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Preface to ”Symmetry in Electromagnetism”

In this Special Issue, we focus on the modern view of electromagnetism, which represents both

an arena for academic advance and exciting applications. This Special Issue will include contributions

on electromagnetic phenomena in which symmetry plays a significant role, from a more theoretical

to more applied perspectives.

Albert Ferrando, Miguel Ángel Garcı́a-March
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E-46022 València, Spain
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Received: 21 April 2020; Accepted: 22 April 2020; Published: 26 April 2020

Electromagnetism plays an essential role, both in basic and applied physics research. The discovery
of electromagnetism as the unifying theory for electricity and magnetism represented a cornerstone
in modern physics. From the very beginning, symmetry was crucial to the concept of unification:
Electromagnetism was soon formulated as a gauge theory, in which a local phase symmetry explained
its mathematical formulation. This early connection between symmetry and electromagnetism shows
that a symmetry-based approach to many electromagnetic phenomena is recurrent, even today.

Moreover, many crucial technological advances associated with electromagnetism have shaped
modern civilization. The control of electromagnetic radiation in nearly all its spectra and scales
is still a matter of deep interest. With the advances in material science, even at the nanoscale,
the manipulation of matter–radiation interactions has reached unprecedented levels of sophistication.
New generations of composite materials present effective electromagnetic properties that permit the
molding of electromagnetic radiation in ways that were unconceivable just a few years ago. This is a
fertile field for applications and for basic understanding in which symmetry, as in the past, bridges
apparently unrelated phenomena, from condensed matter to high-energy physics.

Symmetry is the key tool in the contributions included in this Special Issue. In the context
of electromagnetism, the approaches based on symmetry very often lead to diverse treatments of
orbital angular momentum or pseudomomentum (as defined in e.g., [1,2]). In this direction, the most
sophisticated modern approaches discuss the vectorial case, and in [3], the authors include spin-orbit
coupling in nonparaxial fields, and perform a complete an analytical study of the case. The study of
electromagnetic knots is also connected to orbital angular momentum, which are a consequence of
applying topology concepts to Maxwell equations; in [4] the authors apply symmetry transformations
to a particular electromagnetic knot, the hopfion field, to obtain a new set of knotted solutions with the
properties of null. Very related to the properties of orbital angular momentum (see [1]) are periodic
structures, which play a prominent role in many electromagnetic systems, e.g., microwave and antenna
devices. In [5] a method to obtain the relevant transmission, reflection or absorption characteristics of
a device obtained from the dispersion diagram are introduced, using general purpose electromagnetic
simulation software. Digging deeply into the theory, in [6] the authors present a thorough study of
quantum anomalies, which occur when a symmetry of a classical field theory is not also a symmetry of
its quantum version. This is discussed in the context of a new example for quantum electromagnetic
fields propagating in the presence of gravity, and applications for information extraction ARE foreseen.
In this direction, constraint equations in Maxwell theory are discussed in [7]. Interestingly, this work
is set in the context of an analogy with constraints of general relativity. A very deep analysis of a
fully relativistically covariant and gauge-invariant formulation of classical Maxwell electrodynamics
is included in [8], where the authors show the relationship of the symmetry of the inhomogeneous
equations obtained and that of Minkowski spacetime. Of a great theoretical interest is also the work
presented in [9], where the authors elaborate and improve the previous proposal of a nonlocal action

Symmetry 2020, 12, 685; doi:10.3390/sym12050685 www.mdpi.com/journal/symmetry1
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functional for electrodynamics depending on the electric and magnetic fields, instead of potentials.
They then use this formalism to confront the electric–magnetic duality symmetry of the electromagnetic
field and the Aharonov–Bohm effect, two subtle aspects of electrodynamics.

Also, this book includes many applications, such as in sustainable smart buildings [10], or in
magnetocardiography, where in [11] the authors present an improved variational mode decomposition
model used to decompose the nonstationary signal. The magnetic properties of barium hexaferrite
doped with titanium were studied in [12], where the authors propose that they could be used in
the recording equipment and permanent magnets. The application to high speed systems is very
appealing, such as those related to the Hyperloop concept; in particular in [13], the design and analysis
of a plate-type electrodynamic suspension structure for the ground high-speed system is introduced.
Finally, a report on the results of research into a vibration-powered milli-or micro-generator is given
in [14], where the generators harvest mechanical energy at an optimum level, utilizing the vibration
of its mechanical system; here, the authors compare some of the published microgenerator concepts
and design versions by using effective power density, among other parameters, and they also provide
complementary comments on the applied harvesting techniques.

This book includes papers focusing on detailed and deep theoretical studies to cutting edge
applications, with many of the papers includED ALREADY harvesting many citations. The fruitful
study of symmetry in electromagnetism continues to offer many encouraging surpriseS, both at a basic
and an applied level.
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Abstract: We calculate analytically the spin-orbital decomposition of the angular momentum using
completely nonparaxial fields that have a certain degree of linkage of electric and magnetic lines.
The split of the angular momentum into spin-orbital components is worked out for non-null
knotted electromagnetic fields. The relation between magnetic and electric helicities and spin-orbital
decomposition of the angular momentum is considered. We demonstrate that even if the total angular
momentum and the values of the spin and orbital momentum are the same, the behavior of the
local angular momentum density is rather different. By taking cases with constant and non-constant
electric and magnetic helicities, we show that the total angular momentum density presents different
characteristics during time evolution.

Keywords: electromagnetic knots; helicity; spin-orbital momentum

1. Introduction

There has been recently some interest in the orbital-spin decomposition of the angular momentum
carried by light. The total angular momentum can be decomposed into orbital and spin angular
momenta for paraxial light, but for nonparaxial fields, that splitting is more controversial because their
quantized forms do not satisfy the commutation relations [1,2]. For a review and references, see for
example [3,4].

In this work, we provide an exact calculation of the orbital-spin decomposition of the angular
momentum in a completely nonparaxial field. We compute the orbital-spin contributions to the
total angular momentum analytically for a knotted class of fields [5]. These fields have nontrivial
electromagnetic helicity [6,7]. We show that the existence of electromagnetic fields in a vacuum with
the same constant angular momentum and orbital-spin decomposition, but different electric and
magnetic helicities is possible. We find cases where the helicities are constant during the field evolution
and cases where they change in time, evolving through a phenomenon of exchanging magnetic and
electric components [8]. The angular momentum density presents different time evolution in each case.

The orbital-spin decomposition and its observability has been discussed in the context of the dual
symmetry of Maxwell equations in a vacuum [9]. In this paper, we first make a brief review of the
concept of electromagnetic duality. That duality, termed “electromagnetic democracy” [10], has been
central in the work of knotted field configurations [5,11–26]. Related field configurations have also
appeared in plasma physics [27–30], optics [31–35], classical field theory [36], quantum physics [37,38],
various states of matter [39–43] and twistors [44,45].

We will make use of the helicity basis [7] in order to write the magnetic and electric spin of the
field in that basis, which simplifies the calculations, as well as the magnetic and electric helicities’

Symmetry 2018, 10, 88; doi:10.3390/sym10040088 www.mdpi.com/journal/symmetry5
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components. On that basis, we will get some general results, such as the difference between the
magnetic and electric spin components in the Coulomb gauge is null. This conclusion coincides with
the results found, for example, in [46] using a different approach. We proceed by giving the explicit
calculation of the decomposition of the angular momentum into spin and orbital components for a
whole class of fields, the non-null toroidal class [5,25]. We will show that the angular decomposition
remains constant in time, while the helicities may or may not change. We provide an example of
each case and plot the time evolution of the total angular momentum density. In the final section,
we summarize the main results.

2. Duality and Helicity in Maxwell Theory in a Vacuum

In this section, we will review the definition of magnetic and electric helicities. These definitions
are possible because of the dual property of electromagnetism in a vacuum. We will also describe
a vector density, which can be identified with the spin density using the helicity four-current
zeroth component.

Electromagnetism in a vacuum can be described in terms of two real vector fields, E and B, called
the electric and magnetic fields, respectively. Using the SI units, these fields satisfy Maxwell equations
in a vacuum,

∇ · B = 0, ∇× E + ∂tB = 0, (1)

∇ · E = 0, ∇× B − 1
c2 ∂tE = 0. (2)

Using the four-vector electromagnetic potential:

Aμ =

(
V
c

, A

)
, (3)

where V and A are the scalar and vector potential, respectively, the electromagnetic field tensor is:

Fμν = ∂μ Aν − ∂ν Aμ. (4)

From Equation (4), the electric and magnetic field components are:

Ei = c Fi0, Bi = −1
2

εijkFjk, (5)

or, in three-dimensional quantities,

E = −∇V − ∂A

∂t
, B = ∇× A. (6)

Since Equation (1) is just identities in terms of the four-vector electromagnetic potential
Equation (3), by using (6), the dynamics of electromagnetism is given by Equation (2), which can be
written as:

∂μFμν = 0. (7)

Partly based on the duality property of Maxwell equations in a vacuum [47], there is the idea of
“electromagnetic democracy” [9,10]. The equations are invariant under the map (E, cB) �→ (cB,−E).
Electromagnetic democracy means that, in a vacuum, it is possible to define another four-potential:

Cμ = (c V′, C), (8)

6
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so that the dual of the electromagnetic tensor Fμν in Equation (4), defined as:

∗Fμν =
1
2

εμναβFαβ, (9)

satisfies:
∗Fμν = −1

c
(
∂μCν − ∂νCμ

)
, (10)

or, in terms of three-dimensional fields,

E = ∇× C, B = ∇V′ + 1
c2

∂C

∂t
. (11)

Equation (2) is again identities when the definitions (11) are imposed. Thus, Maxwell equations in a
vacuum can be described in terms of two sets of vector potentials as in definition Equations (4) and (10),
which have to satisfy the duality condition Equation (9).

In the study of topological configurations of electric and magnetic lines, an important quantity is
the helicity of a vector field [48–53], which can be defined for every divergenceless three-dimensional
vector field. Magnetic helicity is related to the linkage of magnetic lines. In the case of electromagnetism
in a vacuum, the magnetic helicity can be defined as the integral:

hm =
1

2cμ0

∫
d3r A · B, (12)

where c is the speed of light in a vacuum and μ0 is the vacuum permeability. Note that, in this equation,
the magnetic helicity is taken so that it has dimensions of angular momentum in SI units. Since the
electric field in a vacuum is also divergenceless, an electric helicity, related to the linking number of
electric lines, can also be defined as:

he =
ε0

2c

∫
d3r C · E =

1
2c3μ0

∫
d3r C · E, (13)

where ε0 = 1/(c2μ0) is the vacuum electric permittivity. Electric helicity in Equation (13) also has
dimensions of angular momentum. Magnetic and electric helicities in a vacuum can be studied in terms
of helicity four-currents [6,7,9,17], so that the magnetic helicity density is the zeroth component of:

Hμ
m = − 1

2cμ0
Aν

∗Fνμ, (14)

and the electric helicity is the zeroth component of:

Hμ
e = − 1

2c2μ0
CνFνμ. (15)

The divergence of Hμ
m and Hμ

e is related to the time conservation of both helicities,

∂μHμ
m =

1
4cμ0

Fμν
∗Fμν,

∂μHμ
e = − 1

4cμ0

∗FμνFμν, (16)

which yields:

7
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dhm

dt
= − 1

2cμ0

∫
(V B − A × E) · dS − 1

cμ0

∫
d3r E · B,

dhe

dt
= − 1

2cμ0

∫ (
V′ E + C × B

) · dS +
1

cμ0

∫
d3r E · B. (17)

In the special case that the domain of integration of Equation (17) is the whole R3 space and the
fields behave at infinity in a way such that the surface integrals in Equation (17) vanish, we get:

• If the integral of E · B is zero, both the magnetic and the electric helicities are constant during the
evolution of the electromagnetic field.

• If the integral of E · B is not zero, the helicities are not constant, but they satisfy:

dhm

dt
= −dhe

dt
, (18)

so there is an interchange of helicities between the magnetic and electric parts of the field [8].
• For every value of the integral of E · B, the electromagnetic helicity h, defined as:

h = hm + he =
1

2cμ0

∫
d3r A · B +

ε0

2c

∫
d3r C · E, (19)

is a conserved quantity.

If the domain of integration of Equation (17) is restricted to a finite volume Ω, then the flux of
electromagnetic helicity through the boundary ∂Ω of the volume is given by:

dh
dt

= − 1
2cμ0

∫
∂Ω

[
(V B − A × E) +

(
V′ E + C × B

)] · dS. (20)

The integrand in the second term of this equation defines a vector density whose components are
given by Si = Hi

m +Hi
e, so that:

S =
1

2c2μ0

(
V B − A × E + V′ E + C × B

)
. (21)

This vector density has been considered as a physically meaningful spin density for the
electromagnetic field in a vacuum in some references [9,46,54–56]. In the following, we examine
some questions about the relation between the magnetic and electric parts of the helicity and their
corresponding magnetic and electric parts of the spin.

3. Fourier Decomposition and Helicity Basis for the Electromagnetic Field in a Vacuum

In this section, we will write the electromagnetic fields in terms of the helicity basis, which will be
very useful for obtaining the results and computations presented in the following sections.

The electric and magnetic fields can be decomposed into Fourier terms,

E(r, t) =
1

(2π)3/2

∫
d3k

(
E1(k)e−ikx + E2(k)eikx)

)
,

B(r, t) =
1

(2π)3/2

∫
d3k

(
B1(k)e−ikx + B2(k)eikx

)
, (22)

where we have introduced the four-dimensional notation kx = ωt − k · r, with ω = kc.

8
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For the vector potentials, we need to fix a gauge. In the Coulomb gauge, the vector potentials are
chosen so that V = 0, ∇ · A = 0, V′ = 0, ∇ · C = 0. Then, they satisfy the relations:

B = ∇× A =
1
c2

∂C

∂t
,

E = ∇× C = −∂A

∂t
. (23)

One can write for them the following Fourier decomposition,

A(r, t) =
1

(2π)3/2

∫
d3k

[
e−ikx ā(k) + eikx a(k)

]
,

C(r, t) =
c

(2π)3/2

∫
d3k

[
e−ikx c̄(k) + eikx c(k)

]
, (24)

where the factor c in C is taken for dimensional reasons and ā, c̄ denotes the complex conjugate of a, c,
respectively. Taking time derivatives and using the Coulomb gauge conditions Equation (23),

E = −∂A

∂t
=

1
(2π)3/2

∫
d3k

[
e−ikx (ikc) ā(k)− eikx (ikc) a(k)

]
,

B =
1
c2

∂C

∂t
=

1
(2π)3/2

∫
d3k

[
−e−ikx (ik) c̄(k) + eikx (ik) c(k)

]
. (25)

and by comparison with Equation (22), one can get the values for a(k) and c(k).
The helicity Fourier components appear when the vector potentials A and C, in the Coulomb

gauge, are written as a combination of circularly-polarized plane waves [57], as:

A(r, t) =
√

h̄cμ0

(2π)3/2

∫ d3k√
2k

[
e−ikx (aR(k)eR(k) + aL(k)eL(k)) + C.C

]
,

C(r, t) =
c
√

h̄cμ0

(2π)3/2

∫ d3k√
2k

[
i e−ikx (aR(k)eR(k)− aL(k)eL(k)) + C.C

]
. (26)

where h̄ is the Planck constant and C.C means the complex conjugate. The Fourier components in the
helicity basis are given by the unit vectors eR(k), eL(k), ek = k/k, and the helicity components aR(k),
aL(k) that, in the quantum theory, are interpreted as annihilation operators of photon states with right-
and left-handed polarization, respectively. In quantum theory, āR(k), āL(k) are creation operators of
such states.

In order to simplify the notation, most of the time, we will not write explicitly the dependence on
k of the basis vectors and coefficients, meaning aL = aL(k), eR = eR(k), a′L = aL(k

′), e′R = eR(k
′).

The unit vectors in the helicity basis are taken to satisfy:

ēR = eL, eR(−k) = −eL(k), eL(−k) = −eR(k),

ek · eR = ek · eL = 0, eR · eR = eL · eL = 0, eR · eL = 1,

ek × ek = eR × eR = eL × eL = 0,

ek × eR = −ieR, ek × eL = ieL, eR × eL = −iek,

(27)

9
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The relation between the helicity basis and the planar Fourier basis can be obtained by comparing
Equations (24) and (26). Consequently, the electric and magnetic fields of an electromagnetic field in a
vacuum, and the vector potentials in the Coulomb gauge can be expressed in this basis as:

E(r, t) =
ic
√

h̄cμ0

(2π)3/2

∫
d3k

√
k
2

[
e−ikx (aReR + aLeL)− eikx (āReL + āLeR)

]
B(r, t) =

√
h̄cμ0

(2π)3/2

∫
d3k

√
k
2

[
e−ikx (aReR − aLeL) + eikx (āReL − āLeR)

]
A(r, t) =

√
h̄cμ0

(2π)3/2

∫
d3k

1√
2k

[
e−ikx (aReR + aLeL) + eikx (āReL + āLeR)

]
C(r, t) =

ic
√

h̄cμ0

(2π)3/2

∫
d3k

1√
2k

[
e−ikx (aReR − aLeL)− eikx (āReL − āLeR)

]
(28)

where the unit vectors satisfy the relations Equation (27).
It is interesting to point the fact that in the helicity basis, we get for the magnetic vector potential

the relation:

A(k) = −k × k × A(k)
k · k

, (29)

where:
A(k) = e−ikx (aReR + aLeL) + eikx (āReL + āLeR) , (30)

taken from Equation (28). In reference Equation [58], the nonlocality of electromagnetic quantities is
discussed, and the transverse part of Fourier components of the vector potential is introduced as:

A⊥(k) = −k × k × A(k)
k · k

. (31)

We can see explicitly now from Equations (29) and (31) that in the Coulomb gauge in the helicity basis:

A(k) = A⊥(k).

4. Magnetic and Electric Helicities in the Helicity Basis

In the previous section, we have introduced the helicity basis and expressed the fields in that
basis. In this section, we will express the electric and magnetic helicities in the same basis [7].

If we use the expressions (28), the magnetic helicity can be written as:

hm =
1

2cμ0

∫
d3r A · B =

h̄
4

∫
d3k

∫
d3k′

∫ d3r
(2π)3

√
k′
k[

e−iωteiω′tei(k−k′)·r (aReR + aLeL) ·
(
ā′Re′L − ā′Le′R

)
+ eiωte−iω′te−i(k−k′)·r (āReL + āLeR) ·

(
a′Re′R − a′Le′L

)
+ e−iωte−iω′tei(k+k′)·r (aReR + aLeL) ·

(
a′Re′R − a′Le′L

)
+ eiωteiω′te−i(k+k′)·r (āReL + āLeR) ·

(
ā′Re′L − ā′Le′R

)]
. (32)

Taking into account the following property of the Dirac-delta function,

∫
d3k′

∫ d3r
(2π)3 e−i(k−k′)·r (f(k) · g(k′)

)
= f(k) · g(k), (33)

10
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and using the relations (27) yields:

hm =
h̄
2

∫
d3k (āR(k)aR(k)− āL(k)aL(k))

+
h̄
4

∫
d3k e−2iωt (−aR(k)aR(−k) + aL(k)aL(−k))

+
h̄
4

∫
d3k e2iωt (−āR(k)āR(−k) + āL(k)āL(−k)) . (34)

We observe that the magnetic helicity has two contributions: the first term in Equation (34) is
independent of time, and the rest of the terms constitute the time-dependent part of the magnetic helicity.

We repeat the same procedure for the electric helicity. The electric helicity can be written as:

he =
1

2c3μ0

∫
d3r C · E =

h̄
4

∫
d3k

∫
d3k′

∫ d3r
(2π)3

√
k′
k[

e−iωteiω′tei(k−k′)·r (aReR − aLeL) ·
(
ā′Re′L + ā′Le′R

)
+ eiωte−iω′te−i(k−k′)·r (āReL − āLeR) ·

(
a′Re′R + a′Le′L

)
− e−iωte−iω′tei(k+k′)·r (aReR − aLeL) ·

(
a′Re′R + a′Le′L

)
− eiωteiω′te−i(k+k′)·r (āReL − āLeR) ·

(
ā′Re′L + ā′Le′R

)]
, (35)

and again using Equations (33) and ((27), we get,

he =
h̄
2

∫
d3k (āR(k)aR(k)− āL(k)aL(k))

− h̄
4

∫
d3k e−2iωt (−aR(k)aR(−k) + aL(k)aL(−k))

− h̄
4

∫
d3k e2iωt (−āR(k)āR(−k) + āL(k)āL(−k)) . (36)

The electromagnetic helicity h in a vacuum is the sum of the magnetic and electric helicities.
From Equations (34) and (36),

h = hm + he = h̄
∫

d3k (āR(k)aR(k)− āL(k)aL(k)) . (37)

In quantum electrodynamics, the integral in the right-hand side of Equation (37) is interpreted
as the helicity operator, which subtracts the number of left-handed photons from the number of
right-handed photons. From the usual expressions:

NR =
∫

d3k āR(k)aR(k),

NL =
∫

d3k āL(k)aL(k), (38)

we can write (37) as:
h = h̄ (NR − NL) . (39)

Consequently, the electromagnetic helicity (19) is the classical limit of the difference between the
numbers of right-handed and left-handed photons [6,7,15].

11
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However, the difference between the magnetic and electric helicities depends on time in
general, since:

h̃(t) = hm − he =
h̄
2

∫
d3k

[
e−2iωt (−aR(k)aR(−k) + aL(k)aL(−k))

+ e2iωt (−āR(k)āR(−k) + āL(k)āL(−k))
]

. (40)

so the electromagnetic field is allowed to exchange electric and magnetic helicity components during
its evolution. For an account of this phenomenon, we refer to [8,25].

5. Magnetic and Electric Spin in the Helicity Basis

Now in this section, we are going to express the magnetic and electric spins components of the
total angular momentum in the helicity basis.

Let us consider the spin vector defined by Equation (21). It can be written as:

s = sm + se, (41)

where the magnetic part of the spin is defined from the flux of magnetic helicity,

sm =
1

2c2μ0

∫
d3r (V B − A × E) , (42)

and the electric spin comes from the flux of the electric helicity,

se =
1

2c2μ0

∫
d3r

(
V′ E + C × B

)
. (43)

Note that the electric spin in Equation (43) can be defined only for the case of electromagnetism in
a vacuum, in the same way as the electric helicity is defined only in a vacuum.

Using the helicity basis of the previous sections, which was calculated in the Coulomb gauge,
the magnetic spin can be written as:

sm =
1

2c2μ0

∫
d3r E × A =

h̄
4

∫
d3k

∫
d3k′

∫ d3r
(2π)3

√
k′
k[

ie−iωteiω′tei(k−k′)·r (aReR + aLeL)×
(
ā′Re′L + ā′Le′R

)
− ieiωte−iω′te−i(k−k′)·r (āReL + āLeR)×

(
a′Re′R + a′Le′L

)
− ie−iωte−iω′tei(k+k′)·r (aReR + aLeL)×

(
a′Re′R + a′Le′L

)
+ ieiωteiω′te−i(k+k′)·r (āReL + āLeR)×

(
ā′Re′L + ā′Le′R

)]
, (44)

and after the same manipulations as in the previous section, using Equations (33) and (27), it turns out:

sm =
h̄
2

∫
d3k (āR(k)aR(k)− āL(k)aL(k)) ek

+
h̄
4

∫
d3k e−2iωt (aR(k)aR(−k)− aL(k)aL(−k)) ek

+
h̄
4

∫
d3k e2iωt (āR(k)āR(−k)− āL(k)āL(−k)) ek. (45)

As in the case of magnetic helicity Equation (34), the magnetic spin has two contributions:
the first term in Equation (45) is independent of time, while the rest of the terms are, in principle,
time-dependent.

12
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In a similar way, the electric spin in the helicity basis is:

se =
1

2c2μ0

∫
d3r C × B =

h̄
4

∫
d3k

∫
d3k′

∫ d3r
(2π)3

√
k′
k[

ie−iωteiω′tei(k−k′)·r (aReR − aLeL)×
(
ā′Re′L − ā′Le′R

)
− ieiωte−iω′te−i(k−k′)·r (āReL − āLeR)×

(
a′Re′R − a′Le′L

)
+ ie−iωte−iω′tei(k+k′)·r (aReR − aLeL)×

(
a′Re′R − a′Le′L

)
− ieiωteiω′te−i(k+k′)·r (āReL − āLeR)×

(
ā′Re′L − ā′Le′R

)]
, (46)

that after integrating in k′ gives:

se =
h̄
2

∫
d3k (āR(k)aR(k)− āL(k)aL(k)) ek

+
h̄
4

∫
d3k e−2iωt (−aR(k)aR(−k) + aL(k)aL(−k)) ek

+
h̄
4

∫
d3k e2iωt (−āR(k)āR(−k) + āL(k)āL(−k)) ek. (47)

Finally, the spin of the electromagnetic field in a vacuum is, according to Equation (41),

s = sm + se = h̄
∫

d3k (āR(k)aR(k)− āL(k)aL(k)) ek, (48)

an expression that is equivalent to the well-known result in quantum electrodynamics [57].
We can compute, as we did for the helicity, the difference between the magnetic and electric parts

of the spin,
s̃(t) = sm − se = h̄

2

∫
d3k

[
e−2iωt (aR(k)aR(−k)− aL(k)aL(−k))

+ e2iωt (āR(k)āR(−k)− āL(k)āL(−k))
]

ek.
(49)

Note the similarity in the integrands of the difference between helicities Equation (40) and the
difference between spins (49). Both have one term proportional to the complex quantity:

f (k) = aR(k)aR(−k)− aL(k)aL(−k), (50)

and another term proportional to the complex conjugate of f (k). It is obvious that f (k) is an even
function of the wave vector k. This means, in particular, that the integral Equation (49) is identically
zero, so the spin difference satisfies:

s̃(t) = 0. (51)

Thus, we arrive at the following result for any electromagnetic field in a vacuum,

sm = se =
1
2

s =
h̄
2

∫
d3k (āR(k)aR(k)− āL(k)aL(k)) ek. (52)

This conclusion coincides with the results found in [46].
Therefore, while the magnetic and electric spins are equal in electromagnetism in a vacuum,

in general, this fact does not apply to the magnetic and electric helicities, as we have seen in the previous
section. These results have been obtained in the framework of standard classical electromagnetism
in a vacuum, but they are also compatible with the suggestion made by Bliokh of a dual theory of
electromagnetism [9].
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6. The Angular Momentum Decomposition for Non-Null Toroidal Electromagnetic Fields

In this section, we calculate explicitly and analytically the spin-angular decomposition of a whole
class of electromagnetic fields in a vacuum without using any paraxial approximation.

We will use the knotted non-null torus class [5,25]. These fields are exact solutions of Maxwell
equations in a vacuum with the property that, at a given time t = 0, all pairs of lines of the field B(r, 0)
are linked torus knots and that the linking number is the same for all the pairs. Similarly, for the
electric field at the initial time E(r, 0), all pairs of lines are linked torus knots, and the linking number
is the same for all the pairs.

We take a four positive integers tuplet (n, m, l, s). It is possible to find an initial magnetic field
such that all its magnetic lines are (n, m) torus knots. The linking number of every two magnetic lines
at t = 0 is equal to nm. Furthermore, we can find an initial electric field such that all the electric lines
are (l, s) torus knots and at t = 0. At that time, the linking number of the electric field lines is equal
to ls. We can assure that property at t = 0, due to the fact that the topology may change during time
evolution if one of the integers (n, m, l, s) is different from any of the others (for details, we refer the
interested reader to [5]). The magnetic and electric helicities also may change if the integer tuplet is
not proportional to (n, n, l, l). In these cases, the electromagnetic fields interchange the magnetic and
electric helicities during their time evolution.

We define the dimensionless coordinates (X, Y, Z, T), which are related to the physical ones
(x, y, z, t) by (X, Y, Z, T) = (x, y, z, ct)/L0, and r2/L2

0 = (x2 + y2 + z2)/L2
0 = X2 + Y2 + Z2 = R2.

The length scale L0 can be chosen to be the mean quadratic radius of the energy distribution of the
electromagnetic field. The set of non-null torus electromagnetic knots can be written as:

B(r, t) =

√
a

πL2
0

Q H1 + P H2

(A2 + T2)3 (53)

E(r, t) =

√
ac

πL2
0

Q H4 − P H3

(A2 + T2)3 (54)

where a is a constant related to the energy of the electromagnetic field,

A =
1 + R2 − T2

2
, P = T(T2 − 3A2), Q = A(A2 − 3T2), (55)

and:
H1 = (−n XZ + m Y + s T) ux + (−n YZ − m X − l TZ) uy

+
(

n −1−Z2+X2+Y2+T2

2 + l TY
)

uz.
(56)

H2 =
(

s 1+X2−Y2−Z2−T2

2 − m TY
)

ux + (s XY − l Z + m TX) uy + (s XZ + l Y + n T) uz. (57)

H3 = (−m XZ + n Y + l T) ux + (−m YZ − n X − s TZ) uy

+
(

m −1−Z2+X2+Y2+T2

2 + s TY
)

uz.
(58)

H4 =
(

l 1+X2−Y2−Z2−T2

2 − n TY
)

ux + (l XY − s Z + n TX) uy + (l XZ + s Y + m T) uz. (59)

The energy E , linear momentum p and total angular momentum J of these fields are:

E =
∫ (

ε0 E2

2
+

B2

2μ0

)
d3r =

a
2μ0L0

(n2 + m2 + l2 + s2) (60)

p =
∫

ε0 E × B d3r =
a

2cμ0L0
(ln + ms) uy (61)

J =
∫

ε0 r × (E × B) d3r =
a

2cμ0
(lm + ns) uy (62)
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To study the interchange between the magnetic and electric helicities and the spins, we first need
the Fourier transforms of the fields in the helicity basis. Following the prescription given in Section 3,
we get:

aReR + aLeL =
√

a
h̄cμ0

L3/2
0

2
√

π
e−K√

K
×
[

m
K

(
KxKz, KyKz,−K2

x − K2
y

)
+ s

(
0, Kz,−Ky

)]
+ i

[
l
K

(
−K2

y − K2
z , KxKy, KxKz

)
+ n

(−Ky, Kx, 0
)] (63)

aReR − aLeL =
√

a
h̄cμ0

L3/2
0

2
√

π
e−K√

K
×
[

n
K

(
KxKz, KyKz,−K2

x − K2
y

)
+ l
(
0, Kz,−Ky

)]
+ i

[
s
K

(
−K2

y − K2
z , KxKy, KxKz

)
+ m

(−Ky, Kx, 0
)] (64)

In these expressions, we have introduced the dimensionless Fourier space coordinates (Kx, Ky, Kz),
related to the dimensional Fourier space coordinates (kx, ky, kz) according to:

(Kx, Ky, Kz) = L0(kx, ky, kz), K = L0k =
L0ω

c
. (65)

The electromagnetic helicity Equation (37) of the set of non-null torus electromagnetic knots results:

h = h̄
∫

d3k (āR(k)aR(k)− āL(k)aL(k)) =
a

2cμ0
(nm + ls), (66)

and the difference between the magnetic and electric helicities is:

h̃(t) = hm − he =
h̄
2

∫
d3k

[
e−2iωt (−aR(k)aR(−k) + aL(k)aL(−k))

+ e2iωt (−āR(k)āR(−k) + āL(k)āL(−k))
]

=
a

2cμ0
(nm − ls)

1 − 6T2 + T4

(1 + T2)4 , (67)

where we recall that T = ct/L0. Results Equations (66) and (67) coincide with the computations done
in [5] using different procedures.

Now, consider the spin in Equation (48). For the set of non-null torus electromagnetic knots,
we get:

s = h̄
∫

d3k (āR(k)aR(k)− āL(k)aL(k)) ek =
a

4cμ0
(ml + ns) uy. (68)

Notice that this value of spin is equal to one half of the value of the total angular momentum obtained
in Equation (62). Thus, the orbital angular momentum of this set of electromagnetic fields has the same
value as the spin angular momentum,

L = s =
1
2

J. (69)

The difference between the magnetic and the electric spin can also be computed through
Equation (49). The result is:

s̃(t) = sm − se =
h̄
2

∫
d3k

[
e−2iωt (aR(k)aR(−k)− aL(k)aL(−k))

+ e2iωt (āR(k)āR(−k)− āL(k)āL(−k))
]

ek = 0.
(70)

15



Symmetry 2018, 10, 88

As a consequence, even if the magnetic and electric helicities depend on time for this set of
electromagnetic fields, the magnetic and electric parts of the spin are time independent, satisfying the
results found in Equation (52) for general electromagnetic fields in a vacuum. Both are equal, and satisfy:

sm = se =
1
2

s =
a

8cμ0
(ml + ns) uy. (71)

7. Same Spin-Orbital Decomposition with Different Behavior in the Helicities

In this section, we consider two knotted electromagnetic fields in which the spin and orbital
decomposition of the angular momentum are equal in both cases, while the helicities are constant
and non-constant, respectively. We will see that the angular momentum density evolves differently in
each case.

In the first case, we take the set (n, m, l, s) = (5, 3, 5, 3) in Equations (53) and (54). Thus, using
Equation (62) the total angular momentum is:

J =
15a
μ0

uy,

while the angular density changes in time. In order to visualize the evolution of the angular momentum
density, which is given by j = r × (E × B), we plot at different times the vector field sample at the
plane XZ, as is depicted in Figure 1.

Figure 1. The angular momentum density j at times T = 0, 0.5, 1, 1.5, 2, 2.5, for the electromagnetic
field given by the set (n, m, l, s) = (5, 3, 5, 3). The vector field is sampled at the plane XZ. In the case
depicted in the figure, the magnetic helicity is equal to the electric helicity and constant in time.

For this case, the spin-orbital split, as shown in the previous section, using Equation (69), turns
out to be:

L = s =
15a
2μ0

uy. (72)
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which remains constant during the time evolution of the field. The magnetic and electric helicities
remain also constant, and there is no exchange between them.

Now, let us take the set (n, m, l, s) = (15, 5, 0, 2) in Equations (53) and (54). The electromagnetic
field obtained with this set of integers has the same value of the total angular momentum as the
previous case and the same spin-orbital split. However, in this case, the magnetic and electric helicities
are time-dependent, satisfying Equation (67). The time evolution of the angular momentum density
is different from the case of constant helicities, as we can see in Figure 2. As we did before, we have
plotted the field at the plane XZ at the same time steps as in the first example.

Figure 2. The angular momentum density j at times T = 0, 0.5, 1, 1.5, 2, 2.5, for the electromagnetic field
given by the set (n, m, l, s) = (15, 5, 0, 2). The vector field is sampled at the plane XZ. In this example,
the magnetic and electric helicities are initially different, and their values change with time.

In the first example of a non-null torus electromagnetic field, the helicities remain constant in time.
In the second example, the magnetic helicity is initially different from the electric helicity, and both
change with time. Even if the spin, orbital and total angular momenta are equal in both examples,
we can see in Figures 1 and 2 that the structure of the total angular momentum density is different.
We can speculate that a macroscopic particle, which can interact with the angular momentum of the
field, would behave in the same way in both cases, but a microscopic test particle able to interact with
the local density of the angular momentum would behave differently.

8. Conclusions

We have calculated analytically and exactly the spin-orbital decomposition of the angular
momentum of a class of electromagnetic fields beyond the paraxial approximation. A spin density that
is dual in its magnetic and electric contributions has been considered. This spin density has the meaning
of flux of electromagnetic helicity. By using a Fourier decomposition of the electromagnetic field in
a vacuum in terms of circularly-polarized waves, called the helicity basis, we have given explicit
expressions for the magnetic and electric contributions to the spin angular momentum. We have
obtained the results that the magnetic and electrical components of spin remain constant during the
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time evolution of the fields. We also have made use of the helicity basis to calculate the magnetic and
electric helicities.

We have obtained the exact split of the angular momentum into spin and orbital components
for electromagnetic fields, which belong to the non-null toroidal knotted class [5]. One of main
characteristics of that class is that it contains a certain degree of linkage of electric and magnetic lines
and can have exchange between the magnetic and electrical components of the helicity [8].

