-A052388] N78-2499 N78-24999 Logistics and operational effectiveness of the P-3 aircraft N78-25050 [AD-A052239] A study of the F-4 Program Management Responsibility Transfer (PMRT) from the Air Porce Systems Command to the Logistics Command [AD-A052903] N78-2' N78-25974 LONGITUDINAL STABILITY Experimental investigation of aerodynamic characteristics of a tracked ram air cushion vehicle [PB-277674] N78-24099 LOW COST Preliminary design of low-cost titanium structure - B-1 aircraft engine nacelles [AD-1053327] N78-25087 LOW FREQUENCIES Low frequency cabin noise reduction based on the intrinsic structural tuning concept: The theory and the experimental results, phase 2 --- jet aircraft noise [NASA-CR-145262] N78-24900 LOW SPEED On lift of delta wings with leading-edge vortices at low speeds A78-39772 LOW SPEED WIND TUNNELS The German-Dutch low speed wind tunnel DNW A78-36447 LUBRICATING OILS LICCUMFERENTIAL seals for use as oil seals [ASLE PREPRINT 78-AM-3D-2] A78-An atomic fluorescence system using a continuum A78-38095 metals in jet engine lubricating oils [AD-A052721] N78-24320 Oil-air mist lubrication for helicopter gearing [NASA-CR-135081] N78-N78-25080 LUBRICATION Oil-air mist lubrication for helicopter gearing [NASA-CR-135081] N78-N78-25080 Μ EAGNETIC DISTURBANCES Study of magnetic noise in the Ra-26 helicopter A78-39188 NAGESTIC INDUCTION BMF induced currents on a simplified missile theory and experiment A78-39109

EAGRETORETERS Study of magnetic noise in the Ka-26 helicopter A78-39188

HABITIME SATELLITES Maritime satellite communications - Where we are and where we're going [AAS 77-257] A78-36721

MARKET RESEARCH

MARKET RESEARCH Expansion potential for the local service air CALLEL 178-37539 Survey of air cargo forecasting techniques N78-25068 [NASA-CR-145329] MARKETING Applications of advanced transport aircraft in developing countries [NASA-CR-145343] N78-25985 MAROTS (ESA) Maritime satellite communications - Where we are and where we're going [AAS 77-257] 178-36721 MARS ATHOSPHERE High-flying Mini-Sniffer RPV - Mars bound 178-38521 MASS FLOW Numerical calculation of transonic flow past a swept wing by a finite volume method [NASA-CR-157012] N78-24808 MATHEMATICAL HODELS Replacement process analysis: An interim report on replacement models [AD-A052411] N78-24150 A non-stationary model for atmospheric turbulence patches for the prediction of aircraft design loads [NLR-TR-76131-U] N78-25077 Application of second-order turbulent modeling to the prediction of radiated aerodynamic sound TNASA-CR-29941 N78-25359 MRASURE AND INTEGRATION Optimal digital simulation of aircraft via random search techniques 178-39182 MEASURING INSTRUMENTS Air speed and attitude probe [NASA-CASE-PRC-11009-1] ERCHANICAL PROPERTIES N78-25088 Titanium and titanium alloys in aircraft maintenance and repair. I A78-38246 Problems of the theory of strength related to aircraft construction and civil engineering; Structural Mechanics Meeting, Ottobrunn, West Germany, June 1, 2, 1977, Lectures and Discussion Contributions A78-38802 MRTAL COATINGS Problem-solving with selective plating --- for aircraft metal coating repair A78-38900 METAL FATIGUE Case of damage involving aircraft and helicopter components of light metal A78-36941 The damage sum in fatigue of structure components --- aircraft structures [ICAF-1032] N78-25454 MRTEOROLOGICAL FLIGHT Preliminary experience with the use of the Yak-40 aircraft in studies of cloud physics and artificial modifications A78-36483 Prospects for using new flight vehicles in aerophysical studies A78-39189 ERTEOROLOGICAL RADAR Color displays for airborne weather radar 178-36980 BICROSTRIP TRANSMISSION LINES. Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13886-1] N78-24391 MICROWAVE ANTENNAS Thin conformal antenna array for microwave power conversions [NASA-CASE-NPO-13886-1] N78-24391 MIDATE COLLISIONS Electronic aircraft collision avoidance system ---Russian book A78-37603 MILITARY AIRCRAPT Modern RF system design for aircraft --- tactical information exchange system A78-37341

SUBJECT INDER

Advanced technology servicing equipment for army aircraft f AD-A0526521 N78-24158 Naval aircraft operating and support cost model -Fiscal Year 1976 revision [AD-A053180] N78-25 N78-25051 MILITARY TECHNOLOGY Cost-effectiveness of flight simulators for military training. Volume 1: Use and effectiveness of flight simulators [AD-A052801] N78-24156 Carbon fiber study [NASA-TM-79449] N78-24292 TRIP steels promise high reliability hardware [AD-A052765] N7 N78-24348 MILLIMETER WAVES Modern millimeter wave instrumentation radar development and research methodology A78-37501 MISSILE BODIES High angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CR-2993] N78-25057 A distributed vortex method for computing the vortex field of a missile [NASA-TP-1183] N78-25058 BISSILBS EMP induced currents on a simplified missile theory and experiment A78-39109 MISSION PLANNING Doctrine versus capabilities: A project manager's dilemma with the CH-47 helicopter [AD-A052376] N78-25970 ATST Oil-air mist lubrication for helicopter gearing [NASA-CR-135081] N78-N78-25080 HODELS Air freight demand models: An overview [NASA-CR-152148] N78-25979 MOMENTUM TRANSFER Flight-measured pressure characteristics of aft-facing steps in high Reynolds number flow at Mach numbers of 2.20, 2.50, and 2.80 and comparison with other data [NAŠA-TM-72855] N78-25055 NONTTORS CRT update --- for airborne displays ¥78-37490 BONOPOLE ANTENNAS Aircraft measurement of radio frequency noise at 121.5 MHz, 243MHz and 406MHz A78-39105 MOVING TARGET INDICATORS Evaluation of airborne radar Doppler processors 178-37477 MECA AIBCEAFT A ATRCBAFT Jaguar and Tornado avionic development testing A78-38748 Heavily loaded carbon-fiber-reinforced-plastic primary structure with the Tornado taileron as an example A78-38810 Material selection for the Tornado taileron **⊼78-38811** EMC control of the tornado aircraft A78-39087

Ν

BACELLES Inlet/nacelle/exhaust system integration for the QCSEE propulsion systems N78-24068 Preliminary design of low-cost titanium structure --- B-1 aircraft engine nacelles [AD-A053327] N78-25087 NASTRAN Use of structural analysis programs for calculating states of stress in helicopter rotor elements A78-38807 Modeling of the UH-1B tail boom for analysis by the NASTRAN computer program [AD-A052303] N78-25081 NATIONAL AVIATION SYSTEM NASA aviation safety reporting system [NASA-TH-78476] N78-25071

WAVIEB-STOKES EQUATION	
The next approximation after boundary layer	theory
machine tlade associated unsteady flo	
HAVIGATION AIDS	178-37409
System requirements for transition from en	oute to
approach guidance	
	278-36453
Jeppesen charting for area navigation	A78-36454
New model VOB/DME	A70-30434
	A78-37246
Bases of radio direction finding, part 1	
[AD-A051951] NAVIGATION INSTRUMENTS	N78-24107
On the compensation of radio direction find	lers
antenna optimization in airport environme	
	A78-38247
NAVY	- 9 - 1
Naval aırcraft operatıng and support cost m Fıscal Year 1976 revisıcı	loder -
[AD-A053180]	N78-25051
NEAR WARES	
The turbulent flow through a sudden enlarge	ement at
subsonic speeds	A78-37413
NOISE GENERATORS	
Remarks on the noise emitted by the jet of	a gas
turbine engine	170 20000
NOISE INTENSITY	A78-38696
Evaluation of the annoyance due to helicopt	er
rotor noise	
[NASA-CR-3001]	N78-24903
NOISE MEASUREMENT	
Atmospheric-absorption adjustment procedure aircraft flyover noise measurements o	
program	omputer
[AD-A051700]	N78-24899
YF 102 in-duct combustor noise measurement,	
[NASA-CB-135404-V01-1] YP 102 in-duct combustor noise measurement,	N78-25827
[NASA-CR-135404-VOL-3]	volume 3 N78-25829
The effect of tip vortex structure on helic	
noise due to blade/vortex interaction	-
[NASA-CR-152150]	N78-25832
USB noise reduction by nozzle and flap modi	fications
USD HOISE LEGACCION Dy HOZZIC and Hap mod	178-24064
ERF noise reduction through nozzle/flap pos	
	N78-24065
Acoustic-loads research for powered-lift configurations	
configurations	N78-24073
Acoustic evaluation of a novel swept-rotor	
noise reduction in turbofan engines	
[NASA-TH-78878]	N78-24897
[NASA-TH-78878] Low frequency cabin noise reduction based o	N78-24897 n the
[NASA-TH-78878] Low frequency cabin noise reduction based o	N78-24897 n the
[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise	N78-24897 In the theory jet
[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262]	N78-24897 n the
[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] WOISE SPECTRA	N78-24897 n the theory jet N78-24900
[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] BOISE SPECTRA Azimuthal decomposition of the power spectr	N78-24897 n the theory jet N78-24900
<pre>[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] BOISE SPECTRA Azimuthal decomposition of the power spectra density of jet noise</pre>	N78-24897 n the theory jet N78-24900
[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] NOISE SPECTRA Azimuthal decomposition of the power spectr density of jet noise WOISE TEMPERATORE	N78-24897 n the theory jet N78-24900 al A78-37532
<pre>[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] BOISE SPECTRA Azimuthal decomposition of the power spectr density of jet noise BOISE TEMPERATUBE Aircraft measurement of radio frequency noise</pre>	N78-24897 n the theory jet N78-24900 al A78-37532
[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] NOISE SPECTRA Azimuthal decomposition of the power spectr density of jet noise WOISE TEMPERATORE	N78-24897 n the theory jet N78-24900 al A78-37532 se at
<pre>[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] NOISE SPECTRA Azimuthal decomposition of the power spectr density of jet noise NOISE TEMPERATUBE Aircraft measurement of radio frequency noi 121.5 MHz, 243MHz and 406MHz NONDESTRUCTIVE TESTS</pre>	N78-24897 n the theory jet N78-24900 al A78-37532
<pre>[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] NOISE SPECTRA Azimuthal decomposition of the power spectr density of jet noise NOISE TEMPERATORE Aircraft measurement of radio frequency noi 121.5 HEz, 243NEz and 406MEz NOEDESTRUCTIVE TESTS Nondestructive pavement evaluation</pre>	N78-24897 n the theory jet N78-24900 al A78-37532 se at A78-39105
<pre>[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] NOISE SPECTRA Azimuthal decomposition of the power spectr density of jet noise NOISE TEMPERATORE Aircraft measurement of radio frequency noi 121.5 HHz, 243MHz and 406HHz NomDESTRUCTIVE TESTS Nondestructive pavement evaluation [AD-A052707]</pre>	N78-24897 n the theory jet N78-24900 al A78-37532 se at A78-39105 N78-24159
<pre>[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] NOISE SPECTRA Azimuthal decomposition of the power spectr density of jet noise NOISE TEMPERATUBE Aircraft measurement of radio frequency noi 121.5 MHz, 243MHz and 406MHz NONDESTRUCTIVE TESTS Nondestructive pavement evaluation [AD-ADS2707] Non-destructive method for applying and rem</pre>	N78-24897 n the theory jet N78-24900 al A78-37532 se at A78-39105 N78-24159 N78-24159
<pre>[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] BOISE SPECTRA Azimuthal decomposition of the power spectr density of jet noise BOISE TEMPERATORE Aircraft measurement of radio frequency noi 121.5 HEz, 243MEz and 406MEz NONDESTRUCTIVE TESTS Nondestructive pavement evaluation [AD-A052707] Non-destructive method for applying and rem instrumentation on helicopter rotor blade</pre>	N78-24897 n the theory jet N78-24900 al A78-37532 se at A78-39105 N78-24159 N78-24159
<pre>[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] BOISE SPECTRA Azimuthal decomposition of the power spectr density of jet noise BOISE TEMPERATUBE Aircraft measurement of radio frequency noi 121.5 MHz, 243MHz and 406MHz NONDESTRUCTIVE TESTS Nondestructive pavement evaluation [AD-AD52707] Non-destructive method for applying and rem instrumentation on helicopter rotor blade [NASA-CASE-LAR-11201-1] BORLIBER SYSTEMS</pre>	N78-24897 n the theory jet N78-24900 al A78-37532 se at A78-39105 N78-24159 N78-24515
<pre>[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] BOISE SPECTRA Azimuthal decomposition of the power spectr density of jet noise BOISE TEMPERATURE Aircraft measurement of radio frequency noi 121.5 MHz, 243MHz and 406MHz NONDESTRUCTIVE TESTS Nondestructive pavement evaluation [AD-A052707] Non-destructive method for applying and rem instrumentation on helicopter rotor blade [NASA-CASE-LAR-11201-1] BONLIWEAR SYSTEMS Nonlinear acoustics. A bibliography with a</pre>	N78-24897 n the theory jet N78-24900 al A78-37532 se at A78-39105 N78-24159 oving N78-24515 bstracts
<pre>[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] BOISE SPECTRA Azimuthal decomposition of the power spectr density of jet noise BOISE TEMPERATORE Aircraft measurement of radio frequency noi 121.5 HBz, 243NHz and 406HHz NONDESTRUCTIVE TESTS Nondestructive pavement evaluation [AD-A052707] Non-destructive method for applying and rem instrumentation on helicopter rotor blade [NASA-CASE-LAR-11201-1] BORLIBERAR SYSTEMS Nonlnear acoustics. A bibliography with a [NTIS/PS-78/0240]</pre>	N78-24897 n the theory jet N78-24900 al A78-37532 se at A78-39105 N78-24159 N78-24515
<pre>[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] BOISE SPECTRA Azimuthal decomposition of the power spectr density of jet noise BOISE TEMPERATUBE Aircraft measurement of radio frequency noi 121.5 MHz, 243MHz and 406MHz NONDESTRUCTIVE TESTS Nondestructive pavement evaluation [AD-A052707] Non-destructive method for applying and rem instrumentation on helicopter rotor blade [NASA-CASE-LAR-11201-1] BOILIBER SYSTEMS Nonlinear acoustics. A bibliography with a [NTIS/PS-78/0240] BOILIBERTY</pre>	N78-24897 n the theory jet N78-24900 al A78-37532 se at A78-39105 N78-24159 N78-24515 N78-24515 bstracts N78-25840
<pre>[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] BOISE SPECTRA Azimuthal decomposition of the power spectr density of jet noise BOISE TEMPERATURE Aircraft measurement of radio frequency noi 121.5 MHz, 243MHz and 406MHz NONDESTRUCTIVE TESTS Nondestructive pavement evaluation [AD-A052707] Non-destructive method for applying and rem instrumentation on helicopter rotor blade [NASA-CASE-LAR-11201-1] BONLIWEAR SYSTEMS Nonlinear acoustics. A bibliography with a</pre>	N78-24897 n the theory jet N78-24900 al A78-37532 se at A78-39105 N78-24159 N78-24515 N78-24515 bstracts N78-25840
<pre>[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 alrcraft noise [NASA-CR-145262] NOISE SPECTRA Azimuthal decomposition of the power spectr density of jet noise NOISE TEMPERATUBE Aircraft measurement of radio frequency noi 121.5 MHz, 243MHz and 406MHz NONDESTRUCTIVE TESTS Nondestructive pavement evaluation [AD-A052707] Non-destructive method for applying and rem instrumentation on helicopter rotor blade [NASA-CASE-LAR-11201-1] NONLIBEAR SYSTEMS Nonlinear acoustics. A bibliography with a [NTIS/PS-78/0240] NONLIMEARITY Nonlinear theory of a bearing surface of ar extent [AD-A051385]</pre>	N78-24897 n the theory jet N78-24900 al A78-37532 se at A78-39105 N78-24159 N78-24515 N78-24515 bstracts N78-25840
<pre>[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] BOISE SPECTRA Azimuthal decomposition of the power spectr density of jet noise BOISE TEMPERATURE Aircraft measurement of radio frequency noi 121.5 MHz, 243MHz and 406MHz NONDESTRUCTIVE TESTS Nondestructive pavement evaluation [AD-A052707] Non-destructive method for applying and rem instrumentation on helicopter rotor blade [NASA-CRSE-LAR-11201-1] BONLIMER SYSTEMS Nonlinear acoustics. A bibliography with a [NFIS/PS-78/0240] BONLIMERITY Nonlinear theory of a bearing surface of ar extent [AD-A051385] NOSES (FOREBODIES)</pre>	N78-24897 n the theory jet N78-24900 al A78-37532 se at A78-39105 N78-24159 N78-24515 bstracts N78-25840 bitrary N78-24090
<pre>[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] BOISE SPECTRA Azimuthal decomposition of the power spectr density of jet noise BOISE TEMPERATORE Aircraft measurement of radio frequency noi 121.5 HEz, 243MEz and 406MEz NONDESTRUCTIVE TESTS Nondestructive pavement evaluation [AD-A052707] Non-destructive method for applying and rem instrumentation on helicopter rotor blade [NASA-CASE-LAR-11201-1] NONLIBEAR SISTERS Nonlinear acoustics. A bibliography with a [NTIS/PS-78/0240] BOELIBEARITY Nonlinear theory of a bearing surface of ar extent [AD-A051385] NOSES (FORBBODIES) Simplified input for certain aerodynamic noise stending theory of a second secon</pre>	N78-24897 n the theory jet N78-24900 al A78-37532 se at A78-39105 N78-24159 N78-24159 N78-24515 bstracts N78-25840 bitrary N78-24090 se
<pre>[NASA-TH-78878] Low frequency cabin noise reduction based of intrinsic structural tuning concept: The and the experimental results, phase 2 aircraft noise [NASA-CR-145262] BOISE SPECTRA Azimuthal decomposition of the power spectr density of jet noise BOISE TEMPERATURE Aircraft measurement of radio frequency noi 121.5 MHz, 243MHz and 406MHz NONDESTRUCTIVE TESTS Nondestructive pavement evaluation [AD-A052707] Non-destructive method for applying and rem instrumentation on helicopter rotor blade [NASA-CRSE-LAR-11201-1] BONLIMER SYSTEMS Nonlinear acoustics. A bibliography with a [NFIS/PS-78/0240] BONLIMERITY Nonlinear theory of a bearing surface of ar extent [AD-A051385] NOSES (FOREBODIES)</pre>	N78-24897 n the theory jet N78-24900 al A78-37532 se at A78-39105 N78-24159 N78-24159 N78-24515 bstracts N78-25840 bitrary N78-24090 se

