69 research outputs found

    A prototype of an energy-efficient MAGLEV train : a step towards cleaner train transport

    Get PDF
    The magnetic levitation (MAGLEV) train uses magnetic field to suspend, guide, and propel vehicle onto the track. The MAGLEV train provides a sustainable and cleaner solution for train transportation by significantly reducing the energy usage and greenhouse gas emissions as compared to traditional train transportation systems. In this paper, we propose an advanced control mechanism using an Arduino microcontroller that selectively energizes the electromagnets in a MAGLEV train system to provide dynamic stability and energy efficiency. We also design the prototype of an energy-efficient MAGLEV train that leverages our proposed control mechanism. In our MAGLEV train prototype, the levitation is achieved by creating a repulsive magnetic field between the train and the track using magnets mounted on the top-side of the track and bottom-side of the vehicle. The propulsion is performed by creating a repulsive magnetic field between the permanent magnets attached on the sides of the vehicle and electromagnets mounted at the center of the track using electrodynamic suspension (EDS). The electromagnets are energized via a control mechanism that is applied through an Arduino microcontroller. The Arduino microcontroller is programmed in such a way to propel and guide the vehicle onto the track by appropriate switching of the electromagnets. We use an infrared-based remote-control device for controlling the power, speed, and direction of the vehicle in both the forward and the backward direction. The proposed MAGLEV train control mechanism is novel, and according to the best of our knowledge is the first study of its kind that uses an Arduino-based microcontroller system for control mechanism. Experimental results illustrate that the designed prototype consumes only 144 W-hour (Wh) of energy as compared to a conventionally designed MAGLEV train prototype that consumes 1200 Wh. Results reveal that our proposed control mechanism and prototype model can reduce the total power consumption by 8.3 x as compared to the traditional MAGLEV train prototype, and can be applied to practical MAGLEV trains with necessary modifications. Thus, our proposed prototype and control mechanism serves as a first step towards cleaner engineering of train transportation systems

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Electromagnetic suspension and levitation

    Full text link

    Design and Optimisation of a Virtual Prototype of a Ground Transportation System at Very High-Speeds in Conditions Close to Vacuum