We have considered two examples of these non-null knotted electromagnetic fields having the
properties that they have the same angular momentum and the same split. They have the same constant
values for the orbital and spin components of the angular momentum, the first with constant and equal
helicities and the second with time-evolving helicities. The behavior of the total angular momentum
density seems to be different in these two cases.

In our opinion, the study of this kind of example with nontrivial helicities may provide a
clarification of the role of helicities in the behavior of angular momentum densities of electromagnetic
fields in a vacuum.
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Abstract: The application of topology concepts to Maxwell equations has led to the developing of
the whole area of electromagnetic knots. In this paper, we apply some symmetry transformations to
a particular electromagnetic knot, the hopfion field, to get a new set of knotted solutions with the
properties of being null. The new fields are obtained by a homothetic transformation (dilatation)
and a rotation of the hopfion, and we study the constraints that the transformations must fulfill in
order to generate valid electromagnetic fields propagating in a vacuum. We make use of the Bateman
construction and calculate the four-potentials and the electromagnetic helicities. It is observed that
the topology of the field lines does not seem to be conserved as it is for the hopfion.

Keywords: hopfion; Bateman construction; null fields

1. Introduction

In recent years, topology ideas applied to physics have provided useful insights into many
different phenomena, ranging from phase transitions to solid state physics, superfluids, and magnetism.
The topology applied to electromagnetism has opened the field of electromagnetic knots [1],
where light gets nontrivial properties. One example of a electromagnetic knot is the hopfion.

The hopfion is an exact null solution of the Maxwell equations in a vacuum [1–4]. The null
property means that the Lorentz invariants of the field are zero, i.e., E · B = 0 and E2 − c2B2 = 0 [5].
The hopfion is characterized by further special properties such as the field lines being closed and
linked for any instant of time. The topology of the field lines is described for any time in terms of two
complex scalar fields φ(r, t) and θ(r, t). The solution of φ(r, t) = c1 and θ(r, t) = c2, with c1, c2 ∈ C
complex constants, gives all the magnetic and electric lines (by changing the value of the constant at
the right-hand side), which are linked closed lines topologically equivalent to circles. In particular,
for the hopfion, those complex fields can be written in terms of four real scalar fields u1, u2, u3, u4, as:

φ =
u1 + i u2

u3 + i u4
, (1)

θ =
u2 + i u3

u1 + i u4
, (2)

The ui’s satisfy the conditions −1 ≤ ui ≤ 1 and u2
1 + u2

2 + u2
3 + u2

4 = 1, so they can be considered
as time-dependent coordinates on the sphere S3. In this case, the φ and θ are then applications from
S3 → S2, and the linking properties of the field lines follow from this fact [1].

Symmetry 2019, 11, 1105; doi:10.3390/sym11091105 www.mdpi.com/journal/symmetry21
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In this paper, we apply some symmetry transformations to the hopfion. In particular, we make a
homothetic transformation (dilatation) and a rotation of the hopfion at a particular time. We find that
those transformations cannot be arbitrary in order for the transformed fields to be still electromagnetic
solutions. We provide the conditions required for the transformations. We give explicit expressions for
the new null fields for any time using the Bateman construction. Furthermore, the four-potentials of
the new fields and the electromagnetic helicities are calculated. The non-null helicities point to the fact
that the topology of the field lines is not trivial. However, the new solutions do not seem to preserve
the closedness property of the hopfion field lines. This fact deserves future investigations.

2. Topological Construction of Vacuum Solutions and the Hopfion Field

In this section, we will briefly revise a topological formulation of electromagnetism in a vacuum
built in [3,6–8] and give the explicit expression for the hopfion field. We will make use of certain
properties of this construction in the next section when we apply the transformations to the hopfion.

Solutions of Maxwell equations in a vacuum (we will use MKSunits),

∇ · B = 0, (3)

∇× E = −∂B

∂t
, (4)

∇ · E = 0, (5)

∇× B =
1
c2

∂E

∂t
, (6)

can be found from a pair of complex scalar fields φ(r, t) and θ(r, t), so the magnetic end electric fields
are given by:

B =

√
a

2πi
∇φ ×∇φ̄

(1 + φφ̄)2 =

√
a

2πic
∂t θ̄∇θ − ∂tθ∇θ̄

(1 + θθ̄)2 , (7)

E =

√
ac

2πi
∇θ̄ ×∇θ

(1 + θθ̄)2 =

√
a

2πi
∂tφ̄∇φ − ∂tφ∇φ̄

(1 + φφ̄)2 , (8)

As usual, c denotes the speed of light, and a is a constant so that the magnetic and electric fields
have correct dimensions in MKS units since φ and θ are dimensionless (φ̄ is the complex conjugate of
φ). Equation (3) follows from the first equality of Equation (7). Equation (4) is found using the first
equality of Equation (7) and the second equality of Equation (8). Equation (5) comes from the first
equality of Equation (8). Equation (6) is fulfilled considering the second equality of Equation (7) and
the first equality of Equation (8).

To get a solution of Maxwell equations in a vacuum, the complex scalar fields φ(r, t) and θ(r, t)
have to be found to satisfy Equations (7) and (8), so:

∇φ ×∇φ̄

(1 + φφ̄)2 =
1
c

∂t θ̄∇θ − ∂tθ∇θ̄

(1 + θθ̄)2 , (9)

∇θ̄ ×∇θ

(1 + θθ̄)2 =
1
c

∂tφ̄∇φ − ∂tφ∇φ̄

(1 + φφ̄)2 . (10)

These equations are a bit cumbersome, although some solutions have been found in the
literature [2,3,9]. On the other side, the advantage of this formulation is that the magnetic and
the electric lines are very easily obtained. The field lines at a given time t correspond to the level curves
of the scalar field φ(r, t) and θ(r, t). This observation can be particularly useful to find solutions of
Maxwell equations in a vacuum in which the magnetic and electric lines form knotted curves [1,3].
In this case, the degree of knottedness has interesting physical consequences [4,10–16].

All the solutions of Maxwell equations in this particular formulation satisfy the Lorentz-invariant
equation E · B = 0. This can be immediately seen by using the first equality of Equation (7) and the

22



Symmetry 2019, 11, 1105

second equality of Equation (8) or, correspondingly, the second equality of Equation (7) and the first
equality of Equation (8). However, it is not true that all the solutions in this formulation satisfy the
other null condition, E2 − c2B2 = 0.

The hopfion was found choosing the particular form Equation (1) for φ and Equation (2) for θ.
In terms of the four real scalar fields u1, u2, u3, u4, using Equations (7) and (8) turns out to be:

BH(r, t) = −
√

a
π

(∇u1 ×∇u2 +∇u3 ×∇u4)

=

√
a

πc

(
∂u2

∂t
∇u3 − ∂u3

∂t
∇u2 +

∂u1

∂t
∇u4 − ∂u4

∂t
∇u1

)
, (11)

EH(r, t) =
c
√

a
π

(∇u2 ×∇u3 +∇u1 ×∇u4)

=

√
a

π

(
∂u1

∂t
∇u2 − ∂u2

∂t
∇u1 +

∂u3

∂t
∇u4 − ∂u4

∂t
∇u3

)
. (12)

The explicit expressions for the ui’s are:

u1 =
AX − TZ
A2 + T2 , (13)

u2 =
AY + T(A − 1)

A2 + T2 , (14)

u3 =
AZ + TX
A2 + T2 , (15)

u4 =
A(A − 1)− TY

A2 + T2 . (16)

where:

A =
R2 − T2 + 1

2
, R2 = X2 + Y2 + Z2, (17)

and (X, Y, Z, T) are dimensionless coordinates. Spacetime coordinates (x, y, z, t) are related to them as:

(x, y, z, t) = (L0X, L0Y, L0Z, L0T/c), (18)

L0 being a constant with length dimensions, which characterizes the mean quadratic radius of the
electromagnetic energy distribution [17].

It is easy to see, given Expressions (13)–(16), that the ui’s satisfy the conditions −1 ≤ ui ≤ 1 and
u2

1 + u2
2 + u2

3 + u2
4 = 1 for any time. For the hopfion, both null conditions E · B = 0 and E2 − c2B2 = 0

are satisfied.

3. Dilatation and Rotation of the Hopfion

In this section, we explore the possibility of obtaining new solutions by symmetry transformations.
We will apply a family of transformations to the hopfion: a dilatation and a rotation at a particular
time. We then check the conditions imposed by the initial conditions of Maxwell solutions to find that
the transformations must fulfill some constraints expressed as differential equations. The equations
are then solved in order to determine a particular set of allowed transformations. In the next section,
we will extend the results to every time and generate a more general transformation of the hopfion
field that satisfies Maxwell equations in a vacuum.

A warning: along this section, the notation is simplified by taking a = 1, L0 = 1, c = 1, and we will
write coordinates X, Y, Z, T, R as x, y, z, t, r, respectively, in all the computations. However, the final
results will be written back with all the constants, so that they can be used in different contexts.

23



Symmetry 2019, 11, 1105

The particular time t = 0 is chosen to apply the transformations as the expressions are simpler.
The hopfion at this particular time can be written using the new notation as:

BH,0(r) =
8

π(r2 + 1)3 e1,

EH,0(r) =
8

π(r2 + 1)3 e2, (19)

and the Poynting vector P = E × B reads:

PH,0(r) = − 64
π2(r2 + 1)5 e3, (20)

where the vector fields:

e1 =

(
y − xz,−x − yz,

x2 + y2 − z2 − 1
2

)
,

e2 =

(
x2 − y2 − z2 + 1

2
,−z + xy, y + xz

)
,

e3 =

(
−z − xy,

x2 − y2 + z2 − 1
2

, x − yz
)

. (21)

have been defined. They constitute a basis in the three-dimensional Euclidean space, satisfying:

e1 · e1 = e2 · e2 = e3 · e3 =

(
r2 + 1

2

)2

,

e1 · e2 = e2 · e3 = e3 · e1 = 0,

e1 × e2 =

(
r2 + 1

2

)
e3,

e2 × e3 =

(
r2 + 1

2

)
e1,

e3 × e1 =

(
r2 + 1

2

)
e2. (22)

We will make, as stated above, a dilatation and rotation of the fields and write the transformed
fields as:

B0(r) = f (r2) (cos η BH,0 + sin η EH,0) ,

E0(r) = f (r2) (− sin η BH,0 + cos η EH,0) , (23)

where f is a function of r2 and η is a function of x, y, z.
In order for the new fields to be a solution of Maxwell equations in a vacuum (see the previous

section), it is necessary for Equation (23) to satisfy the equations:

∇ · B0 = 0, ∇ · E0 = 0, (24)

from which, given that ∇ · BH,0 = 0 and ∇ · EH,0 = 0, we get:

∇ f
f

· B0 +∇η · E0 = 0,

∇ f
f

· E0 −∇η · B0 = 0. (25)
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Using Equations (19), (21) and (23), Equation (25) can be written as:

∇ f
f

· e1 +∇η · e2 = 0,

∇ f
f

· e2 −∇η · e1 = 0. (26)

Let us define γ = r2. Since f = f (r2) = f (γ),

∇ f
f

= 2Δ (x, y, z), (27)

where we use the notation:
Δ = Δ(γ) =

1
f

d f
dγ

. (28)

Taking into account Equation (21), Expression (26) leads to:

∇η · e1 = x(r2 + 1)Δ,

∇η · e2 = z(r2 + 1)Δ. (29)

Since e1, e2, e3 form one basis of three-dimensional vectors Equation (22), we can write, using
Equation (29),

∇η =
∇η · e1

e2
1

e1 +
∇η · e2

e2
2

e2 +
∇η · e3

e2
3

e3

=
4Δ

r2 + 1
(x e1 + z e2) +

4δ

(r2 + 1)2 e3, (30)

where we have defined δ = ∇η · e3. Using Equation (21),

x e1 + z e2 =
r2 + 1

2
(−z,−1, x)− e3, (31)

so that:
∇η = 2Δ (−z,−1, x) + Σ e3, (32)

where:
Σ =

4δ

(r2 + 1)2 − 4Δ
r2 + 1

. (33)

We apply now the curl and project to the e3 direction, i.e, we apply the operator e3 · ∇× to
Expression Equation (32). With the help of Equations (21) and (22), we obtain after some manipulations:

Σ = 2Δ′
(

r2 − y2
)
+ 2Δ

(
1 − 2

y2 + 1
r2 + 1

)
, (34)

where Δ′ = dΔ/dγ. This shows that Σ depends only on γ = r2 and y2, so that:

∇Σ = 2Σ′ (x, y, z) + 2y
∂Σ
∂y2 (0, 1, 0). (35)
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From the condition ∇ × ∇η = 0, using Equations (32), (34) and (35), we get the
following conditions:

0 =
(
Σ′ + 2Δ′) (z + xy)−

(
r2 + 1

2
Σ′ + Σ

)
z +

∂Σ
∂y2 y (x − yz) ,

0 =
(
Σ′ + 2Δ′) ( r2 − 1

2
− y2

)
+

r2 + 1
2

Σ′ + Σ + 2
(

r2 + 1
2

Δ′ + Δ
)

, (36)

0 =
(
Σ′ + 2Δ′) (x − yz)−

(
r2 + 1

2
Σ′ + Σ

)
x − ∂Σ

∂y2 y (z + xy) . (37)

Expressions Equations (36) and (37) can be simplified, and using Equation (34) to compute ∂Σ/∂y2,
the previous system can be written as:

0 =

(
r2 + 1

2
Σ′ + Σ

)
− (Σ′ + 2Δ′) (1 + y2

)
, (38)

0 =
r2 + 1

2
(
Σ′ + 2Δ′)+ 2

(
r2 + 1

2
Δ′ + Δ

)
, (39)

0 =
r2 + 1

2
(
Σ′ + 2Δ′)− 2

(
r2 + 1

2
Δ′ + Δ

)
. (40)

The solution of this system of equations is:

0 =
r2 + 1

2
Σ′ + Σ, (41)

0 = Σ′ + 2Δ′, (42)

0 =
r2 + 1

2
Δ′ + Δ, (43)

which, after integration, gives:

Δ =
2m

(r2 + 1)2 , (44)

Σ =
−4m

(r2 + 1)2 , (45)

where m is an integration constant that can be any real number. Inserting these solutions into
Equation (32), after integration, η is found to be:

η = −m
2y

r2 + 1
, (46)

and using Equations (44) and (27) to solve for f gives:

f = exp
(

m
r2 − 1
r2 + 1

)
, (47)

where we have chosen the constants of integration so that this particular value is obtained.
Consequently, we found a solution of the form given by Equation (23) so that, in the MKS system

of units, recovering the original notation X, Y, Z, R for the dimensionless coordinates, we get:

B0(r) = exp
(

m
R2 − 1
R2 + 1

)(
cos

(
m

2Y
R2 + 1

)
BH,0 − 1

c
sin
(

m
2Y

R2 + 1

)
EH,0

)
,

E0(r) = exp
(

m
R2 − 1
R2 + 1

)(
c sin

(
m

2Y
R2 + 1

)
BH,0 + cos

(
m

2Y
R2 + 1

)
EH,0

)
, (48)
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being BH,0, EH,0 from Equation (19):

BH,0(r) =
8
√

a
πL2

0(R2 + 1)3

(
Y − XZ,−X − YZ,

X2 + Y2 − Z2 − 1
2

)
,

EH,0(r) =
8c
√

a
πL2

0(R2 + 1)3

(
X2 − Y2 − Z2 + 1

2
,−Z + XY, Y + XZ

)
.

In Figures 1 and 2, we represent the field lines at t = 0 for the hopfion (m = 0) and the transformed
fields for m = 1 and m = 2. It looks as if the closedness property of the hopfion field lines is broken,
although part of the torus structure seems to be still present.

Figure 1. Cont.
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Figure 1. In the first figure (top), we represent some magnetic field lines for the initial value (t = 0) of
the hopfion field, which corresponds to a value m = 0 in Equation (48). All the magnetic lines drawn
are closed and linked to each other, which is the defining property of this field. In the second figure
(middle), we plot some magnetic field lines for the transformed field with m = 1 in Equation (48),
and in the third figure (bottom), some magnetic field lines for the transformed field with m = 2 in
Equation (48) are drawn. The magnetic lines for the cases m = 1 and m = 2 seem to be unclosed in the
numerics that give the lines plotted in the second and third figures.

Figure 2. Cont.
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Figure 2. Same as Figure 1, but considering electric field lines. In the first figure (top), we represent
electric field lines for the initial value (t = 0) of the hopfion field, all of which are closed and linked
to each other. In the second figure (middle), we plot electric field lines for the transformed field with
m = 1 in Equation (48), and in the third figure (bottom), we plot some electric field lines for the
transformed field with m = 2 in Equation (48). The electric lines for the cases m = 1 and m = 2 seem to
be unclosed in the numerics.

4. Bateman Formulation

After finding the fields at a particular time, we need to extend them to any time. To get the
time-dependent expressions of the transformed fields Equation (48), we will make use of the Bateman
formulation of null electromagnetic fields in a vacuum. In this section, we review very briefly
Bateman’s method.

In the case of Maxwell equations in a vacuum, it is useful to consider, instead of the magnetic and
the electric fields separately, a complex combination of them called the Riemann–Silberstein vector
M [18], which can be written as:

M = E + ic B, (49)
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where c appears due to the different units of the magnetic and the electric fields. In terms of M,
Maxwell equations in a vacuum Equations (3)–(6) read:

∇ · M = 0, (50)

∇× M =
i
c

∂M

∂t
. (51)

The following expressions hold for the Riemann–Silberstein vector using Equations (7) and (8),

M =

√
ac

2πi

(∇θ̄ ×∇θ

(1 + θθ̄)2 − i
∇φ̄ ×∇φ

(1 + φφ̄)2

)
(52)

=

√
a

2πi

(
∂tφ̄∇φ − ∂tφ∇φ̄

(1 + φφ̄)2 + i
∂t θ̄∇θ − ∂tθ∇θ̄

(1 + θθ̄)2

)
.

The formulation of electromagnetic fields constructed by Bateman in 1915 [19] can be used to study
all null solutions of Maxwell equations in a vacuum [20]. The basic fields in this formulation are two
complex functions α(r, t) and β(r, t) so that the Riemann–Silberstein vector M of the electromagnetic
field is written as:

M = E + ic B =

√
ac

π
∇α ×∇β, (53)

where the factor
√

ac/π is chosen so that the comparison with the same vector Equation (52) is more
direct. As a consequence, α and β are dimensionless functions of space and time.

Maxwell equations in a vacuum Equations (50) and (51) are satisfied by the electromagnetic field
Equation (53) provided M can be also written as:

M =
i
√

a
π

(
∂α

∂t
∇β − ∂β

∂t
∇α

)
. (54)

Equation ∇ · M = 0 is satisfied by using Equation (53). To get the Maxwell equation ∇× M =

i/c ∂M/∂t, one can use Equation (54) in the left-hand side and Equation (53) in the right-hand side.
The problem of finding solutions of Maxwell equations in a vacuum in the Bateman formulation is
then reduced to solving the complex equation:

∇α ×∇β =
i
c

(
∂α

∂t
∇β − ∂β

∂t
∇α

)
, (55)

for the complex fields α(r, t) and β(r, t). A property of the electromagnetic fields in a vacuum
constructed using the Bateman formulation is that they are null. Multiplying Equations (53) and (54),
it is easily seen that M2 = 0, so M defines a null electromagnetic field in a vacuum (E · B = 0 and
E2 − c2B2 = 0).

We now obtain the hopfion in the Bateman formulation Equations (53) and (54). This was
first obtained by Besieris and Shaarawi [21] and later by Kedia et al. [22] and Hoyos et al. [23],
among others. Our results will be completely equivalent to the ones obtained in those references,
although slightly different, since we are going to use Equations (11) and (12). We begin by writing the
Riemann–Silberstein vector of the hopfion, using Equations (11) and (12), as:

MH = EH + ic BH

=

√
ac

π
∇ (u2 + i u4)×∇ (u3 + i u1)

=
i
√

a
π

[
∂ (u2 + i u4)

∂t
∇ (u3 + i u1)− ∂ (u3 + i u1)

∂t
∇ (u2 + i u4)

]
.
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Trivially, this is written in the Bateman formulation Equations (53) and (54) by identifying:

αH = u2 + i u4,

βH = u3 + i u1. (56)

Making use of the values of the real scalar fields ui Equations (13) and (16), we get:

αH =
Y + i(A − 1)

A + iT
,

βH =
Z + iX
A + iT

. (57)

Note that the results Equation (57) coincide with the ones found in [22] with changes Z → −Y
and Y → −Z, due to a different labeling of the axes.

An interesting observation about the Bateman formulation that we will use in this work is the
following: every electromagnetic field M′ constructed from a solution M(α, β) of Maxwell’s equations
in a vacuum Equations (50) and (51) as:

M′ = g(α, β)M(α, β), (58)

where g(α, β) is an arbitrary function of the complex fields α and β is also a solution [19].
This property was exploited by Kedia et al. in [22] to find a set of null solutions of the Maxwell

equations in a vacuum that generalize the Hopfion and give field lines that are linked torus knots at
t = 0. The solutions they found can be written in the Bateman formulation Equations (53) and (54)
using two positive integer numbers m and n as:

αm = (u2 + i u4)
m =

(
Y + i(A − 1)

A + iT

)m
,

βn = (u3 + i u1)
n =

(
Z + iX
A + iT

)n
, (59)

Taking again for the ui’s the hopfion values Equations (13) and (16), we can write Equation (59) as:

αm = (αH)
m ,

βn = (βH)
n , (60)

Using Equations (53) and (54), we get for this case:

Mnm =

√
ac

π
∇αm ×∇βn =

i
√

a
π

(
∂αm

∂t
∇βn − ∂βn

∂t
∇αm

)
= g(αH , βH)MH , (61)

with:
g(αH , βH) = (m n) αm−1

H βn−1
H . (62)

Further generalizations for generating other fields can be found in [23].

5. A New Set of Null Electromagnetic Fields

In this section, we extend the transformations for the fields given by Equation (48) at a particular
time to any time exploiting the properties of the Bateman formulation we have just reviewed in the
previous section. Thus, we will get the new set of null electromagnetic fields.
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As pointed out earlier, the Riemann–Silberstein vector allows writing the transformed fields at a
particular time in a very compact form, which sheds some light on the transform valid for any time.
For the transformed fields at t = 0 Equation (48), we get:

M0 = exp
(
−im

2Y + i(R2 − 1)
R2 + 1

)
MH,0. (63)

MH,0 being the Riemann–Silberstein vector of the hopfion at t = 0, i.e.,:

MH,0 =
8c
√

a
πL2

0(1 + R2)3

(
X2 − Y2 − Z2 + 1

2
+ i(Y − XZ),

(XY − Z)− i(X + YZ), (Y + XZ) + i
X2 + Y2 − Z2 − 1

2

)
. (64)

The key point is to observe that we can write Equation (63) as:

M0 = exp [−im (u2,0 + i u4,0)]MH,0, (65)

where, according to Equations (14) and (16), u2,0 and u4,0 are, respectively, the values of u2 and u4 at
t = 0.

Invoking the property Equation (58), we can extend the transformed fields for all time:

M = exp [−im (u2 + i u4)]MH , (66)

where u2 and u4 are given by Equations (14) and (16) and MH is the Riemann–Silberstein vector of the
Hopfion Equation (56). This means that we can express M as:

M =
c
√

a
π

∇
(

i
m

e−im(u2+i u4)

)
×∇ (u3 + i u1) (67)

=
i
√

a
π

⎡⎣∂
(

i
m e−im(u2+i u4)

)
∂t

∇ (u3 + i u1)− ∂ (u3 + i u1)

∂t
∇
(

i
m

e−im(u2+i u4)

)⎤⎦ . (68)

Moreover, we can generalize this solution by playing the same game with the complex field
u3 + i u1. We arrive then at our final expression for a new set of electromagnetic fields constructed
from the hopfion by dilation and rotation. These fields are given by the Riemann–Silberstein vector
defined as:

MDR =
c
√

a
π

∇
(

i
m

e−im(u2+i u4)

)
×∇

(
i
n

e−in(u3+i u1)

)
(69)

=
i
√

a
π

⎡⎣∂
(

i
m e−im(u2+i u4)

)
∂t

∇
(

i
n

e−in(u3+i u1)

)
−

∂
(

i
n e−in(u3+i u1)

)
∂t

∇
(

i
m

e−im(u2+i u4)

)⎤⎦ .

that, by construction, are null electromagnetic fields and satisfy Maxwell equations in a vacuum when
u1, u2, u3, u4 are the ones defined in Expressions (13)–(16). In a more compact notation,

MDR = e−i[n(u3+i u1)+m(u2+i u4)] MH . (70)

This expression shows what kind of new solutions have been found. They correspond to a dilation
of the magnetic and electric fields of the Hopfion plus a rotation in the plane (EH , BH). Both the

32



Symmetry 2019, 11, 1105

dilation and the rotation parameters depend on the ui’s variables and on the two constants m and n,
which can be seen by writing the new solutions as:

BDR(r, t) = e(n u1+m u4)
(

cos (nu3 + mu2)BH(r, t)− 1
c

sin (nu3 + mu2) EH(r, t)
)

,

EDR(r, t) = e(n u1+m u4)
(

c sin (nu3 + mu2)BH(r, t) + cos (nu3 + mu2) EH(r, t)
)

. (71)

In Figures 3 and 4, we represent the field lines for the transformed fields with (n, m) = (1, 2) at
t = 0. As before, the closedness property seems to disappear.

Figure 3. In this figure, we represent some magnetic field lines for the initial value (t = 0) of the
magnetic field given in Equation (71) with values n = 1 and m = 2. As in the cases shown in the second
and third plots of Figure 1, these magnetic lines seem to be unclosed in the numerics.

Figure 4. Same as Figure 3, but considering electric field lines. We plot some electric field lines for the
initial value (t = 0) of the electric field given in Equation (71) with values n = 1 and m = 2. As in
the cases shown in the second and third plots of Figure 2, these electric lines seem to be unclosed in
the numerics.
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6. Four-Potentials and Helicities

The Bateman formalism is also to find the electromagnetic four-potentials for the solutions that
can be written as in Equations (53) and (54). In this section, we will give the recipe and calculate them
for the new solutions obtained in the previous section.

It is standard to define the electromagnetic four-potential Aμ = (A0, A) in Minkowski spacetime,
with μ = 0, 1, 2, 3 and a metric given by diagonal elements (1,−1,−1,−1), so that B = ∇ × A,
E = −c

(∇A0 + (1/c)∂A/∂t
)
. It is possible only in a vacuum to define (see [1] for example) a second

electromagnetic potential Cμ = (C0, C) that satisfies E = ∇× C, B = (1/c)
(∇C0 + (1/c) ∂C/∂t

)
.

Let us consider the complex combination:

Nμ = (N0, N) = Cμ + ic Aμ = (C0 + ic A0, C + ic A). (72)

Then, the Riemann–Silberstein vector satisfies:

M = ∇× N = i
(
∇N0 +

1
c

∂N

∂t

)
. (73)

Now, consider the situation in which the electromagnetic field can be written in the Bateman
formalism as:

M =

√
ac

π
∇α ×∇β =

i
√

a
π

(
∂α

∂t
∇β − ∂β

∂t
∇α

)
. (74)

From Equation (73), it can be seen that an electromagnetic potential for Equation (74) is:

N0 = −
√

a
2π

(
α

∂β

∂t
− β

∂α

∂t

)
,

N =
c
√

a
2π

(α∇β − β∇α) . (75)

We have also a gauge degree of freedom to choose any other electromagnetic potential Ñμ from
Equation (75) as:

Ñμ = Nμ + ∂μ f (r, t). (76)

The magnetic hm and electric he helicities [24] of an electromagnetic field in a vacuum can be
defined, in angular momentum units, as:

hm =
ε0c
2

∫
A · B d3r,

he =
ε0

2c

∫
C · E d3r, (77)

where ε0 is the electric permittivity of a vacuum. The magnetic helicity measures the mean value of the
Gauss linking number of the magnetic field lines [25], and the electric helicity plays the same role for
the electric field. For null electromagnetic fields in a vacuum, he = hm, and moreover, both helicities
remain independent of time [2]. For an electromagnetic field expressed in the Bateman formalism as
Equation (74) with the electromagnetic potential given by Equation (75), it is trivial to check that:

he − hm = Re
(

ε0

2c

∫
N · M d3r

)
= 0, (78)

showing that we are in the case of null fields.
The sum of both helicities is the electromagnetic helicity [26],

hem = he + hm = Re
(

ε0

2c

∫
N̄ · M d3r

)
, (79)
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and it can be written in the Bateman formalism using again Equations (74) and (75) as:

hem =
ε0ac
4π2 Re

[ ∫ (
ᾱ∇α · (∇β ×∇β̄

)
+β̄∇β · (∇α ×∇ᾱ)

]
d3r. (80)

with a bar over a letter meaning complex conjugation.
In particular, for the hopfion Equation (56), we have, due to Equation (57), for the potential

Equation (75),

N0
H = − i

√
a

2π

T(Z + i X)

(A + i T)2 ,

NH =
c
√

a
2π(A + iT)2

[
1 − A + X2 + i(Y − XZ), (81)

−Z + XY − i(X + YZ), Y + XZ + i(A − 1 − Z2)
]

,

results that are, except a gauge transformation, similar to the ones found in [27]. The electromagnetic
helicity of the hopfion, according to Equation (80), results in:

hem,H = ε0ac, (82)

which can be taken as the unit of electromagnetic helicity for the hopfion and related electromagnetic
fields in a vacuum [24].

Let us consider now the electromagnetic potential of the solutions Equation (71) found in the
previous section. For them,

αDR = (i/m) exp (−im(u2 + i u4)),

βDR = (i/n) exp (−in(u3 + i u1)). (83)

and from Equation (75), the potentials read:

N0
DR =

i
√

a
2πmn

e−i[n(u3+i u1)+m(u2+i u4)]
∂

∂t
[m(u2 + i u4)− n(u3 + i u1)] ,

NDR =
−ic

√
a

2πmn
e−i[n(u3+i u1)+m(u2+i u4)] ∇ [m(u2 + i u4)− n(u3 + i u1)] , (84)

where the ui’s are given in Equations (13)–(16). The magnetic and electric helicities of these
solutions have the same value, since the field is null. The electromagnetic helicity is, according
to Equations (80) and (82):

hem =
hem,H

2π2

∫ e2(nu1+mu4)

mn
(m∇u4 − n∇u1) · (∇u2 ×∇u3) d3r.

7. Conclusions

In this work, we studied symmetry transformations at a particular time for generating new
solutions of Maxwell equations in a vacuum. The transformations need to satisfy some constraints.
We then made use of the Bateman formulation to get new null electromagnetic fields at any time.

Another important result presented was the method of using the Bateman formulation to find the
electromagnetic potentials for null solutions of Maxwell equations in a vacuum. This method allowed
us to compute their magnetic and electric helicities.
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We found numerically that the topology seemed to not be conserved, and the closedness of the
electric and magnetic field lines was broken for the new fields. This is a fact that has been observed in
other solutions that used the hopfion and the Bateman construction for generating other fields [22].
However, we cannot exclude that it was due to numerical accuracy. This point together with the
linking of the field lines deserves future investigation, and it might shed some light on the complex
dynamics of these knotted fields and how to generate them in the laboratory.

The research on electromagnetic knots belongs to the research of the classical theory of particles
and fields, but the techniques and concepts involved might be extended to other areas, such as
dynamical systems, liquid crystals, stellar plasma configurations, topological insulators, etc. Many of
the consequences remain to be explored.
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Abstract: A critical discussion on the computation of the dispersion diagram of electromagnetic
guiding/radiating structures with one-dimensional periodicity using general-purpose electromagnetic
simulation software is presented in this work. In these methods, full-wave simulations of finite sections
of the periodic structure are combined with appropriate simplifying network models. In particular,
we analyze the advantages and limitations of two different combined methods, with emphasis on
the determination of their range of validity. Our discussion is complemented with several selected
numerical examples in order to show the most relevant aspects that a potential user of these methods
should be aware of. Special attention is paid to the relevant role played by the high-order coupling
between adjacent unit cells and between the two halves of unit cells exhibiting reflection, inversion,
and glide symmetries.

Keywords: periodic structures; dispersion diagram; high-order coupling; glide symmetry

1. Introduction

Many practical microwave/antenna devices find their fundamental operating mechanisms
in the behavior of electromagnetic waves in a periodic environment [1–4]. Examples of this
are waveguide/printed-line periodic filters [2,5], metamaterial-inspired transmission lines [6,7],
periodic leaky-wave antennas [8], frequency selective surfaces (FSS) [9], reflect/transmit-arrays [10,11],
metasurfaces [12], etc. In all these problems, many of the relevant transmission, reflection, and/or
absorption characteristics of the periodic (or quasi-periodic) finite device can be explained from the
knowledge of the dispersion diagram of the corresponding infinitely periodic structure. As is well
known, the treatment of these structures can be reduced to deal only with the unit cell of the periodic
structure. Thus, in every of the above mentioned problems we can identify a basic propagation and/or
radiation problem involving discontinuities in a generalized waveguiding system subject to periodic
boundary conditions. The waveguiding system can be a standard metallic waveguide [2], a generalized
waveguide [13,14] (as the one typically found in the treatment of FSSs [15,16]), printed lines [7,17],
substrate integrated waveguides [18–20], etc. The periodic boundary conditions can appear either in
the walls of the waveguiding system (transverse periodicity) and/or along the propagation direction
(longitudinal periodicity). If none of the boundaries of the waveguiding system is open to free
space, the periodic electromagnetic wave problem can be solved by means of a Floquet analysis of
the structure [21,22] that involves only a discrete spectrum [23]. If there are open boundaries in the
waveguiding system, the continuous spectrum should also be taken into account by means of its necessary
integral representation [3,23,24]. In any case, the dispersion diagram of the periodic structure can be
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obtained after solving the non-linear eigenvalue problem that results from the application of Maxwell’s
equations with the appropriate boundary conditions to the considered unit cell [3,23].

Likewise other non-linear electromagnetic eigenvalue problems, the obtaining of the eigenvalues
requires the searching for complex zeros of a given determinantal equation. In the present problem,
the eigenvalues correspond to the wavenumbers of the propagating modes, say kz = β − jα, with β

being the phase constant and α the attenuation constant (α accounts either for the evanescent/complex
nature of the mode or for the presence of material and/or radiation losses). As well reported in the
literature, the zero-searching task in the complex plane is not trivial at all because of its intrinsic
difficulty to be systematized into a general algorithm that can easily be implemented in an unattended
computer code [25–27]. Also, to the best of the authors’ knowledge, commercial electromagnetic
simulators (for instance [28,29]) provide systematically the frequency behavior of only the real part of
the complex wavenumber (an eigenvalue problem is defined by imposing a given phase shift between
the boundaries of the unit cell, and the corresponding eigen-frequency is then computed).

As an alternative to solving the above non-linear eigenvalue problem with its intrinsic
cumbersome task of searching for zeros in the complex plane, different procedures that make use
of general-purpose electromagnetic simulators (or even measurements) have been reported in the
literature. One of these procedures involves the analysis of one or two sections of the periodic structure
involving several unit cells in order to extract the dispersion relation from the different values of
the associated transmission matrices [18,19,30–32]. Implicit in the above method is the modeling of
the periodic structure as a cascade of identical two-port (or multi-port) equivalent networks [3,4].
The decomposition in two-port equivalent networks is valid when the interaction between adjacent
cells is well accounted for by only the fundamental mode of the waveguiding structure. If higher
order modes and/or the continuous spectrum take part in this interaction, then multi-port equivalent
networks are necessary [3,33]. In many published works on this topic, the application of the above
procedures requires the implementation of in-house computer codes [34–36]. Usually these codes are
not easy to be reproduced by (or distributed to) other authors and also hard to be generalized to cases
other than the particular ones treated in the corresponding papers. Certainly, wide distribution and
versatility of the software tool are two well-known and very relevant characteristics of commercial
electromagnetic simulators. In consequence, the development of combined approaches that can
take advantage of these features of commercial simulators and can be complemented with a simple
in-house post-processing stage is becoming more and more convenient [37–40]. Some more-simplified
approaches involving the simulation of a single unit cell (or even half unit cell) have also been
proposed [41]. Thus, the main goal of the present work will be to go over some of these approaches in
order to discuss what is the optimized hybrid method that, making use of commercial software,
can efficiently provide the dispersion relation of periodic structures. The presence of internal
symmetries in the unit cell will be of special interest in the frame of this research.