1

P-1127 AIBCRAFT

BOTCH TESTS	
Relationship between scatter of fatigue li: S-N curve of 2024-T4 aircraft structural	fe and
aluminum alloy specimens with a sharp not	tch (Rt
equals 8.25) under a constant temperature	e and
humidity condition	730 05650
[NAL-TR-412T] Nozzle design	₩78-25453
Uniqueness 'in the large' of the solution '	to the
direct problem of the Laval nozzle	
USB noise reduction by nozzle and flap mod	A78-37613
osb noise reduction by nozzre and ridp woo	N78-24064
ERP noise reduction through nozzle/flap pos	sitioning
BOZZLE FLOW	N78-24065
The turbulent flow through a sudden enlarge	ement at
subsonic speeds	
Experimental investigation of gasdynamic p	178-37413
at sudden start-up of a supersonic nozzle	
	A78-38641
NOZZLE GEOMETRY	
JSB flow characteristics related to noise of	N78-24060
NUCLEAR BADIATION	
An approach to EMP testing of complete str: aircraft	ıke
allelalt	A78-39088
RUHERICAL ANALYSIS	
Factorization methods in hydroaeromechanics Russian book	s
RUSSIAN DOOR	A78-37887
Viscous-inviscid coupling - A numerical met	thod and
applications to two-dimensional transonic	c and
supersonic flows	A78-38698
Numerical calculation of transonic flow pas	
swept wing by a finite volume method	
[NA SA-CR-157012]	₩78-24808
0	
OBLIGHT SHOCK HAVES	
OBLIQUE SHOCK WAVES Experimental investigation of gasdynamic pr	rocesses
	e
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle	rocesses 9 A78-38641
Experimental investigation of gasdynamic pr	a78-38641
Experimental investigation of gasdynamic pi at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME	e
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS)	a78-38641 A78-37246
Experimental investigation of gasdynamic pi at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME	A78-38641 A78-37246 random
Experimental investigation of gasdynamic pi at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques	a78-38641 A78-37246
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAR	A78-38641 A78-37246 random A78-39182
Experimental investigation of gasdynamic pi at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques	A78-38641 A78-37246 random A78-39182
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAE Flight-testing of a continuous laser remote sensing system	A78-38641 A78-37246 random A78-39182
Experimental investigation of gasdynamic pi at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAE Flight-testing of a continuous laser remoted	A78-38641 A78-37246 random A78-39182 e A78-39632
Experimental investigation of gasdynamic pi at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAR Flight-testing of a continuous laser remote sensing system OPTIMAL CONTROL	A78-38641 A78-37246 random A78-39182 e A78-39632 for
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAR Flight-testing of a continuous laser remote sensing system OPTIMAL CONTROL Optimal flare in presence of wind shears aircraft in automatic approach	A78-38641 A78-37246 random A78-39182 e A78-39632
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAB Plight-testing of a continuous laser remote sensing system OPTIMAL CONTROL Optimal flare in presence of wind shears aircraft in automatic approach OPTIMIZATION On the optimization of discrete structures	A78-38641 A78-37246 random A78-39182 e A78-39632 for A78-39186
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAR Flight-testing of a continuous laser remote sensing system OPTIMAL CONTROL Optimal flare in presence of wind shears aircraft in automatic approach	A78-38641 A78-37246 random A78-39182 e A78-39632 for A78-39186 with
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAB Plight-testing of a continuous laser remote sensing system OPTIMAL CONTROL Optimal flare in presence of wind shears aircraft in automatic approach OPTIMIZATION On the optimization of discrete structures	A78-38641 A78-37246 random A78-39182 A78-39632 for A78-39186 with A78-39135
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAR Plight-testing of a continuous laser remote sensing system OPTIMAL CONTROL Optimal flare in presence of wind shears aircraft in automatic approach OPTIMIZATION On the optimization of discrete structures aeroelastic constraints	A78-38641 A78-37246 random A78-39182 e A78-39182 e A78-39632 - for A78-39186 with A78-39135 random
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAR Plight-testing of a continuous laser remote sensing system OPTIMAL CONTROL Optimal flare in presence of wind shears aircraft in automatic approach OPTIMIZATION On the optimization of discrete structures aeroelastic constraints Optimal digital simulation of aircraft via search techniques	A78-38641 A78-37246 random A78-39182 e A78-39632 for A78-39186 with A78-39186 with A78-39135 random A78-39182
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAR Plight-testing of a continuous laser remote sensing system OPTIMAL CONTROL Optimal flare in presence of wind shears aircraft in automatic approach OPTIMIZATION On the optimization of discrete structures aercelastic constraints Optimal digital simulation of aircraft via	A78-38641 A78-37246 random A78-39182 e A78-39632 for A78-39186 with A78-39186 with A78-39135 random A78-39182
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAR Plight-testing of a continuous laser remote sensing system OPTIMAL CONTROL Optimal flare in presence of wind shears aircraft in automatic approach OPTIMIZATION On the optimization of discrete structures aeroelastic constraints Optimal digital simulation of aircraft via search techniques A study of commuter airplane design optimiza [NASA-CB-157210] OSCILLATING FLOW	A78-38641 A78-37246 random A78-39182 A78-39632 - for A78-39186 with A78-39186 with A78-39185 random A78-39182 random
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle OHNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (HATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAE Plight-testing of a continuous laser remote sensing system OPTIMAL CONTROL Optimal flare in presence of wind shears aircraft in automatic approach OPTIMIZATION On the optimization of discrete structures aeroelastic constraints Optimal digital simulation of aircraft via search techniques A study of commuter airplane design optimiz [NASA-CR-157210] OSCILLATING FLOW Application of the integral-transformation	A78-38641 A78-37246 random A78-39182 A78-39182 for A78-39186 with A78-39186 with A78-39182 random A78-39182 random N78-25078 method
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAR Plight-testing of a continuous laser remote sensing system OPTIMAL CONTROL Optimal flare in presence of wind shears aircraft in automatic approach OPTIMIZATION On the optimization of discrete structures aeroelastic constraints Optimal digital simulation of aircraft via search techniques A study of commuter airplane design optimiza [NASA-CB-157210] OSCILLATING FLOW	A78-38641 A78-37246 random A78-39182 A78-39632 - for A78-39186 with A78-39186 with A78-39185 random A78-39182 zation N78-25078 method f the
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAR Plight-testing of a continuous laser remote sensing system OPTIMAL CONTROL Optimal flare in presence of wind shears aircraft in automatic approach OPTIMIZATION On the optimization of discrete structures aercelastic constraints Optimal digital simulation of aircraft via search techniques A study of commuter airplane design optimiz [NASA-CR-157210] OSCILLATING FLOW Application of the integral-transformation to three-dimensional unsteady problems of theory of cascades	A78-38641 A78-37246 random A78-39182 A78-39182 A78-39632 for A78-39186 with A78-39186 with A78-39182 random A78-39182 random A78-39182 random A78-39182 random
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAB Flight-testing of a continuous laser remote sensing system OPTIMAL CONTROL Optimal flare in presence of wind shears aircraft in automatic approach OPTIMIZATION On the optimization of discrete structures aeroelastic constraints Optimal digital simulation of aircraft via search techniques A study of commuter airplane design optimiz [NASA-CR-157210] OSCILLATING PLON Application of the integral-transformation to three-dimensional unsteady problems of theory of cascades Investigations of the transonic flow around	A78-38641 A78-37246 random A78-39182 A78-39182 A78-39632 for A78-39186 with A78-39186 with A78-39182 random A78-39182 random A78-39182 random A78-39182 random
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAR Plight-testing of a continuous laser remote sensing system OPTIMAL CONTROL Optimal flare in presence of wind shears aircraft in automatic approach OPTIMIZATION On the optimization of discrete structures aeroelastic constraints Optimal digital simulation of aircraft via search techniques A study of commuter airplane design optimiz [NASA-CR-157210] OSCILLATING FLOB Application of the integral-transformation to three-dimensional unsteady problems of theory of cascades Investigations of the transonic flow around oscillating airfoils Thesis	A78-38641 A78-37246 random A78-39182 A78-39182 A78-39632 for A78-39186 with A78-39186 with A78-39182 random A78-39182 random A78-39182 random A78-39182 random
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAB Flight-testing of a continuous laser remote sensing system OPTIMAL CONTROL Optimal flare in presence of wind shears aircraft in automatic approach OPTIMIZATION On the optimization of discrete structures aeroelastic constraints Optimal digital simulation of aircraft via search techniques A study of commuter airplane design optimiz [NASA-CR-157210] OSCILLATING PLOB Application of the integral-transformation to three-dimensional unsteady problems of theory of cascades Investigations of the transonic flow around oscillating airfoils Thesis	A78-38641 A78-37246 random A78-39182 e A78-39632 for A78-39186 with A78-39186 with A78-39182 random A78-39182 random A78-39182 afte A78-36366 A78-38978
Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle OMNIDIRECTIONAL RADIO RANGES New model VOR/DME OPERATORS (MATHEMATICS) Optimal digital simulation of aircraft via search techniques OPTICAL RADAR Plight-testing of a continuous laser remote sensing system OPTIMAL CONTROL Optimal flare in presence of wind shears aircraft in automatic approach OPTIMIZATION On the optimization of discrete structures aeroelastic constraints Optimal digital simulation of aircraft via search techniques A study of commuter airplane design optimiz [NASA-CR-157210] OSCILLATING FLOB Application of the integral-transformation to three-dimensional unsteady problems of theory of cascades Investigations of the transonic flow around oscillating airfoils Thesis	A78-38641 A78-37246 random A78-39182 e A78-39632 for A78-39186 with A78-39186 with A78-39182 random A78-39182 random A78-39182 afte A78-36366 A78-38978

Ρ

P-1127 AIBCBAPT Planning and procedures for aircraft demonstrations - V/STOL aircraft

A78-38749

PANELS

PANELS Paneling techniques for use with the VORLAX computer program [NASA-CR-145364] N78-25054 PARACHUTES Parachutes and decelerators, volume 2. A bibliography with abstracts
[NTIS/PS-78/0320] N78-25067 PARTICLES Deposition of fine particles in the opening of film-cooled gas turbine blades N78-25091 [EPFL-ITA-2] PASSENGER AIRCRAFT Energy savings. A [AAAF-NT-77-24] An aircraft constructor's viewpoint N78-24127 An operator's viewpoint: How to reduce the fuel consumption in aeronautical maintenance [AAAF-NT-77-26] N78-24129 A study of commuter airplane design optimization [NASA-CR-157210] N78-2 N78-25078 PAVEMENTS Nondestructive pavement evaluation FAD-A0527071 N78-24159 PERFORMANCE PREDICTION The effect of correlated missed detections, visibility on the performance of an automated radar tracking system A78-37485 A high-power switching network for a dual-mode antenna --- for airborne transmitter application A78-38844 Loss prediction in axial compressors - A bibliographic study A78-38892 PERFORMANCE TESTS The German-Dutch low speed wind tunnel DNW A78-36447 Investigating the efficiency of gas turbines in off-design operation --- multistage experimental data A78-37860 Reduction of transient gas turbine test data using a hybrid computer A78-38782 Verification of DABS sensor surveillance performance (ATCRBS mode) at typical ASR sites throughout CONUS [AD-A051128] N78-24 N78-24105 Performance evaluation of a catalytic partial oxidation hydrogen generator using turbine engine fuels [AD-A047355] N78-24380 Test operations procedures physical characteristics aviation material FAD-A0531961 N78-25086 Performance tests and design modifications of a Wankel type rotary combustion automobile engine in order to determine its suitability for aircraft application [CSIR-ME-1521] N78-25095 PHOTOCHEMICAL BEACTIONS Photochemistry and dynamics of the ozone layer 178-38766 PILOT PERFORMANCE Ergonomics in commercial aircraft landing A78-36621 PILOTLESS ATECRAFT High-flying Mini-Sniffer BFV - Mars bound A78-38521 PLANFORMS Flow past nonconical wings with separation 178-37775 PLASTIC AIRCRAFT STRUCTURES Sailplanes of carbon-fiber construction A78-38804 Application of modern methods in civil aircraft construction A78-38808 Heavily loaded carbon-fiber-reinforced-plastic primary structure with the Tornado taileron as an example A78-38810 Material selection for the Tornado taileron A78-38811 PLASTICS ALC/50/ values for some polymeric materials ---Apparent Lethal Concentration fire toxicity A78-36596 PLATES An experimental study to determine the reduction in ultimate bending moment of a composite plate due to an internal delamination [AD-A052662] N78-25466 POLLUTION MONITORING High-flying Mini-Sniffer RPV - Mars bound A78-38521 Subisokinetic sampling errors for aircraft turbine engine smoke probes A78-38575 Flight-testing of a continuous laser remote sensing system A78-39632 POSITION BEBOBS Results of the NASA/MARAD L-band satellite navigation experiment A78-37525 POWDER METALLURGY Cobalt-base alloys produced by powder metallurgy for compressor and turbine disks [ONERA, TP NO. 1978-7] A78-39582 POWER CONDITIONING A high-power switching network for a dual-mode antenna --- for airborne transmitter application A78-38844 POWER GAIN Experimental evaluation of an array technique for zenith to horizon coverage --- aircraft to satellite communication links A78-36380 POWER SPECTRA Azimuthal decomposition of the power spectral density of jet noise 178-37532 POWER SUPPLIES Advanced technology servicing equipment for army aircraft [AD-A052652] N78-24158 N/8-Inductor network development for aircraft high power supplies [AD-A052750] N78-N78-25096 POWERED LIFT AIRCRAFT Powered-Lift Aerodynamics and Acoustics --conferences [NASA-SP-406] N78-24046 Overview of powered-lift technology --- as used on the IC-14 aircraft and C-15 aircraft N78-24047 Upper-surface-blowing flow-turning performance N78-24048 Results of static tests of a 1/4 scale model of the Boeing YC-14 powered-lift system N78-24049 Summary of low-speed aerodynamic characteristics of upper-surface-blown jet-flap configurations N78-24050 Application of powered-lift concepts for improved cruise efficiency of long-range aircraft N78-24051 Comparison of aerodynamic theory and experiment for jet-flap wings N78-24052 Externally blown flap impingement parameters N78-24053 Some measurements of an EBF powered-lift wake N78-24054 Aerodynamic characteristics in ground proximity N78-24055 Distributed upper-surface blowing concept N78-24056 Cruise aerodynamics of USB nacelle/wing geometric variations N78-24057 Effects of nozzle design and power on cruise drag for upper-surface-blowing aircraft N78-24058 Theoretical predictions of jet interaction effects for USB and OWB configurations N78-24059 DSB flow characteristics related to noise generation N78-24060 Characteristics of USB noise N78-24061 Analytical developments for definition and prediction of USB noise N78-24062

BADAR TRACKING

Analytical modeling of under-the-wing externally blown flap powered-lift noise N78-24063 USB noise reduction by nozzle and flap modifications N78-24064 ERF noise reduction through nozzle/flap positioning 178-24065 Overview of the OCSEE program N78-24066 Acoustic design of the QCSEE propulsion systems N78-24067 Inlet/nacelle/exhaust system integration for the QCSEE propulsion systems N78-24068 Inlet technology for powered-lift aircraft N78-24069 Reverse-thrust technology for variable-pitch fan propulsion systems N78-24070 Acoustics and aerodynamics of over-the-wing thrust reversers N78-24071 Measured and calculated steady aerodynamic loads on a large-scale upper-surface blown model N78-24072 Acoustic-loads research for powered-lift configurations N78-24073 Investigations of scaling laws for jet impingement N78-24074 USB environment measurements based on full-scale static engine ground tests N78-24076 PREDICTION ANALYSIS TECHNIQUES Prediction of the ground effect - Side-line noise from aircraft A78-37530 An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094 Survey of air cargo forecasting techniques [NASA-CB-145329] N78-25068 Computer model for refinery operations with emphasis on jet fuel production. Volume 3: Detailed systems and programming documentation [NASA-CR-135335] V78-2 ¥78-25235 PREMIXED FLAMES Review of flashback reported in prevaporizing/premixing combustors A78-37772 PRESSURE MEASUREments Loss prediction in axial compressors - A bibliographic study A78-38892 Tabulated pressure measurements of a NASA supercritical-wing research airplane model with and without fuselage area-rule additions at Mach 0.25 to 1.00 [NASA-TH-X-2634] N78-240 N78-24077 Wind-tunnel measurements of aerodynamic load distribution on an NASA supercritical-wing research airplane configuration [NASA-TH-X-2469] N78-24079 Methods and results of boundary layer measurements on a glider [NASA-TM-75294] N78-24085 PRESSORE POLSES Pressure pulsations on a flat plate normal to an underexpanded supersonic jet 178-37743 PROBABILITY DISTRIBUTION FUNCTIONS A non-stationary model for atmospheric turbulence patches for the prediction of aircraft design loads [NLE-TE-76131-U] N78-25077 PROCUREMENT FOLICY On setting avionic subsystem unit production cost goals --- contract management and procurement policy AD-1051337] N78-24133 PRODUCTION BRGINEBBING Evaluation of methods to produce aviation turbine fuels from synthetic crude oils phase 3, volume 3 [AD-A053106] N78-25239 PROJECT MANAGEMENT Doctrine versus capabilities: A project manager's dilemma with the CH-47 helicopter [AD-A052376] N78-25970

PROPELLER BLADES Deformation curve of rotary airfoil blades A78-39540 Research on the statically thrusting propeller [NASA-CE-157214] PROPULSION SYSTEM CONFIGURATIONS N78-25092 Acoustic design of the QCSEE propulsion systems N78-24067 Reverse-thrust technology for variable-pitch fan propulsion systems N78-24070 PROPULSION SYSTEM PERFORMANCE Aircraft propulsion from the back room /Sixty-sixth Wilbur and Orville Wright Memorial Lecture/ A78-36279 Hybrid computer models as an aid in design of gas turbine control systems for helicopters 178-38783 Impact of future fuel properties on aircraft engines and fuel systems [NASA-IM-78866] PROPULSIVE EPPICIENCY N78-24369 Aero engines climb towards better fuel efficiency A78-37114 Application of powered-lift concepts for improved cruise efficiency of long-range aircraft N78-24051 PULSE RADAR Color displays for airborne weather radar A78-36980

Q

QUIET ENGINE PROGRAM
Overview of the QCSEE program
N78-24066
Acoustic design of the QCSEE propulsion systems
N78-24067
Inlet/nacelle/exhaust system integration for the
QCSEE propulsion systems
N78-24068
Acoustics and aerodynamics of over-the-wing thrust
Feveisers
N78-24071

R

BADAR ANTERNAS	
Halogenated solvent-induced corrosion in hy	
systems hydraulic drives for aircraft	. radar
antennas	
[ASLE PREPRINT 78-AM-4A-2]	A78-38083
RADAR BEACONS	
Dealing with false targets in the Air Traff	10
Control Radar Beacon System	
	£78-37486
Verification of DABS sensor surveillance	
performance (ATCRBS mode) at typical ASR	sites
throughout CONUS	
[AD-A051128]	N78-24105
RADAR EQUIPEENT	
godern millimeter wave instrumentation rada	Т
development and research methodology	••
development and research methodology	A78-37501
Aircraft radar systems Russian book	210 37301
Allefalt ladat Systems aussian book	178-37873
Assessment procedure application utilizing	
transistor RF pulse susceptibility data -	
studies of approach radar and of aircraft	
IBP-receiver	•
UBF-receiver	A78-39101
	A18-39101
RADAR PHOTOGRAPHY	
Color displays for airborne weather radar	
	A78-36980
RADAR TRACKING	
The effect of correlated missed detections,	,
correlated false alarms and interclutter	
visibility on the performance of an autom	nated
radar tracking system	
	178-37485
The new system for processing and presenting	ng radar
data in the Air Traffic Control Center of	E
Barcelona	
	A78-38997
Perspective radar display system: TV-like	
presentation on CRT provides higher later	al
position and lateral motion sensitivity t	han a PPI:
[AD-A052342]	N78-24418

Precision positional data of general aviation air traffic in terminal air space [NASA-RP-1020] N78-25048 RADARSCOPES The new system for processing and presenting radar data in the Air Traffic Control Center of Barcelona A78-38997 RADIATION DAMAGE Assessment procedure application utilizing OHP transistor RF pulse susceptibility data --studies of approach radar and of aircraft -- ENC UHF-receiver A78-39101 RADIATION PROTECTION An approach to EMP testing of complete strike aircraft A78-39088 RADIO ANTENNAS Aircraft measurement of radio frequency noise at 121.5 MHz, 243MHz and 406MHz A78-39105 RADIO ATTENUATION Susceptibility testing of airborne equipment - The way ahead A78-39086 RADIO CONTROL Grumman's radio-controlled experimental air force A78-38522 RADIO DIRECTION FINDERS. On the compensation of radio direction finders --antenna optimization in airport environments A78-38247 Bases of radio direction finding, part 1 [AD-A051951] N78-24107 BADIO EQUIPHENT Modern RF system design for aircraft --- tactical information exchange system A78-37341 RADIO FILTERS Filtering techniques in avionic transmitters A78-39084 RADIO NAVIGATION Evaluation of geometric performance of global positioning system A78-37987 RADIO RECEIVERS EMC control of the tornado aircraft A78-39087 **BADIO TRANSMISSION** Bases of radio direction finding, part 1 [AD-A051951] RADIO TRANSBITTERS N78-24107 Filtering techniques in avionic transmitters A78-39084 EMC control of the tornado aircraft A78-39087 RANDON PROCESSES Optimal digital simulation of aircraft via random search techniques A78-39182 RAREFIED GAS DYNAMICS Local method in rarefied gas aerodynamics A78-38726 RECIRCULATIVE FLUID FLOW Combustion in gas turbine engines - A review of ONERA recent works [ONERA, TP NO. 1978-25] RECONNAISSANCE AIRCRAFT A78-39580 High-flying Mini-Sniffer RPV - Mars bound A78-38521 Prospects for using new flight vehicles in aerophysical studies A78-39189 Formulas for takeoff performance P3-A, B and C airplanes [AD-A052354] N78-24124 Logistics and operational effectiveness of the P-3 aircraft [AD-A052239] N78-25050 REFINING Computer model for refinery operations with emphasis on jet fuel production. Volume 3: Detailed systems and programming documentation [NASA-CR-135335] N78-25235 REINFORCED PLATES Integrally stiffened laminate construction A78-36431

SUBJECT INDEX

RELAXATION (MECHANICS) Minimisation of relaxation drag A78-37423 RELIABILITY AWALYSIS The certification of light aircraft A78-36280 Reliability of aviation techniques and flight safety --- Russian book A78-36494 The determination of margins of safety for interference effects on flight and engine controls A78-39082 Advanced development of a helicopter rotor isolation system for improved reliability. Volume 2: Detailed report [AD-A051319] N78-24119 RELIABILITY ENGINEERING Dealing with false targets in the Air Traffic Control Radar Beacon System A78-37486 RENOTE SENSORS Flight-testing of a continuous laser remote sensing system A78-39632 The effects of wind shear on aircraft flight path and methods for remote sensing and reporting of wind shear at airports [UTIAS-TN-216] REMOTELY PILOTED VEHICLES N78-24755 High-flying Hini-Sniffer RPV - Mars bound A78-38521 Grumman's radio-controlled experimental air force A78-38522 REPLACING Replacement process analysis: An interim report on replacement models [AD-A052411] N78-24150 RESEARCH AIRCRAFT Tabulated pressure measurements of a NASA supercritical-wing research airplane model with and without fuselage area-rule additions at Mach 0.25 to 1.00 [NASA-TM-X-2634] N78-24077 Wind-tunnel investigation of basic aerodynamic characteristics of a supercritical-wing research airplane configuration [NASA-TM-X-2470] Wind-tunnel measurements of aerodynamic load N78-24078 distribution on an NASA supercritical-wing research airplane configuration [NASA-TH-X-2469] Aerodynamic characteristics of an NASA N78-24079 supercritical-wing research airplane model with and without fuselage area-rule additions at Mach 0.25 to 1.00 [NASA-TM-X-2633] N78-24080 An adaptive learning control system for aircraft [NASA-CR-156930] N78-2 RESINS N78-25966 ALC/50/ values for some polymeric materials --Apparent Lethal Concentration fire toxicity 178-36596 REYNOLDS NUMBER Flight-measured pressure characteristics of aft-facing steps in high Reynolds number flow at Mach numbers of 2.20, 2.50, and 2.80 and comparison with other data [NASA-TH-72855] N78-250 N78-25055 RIGID ROTORS IDS - An advanced hingeless rotor system A78-36950 ROLLER BEARINGS Development of mainshift high speed cylindrical roller bearings for gas turbine engines [AD-A052351] ₩78-24556 BOTARY WING AIRCRAFT Advanced development of a helicopter rotor isolation system for improved reliability. Volume 2: Detailed report [AD-A051319] N78-24119 ROTARY BINGS Compressible flow about helicopter rotors 178-36947 A theoretical study of the effect of blade ice accretion on the power-off landing capability of a Wesser helicopter 478-36948

1

Plight experiments on aerodynamic features affecting helicopter blade design	
IDS - An advanced bingeless rotor system	A78-36949
•	178-36950
Use of structural analysis programs for calculating states of stress in helicopt elements	er rotor
Deformation curve of rotary airfoil blades	A78-38807
Advanced development of a helicopter rotor	A78-39540
Isolation system for improved reliabilit Volume 1: Summary report	¥•
[AD-A051318] Advanced development of a helicopter rotor	N78-24118
Isolation system for improved reliability Volume 2: Detailed report	7 -
[AD-A051319] Heavy lift helicopters, Advanced Technolo	N78-24119
component program: Nub and upper control [AD-A051348]	
Vibrations of a helicopter rotor blade usi	n 70-24 122
finite element unconstrained variational formulations	
[AD-A052670] Evaluation of the annoyance due to helicop	N78-24125 ter
rotor noise [NASA-CR-3001]	N78-24903
[NASA-CR-3001] The effect of tip vortex structure on helic noise due to blade/vortex interaction	copter
[NASA-CR-152150] ROTOR ABRODYNAMICS	N78-25832
Compressible flow about helicopter rotors	A78-36947
A theoretical study of the effect of blade	
accretion on the power-off landing capab a Wessex helicopter	lity of
Flight experiments on aerodynamic features	A78-36948
affecting belicopter blade design	A78-36949
ROTOR BLADES	
Non-destructive method for applying and re- instrumentation on helicopter rotor blad	es
[NASA-CASE-LAR-11201-1] BOTOB BLADES (TURBOHACHINERY)	N78-24515
Acoustic evaluation of a novel swept-rotcr noise reduction in turbofan engines	
[NASA-TM-78878] Acoustics and performance of high-speed, u	N78-24897 negually
spaced fan rotors [NAL-TR-526] RUNWAL LIGHTS	N78-25094
Evaluation of a 100-watt elevated high-into	ensity
runway edge light [AD-A051651]	N78-24153
RUNWAYS Prediction of the ground effect - Side-line from aircraft	e noise
Nondestructive pavement evaluation	∆78-37530
[AD-A052707]	N78-24159
C	