    Full text link
    [ES] Hyperloop es considerado el quinto medio de transporte, después del coche, barco, tren y avión. Consiste en una capsula de levitación magnética que viaja dentro de un tubo en el que la presión de aire ha sido reducida. Entonces, la fricción con el suelo y resistencia aerodinámica son minimizadas, alcanzando ultra altas velocidades a nivel de tierra. Actualmente hay en desarrollo varios trenes maglev y conceptos hyperloop. La mayoría proponen levitar usando Suspensión Electromagnética (EMS). Zeleros, la compañía donde esta Tesis ha sido realizada, tiene una propuesta similar. Zeleros usa un EMS Híbrido (HEMS), combinando imanes y electroimanes para reducir los requerimientos de energía. Respecto a la propulsión, la propuesta es única ya que hace uso de un compresor de la industria aeroespacial. Simulaciones CFD prueban que usar un compresor reduce considerablemente la resistencia aerodinámica en el ambiente cerrado, ya que el efecto pistón es mitigado. Para el mismo tamaño de tubo y presión, un hyperloop con compresor requiere hasta 70 % menos potencia. En otros términos, si la misma potencia es instalada en el vehículo, el diámetro de la infraestructura puede ser 2.8 veces más pequeño. Esta Tesis desarrolla un simulador 0D para evaluar el rendimiento de la solución hyperloop propuesta. Resolver su aerodinámica requiere solucionar un fujo interno y externo de Fanno. El último combina efectos de Couette y Poisuille en un dominio anular. Así, se desarrolla un modelo simplificado para flujos de Fanno, acelerando así el modelado básico. Esta aproximación matemática incluye información de la velocidad de la pared y de la forma del dominio, evitando integrar un sistema de EDOs. La solución tiene una desviación en la ratio de presiones de 5 % respecto a CFD, y del 10 % en la longitud crítica. El simulador modela toda la termodinámica del vehículo, incluyendo el compresor, conductos, turbina, tobera y flujo externo. Este modelado es similar al del ciclo de Bryton, sin cámara de combustión. Además, se incluye un modelo para predecir la masa y longitud de la cápsula y sus componentes. Así, las pérdidas de fricción y requerimientos de potencia y energía son obtenidos. Estos resultados presentan una desviación máxima del 20 % respecto a CFD. Además, un proceso de optimización para encontrar la solución más eficiente se ha desarrollado con el código, para vehículos de 50 y 150 pasajeros. Se ha encontrado que es más beneficioso absorber menos gasto másico con el compresor, ya que la energía requerida para comprimir el flujo interno es más alta que las pérdidas en el canal externo. Comparando el consumo de energía específico de esta solución con otros medios de transporte, el hyperloop se encuentra cercano al rendimiento de los maglev. Éste es, también, entre tres y cinco veces más eficiente que los aviones. Además, es más competitivo que el avión en términos de velocidad media en una ruta hasta los 800 km. Por último, se desarrolla un modelo similar para un sistema de escala media. Este prototipo, cuya velocidad objetivo es de 500 km/h, es diseñado por Zeleros previo al sistema de escala real. Su simulador incluye además los efectos transitorios y la termodinámica del tubo, asumiendo una velocidad del sonido infinita. Gracias a este código, se puede obtener el rendimiento en una misión. Inicialmente, el prototipo incrementa la presión del tubo aguas arriba, y la reduce aguas abajo debido al efecto pistón, generando una velocidad inducida. Al final de la misión, el flujo puede ser transferido otra vez, y las presiones se equilibran otra vez. Este modelo también predice el par y potencia del motor eléctrico, además de los parámetros de la batería (voltaje, corriente y profundidad de descarga).[CA] Hyperloop és considerat el cinquè mitjà de transport, després del cotxe, vaixell, tren i avió. Consisteix en una càpsula de levitació magnètica que viatja dins d'un tub on la pressió d'aire es reduïda. Aleshores, la fricció amb el sòl i resistència aerodinàmica són minimitzades, aconseguint ultra altes velocitats a nivell de terra. Actualment hi ha en desenvolupament diversos trens maglev i conceptes hyperloop. La majoria proposen levitar usant Suspensió Electromagnètica (EMS). Zeleros, la companyia on aquesta Tesi ha sigut realitzada, té una proposta similar. En particular, el concepte de Zeleros utilitza un EMS Híbrid (HEMS), combinant imants i electroimants per reduir els requeriments d'energia. Pel que fa a la propulsió, la proposta és única, ja que fa ús d'un compressor de la indústria aeroespacial. Simulacions CFD proven que utilitzar un compressor redueix considerablement la resistència aerodinàmica en un ambient tancat, ja que l'efecte pistó és mitigat. Per a la mateixa grandària de tub i pressió, un hyperloop amb compressor requereix fins a 70 % menys potència. En altres termes, si la mateixa potència és instal·lada al vehicle, el diàmetre de la infraestructura pot ser 2.8 vegades més menut. Aquesta Tesi desenvolupa un simulador 0D per avaluar el rendiment de la solució hyperloop proposada. Resoldre l'aerodinàmica del hyperloop requereix solucionar un flux intern i extern de Fanno. L'últim combina efectes de Couette i Poiseuille en un domini anular. Així, es desenvolupa un model simplificat per a fluxos de Fanno, accelerant així el modelatge bàsic. Aquesta aproximació matemàtica inclou informació de la velocitat de la paret i de la forma del domini, evitant integrar un sistema de EDOs. La solució té una desviació a la ràtio de pressions de 5 % respecte a CFD, i del 10 % a la longitud crítica. El simulador modela tota la termodinàmica del vehicle, incloent-hi el compressor, conductes, turbina, tovera i flux extern. Aquest