The paper is organized as follows. Section 2 gives an overview of two of the most usual methods
to deal with one-dimensionally periodic guiding structures and also discusses how to take advantage
of the possible symmetries in the unit cell. Section 3 discusses the conclusions derived in the previous
section in connection with the numerical results obtained for two different structures: printed periodic
microstrip lines and paralle-plate waveguides with periodic corrugations. Finally, a summary of our
main conclusions is reported in Section 4.

2. Methods of Analysis

As it has been mentioned above, there are basically two possible rigorous procedures to obtain
the dispersion diagram of periodic structures [3,4]: (i) the solution of the corresponding eigenvalue
problem associated with a unit cell subject to periodic boundary walls (PBW); and (ii) the extraction
of the dispersion curves from the post-processing of the ABCD matrix of a cascade of multi-modal
(multi-port) equivalent networks. This second approach is the one reported in the literature when
the dispersion diagram of the periodic structure is computed from the full-wave simulation results
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of a macro-cell made up of several unit cells [18,19,37–39], and will be the subject of discussion of
the present work. Certainly, the full-wave simulator employed to characterize the macro-cell does
take into account all the possible interactions between adjacent cells (which justifies its identification
with a cascade of multi-port equivalent networks). This method has several drawbacks such as the
intense computational load required to analyze a macro-cell involving many unit cells (as required
in many practical problems) [39,41], the appearance of spurious solutions, and the ambiguity of the
phase constant outside the first fictitious Brillouin zone imposed by the repetition of the unit cell [39].
These inherent difficulties have motivated the search for approaches that can overcome them, as for
example those reported in [39,41]. The procedure given in [39] can solve the drawback related to
the appearance of spurious solutions at the expense of increasing the computational load. However,
the procedure reported in [41] apparently overcomes all the mentioned drawbacks given that it only
involves full-wave simulations of a single unit cell (or even half this unit cell under appropriate
symmetry conditions) bounded by electric and/or magnetic walls along the direction of periodicity.
Unfortunately, the authors of the present work have not been able to reproduce the expected good
results of [41] in their own research and have found some reasons to justify this fact. The theoretical
and numerical results of the authors in this research are discussed below.

An example of a possible periodic configuration of interest within the frame of the present
work is schematically shown in Figure 1a. This arrangement consists of a section of three unit
cells of a longitudinally (along z-direction) periodic structure. The figure could represent either the
longitudinal cut of a rectangular or parallel-plate waveguide (PPW) with vertical (E-plane) stubs
(in such case the solid color represents the interior of the metallic waveguide) or the top view of
the layout corresponding to a printed microstrip line periodically loaded with stubs at the right and
left sides. In any case, the structure can be modeled by a cascade of equivalent networks as shown
in Figure 1b,c. Panel (b) corresponds to a cascade of two-port networks and panel (c) to a cascade
of multi-port networks. In Figure 1c it is assumed that port (1) is associated with the fundamental
mode, port (2) with the first higher-order mode, and so on. As usual, the input and output ports
of the whole structure are associated with the fundamental mode. In the example of Figure 1c,
the interaction between adjacent cells is assumed to be accounted for by both the first and second
modes, with the remaining modes being considered “localized” modes and therefore only contributing
as lumped elements in the equivalent network [15,33,42]. Clearly, the network shown in Figure 1b
is a simplification of the one in Figure 1c provided that the fundamental mode is the only relevant
mode in the interaction between adjacent cells, as implicitly or explicitly assumed in many works in
the literature [43]. Note that although, in principle, the boundaries of the unit cell along the z-direction
can be arbitrarily defined (provided the period is respected), it is convenient to set such boundaries
far apart from the discontinuities (stubs in this case), in a region where the uniform housing guiding
system (rectangular waveguide, PPW or microstrip) is clearly recognizable. If the unit cell has internal
symmetries, the boundaries should be chosen in such a way that these symmetries are preserved. Thus,
for instance, the limits of the unit cell might have been chosen between the two stubs represented
in Figure 1a, but this would not be a good choice if a model like the one in Figure 1b or Figure 1c is
intended to be used.

Next, two commonly used methods reported in the literature to obtain the dispersion relation
of waveguiding periodic structures along the longitudinal direction will be presented and critically
discussed. Both methods combine full-wave simulations coming from commercial electromagnetic
solvers with some post-processing to give the dispersion relation of the structures in a systematic way.
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(b)

(c)

(a)

Figure 1. Periodic structure under study, period p. (a) Cascade of 1-port equivalent networks;
(b) Cascade of multi-port equivalent networks; (c) Possible actual appearance of the physical periodic
structure with just 3 unit cells.

2.1. Method A

For a generic periodic configuration as the one in Figure 1a, and assuming that an appropriate
deembedding procedure has been implemented [18,19] to cancel out the undesirable effects caused by
the practical feeding of the structure, a very general and efficient method proposed in the literature
to obtain the dispersion diagram is based on the full-wave simulation of the finite N-cell structure
to obtain, in a first step, the corresponding total transmission matrix associated with the input and
output fundamental mode. Here it should again be noted that the boundaries of the unit cell of the
structure should conveniently be chosen, if possible, so that most of the interactions between cells is
carried out by means of the fundamental mode (the unit cell shown in Figure 1a is an example of
this convenient choice). The transmission matrix, [TN ], corresponding to a cascade of N unit cells can
formally be written as

[TN ] = [T]N (1)

where [T] stands for the unit-cell ABCD matrix corresponding to the fundamental mode in an scenario
where the higher-order mode interaction between cells has been appropriately taken into account.
It should be noted that, only under this assumption, the cascade of multi-port equivalent networks
has formally been expressed as a cascade of “effective” two-port ABCD matrices (as in Figure 1b),
which would be computed as

[T] = N
√
[TN ] =

[
Ap Bp

Cp Dp

]
(2)

where the subindex p indicates that the elements refer to a region of length p (that is, the period of
the unit cell). The term “effective” comes along with this [T] matrix to point out that this matrix is
not the standard ABCD matrix of an isolated unit cell interacting with adjacent cells only through
the fundamental mode (indeed, the “effective” [T] matrix depends on the number of unit cells in the
cascade). The dispersion relation of the periodic configuration would then be given by [3,4]

cosh(γp) =
Ap + Dp

2
(3)

or by the spurious-free procedure given in [39]. In the above equation γ is the propagation constant,
which is related to the wavenumber by γ = jkz = jβ + α.
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2.2. Method B

In the above discussion of the periodic generic configuration of Figure 1, it was implicitly assumed
that the procedure reported in [41] could not be applied because of the lack of symmetry in the unit
cell. However, if the unit cell does have symmetries as those shown in Figure 2b,c, then the authors
in [41] propose to exploit such symmetries to express the dispersion relation in terms of the properties
of just one half of the unit cell. In general, the smaller the structure to be analyzed with the full-wave
simulator, the more accurate and spurious-free the computed numerical solution. Following [41] it
will be assumed the existence of a cascade of two-port transmission matrices as in Figure 2a, where the
symmetry of the unit cell is reflected by the following form of the matrices:

[T′] =
[

Ap/2 Bp/2
Cp/2 Dp/2

]
, [T′′] =

[
Dp/2 Bp/2
Cp/2 Ap/2

]
(4)

(subindex p/2 stands for the fact that only half the unit cell is considered for the definition of each of
these auxiliary transfer matrices). The transmission matrix of the global unit cell is then given by

[T] = [T′][T′′] =
[

Ap/2Dp/2 + Bp/2Cp/2 2Ap/2Bp/2
2Cp/2Dp/2 Ap/2Dp/2 + Bp/2Cp/2

]
(5)

and the corresponding dispersion relation can be written as

cosh(γp) = Ap/2Dp/2 + Bp/2Cp/2 = 2Ap/2Dp/2 − 1 (6)

(taking into account the general condition AD − BC = 1). If we now consider the identity

cosh(γp) = 2 cosh2(γp/2)− 1 (7)

it can be concluded that
cosh(γp/2) =

√
Ap/2Dp/2 . (8)

(b)

(c)

(a)

Figure 2. Periodic structure (period ≡ p) with a symmetry plane at the middle of the unit cell.
(a) Cascade of 2-port equivalent networks that explicitly takes into account the presence of the symmetry
plane in the unit cell; (b) Structure with a point of inversion symmetry; (c) Structure with a plane of
reflection symmetry.
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This dispersion equation is exactly the same as the one given in ([41] Equation (6)) (note that
the minimum period was denoted as 2p in [41] and p in this work). In principle we can compute the
product Ap/2Dp/2 from the scattering parameters provided by the full-wave simulation of half the
unit cell when considered isolated. However, if we proceed this way, all the higher-order interactions
between the two halves of the unit cell would be ignored. (The two-port transmission matrices [T′]
and [T′′] should rather be considered again as “effective” transmission matrices, in the understanding
that the fundamental mode might not be the only one that contributes to the interaction between the
two halves of the unit cell.)

Alternatively we could have proceeded in the manner reported in [41] by introducing a short/open
circuit in the structure in order to compute Ap/2Dp/2 in terms of the auxiliary impedances Zel and Zmag

defined in [41]. These are the input impedances of the one-port network obtained by substituting the
symmetry plane located at the center of the unit cell (see Figure 2) with a short circuit (Zel) or an open
circuit (Zmag). This procedure is found equivalent to starting with the whole unit cell and then applying
the even/odd excitation technique [3,4]. As this method implies the setting of electric/magnetic walls
at the middle of the structure, both procedures are fully equivalent provided the actual existence of
a reflection symmetry plane in the structure that allows for the application of the even/odd excitation
procedure. As an example, this symmetry condition is satisfied for the geometry given in Figure 2c
but not for the one in Figure 2b. This equivalence, or lack of equivalence, could be irrelevant if it
were not for the fact that the presence of electric/magnetic walls in the full-wave simulation is what
actually ensures that the higher-order interaction between the two symmetric halves of the unit cell is
appropriately taken into account. It is also apparent that the use of these magnetic/electric walls does
not imply that the higher-order interaction between adjacent whole unit cells is taken into account,
since only one unit cell is indeed analyzed with the full-wave simulator. Moreover, the placing of
a magnetic wall in the input port of the half unit cell imposed in [41] does not affect this discussion;
actually this magnetic wall is not necessary when the input lumped port is taken at the middle of the
unit cell [41] (this fact has repeatedly been checked by many numerical simulations carried out by the
authors of the present work). In brief, the technique reported in [41] can, in principle, be applied to
geometries of the type shown in Figure 2b,c, but the application of that technique to the geometry
in Figure 2b would only account for the electromagnetic interactions between the two halves of the
unit cell as long as this interaction is carried out exclusively by the fundamental mode (in other words,
the two stubs in each unit cell should be sufficiently far apart so as to ensure the absence of interactions
through high-order modes). It leads us to the somehow trivial finding that the higher-order interaction
between adjacent cells can only be taken into account by simulating a cascade of multiple unit cells
(as done in Method A) or, at most, by taking advantage of reflection symmetry planes (not inversion
points, as it is the case shown in Figure 2b) to simulate half the cascade of unit cells terminated with
electric/magnetic walls. This result will be numerically studied and validated in next section.

A general conclusion drawn above was that only method A can properly account for high-order
interactions between different unit cells, and thus method B should be restricted to those situations
where this interaction can be neglected. However, a possible and convenient way to account for
the high-order interactions between adjacent cells, which takes advantage of the combination of
methods A and B, is to apply method B to an extended cell of period P = 2p. In this case, the ABCD
parameters in (8) would correspond just to the unit cell of period p, which because of the presence of
a reflection-symmetry wall in the middle of the extended cell (Ap = Dp) would lead to a dispersion
equation completely equivalent to (3) if N had been set to 2 in method A. Certainly this combined
procedure can be applied to cells of more extended periodicity with the purpose of accounting for
inter-cell interactions with simulations that only involve half the number of cells.

Interestingly, the above discussion about symmetry in periodic structures turns out to be very
relevant when dealing with the circuit modeling of structures with glide/twisted symmetry [44,45].
This topic has recently surged due to some interesting application papers [46–49], where it is
clearly shown that the behavior of periodic structures with glide symmetry is not equivalent
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to their counterpart without this feature, thus giving an apparent clue on the different role
played by the higher-order mode coupling when different types of symmetry are involved.
Furthermore, this difference in coupling provided by the glide symmetry has been found to give
advantageous features that can enhance the performance of many practical devices [46,48,49].
According to our discussion above, the periodic structure with glide symmetry (whose unit cell
incorporates a central inversion point) cannot rigorously be modeled by the analysis of just one of the
two subcells of the unit cell (unlike periodic structures whose unit cell does have a reflection symmetry
plane). Actually, the authors of [47] claim that their circuit model is valid provided that the upper and
lower stubs in ([47], Figure 2c,d) do not overlap. Our premise here is that their proposed simplified
circuit modeling of the glide-symmetric structure is valid as long as the upper/lower position of the
stubs is irrelevant; namely, when the higher-order coupling between the stubs is not very important.
When both stubs overlap this possible difference in the higher-order coupling between upper/lower
position is crucial, being less and less relevant as the distance between the stubs increases. In practice,
as already reported in [50], there may be many practical situations where just the inclusion of the first
high-order mode suffices to obtain accurate results.

Also, the above discussion can be related to a very recent contribution in the circuit modeling
of non-symmetrical reciprocal network [51]. Although that paper deals with non-periodic structures,
its underlying rationale can easily be extended to the periodic case, in which the general conclusions
reached in [51] are found congruent with the discussions reported here.

3. Results

In this section the main issues discussed in previous sections will be numerically validated. First,
the general advantage of using Method B will be pointed out when possible. Certainly Method
A will provide, in principle, more accurate results since it deals with a more realistic electromagnetic
scenario in which many of the couplings between different unit cells are taken into account. However,
the unavoidable computational load implicit in the treatment of electrically large and complex
structures may lead to very long computational times and non-negligible levels of numerical noise.
This last effect can become very relevant when dealing, for instance, with leaky-wave 1-D periodic
configurations, where the eventual high radiation leakage in the structure can make the power in the
output port several orders of magnitude smaller than in the input port. This numerical noise is also
very relevant when computing the attenuation constant of below-cutoff and/or complex modes in
closed waveguiding system. A few selected examples will be discussed in the next subsections to
clarify these points and provide some insights on the virtues and limitations of the proposed methods.

3.1. Periodic Printed Microstrip Lines

Our first case study in Figure 3 shows the comparison between the results of methods A and B for
two printed microstrip lines periodically loaded with inductive/capacitive discontinuities. These lines
were previously studied in [38,52] and, in this example, HFSS commercial software [29] has been used
for the required full-wave simulations. Both structures exhibit a band gap starting when its period
p equals half the line wavelength (λg/2) (as shown in [35,38]). Although not explicitly shown in the
figures, our results agree well with those reported in [38,52].

In Figure 3a the results for the dispersion diagram (both the phase, β, and the attenuation,
α, constants) corresponding to method A have been computed using one cell (N = 1) and five
cells (N = 5). In this structure, the differences between the N = 1 and N = 5 cases are very small,
clearly meaning that the inter-cell coupling is well accounted for by just the fundamental mode.
The data corresponding to method B have been obtained by using the even-odd excitation procedure
to study the unit cell (namely, just one of the two symmetric halves with electric/magnetic walls are
simulated). Certainly, the results using this procedure are found identical to the ones obtained by the
procedure proposed in ([41], Equation (12)) as well as to the “Method A N = 1” curve. The excellent
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agreement between the “Method B” curve and the results with N = 1 can be considered as a first
validation of the congruence of methods A and B in this circumstance.
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Figure 3. Dispersion diagram of the periodic printed microstrip lines shown as insets. The substrate
of the lines has thickness h and relative permittivity εr. (a) p = 5.6 mm, w = 0.6 mm, ws = 0.2 mm,
εr = 10.2 and h = 0.635 mm; (b) p = 4 mm, w = 0.6 mm , g = 0.2 mm, εr = 10.2 and h = 0.767 mm.

In the structure analyzed in Figure 3b, previously studied in [52], the results provided by method A
for one, three, and five cells (denoted as N = 1, N = 3, and N = 5 respectively) are compared with
those obtained by method B, taking now an extended period of 2p (namely, the simulated subcell
with electric/magnetic walls has a length of p, and thus the obtained results are found to be identical
to the case “Method A N = 2”, although this fact is not explicitly shown in the figure since the two
corresponding curves would overlap). It is interesting to observe the appearance of slight discrepancies
between the results of method A when different number of cells are considered and, furthermore,
that a clear convergence pattern is not observed in the analyzed frequency range. These facts are partly
attributable to the high values of the attenuation constant in the stopband (there appear values of
α/k0 > 1), which causes the results with a few cells to be affected by numerical noise due to the very
low level of power that reaches the output port (power along z is given by P(z) = P(0)e−2αz; that is,
an attenuation of A(dB) = 8.69αz, which means A = 13.11N dB at 18 GHz, with N being the number
of cells in the structure). In this situation, the convenient convergence test to ensure the reliability of
the results provided by method A cannot be carried out. Actually, although not explicitly shown in
Figure 3b, the results with a higher number of cells are found to increasingly deteriorate.

46



Symmetry 2018, 10, 307

3.2. Corrugated Parallel-Plate Waveguide

The following example to be examined is a parallel-plate waveguide (PPW) system with periodic
metallic corrugations, which can be symmetrically and non-symmetrically distributed, as illustrated
by the insets in Figure 4a,b respectively (here the term “symmetrically distributed” is employed to
refer only to “reflection symmetry”). First, Figure 4 shows the case where the period of the structure
is sufficiently long as to make the inter-cell coupling due to high-order modes almost negligible up
to the cutoff frequency of the first high-order mode of the housing PPW. In this frequency range the
use of two-port ABCD matrices is well justified and thus the present structure will be taken as a good
benchmark to study the intra-cell high-order couplings and its relation to the symmetry properties of
the unit cell. In this long period case, no method-A results with N > 1 are shown since they are found
to almost coincide with the N = 1 case (although some small numerical noise appears because of the
inherent more difficult simulation of electrically large structures). Our results will be compared with
the data provided by the tool “Eigenmode-Solver” in CST [28]. The results provided by this tool for
the frequency behavior of the phase constant are considered very reliable; however, as this tool does
not straightforwardly generate results for the attenuation constant of reactive/complex/leaky modes,
the comparison for α is not carried out.
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Figure 4. Brillouin diagram of a parallel-plate waveguide (PPW) with periodic metallic corrugations
(a) symmetrically and (b) non-symmetrically distributed. The inset structures represent longitudinal
sections of the PPW’s with the grey color standing for the metallic parts of the structures. Long period:
p = 12 mm. Other parameters: h = 10 mm, s = 2 mm, t = 1 mm and g = 1 mm.

The reflection-symmetry case studied in Figure 4a clearly shows a very good agreement between
the results of method A with just one period (N = 1) and those given by the even-odd excitation
procedure in method B in the whole considered frequency range. These results agree well with the
data provided by the CST Eigenmode-Solver (CST-ES) up to 15 GHz; namely, the cutoff frequency
of the first high-order mode in the housing uniform (without corrugations) PPW: f = c/(2h), with c
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being the vacuum speed of light and h the height of the uniform PPW. As expected, discrepancies start
to appear beyond this frequency, when the presence of this second propagative mode in the uniform
sections of the PPW makes that the cascade of two-port ABCD matrices cannot properly account
for the unavoidable multi-mode inter-cell coupling that will appear. It should be highlighted that,
for frequencies where the regime is no longer monomode in the non-corrugated PPW, the cascade
of single two-port transfer matrices is not presumed to work satisfactorily because of the propagative
multi-mode nature of the guiding field rather than for possible neglected effects of high-order evanescent
modes. Thus, beyond this monomode band, neither method A nor method B are expected to provide
accurate results.

Let us now consider the inversion-symmetry structure shown in the inset of Figure 4b.
The structure exhibits an inversion point at the center of the unit cell, circumstance that will have
interesting consequences for a particular choice of the period, as it will be discussed later. The curves
in Figure 4b show again a good agreement within the monomode band between the results of method A
and those provided by the CST-ES. However, the data given by method B, which here completely
ignores the inversion-symmetry nature of the unit cell, are in full disagreement with the above two
set of results. It clearly proves that method B, as expected, drastically fails when high-order coupling
between the two subcells forming the inversion-symmetry unit cell is significant and not properly
incorporated to the model. This fact seems to be in contrast with the thesis apparently sustained in [41].
Of course, the method would properly work if the subcells only interact through the fundamental
propagating mode, as it would be the case for relatively large separation between the stubs. In this
latter case the structures with mirror symmetry and with inversion symmetry would have the same
response.

Next, the short-period case is studied in Figure 5, where it is again shown the cases corresponding
to the presence or absence of a reflection symmetry plane at the middle of the unit cell. In both cases it
is now included the data for “Method A N = 5” since high-order inter-cell coupling is expected when
the pair of corrugations of each unit cell is electrically close to adjacent ones. Figure 5a shows the
symmetrically-distributed case and, again, a perfect agreement is found between “Method A N = 1” and
“Method B”. These methods also show a good agreement with the “CST-ES” data in the first passband
up to 5 GHz where p/λ0 � 1/10. For higher frequencies, the inter-cell couplings cannot be well
accounted for by the cascade of two-port ABCD matrices and, therefore, the methods are not expected
to give accurate quantitative results (although they still provide a good qualitative picture of the band
diagram of the structure). The data corresponding to “Method A N = 5” shows a significantly better
agreement with the “CST-ES” curve in the whole first passband, although important discrepancies
appear in the stopband due to the expected numerical noise caused by the strong attenuation in
this band. There is neither a good agreement in the second passband because of the multi-mode
nature of the band at higher frequencies. Due to the unreliability of these “Method A N = 5” data
outside the first passband, they are not shown in the figure. Regarding the inversion-symmetry
case in Figure 5b, the first relevant feature is the complete lack of agreement between the results of
“Method A N = 1” and “Method B” even at very low frequencies, which clearly highlights the need
of appropriately considering the multi-mode interactions that appear here between the two halves
of the unit cell. Since the first passband in this case appears below 5 GHz, a very good agreement is
now found between the “Method A N = 1” and “CST-ES”. For higher frequencies there is not such a
good quantitative agreement, although the qualitative behavior is approximately captured until the
onset of the multi-mode propagation regime. In this inversion-symmetry case, the “Method A N = 5”
curve does show a good quantitative agreement within the entire single-band regime, agreement that
extends up to the onset of the multi-mode regime. An interesting feature of this structure is the
widening of the second bandpass of negative-group velocity nature [53], which now extends from 8 to
13 GHz approximately.
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Figure 5. Brillouin diagram of a parallel-plate waveguide with periodic metallic corrugations
(a) symmetrically and (b) non-symmetrically distributed. Short period: p = 6 mm. Other parameters:
h = 10 mm, s = 2 mm, t = 1 mm and g = 1 mm.

An interesting further step in the study of corrugated PPWs is the case presented in Figure 6,
where the period of the structure is taken as twice the distance between the corrugations [47]. Actually,
for the symmetrically-distributed corrugation case shown in Figure 6a, the true period of the structure
is now p = s, although the dispersion relation will be plotted for an “extended” period p̂ = 2s for
the sake of comparison with the inversion-symmetry case in Figure 6b [the true period of which is
p = 2s]. The CST-EC curve in Figure 6a shows a first passband that now extends up to about 8 GHz;
interestingly, the onset of the second bandstop in Figure 5a. Actually, it is found that the first stopband
in this structure disappears as the distance between corrugations approaches the true period of the
structure (p → s). In this figure it is also observed that the “Method A N = 2” gives sufficiently
accurate quantitative results in this first passband but drastically fails for higher frequencies (in these
calculations, a structure with two unit cells, p̂ = 2s, has been taken). The curve corresponding to
“Method A N = 10” only improves the agreement with CST-ES in the first passband but also fails for
higher frequencies (the data are not shown). In this case, the expected relevant inter-cell propagative
and evanescent high-order coupling would make it necessary either the use of a multi-port approach or
the solution of the corresponding non-linear eigenvalue problem to compute the complex propagation
constant of the structure. The case considered in Figure 6b is an example of a structure having glide
symmetry [46–49]. The curves of Figure 6b show, similarly to the previous inversion-symmetry unit-cell
cases, a great disagreement between the results of Method A (N = 1) and Method B. Rather interesting
is the comparison of the “Method A N = 5” and “CST-ES” curves. Now there appears a good agreement
between both curves even for frequencies beyond 15 GHz. This good agreement outside the monoband
regime is attributed to the fact that the first high-order mode of the housing PPW is not expected
to be highly excited in the glide-symmetric structure. The existence of electrically-close periodic
inversion points in this structure would presumably reduce the excitation level of modes with an even
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profile along the vertical direction. Apart from this reasonable good agreement in the quantitative
results shown by both curves, they show that the passband of this structure has grown considerably,
now extending up to 13.8 GHz. This surprising fact, already reported in [46–49], is one of the most
relevant features of glide-symmetric structures and is likely to find more and more applications in the
future (a similar widening of a stopband can also be found in other type of glide-symmetric structures).
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Figure 6. Brillouin diagram of a parallel-plate waveguide with periodic metallic corrugations
(a) symmetrically [p̂ = 2p = 4 mm] and (b) glide-symmetrically distributed [p = 4 mm].
Other parameters: h = 10 mm, s = 2 mm, t = 1 mm and g = 1 mm.

4. Conclusions

In this work we have presented a thorough discussion on the pros and cons of computing the
dispersion relation of 1-D periodic guiding/radiating structures by means of a combined method
that makes use of full-wave simulations data obtained from commercial software tools along with
a simplifying equivalent-network model. This method can take advantage of both the high flexibility
of simulators to deal with general structures and the further analytical treatment of the data provided
by the employed simplified electromagnetic model of the problem as a cascade of two-port equivalent
networks.

Some general conclusions that have been discussed in this work are summarized below:

• The most general and reliable method to compute the dispersion diagram of periodic structures
is the solution of Maxwell’s equations in the unit cell of the structure subject to periodic
boundary conditions. The major disadvantage of this eigenvalue approach is that it involves the
searching for complex zeros, a task that is not easily systematized in the form of general-purpose
computer codes.

• The so-called Methods A and B in Section 2 are alternative combined approaches that avoid the
searching of complex zeros. If the unit cell of the periodic structure has a reflection-symmetry
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plane, then a further combination of these two methods is proposed as a very convenient and
efficient tool.

• Due to the simplification implicit in the modeling of the periodic structure as a cascade of two-port
equivalent networks, the possible excitation of high-order propagative modes in the uniform
sections of the housing structure will restrict the application of this technique to the so-called
monoband regime.

• The combined technique would need to deal with structures with many unit cells in order to take
into account the possible inter-cell coupling due to high-order evanescent modes. When inter-cell
coupling due to either propagative or evanescent high-order modes can be neglected, this method
is always expected to work properly.

• In contrast with the above fact, some authors have claimed that the convenient treatment of
just one unit cell would suffice if a proper even-odd periodic excitation technique is applied.
In this work it is discussed that this methodology can be used reliably only when there is
a reflection-symmetry plane in the unit cell or the interaction between the two halves of the unit
cell is carried out by only the fundamental mode.

• Finally, it has also been discussed that glide-symmetric structures, whose interesting properties
have recently been the object of intensive study, will require the modeling of the unit
cell as a multi-port equivalent network or the solution of the corresponding rigorous
eigenvalue problem.
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Abstract: It is well known that not every symmetry of a classical field theory is also a symmetry
of its quantum version. When this occurs, we speak of quantum anomalies. The existence of
anomalies imply that some classical Noether charges are no longer conserved in the quantum
theory. In this paper, we discuss a new example for quantum electromagnetic fields propagating
in the presence of gravity. We argue that the symmetry under electric-magnetic duality rotations
of the source-free Maxwell action is anomalous in curved spacetimes. The classical Noether charge
associated with these transformations accounts for the net circular polarization or the optical helicity
of the electromagnetic field. Therefore, our results describe the way the spacetime curvature changes
the helicity of photons and opens the possibility of extracting information from strong gravitational
fields through the observation of the polarization of photons. We also argue that the physical
consequences of this anomaly can be understood in terms of the asymmetric quantum creation of
photons by the gravitational field.

Keywords: electric-magnetic duality symmetry; quantum anomalies; optical helicity; electromagnetic
polarization; particle creation

1. Introduction

Symmetries are at the core of well-established physical theories, and they keep playing a central
role in the mainstream of current research. Fundamental Lagrangians in physics are founded on
symmetry principles. Moreover, symmetries are linked, via Noether’s theorem, to conservations laws.
Well-known examples are the energy and momentum conservation and its relation with the invariance
under space–time translations, as well as the conservation of the net fermion number (the difference
in the number of fermions and anti-fermions that is proportional to the net electric charge) in Dirac’s
relativistic theory, which result from the global phase invariance of the action.

When the symmetries of free theories are also preserved by interactions, the conservation laws are
maintained, and they can be used to understand patterns in diverse physical phenomena. In quantum
electrodynamics, for instance, the phase invariance is preserved by the coupling of the Dirac and the
electromagnetic field, and this ensures the conservation of the net fermion number in all physical
processes [1]. Another illustrative example is the gravitationally induced creation of particles, either
bosons or fermions, in an expanding homogenous universe [2–5]. This particle creation occurs in
pairs, and the symmetry of the background under space-like translations ensures that, if one particle is
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created with wavenumber�k, its partner has wavenumber −�k. As a consequence, there is no creation of
net momentum, as expected on symmetry grounds. In a similar way, phase invariance implies that the
gravitational field cannot create a net fermion number in an expanding universe.

However, in special cases, the implications of classical symmetries do not extend to quantum
theory, and the classical charge conservation breaks down. This was first noticed by studying massless
fermions coupled to an electromagnetic field [6,7]. A massless fermion is called a (Weyl) left-handed
fermion if it has helicity h = −1/2, and a right-handed fermion if h = +1/2 (A left-handed
(right-handed) anti-fermion has helicity h = +1/2 (−1/2)). Recall that the equations of motion
for the two sectors decouple in the massless limit, and this allows one to write a theory for massless
fermions that involves only one of the two helicities, something that is not possible for non-zero mass.
The action of this theory also enjoys phase invariance, so the number of left-handed and right-handed
fermions is separately conserved. This is to say, in the classical theory, there are two independent
Noether currents, jμ

L and jμR, associated with left- and right-handed massless fermions, respectively,
that satisfy continuity equations ∂μ jμL = 0 and ∂μ jμR = 0. Rather than using jμL and jμR, it is more
common to re-write these conservation laws in terms of the so-called vector and axial currents, defined
by their sum and difference, respectively, jμ = jμR + jμL = ψ̄γμψ and jμ5 = jμR − jμ

L = ψ̄γμγ5ψ, where ψ

is the four-component Dirac spinor, that encapsulates both left- and right-handed (Weyl) fermions,
and γμ, γ5 are the Dirac matrices.

What is the situation in quantum theory? It turns out that the conservation law for jμ holds also
quantum mechanically, so the quantum number NR + NL (associated with the net fermion number,
i.e., the electric charge) is preserved in any physical process. For instance, in the presence of a
time-dependent electromagnetic background, charged fermions and antifermions are spontaneously
created (this is the electromagnetic analog of the gravitationally induced particle creation mentioned
above [8–10]), but in such a way that the total fermion number (or electric charge) does not change.
This is because the number of created right- or left-handed antifermions equals the number of left- or
right-handed fermions:

NR + NL = (#R
1/2 − #R

−1/2) + (#L
−1/2 − #L

1/2) = 0 . (1)

However, it turns out that the difference in the created number of right-handed and left-handed
fermions is not identically zero. This means that it is possible to create a net amount of helicity:

NR − NL = (#R
1/2 − #R

−1/2)− (#L
−1/2 − #L

1/2) = [#1/2 − #−1/2] . (2)

The simplest scenario where this is possible is for a constant magnetic field, say, in the third spatial
direction �B = (0, 0, B), together with a pulse of electric field parallel to it, �E = (0, 0, E(t)). One can
show that, in this situation, the net creation of helicity per unit volume V is given by (see [1] for a proof
involving an adiabatic electric pulse)

Δ(NR − NL)

V
= − q2

2π2

∫ t2

t1

dt �E · �B , (3)

where q is the electric charge of the fermion, and the fermionic field is assumed to start in the vacuum
state at early times before the electric field is switched on. Hence, if the integral

∫ t2
t1

dt �E · �B is
different from zero, particles with different helicities are created in different amounts. In contrast,
NR + NL remains strictly constant. For an arbitrary electromagnetic background, the previous result
generalizes to

Δ(NR − NL) = − q2

2π2

∫ t2

t1

dt
∫

d3x �E · �B . (4)
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The key point is that Equation (4) is equivalent to the quantum-mechanical symmetry breaking of
the fermion chiral symmetry: ψ → ψ′ = e−iεγ5

ψ, as expressed in the anomalous non-conservation of
the current [6,7].

∂μ〈jμ5 〉 = − q2h̄
8π2 Fμν

∗Fμν (5)

where Fμν is the electromagnetic field strength, ∗Fμν ≡ 1
2 εμναβFαβ its dual, and the presence of h̄ makes

manifest that this is a quantum effect. Equations (5) and (4) are connected by the standard relation
between a current and the charge associated with it:

∫
d3x〈j05〉 = h̄(NR − NL).

The discovery of the chiral anomaly of Equation (5) was not arrived at by computing the
number of fermions created, but rather by directly computing the quantity ∂μ〈jμ

5 〉. In that calculation,
the anomaly arises from the renormalization subtractions needed to calculate the expectation value
〈jμ5 〉. The operator jμ

5 is non-linear (quadratic) in the fermion field, and in quantum field theory
expectation values of non-linear operators are plagued with ultraviolet divergences. One must
use renormalization techniques to extract the physical, finite result. A detailed study shows that
renormalization methods that respect the gauge invariance of the electromagnetic background break
the fermionic chiral symmetry of the classical theory. The fact that Expression (5) was able to accurately
explain the decay ratio of processes that could not be understood otherwise, like the decay of the
neutral pion to two photons, was an important milestone in the quantum field theory and the study
of anomalies.

A similar anomaly appears when the electromagnetic background is replaced by a gravitational
field [11]. In this case, renormalization methods that respect general covariance give rise to a violation
of the classical conservation law ∇μ jμ

5 = 0, which becomes

∇μ〈jμ5 〉 = − h̄
192π2 Rμναβ

∗Rμναβ (6)

where Rμναβ is the Riemann tensor and ∗Rμναβ its dual, and ∇μ is the covariant derivative.
For gravitational fields for which a particle interpretation is available at early and late times, this chiral
anomaly also manifests in the net helicity contained in the fermionic particles created during
the evolution:

Δ(NR − NL) = − 1
192π2

∫ t2

t1

∫
Σ

d4x
√−g Rμναβ

∗Rμναβ . (7)

Typical configurations where this integral is non-zero are the gravitational collapse of a neutron
star, or the merger of two compact objects as the ones recently observed by the LIGO-Virgo
collaboration [12,13].

In contrast to the anomaly of Equation (5) induced by an electromagnetic background, the chiral
anomaly induced by gravity affects every sort of massless spin-1/2 fields, either charged or neutral.
This is a consequence of the universal character of gravity, encoded in the equivalence principle,
that guarantees that, if Equation (6) is valid for a type of massless spin-1/2 field, it must also be valid
for any other type.