S

—	
S-N DIAGRAMS	
Relationship between scatter of fatigue lif	fe and
S-N curve of 2024-T4 aircraft structural	
aluminum alloy specimens with a sharp not	tch (Kt
equals 8.25) under a constant temperature	e and
humidity condition	
[NAL-TE-412T]	N78-25453
SANDWICH STRUCTURES	
Preliminary design of low-cost titanium str	ructure
B-1 aircraft engine nacelles	
[AD-A053327]	N78-25087
SATELLITE ANTENNAS	
Experimental evaluation of an array technic	ue for
zenith to horizon coverage aircraft	
satellite communication links	
	A78-36380
SATELLITE NAVIGATION SYSTEMS	
Results of the NASA/MARAD L-band satellite	
navigation experiment	
	A78-37525

SATELLITE ORBITS	
Evaluation of geometric performance of glob	al
positioning system	
	178-37987
SCALE HODELS	
Wind-tunnel investigation of basic aerodyna	
characteristics of a supercritical-wing r	esearch
airplane configuration	
[NASA-IM-X-2470]	N78-24078
Aerodynamic characteristics of an NASA	
supercritical-wing research airplane mode	
and without fuselage area-rule additions	at Mach
0.25 to 1.00	N78-24080
[NASA-TN-X-2633] SCALING LAWS	N/0-24000
Investigations of scaling laws for jet impl	ngement
intestigations of southing faits for jet impl	N78-24074
SBALS (STOPPERS)	
Circumferential seals for use as oil seals	
[ASLE PREPRINT 78-AM-3D-2]	A78-38095
Evaluation of a lip-seal hydraulic fitting	for the
P-14 aircraft	
[AD-A051159]	N78-24120
SELECTIVE DISSEMINATION OF INFORMATION	
Carbon fiber study	
[NASA-TH-79449]	₩78-24292
SELF ADAPTIVE CONTROL SYSTEMS	
An adaptive learning control system for air {NASA-CR-156930]	N78-25966
SEPARATED FLOW	010-20300
The turbulent flow through a sudden enlarge	mont at
subsonic speeds	ment at
Subsourc speeds	A78-37413
Flow past nonconical wings with separation	110 37413
1100 Fabe Soucestar 1190 +100 Deparation	A78-37775
Flight-measured pressure characteristics of	
aft-facing steps in high Reynolds number	flow at
Mach numbers of 2.20, 2.50, and 2.80 and	
Mach numbers of 2.20, 2.50, and 2.80 and comparison with other data	
[NAŠA-TM-72855]	N78-25055
SHEAR LAYERS	
Experimental assessment of theory for refra	ction
of sound by a shear layer	
[NASA-CR-145359]	N78-25831
[NASA-CR-145359] SHOCK WAVE INTEBACTION	
[NASA-CR-145359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr	ocesses
[NASA-CR-145359] SHOCK WAVE INTEBACTION	ocesses
[NASA-CR-145359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle	ocesses
[NASA-CR-145359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION	ocesses A78-38641
[NASA-CR-145359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method	ocesses A78-38641 for two
[NASA-CR-145359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION	ocesses A78-38641 for two lculation
[NASA-CR-145359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca	ocesses A78-38641 for two
[NASA-CR-145359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PEOPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCEAFT	ocesses A78-38641 for two lculation A78-37732
[NASA-CR-145359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCEAPT A study of commuter airplane design optimiz	ocesses A78-38641 for two lculation A78-37732 ation
[NASA-CR-145359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCRAFT A study of commuter airplane design optimiz [NASA-CR-157210]	ocesses A78-38641 for two lculation A78-37732
[NASA-CR-145359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCEAPT A study of commuter airplane design optimiz	ocesses A78-38641 for two lculation A78-37732 ation
<pre>[NASA-CR-145359] SHOCK WAVE INTERACTIOB Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PEOPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCRAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHORT TAKEOFF AIRCRAFT</pre>	ocesses A78-38641 for two lculation A78-37732 ation N78-25078
<pre>[NASA-CR-145359] SHOCK WAVE INTERACTIOB Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCEAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHOET TAREOFP AIRCEAFT Analytical developments for definition and</pre>	ocesses A78-38641 for two lculation A78-37732 ation
<pre>[NASA-CR-145359] SHOCK WAVE INTERACTIOB Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCEAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHOET TAREOFP AIRCEAFT Analytical developments for definition and</pre>	occesses A78-38641 for two lculation A78-37732 ation N78-25078 N78-24062
<pre>[NASA-CR-145359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCRAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHORT TAKBOFF AIRCRAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft</pre>	ocesses A78-38641 for two lculation A78-37732 ation N78-25078 N78-24062 -11ft
<pre>[NASA-CR-145359] SHOCK WAVE INTERACTIOF Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHOET HAUL AIRCEAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHOET TAKEOFF AIRCEAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139]</pre>	occesses A78-38641 for two lculation A78-37732 ation N78-25078 N78-24062
<pre>[NASA-CR-195359] SHOCK WAVE INTERACTIOB Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PEOPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCRAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHORT TAKBOFF AIRCRAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGNAL PROCESSING</pre>	00000000000000000000000000000000000000
<pre>[NASA-CR-145359] SHOCK WAVE INTERACTIOF Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHOET HAUL AIRCEAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHOET TAKEOFF AIRCEAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139]</pre>	ocesses A78-38641 for two lculation A78-37732 ation N78-25078 N78-24062 -lift N78-24117 sors
<pre>[NASA-CR-145359] SHOCK WAVE INTERACTIOE Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PEOPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHOET HAUL AIRCEAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHOET TAKEOFF AIRCEAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGNAL PROCESSING Evaluation of airborne radar Doppler proces</pre>	00000000000000000000000000000000000000
<pre>[NASA-CR-195359] SHOCK WAVE INTERACTIOB Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PEOPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCRAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHORT TAKBOFF AIRCRAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGNAL PROCESSING</pre>	00000000000000000000000000000000000000
<pre>[NASA-CR-145359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCRAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHORT TAKBOFF AIRCRAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGNAL PROCESSING Evaluation of airborne radar Doppler process Piltering techniques in avionic transmitter</pre>	00000000000000000000000000000000000000
<pre>[NASA-CR-145359] SHOCK WAVE INTERACTIOF Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCRAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHOET TAKEOPP AIRCRAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGNAL PROCESSING Evaluation of airborne radar Doppler process Piltering techniques in avionic transmitter SITES</pre>	00000000000000000000000000000000000000
<pre>[NASA-CR-195359] SHOCK WAVE INTERACTIOE Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PEOPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCEAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHORT TAREOFF AIRCEAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CF-152139] SIGNAL PROCESSING Evaluation of airborne radar Doppler process Filtering techniques in avionic transmitter SITES Study on problems of terminal site location</pre>	ocesses A78-38641 for two lculation A78-37732 ation N78-25078 N78-24062 -lift N78-24117 sors A78-37477 S A78-39084
<pre>[NASA-CR-195359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCRAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHORT TAKBOFF AIRCRAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGNAL PROCESSING Evaluation of airborne radar Doppler process Filtering techniques in avionic transmitter SITES Study on problems of terminal site location environmental effects on airport, harbor</pre>	ocesses A78-38641 for two lculation A78-37732 ation N78-25078 N78-24062 -lift N78-24117 sors A78-37477 S A78-39084
<pre>[NASA-CR-195359] SHOCK WAVE INTERACTIOE Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PEOPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCEAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHORT TAREOFF AIRCEAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CF-152139] SIGNAL PROCESSING Evaluation of airborne radar Doppler process Filtering techniques in avionic transmitter SITES Study on problems of terminal site location</pre>	A78-38641 for two lculation A78-37732 ation N78-25078 N78-24062 -lift N78-24117 Sors A78-37477 S A78-39084 or
<pre>[NASA-CR-195359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PEOPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHOET HAUL AIRCEAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHOET TAKEOFF AIRCEAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGNAL PROCESSING Evaluation of airborne radar Doppler process Piltering techniques in avionic transmitter SITES Study on problems of terminal site location environmental effects on airport, harbor truck depot</pre>	ocesses A78-38641 for two lculation A78-37732 ation N78-25078 N78-24062 -lift N78-24117 sors A78-37477 S A78-39084
<pre>[NASA-CR-145359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCRAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHORT TARBOFF AIRCRAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGNAL PROCESSING Evaluation of airborne radar Doppler process Filtering techniques in avionic transmitter SITES Study on problems of terminal site location environmental effects on airport, harbor truck depot</pre>	A78-38641 for two lculation A78-37732 ation N78-25078 N78-24062 -lift N78-24117 Sors A78-37477 S A78-39084 or
<pre>[NASA-CR-195359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PEOPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHOET HAUL AIRCEAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHOET TAKEOFF AIRCEAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGNAL PROCESSING Evaluation of airborne radar Doppler process Piltering techniques in avionic transmitter SITES Study on problems of terminal site location environmental effects on airport, harbor truck depot</pre>	A78-38641 for two lculation A78-37732 ation N78-25078 N78-24062 -lift N78-24117 Sors A78-37477 SA78-39084 or
<pre>[NASA-CR-195359] SHOCK WAVE INTERACTIOE Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PEOPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHOET HAUL AIRCEAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHOET TAKEOFF AIRCEAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGNAL PROCESSING Evaluation of airborne radar Doppler process Piltering techniques in avionic transmitter SITES Study on problems of terminal site location environmental effects on airport, harbor truck depot SIZE (DIMENSIONS) Aircraft size and air transport costs</pre>	A78-38641 for two lculation A78-37732 ation N78-25078 N78-24062 -lift N78-24117 Sors A78-37477 SA78-39084 or A78-36323
<pre>[NASA-CR-145359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCRAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHORT TARBOFF AIRCRAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGNAL PROCESSING Evaluation of airborne radar Doppler process Filtering techniques in avionic transmitter SITES Study on problems of terminal site location environmental effects on airport, harbor truck depot</pre>	ocesses A78-38641 for two lculation A78-37732 ation N78-24062 -11ft N78-24117 sors A78-37477 s A78-37477 s A78-39084 or A78-36323 N78-24112
<pre>[NASA-CR-145359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCRAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHORT TAKBOFF AIRCRAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGNAL PROCESSING Evaluation of airborne radar Doppler process Filtering techniques in avionic transmitter SITES Study on problems of terminal site location environmental effects on airport, harbor truck depot SIZE (DIMENSIONS) Aircraft size and air transport costs SKIM (STRUCTURAL MEMBER)</pre>	ocesses A78-38641 for two lculation A78-37732 ation N78-24062 -11ft N78-24117 sors A78-37477 s A78-37477 s A78-39084 or A78-36323 N78-24112
<pre>[NASA-CR-145359] SHOCK WAVE INTERACTIOF Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCEAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHOET TAKEOPP AIRCEAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGNAL PROCESSING Evaluation of airborne radar Doppler process Piltering techniques in avionic transmitter SITES Study on problems of terminal site location environmental effects on airport, harbor truck depot SIZE (DIMENSIONS) Aircraft size and air transport costs SKIM (STRUCTURAL BEMBER) Influence of the type of corrosion of the a</pre>	ocesses A78-38641 for two lculation A78-37732 ation N78-24062 -11ft N78-24117 sors A78-37477 s A78-37477 s A78-39084 or A78-36323 N78-24112
<pre>[NASA-CR-105359] SHOCK WAVE INTERACTIOF Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCEAPT A study of commuter airplane design optimiz [NASA-CR-157210] SHOET TAKEOPP AIRCEAPT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGMAL PROCESSING Evaluation of airborne radar Doppler process Piltering techniques in avionic transmitter SITES Study on problems of terminal site location environmental effects on airport, harbor truck depot SIZE (DIMENSIONS) Aircraft size and air transport costs SKIM (STRUCTURAL MEMBER) Influence of the type of corrosion of the a skin on limiting value of the damage SHOKE</pre>	array array
<pre>[NASA-CR-195359] SHOCK WAVE INTERACTIOE Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATIOE Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCRAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHORT TAREOFF AIRCRAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGNAL PROCESSING Evaluation of airborne radar Doppler process Piltering techniques in avionic transmitter SITES Study on problems of terminal site location environmental effects on airport, harbor truck depot SIZE (DIMENSIONS) Aircraft size and air transport costs SKIN (STEUCTURAL MEMBER) Influence of the type of corrosion of the a skin on limiting value of the damage SHORE Subisokinetic sampling errors for aircraft</pre>	array array
<pre>[NASA-CR-105359] SHOCK WAVE INTERACTIOF Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCEAPT A study of commuter airplane design optimiz [NASA-CR-157210] SHOET TAKEOPP AIRCEAPT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGMAL PROCESSING Evaluation of airborne radar Doppler process Piltering techniques in avionic transmitter SITES Study on problems of terminal site location environmental effects on airport, harbor truck depot SIZE (DIMENSIONS) Aircraft size and air transport costs SKIM (STRUCTURAL MEMBER) Influence of the type of corrosion of the a skin on limiting value of the damage SHOKE</pre>	Cocesses A78-38641 for two lculation A78-37732 ation N78-25078 N78-24062 -11ft N78-24117 Sors A78-37477 SA78-37477 SA78-39084 or A78-36323 N78-24112 Lircraft A78-38907 turbine
<pre>[NASA-CR-105359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCRAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHORT TAKBOPP AIRCRAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGMAL PROCESSING Evaluation of airborne radar Doppler process Piltering techniques in avionic transmitter SITES Study on problems of terminal site location environmental effects on airport, harbor truck depot SIZE (DIMENSIONS) Aircraft size and air transport costs SKIM (STRUCTURAL MEMBER) Influence of the type of corrosion of the a skin on limiting value of the damage SMOKE Subisokinetic sampling errors for aircraft engine smoke probes</pre>	array array
<pre>[NASA-CR-195359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCRAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHORT TARBOPY AIRCRAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGNAL PROCESSING Evaluation of airborne radar Doppler process Piltering techniques in avionic transmitter SITES Study on problems of terminal site location environmental effects on airport, harbor truck depot SIZE (DIMENSIONS) Aircraft size and air transport costs SKIN (STRUCTURAL MEMBER) Influence of the type of corrosion of the a skin on limiting value of the damage SMOKE Subisokinetic sampling errors for aircraft engine smoke probes</pre>	Cocesses A78-38641 for two lculation A78-37732 ation N78-25078 N78-24062 -11ft N78-24117 Sors A78-37477 SA78-37477 SA78-39084 or A78-36323 N78-24112 Lircraft A78-38907 turbine A78-38575
<pre>[NASA-CR-195359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCRAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHORT TARGOFF AIRCRAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGNAL PROCESSING Evaluation of airborne radar Doppler process Filtering techniques in avionic transmitter SITES Study on problems of terminal site location environmental effects on airport, harbor truck depot SIZE (DIMENSIONS) Aircraft size and air transport costs SKIM (STRUCTURAL MEMBER) Influence of the type of corrosion of the a skin on limiting value of the damage SMOKE Subisokinetic sampling errors for aircraft engine smoke probes</pre>	Cocesses A78-38641 for two lculation A78-37732 ation N78-25078 N78-24062 -11ft N78-24117 Sors A78-37477 SA78-39084 or A78-36323 N78-24112 Lircraft A78-38907 turbine A78-38575 draulic
<pre>[NASA-CR-195359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCRAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHORT TAKEOFF AIRCRAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGNAL PROCESSING Evaluation of airborne radar Doppler process Filtering techniques in avionic transmitter SITES Study on problems of terminal site location environmental effects on airport, harbor truck depot SIZE (DIMENSIONS) Aircraft size and air transport costs SKIN (STEUCTURAL MEMBER) Influence of the type of corrosion of the a skin on limiting value of the damage SMOKE Subisokinetic sampling errors for aircraft engine smoke probes SOLVENTS Halogenated solvent-induced corrosion in by systems bydraulic drives for aircraft</pre>	Cocesses A78-38641 for two lculation A78-37732 ation N78-25078 N78-24062 -11ft N78-24117 Sors A78-37477 SA78-39084 or A78-36323 N78-24112 Lircraft A78-38907 turbine A78-38575 draulic
<pre>[NASA-CR-195359] SHOCK WAVE INTERACTION Experimental investigation of gasdynamic pr at sudden start-up of a supersonic nozzle SHOCK WAVE PROPAGATION Notes on the transonic indicial method dimensional airfoil flutter derivative ca SHORT HAUL AIRCRAFT A study of commuter airplane design optimiz [NASA-CR-157210] SHORT TARGOFF AIRCRAFT Analytical developments for definition and prediction of USB noise Study of a safety margin system for powered STOL aircraft [NASA-CR-152139] SIGNAL PROCESSING Evaluation of airborne radar Doppler process Filtering techniques in avionic transmitter SITES Study on problems of terminal site location environmental effects on airport, harbor truck depot SIZE (DIMENSIONS) Aircraft size and air transport costs SKIM (STRUCTURAL MEMBER) Influence of the type of corrosion of the a skin on limiting value of the damage SMOKE Subisokinetic sampling errors for aircraft engine smoke probes</pre>	Cocesses A78-38641 for two lculation A78-37732 ation N78-25078 N78-24062 -11ft N78-24117 Sors A78-37477 SA78-39084 or A78-36323 N78-24112 Lircraft A78-38907 turbine A78-38575 draulic

SONIC BOOMS

SONIC BOOMS Aircraft sonic boom: Effects on buildings. A bibliography with abstracts [NTIS/PS-78/0239] N78-25099 Aircraft sonic boom: Studies on aircraft flight, arcraft design, and measurement. A bibliography with abstracts [NTIS/PS-78/0238] N78-25100 SOUND PRESSURE Experimental assessment of theory for refraction of sound by a shear layer [NASA-CR-145359] N78-25 N78-25831 SOUND PROPAGATION Remarks on the noise emitted by the jet of a gas turbine engine A78-38696 SOUND TRANSMISSION Atmospheric-absorption adjustment procedure for arcraft flyover noise measurements --- computer program [AD-A051700] N78-24899 Nonlinear acoustics. A bibliography with abstracts [NTIS/PS-78/0240] N78-25840 SOUND WAVES Experimental assessment of theory for refraction cf sound by a shear layer [NASA-CR-145359] N78-25831 SPACE PROCESSING Structural and assembly concepts for large erectable space systems [AAS 77-205] A78-36706 SPACE SHUTTLE OBBITERS Structural and assembly concepts for large erectable space systems [AAS 77-205] A78-36706 SPANLOADER AIRCRAFT Preliminary study of a large span-distributed-load flying-wing carge airplane concept [NASA-TP-1158] N78-2507 N78-25079 SPANWISE BLOWING Effects of spanwise nozzle geometry and location on the longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration at subsonic speeds [NASA-TP-1215] N78-25060 SPIN REDUCTION F-5E/F spin avoidance testing A78-38747 STATIC THRUST Research on the statically thrusting propeller [NASA-CR-157214] N78 N78-25092 STATOR BLADES Stator rotor tools [NASA-CASE-MSC-16000-1] N78-24544 STERLS TRIP steels promise high reliability hardware [AD-A052765] N⁷ N78-24348 STIFFENING Integrally stiffened laminate construction A78-36431 Stress intensity factors, for collinear cracks in a stiffened sheet --- aircraft structures A78-38122 STRAIN GAGES A computer-based system for processing dynamic data --- from aircraft gas turbine engine strain neasurements A78-37108 STRA TOSPHERE Photochemistry and dynamics of the ozone layer A78-38766 STREAMLINING Characteristics of flow past fuselages and wing-fuselage systems of gliders A78-36203 Cross-flow characteristics on a cylindrical body at incidence in subsonic flow A78-37406 STRESS ANALYSIS Use of structural analysis programs for calculating states of stress in helicopter rotor elements 178-38807 Numerical parametric stress analysis of the TF-30 turbine engine third-stage fan-blade/disk dovetail région FAD-A0512991 178-24143

. ~

STRESS CONCENTRATION Stress intensity factors, for collinear cracks in a stiffened sheet --- aircraft structures 178-38122 STRUCTURAL ANALYSIS Use of structural analysis programs for calculating states of stress in helicopter rotor elements A78-38807 STRUCTURAL DESIGN AV-8B composite wing government/industry briefing N78-24113 Preliminary design of low-cost titanium structure --- B-1 aircraft engine nacelles [AD-A053327] N78-25087 STRUCTURAL DESIGN CRITERIA Sailplanes of carbon-fiber construction A78-38804 Theoretical investigation on the crash behavior of cell structures --- aircraft structural design A78-38805 STRUCTURAL ENGINEERING Problems of the theory of strength related to aircraft construction and civil engineering; Structural Mechanics Meeting, Ottobrunn, West Germany, June 1, 2, 1977, Lectures and Discussion Contributions A78-38802 Exploratory development for design data on structural aluminum alloys in representative aircraft environments [AD-A052809] N78-24 STRUCTURAL FAILURE Case of damage involving aircraft and helicopter N78-24344 components of light metal 178-36941 The damage sum in fatigue of structure components - aircraft structures [ICAP-1032] N78-25454 SUBSONIC PLON Application of the integral-transformation method to three-dimensional unsteady problems of the theory of cascades 178-36366 Cross-flow characteristics on a cylindrical body at incidence in subsonic flow 178-37406 Boundary layer blowing tests on a radial diffuser in low and subsonic Mach range A78-37411 The mean velocity field of unsteady subsonic air iets A78-37417 An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094 The development and application of a simple method for determining unsteady airloads in subsonic compressible flow [AD-A052417] N78-24096 SUBSONIC SPEED The turbulent flow through a sudden enlargement at subsonic speeds A78-37413 A finite-step method for estimating the spanwise lift distribution of wings in symmetric, yawed, and rotary flight at low speeds [WASA-CR-157043] N78-25 N78-25056 Aerodynamic characteristics at Mach number 0.2 of a wing-body concept for a hypersonic research airplane [NASA-TP-1189] SUPEBCRITICAL WINGS N78-25059 Tabulated pressure measurements of a NASA supercritical-wing research airplane model with and without fuselage area-rule additions at Mach 0.25 to 1.00 [NASA-TM-X-2634] N78-24077 Wind-tunnel investigation of basic aerodynamic characteristics of a supercritical-wing research airplane configuration [NASA-TM-X-2470] N78-24078 Wind-tunnel measurements of aerodynamic load distribution on an NASA supercritical-wing research airplane configuration [NASA-TM-X-2469] N78-24079