modelat es similar al del cicle de Bryton, sense càmera de combustió. A més, s'inclou un model per predir la massa i la longitud de la càpsula i els seus components. Així, les pèrdues de fricció i requeriments de potència i energia són obtinguts. Aquests resultats presenten una desviació màxima del 20 % comparat amb CFD. A més, un procés d'optimització per trobar la solució més eficient ha estat desenvolupat amb el codi, per a vehicles de 50 i 150 passatgers. S'ha trobat que és més beneficiós absorbir menys massa amb el compressor, ja que l'energia requerida per comprimir el flux intern és més alta que les pèrdues al canal extern. Comparant el consum d'energia específic d'aquesta solució amb altres mitjans de transport, el hyperloop és proper al rendiment dels maglev. Aquest també és entre tres i cinc vegades més eficient que els avions. A més, és més competitiu en termes de velocitat mitjana en una ruta fins a 800 km. Finalment, es desenvolupa un model semblant per a un sistema d'escala mitjana. Aquest prototip, la velocitat objectiu del qual és de 500 km/h, és dissenyat per Zeleros previ al sistema d'escala real. El seu simulador inclou a més els efectes transitoris i la termodinàmica del tub, assumint una velocitat del so infinita. Gràcies a aquest codi, es pot obtenir el rendiment en una missió. Inicialment, el prototip incrementa la pressió del tub aigües amunt, i la redueix aigües avall degut a l'efecte pistó, generant una velocitat induïda. Al final de la missió, el flux pot ser transferit una altra vegada, i les pressions s'equilibren una altra vegada. Aquest model també prediu el parell i potència del motor elèctric, a més dels paràmetres de la bateria (voltatge, corrent i profunditat de descàrrega).[EN] Hyperloop is considered the fifth means of transportation, after the car, boat, train and plane. It consists of a magnetically levitating capsule that travels within a tube in which the air pressure has been reduced. Thus, the ground friction and aerodynamic drag are minimised, reaching ultra high-speeds at ground level. Several maglev trains and hyperloop concepts being developed currently. Most of them propose levitating using Electromagnetic Suspension (EMS). Zeleros, the company where this Thesis was done, has a similar approach. It employs a Hybrid EMS (HEMS)In particular, the Zeleros approach employs a Hybrid EMS (HEMS), combining permanent and electromagnets to reduce energy requirements. As for the propulsion, the approach is unique as it uses a compressor from the aeronautical industry. CFD simulations prove that using a compressor considerably reduces the aerodynamic drag in the closed environment, as the piston effect gets mitigated. For the same tube size and pressure, a hyperloop with compressor requires up to 70 % less power. In other terms, if the same power is installed on the vehicle, the infrastructure diameter can be 2.8 times smaller. This Thesis develops a 0D simulator to evaluate the performance of the proposed hyperloop solution. Solving the aerodynamics of the hyperloop requires solving internal and external Fanno flows. For the latter, the flow combines Couette and Poiseuille effects in an annular domain. Thus, a simplified model for Fanno flows is developed to accelerate the basic modelling. This mathematical approach includes the information of the wall speed and the shape of the domain, avoiding integrating an ODE system. The solution has a deviation in the pressure ratio of 5 % and 10 % in the critical length regarding CFD. The simulator models all the vehicle thermodynamics, including the compressor, duct, turbine, nozzle, and external flow. This modelling is similar to a Bryton cycle, without a combustion chamber. Also, a model to predict the mass and length of the capsule and its components is included. Thus, the friction losses and the energy and power requirements can be extracted. These outputs are compared with CFD results, with a maximum deviation of 20 %. Moreover, an optimisation process is conducted with the code to find the most efficient solution for 50- and 150-passenger vehicles. It is found that shallowing less mass flow with the compressor is better, as the energy required to compress the internal flow is higher than the losses on the external channel. Comparing the specific energy consumption of this solution with other means of transportation, the hyperloop is close to the maglev performance. It is also between three and five times more efficient than aeroplanes. Furthermore, the hyperloop is more competitive than the plane in terms of average speed on a route, up to 800 km. The last part of this work develops a similar model for a middle-scale system. This prototype, which aims to reach 500 km/h, is being designed by Zeleros before the real-scale one. Its simulator also includes the transient effects and the tube thermodynamics, assuming an infinite sound speed. Thanks to this code, the performance in a mission is obtained. The prototype initially increases the upstream tube pressure and reduces the downstream one due to the piston effect, generating an induced speed. At the end of the mission, the flow can be transferred again, and the pressures equilibrate again. This model also predicts the electric motor torque and power and the battery parameters (voltage, current, and deep of discharge).Este trabajo ha recibido una subvención parcial del Ministerio de Ciencia, Innovación y Universidades bajo la ayuda “Doctorandos Industriales” número DI-17-09616.Lluesma Rodríguez, F. (2022). Design and Optimisation of a Virtual Prototype of a Ground Transportation System at Very High-Speeds in Conditions Close to Vacuum [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19140