There is no reason to believe, however, that these anomalies are specific to spin 1/2 fermions,
and one could in principle expect that a similar effect will arise for other types of fields that classically
admit chiral-type symmetries. This is the case of photons. One then expects that photons propagating
in the presence of a gravitational field will not preserve their net helicity, or, in the language of particles,
that the gravitational field will created photons with different helicities in unequal amounts, in the same
way it happens for fermions (one also expects a similar effect for gravitons). For photons, the analog
of the classical chiral symmetry of fermions is given by electric-magnetic duality rotations [14]

�E′ = cos θ �E + sin θ �B
�B′ = cos θ �B − sin θ �E . (8)
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As first proved in [15], these transformations leave the action of electrodynamics invariant if
sources (charges and currents) are not present, and the associated Noether charge is precisely the
difference between the intensity of the right- and left-handed circularly polarized electromagnetic
waves, i.e., the net helicity. This symmetry is exact in the classical theory even in the presence of
an arbitrary gravitational background, as pointed out some years later in [16]. However, in exact
analogy with the fermionic case, quantum effects can break this symmetry of the action and induce
an anomaly [17,18]. In the language of particles, this would imply that the difference in the number
of photons with helicities h = ±1, NR − NL, is not necessarily conserved in curved spacetimes.
The analogy with the fermionic case also suggests that the current jμD associated with the symmetry
under duality rotations of the classical theory fails to be conserved quantum mechanically, with a
non-conservation law of the type

∇μ〈jμ
D〉 = α h̄Rμναβ

∗Rμναβ . (9)

where α is a numerical coefficient to be determined. In a recent work [18,19], we have proved that
this is in fact the case, and obtained that α is different from zero and given by α = − 1

96π2 . In this
paper, we will provide a general overview of these results from a different perspective, and with more
emphasis on conceptual aspects.

2. Electric-Magnetic Duality Rotations and Self- and Anti Self-Dual Fields

To study electric-magnetic rotations of Equation (8), it is more convenient to change variables to
the self- and anti-self-dual components of the electromagnetic field, defined by �H± ≡ 1√

2
(�E ± i �B),

since for them the transformation of Equation (8) takes a diagonal form:

�H′± = e∓ iθ �H± . (10)

A discrete duality transformation ��E = �B, ��B = −�E corresponds to θ = π/2. Then, the operator
i� produces i � �H± = ± �H±. It is for this reason that �H+ and �H− are called the self- and anti-self-dual
components of the electromagnetic field, respectively.

There are other aspects that support the convenience of these variables. For instance, under a
Lorentz transformation, the components of �E and �B mix with each other. Indeed, under an infinitesimal
Lorentz transformation of rapidity�η , the electric and magnetic fields transform as �E′ = �E−�η ∧ �B,�B′ =
�B +�η ∧ �E. (We recall that the rapidity �η completely characterizes a Lorentz boost: its modulus contains
the information of the Lorentz factor γ, via cosh |�η| = γ, and its direction indicates the direction of the
boost). However, when �E and �B are combined into �H±, it is easy to see that the components of �H+ and
�H− no longer mix:

�H′± = �H± ± i�η ∧ �H± . (11)

Note also that, under an ordinary infinitesimal (counterclockwise) rotation of angle α > 0 around
the direction of a unit vector �n, the complex vectors �H± transform as �H′± = �H± + α�n ∧ �H±. Hence,
a boost corresponds to a rotation of an imaginary angle. These are the transformation rules associated
with the two irreducible representations of the Lorentz group for fields of spin s = 1. In the standard
terminology [20,21], they correspond to the (0, 1) representation for �H+, and the (1, 0) one for �H−.
More generally, for any element of the restricted Lorentz group SO+(1, 3) (rotations + boots), the above
complex fields transform as

�H′± = e−i(α�n ±i�η)·�J �H± (12)

where �J are the infinitesimal generators of the group of rotations. The ± sign in the above
equation distinguishes the two inequivalent (three-dimensional) representations of the Lorentz group.
They are, however, equivalent under the subgroup of rotations. This makes transparent the fact that
electrodynamics describes fields of spin s = 1, something that is more obscure when working with �E
and �B, the field strength Fμν, or even the vector potential Aμ.
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Another useful aspect of self- and anti-self-dual variables concerns the equations of motion.
The source-free Maxwell equations

�∇ · �E = 0 , �∇ · �B = 0
�∇× �E = −∂t �B , �∇× �B = ∂t �E (13)

when written in terms of �H±, take the form

�∇ · �H± = 0 , �∇× �H± = ±i ∂t �H± . (14)

Notice that, in contrast to �E and �B, the self- and anti-self-dual fields are not coupled by the
dynamics. The general solution to these field equations is a linear combination of positive and negative
frequency plane waves

�H±(t,�x) =
∫ d3k

(2π)3

[
h±(�k) e−i(k t−�k·�x) + h∗∓(�k) ei(k t−�k·�x)

]
ε̂±(�k) (15)

where k = |�k| and h±(�k) are complex numbers that quantify the wave amplitudes. The polarization
vectors are given by ε̂±(�k) = 1√

2
(ê1(�k)± i ê2(�k)) where ê1 and ê2 are any two real, space-like unit

vectors transverse to k̂ (we choose their orientation such that ê1 × ê2 = +k̂). Positive-frequency Fourier
modes h±(�k) e−i(k t−�k·�x) ε̂±(�k) describe waves with helicity h = 1 for self-dual fields, and with negative
helicity h = −1 for anti-self-dual fields. This is also in agreement with the general fact that a massless
field associated with the Lorentz representation (0, j) describes particles with helicity +j, while a
(j, 0)-field describes particles with helicity −j [20]. Compared with massless fermions, �H+ is the
analog of a right-handed Weyl spinor, which transforms under the (0, 1/2) Lorentz representation,
and �H− is the analog of a left-handed Weyl spinor.

The constraints �∇ · �H± = 0 can be used to introduce the potentials �A±, as follows:

�H± = ± i �∇× �A±. (16)

Maxwell equations then reduce to first-order differential equations for the potentials:

± i �∇× �A± = − ∂t �A± + �∇A0± . (17)

Both sets of equations, for the fields of Equation (14) and for the potentials of Equation (17),
can be written more compactly as follows (the equations for �H− and �A− are obtained by complex
conjugation)

αab
I ∂a HI

+ = 0 , ᾱab
I ∂a A+ b = 0 . (18)

The numerical constants αab
I are three 4 × 4 matrices, for I = 1, 2, 3, and the bar over αab

I indicates
complex conjugation. The components of these matrices in an inertial frame are

αab
1 =

⎛⎜⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 i
0 0 −i 0

⎞⎟⎟⎟⎠ αab
2 =

⎛⎜⎜⎜⎝
0 0 −1 0
0 0 0 −i
1 0 0 0
0 i 0 0

⎞⎟⎟⎟⎠ αab
3 =

⎛⎜⎜⎜⎝
0 0 0 −1
0 0 i 0
0 −i 0 0
1 0 0 0

.

⎞⎟⎟⎟⎠ (19)

It is trivial to check by direct substitution that Equation (18) is equivalent to Equations (14) and (17),
respectively. These anti-symmetric matrices are Lorentz invariant symbols. They are self-dual (i � αab

I =

αab
I ), and the conjugate matrices are anti-self-dual (i � ᾱab

I = −ᾱab
I ).

The two sets of equations in Equation (18) were shown in [19] to contain the same information.
One can thus formulate source-free Maxwell theory entirely in terms of complex potentials.
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3. Noether Symmetry and Conserved Charge

In this section, we show that electric-magnetic rotations of Equation (8) are a symmetry of the
classical theory, and obtain an expression for the associated conserved charge. This can be more
easily done by working in Hamiltonian formalism. The phase space of electrodynamics is usually
parametrized by the pair of fields (�A(�x),�E(�x)), with �B = �∇× �A. The Hamiltonian of the theory is
easily obtained by the Legendre transform from the Lagrangian, and it reads

H =
1
2

∫
d3x

[
�E2 + (�∇× �A)2 − A0 (�∇ · �E)

]
. (20)

In this expression, A0(�x) is regarded as a Lagrangian multiplier that enforces the Gauss law constraint
�∇ · �E = 0. The phase space is equipped with a Poisson structure given by {Ai(�x), Ej(�x′)} = δ

j
i δ(3)(�x −

�x′), which induces a natural symplectic product Ω[(�A1,�E1), (�A2,�E2)] = − 1
2

∫
d3x

[
�E1 · �A2 − �E2 · �A1

]
.

From the form of the electric-magnetic rotations of Equation (8), we see that the infinitesimal
transformation of the canonical variables reads

δ�A = �Z , δ�E = �∇× �A (21)

where �Z is defined by �E =: −�∇× �Z; therefore, it can be understood as an “electric potential” (note
that in the source-free theory �Z can be always defined, since �∇ · �E = 0).

Now, the generator of the transformation of Equation (21) can be determined by

QD = Ω[(�A,�E), (δ�A, δ�E)] = −1
2

∫
d3x [�E · δ�A − �A · δ�E] =

1
2

∫
d3x [�A · �B − �Z · �E] . (22)

QD is gauge invariant, and one can easily check that it generates the correct transformation by
computing Poisson brackets

δ�B = {�B, QD} = {∇× �A, QD} = −�E

δ�E = {�E, QD} = �B . (23)

It is also straightforward to check that δH = {H, Q} = 0. Therefore, the canonical transformation
generated by QD, i.e., the electric-magnetic duality transformation of Equation (21), is a symmetry of
the source-free Maxwell theory, and QD is a constant of motion.

Taking into account the form of the generic solutions, Equation (15), to the field equations,
the conserved charge reads

QD =
∫ d3k

(2π)3 k

[
|h+(�k)|2 − |h−(�k)|2

]
. (24)

This expression makes it clear that QD is proportional to the difference in the intensity of the self-
and anti-self-dual parts of field or, equivalently, the difference between the right and left circularly
polarized components. In the quantum theory, QD/h̄ measures the difference in the number of photons
with helicities h = +1 and h = −1. For this reason, we recognize QD as the V-Stokes parameter that
describes the polarization state of the electromagnetic radiation.

Although we have restricted here to Minkowski spacetime, the argument generalizes to situations
in which a gravitational field is present [16]. A generally covariant proof in curved spacetimes in the
Lagrangian formalism is given in [19], where the associated Noether current was obtained:

jμD =
1
2

[
Aν

�Fμν − Zν Fμν
]

. (25)
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4. Analogy with Dirac Fermions and the Quantum Anomaly

The goal of this section is to compute the vacuum expectation value of the current jμ
D associated

with the symmetry under electric-magnetic rotations, and to use the result to evaluate whether these
transformations are also a symmetry of the quantum theory. A convenient strategy to achieve this is to
realize that, in the absence of electric charges and currents, Maxwell’s theory can be formally written as
a (bosonic) spin 1 version of the Dirac theory for a real spin 1/2 field. The convenience of writing the
theory in this form is that it allows one to take advantage of numerous and powerful tools developed
to compute the chiral anomaly for fermions. Hence, we will start in Section 4.1 by summarizing the
theory of massless spin 1/2 fermions and the calculation of the fermionic chiral anomaly, and we will
come back to the electromagnetic case in Section 4.2.

4.1. Fermions in Curved Spacetime

To better motivate the analogy between electric-magnetic rotations and chiral rotations of fermions,
it is convenient to write the Dirac field in terms of two Weyl spinors ψL and ψR as follows (see for
instance [1,22]):

ψ ≡
(

ψL
ψR

)
, ψ̄ ≡ ψ†β = (ψ†

L, ψ†
R) (26)

where β is the matrix

β ≡
(

0 I
I 0

)
. (27)

The spinor ψL transforms according to the (1/2, 0) representation of the Lorentz algebra, while the
spinor ψR transforms with the (0, 1/2) representation. The Dirac equation

iγμ∂μψ = mψ (28)

takes the form

i

(
0 σμ

σ̄μ 0

)(
ψL
ψR

)
= m

(
ψL
ψR

)
(29)

where σμ = (I,�σ) and�σ are the Pauli matrices. Numerically β agrees with the Dirac matrix γ0, and it
is for this reason that the two matrices are commonly identified (although they have a different index
structure; see e.g., [22]). For massless fermions, the theory is invariant under the chiral transformations
ψ → ψ′ = eiθγ5 ψ, with γ5 = i

4! εαβγδγαγβγγγδ

γ5 =

(
−I 0
0 I

.

)
(30)

Therefore,

ψ =

(
ψL
ψR

)
→ ψ′ = eiγ5θψ =

(
e−iθψL
eiθψR

.

)
(31)

Noether’s theorem associates with this symmetry transformation the chiral current jμ
5 = ψ̄γμγ5ψ.

The spatial integral of its time-component is the charge

Q5 =
∫

d3x(ψ†
RψR − ψ†

LψL) , (32)
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and it is classically conserved.
This charge counts the difference in the number of positive and negative helicity states, in close

analogy to the dual charge of Equation (24) for the electromagnetic case. As we mentioned in the
introduction, this quantity is a constant of motion in the quantum theory in Minkowski space, but this
is not necessarily true in the presence of a gravitational background, as we now explain in more detail.

In the presence of gravity, the Dirac equation for a massless spin 1/2 fields takes the form (see,
for instance, [23])

iγμ(x)∇μψ(x) = 0 (33)

where γμ(x) = eμ
a (x)γa are the Dirac gamma matrices in curved space, eμ

a (x) is a Vierbein or
orthonormal tetrad in terms of which the curved metric gμν is related to the Minkowski metric
ηab by gμν eμ

a eν
b = ηab, while γa are the Minkowskian gamma matrices (that satisfy {γa, γb} = 2ηab).

∇μ is the covariant derivate acting on spin 1/2 fields:

∇μψ = (∂μ + iωμabΣab)ψ (34)

where Σab = − 1
8 [γ

a, γb] are the generators of the (1/2, 0)
⊕
(0, 1/2) representation of the Lorentz

group, and wμ is the standard spin connexion, defined in terms of the Vierbein and the Christoffel

symbols Γα
μβ by (wμ)a

b = ea
α∂μeα

b + ea
αeβ

b Γα
μβ.

The axial symmetry is maintained at the classical level, or in other words, the conservation law
∇μ jμA = 0 holds for any solution of the equations of motion. Quantum mechanically, to check whether
the symmetry is maintained one needs to evaluate the vacuum expectation value of the operator ∇μ jμ

A.
The result, originally computed in [11], is given by

〈∇μ jμA〉 =
2ih̄

(4π)2 tr[γ5E2(x)] (35)

where E2(x) is the second DeWitt coefficient (see the appendix for a sketch of the derivation, and [23]
for a pedagogical calculation using different renormalization methods). In short, the DeWitt coefficients
are local functions constructed from curvature tensors that encode the information of the short distance
behavior (x′ → x) of the solution K(τ, x, x′) of a heat-type equation associated with the Dirac operator
D ≡ iγμ∇μ (for this reason, this function K is called the Heat-Kernel):

i∂τK(τ, x, x′) = D2K(τ, x, x′) . (36)

The asymptotic form of K(τ, x, x) as τ → 0 defines the En(x) coefficients by

K(τ, x, x) ∼ −i
(4πτ)2

∞

∑
n=0

(iτ)nEn(x) . (37)

E(x) are local quantities encoding analytical information of the Klein–Gordon operator D2 in
Equation (36)

D2ψ = (gμν∇μ∇ν +Q(x))ψ = 0 (38)

and are determined by the geometry of the spacetime background. The result for the E2(x) is [23]

E2(x) =

[
− 1

30
�R +

1
72

R2 − 1
180

RμνRμν +
1

180
RαβμνRαβμν

]
I (39)

+
1
12

WμνWμν +
1
2
Q2 − 1

6
RQ+

1
6
�Q
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where Wμν is defined by Wμνψ = [∇μ,∇ν]ψ, and

Q =
1
4

R , Wμν = −iRμναβeα
a eβ

b Σab. (40)

The non-trivial contribution to the axial anomaly comes entirely from the WμνWμν term
and produces

〈∇μ jμ
A〉 =

2ih̄
(4π)2 tr[γ5E2(x)] = − 2ih̄

(4π)2
1

12
RμνabRμνcdtr[γ5ΣabΣcd]

=
h̄

192π2 Rμνλσ
�Rμνλσ . (41)

If, in addition to the gravitational background, the fermion field propagates also on an
electromagnetic background, there is another contribution to the anomaly (this one is proportional
to the square of the electric charge q of the fermion). The extra contributions to Wμν and Q are
Wμν = iqFμν and Q = 2qFμνΣμν, and the expression for 〈∇μ jμA〉 becomes

〈∇μ jμ
A〉 =

h̄
192π2 Rμνλσ

�Rμνλσ − h̄q2

8π2 Fμν
�Fμν . (42)

To finish this section, recall that there is another type of spin 1/2 fermions known as Majorana
spinors. They are the “real” versions of Dirac’s spinors. Mathematically, while for Dirac massless
fermions the two Weyl spinors ψL and ψR in Equation (26) are independent of each other, this is
not true for Majorana spinors, for which there is an extra condition ψR = iσ2ψ∗

L [1]. Furthermore,
the Lagrangian density for Majorana spinors carries an additional normalization factor 1/2 compared
to Dirac’s Lagrangian. Since Majorana spinors do not carry an electric charge (q = 0), the presence of
an electromagnetic background does not induce any anomaly, and the coefficient in the gravitational
sector of the anomaly is half of the value obtained for a Dirac fermion.

4.2. Electrodynamics in Curved Spacetime

Consider Maxwell theory in the absence of electric charges and currents. This theory can
be described by a classical action that is formally analog to the action of a Majorana 4-spinor.
Rather than proving from scratch that the familiar Maxwell action can be re-written in the form
just mentioned (see [19]), we will simply postulate the new action and show then that it reproduces
the correct equations of motion. Consider then the following action in terms of self-dual and anti
self-dual variables:

S[A+, A−] = −1
4

∫
d4x
√−g Ψ̄ iβμ∇μΨ (43)

where

Ψ =

⎛⎜⎜⎜⎝
A+

H+

A−

H−

⎞⎟⎟⎟⎠ , Ψ̄ = (A+, H+, A−, H−) , βμ = i

⎛⎜⎜⎜⎝
0 0 0 ᾱμ

0 0 −αμ 0
0 αμ 0 0

−ᾱμ 0 0 0

.

⎞⎟⎟⎟⎠ (44)

Note that Ψ is formally analog to a Majorana 4-spinor rather than a Dirac one, since its lower
two components are complex conjugate from the upper ones. Therefore, the action of Equation (43)
is the analog of Majorana’s action. The independent variables in this action are the potentials Aμ

±,
and the fields �H± are understood as shorthands for their expressions in terms of the potentials (see
Section 2). Note also that Equation (43) is a first-order action (i.e., first-order in time derivatives),
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while the standard Maxwell’s action is second order. ∇μ in Equation (43) is the covariant derivative
acting on the field Ψ, given by

∇μΨ = (∂μ + iωμab Mab)Ψ (45)

and Mab is

Mab =

⎛⎜⎜⎜⎝
Σab 0 0 0
0 +Σab 0 0
0 0 Σab 0
0 0 0 −Σab

⎞⎟⎟⎟⎠ (46)

where Σσρ
αβ = δ

ρ
αδσ

β − δ
ρ
βδσ

α is the generator of the (1/2, 1/2) representation of the Lorentz group, while
+Σσρ

I J and −Σσρ

İ J̇ are the generators of the (0, 1)⊕ (0, 0) and (1, 0)⊕ (0, 0) representations, respectively.
Using some algebraic properties of the matrices α (see [19] for more details), it is not difficult to

find that βμ satisfies the Clifford algebra

{βμ, βν} = 2gμν
I . (47)

It can also be checked that ∇νβμ(x) = 0. These matrices can then be thought of as the spin 1
counterpart of the Dirac γμ matrices. Furthermore, one can also introduce the “chiral” β5 matrix in a
similar way:

β5 ≡ i
4!

εαβγδβαβββγβδ =

⎛⎜⎜⎜⎝
−I 0 0 0
0 −I 0 0
0 0 I 0
0 0 0 I

,

⎞⎟⎟⎟⎠ (48)

satisfying properties analogous to the Dirac case:

{βμ, β5} = 0 , β2
5 = I . (49)

Further details and properties of these matrices can be studied in [19].
Although the basic variables in the action are the potentials A±

μ , at the practical level one can
work by considering Ψ and Ψ̄ as independent fields. Note that this is the same as one does when
working with Majorana spinors. The equations of motion take the form

δS
δΨ̄

= 0 −→ iβμ∇μΨ = 0 . (50)

They contain four equations, one for each of the four components of Ψ. The upper two are the
equations ᾱ

μν

İ ∇μ A+
ν = 0 and α

μν
I ∇μHI

+ = 0. The lower two are complex conjugated equations.
Since these equations are precisely Maxwell’s equations written in self- and anti-self-dual variables,
this proves that the action of Equation (43) describes the correct theory.

Now we study how the classical electric-magnetic symmetry and its related conservation law
arise in this formalism. By means of the chiral matrix β5, an electric-magnetic duality rotation can be
written in the following form, manifestly analog to a chiral transformation for Dirac fields:

Ψ → eiθβ5 Ψ , Ψ̄ → Ψ̄eiθβ5 . (51)

Recalling the explicit form of β5 in Equation (48), one infers that the upper two components of
Ψ, namely (A+, H+), encode the self-dual, or positive chirality sector of the theory, while the lower
two components (A−, H−) describe the anti-self-dual or the negative chiral sector. The Lagrangian
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density in Equation (43) remains manifestly invariant under these rotations, and in the language of Ψ
the Noether current reads

jμ
D =

1
4

Ψ̄βμβ5Ψ . (52)

The corresponding Noether charge yields

QD =
∫

Σt
dΣμ jμD =

1
4

∫
Σt

dΣ3 Ψ̄β0β5Ψ (53)

where dΣ3 is the volume element of a space-like Cauchy hypersurface Σt. This formula for QD is in full
agreement to that calculated in previous sections (see Equation (22)), generalized to curved spacetimes.

The calculation of the vacuum expectation value 〈∇μ jμD〉 in the quantum theory follows exactly
the same steps shown above for fermions. Namely, 〈∇μ jμ

D〉 is given again [18,19] in terms of the second
DeWitt coefficient E2(x) by

〈∇μ jμD〉= − i
h̄

32π2 tr[β5E2] , (54)

where E2(x) is now obtained from the heat kernel K associated with the Maxwell operator D = iβμ∇μ,
rather than the Dirac operator iγμ∇μ. The DeWitt coefficient is still given by Equation (39), but now
Equation (40) needs to be replaced by

QΨ ≡ 1
2

β[α βμ] Wαμ Ψ (55)

and
WαμΨ ≡ [∇α,∇μ]Ψ =

1
2

Rαμσρ MσρΨ . (56)

With this, Equation (54) becomes

〈∇μ jμD〉ren = − h̄
96π2 Rαβμν

�Rαβμν . (57)

This result reveals that quantum fluctuations spoil the conservation of the axial current jμD and
break the classical symmetry under electric-magnetic (or chiral) transformations, if the spacetime
curvature is such that the curvature invariant Rαβμν

�Rαβμν is different from zero.

5. Discussion

The result shown in Equation (57) implies that the classical Noether charge QD is not necessarily
conserved in the quantum theory, and its change between two instants t1 and t2 can be written as

Δ 〈QD〉 = − h̄
96π2

∫ t2

t1

∫
Σ

d4x
√−g Rαβμν

�Rαβμν = − h̄
6π2

∫ t2

t1

dt
∫

Σ
d3x
√−g EμνBμν (58)

where in the last equality we have written Rαβμν
�Rαβμν in terms of the electric Eμν and magnetic Bμν

parts of the Weyl curvature tensor. Note the close analogy with the chiral spin 1/2 anomaly shown
in Equation (4). This result implies that the polarization state of the quantum electromagnetic field
can change in time, even in the complete absence of electromagnetic sources, due to the influence of
gravitational dynamics and quantum electromagnetic effects (notice the presence of h̄). In this precise
sense, one can think about the spacetime as an optically active medium.

Since Δ 〈QD〉 is proportional to h̄, one could expect the net effect of the anomaly to be small.
However, recall that Δ 〈QD〉 = h̄(NR − NL). Thus, the net number NR − NL is only given by the
(dimensionless) geometric integral on the RHS of Equation (58). A sufficiently strong gravitational
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background could lead to a significant effect. It is also important to remark that Expression (58)
accounts for the net helicity created out of an initial vacuum state—we call this spontaneous creation
of helicity. However, it is well-known in the study of particle creation by gravitational fields that the
spontaneous creation effect for bosons always comes together with the stimulated counterpart, if the
initial state is not the vacuum but rather contains quanta on it (see [2,24,25]). The stimulated effect
is enhanced by the number of initial quanta. For the same reason, the value of Δ 〈QD〉 is expected
to be enhanced if the initial state of radiation is not the vacuum but rather an excited state, as for
instance a coherent state which describes accurately the radiation emitted by, say, an astrophysical
object. However, remember that the average number of photons in such a coherent state is macroscopic,
so it can lead to detectable effects. Therefore, it is conceivable that the change in the polarization of
electromagnetic radiation crossing a region of strong gravitational field, produced for instance by the
merger of two compact objets, takes macroscopic values. The computation of the exact value of the
RHS of Equation (58) in such a situation requires the use of numerical relativity techniques, and this
will be the focus of a future project.

Finally, we want to mention that the experimental investigation of this anomaly could be relevant
in other areas of physics, as in condensed matter physics [26], non-linear optics [27], or analogue
gravity in general. For instance, metamaterials can be designed to manifest properties that are
difficult to find in nature [28]. In this case, the medium, and not a distribution of mass-energy,
can originate effective geometries [27]. They thus may mimic a curved spacetime with optimal
values of Equation (58) and could serve to test the photon right–left asymmetry originating from the
electric-magnetic quantum anomaly.
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Appendix A. Some Details Regarding the Calculation of ∇μ jμA in Curved Spacetimes

In this appendix, we give a sketch of the derivation of Equation (35). The operator of interest,
∇μ jμA, is quadratic in the fermion fields, and thus suffers from ultraviolet (UV) divergences. As a
consequence, its vacuum expectation value must incorporate renormalization counterterms in order to
cancel out all of them and to provide a finite physically reasonable result:

〈∇μ jμA〉ren = 〈∇μ jμA〉 − 〈∇μ jμA〉Ad(4) . (A1)

Here, 〈∇μ jμA〉Ad(4) denotes the (DeWitt–Schwinger) asymptotic expansion up to the fourth
adiabatic order [23]. Namely, the renormalization method works by expressing 〈∇μ jμA〉 in terms
of the Feymann two-point function S(x, x′) = −i〈TΨ(x)Ψ̄(x′)〉 and then replacing S(x, x′) with
[S(x, x′) − S(x, x′)Ad(4)], where S(x, x′)Ad(4) denotes the DeWitt-Schwinger subtractions up to the
fourth adiabatic order, and finally taking the limit x → x′.

It is convenient to introduce an auxiliary parameter s > 0 in order to regularize spurious infrared
divergences in intermediate steps; s will be set to zero at the end of the calculation. This parameter is
introduced by replacing the wave equation DΨ = 0 by (D+s)Ψ = 0, where D ≡ iγμ∇μ. As a result,

∇μ jμ
A(x) = ∇μ [Ψ̄(x)γμγ5 Ψ(x)] = −i

[
Ψ̄(x)

←
D γ5 Ψ(x)− Ψ̄(x)γ5

→
DΨ(x)

]
= lim

s→0
x→x′

−2i s Ψ̄(x)γ5Ψ(x′) = lim
s→0
x→x′

−2i s Tr[γ5Ψ(x)Ψ̄(x′)] (A2)
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where we have used {γμ, γ5} = 0. Picking up an arbitrary vacuum state |0〉, we have

〈∇μ jμA〉 = lim
s→0
x→x′

2 s Tr
[
γ5 S(x, x′, s)

]
, (A3)

and the renormalized expectation value is given by

〈∇μ jμA〉ren = lim
s→0
x→x′

1
2

s Tr
[
γ5

(
S(x, x′, s)− S(x, x′, s)Ad(4)

)]
. (A4)

Here, S(x, x′, s) encodes the information of the vacuum state, and the role of S(x, x′, s)Ad(4) is to
remove the ultra-violet divergences—which are the same regardless of the choice of vacuum. It is now
useful to write S(x, x′, s)Ad(4) = [(Dx − s)G(x, x′, s)]Ad(4), since it is known that [23]

G(x, x′, s) ∼ h̄Δ1/2(x, x′)
16π2

∞

∑
k=0

Ek(x, x′)
∫ ∞

0
dτ e−i (τs2+ σ(x,x′)

2τ ) (iτ)(k−2) . (A5)

In this expression, σ(x, x′) represents half of the geodesic distance squared between x and x′,
Δ1/2(x, x′) is the Van Vleck-Morette determinant, and Ek(x, x′) are the DeWitt coefficients introduced
in the main text (Ek(x) ≡ limx′→x Ek(x, x′)).

We can safely take now the limit x = x′ in which the two points merge. Due to the symmetry of
the classical theory, the bare contribution S(x, x′, s) in Equation (A4) vanishes for any choice of vacuum
state. As a result, 〈∇μ jμ

A〉ren arises entirely from the subtraction terms, S(x, x′, s)Ad(4). This means that
〈∇μ jμA〉ren is independent of the choice of vacuum. On the other hand, it is not difficult to see that only
the terms with k = 2 in Equation (A5) produce a non-vanishing result. Additionally, terms involving
derivatives of E2(x, x′) must be disregarded because they involve five derivatives of the metric and
hence are of the fifth adiabatic order. With all these considerations, Expression (A4) leads then to
Formula (35).
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Abstract: The constraint equations in Maxwell theory are investigated. In analogy with some recent
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linear first order hyperbolic form for which the global existence and uniqueness of solutions to an
initial-boundary value problem are guaranteed.
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1. Introduction

The Maxwell equations, as we have known them since the seminal addition of Ampere’s law by
Maxwell in 1865, are [1]:

∇× H = J + ∂tD ∇× E + ∂tB = 0 (1)

∇ · D = q ∇ · B = 0 , (2)

where E and B are the macroscopic electric and magnetic field variables, which in a vacuum are related
to D and H by the relations D = ε0 E and H = μ−1

0 B, where ε0 and μ0 are the dielectric constant and
magnetic permeability and where q and J stand for charge and current densities, respectively.

The top two equations in Equation (1) express that the time-dependent magnetic field induces
an electric field and also that the changing electric field induces a magnetic field even if there are
no electric currents. Obviously, there have been plenty of brilliant theoretical, experimental and
technological developments based on the use of these equations. Nevertheless, from time to time, some
new developments (for a recent examples, see, for instance, [2,3]) have stimulated reconsideration of
claims that previously were treated as text-book material in Maxwell theory.

In this short note, the pair of simple constraint equations on the bottom line in Equation (2) are
the center of interest. These relations for the divergence of a vector field are customarily treated
as elliptic equations. The main purpose of this letter is to show that by choosing basic variables in
a geometrically-preferred way, the constraints in Equation (2) can also be solved as evolutionary
equations. This also happens in the more complicated case of the constraints in general relativity [4].

Once the Maxwell Equations (1) and (2) are given, it is needless to explain in detail what is meant
to be the ambient spacetime (tacitly, it is assumed to be the Minkowski spacetime) or the initial data
surface (usually chosen to be a “t = const” hypersurface in Minkowski spacetime). As seen below,
the entire argument, outlined in more detail in the succeeding sections, is very simple. In addition,
it applies with almost no cost to a generic ambient space (M, gab), with a generic three-dimensional
initial data surface Σ. We shall treat the generic case, i.e., solve the “divergence of a vector field
type constraint”,

∇ · L = � , (in index notation) DiLi = � , (3)

Symmetry 2019, 11, 10; doi:10.3390/sym11010010 www.mdpi.com/journal/symmetry69
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for a vector field L or (in index notation) Li with a generic source �, on a fixed, but otherwise
arbitrary initial data surface, Σ. As an initial data surface can always be viewed as a time slice
in an ambient spacetime, (M, gab), it is also straightforward to assign a Riemannian metric hij to Σ,
the one induced by gab on Σ. In Equation (3) above, Di stands for the unique torsion-free covariant
derivative operator that is compatible with metric hij.

Note that for the Maxwell system, given by Equations (1) and (2), the two divergences of a vector
field constraint decouple, so it suffices to solve them independently. Note also that it is easy to see that
all the arguments presented in the succeeding subsections generalize to an arbitrary n ≥ 3 dimension
of Σ. Nevertheless, for the sake of simplicity, our consideration here will be restricted to the case of
three-dimensional initial data surfaces.

Since the constraints are almost exclusively referred to as elliptic equations in text-books, one may
question the point of putting them into evolutionary form. We believe that the appearance of time
evolution in a Riemannian space could itself be of interest in its own right. Nevertheless, it is
important to emphasize that there are valuable applications of the proposed new method. For instance,
it may offer solutions to problems that are hard to solve properly in the standard elliptic approach.
An immediate example of this sort arises in the initialization of the time evolution of point charges
governed by the coupled Maxwell–Lorentz equations. As pointed out recently in [2], unless suitable
additional conditions are applied in addition to the Maxwell constraints, the electromagnetic field
develops singularities along the light cones emanating from the original positions of the point charges.
It is important to be mentioned here that analogous problems arise in the context of the initialization of
the time evolution of binary black hole configurations. In both cases, singularities are involved, which
in the case of the Maxwell–Lorentz system are located at the point charges, whereas in the binary
black hole case, at the spacetime singularities. The main task is to construct physically-adequate initial
data specifications such that they are regular everywhere apart from these singularities. In the case
of binary black hole configurations, this can be done by using the superposed Kerr–Schild metric,
as an auxiliary ingredient in determining the freely-specifiable fields. Then, suitable “initial data”
are chosen, in the distant radiation-dominated region, to the evolutionary form of the Hamiltonian and
momentum constraints of general relativity. The desired initial data are completed finally by solving
the corresponding initial value problem [5]. A completely analogous procedure is proposed to be used
in initializing the time evolution of a pair of interacting point charges in Maxwell theory (a detailed
outline of this proposal is given in Section 4). In this case, the “superposed” Liénard–Wiechert vector
potentials are used, as an auxiliary ingredient to prescribe the freely-specifiable fields. In addition,
suitable initial data have to be chosen with respect to the evolutionary forms of the constraints (see
Equation (16) below) in a distant radiation-dominated region. The desired initial data can then be
completed by solving the evolutionary form of the constraints Equation (2) as an initial value problem.
It is remarkable that while in the conventional elliptic approach, some assumptions (in most cases
tacit ones) are always used concerning the blow up rate (while approaching the singularities) of the
constrained fields, no such fictitious “inner boundary condition” is applied anywhere in the proposed
new method. It is indeed the evolutionary form of constraints itself that tells the constrained variables
how they should evolve from their weak field values towards and up to the singularities.

An additional, and not the least important, potential advantage of the proposed new method
is that it offers an unprecedented flexibility in solving the constraint equations. This originates
from the fact that neither the choice of the underlying foliations of the three-dimensional initial data
surface Σ, nor the choice of the evolutionary flow have any limitations. This makes the proposed
method applicable to a high variety of problems that might benefit from this new approach to solving
the constraints.

Another advantage of this new approach to the constraints is that, regardless of the choice of
foliation and flow, the geometrically-preferred set of variables constructed in carrying out the main
steps of the procedure always satisfy a linear first order symmetric hyperbolic equation. Considering
the robustness of the approach, it is remarkable that, starting with the “divergence of a vector field

70



Symmetry 2019, 11, 10

constraint”, the global existence of a unique smooth solution for the geometrically-preferred dependent
variables (under suitable regularity conditions on the coefficients and source terms) is guaranteed for
the linear first order symmetric hyperbolic equation (see, e.g., Subsection VIII.12.1 in [6]).

2. Preliminaries

The construction starts by choosing a three-dimensional initial data surface Σ with an induced
Riemannian metric hij and its associated torsion-free covariant derivative operator Di. Σ may be
assumed to lie in an ambient space (M, gab) whose metric could have either a Lorentzian or Euclidean
signature. More importantly, Σ will be assumed to be a topological product:

Σ ≈ R×S , (4)

where S could be of a two-surface with arbitrary topology. In the simplest practical case, however,
S would have either a planar, cylindrical, toroidal, or spherical topology. In these cases, we may
assume that there exists a smooth real function ρ : Σ → R whose ρ = const level sets give the Sρ

leaves of the foliation and that its gradient ∂iρ does not vanish, apart from some isolated locations
where the foliation may degenerate. (If, for instance, Σ has the topology R3, S3, S2 ×R, or S2 × S1 and
it is foliated by topological two-spheres, then there exists one, two, or in the later two cases, no points
of degeneracy at all. If point charges are involved, it may be preferable to place the associated physical
singularities at the location of these degeneracies. Note also that we often write partial derivatives
∂/∂xi in shorthand by ∂i.)