Aerodynamic characteristics of an NASA supercritical-wing research airplane model with and without fuselage area-rule additions at Mach 0.25 to 1.00 [NASA-TH-X-2633] N78-24080 SUPERSONIC AIECRAPT Variable cycle engine evaluations for supersonic V/STOL fighters. Phase 2 and 3 technical report [AD-A053361] N78 25097 Variable cycle engine evaluations for supersonic V/STOL fighters. Management summary report [AD-A053362] N78-25098 SUPERSONIC COMMERCIAL AIR TRANSPORT SST flight planning and navigation - The first year's experience A78-37154 SUPERSONIC FLOW Viscous-inviscid coupling - A numerical method and applications to two-dimensional transonic and supersonic flows A78-38698 A An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N N78-24094 SUPERSONIC JET FLOW Pressure pulsations on a flat plate normal to an underexpanded supersonic jet A78-37743 SUPERSONIC NOZZLES Experimental investigation of gasdynamic processes at sudden start-up of a supersonic nozzle 178-39601 SUPERSONIC TRANSPORTS Supersonic transportation faced with energy savings [AAAF-NT-77-28] N78-2413 SUPERSONIC TURBINES N78-24131 Studies on transonic turbine with film-cooled blades [AD-A052423] N78-24149 SUPERSONIC WIND TUNNELS Remarks on design of supersonic wind tunnels A78-36216 SUPPRESSORS Application of second-order turbulent modeling to the prediction of radiated aerodynamic sound [NASA-CR-2994] N78-25. N78-25359 SUBPACE TEMPERATURE Unsteady heat transfer from a cylinder with radial injection A78-39042 SURVEILLANCE RADAR Verification of DABS sensor surveillance performance (ATCRBS mode) at typical ASR sites throughout CONUS [AD-A051128] N78-24105 SWEPT FORWARD WINGS Grumman's radio-controlled experimental air force A78-38522 SUBPT STRES Numerical calculation of transonic flow past a swept wing by a finite volume method [NASA-CR-157012] N78. N78-24808 SWITCHING CIRCUITS A high-power switching network for a dual-mode antenna --- for airborne transmitter application 178-38844 SYNTHETIC PUBLS Evaluation of methods to produce aviation turbine fuels from synthetic crude oils phase 3, volume [AD-A053106] N78-25239 Alternate fuels nitrogen chemistry [AD-A053299] N78-25240 SYSTEM EFFECTIVENESS Evaluation of geometric performance of global positioning system A78-37987 STATERS ANALYSTS Logistics and operational effectiveness of the P-3 aircraft EAD-A0522391 ₦78-25050 SYSTEMS ENGINEERING Three degree intermediate level maintenance of Navy aeronautical materials [AD-A052389] N78-24042 Study of a safety margin system for powered-lift STOL aircraft [VASA-CR-152139] N78-24117

Т TABLES (DATA) Precision positional data of general aviation air traffic in terminal air space [NASA-RP-1020] N78-250 N78-25048 TAIL ASSEMBLIES Heavily loaded carbon-fiber-reinforced-plastic primary structure with the Tornado taileron as an example 178-38810 Material selection for the Tornado taileron 178-38811 Modeling of the OH-1B tail boom for analysis by the NASTRAN computer program [AD-A052303] N78-25081 TAREOFF Pormulas for takeoff performance P3-A, B and C airplanes [AD-A052354] TARGET RECOGNITION N78-24124 Dealing with false targets in the Air Traffic Control Radar Beacon System A78-37486 An investigation of the tracking performance of the fire fly manual director gunsight for air-to-air gunnery [AD-A0533481 N78-25083 TECHNOLOGICAL FOBECASTING The design of future cockpits for high performance fighter aircraft A78-36446 Airships - The next generation and beyond A78-39396 Applications of advanced transport aircraft in developing countries [NASA-CR-145343] N78-25985 TECHNOLOGY ASSESSMENT An economic and technical perspective of the turboprop engine in Ag-aviation A78-37536 Overview of powered-lift technology --- as used on the XC-14 aircraft and C-15 aircraft ₩78-24047 AV-8B composite wing government/industry briefing N78-24113 Progress on coal-derived fuels for aviation systems [NASA-TM-78696] N78-25545 Air freight demand models: An overview [NASA-CR-152148] N78-25979 TECHNOLOGY UTILIZATION New technologies for aircraft structures A78-38803 Lighter-than-air concepts and recent developments A78-39395 TELEVISION SYSTEMS CBT update --- for airborne displays A78-37490 TENSILE DEFORMATION The damage sum in fatigue of structure components --- aircraft structures {ICAF-1032] N78-254 N78-25454 TERMINAL PACILITIES Study on problems of terminal site location ---environmental effects on airport, harbor or truck depot A78-36323 TERSINAL GUIDANCE System requirements for transition from enroute to approach guidance A78-36453 TERRAIN FOLLOWING AIRCRAFT Righ-flying Bini-Sniffer RPV - Mars bound 178-38521 TEST FACILITIES A high-pressure, sector-shaped model combustor test facility for development of turbofan engines [NAL-TR-517] N78-25093 TEST PILOTS Helicopter flight demonstration A78-38750 TF-30 ENGINE

Numerical parametric stress analysis of the TP-30 turbine engine third-stage fan-blade/disk dovetail region [AD-A051299] N78-24143

THERMODYNAMIC PROPERTIES

THERMODYNAMIC PROPERTIES Minimisation of relaxation drag A78-37423 Characteristics and combustion of future hydrocarbon fuels --- aircraft fuels [NASA-TM-788651 N78-24370 THICKNESS BATIO Investigations of the influence of the profile thickness of the compressible plane flow through compressor cascades [NASA-TH-75277] N78-24084 THIN ATPROTIS Nonlinear formulation for low-frequency transonic flow A78-37733 Aerodynamics of the annular wing A78-38475 THREE DIMENSIONAL FLOW Application of the integral-transformation method to three-dimensional unsteady problems of the theory of cascades A78-36366 THRUST REVERSAL Acoustics and aerodynamics of over-the-wing thrust reversers N78-24071 THRUST VECTOR CONTROL Effects of spanwise nozzle geometry and location on the longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration at subsonic speeds [NASA-TP-1215] N78-25060 TINE LAG Time delay measurements for flight simulators 178-38788 TIME MEASURBMENT Time delay measurements for flight simulators 178-38788 TTTA NTON Preliminary design of low-cost titanium structure --- B-1 aircraft engine nacelles [AD-4053327] N78-250 N78-25087 TITANIUM ALLOYS Titanium and titanium alloys in aircraft maintenance and repair. I 178-38246 Fatigue crack propagation of titanium alloys under dwell-time conditions A78-39596 TOOLS Stator rotor tools [NASA-CASE-MSC-16000-1] TOXIC HAZARDS N78-24544 ALC/50/ values for some polymeric materials ---Apparent Lethal Concentration fire toxicity A78-36596 TRACKING (POSITION) An investigation of the tracking performance of the fire fly manual director gunsight for air-to-air gunnery [AD-A053348] N78-25083 TRAINING DEVICES Feasibility study for simulation of an airport tower control environment [AD-A051174] N78-24154 TRAINING SINULATORS The impact of flight simulators on U.S. airlines 178-38798 TRAJECTORY ANALYSIS A relative motion analysis of horizontal collision avoidance 178-39674 TRANSIENT RESPONSE A three-dimensional finite-difference solution of the external response of an arcraft to a complex transient BM environment. I - The method and its implementation. II - Comparison of predictions and measurements A78-37124 Reduction of transient gas turbine test data using a hybrid computer A78-38782 TRANSISTOR CIRCUITS Assessment procedure application utilizing UHF transistor BF pulse susceptibility data --- EMC studies of approach radar and of aircraft OHF-receiver A78-39101

SUBJECT INDEX

TRANSMISSIONS (MACHINE ELEMENTS) Finite element analysis for complex structures, helicopter transmission housing structural modeling [AD-A052759] N78-24126 Advanced overrunning clutch technology --- for use in helicopters [AD-A052635] N78-24557 TRANSMITTER RECEIVERS Filtering techniques in avionic transmitters A78-39084 TRANSONIC PLON Notes on the transonic indicial method --- for two dimensional airfoil flutter derivative calculation A78-37732 Nonlinear formulation for low-frequency transonic flow. 178-37733 Calculation of transonic flow through a turbine cascade by the time-step method A78-38248 Viscous-inviscid coupling - A numerical method and applications to two-dimensional transonic and supersonic flows A78-38698 Investigations of the transonic flow around oscillating airfoils --- Thesis 178-38978 Numerical calculation of transonic flow past a swept wing by a finite volume method [NASA-CR-157012] N78-24808 TRANSONIC PLOTTER NSONIC FLUTTER Notes on the transonic indicial method --- for two dimensional airfoil flutter derivative calculation A78-37732 Nonlinear formulation for low-frequency transonic A78-37733 TRANSONTC NOZZLES Uniqueness 'in the large' of the solution to the direct problem of the Laval nozzle 178-37613 TRANSONIC WIND TUNNELS Prediction of the aerodynamic characteristics of an aircraft on the basis of the comparison of results for a calibration model in various large transonic wind tunnels [ONERA, TP NO. 1978-22] A78-39579 TRANSPIRATION Design and preliminary results of a semitranspiration cooled (Lamilloy) liner for a high-pressure high-temperature combustor [NASA-TM-78874] TRANSPORT AIRCRAFT N78-24138 Application of modern-methods in civil aircraft . construction 178-38808 Prediction of the aerodynamic characteristics of an aircraft on the basis of the comparison of results for a calibration model in various large transonic wind tunnels [ONEBA, TP NO. 1978-22] A78-395 A78-39579 Application of laminar flow control to large subsonic military transport airplanes [AD-A052422] N78-24098 Aircraft size and air transport costs N78-24112 Applications of advanced transport aircraft in developing countries [NASA-CR-145343] N78-25985 TRANSPORTATION Preliminary analysis of hub and spoke air freight distribution system [NASA-TM-72656] #78-25069 TRAPBZOIDAL WINGS A finite-step method for estimating the spanwise Inft distribution of wings in symmetric, yawed, and rotary flight at low speeds [NASA-CR-157043] 878-25 178-25056 TRUCKS Preliminary analysis of hub and spoke air freight distribution system [NASA-TM-72656] N78-25069 TURBINE BLADES Computer-aided holographic vibration analysis for vectorial displacements of bladed disks A78-37183

Numerical parametric stress analysis of the TP-30 turbine engine third-stage fan-blade/disk dovetail region [AD-A051299] N78-24143 Studies on transonic turbine with film-cooled blades [AD-A052423] N78-24149 Deposition of fine particles in the opening of film-cooled gas turbine blades [EPFL-ITA-2] N78-25091 TURBINE WHEELS Cobalt-base alloys produced by powder metallurgy for compressor and turbine disks [ONERA, TP NO. 1978-7] A78-3 TURBOCOMPRESSORS A78-39582 Loss prediction in axial compressors - A bibliographic study A78-38892 Investigations of the influence of the profile thickness of the compressible plane flow through compressor cascades [NASA-TH-75277] N78-24084 TURBOPAN ENGINES Bolls-Royce RE401 turbofan - A new business jet engine for the 1980's A78-37538 F100 multivariable control synthesis program. Volume 1: Development of F100 control system [AD-A052420] N78-24144 P100 multivariable control synthesis program. Volume 2: Appendices & through K [AD-A052346] N78-24145 Acoustic evaluation of a novel swept-rotor fan --noise reduction in turbofan engines [NASA-TM-78878] N78-24897 high-pressure, sector-shaped model combustor test facility for development of turbofan engines [NAL-TR-517] N78-25093 Variable cycle engine evaluations for supersonic V/STOL fighters. Phase 2 and 3 technical report [AD-A053361] N78-25097 Variable cycle engine evaluations for supersonic V/STOL fighters. Management summary report [AD-A053362] N78-25098 TURBOPANS On the use of relative velocity exponents for jet engine exhaust noise [NÁSA-TM-78873] N78-24137 Acoustic evaluation of a novel swept-rotor fan --noise reduction in turbofan engines [NASA-TM-78878] N78-24897 TURBOJET ENGINES Aircraft propulsion from the back room /Sixty-sixth Wilbur and Orville Wright Memorial Lecture/ A78-36279 Aero engines climb towards better fuel efficiency A78-37114 Reduction of transient gas turbine test data using a hybrid computer A78-38782 Fundamental aspects of the aerodynamics of turbojet engine combustors [NASA-TH-75297] N7 Performance evaluation of a catalytic partial oxidation hydrogen generator using turbine N78-24142 engine fuels N78-24380 TURBONACHINE BLADES The next approximation after boundary layer theory --- machine blade associated unsteady flow effects A78-37409 TURBOPROP REGINES An economic and technical perspective of the turboprop engine in Ag-aviation A78-37536 TURBULENT PLOY The turbulent flow through a sudden enlargement at subsonic speeds 178-37013 Application of second-order turbulent modeling to the prediction of radiated aerodynamic sound [NASA-CB-2994] N78-25359 TWO DIMENSIONAL BODIES Notes on the transonic indicial method --- for two dimensional airfoil flutter derivative calculation A78-37732

TWO DIBENSIONAL PLOW Nonlinear formulation for low-frequency transonic flow A78-37733 Calculation of transonic flow through a turbine cascade by the time-step method 178-38248 Viscous-inviscid coupling - A numerical method and applications to two-dimensional transonic and supersonic flows 178-38698 IJ RE-1 RELICOPTER Modeling of the UH-1B tail boom for analysis by the NASTRAN computer program [AD-A052303] ULTRAHIGH PREQUENCIES N78-25081 Results of the NASA/MARAD L-band satellite navigation experiment 178-37525 Assessment procedure application utilizing UBF transistor RF pulse susceptibility data EBC studies of approach radar and of aircraft **HHF**-receiver A78-39101 UNIQUENESS THEOREM Uniqueness 'in the large' of the solution to the direct problem of the Laval nozzle 178-37613 UNSTRADY PLON The next approximation after boundary layer theory --- machine blade associated unsteady flow effects A78-37409 The mean velocity field of unsteady subsonic air iets A78-37417 Nonlinear formulation for low-frequency transonic flow 178-37733 Factorization methods in hydroaeromechanics ---Russian book 178-37887 UNSTEADY STATE Unsteady heat transfer from a cylinder with radial injection 178-39042 UPPER SURFACE BLOWN FLAPS Opper-surface-blowing flow-turning performance N78-24048 Results of static tests of a 1/4 scale model of the Boeing YC-14 powered-lift system N78-20049 Summary of low-speed aerodynamic characteristics of upper-surface-blown jet-flap configurations N78-24050 Comparison of aerodynamic theory and experiment for jet-flap wings N78-24052 Distributed upper-surface blowing concept N78-24056 Cruise aerodynamics of USB nacelle/wing geometric variations ₩78-24057 Effects of nozzle design and power on cruise drag for upper-surface-blowing aircraft N78-24058 Theoretical predictions of jet interaction effects for USB and OWB configurations ₩78-24059 USB flow characteristics related to noise generation N78-24060 Characteristics of DSB noise N78-24061 Analytical developments for definition and prediction of USB noise N78-24062 USB noise reduction by nozzle and flap modifications N78-24064 Measured and calculated steady aerodynamic loads on a large-scale upper-surface blown model N78-24072

USB environment measurements based on full-scale static engine ground tests N78-24076

USER MANUALS (COMPUTER PROGRAMS)

USER MANUALS (COMPUTER PROGRAMS) Aerodynamic preliminary analysis system. Part 2: User's manual and program description [NASA-CR-145300] N78-24043 Simplified input for certain aerodynamic nose configurations to the Grumman guick-geometry system. A KWIKNOSE user's manual [AD-A051425] N78-24089 UTILITY AIRCEMPT An economic and technical perspective of the turboprop engine in Ag-aviation 178-37536

V

V/STOL AIRCRAFT Round jet in a cross flow - Influence of injection angle on wortex properties A78-37744 Grumman's radio-controlled experimental air force A78-38522 Planning and procedures for aircraft demonstrations - V/STOL aircraft A78-38749 Variable cycle engine evaluations for supersonic V/STOL fighters. Phase 2 and 3 technical report [AD-A053361] N78-25097 Variable cycle engine evaluations for supersonic V/STOL fighters. Nanagement summary report [AD-A053362] N78-29 N78-25098 VARIABLE CYCLE ENGINES Variable cycle engine evaluations for supersonic V/STOL fighters. Phase 2 and 3 technical report [AD-A053361] N78 25097 Variable cycle engine evaluations for supersonic V/STOL fighters. Management summary report FAD-A0533621 N78-25098 VABIABLE PITCH PROPELLERS Reverse-thrust technology for variable-pitch fan propulsion systems N78-24070 VARIABLE SWEEP WINGS Demonstration of acoustic emission system for damage monitoring of full scale metallic aircraft structures during fatigue testing FAD-A0531081 N78-25085 VELOCITY DISTRIBUTION The mean velocity field of unsteady subsonic air nets A78-37417 VERTICAL LANDING Environmental requirements for simulated helicopter/VTOL operations from small ships and carriers [AD-1053078] N78-25084 VERTICAL TAKEOFF Environmental requirements for simulated helicopter/VTOL operations from small ships and carriers [AD-A053078] N78-25084 VHF ONNIRANGE NAVIGATION New model VOR/DME A78-37246 VIBRATION Vibrations of a helicopter rotor blade using finite element unconstrained variational formulations [AD-A052670] VIBRATION ISOLATORS N78-24125 Advanced development of a helicopter rotor isolation system for improved reliability.
Volume 1: Summary report Summary report [AD-A051318] N78-24118 Advanced development of a helicopter rotor isolation system for improved reliability.
Volume 2: Detailed report Volume 2: De [AD-A051319] N78-24119 VIBRATION BEASUREMENT Computer-aided holographic vibration analysis for vectorial displacements of bladed disks A78-37183 VISCOUS FLOR Viscous-inviscid coupling - A numerical method and applications to two-dimensional transonic and supersonic flows A78-38698

SUBJECT INDEX

VISIBILITY	
Evaluation of a 100-watt elevated high-int runway edge light	ensity
[AD-A051651]	N78-24153
VISUAL AIDS	
Environmental requirements for simulated	
helicopter/VTOL operations from small sh	ips and
Carriers	
[AD-A053078]	N78-25084
VISUAL CONTROL	
Evaluation of a 100-watt elevated high-int runway edge light	ensity
	N78-24153
VISUAL PLIGHT	170-24155
Soviet landing and draws FAA scrutiny	laser
approach guidance	A78-38773
VORTEX SHEETS	470-30773
Flow past nonconical wings with separation	
110% publ honoonioui wings with Sepuration	A78-37775
A distributed worter method for computing	the
vortex field of a missile	
[NASA-TP-1183]	₩78-25058
VORTICES	
Round jet in a cross flow - Influence of i angle on wortex properties	Injection
	A78-37744
The effect of tip vortex structure on help	copter
noise due to blade/vortex interaction	
[NASA-CR-152150]	₦78-25832
VOBTICITY TRANSPORT BYPOTHESIS	
The next approximation after boundary laye	er theory
machine blade associated unsteady fl	A78-37409

W

WANKEL ENGINES

Performance tests and design modifications of a Wankel type rotary combustion automobile engine in order to determine its suitability for aircraft application [CSIR-ME-1521] N78-25095 WARNING SYSTEMS The effect of correlated missed detections, correlated false alarms and interclutter resultity on the performance of an automated radar tracking system A78-37485 Dealing with false targets in the Air Traffic Control Radar Beacon System A78-37486 WAVE DISPERSION Experimental assessment of theory for refraction of sound by a shear layer [NASA-CR-145359] N78-2 N78-25831 WAVE PROPAGATION Bases of radio direction finding, part 1 [AD-A051951] N78-24107 Low frequency cabin noise reduction based on the intrinsic structural tuning concept: The theory and the experimental results, phase 2 --- jet aircraft poise [NASA-CR-145262] N78-249 N78-24900 Nonlinear acoustics. A bibliography with abstracts [NTIS/PS-78/0240] N78-2584 N78-25840 WEAR An atomic fluorescence system using a continuum source for the rapid determination of wear metals in jet engine lubricating oils [AD-A052721] N78-N78-24320 WEATHER MODIFICATION Preliminary experience with the use of the Yak-40 aircraft in studies of cloud physics and artificial modifications A78-36483 WEIGHT REDUCTION On the optimization of discrete structures with aeroelastic constraints A78-39135 WIND SHEAR Optimal flare in presence of wind shears --- for aircraft in automatic approach A78-39186 The effects of wind shear on aircraft flight path and methods for remote sensing and reporting of wind shear at airports [UTIAS-TN-216] N78-24755 WIND TUNNEL APPARATUS

ZEBITH Experimental evaluation of an array technique for zenith to horizon coverage --- aircraft to satellite communication links A78-363