    Investigation study of various carrier type for air tunnel transportation

    Get PDF
    This study highlights the influences of internal airflow on the motion of carrier in an air tunnel. The aim of this work is to study an alternative method of transporting goods from one place to another through an air tunnel. The development of such transport system can help to reduce traffic jams and deliver goods faster to its desired places. The analysis of carrier movement and the flow surrounding it was performed using FLUENT software version 16.1. The computational domain along the air tunnel was discretized using tetrahedron grids. The adopted numerical scheme was the time-averaged Navier-Stokes equation with turbulence modeling and the scheme was solved using the SIMPLE algorithm. The air movement was created by the presence of pressure difference. The results indicate the possibility of defining a carrier, which has a particular geometry to float and move. This study was performed in three stages. The first stage started with the investigation of suitable geometry of the carrier. Four shapes were considered, i.e. box, ball, wedge A and wedge B shape. The wedge A and B had the same configurations and dimensions, but the only difference was the position of each shape, facing the inlet in the air tunnel. It was found that the wedge B and the box shape had the fastest speed compared to the other two shapes. Rectangular wings with a cross section of either FX63-137, NACA 0012 or NACA 4412 airfoil was selected for this study. In the second stage, a carrier in a box shape with three rectangular wings attached was investigated. In the last stage, the carrier in wedge B shape with wings attached was examined. The results indicate that the carrier equipped with the airfoil NACA0012 has better performance than the carrier that uses airfoil FX 63-137 or airfoil NACA 4412 at wind speed of 30.8 m/s. In the experimental testing, a carrier in a box shape with wings attached was assessed. The result reveals that the movement of the carrier (FX63-137) shows better performance at the wind speed of 19.6 m/s, and this result is consistent with the simulation result

    Fourth International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Fourth International Symposium on Magnetic Suspension Technology was held at The Nagaragawa Convention Center in Gifu, Japan, on October 30 - November 1, 1997. The symposium included 13 sessions in which a total of 35 papers were presented. The technical sessions covered the areas of maglev, controls, high critical temperature (T(sub c)) superconductivity, bearings, magnetic suspension and balance systems (MSBS), levitation, modeling, and applications. A list of attendees is included in the document

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Symmetry in Electromagnetism

    Get PDF
    Electromagnetism plays a crucial role in basic and applied physics research. The discovery of electromagnetism as the unifying theory for electricity and magnetism represents a cornerstone in modern physics. Symmetry was crucial to the concept of unification: electromagnetism was soon formulated as a gauge theory in which local phase symmetry explained its mathematical formulation. This early connection between symmetry and electromagnetism shows that a symmetry-based approach to many electromagnetic phenomena is recurrent, even today. Moreover, many recent technological advances are based on the control of electromagnetic radiation in nearly all its spectra and scales, the manipulation of matter–radiation interactions with unprecedented levels of sophistication, or new generations of electromagnetic materials. This is a fertile field for applications and for basic understanding in which symmetry, as in the past, bridges apparently unrelated phenomena―from condensed matter to high-energy physics. In this book, we present modern contributions in which symmetry proves its value as a key tool. From dual-symmetry electrodynamics to applications to sustainable smart buildings, or magnetocardiography, we can find a plentiful crop, full of exciting examples of modern approaches to electromagnetism. In all cases, symmetry sheds light on the theoretical and applied works presented in this book

    Advanced spacecraft valve technology compilation. Volume 1 - Mechanical controls

    Get PDF
    Advanced mechanical valves and controls for liquid propellant rocket engines for space flights up to ten year

    Analysis of a rotating advanced-technology space station for the year 2025

    Get PDF
    An analysis is made of several aspects of an advanced-technology rotating space station configuration generated under a previous study. The analysis includes examination of several modifications of the configuration, interface with proposed launch systems, effects of low-gravity environment on human subjects, and the space station assembly sequence. Consideration was given also to some aspects of space station rotational dynamics, surface charging, and the possible application of tethers
    corecore