The above condition guarantees (as indicated in Figure 1) that locally, Σ is smoothly foliated by a
one-parameter family of ρ = const level two-surfaces Sρ.

Σ

S
ρ

Figure 1. The initial data surface Σ foliated by a one-parameter family of two-surfaces Sρ is indicated.

Given these leaves, the non-vanishing gradient ∂iρ can be normalized to a unit normal

n̂i = ∂iρ/
√

hij(∂iρ)(∂jρ), using the Riemannian metric hij. Raising the index according to n̂i = hijn̂j

gives the unit vector field normal to Sρ. The operator γ̂i
j formed from the combination of n̂i and n̂i

and the identity operator δi
j,

γ̂i
j = δi

j − n̂in̂j (5)

projects fields on Σ to the tangent space of the Sρ leaves.
We also apply flows interrelating the fields defined on the successive Sρ leaves. A vector field ρi

on Σ is called a flow if its integral curves intersect each of the leaves precisely once and it is normalized
such that ρi∂iρ = 1 holds everywhere on Σ. The contraction N̂ = ρjn̂j of ρi with n̂i and its projection
N̂i = γ̂i

j ρj of ρi to the leaves are referred to as the “lapse” and “shift” of the flow, and we have:

ρi = N̂ n̂i + N̂i . (6)
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The inner geometry of the Sρ leaves can be characterized by the metric:

γ̂ij = γ̂ k
i γ̂ l

j hkl (7)

induced on the ρ = const level surfaces. It is also known that a unique torsion-free covariant derivative
operator D̂i associated with the metric γ̂ij acts on fields intrinsic to the Sρ leaves, e.g., acting on the
field Nl = γ̂p

l Np obtained by the projection of Np according to:

D̂iNj = γ̂k
i γ̂l

jDk
[

γ̂p
l Np

]
. (8)

It is straightforward to check that D̂i is indeed metric compatible in the sense that D̂kγ̂ij vanishes.
Note also that the exterior geometry of the Sρ leaves can be characterized by the extrinsic

curvature tensor K̂ij and the acceleration ˙̂ni of the unit normal, given by:

K̂ij =
1
2

Ln̂γ̂ij and ˙̂ni = n̂l Dln̂i = −D̂i ln N̂ , (9)

where Ln̂ is the Lie derivative operator with respect to the vector field n̂i and N̂ is the lapse of the flow.

3. The Evolutionary Form of the Constraints

This section is to put the divergence-type constraint Equation (3) into evolutionary form. This is
achieved by applying a 2+ 1 decomposition where, as we see below, the main conclusion is completely
insensitive to the choice of the foliation and of the flow.

Consider first an arbitrary co-vector field Li on Σ. By making use of the projector γ̂ i
j defined in

the previous section, we obtain:

Li = δ j
i Lj = (γ̂ j

i + n̂jn̂i) Lj = λ n̂i + Li , (10)

where the boldfaced variables λ and Li are fields intrinsic to the individual Sρ leaves of the foliation
of Σ. They are defined via the contractions:

λ = n̂l Ll and Li = γ̂ j
i Lj . (11)

By applying an analogous decomposition of DiLj, we obtain:

DiLj = δ k
iδ

l
jDk

[
δ p

l Lp
]
= (γ̂ k

i + n̂kn̂i)(γ̂
l
j + n̂l n̂j)Dk

[
(γ̂ p

l + n̂pn̂l) Lp
]

, (12)

which, in terms of the induced metric Equation (7), the associated covariant derivative operator,
the extrinsic curvature, and the acceleration Equation (9), can be written as:

DiLj =
[

D̂iλ + n̂i Ln̂λ
]
n̂j + λ (K̂ij+ n̂i ˙̂nj) + D̂iLj − n̂in̂j ( ˙̂nlLl)

+
{

n̂i Ln̂Lj − n̂i Ll K̂l
j − n̂j Ll K̂l

i
}

. (13)

By contracting the last equation with the inverse hij = γ̂ ij + n̂in̂j of the three-metric hij on Σ,
we obtain:

Dl Ll = hijDiLj = (γ̂ ij + n̂in̂j) DiLj = Ln̂λ + λ (K̂l
l) + D̂lLl + ˙̂nlLl . (14)

By virtue of Equation (3) and in accord with the last equation, it is straightforward to see that the
divergence of a vector field constraint can be put into the form:

Ln̂λ + λ (K̂l
l) + D̂lLl + ˙̂nlLl = � . (15)
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Now, by choosing arbitrary coordinates (x2, x3) on the ρ = const leaves and by Lie dragging
them along the chosen flow ρi, coordinates (ρ, x2, x3) adapted to both the foliation Sρ and the flow
ρi = (∂ρ)i can be introduced on Σ. In these coordinates, Equation (15) takes the strikingly simple form
in terms of the lapse and shift of the flow,

∂ρλ − N̂K∂Kλ + λ N̂ (K̂L
L) + N̂

[
D̂LLL + ˙̂nLLL] = � . (16)

Some remarks are now in order. First, Equation (16) is a scalar equation whereby it is natural
to view it as an equation for the scalar part λ = n̂iLi of the vector field Li on Σ and to solve it for λ.
All the coefficients and source terms in Equation (16) are determined explicitly by freely specifying the
fields LL and �, whereas the metric hij and its decomposition in terms of the variables N̂, N̂I , γ̂I J , is also
known throughout Σ. Thus, Equation (16) can be solved for λ. Note that Equation (16) is manifestly
independent of the choice made for the foliation and flow and also that Equation (16) is always a linear
hyperbolic equation for λ, with ρ “playing the role of time”.

4. A Simple Example

Though the results in the previous section are mathematically all robust, it would be pointless to
have the proposed evolutionary form of the constraints unless one could apply it in solving certain
problems of physical interest. In order to get some hints of how the proposed techniques work,
this section is to give an outline of a construction that could be used to get meaningful initialization of
the time evolution of a pair of moving point charges in Maxwell theory.

Recall first that accelerated charges are known to emit electromagnetic radiation. An interesting
particular case is when the radiation is emitted by a pair of point charges moving as dictated
by their mutual electromagnetic field. To start off, choose the t = 0 time slice in a background
Minkowski spacetime. This time slice itself is a three-dimensional Euclidean space R3 that can be
endowed with the conventional Cartesian coordinates (x, y, z) as a three-parameter family of inertial
observers has already been chosen in the ambient Minkowski background. Assume that on this
time slice, the two point charges are located on the y = z = 0 line at x = ±a (with some a > 0),
each moving with some initial speed. Choose then a one-parameter family of confocal rotational
symmetric ellipsoids:

x = a · cosh ρ · cos χ

y = a · sinh ρ · sin χ · cos ϕ

z = a · sinh ρ · sin χ · sin ϕ .

(17)

It is straightforward to check that R3 gets to be foliated by the ρ = const level surfaces, which are
confocal rotational ellipsoids:

x2

a2 · cosh2ρ
+

y2 + z2

a2 · sinh2ρ
= 1 , (18)

with focal points f+ = (a, 0, 0) and f− = (−a, 0, 0). Note also that each member of the two-parameter
family of curves determined by the relations χ = const, ϕ = const, with 0 < χ ≤ 2π, parameterized
by ρ (≥ 0), intersect ρ = const level surfaces precisely once. The introduced new coordinates (ρ, χ, ϕ)

cover the complement of the two focal points in R3. Choose this complement as our initial data
surface Σ. These coordinates, adopted with respect to the ρ : Σ → R foliation and to the flow vector
field ρi on Σ, are such that ρi is parallel to the χ = const, ϕ = const coordinate lines and is normalized
such that ρi(∂iρ) = 1. The pertinent laps and shift, N̂ and N̂i, of this coordinate bases vector ρi = (∂ρ)i

can also be determined as described in Section 2.
Following then a strategy analogous to the one applied in getting the binary black hole initial

data in general relativity [5], one may proceed as follows. By superposing the Liénard–Wiechert vector
potentials relevant for the individual point charges, moving with certain initial speeds, determine first
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the corresponding auxiliary Faraday tensor (aux)Fab. Restrict it to the t = 0 initial data surface, and
extract there the auxiliary electric (aux)E and magnetic (aux)B fields. These electric and magnetic parts
of (aux)Fab are meant to be defined with respect to the aforementioned three-parameter family of
static observers (moving in the background Minkowski spacetime with four velocity ua = (∂t)a).
Split these vector fields, as described at the beginning of Section 3, into scalar and two-dimensional
vector parts; we get (aux)Ei = (aux)ε n̂i +

(aux)E i and (aux)Bi = (aux)β n̂i +
(aux)Bi, respectively.

The two-dimensional vector parts (aux)EA and (aux)BA, of the auxiliary electric (aux)E and magnetic
(aux)B fields, are well-defined smooth fields on Σ. As they encode important information about the
momentary kinematical content of the considered system, e.g., the initial speeds and locations of the
involved point charges, the fields (aux)EA and (aux)BA are used as the freely-specified part of data
throughout Σ. Once this has been done, the radiation content of the initial data, for the physical E and
B, in the far zone has to be introduced by choosing—based on measurements, expectations, and/or
intuition—two smooth functions, (0)ε and (0)β, on a level surface ρ = ρ0 (for some sufficiently large
real value of ρ0) in Σ. These are the initial data with respect to the pertinent forms of Equation (16) that
can be deduced—as described in Sections 2 and 3—from the constraints equations in Equation (2).

Remarkably, for arbitrarily small values of ε > 0, unique smooth solutions ε and β to the
(decoupled) evolutionary form of the constraint equations exist in the region bounded by the ρ = ρ0

and ρ = ε level surfaces (one could integrate the equations also outwards, with respect to ρ = ρ0;
nevertheless, if one is interested in the behavior of the initial data in the near zone region, then the
aforementioned domain is the relevant one). The corresponding unique smooth solutions smoothly
extend onto Σ, even in the ε → 0 limit, in spite of the fact the solutions are known to blow up at the
focal points where the point charges are located initially. Using the unique smooth solution ε and β,
corresponding to the choices made for the initial data (0)ε and (0)β at ρ = ρ0, the initialization of the
physical electric and magnetic fields is given as Ei = ε n̂i +

(aux)E i and Bi = β n̂i +
(aux)Bi, respectively.

Note that they will differ from (aux)Ei and (aux)Bi as the initial data (0)ε and (0)β, for the pertinent
forms of Equation (16), were chosen to differ from (aux)ε and (aux)β. More importantly, once the
electric and magnetic fields E and B are initialized in the way prescribed above, the conventional time
evolution equations of the coupled Maxwell–Lorentz system (including the two ones in Equation (1))
relevant for the pair of interacting point charges should be solved (possible by numerical means).
Notably, due to the above outlined initialization, the radiation that will emerge from the consecutive
accelerating motion of the pair of point charges is guaranteed to be consistent with the radiation
imposed, by specifying initial data (0)ε and (0)β, at the ρ = ρ0 level surface located in the far zone.

5. Final Remarks

By virtue of the main result of this note, the “divergence of a vector-type constraint” can always
be solved as a linear first order hyperbolic equation for the scalar part of the vector variable under
consideration. As was emphasized in the Introduction, robust mathematical results guarantee the
global existence of unique smooth solutions (under suitable regularity conditions on the coefficients
and source terms) to the linear first order symmetric hyperbolic equations of the form of Equation (16).

The real strength of the proposed method emanates from the freedom we have in choosing the
applied 1 + 2 decomposition. As we saw no matter how the foliation, determined by a smooth real
function ρ : Σ → R, and the flow vector field ρi are chosen, the pertinent ρ coordinate will always
play the role of time in the pertinent evolutionary form of the constraints. In order to provide some
evidence concerning the capabilities and some of the prosperous features of the proposed method, the
basic steps of initializing the time evolution of a pair of interacting point charges were also outlined.
This simple example should also provide a clear manifestation of the agreement, which always comes
along with the use of the proposed evolutionary form of the constraints in electrodynamics.
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Abstract: A fully relativistically covariant and manifestly gauge-invariant formulation of classical
Maxwell electrodynamics is presented, purely in terms of gauge-invariant potentials without entailing
any gauge fixing. We show that the inhomogeneous equations satisfied by the physical scalar and
vector potentials (originally discovered by Maxwell) have the same symmetry as the isometry of
Minkowski spacetime, thereby reproducing Einstein’s incipient approach leading to his discovery of
special relativity as a spacetime symmetry. To arrive at this conclusion, we show how the Maxwell
equations for the potentials follow from stationary electromagnetism by replacing the Laplacian
operator with the d’Alembertian operator, while making all variables dependent on space and
time. We also establish consistency of these equations by deriving them from the standard Maxwell
equations for the field strengths, showing that there is a unique projection operator which projects
onto the physical potentials. Properties of the physical potentials are elaborated through their iterative
Nöther coupling to a charged scalar field leading to the Abelian Higgs model, and through a sketch of
the Aharonov–Bohm effect, where dependence of the Aharonov–Bohm phase on the physical vector
potential is highlighted.

1. Introduction

The standard textbook formulation of Maxwell electrodynamics, in vacua with sources, entails
linear first order partial differential equations for electric and magnetic field strengths �E and �B.
Conventionally, the equations for these field strengths are first cast in terms of the scalar and
vector potentials, φ and �A. The resulting second order equations for the potentials are found to
be noninvertible because of the gauge ambiguity of the potentials—addition of gradients of arbitrary
(gauge) functions to any solution generates an equivalence class of solutions for the potentials, related
by local gauge transformations. All the gauge potentials in a gauge-equivalent class give the same
electromagnetic field strengths. This gauge ambiguity has often led people to consider gauge potentials
as unphysical, in comparison to the ‘physical’ (gauge-invariant) field strengths. The standard procedure
for getting to the solutions is to ‘gauge fix’ the potentials, i.e., impose subsidiary conditions on them
so that the ambiguity may be resolved. There is a nondenumerably infinite set of such subsidiary
‘gauge conditions’, each one as ad hoc as the other, and none with any intrinsic physical relevance.
This entire approach, tenuous as it is, avoids facing up to the central issue: Why are the equations
for the potentials noninvertible in the first place? Is Nature so unkind as to provide us with unique
gauge-invariant equations for quantities which themselves are infinitely ambiguous? The answer is an
emphatic No!

In his succinctly beautiful history of the Maxwell equations of electrodynamics, Nobel Laureate
theoretical physicist C. N. Yang [1] recalls how Faraday first identified the concept of the ‘electrotonic
state’ as the origin of the induced electromotive force, purely as a result of his extraordinary
experimental research and physical intuition. The idea of the vector potential was introduced by
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Thomson (Lord Kelvin) in 1851, ostensibly as a solution of ∇ · �B = 0. Five years later, in a brilliant
identification of Thomson’s vector potential with Faraday’s electrotonic state, Maxwell wrote down,
for the first time ever, the equation �E = − �̇A, which led him to his Law VI: The electromotive force on
any element of a conductor is measured by the instantaneous rate of change of the electrotonic intensity on that
element, whether in magnitude or direction. Yang further writes: “The identification of Faraday’s elusive
idea of the electrotonic state (or electrotonic intensity, or electrotonic function) with Thomson’s vector
potential is, in my opinion, the first great conceptual breakthrough in Maxwell’s scientific research...”,
also, “Indeed, the concept of the vector potential remained central in Maxwell’s thinking throughout
his life.”

From our standpoint, it is inconceivable that such an outstanding experimentalist as Faraday
would focus on a concept which we call the vector potential, if indeed it is ‘unphysical’, as often
perceived nowadays among a certain group of physicists. Likewise, Maxwell’s preoccupation with the
same concept would have been a continuation of an illusory pursuit if the vector potential is indeed
unphysical. Interestingly, Maxwell himself was apparently quite aware of the gauge ambiguity of
the Maxwell equations for �E and �B as mentioned above, but according to Yang [1], on the issue
of gauge-fixing Maxwell was silent: ‘He did not touch on that question, but left it completely
indeterminate.’ This is where we speculate on the reason: Maxwell was perhaps aware that his
equations themselves provided, in today’s parlance, a unique projection operator which projects onto
the physical part of the vector potential. Clearly, �E and �B depend solely on this physical part of the
vector potential and are quite independent of the unphysical pure gauge part. The manner in which the
projection operator isolates the gauge-invariant physical part of the vector potential, can, of course
be reproduced by a gauge choice as well—however, such a choice is by no means essential. Gauge
choices (or gauge-fixings) merely constrain the unphysical part of the gauge potential, leaving the
gauge-invariant physical part quite untouched, as they must.

To reiterate, the reason that the equations for the potentials are noninvertible in the first place
is because their intrinsic analytic structure involves a projection operator which has a nontrivial
kernel of unphysical ‘pure gauge’ vector fields! This simple observation renders any ‘gauge fixing’
superfluous, since it is now obvious that the equations are to be interpreted in terms of projected
physical, gauge-invariant potentials not belonging to the kernel of the projection operator, hence obeying
very simple wave equations that are immediately uniquely invertible without the need for any
imposition of additional ‘gauge conditions’. We find it surprising that this simple fact has not been
clarified in any of the number of currently popular textbooks on classical electrodynamics. From
a physical standpoint, this approach, in contrast to the standard one based on the field strengths,
immediately divulges the essence of electromagnetism as the theory of electromagnetic waves under
various circumstances. All other field configurations (in vacuo) can be easily explained once the
propagation and generation of electromagnetic waves is understood in terms of the physical potentials.

There is another lacuna in extant textbook treatments of Maxwell electrodynamics—the absence
of a fully relativistically covariant formulation of the subject ab initio. Special relativity is intrinsically
embedded in Maxwell electrodynamics with charge and current sources in empty space, as was
discovered by Einstein in 1905 [2]. If, as per standard practice, the fundamental equations are written
in terms of the electric and magnetic fields, the relativistic invariance of these equations is far from
obvious. This emerges only after some effort is given to relate the electric and magnetic fields in
different inertial reference frames connected by Lorentz boosts. In contrast, if the equations are cast in
terms of the physical electromagnetic scalar and vector potentials introduced by Maxwell, then these
potentials and the equations they obey can be easily combined to yield a structure that is manifestly
invariant under Lorentz boosts as well as spatial rotations, i.e., the full Lorentz transformations. Given
that it is easier always to compute four, rather than six, field components for given source charge and
current densities, it stands to reason to begin any formulation of electrodynamics from the (physical)
potentials, rather than the field strengths.

78



Symmetry 2019, 11, 915

Despite its antiquity, a formulation of classical electrodynamics that, from the outset, is fully
relativistically covariant, is somehow not preferred in the very large number of excellent textbooks
currently popular, with perhaps the sole exception of [3]. Even so, the issue of the gauge ambiguity and
the full use of electromagnetic potentials rather than fields has not been dealt with adequately, even
in this classic textbook. Thus, while relativistically covariant Lienard–Wiechert potentials describing
the solution of Maxwell’s equations due to an arbitrarily moving relativistic point charge have been
obtained, the corresponding field strengths and the radiative energy–momentum tensor have not been
given such a manifestly covariant treatment. The more widely used textbook [4] also fills this gap only
in part. Since special relativity is so intrinsic to Maxwell vacuum electrodynamics with sources, it is
only befitting that the entire formalism exhibit this symmetry explicitly. The subtle interplay with
gauge invariance is also a hallmark of this theory, which forms the basis of our current understanding
of the fundamental interactions of physics.

We end this introduction with the disclaimer—this paper is exclusively on Maxwell electrodynamics.
As such, it does not discuss theoretically interesting generalizations involving magnetic charges and
large gauge transformations. Interesting as these ideas are, there is no observational evidence yet that
they are applicable to the physical universe, so these ideas remain within the domain of speculation.
Of course, the moment a magnetic monopole is observed as an asymptotic state, our paper stands to be
immediately falsified. This, however, is not a lacuna of the paper, rather it is its strength that it ‘sticks its
neck out’ so to speak, in contrast with the plethora of theoretical papers whose veracity or relevance
vis-a-vis the physical universe remains forever in doubt. Regarding the generalization of electrodynamics
with both electric and magnetic charges, the construction of a local field theory is still not without issues.
Whether this is a hint from Nature about the relevance of such ideas, still remains unclear. In our favor,
the entire description being in terms of a single 4-vector potential has a virtue: The electric and magnetic
aspects are actually unified in this description. If magnetic monopoles were present, this unification
would actually be absent, in favor of a duality symmetry—the electric–magnetic duality. It is not unlikely
that even though this duality symmetry is dear to some theoretical physicists, Nature does not make use
of it, if the evidence so far is to be taken into account. In regard to large gauge transformations, recent
work on asymptotic symmetries of flat spacetime has led to interesting issues regarding electrodynamic
gauge transformations, which may serve as research topics for the future.

This paper is structured as follows: In Section 2 we first exhibit gauge-invariant physical potentials
for stationary electromagnetism (electrostatics and magnetostatics) and show how they satisfy identical
equations underlining their inherent unity. We then generalize this to full electrodynamics with a
neat substitution, and show that the standard Maxwell equations for field strengths emerge from these.
In the next section, we demonstrate the invariance of the Maxwell equations for the physical potentials
under Lorentz transformations, characterized by a 4× 4 matrix Λ which includes both spatial rotations
and Lorentz boosts. We argue that this symmetry of Maxwell electrodynamics is also the isometry of
the Minkowski metric of flat spacetime. Next, we complete the circle by showing how the equations for
the physical potentials can be derived covariantly from the covariant Maxwell equations for the field
strengths and exhibit the form of the projection operator, which enables this projection onto physical
potentials. Then, in Section 4, we show how the physical potentials can be coupled gauge-invariantly to
charged scalar fields through the technique of iterative Nöther coupling, leading to the classical Abelian
Higgs model. We also provide a sketch to show that the Aharonov–Bohm phase is a functional of the
physical potentials alone, completely independent of the unphysical pure gauge part. We conclude in
Section 5.
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2. Gauge-Invariant Physical Potentials

2.1. Stationary Electromagnetism and Physical Potentials

Electrostatics is described by the equations

∇ · �E = ρ,

∇× �E = 0, (1)

where constants appropriate to choice of units have been set to unity. The solution of the second
line of Equation (1) is E = −∇φ, where φ is the scalar potential. φ is unique modulo an added
constant.Substitution of this solution into the first line of Equation (1) results in the Poisson equation
for φ:

∇2φP = −ρ. (2)

Here, we have added a subscript P to φ to emphasize its physicality. Equation (2) has the
(inhomogeneous) solution:

φP(�x) =
∫

d3x′ ρ(�x′)
|�x −�x′| . (3)

Likewise, stationary magnetism begins with the equation:

∇ · �B = 0,
∇× �B = �j.

(4)

Apparently, the equations in (4) have nothing in common with their electrostatic counterpart (1),
leading to the idea espoused in textbooks that electrostatics and magnetostatics are two separate
disciplines. We now show that this idea is not correct at all, once the equations are transcribed in terms
of the physical scalar and vector potentials.

Solving the first of the Equation (4) in terms of the vector potential �A : �B = ∇× �A, and substituting
that in the second line of (4) yields

∇(∇ · �A)−∇2 �A =�j . (5)

Now, Equation (5) cannot be solved uniquely for �A because of the gauge ambiguity—there is an
infinity of gauge-equivalent solutions for any �A that satisfies (5). Usually, the way out of this ambiguity,
as mentioned in almost all textbooks, is gauge fixing—choose ∇ · �A to be any specific function f (�x),
leading to the vectorial Poisson equation which can be solved immediately with suitable boundary
conditions, for every given source �j. The choice f (�x) = 0 is called the Coulomb gauge in some
textbooks. But this is not what we propose to do here!

Instead, consider the Fourier transform of (5):

−�k[�k · �̃A(�k)] + k2 �̃A(�k) = �̃j(�k) , (6)

where k2 = kaka , a = 1, 2, 3. Switching to component notation, Equation (6) can be rewritten as

k2 Pab Ãb = j̃b, (7)

where the projection operator Pab is defined as

Pab ≡ δab − kakb
k2 , Pab Pbc = Pac . (8)
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Clearly, in defining this projection operator, we have chosen k2 �= 0, i.e.,�k is a nonzero vector. We shall
comment on the zero vector situation below.

Define now the projected vector potential �AP through the equation

ÃPa ≡ Pab Ãb . (9)

This projected vector potential satisfies two very important properties: First of all, it is
gauge-invariant and hence, physical! This follows from the fact that kaPab = 0 ∀ �k �= 0. Secondly,
this last relation also implies that the projected vector potential satisfies

�k · �̃AP = 0 ⇒ ∇ · �AP = 0 (10)

automatically, without having to make any gauge choice! Note that this is not the so-called Coulomb gauge
choice. It is rather the consequence of defining the projected vector potential AP using the projection
operator that occurs already in Maxwell’s equations for magnetostatics. No extraneous choice needs to
be made for this physical projection—it is a unique projection. In fact, it now becomes clear as to why
Ampere’s law, written out in terms of the full vector potential, is not invertible: This equation involves
the projection operator Pab, projection operators are not invertible because they have a nontrivial
kernel—here, it is the set of pure gauge configurations expressible as ∇a for arbitrary scalar functions
a. Once the projected vector potential AP is defined, it satisfies the vector Poisson equation

∇2 �AP = −�j, (11)

with the solution (in Fourier space)

�̃AP =
�̃j
k2 . (12)

In position space, this solution is

�AP(�x) =
∫

d3x′
�j(�x′)
|�x −�x′| , (13)

which clearly shows that, unlike the magnetic field, the vector potential tracks the current producing it.
There is an issue of a residual gauge invariance for k2 = 0 which has been excluded from our

earlier discussion. If k2 = 0, in position space, this would be taken to imply that the projected vector
�AP has the residual ambiguity under the gauge transformation �AP → �AP +∇ω with ∇2ω = 0.
However, from the uniqueness of solutions of Laplace equation, we know that choosing the boundary
condition ω = constant at spatial infinity implies that ω = consteverywhere, thereby precluding any
such residual ambiguity for the physical �AP.

Summarizing stationary electromagnetism, we have, as the fundamental equations in terms of
the physical potentials,

∇2φP = −ρ. (14)

∇2 �AP = −�j. (15)

∇ · �AP = 0 . (16)

The great mathematical unity between the physical electric potential and magnetic vector
potentials, in terms of the equations they satisfy, need hardly be overemphasized. It is also perhaps the
most succinct manner of presentation of stationary electromagnestism.
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2.2. Formulation of Full Electrodynamics in Terms of Physical Potentials

The passage from the stationary Equations (14)–(16) to the full time-dependent equations for
the physical potentials follows the exceedingly simple rule: Allow all functions of space to now be
functions of space and time, i.e., �x and t—and make the simple change ∇2 → �2 in Equations (14)
and (15), where, �2 ≡ ∇2 − (∂2/∂t2) is the d’Alembertian operator, and we are using units such that
c = 1. Further, the divergence-free condition (16) is to be augmented by the ‘spacetime’ divergence-free
condition (∂φP/∂t) +∇ · �A = 0, leading to the Maxwell equations for the physical electromagnetic
scalar and vector potentials:

�2φP = −ρ,

�2 �AP = −�j,
∂φP
∂t

+ ∇.�AP = 0 , (17)

where all other constants are absorbed into redefinitions of ρ and�j.
Equation (17) can be motivated physically ab initio from the most important characteristic of

electrodynamics, namely, that they must yield electromagnetic waves traveling through empty space.
Indeed, the top two equations in (17) are nothing but inhomogeneous wave equations, recalling that the
d’Alembertian is the wave operator. The last equation is a special characteristic property of the physical
potentials φP , �AP, which is relevant to ensure that the electromagnetic waves in empty space have
transverse polarization. We think that electromagnetic waves constitute the most important physical
property of electrodynamics, and our formulation of Maxwell’s theory in terms of the potentials brings
out this characteristic immediately and without the need for extraneous manipulations. Thus, one can
start with the formulation in terms of Equation (17) by pointing out that they epitomize electromagnetic
waves, and form the basis of what we see, of ourselves, of worlds outside ours and also in terms of
constructing theories of fundamental interactions.

The standard Maxwell equations for the electric and magnetic field strengths, �E and �B, result
from (17) immediately upon using Maxwell’s definition of Faraday’s ‘electrotonic’ state, as defined in
the introduction: �E ≡ −∂�AP/∂t −∇φP and Thomson’s definition �B ≡ ∇× �AP. One obtains

∇ · �E = ρ,

∇ · �B = 0,

∇× �E = −∂�B
∂t

,

∇× �B = �j +
∂�E
∂t

. (18)

3. Special Relativity as a Symmetry of Maxwell’s Equations

3.1. Manifest Lorentz Symmetry

Observe that these equations can be combined into the 4-vector potential AP with components
Aμ

P, μ = 0, 1, 2, 3, with A0
P = −AP0 = φ, and Am

P = AP,m, m = 1, 2, 3, where �AP = {Am
P |m = 1, 2, 3}.

Similarly, the charge and current densities can be combined into a current density 4-vector J with
components Jμ (μ = 0, 1, 2, 3) = ({ρ, ja}, a = 1, 2, 3).

Writing ∂μ ≡ ∂/∂xμ, Equation (17) can now be summarized as

�2 Aμ
P = −Jμ,

∂μ Aμ
P = 0 .

(19)

Raising and lowering of indices are effected by the Minkowski spacetime invariant metric tensor
ημν = ημν = diag(−1, 1, 1, 1).
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It is to be noted that Equations (17) and (19) are not gauge-fixed versions of equations for potentials
corresponding to standard Maxwell equations, even though they look enticingly similar. In other
words, the second of the equations in (19) is not a gauge choice, but a compulsion from Nature. We shall
make this clear shortly. Thus, these equations are to be treated at the same physical footing as the
standard Maxwell equations for the field strengths, containing the same physical information as the
latter, without any ambiguity.

Observe now that the d’Alembertian operator �2 ≡ ημν∂μ∂ν is invariant under the transformation
∂μ → ∂′μ = Λμ

ν∂ν, provided the transformation matrix Λ satisfies

ημν Λμ
ρ Λν

σ = ηρσ . (20)

It follows that both lines of Equation (19) are invariant under these transformations, if
A′μ(x′) = Λμ

ν Aν(x) , J′μ(x′) = Λμ
ν Jν(x) , and x′μ = Λμ

νxν, with the transformation matrices
Λμ

ν satisfying (20). As is expected, the coordinate transformations leave invariant the squared
invariant interval in Minkowski spacetime ds2 = ημν dxμ dxν. Thus, the transformations that leave
the equations of electrodynamics invariant are precisely the same transformations that constitute
a symmetry of Minkowski spacetime. It is obvious that these are the full Lorentz transformations,
including spatial rotations and Lorentz boosts, e.g., if Λ0

0 = 1 , Λ0
m = 0, the remaining 3 × 3

submatrix constitutes the orthogonal transformation matrix corresponding to rotations in 3-space.
Likewise, if Λ0

0 = γ = Λ1
1; Λ0

1 = −βγ = Λ1
0 etc., that constitutes a Lorentz boost in the +x1

direction. The Lorentz factor γ = (1 − β2)−1/2. Thus, all Lorentz boosts and spatial rotations are just
choices for the Λ matrix subject to the restriction (20).

The standard Lorentz-covariant equations of vacuum electrodynamics involving field strengths
are easily obtained from Equation (19) upon using the standard definition Fμν ≡ ∂μ APν − ∂ν APμ,

leading immediately to the transformation law under the Λ-transformations: F(Λ)
μν = Λρ

μΛσ
ν Fρσ,

and the equations

∂μFμν = −Jν,

∂μ(eμνρσ Fρσ) = 0 . (21)

We acknowledge the influence of the Feynman lectures on physics [5] in basing the formulation
presented above on the potentials rather than the fields. However, the delineation of the central role of
the projection operator inherent in the Maxwell equations, for stationary electromagnetism above, as also
for the full theory, to be given in the subsection to follow, is original to the best of our knowledge.

3.2. Closing the Circle: Physical Vector Potentials from the Standard Formulation

3.2.1. With Sources

We begin by defining the field strengths Fμν in terms of the standard gauge potential Aμ (i.e.,
without the subscript ‘P‘): Fμν ≡ ∂μ Aν − ∂μ Aν. The second of the standard Maxwell equations (21)
results immediately. The first of (21) is then either postulated on the basis of experiments, or derived
from the Maxwell action [3]. Be that as it may, one may substitute the above definition of the field
strengths Fμν in terms of the gauge potentials, yielding

∂μ∂μ Aν − ∂ν∂μ Aμ = −Jν, (22)
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which, under Fourier transformation (in four dimensions) with Fourier variable ki, i = 0, 1, 2, 3, leads
to the equation

−k2 Pν
μ Ã(k)μ = J̃ν(k). (23)

Pν
μ ≡ δν

μ +
kνkμ

k2 , k2 ≡ kρkρ �= 0 . (24)

We first confine to the inhomogeneous Maxwell equation, and take up the homogeneous case
later. The projection operator Pν

μ above possesses the properties characteristic of projection operators
in general.

Pμ
ν Pν

ρ = Pμ
ρ . (25)

Pμ
ν kν f̃ (k) = 0 ∀ f̃ (k). (26)

where (26) characterizes the vectors in the kernel of the projection operator.
The fact that the vacuum Maxwell equation with sources is expressed uniquely and naturally in

terms of a projection of the gauge potential, without having to make any choices, is of crucial importance,
since the projection is clearly on the gauge-invariant physical subspace. This projected vector potential,
defined as APμ ≡ Pν

μ Aν, has the following essential properties, which can be easily gleaned from
Fourier space: (a) ∂μ Aμ

P = 0, i.e., it is spacetime transverse; (b) under gauge transformations Aμ →
A(ω)

μ = Aμ + ∂μω, the projected (physical) vector potential A(ω)
Pμ = APμ, i.e., it is gauge-invariant and

hence, physical! This implies that

Aμ = APμ + ∂μa, (27)

so that the entire burden of gauge transformations of Ai is carried by a(x) : Aμ → Aμ + ∂μω ⇒
a(ω) = a + ω, which underlines the complete unphysicality of the pure gauge part (‘longitudinal’
mode) a of A. It also follows trivially that Fμν(A) = Fμν(AP), which means that invariance under
gauge transformations does not represent a physical symmetry, but merely a redundancy in the gauge
potential [6]. One also sees that Equation (19) results immediately from our consideration, so we have
come full circle. In fact, in Fourier space, we have an explicit solution for the physical potential APμ in
terms of the sources:

ÃPμ(k) = − J̃μ(k)
k2 (28)

so that, given the form of the 4-vector source, the physical potential and field strengths are determined
in spacetime through appropriate inverse Fourier transforms.

In our proof of the gauge invariance of the projected 4-vector potential AP above, the special case
of gauge functions ω satisfying �2ω = 0 has been excluded. We notice that if such gauge functions
are retained, the projected 4-vector potential is seen have a residual gauge ambiguity involving the
spacetime gradient of such gauge functions. This residual ambiguity arises even if we impose the
Lorentz–Landau gauge as in the standard textbooks. Note that this residual ambiguity may be
eliminated, as in standard procedure, if we restrict our attention to electromagnetic field strengths that
decay to vanishingly small values at infinity. This implies that the projected physical potential must
vanish at infinity as well, leaving the longitudinal mode a to turn into a constant at most at infinity.
This implies that the only gauge transformations that are permitted at infinity and solve the wave
equation, are constants, whose gradients vanish everywhere. Thus, just as with stationary magnetic
fields, the residual gauge ambiguity is no cause for concern.
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3.2.2. Without Sources

Consider now the homogeneous or null case, when Jμ = 0 in Equation (22). In this case, if k2 �= 0,
the projected vector potential, which is proved to be physical and gauge-invariant above, must vanish,
leaving only the unphysical pure gauge part which leads to vanishing field strengths. That solution is
devoid of any physical interest.

Thus, it is obvious that for nontrivial electromagnetic fields, k2 = 0, i.e., k is a null spacetime
vector. In this case, it also follows from the Fourier transformed version of (22) that, for every nontrivial
null vector k, we must have

k · A = 0 ⇒ ∂μ Aμ = 0. (29)

Observe that this is not a choice, but simply follows from the standard Maxwell equations written out
in terms of the vector potential.