Ζ

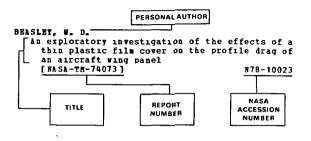
A78-36380

WIND TURNEL APPARATUS
Laser velocimeter for wind tunnel measurements
A78-37979
WIND TUNNEL HODBLS
Remarks on design of supersonic wind tunnels
A78-36216
Prediction of the aerodynamic characteristics of
an aircraft on the basis of the comparison of
results for a calibration model in various large
transonic wind tunnels
[ONERA, TP NO. 1978-22] A78-39579
Effects of spanwise nozzle geometry and location
on the longitudinal aerodynamic characteristics
of a vectored-engine-over-wing configuration at
subsonic speeds
[NASA-TP-1215] N78-25060
WIND TUNNEL TESTS
The German-Dutch low speed wind tunnel DNW
A78-36447
Wind tunnel tests of a slotted flapped wing section
A78-37537
Investigations of the transonic flow around
oscillating airfoils Thesis
A78-38978
High angle canard missile test in the Ames 11-foot
transonic wind tunnel
[NASA-CR-2993] N78-25057
WING PLAPS
Wind tunnel tests of a slotted flapped wing section
A78-37537
Analytical modeling of under-the-wing externally
blown flar powered-lift noise
N78-24063
WING LOADING
WING LOADING Aerodynamics of the annular wing
WING LOADING
WING LOADING Aerodynamics of the annular wing A78-38475 An aerodynamic analysis of deformed wings in
WING LOADING Aerodynamics of the annular wing A78-38475 An aerodynamic analysis of deformed wings in subsonic and supersonic flow
WING LOADING Aerodynamics of the annular wing An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094
WING LOADING Aerodynamics of the annular wing A78-38475 An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] Preliminary study of a large span-distributed-load
WING LOADING Aerodynamics of the annular wing An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094
WING LOADING Aerodynamics of the annular wing A78-38475 An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] Preliminary study of a large span-distributed-load flying-wing cargc airplane concept [NASA-TP-1158] N78-25079
WING LOADING Aerodynamics of the annular wing A78-38475 An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] Preliminary study of a large span-distributed-load flying-wing carge airplane concept [NASA-TP-1158] WING PROFILES N78-25079
WING LOADING Aerodynamics of the annular wing An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094 Preliminary study of a large span-distributed-load flying-wing cargo airplane concept [NASA-TP-1158] N78-25079 WING PROFILES Wind tunnel tests of a slotted flapped wing section
WING LOADING Aerodynamics of the annular wing A78-38475 An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] Preliminary study of a large span-distributed-load flying-wing cargc airplane concept [NAS-TP-1158] WING PROFILES Wind tunnel tests of a slotted flapped wing section A78-37537
WING LOADING Aerodynamics of the annular wing A78-38475 An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] Preliminary study of a large span-distributed-load flying-wing cargc airplane concept [NASA-TP-1158] WING PROFILES Wind tunnel tests of a slotted flapped wing section A78-37537 WING SLOTS
<pre>WING LOADING Aerodynamics of the annular wing An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094 Preliminary study of a large span-distributed-load flying-wing carge airplane concept [NASA-TP-1158] N78-25079 WING PROFILES Wind tunnel tests of a slotted flapped wing section A78-37537 Wind tunnel tests of a slotted flapped wing section</pre>
WING LOADING Aerodynamics of the annular wing A78-38475 An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] Preliminary study of a large span-distributed-load flying-wing cargc airplane concept [NASA-TP-1158] WING PROFILES Wind tunnel tests of a slotted flapped wing section A78-37537 WING SLOTS
WING LOADING Aerodynamics of the annular wing A78-38475 An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] Preliminary study of a large span-distributed-load flying-wing carge airplane concept [NASA-TP-1158] WING PROFILES Wind tunnel tests of a slotted flapped wing section A78-37537 WING SLOTS Wind tunnel tests of a slotted flapped wing section A78-37537 WING SPAN
WING LOADING Aerodynamics of the annular wing An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094 Preliminary study of a large span-distributed-load flying-wing carge airplane concept [NASA-TP-1150] N78-25079 WING REOFILES Wind tunnel tests of a slotted flapped wing section A78-37537 Wind stunnel tests of a slotted flapped wing section A78-37537 Wing SPAN Nonlinear theory of a bearing surface of arbitrary
<pre>WING LOADING Aerodynamics of the annular wing A78-38475 An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094 Preliminary study of a large span-distributed-load flying-wing cargc airplane concept [NSA-TP-1158] N78-25079 WING PROFILES Wind tunnel tests of a slotted flapped wing section A78-37537 WING SLOTS Wind tunnel tests of a slotted flapped wing section A78-37537 WING SPAH Nonlinear theory of a bearing surface of arbitrary extent</pre>
<pre>WING LOADING Aerodynamics of the annular wing A78-38475 An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094 Preliminary study of a large span-distributed-load flying-wing carge airplane concept [NASA-TP-1158] N78-25079 WING PROFILES Wind tunnel tests of a slotted flapped wing section A78-37537 WING SLOTS Wind tunnel tests of a slotted flapped wing section A78-37537 WING SPAN Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090</pre>
<pre>WING LOADING Aerodynamics of the annular wing An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094 Preliminary study of a large span-distributed-load flying-wing carge airplane concept [NASA-TP-1150] N78-25079 WING FLOPTIES Wind tunnel tests of a slotted flapped wing section A78-37537 Wing SLOTS Wind tunnel tests of a slotted flapped wing section A78-37537 Wing SPAH Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 WINGS</pre>
<pre>WING LOADING Aerodynamics of the annular wing A78-38475 An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094 Preliminary study of a large span-distributed-load flying-wing carge airplane concept [NSA-TP-1158] N78-25079 WING PROFILES Wind tunnel tests of a slotted flapped wing section A78-37537 WING SLOTS Wind tunnel tests of a slotted flapped wing section A78-37537 WING SPAN Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 WINGS Comparison of aerodynamic theory and experiment</pre>
<pre>WING LOADING Aerodynamics of the annular wing A78-38475 An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094 Preliminary study of a large span-distributed-load flying-wing carge airplane concept [NASA-TP-1158] N78-25079 WING PROFILES Wind tunnel tests of a slotted flapped wing section A78-37537 WING SLOTS Wind tunnel tests of a slotted flapped wing section A78-37537 WING SPAN Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 WINGS Comparison of aerodynamic theory and experiment for jet-flap wings</pre>
<pre>WING LOADING Aerodynamics of the annular wing An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094 Preliminary study of a large span-distributed-load flying-wing carge airplane concept (NASA-TP-1158] N78-25079 WING SLOTS Wind tunnel tests of a slotted flapped wing section A78-37537 WING SLOTS Wind tunnel tests of a slotted flapped wing section A78-37537 WING SPAN Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 WINGS Comparison of aerodynamic theory and experiment for jet-flap wings N78-24052</pre>
<pre>WING LOADING Aerodynamics of the annular wing A78-38475 An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094 Preliminary study of a large span-distributed-load flying-wing carge airplane concept [NASA-TP-1158] N78-25079 WING PROFILES Wind tunnel tests of a slotted flapped wing section A78-37537 WING SLOTS Wind tunnel tests of a slotted flapped wing section A78-37537 WING SPAN Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 WINGS Comparison of aerodynamic theory and experiment for jet-flap wings N78-24052 Nonlinear theory of a bearing surface of arbitrary</pre>
<pre>WING LOADING Aerodynamics of the annular wing A78-38475 An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094 Preliminary study of a large span-distributed-load flying-wing carge airplane concept [NASA-TP-1158] N78-25079 WING PROFILES Wind tunnel tests of a slotted flapped wing section A78-37537 WING SLOTS Wind tunnel tests of a slotted flapped wing section A78-37537 WING SPAN Nonlinear theory of a bearing surface of arbitrary extent for jet-flap wings N78-24052 Nonlinear theory of a bearing surface of arbitrary extent</pre>
<pre>WING LOADING Aerodynamics of the annular wing An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094 Preliminary study of a large span-distributed-load flying-wing carge airplane concept (NASA-TP-1158] N78-25079 WING SLOTS Wind tunnel tests of a slotted flapped wing section A78-37537 WING SLOTS Wind tunnel tests of a slotted flapped wing section A78-37537 WING SPAN Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 WINGS Nonlinear theory of a bearing surface of arbitrary extent for jet-flap wings N78-24052 Nonlinear theory of a bearing surface of arbitrary extent for jet-flap wings N78-24052 Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090</pre>
<pre>WING LOADING Aerodynamics of the annular wing A78-38475 An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094 Preliminary study of a large span-distributed-load flying-wing carge airplane concept [NASA-TP-1158] N78-25079 WING PROFILES Wind tunnel tests of a slotted flapped wing section A78-37537 WING SLOTS Wind tunnel tests of a slotted flapped wing section A78-37537 WING SPAN Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 WINGS Comparison of aerodynamic theory and experiment for jet-flap wings Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 AV-8B composite wing government/industry briefing</pre>
<pre>WING LOADING Aerodynamics of the annular wing An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094 Preliminary study of a large span-distributed-load flying-wing carge airplane concept (NASA-TP-1158] N78-25079 WING SLOTS Wind tunnel tests of a slotted flapped wing section A78-37537 WING SLOTS Wind tunnel tests of a slotted flapped wing section A78-37537 WING SPAN Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 WINGS Nonlinear theory of a bearing surface of arbitrary extent for jet-flap wings N78-24052 Nonlinear theory of a bearing surface of arbitrary extent for jet-flap wings N78-24052 Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090</pre>
<pre>WING LOADING Aerodynamics of the annular wing A78-38475 An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094 Preliminary study of a large span-distributed-load flying-wing carge airplane concept [NASA-TP-1158] N78-25079 WING PROFILES Wind tunnel tests of a slotted flapped wing section A78-37537 WING SLOTS Wind tunnel tests of a slotted flapped wing section A78-37537 WING SPAN Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 WINGS Comparison of aerodynamic theory and experiment for jet-flap wings Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 AV-8B composite wing government/industry briefing</pre>

Υ

YC-14 AIRCRAFTA78-36483Testing of the YC-14 flight control system software (AIAA PAPER 77-1077)A78-39183Overview of powered-lift technology as used on the YC-14 aircraft and C-15 aircraftN78-24047Results of static tests of a 1/4 scale mcdel of the Boeing YC-14 powered-lift systemN78-24047YF-12 AIRCRAFTPlight-measured pressure characteristics of aft-facing steps in high Reynolds number flow at Mach numbers of 2.20, 2.50, and 2.80 and	YAK 40 AIRCEAPT Preliminary experience with the use of the Yak aircraft in studies of cloud physics and artificial modifications	-40
YC-14 AIRCRAFTTesting of the YC-14 flight control system software[AIAA PAPEB 77-1077]A78-39183Overview of powered-lift technology as used onthe YC-14 aircraft and C-15 aircraftN78-24047Results of static tests of a 1/4 scale mcdel ofthe Boeing YC-14 powered-lift systemYP-12 AIRCRAFTPlight-measured pressure characteristics ofaft-facing steps in high Reynolds number flow atMach numbers of 2.20, 2.50, and 2.80 and		- 76/183
<pre>(AIAA PAPER 77-1077] A78-39183 Overview of powered-lift technology as used on the YC-14 aircraft and C-15 aircraft Results of static tests of a 1/4 scale mcdel of the Boeing YC-14 powered-lift system YP-12 AIRCRAFT Flight-measured pressure characteristics of aft-facing steps in high Reynolds number flow at Mach numbers of 2.20, 2.50, and 2.80 and</pre>		- 30403
Overview of powered-lift technology as used on the YC-14 aircraft and C-15 aircraft Results of static tests of a 1/4 scale mcdel of the Boeing YC-14 powered-lift system YP-12 AIRCRAFT Plight-measured pressure characteristics of aft-facing steps in high Reynolds number flow at Mach numbers of 2.20, 2.50, and 2.80 and	Testing of the YC-14 flight control system sof	tware
the YC-14 aircraft and C-15 aircraft N78-24047 Results of static tests of a 1/4 scale mcdel of the Boeing YC-14 powered-lift system N78-24049 YY-12 AIRCRAFT Plight-measured pressure characteristics of aft-facing steps in high Reynolds number flow at Mach numbers of 2.20, 2.50, and 2.80 and	[AIAA PAPER 77-1077] A78	-39183
the YC-14 aircraft and C-15 aircraft N78-24047 Results of static tests of a 1/4 scale mcdel of the Boeing YC-14 powered-lift system N78-24049 YY-12 AIRCRAFT Plight-measured pressure characteristics of aft-facing steps in high Reynolds number flow at Mach numbers of 2.20, 2.50, and 2.80 and	Overview of powered-lift technology as used	d on
Results of static tests of a 1/4 scale mcdel of the Boeing YC-14 powered-lift system YP-12 AIRCRAPT Plight-measured pressure characteristics of aft-facing steps in high Reynolds number flow at Mach numbers of 2.20, 2.50, and 2.80 and		
the Boeing YC-14 powered-lift system N78-24049 YF-12 AIRCRAFT Plight-measured pressure characteristics of aft-facing steps in high Reynolds number flow at Mach numbers of 2.20, 2.50, and 2.80 and		-24047
the Boeing YC-14 powered-lift system N78-24049 YF-12 AIRCRAFT Plight-measured pressure characteristics of aft-facing steps in high Reynolds number flow at Mach numbers of 2.20, 2.50, and 2.80 and	Results of static tests of a 1/4 scale model of	f
N78-24049 YF-12 AIRCRAFT Plight-measured pressure characteristics of aft-facing steps in high Reynolds number flow at Mach numbers of 2.20, 2.50, and 2.80 and		-
Flight-measured pressure characteristics of aft-facing steps in high Reynolds number flow at Mach numbers of 2.20, 2.50, and 2.80 and		-24049
aft-facing steps in high Reynolds number flow at Mach numbers of 2.20, 2.50, and 2.80 and	YP-12 AIRCRAFT	
Mach numbers of 2.20, 2.50, and 2.80 and	Plight-measured pressure characteristics of	
		w at
[NASA-TN-72855] N78-25055		-25055

PERSONAL AUTHOR INDEX


,

18DP996 T 9

AERONAUTICAL ENGINEERING / A Continuing Bibliography (Suppl 100)

SEPTEMBER 1978

Typical Personal Author Index Listing

Listings in this index are arranged alphabetically by personal author. The title of the document provides the user with a brief description of the subject matter. The report number helps to indicate the type of document cited (e.g. NASA report translation NASA contractor report). The accession number is located beneath and to the right of the title e.g. N78-10023. Under any one authors name the accession numbers are arranged in sequence with the *IAA* accession numbers appearing first.

Α

ABBOTT, K. H.	
TRIP steels promise high reliability hardw [AD-A052765]	are N78-24348
ABRAHAM, B.	1,0 24340
Analytical and experimental fatigue progra the Kfir main and nose landing gears	m for
ADAMS, N.	N78-25455
Studies on transonic turbine with film-cco	led blades
[AD-A052423]	N78-24149
ADAMS, R. J.	
P100 multivariable control synthesis progr	
Volume 1: Development of P100 control s	ystem N78-24144
[AD-A052420] F100 multivariable control synthesis progr	
Volume 2: Appendices A through K	
[AD-A052346]	N78-24145
ADAMSON, A. P.	
Gas turbine engine with recirculating blee	đ
[NASA-CASE-LEW-12452-1]	N78-25089
AHNERT, L.	
Titanium and titanium alloys in aircraft	
maintenance and repair. I	A78-38246
AIRES, R. H.	A/0-30240
Color displays for airborne weather radar	
	478-36980
ALBANESE, V. J.	
A high-power switching network for a dual-	node
antenna	
	A78-38844
ALYEA, P. N. Photochemistry and dynamics of the ozone 1:	avor
Photochemistry and dynamics of the ozone is	A78-38766
ANBLARD, P.	
AMBLARD, P. Energy savings. An aircraft constructor's	viewpoint
AMBLARD, P. Energy savings. An aircraft constructor's [AAAF-NT-77-24]	viewpoint N78-24127
Energy savings. An aircraft constructor's [AAAF-NT-77-24] AHIBT, B. K.	N78-24127
Energy savings. An aircraft constructor's [AAAP-NT-77-24] AHIBT, B. K. Experimental assessment of theory for refra	N78-24127
Energy savings. An aircraft constructor's [AAAF-NT-77-24] AMIET, B. K. Experimental assessment of theory for refra of sound by a shear layer	N78-24127 Action
Energy savings. An aircraft constructor's [AAAF-NT-77-24] AMIBT, B. K. Experimental assessment of theory for refra of sound by a shear layer [NASA-CR-145359]	N78-24127
Energy savings. An aircraft constructor's [AAAP-NT-77-24] AHIBT, B. K. Experimental assessment of theory for refra of sound by a shear layer [NASA-CR-145359] AHMER, R. C.	N78-24127 Action N78-25831
Energy savings. An aircraft constructor's [AAAP-NT-77-24] AHIBT, B. K. Experimental assessment of theory for refra of sound by a shear layer [NASA-CR-145359] AMMER, R. C. Acoustics and aerodynamics of over-the-wing	N78-24127 Action N78-25831
Energy savings. An aircraft constructor's [AAAP-NT-77-24] AHIBT, B. K. Experimental assessment of theory for refra of sound by a shear layer [NASA-CR-145359] AHMER, R. C.	N78-24127 Action N78-25831
Energy savings. An aircraft constructor's [AAAP-NT-77-24] AHIBT, B. K. Experimental assessment of theory for refra of sound by a shear layer [NASA-CR-145359] AMMER, R. C. Acoustics and aerodynamics of over-the-wind reversers ANDREWS, G. A.	N78-24127 action N78-25831 g thrust N78-24071
Energy savings. An aircraft constructor's [AAAP-NT-77-24] AHIBT, R. K. Experimental assessment of theory for refra of sound by a shear layer [NASA-CR-145359] AHMER, R. C. Acoustics and aerodynamics of over-the-vin reversers	N78-24127 action N78-25831 g thrust N78-24071 ssors
Energy savings. An aircraft constructor's [AAAP-NT-77-24] AHIBT, B. K. Experimental assessment of theory for refra of sound by a shear layer [NASA-CR-145359] AMMER, R. C. Acoustics and aerodynamics of over-the-wind reversers ANDREWS, G. A.	N78-24127 action N78-25831 g thrust N78-24071

.

A relative motion analysis of horizontal co avoidance	ollision
avoidance	A78-39674
	210 32014
ARNDT, B. E. A.	
Azimuthal decomposition of the power specti	ral
density of jet noise	
	A78-37532
ASELEY, B.	
On the optimization of discrete structures	with
aeroelastic constraints	
	A78-39135
ASSARABOWSKI, R. J.	
Applications of advanced transport aircraft	t in
developing countries	
[NASA-CR-145343]	N78-25985
AUER, H.	
Use of structural analysis programs for	
calculating states of stress in helicopte	er rotor
elements	
erements	
	A78-38807

В

BABENKO, IU. I. Unsteady heat transfer from a cylinder wit	h radial
injection	178-39042
BACK, L. H. Pressure pulsations on a flat plate normal	+0 an
underexpanded supersonic jet	to an
BAGWELL, D. O.	A78-37743
Evaluation of a lip-seal hydraulic fitting	for the
P-14 aircraft	101 010
[AD-A051159]	N78-24120
BAHR, J.	
Investigations of the influence of the pro-	
thickness of the compressible plane flow	through
compressor cascades	
[NASA-TH-75277]	N78-24084
BANIA, P. J.	
Fatigue crack propagation of titanium allo dwell-time conditions	ys under
dwell-time conditions	A78-39596
BARANTSEV, R. G.	R/0 37570
Lòcal method in rarefied gas aerodynamics	
Noodi meened in falorida jub dereajearroo	A78-38726
BARGER, R. L.	
A distributed vortex method for computing	the
vortex field of a missile	
[NA SA-TP-1183]	N78-25058
BARRERE, N.	_
Combustion in gas turbine engines - A revi	ev of
ONERA recent works	170 20500
[ONERA, TP NO. 1978-25] Fundamental aspects of the aerodynamics of	A78-39580
turbojet engine combustors	
[NASA-TH-75287]	N78-24142
	N/8-24142
BARTLETT, D. W.	N70-24142
BARTLETT, D. W. Tabulated pressure measurements of a NASA	el with
BARTLETT, D. W. Tabulated pressure measurements of a NASA supercritical-wing research airplane mode and without fuselage area-rule additions 0.25 to 1.00	el with at Mach
BARTLETT, D. W. Tabulated pressure measurements of a NASA supercritical-wing research airplane mode and without fuselage area-rule additions 0.25 to 1.00 [NASA-TH-X-2634]	el with at Mach N78-24077
BARTLETT, D. W. Tabulated pressure measurements of a NASA supercritical-wing research airplane mod and Without fuselage area-rule additions 0.25 to 1.00 [NASA-TH-X-2634] Wind-tunnel investigation of basic aerodyne	el with at Mach N78-24077 amic
BARTLETT, D. W. Tabulated pressure measurements of a NASA supercritical-wing research airplane mode and without fuselage area-rule additions 0.25 to 1.00 [NASA-TM-X-2634] Wind-tunnel investigation of basic aerodyna characteristics of a supercritical-wing in the supercritical sup	el with at Mach N78-24077 amic
 BARTLETT, D. W. Tabulated pressure measurements of a NASA supercritical-wing research airplane moder and without fuselage area-rule additions 0.25 to 1.00 (NASA-TH-X-2634) Wind-tunnel investigation of basic aerodyna characteristics of a supercritical-wing to airplane configuration 	el with at Mach N78-24077 amic research
BARTLETT, D. W. Tabulated pressure measurements of a NASA supercritical-wing research airplane mode and without fuselage area-rule additions 0.25 to 1.00 [NASA-TH-X-2634] Wind-tunnel investigation of basic aerodyne characteristics of a supercritical-wing se airplane configuration [NASA-TH-X-2470]	el with at Mach N78-24077 amic
BARTLETT, D. W. Tabulated pressure measurements of a NASA supercritical-wing research airplane mode and without fuselage area-rule additions 0.25 to 1.00 [NASA-TM-X-2634] Wind-tunnel investigation of basic aerodyne characteristics of a supercritical-wing is airplane configuration [NASA-TM-X-2470] Aerodynamic characteristics of an NASA	el with at Mach N78-24077 Amic research N78-24078
 BARTLETT, D. W. Tabulated pressure measurements of a NASA supercritical-wing research airplane moder and without fuselage area-rule additions 0.25 to 1.00 (NASA-TH-X-2634) Wind-tunnel investigation of basic aerodyna characteristics of a supercritical-wing is airplane configuration (NASA-TH-X-2470) Aerodynamic characteristics of an NASA supercritical-wing research airplane moder of the supercritical supercritica	el with at Mach N78-24077 amic research N78-24078 el with
 BARTLETT, D. W. Tabulated pressure measurements of a NASA supercritical-wing research airplane mode and without fuselage area-rule additions 0.25 to 1.00 [NASA-TH-X-2634] Wind-tunnel investigation of basic aerodyna characteristics of a supercritical-wing is airplane configuration [NASA-TH-X-2470] Aerodynamic characteristics of an NASA supercritical-wing research airplane mode and without fuselage area-rule additions 	el with at Mach N78-24077 amic research N78-24078 el with
 BARTLETT, D. W. Tabulated pressure measurements of a NASA supercritical-wing research airplane moder and without fuselage area-rule additions 0.25 to 1.00 (NASA-TH-X-2634) Wind-tunnel investigation of basic aerodyna characteristics of a supercritical-wing is airplane configuration (NASA-TH-X-2470) Aerodynamic characteristics of an NASA supercritical-wing research airplane moder of the supercritical supercritica	el with at Mach N78-24077 amic research N78-24078 el with

BATES, R. E., JR. Three degree intermediate level maintenance of Navy aeronautical materials [AD-A052389] N78-24042 BATHIAS, C. Can fatigue cracks be detected in an early stage by acoustic emission? Application to high resistance light alloys used in aeronautics [AAAP-NT-77-35] N78-24 N78-24587 BBALE, G. O. Optimal digital simulation of aircraft via random search techniques A78-39182 BEAUBIEN, L. A. Numerical parametric stress analysis of the TF-30 turbine engine third-stage fan-blade/disk dovetail region N78-24 N78-24143 BEAULIEU, G. The effects of wind shear on aircraft flight path and methods for remote sensing and reporting of wind shear at airports [UTIAS-TN-216] N78-24755 BECKER, E. Minimisation of relaxation drag A78-37423 BERARD, A. H. Life cost management, methodology, and case studies [AD-A052388] N78-2499 N78-24999 BERNSTEIN, G. W. Air freight demand models: An overview [NASA-CR-152148] N78-25979 BIEBER, M. J. Graphite composite landing gear component: Upper drag brace hardware for P-15 aircraft [AD-A052764] N78-250 N78-25082 BILANIN, A. J. Application of second-order turbulent modeling to the prediction of radiated aerodynamic sound [NASA-CR-2994] N78 N78-25359 BOTTIGLIBRI, C. Use of simulation techniques in the problem of air traffic control [QUAD-CALC-ELETT-21] N78-241 N78-24111 BOUTIER, A. Laser velocimeter for wind tunnel measurements A78-37979 BRADEN, J. A. Cruise aerodynamics of USB nacelle/wing geometric variations N78-24057 BREMHORST, K. The mean velocity field of unsteady subsonic air jets A78-37417 BRINTET, B. Can fatigue cracks be detected in an early stage by acoustic emission? Application to high resistance light alloys used in aeronautics [AAAF-NT-77-35] N7 N78-24587 BROTHERHOOD, P. Flight experiments on aerodynamic features affecting helicopter blade design A78-36949 BROWN, E. C. Evaluation of methods to produce aviation turbine fuels from synthetic crude oils phase 3, volume 3 [AD-A053106] N78-2523 N78-25239 BROWN, P. F. Development of mainshift high speed cylindrical roller bearings for gas turbine engines ₩78-24556 [AD-A052351] BROWN, W. H. USB flow characteristics related to noise generation N78-24060 BROWNHILL, D. J. Exploratory development for design data on structural aluminum alloys in representative aircraft environments [AD-A052809] N78-24344 BRY. P. Loss prediction in axial compressors - A bibliographic study A78-38892 BRYAN, R. L. Inductor network development for aircraft high power supplies [AD-A052750] N78-25096