We recall that 4-dimensional spacetime M(3, 1) can be represented at every point as the Cartesian
product M(1, 1)×R2, where the first factor is two-dimensional Lorentzian spacetime, and the second is
just the Euclidean plane [7]. With this, we realize that there is another null vector n linearly independent
of k, which, together with k, spans M(1, 1). One can always choose n such that n · k = −1 for our
signature of the Lorentzian metric.

Now, what is known about propagation of electromagnetic waves in vacuum [3,4] is that these
waves are endowed with transverse spatial polarization, i.e., the electric field (and hence the 3-vector
potential) must oscillate in a plane transverse to the spatial direction of propagation. This implies
that, for freely propagating electromagnetic waves in vacua, the 4-vector potential cannot possibly
have any component in the direction of propagation of light in spacetime, thereby precluding any
components tangent to M(1, 1). It can have only two spacelike physical components, both lying in the
Euclidean plane R2. These physical requirements must be encoded in the projection operator for the
source-free case.

It follows that the physical vector potential, defined as

APμ ≡ Pμν Aν , Pμν ≡ ημν + kμnν + nνkμ , (30)

has the properties of being transverse to M(1, 1), having two components both of which are tangential
to the Euclidean plane, and is also gauge-invariant.

k · AP = 0 = n · AP . (31)

The latter property follows from the uniqueness of solutions of the two-dimensional Laplace
equation. Thus, the gauge-invariant, physical components of the 4-potential satisfying the homogeneous
wave equation have their polarization vectors pointing in the two linearly-independent directions of
the Euclidean plane R2. It follows that the projected physical 4-potential AP is spacelike in character.
Thus, gauge-invariance is at the root of transverse polarization of electromagnetic waves in vacuum.

4. Applications of the Physical Potentials

4.1. Coupling to Charged Scalar Fields

The action for a self-interacting charged scalar field ψ is, in general, given by the action

S0[ψ] =
∫

d4x[∂μψ(∂μψ)∗ − V(|ψ|)] . (32)
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Using the radial decomposition ψ = (1/
√

2)ρ(x) exp iΘ(x), this action is rewritten as

S0[ρ, Θ] =
∫

d4x[
1
2

∂μρ∂μρ +
1
2

ρ2∂μΘ∂μΘ − V(ρ)] . (33)

This action is clearly invariant under the global U(1) transformation ρ → ρ , Θ → Θ + ω, for a
constant real parameter ω. The conserved Nöther current corresponding to this global symmetry is
given by Jμ = ρ2∂μΘ.

We now add the Maxwell action SMax[AP] = −(1/4)
∫

d4xFμν(AP)Fμν(AP) to S0. The coupling
of the charged scalar field to the physical potential is now affected through the interaction term
S1 =

∫
d4xJμ Aμ

P, leading to the full action S[ρ, Θ, AP] = S0 + SMax + S1. It is obvious that S is also
symmetric under global U(1) transformation of the Θ field, with both ρ, AP remaining invariant.
However, because of the additional interaction term S1, the conserved Nöther current corresponding
to the global symmetry is now augmented to J′μ = ρ2(∂μΘ + APμ). Following the prescription of the
iterative Nöther coupling [8], we now couple this augmented current to the physical potential AP,
so as to obtain the full action

S′[ρ, Θ, AP] =
∫

d4x[−1
4

FμνFμν +
1
2

∂μρ∂μρ +
1
2

ρ2(DμΘDμΘ)− V(ρ)] , (34)

where DμΘ ≡ ∂μΘ+ APμ. This action is clearly invariant under global U(1) symmetry transformations.
Further iterations of the Nöther current interaction leads to no new terms in the action [8].

If this action is rewritten in terms of the full gauge potential Aμ ≡ Aμ
P + ∂μa, with a(x) ≡∫

d4xG(x − x′)∂′μ Aμ(x′) , �2G(x − x′) = δ(4)(x − x′), and we introduce a new field χ ≡ Θ − a, then
DμΘ = ∂μ(χ + a) + (Aμ − ∂μa) = ∂μχ + Aμ ≡ Dμχ. Writing φ = (1/

√
2)ρ exp iχ, we obtain the

net action

S′[φ, A] =
∫

d4x[Dμφ(Dμφ)∗ − V(|φ|)− 1
4

Fμν(A)Fμν(A)], (35)

where Dμφ = ∂μφ + iAμφ. This action is clearly invariant under local U(1) gauge transformations:
φ → φ exp iω(x) , Aμ → Aμ − ∂μω. Thus, the iterative Nöther coupling prescription leads uniquely
to the U(1) gauge-invariant action for the charged scalar field (35). The starting point is of course the
physical vector potential APμ. In terms of the fields ρ, χ, AP, and a, the local U(1) gauge transformations
do not affect ρ, AP but only χ → χ + ω , a → a − ω. The minimal coupling prescription is not used
here, but emerges from the prescription of iterative Nöther coupling.

4.2. Aharonov–Bohm Effect

The Aharonov–Bohm effect [9] is historically the first tested proposal to underline the physicality
of magnetic vector potential �AP. This effect is a quantum mechanical effect which shows that the wave
function of an electron in a closed orbit in a classical vector potential (even if there is no magnetic field
in the region) will pick up a geometric phase given by the anholonomy of the vector potential along the
closed curve. This phase is thus given by the expression Φ(�A) =

∫
C
�A · d�l, where C is a noncontractible

loop. Now, in our approach, the vector potential admits the decomposition �A = �AP + �AU , where
�AU = ∇a(�x) with a(�x) ≡ ∫

d3x′∇′ · �A(x′)/|�x − �x′|. If the scalar a(�x) is single-valued everywhere
on C, then it is obvious that Φ(�A) = Φ(�AP)! In other words, the physically measured geometric
phase Φ(AP) is dependent only on the physical projection AP of the gauge potential, and is quite
independent of the pure gauge part dependent on a(x).

5. Conclusions

We saw in the last section that physical effects stemming from nontrivial configuration spaces of
test charges, like the Aharonov–Bohm effect, actually reinforce our contention that the gauge-invariant
projection of the 4-vector potential plays the key role at the expense of the pure gauge piece. This
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approach completely demystifies the topic of gauge ambiguity, and champions special relativity
through a totally Lorentz-covariant approach, free of gauge ambiguities.

Recently, it has been shown [8] that any non-Abelian gauge theory (with matter interactions)
is classically equivalent to a set of Abelian gauge fields, whose self-interaction and interaction
with matter are generated by a process of iterative Nöther coupling, without invoking the minimal
coupling prescription. Since Abelian gauge fields are completely described by their physical projection,
as elaborated in this paper, a mathematically simpler description of non-Abelian gauge fields, avoiding
any Faddeev–Popov gauge fixing, can be envisaged using our results. A preliminary attempt in this
direction has been made in [6]. We hope to report more complete results elsewhere.

A related issue is that our approach can avoid the conundrum discussed many years ago by Gupta
and Bleuler [10], associated with canonical quantization of the free Maxwell field, when the gauge
potential is gauge fixed by means of a Lorentz-invariant gauge condition like the Lorenz–Landau
gauge. Due to the indefinite spacetime metric, states in the Fock space of the theory are seen to
possess negative norm. Gupta and Bleuler proposed that these unphysical Fock space states must
be eliminated by subsidiary conditions imposed on the Fock space. In our approach, the projected
4-potential is actually a spacelike 4-vector with vanishing projection along the two linearly independent
null directions of Minkowski 4-spacetime. The physical subspace of polarizations is R2, so problems
associated with the indefinite metric of Minkowski spacetime ought not to be of consequence. We
hope to report on this in detail elsewhere.

We have also been recently informed that similar projection operators have been considered in
some contemporary works on quantum field theory, e.g., [11–14]. Even earlier, it was apparently J. L.
Synge who first proposed projection operators to project out the physical degrees of freedom [15] of
the electromagnetic field interacting with test charges. However, the formulation given here is that of
the authors of this paper. Earlier, it has also been extensively discussed in class lectures on Maxwell
electrodynamics given by one of us (PM) since 2005.
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Abstract: A non-local action functional for electrodynamics depending on the electric and magnetic
fields, instead of potentials, has been proposed in the literature. In this work we elaborate and
improve this proposal. We also use this formalism to confront the electric-magnetic duality symmetry
of the electromagnetic field and the Aharonov–Bohm effect, two subtle aspects of electrodynamics
that we examine in a novel way. We show how the former can be derived from the simple harmonic
oscillator character of vacuum electrodynamics, while also demonstrating how the magnetic version
of the latter naturally arises in an explicitly non-local manner.

Keywords: non-local action; electrodynamics; electromagnetic duality symmetry; Aharonov-Bohm effect

1. Introduction

Locality is a preferred virtue of fundamental field theories. Electrodynamics, the paradigm of
field theory, and general relativity, the modern and finest description of gravity, are very important
examples. Both theories are consistent with local causality and the conservation of energy and
momentum. Maxwell’s and Einstein’s equations are systems of partial differential equations for their
fundamental fields: the electromagnetic and metric tensors, respectively. The two sets of field equations
can also be derived from an action functional. The Hilbert-Einstein action itself is also local in the
metric field. However, to derive the Maxwell equations from a local action one has to introduce the
electromagnetic potentials. To construct an action depending exclusively on gauge invariant quantities
one must necessarily sacrifice locality. This issue is very rarely treated in the literature, despite of the
fact that it is a question that may naturally arise in graduate courses on basic field theory and classical
electrodynamics (see, for instance [1,2] and references therein). Within the context of constrained
dynamical systems [3–5], a non-local action functional describing Maxwell theory, dependent on the
electric and magnetic fields, was sketched in Ref. [6]. In this paper we will focus on this proposal and
related aspects of quantum mechanics and the theory of Noether’s symmetries.

As remarked above, electrodynamics is commonly formulated in terms of Hamilton’s variational
principle through the action functional S[Aμ] =

∫
d4xLEM, where the Lagrangian density for the

electromagnetic field in the presence of an external current source Jμ ≡ (ρ, J), is given by [7,8]

LEM ≡ −1
4

FμνFμν − Aμ Jμ . (1)

Symmetry 2019, 11, 1191; doi:10.3390/sym11101191 www.mdpi.com/journal/symmetry89
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The action is regarded as a functional of the 4-vector potential Aμ = (A0, A), where Fμν ≡
∂μ Aν − ∂ν Aμ is the electromagnetic field tensor. Ei = −F0i and Bi = − 1

2 εijkFjk are the components
of the electric and magnetic fields (E and B), respectively, and the metric η = diag(1,−1,−1,−1)
was used to lower and raise indices in Jμ, Fμν, and ∂μ (e.g., Jμ = ημν Jν). [Throughout this work we
use Lorentz-Heaviside units and take c = 1. We also assume the Einstein summation convention for
repeated indices and ε123 = 1. Additionally, greek letter indices refer to time and Cartesian space
coordinates whereas latin letter indices only refer to the latter. Furthermore, simultaneous spacetime
points are labelled as x ≡ (t, x) and x′ ≡ (t, x′). Finally, it is assumed that all fields decay to 0
at infinity.]

The inhomogeneous Maxwell equations

∇× B − ∂tE = J , (2)

∇ · E = ρ , (3)

are obtained by varying the action with respect to δAμ and imposing δS = 0. One gets immediately
∂μ(∂μ Aν − ∂ν Aμ) = Jν, and rewriting the potential in terms of the electric and magnetic fields,
Gauss’ law (3) and the Ampere-Maxwell equation (2) are readily obtained. The fact that (2) and (3)
only hold on-shell (i.e., when the Euler-Lagrange equations for Aμ hold) contrasts with the off-shell
nature of the homogeneous Maxwell equations

∇× E + ∂tB = 0 , (4)

∇ · B = 0 , (5)

which are trivially satisfied by the definition of Fμν in terms of the potentials, or equivalently
E = −∇A0 − ∂

∂t A, B = ∇× A in vector notation. This distinction between two types of Maxwell
equations can seem somewhat forced, as in essence it is only due to the choice of Aμ as the field of the
action functional. Nevertheless, it is the price to be paid to deal with a local action, i.e., one where LEM

depends on the value of Aμ(x) and finitely many derivatives at a single spacetime point x.
An alternative local action functional is given by [2]

S[Aμ, Fμν] =
∫

d4x[
1
4

FμνFμν − 1
2

Fμν(∂μ Aν − ∂ν Aμ)− Aμ Jμ] . (6)

Fμν and Aμ are here considered to be completely independent dynamical variables. The equation
of motion for Fμν is Fμν = ∂μ Aν − ∂ν Aμ, and plugging this into the action (6) one gets the standard
action S[Aμ] =

∫
d4xLEM. This alternative first-order action (6) is very efficient to prove [2] that the

covariant Feynman rules for quantum electrodynamics obtained from the functional integral approach
are indeed equivalent to the rules derived within the canonical formalism.

The use of potentials in (1) is also useful to study electrodynamics with matter sources.
Recycling the field-matter interaction term −Aμ Jμ present in (1), inserting the charge distribution
(the dot refers to a total time derivative)

ρ(x′) = eδ3(x(t)− x′) and J(x′) = eẋ(t)δ3(x(t)− x′), (7)

and adding a kinetic energy term, the standard Lagrangian that describes the motion of a
non-relativistic particle of mass m and charge e within an external electromagnetic field,

Lp =
1
2

mẋ2 + eA · ẋ − eA0, (8)
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is recovered. Despite the fact that the action Sp[x] =
∫

dtLp is explicitly dependent on the potentials,
the equations of motion, which in this case are just the Lorentz force

mẍ = e(E + ẋ × B), (9)

can be expressed solely in terms of the electromagnetic field, similarly to the case of Equations (2)
and (3) with respect to the action S. Consequently, in classical mechanics where δSp = 0 strictly defines
the dynamics of the particle, this formulation does not pose anything more than possibly an aesthetic
nuisance. However, in the context of quantum mechanics, where the contribution of trajectories with
δSp �= 0 to the path integral is not negligible [9], this formulation does become an issue with the
interpretation of the Aharonov–Bohm (AB) effect [10–14] .

As mentioned above, the first aim of this paper is to study the non-local formulation suggested by
Jackiw [6]. It is of first-order in time derivatives, but spatially non-local. We will elaborate on this
proposal finding a slightly more simplified expression for the action functional than that originally
proposed [6] (see the comments after Equation (29)). This alternative non-local action turns out to be
very efficient to analyze the electric-magnetic duality symmetry of free electrodynamics, and, as a
bonus, to gain new insights on the AB effect.

2. The Free Non-Local (Duality Invariant) Action

A wide family of first-order Lagrangians in classical mechanics can be expressed as

L = ωij q̇i pj − H(q, p) , (10)

where the constants ωij are the components of the off-diagonal block term of the symplectic tensor

Ω =

(
0 ω

−ω 0

)
(11)

and H(q, p) is the system’s Hamiltonian [3,6]. As the notation hints, q = {qi} and p = {pi} are the
sets of (phase space) variables. If ω has an inverse ω−1, then their brackets are simply {qi, pj} ≡
ωij ({qi, qj} = {pi, pj} = 0), where ωij are the components of ω−1. The conventional choice for
simple Hamiltonian systems is ωij = δij, and hence q and p are canonically conjugate variables with
{qi, pj} = δij. However, when ω is not invertible, one typically faces a constrained system, examples
of which we give below.

The Lagrangian (10) can be generalized to a Lagrangian density for the context of field theory.
Besides summing over the discrete degrees of freedom in the non-Hamiltonian component of (10),
one must also sum over (i.e., integrate) the continuous degrees of freedom. Thus, the Lagrangian
density of the conjugate fields φ and π can be expressed in terms of the Hamiltonian density H(φ, π) as

L =
∫

d3x′ωij(x, x′)∂tφ
i(x)π j(x′)−H(φ, π) (12)

with {φi(x), π j(x′)} ≡ ωij(x, x′), if ω is invertible. The most conventional choice for ω in field theory is
ωij(x, x′) = δijδ

3(x− x′), which leads to the local Lagrangian density L = ∂tφ
i(x)π j(x)−H(φ, π). For

H(φ, π) =
1
2
(π2 + (∇φ)2) +

1
2

m2φ2 (13)

we have the usual free scalar Klein-Gordon theory, with field equations ∂tφ = π and ∂tπ = (∇2 −m2)φ,
which easily combine into the Klein-Gordon wave equation (∂2

t −∇2 + m2)φ = 0, consistent with
{φi(x), π j(x′)} = δijδ3(x − x′).
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A more involved example is given by taking ωij(x, x′) as the divergenceless or transverse
delta function

ωij(x, x′) = δT
ij(x − x′) ≡ δijδ

3(x − x′) + ∂i∂j
1

4π|x − x′| . (14)

It is convenient to briefly recall here that a generic vector field F always decomposes univocally [15]
into a transverse vector FT, obeying ∇ · FT = 0, plus a longitudinal one FL, with ∇ × FL = 0.
The transverse delta can then be used to project the transverse component,∫

d3x′δT
ij(x − x′)Fj(x′) = Fi

T(x) . (15)

Choosing the variables to be vector fields φ → E, π → A with a Hamiltonian density given by

H0(E, A) =
1
2
[(E2 + (∇× A)2] , (16)

then the (non-local) Lagrangian density reads

L0 =
∫

d3x′δT
ij(x − x′)∂tEi(x)Aj(x′)−H0(E, A) . (17)

In contrast with the Klein-Gordon example, this Lagrangian density, due to the extra contribution to
the delta function, cannot be reduced to a local one in terms of the chosen fields E, A. Furthermore,
Equation (17) is invariant under gauge transformations A′ = A +∇ξ. By taking variations and
assuming the appropriate boundary conditions one obtains the field equations

Ei = −
∫

d3x′δT
ij(x − x′)∂t Aj(x′) = −∂t Ai

T , (18)

[∇× (∇× A)]i =
∫

d3x′δT
ij(x − x′)∂tEj(x′) = ∂tEi

T . (19)

However, after some manipulations one can transform the above equations into the following set
of local field equations

∂tE = ∇× (∇× A) , ∇× E + ∂t(∇× A) = 0 , (20)

∇ · E = 0 . (21)

The source-free versions of (2)–(4) are recovered with the identification B = ∇× A. Equation (5)
identically follows from the definition of the magnetic field in terms of A, hence completing the full
set of vacuum Maxwell equations. Note how the Gauss law constraint (21) was obtained without
explicitly introducing any Lagrange multiplier. Also note how the transverse delta can project AT,
leading to the Lagrangian density

L0 = ∂tE · AT − 1
2

[
E2 + (∇× AT)

2
]

, (22)

where the longitudinal component of A has naturally decoupled from the theory. That this is the
case seems natural, as AL does not possess indispensable physical value due to the aforementioned
gauge invariance. Please note that although (22) is apparently a local expression, there is a hidden
non-locality in the (constrained and gauge-independent) transverse vector potential. Solving now the
constraint (21) (i.e., taking E = ET) into (23) we finally get

L0 = ∂tET · AT − 1
2
[E2

T + (∇× AT)
2] . (23)
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In this way we therefore recover the completely reduced form of the electromagnetic Lagrangian
density. A bonus of the above discussion is that one can immediately work out the brackets of
the theory: δT

ij(x − x′) can be inverted for transverse vector fields and hence the expected [16–18]

{Ei
T(x), Aj

T(x′)} = δTij(x − x′) is derived.

2.1. Non-Local Formulation for the Electromagnetic Field in Terms of E and B

Our last and most important example consists of defining the object ωij(x, x′) for the electric and
magnetic field themselves. The solution involves a derivative of the Green’s function for the Laplacian
operator � ≡ ∂i∂i, and it is given by

ωij(x, x′) = εijk∂k
−1

4π|x − x′| . (24)

This expression can be regarded as the simplest way to enforce the appropriate physical
dimensions for ωij(x, x′)∂tEiBj and consistency with respect to electric-magnetic duality symmetry
(see next subsection for more details). Together with the conventional electromagnetic Hamiltonian
density we can construct, in the absence of sources, the action SNL,0[E, B] =

∫
d4xLNL,0, a functional

exclusively dependent on the electromagnetic field, with a first-order Lagrangian density

LNL,0 =
∫

d3x′ ωij(x, x′)∂tEi(x)Bj(x′)− 1
2
(E2(x) + B2(x)) . (25)

It is quite remarkable that this action yields all of the four vacuum Maxwell equations. The integral
term in (25) introduces an explicit non-locality, as the fields at spatially separated points x = (t, x)

and x′ = (t, x′) "interact” with one another. This coupling is nonetheless weighed by ωij(x, x′),
leading it to steadily decay as x and x′ become further apart. Taking variations of Ei and Bi,
simultaneously exploiting the standard fall-off conditions of the fields at infinity, one can show
that the equations of motion are just the Hemholtz decomposition [15] of the free electromagnetic field,

Ei(x) = −
∫

d3x′ωij(x, x′)∂tBj(x′) , (26)

Bi(x) =
∫

d3x′ωij(x, x′)∂tEj(x′) . (27)

Applying a divergence and a curl on (26) and (27) immediately provides the vacuum versions of
Equations (2)–(5),

∇× E = −∂tB , ∇× B = ∂tE , (28)

∇ · E = 0 , ∇ · B = 0 . (29)

The non-local Lagrangian density LNL,0 is similar to the one given in Ref. [6], up to the
contributions of two Lagrange multipliers, which we find unnecessary in the absence of sources. As in
the previous case [(17) and (23)], the constraints (29) can be solved into the Lagrangian density (25).
In this situation, where the fields are necessarily transverse, ω does possess an inverse, leading to the
anticipated [17] brackets

{Ei
T(x), Bj

T(x′)} = −εijk∂kδ3(x − x′) . (30)

Note also how (17), and consequently (23), can also be recovered from (25) by introducing the
vector potential A such that B = ∇× A.

2.2. Electric-Magnetic Duality Symmetry

The fact that (25) is formulated solely in terms of E and B means that it is manifestly dual, quite in
contrast to the standard formulation (1). It is straightforward to prove that the discrete transformations
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E → −B, B → E and their continuous generalization as electric-magnetic duality rotations [7] with
parameter θ, (

E′

B′

)
=

(
cos θ sin θ

− sin θ cos θ

)(
E

B

)
, (31)

leave the Maxwell equations invariant. It is, however, not such a simple task [19–22] to prove that (31)
are a symmetry in the Noether sense, i.e., that their infinitesimal version

δE = θB, δB = −θE, (32)

leaves the Lagrangian L =
∫

d3L invariant, up to a total time derivative and without making use of
the field equations.

Employing the standard formulation (1), the transformations (32) clearly will not suffice
as Noether’s theorem requires the transformations of the dynamic fields, Aμ in this case.
However, the problem is actually deeper. The introduction of the potentials implies that
Equations (4) and (5) hold, which for consistency would also require, through the use of (32),
the equations ∇ × B − ∂tE = 0 and ∇ · E = 0. However, within the Lagrangian formalism it is
forbidden to use the latter (on-shell) equations to prove that the duality rotations are a symmetry of
the theory. Consequently, the transformation in (32) cannot be applied directly [20,21] on (1) with
Noether’s Theorem. A way out of this tension is to project the original duality rotations on the
transverse fields (ET, AT) and consider the reduced Lagrangian (23) [20,21]. The new form of the
duality symmetry is then non-local.

On the other hand, the application of Noether’s theorem with (25) is swift and even elegant.
While the bracket has become more intricate in the transition from using A and E to B and E,
the Hamiltonian density now has the well known form of the isotropic simple harmonic oscillator (SHO),

H(q, p) =
1
2
(q2 + p2) (normalized). (33)

The presence of the SHO in this context shouldn’t be too surprising, as it is a well-known fact that
vacuum electromagnetic field satisfies the wave equations ∂μ∂μE and ∂μ∂μB = 0, which are just the
field version of the SHO equations q̈i + k2qi = 0 and p̈i + k2 pi = 0. Thus, (25) can be viewed as a the
first-order Lagrangian of a SHO with non-canonical, i.e., {qi, pj} �= δij, commutation relations. As with
the canonical, i.e., {qi, pj} = δij, SHO, this system is also invariant under phase space rotations(

q′i

p′i

)
=

(
cos θ sin θ

− sin θ cos θ

)(
qi

pi

)
. (34)

However, while in the canonical case this symmetry implies conservation of energy, the non-trivial
case preserves a more general quantity, which using Noether’s theorem is straight-forwardly shown
to be

Q =
1
2

ωij(qiqj + pi pj). (35)

Of course, phase space rotations (34) are just electric-magnetic rotations (31) in the formalism
of (25) and (30), where E and B are the (non-canonical) dynamic variables. Thus we can conclude that
in the context of the non-local formulation exposed here, electric-magnetic duality is analogous to the
phase space rotation symmetry of the SHO, with the conserved quantity being

QD =
1
2

∫∫
d3xd3x′ωij(x, x′)

[
Ei(x)Ej(x′) + Bi(x)Bj(x′)

]
. (36)
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Assuming now that the electric and magnetic fields are transverse, the vector potentials A(x) and
Z(x) can be introduced such that E = −∇× Z and B = ∇× A. It is then easily proven that the above
non-local quantity (36) becomes the local

QD =
1
2

∫
d3x[Z · (∇× Z) + A · (∇× A)] , (37)

equivalent to the conserved charge obtained by Calkin [19] and Deser-Teitelboim [20]. An extended
discussion in the quantum theory is given in [22–25].

We would like to remark that the conservation law d
dt QD = 0 should be modified in the

presence of charged matter, since duality rotations are no longer symmetries of the theory. Note that
this is somewhat similar to the chirality transformation of fermions [8]. Chirality rotations are
symmetries for massless fermions, implying that ∂μ jμ

5 = 0, where jμ5 ≡ ψ̄γμγ5ψ, and the corresponding
conservation of the chiral charge Q5 ≡ ∫ d3xj05. In presence of a mass term, d

dt Q5 = 0 would also be
modified accordingly.

3. The Non-Local Action with Matter

The non-local action presented in the previous section can be straightforwardly generalized
to accommodate for the presence of matter. This is a important issue since the interaction of the
electromagnetic field with matter has both fundamental and applied significance. This new action
functional SNL[E, B, λ] =

∫
d4xLNL, essentially based on Ref. [6], has the electric and magnetic fields

as its dynamical fields as well as a Lagrange multiplier λ that imposes Gauss’ law (3) as a constraint,

LNL =
∫

d3x′ ωij(x, x′)[∂tEi(x) + Ji(x)]Bj(x′)− 1
2
(E2 + B2)− λ(∇ · E − ρ). (38)

In the above expression ωij(x, x′) is again given by (24). We note that a single Lagrange multiplier
λ is introduced here, instead of the two employed in Ref. [6]. This Lagrangian provides all four of
Maxwell’s equations if there is electric charge conservation, i.e., ρ̇ +∇ · J = 0, a prerequisite that is
used in the standard formulation (1) as well to preserve gauge invariance. For instance, if the matter
field is given by a Dirac spinor ψ, with electric charge q and mass m, we should replace ρ = qψ̄ψ and
Ji = qψ̄γiψ in (38). One can then complete the action by adding the standard local free action for the
Dirac field such that the Lagrangian of the complete theory reads

L = (iψ̄γμ∂μψ − mψ̄ψ) +
∫

d3x′ ωij(x, x′)[∂tEi(x) + qψ̄γiψ(x)]Bj(x′)− 1
2
(E2 + B2)− λ(∇ · E − qψ̄ψ). (39)

In addition to the constraint (3) enforced by λ, the equations of motion for the action (38) are

Ei = ∂iλ −
∫

d3x′ωij(x, x′)∂tBj(x′) (40)

Bi =
∫

d3x′ωij(x, x′)[∂tEj(x′) + J j(x′)] , (41)

which correspond to the Helmholtz decomposition of the electromagnetic field coupled to an
external source. Gauss’ law for the magnetic field is recovered by taking the divergence of (41),
while the time-dependent Maxwell Equations (2) and (4) are obtained by applying a curl on (41)
and (40) respectively.

The standard formalism in terms of the potentials can also be recovered solving the non-time
evolving Equation (5). Applying the variable change B → A such that B = ∇× A along with the
relabelling A0 ≡ −λ, it can be shown that (38) becomes

L = (∂tE + J) · AT − 1
2

[
E2 + (∇× AT)

2
]
+ A0 (∇ · E − ρ) , (42)
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which is of a similar form to (22). Hence, the introduction of the vector potential makes the non-local
Lagrangian density become the standard first-order Lagrangian density after removing the excess
longitudinal component of A. However, it is important to keep in mind that (38) and (42) are not fully
equivalent, as the equation ∇ · B = 0 holds as a proper Euler-Lagrange equation for (38), while it is
assumed off-shell for (42).

Nevertheless, it is not difficult to see that (38) can be obtained by introducing the explicit
expression of AT into (42)

Ai
T(x) =

∫
d3x′ωij(x, x′)Bj(x′) (43)

and assuming (5) holds. Therefore, even though the formalism in terms of (38) is not equivalent to the
one of (1) or (42), in some instances it will be useful to obtain results for the non-local viewpoint by
simply substituting (43) wherever A appears in results derived from the local viewpoint, which
is equivalent to imposing the Coulomb gauge, i.e., ∇ · A = 0 or A = AT. This property can
be illustrated by considering the Lagrangian of the non-relativistic particle (8). Inserting (43) and
relabelling λ ≡ −A0, a new Lagrangian is obtained,

LNL,p[x] =
1
2

mẋ2 + e
∫

d3x′ωij(x, x′) ẋiBj(x′) + eλ(x). (44)

Alternatively, (44) could have been obtained by applying the same procedure that was used to
obtain (8) on (38). While the Lagrangian LNL,p appears to be non-local with respect to the magnetic
field, the equations of motion are expectedly the Lorentz force (9), which is local in both E and B.
This is reassuring, as in a classical δS = 0 context no possibly non-local phenomenon is observed.

Things are not so simple however in a quantum context, a fact best depicted by considering the
magnetic AB effect with Feynman’s path integral method. The details of the setup considered here to
analyse the AB effect are described in Figure 1. The action for this process is given by SNL,p =

∫
dtLNL,p

with λ = 0, and it can thus be proven that the propagator for the electrons getting from the source to
the screen is

K(xf, tf; x1, t1) = exp
[

ie
h̄

∫
above

dsi
∫

d3x′ωij(s, x′)Bj(x′)
] ∫

above
D[x(t)] exp

[
iS0

h̄

]

+ exp
[

ie
h̄

∫
below

dsi
∫

d3x′ωij(s, x′)Bj(x′)
] ∫

below
D[x(t)] exp

[
iS0

h̄

]
. (45)

This result can be obtained using an analogous method to the one shown in Ref. [14]. The term
S0 =

∫
dt 1

2 mẋ2 is the free particle action while subscripts “above” and “below” in (45) are used
to distinguish paths that curl above the cylinder from those that curl below. As it is known from
the standard analysis of the AB effect, all paths curling above have a common phase, while those
curling below have another, a property that appears explicitly in (45). In contrast to the standard
analysis however, these phases are explicitly non-local with respect to the physically relevant quantity,
the magnetic field B inside the cylinder, instead of being local in the vector potential A outside.
Therefore, the non-locality suggested by the standard derivation of the magnetic AB effect appears
naturally in the non-local prescription of electrodynamics described here. While the result (45) can
be derived by simply applying the Coulomb gauge on (8) [26], we stress how here it has really been
proven from a more fundamental action (38), and not from an arbitrary choice of gauge.
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Figure 1. Experimental setup we will consider to analyse the magnetic AB effect. A source of electrons
is located at the point x1, from which one is emitted at a time t1. Between the source and a screen
on the other side of the setup there is a wall, containing two slits A and B, and a long impenetrable
cylinder behind it. Inside the cylinder, oriented parallel to the z-axis, there is a magnetic field B = ẑB0,
while outside B = 0. The electrons can trace two types of deterministic paths to reach the point xf on
the screen at a time tf, either above (e.g., γ1) or below (e.g., γ2) the cylinder.

The cylindrical symmetry of the setup ensures that an analytical value of the nonlocal interaction
term, equivalent to the transverse component AT of the vector potential (43), can be obtained,

∫
d3x′ωij(x, x′)Bj(x′) =

[
ΦB

2πρ
ϕ̂ϕϕ

]i
, (46)

where ρ2 = (x1)2 + (x2)2 is the distance squared with respect to the center of the cylinder and ϕ̂ϕϕ is the
unit vector associated with the azimuthal angle. This result can be derived by evaluating the volume
integral directly as we have done for completeness in the Appendix A, or treating AT as a shorthand
for the interaction term (left-hand-side (LHS) of (46)) and recycling the standard derivation [14].
The relevant phase difference is thus the expected AB phase,

Δϕ =
e
h̄

[∫
above

AT · ds −
∫

below
AT · ds

]
=

eΦB

h̄
. (47)

where ΦB is the magnetic flux through the cylinder.

4. Conclusions

Non-locality is a reasonably objectionable feature, but we feel the fomulation of electrodynamics
treated here, elaborating and improving on a proposal sketched in [6], will at least be useful to
shed some light on the subtle topic of action functionals independent of potentials. We have argued
how non-locality seems to be unescapable in an electromagnetic field-dependent formalism due to
the non-trivial commutation relations {E, B}. It is nonetheless important to keep in mind that the
field-matter action (38) is not completely independent of potentials, as the Lagrange multiplier λ in (38)
is actually just a relabelled (Coulomb gauge) scalar potential. However, it is consistent to assume λ = 0
in the context of electric-magnetic duality or the magnetic AB effect, meaning they can be studied
without concern.

On one hand, the former can be seen as a manifestation of the phase-space rotation symmetry of
the SHO. It is worth recalling how this symmetry was derived with an action where all the Maxwell
equations hold solely on-shell, in contrast with past derivations, which assume some of them off-shell.
On the other hand, an arguably plausible interpretation for the AB effect was deduced. In a classical
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context, where δS = 0, the equations of motion (9) of (44) are local in both E and B despite the
non-locality of the action. Therefore the correspondence principle holds, i.e., when h̄ → 0 the
interaction of the particle with the electromagnetic field is local. In a quantum context however
trajectories with δS �= 0 are not negligible, hence the non-locality of the action can materialize (45) with
the AB effect. Through this scope, manifest non-locality is thus an exclusively quantum affair, and we
believe this is also one of the lessons of this note.

We would like to remark that we are not advocating to avoid the use of field potentials to analyze
electrodynamics or its generalizations (nonabelian gauge theories). The purpose of this work is to
point out that it could be useful to reanalyze electrodynamics from a nonlocal perspective (using only
the electric and magnetic fields). In so doing this we have filled a gap in the literature and obtain,
as a bonus, new insights on two important topics in electrodynamics: i) the electromagnetic duality
symmetry, and ii) the AB effect.

After finishing this work we became aware of the work [27], concerning a formulation of
electrodynamics without a gauge-fixing procedure. We think that there is a close connection with our
work that could merit to be further explored.
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Appendix A. Interaction Term in the A.B. Effect

Preliminary considerations:

• The expression for the magnetic field is B(x) = ẑΘ(R2 − x2 − y2), where Θ is the Heaviside step
function and x = (x, y, z).

• The volume region is a cylinder C of radius R, with a length L1 and L2 over and under the xy plane
respectively. Furthermore, it will be assumed that the cylinder is long i.e., L2

1, L2
2 � R2, x2 + y2.

Due to its equivalence with the nonlocal interaction term (LHS of (46)), we will use AT as a
shorthand to refer to it. It can thus be proven that

AT(x) =
B0

4π
ẑ ×

∫
C

d3x′∇
(

1
|x − x′|

)
=

B0

4π
ẑ ×

∫
∂C

dS′ 1
|x − x′| .

where a corollary of the Divergence theorem was used in the second equality.
The surface of the cylinder is composed by a circular wall and the two lids on either end.

However, since the lids have a normal vector dS′ ∝ ẑ and ẑ × ẑ = 0, their contributions to the
total integral are 0. Consequently, the only relevant contribution to the integral comes from the circular
wall, with a normal vector dS′ = ρ̂ρρ′Rdφ′dz′ where ρ̂ρρ′ = (cos φ′, sin φ′, 0):

=
B0

4π
ẑ ×

∫ 2π

0
Rdφ′ρ̂ρρ′

∫ L1

−L2

dz′
(

z′2 + α(φ′)
)−1/2

(A1)

=
B0

4π
ẑ ×

∫ 2π

0
Rdφ′ρ̂ρρ′

[
log
(√

α(φ′) + L2
1 + L1

)
+ log

(√
α(φ′) + L2

2 + L2

)
− log

(
α(φ′)

)]

where α(φ′) = (x − R cos φ′)2 + (y − R sin φ′)2 was introduced for brevity. However, expressions of
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the form log
(√

α(φ′) + L2 + L
)

can be disregarded by taking into account the first
preliminary consideration,

∫ 2π

0
dφ′ρ̂ρρ′ log

(√
α(φ′) + L2 + L

)
≈ log(2L)

∫ 2π

0
dφ′ρ̂ρρ′ = 0.