PERSONAL AUTHOR INDEX

BUCH, A. The damage sum in fatigue of structure components [ICAP-1032] N78-25454 BURDGES, K. P. Cruise aerodynamics of USB nacelle/Wing geometric variations N78-24057 BURKHALTEH, J. B. An aerodynamic analysis of deformed wings in subsonic and supersonic flow [AD-A052449] N78-24094 BYCHKOV, S. I. Electronic aircraft collision avoidance system A78-37603

С

CAMPBELL, J. P. Theoretical predictions of jet interaction	effects
for JSB and OWB configurations	N78-24059
Overview of powered-lift technology	N78-24047
CABRILLO, J. G. Formulas for takeoff performance P3-A, B a	nd C
arrplanes [AD-A052354] CABTER, N. J.	N78-24124
Susceptibility testing of airborne equipme way ahead	nt - The
CARTWRIGHT, D. J.	A78-39086
Stress intensity factors, for collinear cr a stiffened sheet	acks in
CATALANO, G. D.	A78-38122
Investigations of scaling laws for jet imp CHAKI, E.	1ngement N78-24074
New model VOR/DNE	A78-37246
CHANDIRAMANI, K. L. ERF noise reduction through nozzlě/flap po:	sitioning N78-24065
CHANDLER, H. E. Problem-solwing with selective plating	A78-38900
CHIN, W. C. Nonlinear formulation for low-frequency tr	ansonıc
flow	▲78-377 33
CIEPLUCH, C. C. Overview of the QCSEE program	
	N78-24066
CLAYTON, R. N. Performance evaluation of a catalytic part	N78-24066 1al
	ıal
Performance evaluation of a catalytic part oxidation hydrogen generator using turbi engine fuels [AD-A047355]	ıal
Performance evaluation of a catalytic part oxidation hydrogen generator using turbi engine fuels [AD-A047355] COCKBURN, J. J. Jaguar and Tornado avionic development tes	1al ne N78-24380
Performance evaluation of a catalytic part oxidation hydrogen generator using turbi engine fuels [AD-A047355] COCKBURN, J. J. Jaguar and Tornado avionic development tes COB, P. L., JR. Application of powered-lift concepts for i	1al ne N78-24380 ting A78-38748 mproved
 Performance evaluation of a catalytic part oxidation hydrogen generator using turbi engine fuels [AD-A047355] COCKBURN, J. J. Jaguar and Tornado avionic development tes COB, P. L., JR. Application of powered-lift concepts for i cruise efficiency of long-range aircraft 	1al ne N78-24380 ting A78-38748 mproved
 Performance evaluation of a catalytic part oxidation hydrogen generator using turbi engine fuels [AD-A047355] COCKBURN, J. J. Jaguar and Tornado avionic development tes COB, P. L., JR. Application of powered-lift concepts for i cruise efficiency of long-range aircraft Distributed upper-surface blowing concept 	1al ne N78-24380 ting A78-38748 mproved
Performance evaluation of a catalytic part oxidation hydrogen generator using turbi engine fuels [AD-A047355] COCKBURN, J. J. Jaguar and Tornado avionic development tes COB, P. L., JR. Application of powered-lift concepts for i cruise efficiency of long-range aircraft Distributed upper-surface blowing concept COOK, G. Optimal digital simulation of aircraft via	ne N78-24380 ting A78-38748 mproved N78-24051 N78-24056
<pre>Performance evaluation of a catalytic part oxidation hydrogen generator using turbi engine fuels [AD-A047355] COCKBURN, J. J. Jaguar and Tornado avionic development tes COB, P. L., JR. Application of powered-lift concepts for i cruise efficiency of long-range aircraft Distributed upper-surface blowing concept COOK, G. Optimal digital simulation of aircraft via search techniques</pre>	ne N78-24380 ting A78-38748 mproved N78-24051 N78-24056
<pre>Performance evaluation of a catalytic part oxidation hydrogen generator using turbi engine fuels [AD-A047355] COCKBURN, J. J. Jaguar and Tornado avionic development tes COB, P. L., JR. Application of powered-lift concepts for i cruise efficiency of long-range aircraft Distributed upper-surface blowing concept COOK, G. Optimal digital simulation of aircraft via search techniques CORMERT, G. Supersonic transportation faced with energ [AAAF-WT-77-28]</pre>	11al N78-24380 ting A78-38748 mproved N78-24051 N78-24056 random A78-39182
<pre>Performance evaluation of a catalytic part oxidation hydrogen generator using turbi engine fuels [AD-A047355] COCKBURN, J. J. Jaguar and Tornado avionic development tes COB, P. L., JR. Application of powered-lift concepts for i cruise efficiency of long-range aircraft Distributed upper-surface blowing concept COOK, G. Optimal digital simulation of aircraft via search techniques COBMERY, G. Supersonic transportation faced with energ [AAAF-NT-77-28] CRANE, D. F. Simulation replay - Implementation and fli</pre>	112 N78-24380 ting A78-38748 mproved N78-24051 N78-24056 random A78-39182 y savings N78-24131
<pre>Performance evaluation of a catalytic part oxidation hydrogen generator using turbi engine fuels [AD-A047355] COCKBURN, J. J. Jaguar and Tornado avionic development tes COB, P. L., JR. Application of powered-lift concepts for i cruise efficiency of long-range aircraft Distributed upper-surface blowing concept COOK, G. Optimal digital simulation of aircraft via search techniques COBMERT, G. Supersonic transportation faced with energ [AAAP-WT-77-28] CRANE, D. P. Simulation replay - Implementation and fli simulation applications</pre>	112 N78-24380 ting A78-38748 mproved N78-24051 N78-24056 random A78-39182 y savings N78-24131
<pre>Performance evaluation of a catalytic part oxidation hydrogen generator using turbi engine fuels [AD-A047355] COCKBURN, J. J. Jaguar and Tornado avionic development tes COB, P. L., JR. Application of powered-lift concepts for i cruise efficiency of long-range aircraft Distributed upper-surface blowing concept COOK, G. Optimal digital simulation of aircraft via search techniques COBMERT, G. Supersonic transportation faced with energ [AAAP-WT-77-28] CBANE, D. F. Simulation replay - Implementation and fli simulation applications CEREEL, T. R., JR. Aerodynamic characteristics at Mach number a wing-body concept for a hypersonic res</pre>	<pre>ne N78-24380 ing A78-38748 mproved N78-24051 N78-24056 random A78-39182 y savings N78-24131 ght A78-38789 0.2 of</pre>
<pre>Performance evaluation of a catalytic part oxidation hydrogen generator using turbi engine fuels [AD-A047355] COCKBURN, J. J. Jaguar and Tornado avionic development tes COE, P. L., JR. Application of powered-lift concepts for i cruise efficiency of long-range aircraft Distributed upper-surface blowing concept COOK, G. Optimal digital simulation of aircraft via search techniques COEMBERY, G. Supersonic transportation faced with energ [AAAP-WT-77-28] CRANE, D. F. Simulation replay - Implementation and fli simulation applications CREEL, T. R., JR. Aerodynamic characteristics at Mach number</pre>	<pre>ne N78-24380 ing A78-38748 mproved N78-24051 N78-24056 random A78-39182 y savings N78-24131 ght A78-38789 0.2 of</pre>

PERTIN, G.

A78-37979

- CUNNINGHAM, A. B. Evaluation of methods to produce aviation turbine fuels from synthetic crude oils phase 3, volume 3 [AD-A053106] N78-25239 CUNNOLD, D. H. Photochemistry and dynamics of the ozone layer
- COPSTID, J. B. Variable cycle engine evaluations for supersonic V/STOL fighters. Phase 2 and 3 technical report N78-25097
- V/STOL Hightels. Flage 2 and 5 technical topology [AD-A0533561] N78-25097 Variable cycle engine evaluations for supersonic V/STOL fighters. Management summary report [AD-A053362] N78-25098 CURRIE, N. C.
- Hodern millimeter wave instrumentation radar development and research methodology X78-37501 CURTISS. H. C., JB.
- CURTISS, H. C., JR. Experimental investigation of aerodynamic characteristics of a tracked ram air cushion vehicle [PB-277674] N78-24099

D

DAJANI, J. S. Air freight demand models: An overview [NASA-CR-152148] N78-25979 DARBELL, W. K. A study of the P-4 Program Management Responsibility Transfer (PMRT) from the Air Force Systems Command to the Logistics Command [AD-A052903] N78-29 N78-25974 DAS, B. H. Nondestructive pavement evaluation [AD-A052707] N78-24159 DAVIES, R. E. Exploratory development for design data on structural aluminum alloys in representative aircraft environments [AD-A052809] N78-24344 DAVYDOV, P. S. Aircraft radar systems A78-37873 DE KRASINSKI, J. S. Boundary layer blowing tests on a radial diffuser in low and subsonic Mach range A78-37411 DEHOFF, R. L. P100 multivariable control synthesis program. Volume 1: Development of P100 control system [AD-A052420] N78--Total synthesis program. N78-24144 N7: F100 multivariable control synthesis program. Volume 2: Appendices & through K [AD-A052346] N74 N78-24145 DEJINA, T. New model VOR/DME A78-37246 DIAMOND, D. D. Stator rotor tools [NASA-CASE-MSC-16000-1] N78-24544 DICKINSON, B. M. Thin conformal antenna array for microwave power CONVERSIONS [NASA-CASE-NPO-13886-1] N78-24391 DICOLA, A. Use of simulation techniques in the problem of air traffic control [QUAD-CALC-ELETT-21] N78-24111 DIETRICE, D. A. Reverse-thrust technology for variable-pitch fan propulsion systems N78-24070 DILLON, J. L. Aerodynamic characteristics at Mach number 0.2 of a wing-body concept for a hypersonic research airplane [NASA-TP-1189] 878-25059 DIVAN, P. Aerodynamic preliminary analysis system. Part 2: User's manual and program description [NASA-CR-145300] N78-24043 DOBEK. L. J. Development of mainshift high speed cylindrical roller bearings for gas turbine engines [AD-A052351] N78-24556

DOLGUSERV, G.
The technical concepts behind the IL-62M /8/ landing gear
A78-36622
DONATO, R. J.
Prediction of the ground effect - Side-line noise from aircraft
A78-37530
DOYLE, L. B.
Evaluation of the annoyance due to helicopter rotor noise
[NASA-CR-3001] N78-24903
DUKE, G. A.
Vibration investigation of helicopter engine
cooling fan
[AD-A047081] N78-24146
DUNBAR, D. N.
Computer model for refinery operations with
emphasis on jet fuel production. Volume 3:
Detailed systems and programming documentation
[NASA-CR-135335] N78-25235
DUBN, K.
Aerodynamic preliminary analysis system. Part 2:
User's manual and program description
[NASA-CR-145300] N78-24043
DZYGADLO, Z.
Remarks on design of supersonic wind tunnels
A78-36216

E

Modern millimeter wave instrumentation radar development and research methodology A78-3750 ECONONU, H. A.)1
A78-3750	1 (
ECONORU, A. A.	•
Air speed and attitude probe	
[NASA-CASE-FRC-11009-1] N78-2508	8
EISEBHOTE, J. J. Research on the statically thrusting propeller	
[NASA-CR-157214] N78-2509	12
ELCHUEI, V.	
The development and application of a simple method for determining unsteady airloads in subsonic	
compressible flow [AD-A052417] N78-2409	6
ELLERABIER, W.	-
Minimisation of relaxation drag A78-3742	2
EMBLETON, T. P. W.	
Prediction of the ground effect - Side-line noise from aircraft	
A78-3753	0
ENNERSON, D. C. An economic and technical perspective of the	
turboprop engine in Ag-aviation	
A78-3753 ESSLINGER, M.	0
Problems of the theory of strength related to	
aircraft construction and civil engineering; Structural Mechanics Meeting, Ottobrunn, West	
Germany, June 1, 2, 1977, Lectures and	
Discussion Contributions A78-3880	2
BVANS, R. M.	-
Hybrid computer models as an aid in design of gas turbine control systems for helicopters	
- A78-3878	3
BWART, R. B. Time delay measurements for flight simulators	
A78-3878	8
BYLON, D. Patigue crack propagation of titanium alloys under	
dwell-time conditions	
BYSINK, B. 178-3959	6
A study of commuter airplane design optimization	
[NASA-CR-157210] N78-2507	8
F	
FRARN, R. L.	
Bound dot in a second flow - Influence of reduction	
Round jet in a cross flow - Influence of injection angle on vortex properties	
Round jet in a cross flow - Influence of injection angle on worter properties A78-3774 FERTIN, G.	4

PORD, R. L.

GAINER. T. G.

PERSONAL AUTHOR INDEX

FORD, R. L. Fully-automated, pilot-monitored air traffic control A78-37155 FORD, T. British Airways Tri-Star - Present and future A78-39393 FORZANI, L. Helicopter flight demonstration A78-38750 FOURNIER, P. G. Application of powered-lift concepts for improved cruise efficiency of long-range aircraft N78-24051 Distributed upper-surface blowing concept N78-24056 FRANKENFELD, J. W. Alternate fuels nitrogen chemistry [AD-A053299] N78-25240 PREEDMAN, J. B. Dealing with false targets in the ≯ir Traffic Control Radar Beacon System A78-37486 FRICKER, W. W. Graphite composite landing gear component: Upper drag brace hardware for P-15 aircraft W78-25 [AD-A052764] N78-25082 PRIDLAND, V. IA. Prospects for using new flight vehicles in aerophysical studies A78-39189 FRISCH, B. Grumman's radio-controlled experimental air force A78-38522 PROBALET, E. IDS - An advanced hingeless rotor system A78-36950 FROSTMAN, D. L. An investigation of the tracking performance of the fire fly manual director gunsight for air-to-air gunnery [AD-A053348] N78-25083 PUHS, A. B. A rising sun in aircraft A78-38524 PUJII, S. Acoustics and performance of high-speed, unequally spaced fan rotors [NAL-TR-526] N78-25094 FURMAN, A. I. Preliminary experience with the use of the Yak-40 aircraft in studies of cloud physics and artificial modifications A78-36483

G

Comparison of aerodynamic theory and experiment for jet-flap wings N78-24052 GANGSAAS, D. Testing of the YC-14 flight control system software [AIAA PAPES 77-1077] A78-3918 A78-39183 GEIER, B. Problems of the theory of strength related to aircraft construction and civil engineering; Structural Mechanics Meeting, Ottobrunn, West Germany, June 1, 2, 1977, Lectures and Discussion Contributions A78-38802 GENTER, B. V. Doctrine versus capabilities: A project manager's dilemma with the CH-47 helicopter [AD-A052376] N78-25970 GEORGE, L. L. Replacement process analysis: An interim report on replacement models FAD-A0524111 N78-24150 GHOSHROY, S. Inductor network development for aircraft high power supplies [AD-A052750] N78-25096 GIBBS, B. P. Results of the NASA/MARAD L-band satellite navigation experiment A78-37525 GIBSON, J. S. Characteristics of USB noise N78-24061

GILSINN, J. P.	
Problems in world-wide standardization of	the
units of height measurement	
[AD-A051150]	N78-24385
GLENNIE, D. G.	
Variable cycle engine evaluations for sup	ersonic
V/STOL fighters. Phase 2 and 3 technic	al report
[AD-A053361]	N78-25097
Variable cycle engine evaluations for sup	
V/STOL fighters. Management summary re	port
[AD-A053362]	N78-25098
GOBETZ, P. W.	
Applications of advanced transport aircra	ft 1n
developing countries	
[NASA-CR-145343]	N78-25985
GRABOWIECKI, A.	
Filtering techniques in avionic transmitt	ers
	A78-39084
GROBMAN, J. S.	
Impact of future fuel properties on aircr	aft
engines and fuel systems	
[NASA-TM-78866]	N78-24369
Characteristics and combustion of future	
hydrocarbon fuels	
[NASA-TH-78865]	N78-24370
GUEST, T. C. R.	
SST flight planning and navigation - The	fırst
year's experience	
	178-37154
GUPTA, N. K.	
P100 multivariable control synthesis prog	
Volume 1: Development of F100 control	
[AD-A052420]	N78-24144
F100 multivariable control synthesis prog	ram.
Volume 2: Appendices A through K	
[AD-A052346]	N78-24145
GVOZDEVA, L. G.	

Experimental investigation of gasdynamic processes at sudden start-up of a supersonic nozzle Å78-38641

Η

HABERCON, G. B., JR. Parachutes and decelerators, volume 2. A bibliography with abstracts [NTIS/PS-78/0320] N78-25067 Aircraft sonic boom: Effects on buildings. A bibliography with abstracts [NTIS/PS-78/0239] ₩78-25099 Aircraft sonic boom: Studies on aircraft flight, aircraft design, and measurement. A bibliography with abstracts [NTIS/PS-78/0238] N78-25100 HAINES, A. L. Concerning the logical comparison of ATC separation standard assessment models A78-36455 HAJJAR, P. Studies on transonic turbine with film-cooled blades [AD-A052423] N78-24149 W. E., JE. HALL. P100 multivariable control synthesis program. Volume 1: Development of F100 control system [AD-A052420] N78-N78-24144 P100 multivariable control synthesis program. Volume 2: Appendices A through K [AD-A052346] N78-24145 HARAGOCHI, Y. Relationship between scatter of fatigue life and S-N curve of 2024-T4 aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NAL-TR-412T] N78-254 BANILTON, H. W. N78-25453 Feasibility study for simulation of an airport tower control environment N78-24154 FAD-A0511741 HAMBER J. A study of commuter airplane design optimization [NASA-CR-157210] N78-25 HANCOCK, J. P. Cruise aerodynamics of USB nacelle/wing geometric N78-25078 variations N78-24057

JONES. R.

HARCH, W. H. The mean velocity field of unsteady subsonic air iets A78-37417 SARKONEN, D. L. USB environment measurements based on full-scale static engine ground tests N78-24076 HARPER. R. E. A computer-based system for processing dynamic data A78-37108 HARRIS, C. D. Tabulated pressure measurements of a NASA supercritical-wing research airplane model with and without fuselage area-rule additions at Mach 0.25 to 1.00 [NASA-TM-X-2634] N78-24077 Wind-tunnel measurements of aerodynamic load distribution on an NASA supercritical-wing research airplane configuration [NASA-TH-X-2469] Aerodynamic characteristics of an NASA N78-24079 supercritical-wing research airplane model with and without fuselage area-rule additions at Mach 0.25 to 1.00 [NASA-TE-1-2633] N78-24080 HARRIS, L. G. Perspective radar display system: TV-like presentation on CRT provides higher lateral position and lateral motion sensitivity than a PPI [AD-A052342] N78-24418 HARRISON, I. R. Computer-aided holographic vibration analysis for vectorial displacements of bladed disks A78-37183 HART BANN, Reavily loaded carbon-fiber-reinforced-plastic primary structure with the Tornado taileron as an example 178-38810 HASSELL, J. L., JR. Results of static tests of a 1/4 scale model of the Boeing YC-14 powered-lift system N78-24049 Aerodynamic characteristics in ground proximity N78-24055 HAVILAND, J. K. Investigations of scaling laws for jet impingement N78-24074 HAWLEY, K. A study of commuter airplane design optimization [WASA-CR-157210] W78-2 N78-25078 HAWTHORNE, W. Aircraft propulsion from the back room /Sixty-sixth Wilbur and Orville Wright Memorial Lecture/ A78-36279 HATASEIDA, H. On lift of delta wings with leading-edge vortices A78-39772 HAYDEN, R. E. USB noise reduction by nozzle and flap modifications N78-24064 HEPFLEY, R. K. Study of a safety margin system for powered-lift STOL aircraft [NASA-CR-152139] N78-24117 BEINIG. B. Ergonomics in connercial aircraft landing 178-36621 HEISE, O. New technologies for aircraft structures A78-38803 BENCKEN, A. D. Demonstration of acoustic emission system for damage monitoring of full scale metallic aircraft structures during fatigue testing [AD-A053108] N78-25085 HEBLING, W. W. Investigations of scaling laws for jet impingement N78-24074 BRWISE, S. Aero engines climb towards better fuel efficiency A78-37114 HILADO, C. J. ALC/50/ values for some polymeric materials

A78-36596

HILL, J. S. Aircraft measurement of radio frequency noise at 121.5 MHz, 243MHz and 406MHz A78-39105 HIRSE, J. B. Application of second-order turbulent modeling to the prediction of radiated aerodynamic sound N78-25359 [NASA-CR-2994] HOAD. D. R. Externally blown flap impingement parameters N78-24053 HORAK, C. B. Demonstration of acoustic emission system for damage monitoring of full scale metallic aircraft structures during fatigue testing [AD-A053108] N78-25085 BOBIUČEI, S. A high-pressure, sector-shaped model combustor test facility for development of turbofan engines [NAL-TR-517] N78-25093 HOUSE, E. E. Integrally stiffened laminate construction A78-36431 BOWBLLS, R. W. Finite element analysis for complex structures, helicopter transmission housing structural modeling [AD-1052759] N78-24 126 HSING, P. C. Development of mainshift high speed cylindrical roller bearings for gas turbine engines [AD-A052351] N78-24556 HU, P. W. Replacement process analysis: An interim report on replacement models [AD-A052411] N78-24150 I

IAKOVLEV, V. N. Electronic arcraft collision avoidance system 178-37603 ISBIHARA, K.