Therefore the expression for AT is now a one-dimensional integral

AT(x) = −B0R
4π

∫ 2π

0
dφ′φ̂φφ′ log

[
(x − R cos φ′)2 + (y − R sin φ′)2

]
. (A2)

where ẑ × ρ̂ρρ′ = φ̂φφ
′, with φ̂φφ

′
= (− sin φ′, cos φ′, 0). Equation (A2) can be reinterpreted as a complex

integral, zA = Ax
T + iAy

T, over a circle of radius R on the complex plane

zA(x, y) = − B0

4π

∮
γ

dz log |z − z0|2 (A3)

where z0 = x + iy and γ(s) = Reis. Ignoring for now the multiplicative constant −B0/4π, the integral
can be split into two, ∮

γ
dz log |z − z0|2 =

∮
γ

dz log(z − z0) +
∮

γ
dz log(z∗ − z∗0) (A4)

=
∮

γ
dz log(z − z0) + R2

∮
γ

dz
log(z − z∗0)

z2 (A5)

where the latter equality is due to the easily proven general property for circular contour integrals,∮
γ dz f (z∗) = R2

∮
γ dz f (z)/z2. The value of (A5) will depend on whether z0 is inside or outside

the disk delimited by γ on the complex plane C (see Figure A1). In terms of the original problem,
this means that the expressions for AT inside and outside the solenoid will be different. In the latter
case, ρ2 ≡ x2 + y2 > R2, meaning that

zA(x, y) =
B0πR2

2π

−y + ix
x2 + y2 . (A6)

and

AT(x) =
B0πR2

2π(x2 + y2)
(−y, x, 0) =

B0πR2

2πρ
φ̂φφ =

ΦB

2πρ
φ̂φφ (A7)

where ΦB = B0πR2 and φ̂φφ = (−y/ρ, x/ρ, 0). This is the expected result outside the cylinder. On the
other hand, inside ρ2 ≡ x2 + y2 < R2. Evaluating (A5) in this situation gives

zA =
B0

2
(−y + ix) (A8)

so that
AT(x) =

B0

2
(−y, x, 0) =

B0ρ

2
φ̂φφ. (A9)

This is the expected result for the transverse component of the vector potential in a finite volume
under a constant magnetic field (in this case, a cylinder with B = B0ẑ), where AT(x) = − 1

2 x × B.
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Figure A1. Complex plane representation of z0 = x + iy outside and inside the cylinder.
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Abstract: Sustainable smart buildings play an essential role in terms of more efficient energy.
However, these buildings as electric loads are affected by an important distortion in the current and
voltage waveforms caused by the increasing proliferation of nonlinear electronic devices. Overall,
buildings all around the world consume a significant amount of energy, which is about one-third of
the total primary energy resources. Optimization of the power transfer process of such amount of
energy is a crucial issue that needs specific tools to integrate energy-efficient behaviour throughout
the grid. When nonlinear loads are present, new capable ways of thinking are needed to consider
the effects of harmonics and related power components. In this manner, technology innovations are
necessary to update the power factor concept to a generalized total or a true one, where different
power components involved in it calculation, properly reflect each harmonic interaction. This work
addresses an innovative theory that applies the Poynting Vector philosophy via Geometric Algebra
to the electromagnetic energy transfer process providing a physical foundation. In this framework,
it is possible to analyse and detect the nature of disturbing loads in the exponential growth of
new globalized buildings and architectures in our era. This new insight is based on the concept
of geometric objects with different dimension: vector, bivector, trivector, multivector. Within this
paper, these objects are correlated with the electromagnetic quantities responsible for the energy flow
supplied to the most common loads in sustainable smart buildings. Besides, it must be considered
that these phenomena are characterized by a quality index multivector appropriate even for detecting
harmonic sources. A numerical example is used to illustrate the clear capabilities of the suggested
index when it applies to industrial loads for optimization of energy control systems and enhance
comfort management in smart sustainable buildings.

Keywords: smart building; harmonics; geometric algebra; Poynting Multivector

1. Introduction

1.1. Motivation

Nowadays, professional and academic experts have started to consider the term “Smart
Sustainable Cities” [1] so as to incorporate the different aspects of sustainability in the classical
“smart cities” new concept. In fact, literature tends to consider a sustainable city as a whole place
of sustainable smart buildings that have a strong environmental focus with a balance within the
buildings and the city between infrastructures, information and communications technology (ICT),
smart technologies, and urban metabolism, focusing mainly on consumption and energy saving [2].

Buildings all around the world consume a significant amount of energy, which is about one-third
of the total primary energy resources [3]. For this reason, building energy efficiency has turned out
to be a multi-faceted problem and the majority of harmonic problems affecting sustainable smart
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buildings are generated within new applications and grids of global architectures. This is due, in part,
to a proliferation of non-linear loads connected to the networks of the building. These technologies as
CCTV recognition systems, automatic smart air conditioning equipment, artificial intelligence (AI),
the latest generation of computers, all types of smart detectors and warning systems, and other power
electronic equipment are the main sources of such problems. The result of using such highly non-linear
load is that the current waveform is distorted. Thus, causing an excessive harmonic of current and
voltage. Besides the proximity of many of this new smart building category (industrial and residential
smart constructions) will contribute to the distortion of the electric power quality of the feeder, which
supplies these constructions and new architectures. These harmonics can cause serious problems
in power systems, excessive heat of appliances and machines, aging of electronic component and a
decreased capacity, failures of the safety devices and measures of protection, lower power factor and
consequently, a reducing power system efficiency due to increasing losses. All these effects are some
of the main results of harmonics in power distribution systems. Note, that Harmonic distortion can
cause significant costs in distribution networks. Harmonic cost consists of harmonic energy losses,
premature aging and de-rating of electrical equipment. The difference between the known generation
and the estimated consumption is considered as the energy loss.

Other causes of energy loss and, consequently, an increase in the cost of it, are due to the lack
of control of energy efficiency in the thermal performance of buildings and energy balance. Most of
the building heat losses occur through the building envelope. In recent years, an important number
of papers on quantification and optimization of energy efficiency in buildings has been published
referring to the standard for buildings. Many of these works have been developed in different areas of
application such energy losses in the building envelope as HVAC systems (heating, ventilation and air
conditioning), windows, etc. All these works have in common the aim of making efficient buildings
from an energy point of view to be sustainable. Particularly, in [4], an original approach for the U-value
evaluation (analogies with coeval buildings, the calculation method, the in-situ measurements and the
laboratory tests) is taken. In [5], measures of energy efficiency and optimization in the building sector
are also evaluated.

In this article, it is proposed an energy quality multivector index (EQI) based on the Generalized
Poynting Multivector (GPM) theory, that possesses clear advantages from the viewpoint of harmonic
sources detection and minimization in sustainable smart buildings.

1.2. Literature Review

Valuable contributions in electromagnetic field applied to the electric power theory analysis under
multi-sinusoidal conditions have been appeared so far in the literature. Despite they have different
interpretations, most of them share the common denominator of dealing with the suitability of the
Poynting Vector to explain the electromagnetic energy flow in electric systems [6].

In sinusoidal systems, Complex Algebra provides an appropriate framework to analyse the
relationship between the Complex Poynting Vector and the energy flow [7].

In one-ports under periodic multi-sinusoidal linear/non-linear operation this issue has still some
fundamental unsolved aspects. Nevertheless, some progress has unquestionably been made from
numerous valuable contributions in the literature [8–21], each one of them trying to clarify different
aspects of the problem by applying the classic Poynting vector (PV) concept. Among them [8,9,14,15]
masterfully explain the power factor concept and the physical mechanism of energy propagation in
electric power systems; Ferrero et al. in [17] reconsiders the physical meaning assigned to the non-active
components of the Park instantaneous power; Balci et al. in [20] describes the transition between PV
and instantaneous active and reactive powers; and Faria et al. in [11] computes the instantaneous
power directly from Maxwell’s equations together with the evaluation of the PV flux. On the other
hand, several applications are given by means of PV: Lundin et al. in [10] analyses synchronous
generators using field simulations; De León et al. in [12] identifies terms in nonlinear-switched circuits;
Cheng et al. in [13] calculates the reactive power of iced transmission line; Todeschini et al. in [16]
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detects and explains the process of compensation and restoration of symmetry in an unbalanced
system and Stahlhut et al. in [21] examines critically the PV possibilities in the area of instrumentation
of losses. However, critics of PV calculations [18,19] argue that electromagnetic theory is useless for
practical applications of electric power theory. Nevertheless, the large number of papers published on
the physical and/or mathematical nature of electromagnetic energy transfer suggest that the work has
not been finished.

The multidimensionality of power equation and energy quality indexes in the multi-sinusoidal
case is the underlying obstacle that considerably complicates the issue at hand. Instead, reference [13]
is a pioneering contribution to the role of a Poynting Multivector to the interpretation of the energy
flows based on an original Clifford Vector space. Accordingly, this work adds a new representation of
electromagnetic power theory deduced from a Generalized Poynting Multivector [22].

1.3. Contribution

An introduction to “geometric objects” in Geometric Algebra (GA) and the associated phenomena
within the electrical systems is developed. In addition, these entities permit a unified treatment of
the energy flow concept. By means of the GA framework, the classic explanations of the energy flow
process based on interactions between electric and magnetic fields of like-frequency is overcome.
The proposed generalization adds the cross-fields interactions in a natural manner, as well.

By this way, this paper is concerned to the application of the Generalized Poynting Multivector
(GPM) concept [22] to provide both of them, a physical foundation to the non-active electromagnetic
geometric objects as well as a new multivector index to assess the efficiency of the complete energy
process in sustainable and smart building loads supplied from a transmission line.

2. Geometric Objects

Geometric Algebra [23–26] is based on the concept of objects with different geometrical dimension
that result from the geometric product of distinct graded basis elements, e.g., scalars, vectors, 2-vectors
and so on. Thus, starting from vectors within an n-dimensional linear space over the real numbers Vn,
the geometric product of vectors ab if a, b ∈ Vn is formed by a symmetric inner product

a·b =
1
2
(ab + ba) (1)

and an antisymmetric outer product

a ∧ b =
1
2
(ab − ba) (2)

Therefore, ab has the canonical decomposition

M̃ = ab = a·b + a ∧ b (3)

The resulting multivector M̃ is the sum of a scalar (a·b) and a bivector or 2-vector (a ∧ b) object.
Despite this sum of two distinct objects might seem strange at first sight and it is against the common
rule that only same objects should be added, this Clifford´s brilliant idea [23] allows to generalize
easily the product to arbitrary higher dimensions and incorporates geometric interpretations of objects
and operators.

Thus, a bivector can be viewed as directed plane segment, in much the same way as a vector
represents a directed line segment, Figure 1. The bivector a ∧ b has a magnitude |a ∧ b| equal to
the usual scalar area of the circle in Figure 1, with the direction of the plane in which the circle lies,
and with sense, which can be assigned to the circle in the plane. Then, just as a vector a represents
(or is represented by) a directed line segment and a bivector a ∧ b represents a directed plane segment,
the trivector (3-vector) a ∧ b ∧ c is a grade-3 object that represents a volume (the sphere).
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In G3, the geometric algebra of three-dimensional space, a general multivector can be written as

M̃ = α + λ + B + μJ (4)

where a is a vector, B is a bivector, I is a trivector (pseudoscalar) and λ and μ are both scalars. The three
orthogonal basis vectors {σ1, σ2, σ3}, the three bivectors {σ1σ2, σ2σ3, σ3σ1}, the unit scalar, and the
trivector σ1σ2σ3 define a graded linear space of total dimension 8=23 and are shown in Figure 1.

The unit right-handed pseudoscalar for the space J squares to −1, J2 = −1. The pseudoscalar,
as well as bivectors, change sign under reversion, but vectors do not. This reversion operation reverses
the order of vectors in any product and the convention. So, the reverse of multivector M̃ derived only
from vectors

M̃† = ba = a·b − a ∧ b (5)

or in the general form resulting from all the possible basis product in G3

M̃† = α + λ − B − μJ (6)

For all the formulae presented below the followed notation uses the tilde ~ for multivectors,
Euclidean vectors are written in bold font, the dagger symbol † denotes the reverse operation and
the upper asterisk * represents the complex conjugate operation. For a complete understanding of
notation, a list of symbols is summarized in the glossary.

Figure 1. Geometric objects.

3. The System Model

An “electrical system” is shown in Figure 2 and it can be considered as a space confined by a
closed surface to/from which electric power is supplied/received by conductors carrying an electric
current. The total instantaneous power transmitted is

s(t) = ∑
k

ukik (7)

Two main electric power processes occur in the system:

- Electric power (energy) is dissipated.
- Electric power (energy) in the system derives from an electric field and magnetic field interactions.

In a general form, the electromagnetic phenomena occurring in the system under study can be
roughly modelled by electric circuits.

Despite the application of GA to circuit analysis and power theory has a very short history some
relevant advances have been made in this area from different perspectives [27–35].
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Figure 2. Electrical system.

4. Generalized Poynting Multivector

In this work, space coordinates and time (frequency) coordinates have a differentiated treatment.
Space domain remains represented by the classical Euclidean approach, the harmonic field in both,
time and frequency domains, are characterized by complex geometric algebra, CGn. The complete
space-time framework results in the hybrid CGt

n −R3 structure named Generalized Euclidean Space
(CGn −R3 for space-frequency domain) [22].

In this CGn −R3 algebraic approach, the Generalized Poynting Multivector (GPM) is defined as

Π̃ = ∑
p,q

(
Ẽp � H̃

∗
q

)
(8)

where Ẽp and H̃q vectors are called ‘spatial geometric phasors’ of the electric and magnetic harmonic
fields, H̃

∗
q vector is the conjugate of the q-th harmonic spatial geometric phasor H̃q and ‘�’ is the

generalized geometric product (GGP) [27].
From this multivectorial field theory, the flux of the GPM quantity for a volume υ enclosed by a

surface ς, (GPM theorem), can be expanded into two terms.
�
ς

n·Π̃ dς =
�
ς

∑
p

n·P̃p dς+
�
ς

∑
p �=q

n·D̃pq dς = S̃ (9)

where n is the unitary vector orthogonal to the infinitesimal surface dς, P̃ is the Poynting
Multivector (PM) and D̃ is the Complementary Poynting Multivector (CPM) and S̃ = Ũ � Ĩ∗ is
the Power Multivector.

In Equation (10) are present three “electromagnetic geometric objects”: the complex vectors Ẽp

and H̃q, the complex scalar

P̃ = ∑
p

Ẽp � H̃
∗
p (10)

and the complex bivector

D̃ = ∑
p<q

(
Ẽp � H̃

∗
q + Ẽq � H̃

∗
p

)
(11)

From CGn structure, Equation (10) explains the total power energy flow because contains the
component P̃ related with the power contribution due to frequency-like products and the component
D̃ associated to the mutual influence of the harmonic components of the fields. Observe that in classical
approach this last term vanishes due to the orthogonality of harmonics basis. Nevertheless, a null
average value of power without any net energy transferred must be also considered to understand the
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real power flux processes and to fully evaluate the energetic efficiency of electric systems in presence
of harmonics.

The above mentioned electromagnetic geometric objects are shown in Figure 3 and must be
considered to explain the main aspects of energy transfer quality.

 
Figure 3. Complex electromagnetic geometric objects.

5. Formulation of Electromagnetic Energy Quality Index

5.1. Energy Flow on Electrical Systems

Consider the case of an electrical system in the form of a circuit, Figure 4, where the load is
a linear/nonlinear system. The supply system voltage is periodic but multi-sinusoidal and can be
represented by

u(t) =
√

2Im∑
p

Upej(ωpt+αp) (12)

where p is the harmonic order of u(t). The instantaneous supply current responsible of the generation
of the magnetic-field is given by

i(t) =
√

2Im∑
q

Iqej(ωqt+βq) (13)

where q is the harmonic order of i(t). It is assumed that a group of voltage harmonics N exist that have
corresponding current harmonics of the same frequencies, and that components M of current exist
without corresponding voltages. In linear operation, βq = αq − ϕq, ϕq is the impedance phase angle of
the consumer electrical system.

Figure 4. Flux of the generalized Poynting multivector components of electrical systems.

From Equation (10), the energy balance can be expressed as a multivector S̃ in {CGn}, generated
by the geometric product “�” of the voltage and conjugate current geometric phasors [14] given by
the following set

S̃ = Ũ � Ĩ∗ = Ũ· Ĩ∗ + Ũ ∧ Ĩ∗ (14)

where Ũ is the voltage geometric phasor and Ĩ∗ is the conjugated current geometric phasor.
The electromagnetic object P̃ can be separated into active and non-active components
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P̃ = ∑
p

P̃pact
+∑

p

P̃pnon−act
= Re

⎧⎨⎩∑
p

P̃p

⎫⎬⎭︸ ︷︷ ︸
P̃act

+ jIm

⎧⎨⎩∑
p

P̃p

⎫⎬⎭︸ ︷︷ ︸
P̃non−act

(15)

where the set P̃act transfers the harmonic active power and the set P̃non−act transport the scalar
non-active power (classical reactive power). The only component of P̃ that transfer useful energy is
P̃act, Figure 4.

Hence, by virtue of (10), it is obtains

�
ς

∑
p

→
1 Z · P̃p dς =

�
ς

∑
p

→
1 Z · Ẽp � H̃

∗
p dς =∑

P

Up Ipejφp σ0 (16)

The PM (P̃) is associated to the energy density at a point on the surface given in terms of the
harmonic spatial geometric phasor of electric and magnetic fields at that point. Observe that the PM
coincides with the classic Complex Poynting Vector only in pure sinusoidal case.

The real part of P̃ in (16), P = Re

{�
ς

∑
p

→
1 Z · P̃p dς

}
, permits a direct interpretation in terms of

average energy flow, (i.e. active power P).

The imaginary part of P̃ in (16), Q = Im

{�
ς

∑
p

→
1 Z · P̃p dς

}
, is the scalar non-active power.

In general, it can be verified that PM P̃ considers direction and sense, not only of active power
components P̃pact

but also of scalar non-active components P̃pnon−act
Thus, the possible reverse

sense of any harmonic P̃pact
is very important for a correct identification of harmonic source

locations and for determining the responsibility of the utility electrical system and the associated
load. Thus, if P̃pact

≥ 0
(
Pp ≥ 0

)
the energy flow is unidirectional toward the load. On the other way,

if P̃pact
≤ 0

(
Pp ≤ 0

)
the flow is generated in the nonlinearity of the load.

A more detailed develop of the CPM (D̃) is

D̃ = ∑
p<q

Ẽp � H̃
∗
q + Ẽq � H̃

∗
p = ∑

p < q
p, q ∈ N

D̃pq + ∑
p∈N,q∈M

D̃pq

= Re

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑

p < q
p, q ∈ N

D̃pq + ∑
p∈N,q∈M

D̃pq

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
D̃act

+ jIm

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑

p < q
p, q∈N

D̃pq + ∑
p∈N,q∈M

D̃pq

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
D̃non−act

(17)

Moreover, the flux of the Complementary Poynting Multivector is given by

�
ς

∑
p<q

→
1 Z · D̃pq dς = D̃ (18)

where D̃ can be associated to the polluting nature components, D̃act and D̃non−act, that do not help in
transferring useful energy and

D̃ = ∑
p < q
linear

{
(

Up Iq ejϕq − Uq Ipejϕp
)

ej(αp−αq)
)}

σpq + ∑
p<q

non−linear

Up Iq ej(αp−βq)σpq (19)
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is the non-active power bivector called distortion power.
Through (9), (16) and (18), it can be observed that the energy flow that it is originated from the

surface of the source in the electrical system equals the flow that enters in the load surface.

5.2. Electromagnetic Quality Index (EQI)

The aim of this paper is to propose a multivectorial index ξ̃, based on electromagnetic geometric
objects, capable to characterize the performance of the power transfer or the efficiency of the
transmission equipment in single-phase circuits with multi-harmonic signals. This figure of merit
can be an important piece of information for the interpretation of the electromagnetic energy flow
in presence of disturbing loads. On the contrary, the classic THD index (Total Harmonic Distortion)
for the measurement of the harmonic distortion level is not able to give any information about the
disturbance nature.

To this end, a new index that integrally reflects the nature of the different energy quality situations
is defined. This is expressed as

ξ̃ =

�
ς

→
1 ZΠ̃dς

Re

{�
ς

∑
p∈N

→
1 Z · P̃p dς

} = 1 + j

Im

{�
ς

∑
p∈N

→
1 Z · P̃p dς

}

Re

{�
ς

∑
p∈N

→
1 Z · P̃p dς

} +

�
ς

∑
p �=q

→
1 Z · D̃pq dς

Re

{�
ς

∑
p∈N

→
1 Z · P̃p dς

} (20)

or also,

ξ̃ =

Re

{�
ς

∑
p=1

→
1 Z · P̃1 dς

}
+jIm

{�
ς

∑
p=1

→
1 Z · P̃1 dς

}

Re

{�
ς

∑
p

→
1 Z · P̃p dς

} +

+

Re

{�
ς

∑
p �=1

→
1 Z · P̃p dς

}
+jIm

{�
ς

∑
p �=1

→
1 Z · P̃p dς

}

Re

{�
ς

∑
p

→
1 Z · P̃p dς

} +

+

�
ς

∑
p �=q

→
1 Z · D̃pq dς

Re

{�
ς

∑
p

→
1 Z · P̃p dς

}

(21)

The power factor PF can be written as

PF =
1∣∣∣∣∣∣ξ̃∣∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣Re

{�
s

∑
p

→
1 Z · P̃p ds

}∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣�

s

→
1 Z · Π̃ ds

∣∣∣∣∣∣∣∣ (22)

It is noteworthy that the power factor is not an exhaustive index for energy quality. In fact,
combining (20) and (22) the power factor could be brought to unity, but the electrical systems would
still operate in multi-sinusoidal mode.

Equations (21), (22) and (23) show that the index ξ̃ contains terms that keep direction and sense,
allowing harmonic source detection. This property is very important to achieve an appropriated
compromise between the energy quality index and the power factor. Moreover, the dominant
harmonic source should be based on an evaluation of non-active scalar and bivector electromagnetic
geometric object components of the Generalized Poynting Multivector. This subject is discussed in the
next subsection.
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5.3. Illustrative Comparison between Different Non-Active Electromagnetic Geometric Objects

It is seen from (12) and (17) that Ũ1 and Ĩ1 are the sinusoidal voltage and current geometric phasor
and Ũp and Ĩq are the harmonic voltage and current geometric phasor when p �= 1, q �= 1 respectively.
Obviously, the voltage geometric phasor Ũ1 produces the sinusoidal electric field spatial geometric
phasor Ẽ1 and the harmonic voltage Ũp generates the harmonic field Ẽp. Similarly the sinusoidal
current Ĩ1 geometric phasor produces the sinusoidal magnetic field spatial geometric phasor H̃1 and
the harmonic current Ĩq generates the harmonic field H̃q. The interaction among these fields produces
the cited characteristic electromagnetic geometric objects Π̃, P̃ and D̃. The objects P̃ and D̃ are
separated into an active and a non-active component as in Equations (15) and (17). In these equations,
the different non-active scalar and bivector electromagnetic objects assume different expressions
depending on the electrical system nature.

Starting from these considerations, a new philosophy is proposed for the detection of the dominant
harmonic source that is based on the comparison of these non-active components to explain the power
quality concept. For more detail, the following situations are considered:

• Sinusoidal case: p = q = 1 ⇒ N = {1}

Π̃sin = P̃1 = Re
{
P̃1

}
︸ ︷︷ ︸

P̃1act

+ j Im
{
P̃1

}
︸ ︷︷ ︸
P̃1non−act

(23)

and

ξ̃sin = 1 + j

Im

{�
ς

∑
p∈1

→
1 Z · P̃1 dς

}

Re

{�
ς

∑
p∈1

→
1 Z · P̃1 dς

} (24)

In this case, the quantity Im{P̃1} = P̃1non−act can be considered as minimum reference value to
improve the energy quality, since it is the only non-active electromagnetic geometric object. It is the
well established fundamental reactive power (Q) that can be reduced to zero by shunts capacitors∣∣∣∣∣∣

∣∣∣∣∣∣Im
⎧⎨⎩�

ς
∑
p∈1

→
1 Z · P̃1 dς

⎫⎬⎭
∣∣∣∣∣∣
∣∣∣∣∣∣ = 0 (25)

and consequently, ∣∣∣∣∣∣ξ̃sin
∣∣∣∣∣∣ = 1 ⇒ PF1 = 1 (26)

where PF1 is the fundamental power factor, also known as the displacement power factor

PF1 = cos(ϕ1) (27)

The quantity Re
{
P̃1

}
= P̃1act transfers the fundamental active power (useful energy) and is

associated to the instantaneous active power.

• Multi-sinusoidal linear case: p ∈ N, q ∈ N
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If the electrical system is linear, the current requested by the loads and voltage supplied by the
mains share the same harmonic order and the equation (8) yields the linear GPM Π̃lin

Π̃lin = ∑
p=q

P̃p + ∑
p �=q

D̃pq =

= ∑
p=q

P̃pact︸ ︷︷ ︸
P̃act

+ P̃1non−act + ∑
p,q∈N>1

P̃pnon−act︸ ︷︷ ︸
jP̃non−act

+ ∑
p,q∈N

D̃pq︸ ︷︷ ︸
D̃lin

(28)

The linear EQM is given by

ξ̃lin = 1 + j

Im

{�
ς

∑
p∈N

→
1 Z · P̃p dς

}

Re

{�
ς

∑
p∈N

→
1 Z · P̃p dς

} +

�
ς

∑
p,q∈N

→
1 Z · D̃pq dς

Re

{�
ς

∑
p∈N

→
1 Z · P̃p dς

} (29)

The quantities Im

{�
ς

∑
p∈N

→
1 Z · P̃p dς

}
and Im

{�
ς

∑
p,q∈N

→
1 Z · D̃pq dς

}
in (29) should be minimized

by shunt capacitors or reduced to zero by shunt reactance one-ports. In these conditions

ξ̃lin = 1 +

Re
�
ς

∑
p,q∈N

→
1 Z · D̃pq dς

Re

{�
ς

∑
p∈N

→
1 Z · P̃p dς

} ⇒
∣∣∣∣∣∣ξ̃lin

∣∣∣∣∣∣ >1 ⇒ PF < 1 (30)

From (30), it results that for linear electrical systems under multi-sinusoidal conditions,
the criterion

Im

⎧⎨⎩�
ς

∑
p∈N

→
1 Z · P̃p dς

⎫⎬⎭ = 0 (31)

Im

⎧⎨⎩�
ς

∑
p,q∈N

→
1 Z · D̃pq dς

⎫⎬⎭ = 0 (32)

does not represent the conditions of highest power factor.

• Multi-sinusoidal non-linear case: p ∈ N, q ∈ N ∪ M

In this case, the presence of the nonlinear loads causes some current components (q ∈ M) which
harmonic orders are not present in the voltage supplied to the electrical system. It is well known that
when a non-linear o time-varying electrical system is present, it injects disturbances even if the supply
voltage is sinusoidal. In view of (8), the non-linear GPM can be written as follows,

Π̃non−lin = ∑
p=q

P̃p + ∑
p �=q

D̃pq =

= ∑
p=q

P̃pact︸ ︷︷ ︸
P̃act

+ jP̃1non−act + ∑
p,q∈N>1

P̃pnon−act︸ ︷︷ ︸
jP̃non−act

+ ∑
p,q∈N

D̃pq︸ ︷︷ ︸
D̃lin

+ ∑
p ∈ N,
q ∈ M

D̃pq

︸ ︷︷ ︸
D̃non−lin

(33)
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The EQI is given by

ξ̃non−lin = 1 + j

Im

{�
ς

∑
p∈N

→
1 Z · P̃p dς

}

Re

{�
ς

∑
p∈N

→
1 Z · P̃p dς

} +

�
ς

∑
p ∈ N, q ∈ N
p ∈ N, q ∈ M

→
1 Z · D̃pq dς

Re

{�
ς

∑
p∈N

→
1 Z · P̃p dς

} (34)

If the equalities (31) and (32) are fulfilled, the Eq. (34) is now given by,

ξ̃non−lin = 1 +

Re
�
ς

∑
p,q∈N

→
1 Z · D̃pq dς +

�
ς

∑
p∈N,q∈M

→
1 Z · D̃pq dς

Re

{�
ς

∑
p∈N

→
1 Z · P̃p dς

} (35)

And ∣∣∣∣∣∣ξ̃non−lin
∣∣∣∣∣∣ > 1 ⇒ PF < 1 (36)

Comparing the multivectors expressed in (26), (30) and (36), it can be observed that ξ̃non−lin

multivector contains all possible non-active components after passive compensation. Consequently,
in the same operation conditions, it can be written that∣∣∣∣∣∣ξ̃sin

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣ξ̃lin
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣ξ̃non−lin

∣∣∣∣∣∣ (37)

In sinusoidal operation (ideal situation), the three indexes are equal. In the presence of harmonic
distortion, the differences among the values of the indexes depend of the supply and of the load
characteristics. Then, the possible ξ̃ multivectors and their magnitudes depend on the electrical system
conditions. Each situation is strictly related to the distortion state of power system and therefore, to the
harmonic presence and energy quality, thus, the higher harmonic interaction, the greater non-active
energy flow. Observe that the multivectors P̃non−act and D̃ do not help in transferring useful energy
and only are associated to the oscillations that produce both, energy lost and stored energy by the
loads. Both quantities are related with the non-active power.

As a result of these considerations, an evaluation and comparison of both indexes, ξ̃ and PF, in the
same working conditions, shows that ξ̃ give two pieces of extra information about the energy quality
and the disturbing loads nature.

In conclusion, the suggested EQI possesses clear advantages from the viewpoint of non-active
energy flow minimization. The main advantage is that it is decomposed into a complex-scalar and
complex-bivectors with direction and sense. These components provide detailed information for
a possible minimization of each electromagnetic object term by means of new devices, strategies,
and algorithms. The accomplishment of such compensating methods and devices is a problem that
warrants further research.

Although the proposed theory is limited to linear and non-linear distorted single-phase power
systems, it is worth mentioning that this work does not have in any way the pretension to put an
end to the topic, quite the contrary, in fact. Thus, the application of this methodology to polyphase
systems deserves in-depth investigations in the near future. This proposed approximation has to face
different unsolved problematic aspects. In particular, while the definition of apparent power and
related components in balanced three-phase systems with sinusoidal waveforms is well established,
the definitions of unbalance conditions are still in an open debate. Moreover, the study of the most
general case, the three-phase systems with non-sinusoidal and unbalanced conditions, even needs to
improve precedent theories that in many cases are mutually contradictory.
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It is remarkable that the structure of geometric algebra gives a new insight to phase domain and
constitutes a powerful tool for the treatment of periodic distorted signals. In this framework, power
definition deals with the key concept of geometric phasors, i.e. algebraic time-averaged quantities
that are far from being instantaneous ones. In this regard, depending on the considered application,
this can be a major restriction. Thus, applications such as instantaneous active filters or fast response
compensation devices, are out of the scope of this study, as well. For the same reason, electric
signals disturbed with non-stationary events such as transients, sag, swells, etc. are not considered in
this work.

6. Numerical Example

In order to validate the use and relevance of the Poynting Multivector suggested in this paper,
sustainable and smart building loads supplied from a transmission line are analysed in the CGn −R3

framework. In a simplistic manner, the conductors are considered as rectangular and parallel
superconductors meant to facilitate the propagation of energy from source to load, Figure 5. Units of
physical quantities are the standard units of the MKSA system and thus are omitted.

Figure 5. Industrial system: Sustainable smart building.

Two parallel plane conductors in linear media are considered. Both conductors, of thickness λ and
width γ, are separated by a dielectric material of thickness ρ. We suppose that γ � λ, ρ. By ignoring
eddy currents, line impedance, fringing effects, three cases are analysed:

6.1. Linear Load Supplied by A Sinusoidal Voltage Source

Voltage and a hypothetic resulting current are respectively

u(t) =
√

2(200 sin ω1t)

i(t) =
√

2[10 sin(ω1t − 36.87◦)]

Then, from [13], the spatial geometric phasors of the electric Ẽ and magnetic H̃
∗

fields can be
expressed as

Ẽ =
1
d

(
200ej0σ1

)→
1 X ; H̃

∗
=

1
h

(
10ej36.87σ1

)→
1 Y
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and the electromagnetic geometric objects and associated power are

�
ς

∑
p=1

→
1 Z · P̃ dς =

⎛⎝1600︸︷︷︸
P1

+j1200︸︷︷︸
Q1

⎞⎠σ0

�
ς

∑
p �=q

→
1 Z · D̃ dς = 0; D̃ = 0

ξ̃sin = 1 + j
1200
1600

σ0 ⇒
∣∣∣∣∣∣ξ̃sin

∣∣∣∣∣∣ = 1.25 ; PF = 0.8

6.2. Linear Load Supplied by A Non-Sinusoidal Sinusoidal Voltage Source

Voltage and hypothetic resulting current are

u(t) =
√

2(200 sin ω1t + 50 sin ω2t)

i(t) =
√

2[10 sin(ω1t − 36.87◦) + 5 sin(ω2t + 53.13◦)]

and the spatial geometric phasors of the electric Ẽ and magnetic H̃
∗

fields can be expressed as

Ẽ =
1
d

(
200ej0σ1 + 50ej0σ2

)→
1 X

H̃
∗
=

1
h

(
10ej36.87σ1 + 5e−j53.13σ2

)→
1 Y

�
ς

∑
p

→
1 Z · P̃ dς =

⎛⎝1750︸︷︷︸
P

+j1000︸︷︷︸
Q

⎞⎠σ0

�
ς

∑
p �=q

→
1 Z · D̃ dς = D̃ = [200 − j1100]︸ ︷︷ ︸

D̃12

σ12

ξ̃non−lin = 1 + j
1000
1750

σ0 +
[200 − j1100]σ12

1750σ0∣∣∣∣∣∣ξ̃non−lin
∣∣∣∣∣∣ = 1.32

PF = 0.76

6.3. Non-Linear Load Supplied by A Non-Sinusoidal Sinusoidal Voltage Source

Voltage and hypothetic resulting current are

u(t) =
√

2(200 sin ω1t + 50 sin ω2t)

i(t) =
√

2[10 sin(ω1t − 36.87◦) + 5 sin(ω2t + 53.13◦) + 5 sin(ω3t + 45◦)]

and the spatial geometric phasors of the electric Ẽ and magnetic H̃
∗

fields can be expressed as

Ẽ =
1
d

(
200ej0σ1 + 50ej0σ2

)→
1 X

Ẽ =
1
d

(
200ej0σ1 + 50ej0σ2

)→
1 X
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�
ς

∑
p

→
1 Z · P̃ dς = [(1600 + 1200) + j(150 − 200)]σ0 =

⎛⎝1750︸︷︷︸
P

+j1000︸︷︷︸
Q

⎞⎠σ0

�
ς

∑
p �=q

→
1 Z · D̃ dς = D̃ = [200 − j1100]︸ ︷︷ ︸

D̃12

σ12 +
[
125

√
2 − j125

√
2
]

︸ ︷︷ ︸
D̃23

σ13 +
[
500

√
2 − j500

√
2
]

︸ ︷︷ ︸
D̃13

σ23

ξ̃non−lin = 1 + j
1000
1750

σ0 +
[200 − j1100]σ12 +

[
125

√
2 − j125

√
2
]
σ13 +

[
500

√
2 − j500

√
2
]
σ23

1750σ0∣∣∣∣∣∣ξ̃non−lin
∣∣∣∣∣∣ = 1.44

PF = 0.69

As in (37), it should be noticed in this example that{∣∣∣∣∣∣ξ̃sin
∣∣∣∣∣∣ = 1.25

}
<
{∣∣∣∣∣∣ξ̃lin

∣∣∣∣∣∣ = 1.32
}
<
{∣∣∣∣∣∣ξ̃non−lin

∣∣∣∣∣∣ = 1.44
}

Comparing the multivectors ξ̃ of the above three cases, it can be observed that they contain all
possible non-active components. In this way, the possible reverse sense of any harmonic of active,
reactive and distortion powers is very important for a correct identification of harmonic source
locations, and for determining the responsibility of the utility side (generator) and the consumer side
(load) [20,21]. Thus, the suggested index ξ̃ possesses clear advantages from the viewpoint of non-active
power flow minimization.