A high-pressure, sector-shaped model combustor test facility for development of turbofan engines [NAL-TR-517] N78-25093

J

JAARSMA, F. The German-Dutch low speed wind tunnel DNW 178-36447 JA MESON, Numerical calculation of transonic flow past a swept wing by a finite volume method [NASA-CR-157012] N78-24808 JERNELL, L. S. Preliminary study of a large span-distributed-load flying-wing cargo airplane concept [NASA-TP-1158] N78-25079 JEWELL, W. P. Study of a safety margin system for powered-lift STOL aircraft [NASA-CR-152139] N78-24117 JOHANSSON, B. C. A. Compressible flow about helicopter rotors A78-36947 JOBNSON, J. L., JR. Summary of low-speed aerodynamic characteristics of upper-surface-blown jet-flap configurations N78-24050 JOENSON, W. G., JR. Some measurements of an EBF powered-lift wake N78-24054 JOHNSTON, R. E. Evaluation of a 100-watt elevated high-intensity runway edge light [AD-A051651] N78-24153 JOHDA, W. IDS - An advanced hingeless rotor system A78-36950 JONES, R. Advanced development of a helicopter rotor Value 1: Summary report [AD-A051318] N78-24118

Advanced development of a helicopter rotor isolation system for improved reliability. Volume 2: Detailed report [AD-A051319] N78-24119 JONES, R. E. Design and preliminary results of a semitranspiration cooled (Lamilloy) liner for a high-pressure high-temperature combustor [NASA-TM-78874] N78-24138

Κ

KABE, Y. A high-pressure, sector-shaped model combustor test facility for development of turbofan engines [NAL-TR-517] N78-25093 KACZMARCZYK, J. Remarks on design of supersonic wind tunnels A78-36216 KADMAN, Y. ERP noise reduction through nozzle/flap positioning N78-24065 KANE. D. L. Design and construction of a flight monitor and data recorder FAD-A0524051 N78-24135 KANGOVI, S. The turbulent flow through a sudden enlargement at subsonic speeds A78-37413 KASHCHEEV, G. V. Alfcraft radar systems A78-37873 KATZ. E. Structural and assembly concepts for large erectable space systems [AAS 77-205] A78-36706 KAUPMAN, J. L. Evaluation of methods to produce aviation turbine fuels from synthetic crude oils phase 3, volume 3 [AD-A053106] N78-25239 RAZMIBESKI, A. J. Filtering techniques in avionic transmitters A78-39084 KEPPEL, B. V. A study of commuter airplane design optimization N78-25078 [NASA-CR-157210] KERBS, D. A high-power switching network for a dual-mode antenna A78-38844 KHRESIN, I. N. Aircraft radar systems 178-37873 KILLIAN, D. C. The impact of flight simulators on U.S. airlines A78-38798 KISH. J. G. Advanced overrunning clutch technology [AD-A052635] N78-24557 KLASS, P. J. Soviet landing and draws FAA scrutiny A78-38773 KLEINE, J. C. Diary of an international team co-ordinating system electromagnetic compatibility of an avionic sub-system 178-39085 KLEITZ, P. An operator's viewpoint: How to reduce the fuel consumption in aeronautical maintenance [AAAP-NT-77-26] N78-24129 KLENNER, J. Sallplanes of carbon-fiber construction A78-38804 **ROJIBA, J.** Aerodynamic preliminary analysis system. Part 2: User's manual and program description [NASA-CR-145300] N78-24043 KORWIENKO, E. E. Preliminary experience with the use of the Yak-40 aircraft in studies of cloud physics and artificial modifications A78-36483 KORRELL, P. On the compensation of radio direction finders A78-38247

KOSHINUNA, M. A high-pressure, sector-shaped model combustor test facility for development of turbofan engines [NAL-TR-517] N78-25093 KOURTIDES, D. A. ALC/50/ values for some polymeric materials A78-36596 KRAUSCHB, D. Round jet in a cross flow - Influence of injection A78-37744 KRENKEL, A. R. A finite-step method for estimating the spanwise lift distribution of wings in symmetric, yawed, and rotary flight at low speeds [NASA-CR-157043] N78-25 N78-25056 KRINITSYN, V. V. Aircraft radar systems A78-37873 **KRIVOLAPOV, G. D.** Prospects for using new flight vehicles in aerophysical studies A78-39189 KRUSZEWSKI, E. T. Structural and assembly concepts for large erectable space systems [AAS 77-205] 178-36706 KUBLTHAN, A. R. Survey of air cargo forecasting techniques [NASA-CR-145329] N78-25068 RORES, I. S. Bases of radio direction finding, part 1 [AD-A051951] N78-24107 RULFAN, R. M. Application of laminar flow control to large subsonic military transport airplanes [AD-A052422] N78-24098 KUNACHOWICZ, K. Filtering techniques in avionic transmitters 178-39084 KUNCIN, B. G. Optimal flare in presence of wind shears 178-39186 KUNZ, K. S. A three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment. I - The method and its implementation. II - Comparison of predictions and measurements A78-37124 KUTNEY, J. T. Inlet/nacelle/exhaust system integration for the QCSEE propulsion systems N78-24068 LAN. C. E. Theoretical predictions of jet interaction effects for USB and OWB configurations N78-24059 LANGE, G. Case of damage involving aircraft and helicopter components of light metal

- LANGTON, R. Hybrid computer models as an aid in design of gas turbine control systems for helicopters A78-38783
- LE BALLEUR, J.-C. Viscous-inviscid coupling - A numerical method and applications to two-dimensional transonic and supersonic flows 178-38698
- LEAVITT, L. D. Effects of spanwise nozzle geometry and location on the longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration at subsonic speeds [NASA-TP-1215] N78-25060
- LEB, R.-H. A three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment. I - The method and its implementation. II - Comparison of predictions and measurements 178-37124

B-6

LEEMAN, E. R. Performance tests and design modifications of a Wankel type rotary combustion automobile engine in order to determine its suitability for aircraft application [CSIR-ME-1521] N78-25095 LEFEVRE, J. LASET velocimeter for wind tunnel measurements A78 A78-37979 LEGENDRE, R. Remarks on the noise emitted by the jet of a gas turbine engine A78-38696 LEHTHAUS, F. Calculation of transonic flow through a turbine cascade by the time-step method A78-38248 LEONDES. C. Evaluation of geometric performance of global positioning system A78-37987 LESHANR. A. A. Applications of advanced transport aircraft in developing countries [NASA-CR-145343] N78-25985 LIPKE. D. W. Maritime satellite communications - Where we are and where we're going [AAS 77-257] A78-36721 LIPOYOL, G. S. Application of the integral-transformation method to three-dimensional unsteady problems of the theory of cascades A78-36366 Pactorization methods in hydroaeromechanics A78-37887 LIPP. L. C. Halogenated solvent-induced corrosion in hydraulic systems [ASLE PREPRINT 78-AM-4A-2] A78-38083 LITWINCENE, B. Characteristics of flow past fuselages and wing-fuselage systems of gliders A78-36203 Discussion of results of studies on the design of laminar airfoils for stunt gliders 178-36204 Hot-wire velocity measurements in thin boundary layers A78-36205 LOEPFLER, I. J. Acoustic design of the QCSEE propulsion systems N78-24067 LONG. W. C. Non-destructive method for applying and removing instrumentation on helicopter rotor blades NASA-CASE-LAR-11201-11 N78-24515 LOBTAI, L. H. Inductor network development for aircraft high power supplies [AD-A052750] N78-25096 LOUIS, J. P. Studies on transonic turbine with film-cooled blades [AD-A052423] N78-24149 LUCAS, J. G. Acoustic evaluation of a novel swept-rotor fan [NASA-TM-78878] N78 N78-24897 LUCCHI, G. A. Color displays for airborne weather radar A78-36980 LUIDENS, R. W. Inlet technology for powered-lift aircraft N78-24069 Μ MACTSHAC, B. D

HACISANCY D. D.	
Reduction of transient gas turbine test dat a hybrid computer	a using
	A78-38782
Hybrid computer models as an aid in design turbine control systems for helicopters	of gas
• •	A78-38783
BACKIBBON, H. J.	
	-
Acoustic evaluation of a novel swept-rotor	ran
f NASA-TM-78878]	
INASA-19-788781	N78-24897

MACLEOD, I. Expansion potential for the local service air carrier 178-37539 MAILLOUX, B. J. Experimental evaluation of an array technique for zenith to horizon coverage A78-36380 MARGASON, R. J. Summary of low-speed aerodynamic characteristics of upper-surface-blown jet-flap configurations N78-24050 BARSDEN, D. J. Wind tunnel tests of a slotted flapped wing section A78-37537 MARSE, A. H. Atmospheric-absorption adjustment procedure for aircraft flyover noise measurements [AD-A051700] N78-24899 LAD-AUGINES, MARTIN, D. L. Testing of the YC-14 flight control system software [AIAA PAPER 77-1077] A78-3918 178-39183 Paneling techniques for use with the VORLAX computer program [NASA-CR-145364] N78-25054 BABTORE, J. A. Subisokinetic sampling errors for aircraft turbine engine smoke probes A78-38575 HARTY, H. Cobalt-base alloys produced by powder metallurgy for compressor and turbine disks [ONERA, TP NO. 1978-7] A78-3 178-39582 MATSUOKA, K. On lift of delta wings with leading-edge vortices at low speeds A78-39772 MAVROIDES, W. G. Experimental evaluation of an array technique for zenith to horizon coverage A78-36380 MCGARVEY, J. H. Advanced development of a helicopter rotor Advanced development of a helicopter fotor isolation system for improved reliability. Volume 1: Summary report [AD-A051318] N78-: BCGB0GBN, F. Oil-air mist lubrication for helicopter gearing N78-24118 [NASA-CR-135081] N78-25080 MCINTOSH, S. C., JR. On the optimization of discrete structures with aeroelastic constraints A78-39135 MCKINZIE, D. J., JR. Analytical modeling of under-the-wing externally blown flap powered-lift noise N78-24063 - ACQUIRN, L. J. The development and application of a simple method for determining unsteady airloads in subsonic compressible flow [AD-A052417] N78-24096 BEBRA, H. Boundary layer blowing tests on a radial diffuser in low and subsonic Mach range A78-37411 **BEJDRICH**, R. R. Advanced technology servicing equipment for army aircraft [AD-A052652] N78-24158 MEREL, R. An adaptive learning control system for aircraft [NASA-CR-156930] BELBASON, E. T. N78-25966 Effects of nozzle design and power on cruise drag for upper-surface-blowing aircraft N78-24058 BELLOR, A. H. Review of flashback reported in prevaporizing/premixing combustors 178-37772 BELSON, W. B., JR. Precision positional data of general aviation air traffic in terminal air space [NASA-RP-1020] N78-25048

MENDENHALL, M. R.

Neasured and calculated steady aerodynamic loads on a large-scale upper-surface blown model N78-24072 HEREDITH, P. A study of commuter airplane design optimization [NASA-CR-157210] N78-2 N78-25078 HESCHKO, B. T. The F-4E Austere HUD/Gunsight project A78-38746 BEVILLOT, J. C. Deposition of fine particles in the opening of film-cooled gas turbine blades N78-25091 [EPFL-ITA-2] MEYER, D. H. System requirements for transition from enroute to approach guidanc€ A78-36453 MILLER, R. L. Test operations procedures physical characteristics aviation material N78-25086 [AD-A053196] MINER, J. R. Development of mainshift high speed cylindrical roller bearings for gas turbine engines [AD-A052351] N78-24556 MIRMOVICH, L. A. Preliminary experience with the use of the Yak-40 aircraft in studies of cloud physics and artificial modifications A78-36483 MIXSON, J. S. Acoustic-loads research for powered-lift configurations N78-24073 MORSE, P. Airships - The next generation and beyond A78-39396 MORTON. J. B. Investigations of scaling laws for jet impingement พวี8-24074 MYBURGH, I. S. Performance tests and design modifications of a Wankel type rotary combustion automobile engine in order to determine its suitability for aircraft application [CSIR-ME-1521] N78-25095

Ν

WACHHIAS, S. An adaptive learning control system for aircraft [NASA-CR-156930] N78-25966 NAGAO, Y. Study on problems of terminal site location A78-36323 NAUMANN, E. C. Structural and assembly concepts for large erectable space systems [AAS 77-205] A78-36706 NENADÒVICH, M. Deformation curve of rotary airfoil blades A78-39540 NES, N. V. Methods and results of boundary layer measurements on a glider [NASA-TM-75294] N78-24085 NGUYEN, L. T. Aerodynamic characteristics in ground proximity N78-24055 NICHOLLS, J. A. Analysis of spray combustion in a research gas turbine combustor A78-37297 NICOL. D. J. Aircraft size and air transport costs N78-24112 NISHIO. K. A high-pressure, sector-shaped model combustor test facility for development of turbofan engines [NAL-TR-517] N78-25093 [NAL-TR-517] NISHIWAKI, H. Acoustics and performance of high-speed, unequally spaced fan rotors [NAL-TR-526] N78-25094 NIXON, D. Notes on the transonic indicial method A78-37732

PERSONAL AUTHOR INDEX

NOBACK, R. A non-stationary model for atmospheric tur patches for the prediction of aircraft d loads	
[NLR-TR-76131-U]	N78-25077
NORDMARK, G. B.	
Exploratory development for design data on	
structural aluminum alloys in representa	tive
aircraft environments	
[AD-A052809]	N78-24344
NORTHAN, A. N.	
Precision positional data of general aviat	10n air
traffic in terminal air space	
[NA SA-BP-1020]	N78-25048
NOWAK, Z.	
Calculation of airfoil drag	
	A78-36210

0

OCE, P. Theoretical investigation on the crash behavior of cell structures A78-38805 ODONNELL. R. N. The effect of correlated missed detections, correlated false alarms and interclutter visibility on the performance of an automated radar tracking system 178-37485 OLIVER. A. R. The next approximation after boundary layer theory A78-37409 OLKHOVSKAIA, N. I. Investigating the efficiency of gas turbines in off-design operation A78-37860 OLKHOVSKII, G. G. Investigating the efficiency of gas turbines in off-design operation A78-37860 OBLANSKY, J. Cost-effectiveness of flight simulators for military training. Volume 1: Use and military training. Volume 1: Use effectiveness of flight simulators [AD-A052801] N78-24156 OSTROWSKI, J. Characteristics of flow past fuselages and wing-fuselage systems of gliders A78-36203 Discussion of results of studies on the design of laminar airfoils for stunt gliders A78-36204

Ρ

PAGE, R. H. The turbulent flow through a sudden enlargement at subsonic speeds 178-37413 PARHOLKOV, G. A. Electronic aircraft collision avoidance system A78-37603 PANCHEBKOV, A. N. Nonlinear theory of a bearing surface of arbitrary extent [AD-A051385] N78-24090 PARKER, C. D. General aviation avionics equipment maintenance [NASA-CR-145342] N78-24132 PARKER, J. A. ALC/50/ values for some polymeric materials A78-36596 PARKER, L. C. Precision positional data of general aviation air traffic in terminal air space [NASA-RP-1020] N78-25048 PATIL, P. B. Analysis of spray combustion in a research gas turbine combustor A78-37297 PAVLOVSKII, N. I. Aircraft auxiliary power units 178-37885 PECK. P. E. Rolls-Royce RB401 turbofan - A new business jet engine for the 1980's **▶78-37538**

PEBIE, M. E.	
Project Plan: Tower automated ground surv	eillance
system development program	-70 01455
[AD-A051621]	N78-24155
PEREY, B., III Neasured and calculated steady aerodynamic	loade
on a large-scale upper-surface blown mod	
on a large scale apper-suitace blown mod	N78-24072
PETIT, G.	110 24012
Helicopters and energy savings	
[AAAP-NT-77-25]	N78-24128
PHELPS, A. E., III	
Opper-surface-blowing flow-turning perform	ance
	N78-24048
Summary of low-speed aerodynamic character	
, of upper-surface-blown jet-flap configur	
PIERCY, J. E.	N78-24050
Prediction of the ground effect - Side-lin	a noise
from aircraft	6 10196
	A78-37530
PIKE, G. H. S.	
The computation of the unsteady aerodynami	cs of
bodies near a ground surface	170 77400
PIVKO, S.	A78-37408
Aerodynamics of the annular wing	
actory humans of the unital wing	A78-38475
PLEE, S. L.	
Review of flashback reported in	
prevaporizing/premixing combustors	
DOTCON-OGTHRON D	A78-37772
POISSON-QUINTON, P. Prediction of the aerodynamic characterist an aircraft on the basis of the comparis	LCS OF
an aircraft on the basis of the comparis	on of
results for a calibration model in vario	us large
transonic wind tunnels	
[ONERA, TP NO. 1978-22]	A78-39579
PONCHEL, B. H.	
Exploratory development for design data on structural aluminum alloys in representa	
aircraft environments	LIVE
[AD-A052809]	N78-24344
POWERS, S. G.	
Plight-measured pressure characteristics o	f
aft-facing steps in high Reynolds number	flow at
aft-facing steps in high Reynolds number Mach numbers of 2.20, 2.50, and 2.80 and comparison with other data	
[NASA-TN-72855]	N78-25055
PRIDE, R. A.	N, J-23033
Environmental effects on composites for ai	rcraft
[NA SA-TM-78716]	N78-25135
PRINN, R. G.	
Photochemistry and dynamics of the ozone 1	
POLLEY, J. K.	A78-38766
Preliminary design of low-cost titanium st	ructure
[AD-A053327]	N78-25087
PURDY, W. H.	
Formulas for takeoff performance P3-A, B a	
	nd C
airplanes	
[AD-A052354]	N78-24124
[AD-A052354] Purvis, J. W.	N78-24124
[AD-A052354] PURVIS, J. W. An acrodynamic analysis of deformed wings	N78-24124
[AD-A052354] PURVIS, J. W. An aerodynamic analysis of deformed wings subsonic and supersonic flow [AD-A052449]	N78-24124
<pre>[AD-A052354] PURVIS, J. W. An aerodynamic analysis of deformed wings subsonic and supersonic flow [AD-A052449] PUTNAH, W. F.</pre>	N78-24124 11
<pre>[AD-A052354] PURVIS, J. W. An aerodynamic analysis of deformed wings subsonic and supersonic flow [AD-A052249] PUTNAM, W. F. Experimental investigation of aerodynamic</pre>	N78-24124 11 N78-24094
<pre>[AD-A052354] PUBVIS, J. W. An aerodynamic analysis of deformed wings subsonic and supersonic flow [AD-A052449] PUTNAM, W. P. Experimental investigation of aerodynamic characteristics of a tracked ram air cus</pre>	N78-24124 11 N78-24094
<pre>[AD-A052354] PURVIS, J. W. An aerodynamic analysis of deformed wings subsonic and supersonic flow [AD-A052449] PUTNAM, W. F. Experimental investigation of aerodynamic characteristics of a tracked ram air cus wehicle</pre>	10 100 100 100 100 100 100 100 100 100
<pre>[AD-A052354] PUBVIS, J. W. An aerodynamic analysis of deformed wings subsonic and supersonic flow [AD-A052449] PUTNAM, W. P. Experimental investigation of aerodynamic characteristics of a tracked ram air cus</pre>	N78-24124 11 N78-24094
<pre>[AD-A052354] PURVIS, J. W. An aerodynamic analysis of deformed wings subsonic and supersonic flow [AD-A052449] PUTNAM, W. F. Experimental investigation of aerodynamic characteristics of a tracked ram air cus wehicle</pre>	10 100 100 100 100 100 100 100 100 100

F

RADCHENKO, A. I. Influence of the type of corrosion of the	alroraft
	arclare
skin on limiting value of the damage	
	170 20007
	A78-38907
RAMARBISHNAN, S. V.	
Flow past nonconical wings with separation	
file past soncontent wings with separation	
	178-37775
RAMSBOTTON, D.	
EMC control of the tornado aircraft	
	A78-39087
RAO, B. M.	
The development and application of a simple	e method
for determining unsteady airloads in sub	SODIC
compressible flow	
[AD-A052417]	N78-24096
· ·	

BE, R. J.	
Wind-tunnel investigation of basic aerodyna	
characteristics of a supercritical-wing i	cesearch
airplane configuration	
[NA SA-TH-X-2470]	N78-24078
BEAMBR, E. L.	
Evaluation of a 100-watt elevated high-into	ensity
runway edge light	
[AD-A051651]	878-24153
BEDDY, N. N.	
USB flow characteristics related to noise	
instruct developments for definition and	N78-24060
Analytical developments for definition and prediction of USB noise	
prediction of 03B horse	N78-24062
REED, J. B.	N70-24002
USB environment measurements based on full-	scale
static engine ground tests	Boure
	N78-24076
REED, R. D.	
High-flying Himi-Sniffer RPV - Mars bound	
	A78-38521
BEED, W. B.	
Aerospace computer systems. Part 1: Avio	lics
applications, volume 2. A bibliography	with
abstracts	
[NTIS/PS-78/0289]	№78-25787
BEICHENBACH, P. H.	. .
A computer-based system for processing dyna	
	A78-37108
BEINHBRR, G. W.	
Nonlinear acoustics. A bibliography with a	N78-25840
[NTIS/PS-78/0240]	N/0-23640
BILBY, N. J. Flight experiments on aerodynamic features	
affecting helicopter blade design	
affecting helicopter brade design	A78-36949
ROBINSON, M. L.	ATO 30343
Cross-flow characteristics on a cylindrical	l body
at incidence in subsonic flow]
	A78-37406
RODGER, K. S.	
An approach to EMP testing of complete str:	ıke
allcraft	
	A78-39088
EMP induced currents on a simplified missi	le
theory and experiment	
	A78-39109
BOE, G.	-
The design of future cockpits for high per:	formance
fighter aircraft	
DOOFR D D	A78-36446
ROOKE, D. P. Stress intensity factors, for collinear cra	ocke in
a stiffened sheet	1085 10
a stillened sneet	A78-38122
BOSKAR, J.	A/0 50122
A study of commuter airplane design optimiz	zation
[NASA-CR-157210]	N78-25078
ROWLEY, R. B.	
Diary of an international team co-ordination	na
system electromagnetic compatibility of a	n
avionic sub-system	
-	A78-39085
RUDEY, R. A.	
Impact of future fuel properties on aircra:	Et
engines and fuel systems	
[NASA-TM-78866]	N78-24369
Characteristics and combustion of future	
hydrocarbon fuels	NTO 00070
[NASA-TH-78865]	N78-24370
RUDNITSKI, D. N.	
Reduction of transient gas turbine test dat	a using
a hybrid computer	A78-38782
BYDBB, P.	AIU JUI02
The role of meteorology in helicopter icing	n problems
the lote of hereevery, in hereever form	A78-37712
	A10-57712

S

1

 SAGERSER, D. A. Reverse-thrust technology for variable-pitch fan propulsion systems
 N78-24070
 SAROBIA, V. Pressure pulsations on a flat plate normal to an underexpanded supersonic jet
 A78-37743 SATO, M.

ŧ.

PERSONAL AUTHOR INDEX

SATO, M. On lift of delta wings with leading-edge vortices 178-39772 SCHAEPER, J. W. Reverse-thrust technology for variable-pitch fan propulsion systems N78-24070 SCHATZLE, P. B. The development and application of a simple method for determining unsteady airloads in subsonic compressible flow [AD-A052417] N78-24096 SCHEER, J. A. Modern millimeter wave instrumentation radar development and research methodology A78-37501 SCHLINKER, R. H. Experimental assessment of theory for refraction of sound by a shear layer [NASA-CR-145359] N78-25831 SCHNEIDER, J. E. ALC/50/ Values for some polymeric materials 178-36596 SCHOENSTER, J. A. Acoustic-loads research for powered-lift configurations N78-24073 SCHOPE, F. Simplified input for certain aerodynamic nose configurations to the Grumman quick-geometry system. A KWIKNOSE user's manual [AD-A051425] N78-24089 SCHRA, L. Heat treatment studies of aluminum alloy type 7050 forgings. The effect of heat treatment on a variety of engineering properties [NLR-TR-76008-U] N78-2519 N78-25199 Acoustic-loads research for powered-lift configurations N78-24073 SCHULZ, D. Application of modern methods in civil aircraft construction A78-38808 SCHWIND, R. G. High angle canard missile test in the Ames 11-foot transonic wind tunnel [NASA-CR-2993] N78-25057 SCIARRA, J. J. Finite element analysis for complex structures, helicopter transmission housing structural modeling [AD-A052759] N78-24126 SEARLE, N. Characteristics of USB noise N78-24061 SEIDEL, M. The German-Dutch low speed wind tunnel DNW A78-36447 SENGUPTA, G. Low frequency cabin noise reduction based on the intrinsic structural tuning concept: The theory and the experimental results, phase 2 [NASA-CR-145262] N78-24900 SEROVY, G. K. Loss prediction in axial compressors - A bibliographic study A78-38892 SERTOUR, G. Can fatigue cracks be detected in an early stage by acoustic emission? Application to high resistance light alloys used in aeronautics [AAAF-NT-77-35] N7 N78-24587 SHEN, C. N. Vibrations of a helicopter rotor blade using finite element unconstrained variational formulations [AD-A052670] N78-24125 SHIPBIN, B. G. Uniqueness 'in the large' of the solution to the direct problem of the Laval nozzle A78-37613

SHIHORAWA, T. Relationship between scatter of fatigue life and S-N curve of 2024-T4 aircraft structural aluminum alloy specimens with a sharp notch (Kt equals 8.25) under a constant temperature and humidity condition [NAL-TR-412T] N78-25453 SICHEL, N. Analysis of spray combustion in a research gas turbine combustor 178-37297 SICRE, J. Equipment permitting fuel savings during approach [AAAF-NT-77-27] N78-24130 SIHPSON, D. N. S. Planning and procedures for arcraft demonstrations - V/STOL aircraft 178-38749 SINGH. R. P. Precision positional data of general aviation air traffic in terminal air space [NASA-RP-1020] N78-25048 SIPPEL, K. O. Material selection for the Tornado taileron A78-38811 SKRZYNSKI, S. Discussion of results of studies on the design of laminar airfoils for stunt gliders A78-36204 Hot-wire velocity measurements in thin boundary lavers A78-36205 SLEEMAN, W. C., JR. Upper-surface-blowing flow-turning performance N78-24048 SMITH, C. A. Evaluation of methods to produce aviation turbine fuels from synthetic crude oils phase 3, volume 3 [AD-A053106] N78-2523 N78-25239 SMITH, E. B. Acoustic design of the QCSEE propulsion systems N78-24067 SHITH. G. H. The determination of margins of safety for critical aircraft systems A78-39082 SHITH, J. H. Design and preliminary results of a semitranspiration cooled (Lamilloy) liner for a high-pressure high-temperature combustor [NASA-TM-78874] N78-24 N78-24138 SHITH, R. H. Diary of an international team co-ordinating system electromagnetic compatibility of an avionic sub-system A78-39085 SOIN. N. The technical concepts behind the IL-62M /8/ landing gear 178-36622 SOLOMONOV, P. A. Reliability of aviation techniques and flight safety A78-36494 SONJU, O. K. Inductor network development for aircraft high power supplies [AD-A052750] N78-25096 SOWERS, H. D. Acoustic design of the QCSEE propulsion systems N78-24067 An experimental study to determine the reduction in ultimate bending moment of a composite plate due to an internal delamination [AD-A052662] N78-254 SRIMATHKUMAR, S. SPRIGG, R. G. N78-25466 Modal control theory and application to aircraft lateral handling qualities design [NASA-TP-1234] N78-25101 STAMPFL, R. A. Modern RF system design for aircraft A78-37341 STARIK, M. Y. Bases of radio direction finding, part 1 [AD-A051951] N78-24107 STEIN, P. C. Circumferential seals for use as oil seals [ASLE PREPRINT 78-AM-3D-2] A78-38095 STERNPELD, H., JR. Evaluation of the annoyance due to belicopter rotor noise [NASA-CE-3001] N78-24903 STETSON, K. A. Computer-aided holographic vibration analysis for vectorial displacements of bladed disks A78-37183 STINPERT, D. L. Acoustics and aerodynamics of over-the-wing thrust reversers N78-24071 STINTON. D. The certification of light aircraft 178-36280 STONE, J. E. On the use of relative velocity exponents for jet engine exhaust noise A78-37683 On the use of relative velocity exponents for jet engine exhaust noise [NASA-TM-78873] N78-24137 STRING, J. Cost-effectiveness of flight simulators for military training. Volume 1: Use and military training. Volume 1: Use effectiveness of flight simulators [AD-A052801] N78-24156 STROTHER, E. F. Lighter-than-air concepts and recent developments A78-39395 SUBRAMANIAN, N. R. Plow past nonconical wings with separation 178-37775 SULTANOV, A. E. Influence of the type of corrosion of the aircraft skin on limiting value of the damage A78-38907 SUSSMAN, M. B. USB environment measurements based on full-scale static engine ground tests N78-24076 SUZUKI, K. A high-pressure, sector-shaped model combustor test facility for development of turbofan engines [NAL-TR-517] N78-25093 SWANSSON, N. S. Vibration investigation of helicopter engine cooling fan [AD-A047081] N N78-24146

Τ

•	
TAKEDA, K.	
Acoustics and performance of high-speed, u	negually
spaced fan rotors	
[NAL-TR-526]	N78-25094
TAN, C. K. W.	
Analytical developments for definition and	
prediction of USE noise	
	N78-24062
TARNOGRODZKI, A.	
Remarks on design of supersonic wind tunne	
	A78-36216
TAYLOR, R. B.	
Aircraft measurement of radio frequency no	ise at
121.5 MHz, 243MHz and 406MHz	
	A78-39105
TAYLOR, W. P.	A
Evaluation of methods to produce aviation fuels from synthetic crude oils phase 3,	turbine
[AD-A053106]	N78-25239
Alternate fuels nitrogen chemistry	N/0-20209
[AD-A053299]	N78-25240
TENA LOPEZ, P.	N/0-25240
The new system for processing and presenti	ng madam
data in the Air Traffic Control Center o	ing Lauar f
Barcelona	-
542002044	A78-38997
TENKO, J.	
Inductor network development for aircraft	high
power supplies	3
TAD-10527501	N78-25096
TEEPSTRA, J. E.	
Jeppesen charting for area navigation	
	A78-36454
THOMAS, J. L.	
Aerodynamic characteristics in ground prox	imity
	N78-24055

THOMAS, B. G. F-5E/F spin avoidance testing A78-38747 THOMSON, J. M. Susceptibility testing of airborne equipment - The wayahead A78-39086 THURSTON, D. B. Design for flying A78-36498 TIJDEMAN, H. Investigations of the transonic flow around oscillating airfoils A78-38978 TOBMEBDAHL, J. B. General aviation avionics equipment maintenance [NASA-CR-145342] N78-N78-24132 TOPPING, B. P. Studies on transonic turbine with film-cooled blades [AD-A052423] N78-24149 TROUT, A. H. Design and preliminary results of a semitranspiration cooled (Lamilloy) liner for a high-pressure high-temperature Combustor ₩78-24138 [NÁSA-TM-78874] TSIREL, V. S. Study of magnetic noise in the Ka-26 helicopter A78-39188 TUNNAH, B. G. Computer model for refinery operations with emphasis on jet fuel production. Volume 3: Detailed systems and programming documentation [NASA-CR-135335] TOBKOWSKI, L. Characteristics of flow past fuselages and wing-fuselage systems of gliders N78-25235 178-36203

U

UVAROV, V. S. Aurcraft radar systems

A78-37873

V

VACHAL, J. D. Application of laminar flow control to large subsonic military transport airplanes [AD-A052422] N78-24098 VANLEBUWEN, H. P. Heat treatment studies of aluminum allov type 7050 forgings. The effect of heat treatment on a variety of engineering properties [NLR-TR-76008-U] N78-N78-25199 VANWYR. A. J. Performance tests and design modifications of a Wankel type rotary combustion automobile engine in order to determine its suitability for aircraft application [CSIR-ME-1521] N78-25095 VATSURO, A. B. Study of magnetic noise in the Ka-26 helicopter A78-39188 VAUCHERET, X. Prediction of the aerodynamic characteristics of an aircraft on the basis of the comparison of results for a calibration model in various large transonic wind tunnels [ONERA, TP NO. 1978-22] A78-395 A78-39579 [0NEXA, TP NO. 1978-22] A78-VAGGHN, R. L. An atomic fluorescence system using a continuum source for the rapid determination of vear metals in jet engine lubricating oils [AD-A052721] N78-N78-24320 VEBBURI, R. S. Survey of air cargo forecasting techniques [NASA-CR-145329] N78-25068 VOGLEE, R. P. Comparison of aerodynamic theory and experiment for jet-flap wings N78-24052 VOIT, P. IA. Preliminary experience with the use of the Yak-40 aircraft in studies of cloud physics and artificial modifications A78-36483 VOLOBUEV, V.

PERSONAL AUTHOR INDEX

VOLOBUEV, V. The technical concepts behind the IL-62M /8/ landing gear A78-36622

W

WARAI. I. Study on problems of terminal site location A78-36323 WALDER. A. Cobalt-base alloys produced by powder metallurgy for compressor and turbine disks [ONERA, TP NO. 1978-7] A78-39582 WEAR, J. D. Design and preliminary results of a semitranspiration cooled (Lamilloy) liner for a high-pressure high-temperature combustor [NASA-TM-78874] N78-24138 WEINER, D. C. On setting avionic subsystem unit production cost goals [AD-A051337] N78-24133 WELLS, W. I. Verification of DABS sensor surveillance performance (ATCRBS mode) at typical ASR sites throughout CONUS N78-24105 [AD-A051128] WESTON, R. P. Round jet in a cross flow - Influence of injection angle on wortex properties A78-37744 WHALEN. J. J. Assessment procedure application utilizing OHF transistor RF pulse susceptibility data A78-39101 WHITEHEAD, A. H., JR. Preliminary analysis of hub and spoke air freight distribution system [NASA-TM-72656] N78-25069 WIDHALL, S. B. The effect of tip vortex structure on helicopter noise due to blade/vortex interaction [NASA-CR-152150] N78-25832 WIESEMANN, W. Plight-testing of a continuous laser remote sensing system A78-39632 WILLIAMS, M. L. Non-destructive method for applying and removing instrumentation on helicopter rotor blades [NASA-CASE-LAR-11201-1] N78-24515 WILLIAMS, R. L. Environmental requirements for simulated helicopter/VTOL operations from small ships and carriers [AD-A053078] N78-25084 WILLIS, C. H. Acoustic-loads research for powered-lift configurations N78-24073 WILSON, C. A. YP 102 in-duct combustor noise measurement, volume 1 [NASA-CR~135404-VOL-1] YF 102 in-duct combustor noise measurement, volume 3 [NASA-CR-135404-VOL-3] N78-25829 WITCOPSKI, R. D. Progress on coal-derived fuels for aviation systems [NASA-TM-78696] N78-25545 WOERWDLE, R. Use of structural analysis programs for calculating states of stress in helicopter rotor elements 178-38807 WOLP, T. L. The effect of tip vortex structure on helicopter noise due to blade/vortex interaction [NASA-CR-152150] N78-2 N78-25832 WOODWARD, R. P. Acoustic evaluation of a novel swept-rotor fan [NASA-TH-78878] N78 N78-24897 WOOMER, C. W. Environmental requirements for simulated helicopter/VTOL operations from small ships and carriers [AD-A053078] N78-25084 WORTHANN, P. X. Drag reduction for gliders [NASA-TM~75293] N78-24116

90, J. J. Vibrations of a helicopter rotor blade using finite element unconstrained variational formulations N78-24125 [AD+A052670] WURTZ, J. E. CRT update x78-37490 γ YAHAGISHI, H. New model VOR/DEE A78-37246 YAHAHOTO, K. Azimuthal decomposition of the power spectral density of jet noise A78-37532 YEGHIAYAN, R. P. Modeling of the UH-1B tail boom for analysis by the NASTRAN computer program [AD-A052303] N78-25081 Y1P, L. P. Comparison of aerodynamic theory and experiment for jet-flap wings N78-24052

Effects of spanwise nozzle geometry and location on the longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration at subsonic speeds [NISA-TP-1215] N78-25060 YONEZAWA, K. Evaluation of geometric performance of global positioning system

YOUNG, C. A theoretical study of the effect of blade ice accretion on the power-off landing capability of a Wesser helicopter A78-37987 A78-36948

ZHAVORONKOV, V. P. Aırcraft radar systems

A78-37873

ZHILIN, IU. V. Experimental investigation of gasdynamic processes at sudden start-up of a supersonic nozzle A78-38641

Ζ

.

`

CONTRACT NUMBER INDEX

AERONAUTICAL ENGINEERING / A Continuing Bibliography (Suppl 100)

SEPTEMBER 1978

Typical Contract Number Index Listing

Listings in this index are arranged alphanumerically by contract number Under each contract number the accession numbers denoting documents that have been produced as a result of research done under that contract are arranged in ascending order with the *IAA* accession numbers appearing first. The accession number denotes the number by which the citation is identified in either the *IAA* or *STAR* section.

AF PROJ. 1369	FAA PROJ. 216-102-100
N78-25082	N78-24154
F PROJ. 1476	F19628-78-C-0002
N78-24098 AF PROJ. 3048	104 A78-39674 א78-24105
N78-25239	P29601-76-C-0064
AF PROJ. 3066	A78-37124
N78-24144	F33615-74-C-20
N78-24145	N78-25096
AF PROJ. 3145	F33615-74-C-2036
N78-25096 AF PROJ. 7381	178-25239 15-74-C-5089
N78-24344	N78-24344
AF-AFOSR-76-2936	P33615+75-C-2053
A78-37772	N78-24144
AF-AFOSB-3501-78	N78-24145
N78-24150	F33615-75-C-3152
ARO PROJ. V33A-A8A N78-24089	₹78-25082 ₹33615-76-C-3035
DA PROJ. 1F1-63204-DB-38	N78-24098
N78-24118	F33615-76-C-3066
N78-24119	N78-25087
DA PROJ. 1F2-62209-AH-76	F33615-76-C-3073
N78-24126	₩78-25085
N78-24158	F33657-72-C-0829
N78-24557 DA PROJ. 111-61102-AH-45	N78-24900 F49620-77-C-0055
N78-24125	A78-39135
DAAD05-76-C-0763	MIPR-PY14557-601611
N78-25081	N78-24380
DAAG29-76-G-0241	NASW-2790 N78-24085
N78-24096	N78-24142
DAAG29-77-G-0067 N78-24094	NASW-2791 N78-24084 N78-24116
DAAJ01-71-C-0840	NAS1-13500 N78-25054
N78-24122	NAS1-13870 N78-24061
DAAJ02-72-C-0082	N78-24062
N78-24118	NAS1-13871 N78-24057
N78-24119	NAS1-14192 N78-24903
DAAJ02-74-C-0028 N78-24557	NAS1-14686 N78-24043 NAS1-14795 N78-25985
DAAJ02-75-C-0053	NAS1-14795 N78-25985
N78-24126	NAS1-14939 N78-24132
DAAJ02-76-C-0042	NAS1-14973 N78-25831
N78-24158	NAS2-8832 N78-25359
DAHC04-74-G-0184	NAS2-9211 N78-25057
N78-24096 DAHC15-73-C-0200	NAS2-9418 N78-24117 NAS3-18538 N78-25080
N78-24133	NAS3-20052 N78-25827
N78-24156	N78-25829
DOT-FA72WAI-261	NAS3-20620 N78-25235
N78-24105	NAS7-100 A78-37743
DOT-FA76WAI-594	NAS9-14952 N78-25986
N78-24385 Dot-PA77-NAI-432	N78-25987 NCAZ-0R745-720
A78-39674	NCA2-08/45-720 N78-25979
DOT-TSC-682 N78-24099	NGL-05-020-243
EPA-R-802925-02-2	A78-39135
A78-37297	NGL-10-005-127
EY-76-C-02-3077	A78-37744
N78-24808 PAA PROJ. 034-241-012	NGL-39-009-172
PAA PROJ. 034-241-012 N78-24105	NGR-33-016-167
PAA PROJ. 072-424-500	NGR-33-010-107 N78-24808
N78-24153	NGR-33-016-201
	N78-24808

,

NSG-1107	N78-25056
NSG-1139	₩78-24059
NSG-1169	N78-25966
NSG-1300	₩78-25056
NSG-2010	A78-38766
NSG-2039	A78-36596
NSG-2142	N78-25832
NSG-2145	N78-25078
N00014-76-C-	0253
	178-24149
N00014-77-C-	0032
	N78-24808
N00014-77-C-	0180
	N78-25051
N00014-77-C-	0461
	N78-24124
N00019-76-C-	0675
	N78-25240
N00019-77-C-	0309
	N78-25050
N00140-75-C-0	
	N78-25097
	N78-25098
N00140-76-C-0	0383
	N78-24556
#1-77-5660-1	
505-02-13-14	
505-03-12	N78-25827
	N78-25829
505-06-34	N78-25055
505-07-33-04	N78-25101
505-09-13-11	N78-24903
505-11-13-04	N78-25060
505-11-23-03	N78-25058
505-11-33-00	N78-25059
515-51-11-01	N78-25071
516-50-23-01	N78-25054
510-50-25-01	N78-25079
	N78-25545
742-73-01-14	N78-24078
142-13-01-14	N78-24078
767 73 04 65	N78-24080
767-73-01-04	N78-24077
791-40-13-01	N78-25069

1

1 Report No. NASA-SP-7037 (100)	2 Government Access	on No	3 Recipient's Catalog	No
4 Title and Subtitle	· · · · · · ·		5 Report Date September	1978
AERONAUTICAL ENGINEERING			6. Performing Organiza	
A Continuing Bibliography	(Supplement	100)		
7 Author(s)			8 Performing Organiza	ition Report No.
			10 Work Unit No	
9 Performing Organization Name and Address				
National Aeronautics and Washington, D. C. 20546	Space Adminis	tration	11 Contract or Grant	No
			13 Type of Report an	d Period Covered
12 Sponsoring Agency Name and Address		ļ		
			14 Sponsoring Agency	Code
15 Supplementary Notes		<u></u>	· · · · · · · · · · · · · · · · · · ·	
16 Abstract				
This bibliography l	ists 295 repor	ts articles a	nd other doci	uments
introduced into the				
system in August 19	78.			
17 Key Words (Suggested by Author(s))		18 Distribution Statement		
Aerodynamics				
Aeronautical Engineering		Unclassified - Unlimited		
Aeronautics				
Bibliography				
19 Security Classif (of this report)	1			
	20 Security Classif (o	f this page)	21. No of Pages	22 Price*

*For sale by the National Technical Information Service, Springfield, Virginia 22161

PUBLIC COLLECTIONS OF NASA DOCUMENTS

DOMESTIC

NASA distributes its technical documents and bibliographic tools to ten special libraries located in the organizations listed below Each library is prepared to furnish the public such services as reference assistance, interlibrary loans, photocopy service, and assistance in obtaining copies of NASA documents for retention

CALIFORNIA University of California, Berkeley COLORADO University of Colorado, Boulder DISTRICT OF COLUMBIA Library of Congress GEORGIA Georgia Institute of Technology, Atlanta ILLINOIS The John Crerar Library, Chicago MASSACHUSETTS Massachusetts Institute of Technology, Cambridge MISSOURI Linda Hall Library, Kansas City NEW YORK Columbia University, New York PENNSYLVANIA Carnegie Library of Pittsburgh

WASHINGTON University of Washington, Seattle

NASA publications (those indicated by an "*" following the accession number) are also received by the following public and free libraries

CALIFORNIA

Los Angeles Public Library San Diego Public Library

COLORADO Denver Public Library CONNECTICUT Hartford Public Library

MARYLAND Enoch Pratt Free Library, Baltimore MASSACHUSETTS Boston Public Library

MICHIGAN Detroit Public Library

MINNESOTA Minneapolis Public Library

MISSOURI Kansas City Public Library St Louis Public Library

NEW JERSEY Trenton Public Library

NEW YORK

Brooklyn Public Library Buffalo and Erie County Public Library Rochester Public Library New York Public Library OHIO Akron Public Library Cincinnati Public Library Cleveland Public Library Dayton Public Library Toledo Public Library OKLAHOMA Oklahoma County Libraries, Oklahoma City TENNESSEE

Memphis Public Library TEXAS Dallas Public Library Fort Worth Public Library WASHINGTON Seattle Public Library WISCONSIN

Milwaukee Public Library

An extensive collection of NASA and NASA-sponsored documents and aerospace publications available to the public for reference purposes is maintained by the American Institute of Aeronautics and Astronautics, Technical Information Service, 750 Third Avenue, New York, New York, 10017

EUROPEAN

An extensive collection of NASA and NASA-sponsored publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England By virtue of arrangements other than with NASA, the British Library Lending Division also has available many of the non-NASA publications cited in *STAR* European requesters may purchase facsimile copy or microfiche of NASA and NASA-sponsored documents, those identified by both the symbols #" and "*", from ESRO/ELDO Space Documentation Service, European Space Research Organization, 114, av Charles de Gaulle 92-Neuilly-sur-Seine, France

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business Penalty for Private Use, \$300 Postage and Fees Paid National Aeronautics and Space Administration NASA-451

NASA

POSTMASTER: If Po

.

If Undeliverable (Section 158 Postal Manual) Do Not Return

NASA CONTINUING BIBLIOGRAPHY SERIES

THIRD-CLASS BULK RATE

NUMBER	TITLE	FREQUENCY
NASA SP-7011	AEROSPACE MEDICINE AND BIOLOGY Aviation medicine, space medicine, and	Monthly
	space biology	
NASA SP-7037	AERONAUTICAL ENGINEERING	Monthly
	Engineering, design, and operation of aircraft and aircraft components	
NASA SP-7039	NASA PATENT ABSTRACTS BIBLIOGRAPHY	Semiannually
	NASA patents and applications for patent	
NASA SP7041	EARTH RESOURCES	Quarterly
	Remote sensing of earth resources by aircraft and spacecraft	
NASA SP-7043	ENERGY	Quarterly
	Energy sources, solar energy, energy conversion, transport, and storage	
NASA SP-7500	MANAGEMENT	Annually
	Program, contract, and personnel management, and management techniques	

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546