7. Conclusions

The analysis of sustainable smart buildings is key to new future buildings, new complex
architectures, and its usefulness extends to smart cities. Analyses of quality of the construction typically
focus on applying methodologies that evaluate quality objectives at environmental, construction and
building levels. Research has shown that a multivector quality index can be useful for detection of
harmonic sources of new sustainable smart buildings.

Along this line this paper presents a reformulation of Poynting Vector in terms of the Geometric
Algebra framework when inefficiencies caused by harmonics are considered. In this environment,
each geometric object represents a different kind of energy flux. Thus, the distinct and well-known
power terms in electric power systems, i.e. Active, Reactive, Distortion and Apparent powers acquire
a new interpretation and dimension by means of multivectors. This novel approach is applicable
to smart architectural single-phase power systems with linear/non-linear loads under sinusoidal or
non-sinusoidal conditions. By this means, the behaviour of the energy flux is summarized by the
proposed electromagnetic energy index EQI. In addition, the meaning of this original index is deeply
analysed and discussed, concluding that its capability to deal with geometric properties, namely
magnitude, direction and sense, makes it perfectly appropriate for detection and minimization of
harmonic sources.

Furthermore, it is an excellent tool to interpret the cited power flow distribution. Thus, the
introduction of this figure of merit supposes not only a generalization of the traditional power factor
in electric power networks but also the key to the electromagnetic energy transfer between mains
and loads. The global efficiency of a system is truth evaluated by this index because it includes all
possible interactions.

It is remarkable that traditional Poynting Vector is a particular case of the proposed
generalized Poynting Multivector when no cross interactions are present between different harmonics.
This correlation is now precisely understood as the outer product between geometric phasors of
different energy levels. Thus, this fact is crucial for future research proposals on the design of passive
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and/or active architectures for selective compensation, optimization algorithms and measurement
techniques for harmonic pollution monitoring.

The electromagnetic nature of the power components could be the key that opens a broad range
of new interesting research lines in electrical engineering and all energy efficiency related matters.

Author Contributions: All authors contributed equally to this work. All authors wrote, reviewed and commented
on the manuscript. All authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Glossary of Symbols

R real numbers
C complex vector space
Gn Geometric Algebra in n-dimensional real space
CGn Complex Geometric Algebra
CGt

n −R3 time generalized geometric euclidean space
CGn −R3 frequency generalized geometric euclidean space
→
1 X ,

→
1 Y ,

→
1 Z Euclidean canonical basis

σ1...k canonical basis of Gn

σp basis vector of Gn

σpσq = σpq basis bivectors of Gn

σ1σ2σ3 trivector or pseudoscalar of Gn

λ, μ scalars or 0-grade geometric object
a, b vectors or 1-grade geometric object
B bivector or 2-grade geometric object
J pseudoscalar or n-grade geometric object
M̃ generic multivector
Π̃ generalized Poynting multivector (GPM)
P̃ Poynting multivector (PM)
D̃ Complementary Poynting multivector (CPM)
Ẽ electric field geometric phasor
H̃ magnetic field geometric phasor
� generalized geometric product
· inner product
∧ outer product
j imaginary unit
∗ conjugated operation
† reverse operation
~ multivector characterization
Up p-th harmonic voltage rms value
Iq q-th harmonic current rms value
P active power or real part of 0-grade power multivector
Q reactive power or imaginary part of 0-grade power multivector
D distortion power or 2-grade power
S̃ power multivector∣∣∣∣∣∣S̃∣∣∣∣∣∣, S apparent power multivector

ωp p-th harmonic frequency
αp phase angle of p-th voltage geometric phasor
βq phase angle of q-th current geometric phasor
φq q-th impedance phase angle
ξ̃ electromagnetic quality index multivector (EQI)
PF power factor
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Abstract: Recently, magnetocardiography (MCG) has attracted increasing attention as a non-invasive
and non-contact technique for detecting electrocardioelectric functions. However, the severe
background noise makes it difficult to extract information. Variational Mode Decomposition (VMD),
which is an entirely non-recursive model, is used to decompose the non-stationary signal into the
intrinsic mode functions (IMFs). Traditional VMD algorithms cannot control the bandwidth of each
IMF, whose quadratic penalty lacks adaptivity. As a result, baseline drift noise is still present or
medical information is lost. In this paper, to overcome the unadaptable quadratic penalty problem,
an improved VMD model via correlation coefficient and new update formulas are proposed to
decompose MCG signals. To improve the denoising precision, this algorithm is combined with the
interval threshold algorithm. First, the correlation coefficient is calculated, to determine quadratic
penalty, in order to extract the first IMF made up of baseline drift. Then, the new update formulas
derived from the variance that describes the noise level are used, to perform decomposition on the
rest signal. Finally, the Interval thresholding algorithm is performed on each IMF. Theoretical analysis
and experimental results show that this algorithm can effectively improve the output signal-to-noise
ratio and has superior performance.

Keywords: magnetocardiography; quadratic penalty; variational mode decomposition; correlation
coefficient; interval thresholding method

1. Introduction

In recent years, the research on signal processing, modeling, imaging theory, and methods
related to bio-electromagnetism has become a hot topic. With the efforts of many experts and
scholars, this field already has high-level research results. The magnetocardiography [1] signal plays
an increasingly important role in heart disease diagnosis, which is detected with Superconducting
Quantum Interference Devices (SQUID) [2] and has considerable advantages over electrocardiography
(ECG) [3]. As the detecting instrument of the magnetocardiography signal, the SQUID operates from
low to high temperature, and changes the number of channels from the original single channel into
multiple channels. Magnetocardiography signals transmitted to the human chest surface are incredibly
helpful toward both cardiac model reconstruction and clinical application [4,5]. The relationship
between heart function and heart disease is studied by researching the characteristics of magnetic
field strength changes at different locations; this type of study can be called interdisciplinary basic
research. Generally, such measurements are conducted in order to detect small magnetic field signals
in the presence of large background noise [6,7]. Removing background noise and recovering useful
signals are chief objectives. For periodic signals, adequate suppression of uncorrelated noise may often
be achieved by the signal averaging method [8]. If the signal and noise have separate bandwidths,
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one can use conventional frequency domain filtering [9] techniques. Adaptive filtering techniques [10]
measure the noise level of the measurement signal channels by measuring the noise channels. However,
these simple preprocessing methods have limited effectiveness. The wavelet transform method [11]
for signal denoising is based on the use of a set of predefined basis functions, in order to decompose
the measured signals and remove components corresponding to noise. The main disadvantage of this
method is that the selection of wavelet basis seriously affects the denoising results. Empirical Mode
Decomposition (EMD) [12,13] is one of the decomposition methods of signal denoising, and is widely
used to decompose a signal into different modes recursively. This method is, however, prone to
mode mixing, and limited by sensitivity to noise and sampling [14]. The mode mixing is significantly
reduced by a modified noise-assisted data analysis method known as the Ensemble Empirical Mode
Decomposition (EEMD) method [14,15]. The denoising principle of magnetocardiography (MCG)
signals by EEMD based methods was reported in [16,17]. However, the decomposition results were
unsatisfactory because of the low signal-to-noise ratio. In addition, the decomposition results of EMD
and EEMD heavily depend on the extremum seeking algorithm and the ending criterion. A lack of
mathematical approach and predefined filter boundaries reduce the accuracies of such detections [18].
Lately, based on the definition of intrinsic mode functions (IMF), a new adaptive decomposition method
called Variational Mode Decomposition (VMD) [19] has been proposed. Supporting documents [20]
proposed using the VMD method to denoise ECG signals. However, the research results showed that
the decomposition results lack adaptability. The results of studies [21,22] showed that baseline drift
noise was not filtered out by the VMD method. In practice, it is not always possible to have the first
IMF to be a noise-only IMF.

In order to overcome the problems above, we propose an improved VMD method that determines
the bandwidth of modes adaptively via the optimized quadratic penalty. The proposed correlation
coefficient, between the IMF obtained by VMD [19,23] and the baseline drift model, is calculated
repeatedly until the criterion is satisfied and the baseline drift noise is extracted. The new IMFs
are then obtained by using new proposed update formulas that can be deduced by the relationship
between the penalty factor and noise. The interval threshold method is used for the subsequent
processing of each component, which removes noise components.

The rest of this paper is organized as follows: Section 2 introduces the data model required for
the VMD algorithm. In Section 3, a new VMD scheme based on the correlation coefficient and new
updated formulas is proposed. The application for denoising methods of MCG is shown in Section 4.
Conclusions are given in Section 5.

2. Data Model

In the expression of the traditional EMD and EEMD methods, the IMF is defined as a function
where the difference between the number of zeros and poles does not exceed one [24]. In recent studies,
the definition of the modality is changed to amplitude-modulated-frequency-modulated (AM-FM)
signal, defined as follows:

uk(t) = Ak(t) cos(φk(t)) (1)

In the above equation, the phase φk(t) is a non-decreasing function, whose first derivative is
φ′

k(t) > 0, where the envelope Ak(t) is non-negative; both the envelope Ak(t) and the instantaneous
frequency ωk(t) vary much slower than the phase φk(t) [25,26].

The Hilbert transform [27] is the convolution of a real function and the corresponding impulse
response of h(t) = 1/πt in time domain. It is an all-pass filter, characterized by the transfer function
H(ω) = −jsgn(ω) = −jω/|ω| in frequency domain. The Hilbert transform of a purely real IMF uk(t)
can be expressed as ũk(t), and the complex-valued analytic signal is now defined as:

uk,A(t) = uk(t) + jũk(t) = Ak(t)[cos(φ(t))− j sin(φ(t))]
= Ak(t)e−jφ(t) (2)
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where φ(t) is the phase, while the amplitude is governed by the real envelope. The expression
Ak(t). ω(t) = dφ(t)/dt is the instantaneous frequency. The amplitude Ak for kth IMF signal changes
slowly enough.

Research has shown, on a sufficiently long interval, that the mode can be considered to be a purely
harmonic signal. In other words, the newer definition of signal components is slightly more restrictive
than the original one, and the VMD mode is the particular case of the EMD mode.

3. Proposed New VMD Scheme

VMD as a new decomposition method, is a process to solve variational problems based on
classic Wiener filtering and Hilbert transformation. We can use the VMD method to decompose a
multi-component signal into several band-limited modes non-recursively, which are redefined as IMFs.
However, the VMD algorithm cannot extract baseline drift noise when decomposing MCG signals.
As such, a new VMD method framework is proposed in this paper.

3.1. Eliminate Baseline Drift Noise Using Proposed Formulas

To overcome the unadaptable quadratic penalty problem, we propose an improved VMD method
with correlation coefficient and new update formulas. First, we need to extract the expected baseline
drift noise that will be included in the first mode. The steps are given as follows:

1. Compute the associated analytic signal of each mode uk by means of the Hilbert transform, that is:

uk,A(t) =
(

δ(t) +
j

πt

)
∗ uk(t) (3)

2. Mix each mode with an exponential adjustment to the respective estimated center frequency in
order to shift the mode spectrum to “baseband”.

ûk,A(t) =
[(

δ(t) +
j

πt

)
∗ uk(t)

]
e−jωkt (4)

where ωk is the center frequency of the kth IMF uk(t).
3. Estimate the bandwidth through the squared L2-norm of the gradient. The expression of the

constrained variational problem is as follows:⎧⎪⎪⎨⎪⎪⎩
min

{uk},{ωk}

{
∑
k
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt‖2

2

}
s.t.

K
∑

k=1
uk(t) = f (t)

(5)

where {uk} = {u1, . . . , uK} and {ωk} = {ω1, . . . , ωK} are shorthand notations for the set of all
modes and their center frequencies. In order to render the problem unconstrained, a quadratic
penalty term α and Lagrangian multiplier λ are brought in. The quadratic penalty can encourage
reconstruction fidelity, typically in the presence of additive Gaussian noise. The Lagrange
equation can enforce constraints strictly. Therefore, we introduce the augmented Lagrange
equation L as follow [28]:

L({uk}, {ωk}, λ(t)) = α
K
∑

k=1
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt‖2

2 + ‖ f (t)−
K
∑

k=1
uk(t)‖2

2 + λ(t), f (t)−
K
∑

k=1
uk(t) (6)
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Alternate direction method of multipliers (ADMM) is brought to solve the original minimization
problem [29–31]. To update the mode uk, we can get the equivalent minimization problem as
the following:

un+1
k = argmin

uk∈X

{
α

K

∑
k=1

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt‖2

2+

∥∥∥∥ f (t)−
K

∑
i=1

ui(t)− λ(t)
2

‖2
2

}
(7)

where n is the number of iterations. Now, making use of the Parseval/Plancherel Fourier isometry
under the L2 norm, this problem can be solved in spectral domain. Then, performing a change of
variables ω ← ω− ωk in the first term, we can get the following expression:

ûn+1
k = argmin

ûk ,uk∈X

⎧⎨⎩α‖j(ω − ωk)[(1 + sgn(ω))ûk(ω)]‖2
2 +

∥∥∥∥∥ f̂ (ω)− ∑
i

ûi(ω) +
λ̂(ω)

2

∥∥∥∥∥
2

2

⎫⎬⎭ (8)

Exploiting the Hermitian symmetry of the real signals, we can write both terms as half-space
integrals, then making the negative frequencies of the first variation disappeared as follows:

ûn+1
k (ω) =

f̂ (ω)− ∑i<k ûn+1
i (ω)− ∑i>k ûn

i (ω) +
λ̂n(ω)

2

1 + 2α
(
ω − ωn

k
)2 (9)

This is clearly identified as Wiener filtering of the current residual, with signal prior 1/
(
ω − ωn

k
)2;

the time domain mode is obtained as the real part of the inverse Fourier transform of this filtered
analytic signal. In order to obtain each component, the center frequency, corresponding to each
component, needs to be solved. The center frequency appears in the bandwidth prior, but not in the
reconstruction fidelity term. The relevant problem thus reads:

ωn+1
k = argmin

ωk

{
‖∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt‖2

2

}
(10)

As before, the optimization can be taken place in Fourier domain, and we end up optimizing:

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(11)

In general, the baseline drift frequency is lower than the low frequency component of the MCG
signal. The center frequency of the first IMF is approximately zero, and we need to reduce the
bandwidth of the first IMF until the signal and baseline drift are separated. We need to know that
the larger the penalty factor, the narrower the mode bandwidth. After completing the above iterative
process, we can get the final ûk(ω) and ωk. In order to extract low-frequency baseline drift noise,
we need to follow the above process to obtain the first IMF:

u1(t) = ejω1t
(

1
2π

∫ ∞

−∞
û1(ω)ejωtdω

)
(12)

To understand the relationship between the first IMF and baseline drift noise, we propose the
correlation coefficient to estimate the relationship. Assuming that the baseline drift noise model is
u1

′ (t) and the correlation coefficient ρ′ are calculated by Equation (13):

ρ′ = ∑i (u1i
′ − u1

′ )(u1i − u1)√
∑i (u1i

′ − u1
′ )2 ∑i(u1i − u1)

2
(13)
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In the above formula, the variable is simplified for convenience. Where i represents the length of
the data, u1

′ and u1 represent the mean of the baseline drift noise model and the first IMF, respectively.
We believe that signal and baseline drift noise can be separated when the correlation coefficient reaches
a certain threshold ρ. We increase α according to the proposed formulas to repeat the above process
until satisfying ρ′ > ρ. This satisfies the following formulas:⎧⎨⎩

im f1 = u1(t) i f ρ′ > ρ

αm+1 = αm + c1, ûn+1
1 (ω) =

f̂ (ω)−∑i<1 ûn+1
i (ω)−∑i>1 ûn

i (ω)+
λ̂n(ω)

2

1+2αm+1(ω−ωn
1 )

2 i f ρ′ < ρ
(14)

where c1 is a constant and m is the number of loop decomposition. After each updating of modes and
center frequencies, the Lagrange multiplier λ̂ is also updated by Equation (15):

λ̂n+1 ← λ̂n + τ

(
f̂ − ∑

k
ûn+1

k

)
(15)

The updating stops until following equation is set up,

∑
k
‖ûn+1

k − ûn
k ‖2

2/‖ûn
k ‖2

2 < ε (16)

From the above, the first IMF im f1 is the baseline drift noise.

3.2. Proposed Adaptive Decomposition

In order to get more reasonable decomposition results, we define fnew = f − im f1. Document 19
proposed that the penalty factor introduced by the traditional VMD method is inversely proportional
to the noise level in the signal. In a limited high frequency noise environment, we can assume that the
weight of penalty is directly proportional to the power (which may be obtained by calculating variance)
of each IMF. In order to further improve the adaptability of the penalty factor, we propose αk =

c2 · D[uk(t)]. From the foregoing description, we can see that the low-frequency signal component has
a large penalty factor, which can achieve low-frequency refinement and degrade the noise component
in each signal mode. The original augmented Lagrange equation L becomes:

L({uk}, {ωk}, λ(t)) = αk
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2
+∥∥∥∥ fnew(t)−

K
∑

k=1
uk(t)

∥∥∥∥2

2
+ 〈λ(t), fnew(t)−

K
∑

k=1
uk(t)〉

(17)

Since the iterative solution process for each IMF component is performed in the frequency domain,
the derivation of the penalty factor requires the use of a time-domain representation of each component.
In order to obtain accurate decomposition results, we need to solve the penalty factors for each iteration,
and then substitute the new penalty factors into the next iteration, which leads to the loop, which is
very time-consuming. As such, we need to unify the derivation process into the frequency domain.
Expanding the formula to solve the variance creates the following:

αk =
c2
N [(uk1 − uk)

2 + (uk2 − uk)
2 + · · ·+ (ukN − uk)

2]

= c2
N
(
u2

k1 + u2
k2 + · · ·+ u2

kN
)− 1

N2 (uk1 + uk2 + · · ·+ ukN)
2 (18)

According to Parseval’s Theorem, we know that
∫ |uk(t)|2dt =

∫ |ûk(ω)|2dω and the first item in
the above formula can thus be converted into a frequency representation. By applying the Fourier
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transform of the second term to the above formula, we can get the frequency–domain description of
penalty factor:

αk = c2
N
∫ ∞

0 |ûk(ω)|2dω − 2πûk
2(0)

2πN2 (19)

where c2 is a constant and N is the length of the data. Combine the penalty factor into the previous
update formulas, we can get the new update formulas for ûk(ω), ωk and αk:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ûn+1
k (ω) =

f̂new(ω)−∑i<k ûn+1
i (ω)−∑i>k ûn

i (ω)+
λ̂n(ω)

2

1+2αn
k (ω−ωn

k )
2

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω

αn+1
k = c2

N
∫ ∞

0 |ûk(ω)|2dω−2πûk
2(0)

2πN2

(20)

The Lagrange multiplier update formula and iteration stop criterion remain unchanged.

3.3. Iterative Thresholding and Improved VMD Method

In this section, we obtain a new denoising process by combining the interval threshold and the
improved variational mode decomposition. In this paper, the hard and soft thresholding methods,
with multiples of Donoho-Johnstone threshold known as universal threshold parameters, are proposed,
in order to cut off each IMF after performing the improved VMD. The threshold parameters are
defined as:

Tk = C
median(|uk(t)− median(uk(t))|)

0.6745

√
2 ln N (21)

where C is a constant and N is the length of the data. It is necessary to adopt a scale dependent
threshold for each IMF instead of an identical universal threshold for all IMFs. The values of the
scaling factor C are the range [0.6, 1.2]. We use the interval thresholding (IT) method to alleviate the
catastrophic consequences caused by the direct application of thresholding. In this method, the first
step is to find the zero points of each IMF. The second step is to compare the threshold and the
extremum between two zero crossing intervals; if the extremum exceeds the threshold, it will allow all
of the samples within the interval to be retained. The interval thresholding can be represented as:

ĉk

(
Zk

i

)
=

⎧⎨⎩ ck

(
Zk

i

)
,

∣∣∣ck

(
rk

i

)∣∣∣ > Tk

0
∣∣∣ck

(
rk

i

)∣∣∣ ≤ Tk
(22)

where i varies from 1 to Nk, Nk indicates the number of zero crossings of the kth IMF, ck

(
rk

i

)
indicates

the sample at the time instance rk
i between the two successive zero points at Zk

i and Zk
i+1, and ck

(
Zk

i

)
refers to the samples from the instant Zk

i to Zk
i+1 of the kth IMF.

Summarizing this denoising process as follows: First, the MCG signal with noise is decomposed
into corresponding IMFs by improved VMD. The first order IMF, including the baseline drift noise,
is eliminated. Second, the interval thresholding is performed on the rest IMFs. Clearly, the higher the
order, the greater the frequency of the IMF. The detailed procedures are as follows:

1. Acquire the MCG signal with noise and initialize the number of modes k, the default of the
penalty factor α is 2000, the default of the bandwidth τ is 0.

2. Determine the value of penalty factor by performing the improved VMD method based on the
correlation coefficient and obtain the first IMF.

3. Eliminate the first IMF that contains baseline drift noise. Decompose the rest signal with the final
update formulas and obtain several IMFs.

4. Perform the interval thresholding operation on the IMFs obtained from step 3.
5. Add all the processed IMFs together and refactor the MCG signal.
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In Figure 1 we show the flow chart of the improved VMD algorithm:

( ) ( )k
k

f t u t=

m m cα α+ = +

( ) ( ) ( )newimf u t f t f t imf= = −

Figure 1. The flow chart of the improved Variational Mode Decomposition (VMD) algorithm.

4. Results and Discussion

Three different types of noise have been added to the MCG signal, in order to investigate the
effectiveness of denoising by an improved VMD and the interval thresholding method. The types
of noise include a low frequency (0.3 Hz) sinusoidal signal for simulating the baseline drift, 50 Hz
sinusoidal signal for simulating the interference at power line frequency, and high frequency random
noise. In Figure 2, we compare the waveforms of an original simulation signal and a mixed signal.
It is clearly seen that background noise affects signal analysis. It is very significant in the process of
measuring MCG signals to detect heart disease.

The signal is denoised by different algorithms. In Figure 3a,b, we show the signal decomposition
results obtained by the EEMD method. In Figure 3, according to the length of the data, the MCG signal
is decomposed into ten IMFs, and the frequency of IMFs reduces as the order increases. In general,
the low frequency smooth variation of the baseline is expected to be contained in the residue of the
higher order IMFs. However, we cannot determine the low-frequency component that contains baseline
drift noise. It is evident that we can extract signal characteristics from IMF2 to IMF6. Unfortunately,
other IMFs may also contain useful signal components that are invisible to the human eye. Given this,
we apply thresholds only to a few low order IMFs that contain contributions from the high frequency
noise components, then exclude a few high order IMFs that contain the low frequency contents with
a view, to ensure that the low frequency contents of the MCG signal are not affected or distorted
by thresholding.
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(a) (b) 

Figure 2. A comparison of the approximately pure magnetocardiography (MCG) signal with the noisy
signal; waveform characteristics can be clearly seen in (a); (b) shows the signal waveform with three
kinds of noise. The signal is drowned in the noise under high noise circumstances.

  
(a) (b) 

Figure 3. The noisy signal and the intrinsic mode functions (IMFs) obtained by Ensemble Empirical
Mode Decompositioning (EEMD) are shown in (a,b).

In Figure 4, we compare the original signal with the reconstructed signals obtained from EEMD
based denoising methods using soft and hard thresholding. The results show that the hard threshold
processing can reconstruct the QRS peak waves, but there are obvious errors in the reconstruction of
other signal parts. The signal obtained by soft thresholding processing has errors compared with the
original signal, especially the QRS peaks. It is seen from Figure 4 that EEMD algorithm is difficult
to distinguish noise components from signal components. And the number of low frequency IMFs
is too many to result in waveform distortion after performing thresholding operation. It may also
be noted that, hard-IT (hard thresholding subsequently interval thresholding) is adopted for EEMD
based denoising of the experimental data. At the same time, we can see that the signal waveform is
not smooth and slightly distorted.

Based on the bandwidth of the measurement signal and multiple tests, the number of modes
decomposed by VMD is assigned to 6. The original algorithm proposer studied some of the
convergence characteristics of the VMD algorithm and its sensitivity to the initial conditions, then got
relatively suitable initialization parameters. The initial value of quadratic penalty α is assigned to
2000, and the default of the bandwidth τ is 0. With this method, the MCG signal is divided into
several frequency bands centering on respective center frequency, which benefits subsequent operation.
As shown in Figure 5a, the MCG signal is divided into six IMFs. The baseline drift noise is found
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in IMF1. In Figure 5b, we compare the original signal with the reconstructed signals obtained from
VMD methods with soft and hard thresholding. The results show that the baseline of the reconstructed
signal is not uniform with the original signal. To make matters worse, there is serious distortion in
the reconstructed signal from the soft thresholding processing. It is obvious that the algorithm cannot
effectively remove baseline drift noise. The decomposition process of the algorithm lacks of adaptability.
Improper decomposition results can easily lead to waveform distortion after threshold processing.

To get a better result, we use the proposed method to decompose the signal. According to many
experiments, we choose the parameter value with better effect as the next simulation initial values.
The threshold value ρ of correlation coefficient is assigned as 0.95. The value of the scaling factor
c1 is the range 1500 and 2000. The value of c2 can be set according to the detailed data features and
is assigned as 3.5. As Figure 6 shown, the baseline noise is extracted. After removing the noise,
the signal is divided into six modes adaptively. According to iterative formulas for multiple iterations,
the penalty factors for six components are [1790, 987, 956, 218, 223, 208]. The decomposition results are
shown in Figure 7a and the denoising results are shown in Figure 7b.

Figure 4. A comparison of the original signal (dotted line) with the reconstructed signals (solid line)
obtained from EEMD based denoising methods with soft and hard thresholding. The panel
above is the result of hard thresholding processing and the following panel is the result of soft
thresholding processing.
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(a) (b)

Figure 5. The noisy signal and the IMFs obtained from VMD are shown in (a). A comparison of
the original signal (dotted line) with the reconstructed signals (solid line) obtained from VMD based
denoising methods with soft and hard thresholding is shown in (b). The panel above is the result of
hard thresholding processing and the following panel is the result of soft thresholding processing.

The range of the value of the penalty factors can support the adaptive decomposition result.
From this result, it can be seen that the low-frequency IMF’s penalty factors are large, and the penalty
factor increases approximately with the increasing of the center frequency, achieving the purpose of
the meticulous decomposition of low-frequency signal component. In addition, we can obtain a set of
different penalty factors by adjusting the size of c2 to adjust the decomposition result. By comparing
the reconstructed signal with the original signal, we can find that the fitting degree between the
reconstructed signal and the original signal is good, and all three kinds of noise in the signal are
effectively removed. It may also be noted that, signal to noise ratio improvement is much better of the
hard interval thresholding (IT) method compared to the soft interval thresholding.

In order to better compare the performance of the algorithms, we use the root-mean-square error
(the square root of the mean of the sum of squared residuals, RMSE) to characterize the fitting degree
of the reconstructed signal and the original signal. In Figure 8, we compare the root-mean-square
deviation (RMSE) of the three methods with the input signal-to-noise ratio (SNR). In the case of low
input SNR, the RMSE of the improved VMD method is significantly less than the other two methods,
and the method has better denoising performance even with the low input SNR.

Figure 6. The first IMF obtained from the improved VMD method (solid line) and baseline drift noise
(dotted line). It is seen that the solid line and the dotted line basically coincide. This method can
effectively remove baseline drift noise.
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(a) (b) 

Figure 7. (a) The noisy signal and the IMFs obtained from the improved VMD method; (b) A
comparison of the original signal (dotted line) with the reconstructed signals (solid line) obtained
from the improved VMD method with soft and hard thresholding for interval thresholding. The panel
above is the result of hard thresholding processing and the following panel is the result of soft
thresholding processing.

Figure 8. The root-mean-square deviation (RMSE) of the EEMD, the VMD, and the improved VMD
methods are revealed, for both soft and hard thresholding of interval thresholding. The improved
VMD method outperforms other methods.

In Figure 9, we compare the performance of the original VMD method, the improved VMD
method, and the EEMD methods, using soft and hard thresholding in each case. For computing SNR,
the logarithmic ratio of variance of a signal (from the beginning of P-wave to the end of T-wave for one
cardiac cycle) to the variance of noise (from the end of T-wave to the beginning of P-wave, i.e., in the
TP interval) has been taken. The reduction in the SNR for the soft thresholding method is due to the
reduction of signal components of the lower frequency IMFs. Hereafter, hard-IT (hard thresholding
is subsequently applied to the interval thresholds) is appropriate for both EEMD and VMD based
denoising of the experimental data. It is seen from Figure 9 that the improved VMD method is capable
of achieving better SNR when compared with EEMD and VMD methods.
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From the above simulation results, we can see that the proposed algorithms have better
denoising performance compared with EEMD and VMD methods. It should be noted, however,
that the waveform is still distorted, even by the proposed method; this is a crucial detail in
electrocardiographic-like signals. One encouraging factor, is that results of medical research have
shown that the QRS spikes and S-T waves contain information on the main electrical function
parameters of the heart. The MCG signal is filtered by the algorithm proposed in this paper, in order
to obtain QRS spikes and S-T waves that approximate the original signal. Although there are slight
disturbances in the QRS spikes and S-T waves obtained by filtering, it does not affect the calculation of
heart related parameters! Measurements of magnetic field energy and current density remain accurate).
In the case of the low input signal-to-noise ratio used in this paper, the SNR improvement of the
proposed algorithm can be up to 20 dB. The algorithm filtering results can support feature extraction
of MCG and detection of heart disease.

Figure 9. The variation of the output signal-to-noise ratio (SNR) by EEMD, VMD and the improved
VMD methods with soft and hard thresholds for interval thresholding. The improved VMD method
outperforms other methods.

Despite these positive results, the MCG signals measured in a clinical non-magnetic shielding
environment would still contain a large amount of background noise, which would still cause the
waveform, denoised by the improved VMD method proposed in this paper, to produce severe
distortion. In order to solve this problem, we need to study the spatial filtering technology in order to
further denoise the MCG signal, in efforts to achieve the purpose of joint filtering in the time domain,
frequency domain, and space domain.

5. Conclusions

The proposed method in this paper overcomes the unadaptable quadratic penalty problem of
VMD, which improves the availability and precision of denoising of the MCG signal. This method
adaptively adjusts the bandwidth of modes by repeatedly executing the VMD method with different
quadratic penalties. The low-frequency noise is eliminated, according to the correlation coefficient
for baseline drift noise, and the first mode. The new update formulas are used to decompose residual
signals adaptively. Then, threshold processing is performed on each IMF to eliminate other noise.
The simulation experiments show the superiority of the improved VMD in denoising performance
of the MCG signal. The acceleration of the proposed method, and the suitable signal preprocessing
methods, should be considered in future research and applications.

132



Symmetry 2018, 10, 269

Author Contributions: Conceptualization, Y.L. and Q.G.; Methodology, C.H.; Software, C.H.; Validation, Y.L. and
Q.G.; Writing—original draft, C.H.; Writing—review & editing, Y.L. and C.H.

Funding: This work is supported partially by the National Key Research and Development Program of China
(2016YFC0101700), by National Natural Science Foundation of China 61301201 and 61371175, Heilongjiang
Postdoctoral Research Foundation LBH-Q14039.

Acknowledgments: The authors are grateful to the anonymous referees for their valuable comments and
suggestions that improved this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Mäkijärvi, M.; Montonen, J.; Toivonen, L. Identification of patients with ventricular tachycardia after
myocardial infarction by high-resolution magnetocardiography and electrocardiography. J. Electrocardiol.
1993, 26, 117–124. [CrossRef]

2. Shanehsazzadeh, F.; Fardmanesh, M. Low Noise Active Shield for SQUID-Based Magnetocardiography
Systems. IEEE Trans. Appl. Supercond. 2017, 99, 1–5. [CrossRef]

3. Farré, J.; Shenasa, M. Medical Education in Electrocardiography. J. Electrocardiol. 2017, 50, 400–401. [CrossRef]
[PubMed]

4. Fenici, R.; Brisinda, D. Magnetocardiography provides non-invasive three-dimensional electroanatomical
imaging of cardiac electrophysiology. Anatol. J. Cardiol. 2006, 22, 595. [CrossRef] [PubMed]

5. Ha, T.; Kim, K.; Lim, S. Three-Dimensional Reconstruction of a Cardiac Outline by Magnetocardiography.
IEEE Trans. Biomed. Eng. 2015, 62, 60–69. [CrossRef] [PubMed]

6. Mariyappa, N.; Parasakthi, C.; Sengottuvel, S. Dipole location using SQUID based measurements:
Application to magnetocardiography. Phys. C Supercond. 2012, 477, 15–19. [CrossRef]

7. Tiporlini, V.; Alameh, K. Optical Magnetometer Employing Adaptive Noise Cancellation for Unshielded
Magnetocardiography. Univ. J. Biomed. Eng. 2013, 1, 16–21. [CrossRef]

8. Kim, K.; Lee, Y.H.; Kwon, H. Averaging algorithm based on data statistics in magnetocardiography.
Neurol. Clin. Neurophysiol. 2004, 2004, 42. [PubMed]

9. Dang-Ting, L.; Ye, T.; Yu-Feng, R.; Hong-Wei, Y.; Li-Hua, Z.; Qian-Sheng, Y.; Geng-Hua, C. A novel filter
scheme of data processing for SQUID-based Magnetocardiogram. Chin. Phys. Lett. 2008, 25, 2714–2717.
[CrossRef]

10. Tiporlini, V.; Nguyen, N.; Alameh, K. Adaptive noise canceller for magnetocardiography. In
Proceedings of the High Capacity Optical Networks and Enabling Technologies, Riyadh, Saudi Arabia,
19–21 December 2011; pp. 359–363.

11. Dong, Y.; Shi, H.; Luo, J. Application of Wavelet Transform in MCG-signal Denoising. Mod. Appl. Sci. 2010, 4,
20. [CrossRef]

12. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The
empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series
analysis. Proc. R. Soc. Lond. A 1998, 454, 903–995. [CrossRef]

13. Attoh-Okine, N.; Barner, K.; Bentil, D.; Zhang, R. Editorial: The empirical mode decomposition and the
hilbert-huang transform. EURASIP J. Adv. Signal Process. 2008. [CrossRef]

14. Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition method: A noise-assisted data analysis
method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [CrossRef]

15. Tong, W.; Zhang, M.; Yu, Q. Comparing the applications of EMD and EEMD on time–frequency analysis of
seismic signal. J. Appl. Geoph. 2012, 83, 29–34.

16. Mariyappa, N.; Sengottuvel, S.; Parasakthi, C. Baseline drift removal and denoising of MCG data using
EEMD: Role of noise amplitude and the thresholding effect. Med. Eng. Phys. 2014, 36, 1266–1276. [CrossRef]
[PubMed]

17. Mariyappa, N.; Sengottuvel, S.; Patel, R. Denoising of multichannel MCG data by the combination of EEMD
and ICA and its effect on the pseudo current density maps. Biomed. Signal Process. Control. 2015, 18, 204–213.
[CrossRef]

18. Smruthy, A.; Suchetha, M. Real-Time Classification of Healthy and Apnea Subjects Using ECG Signals With
Variational Mode Decomposition. IEEE Sens. J. 2017, 17, 3092–3099. [CrossRef]

133



Symmetry 2018, 10, 269

19. Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544.
[CrossRef]

20. Sun, Z.G.; Lei, Y.; Wang, J. An ECG signal analysis and prediction method combined with VMD and neural
network. In Proceedings of the IEEE International Conference on Electronics Information and Emergency
Communication, Macau, China, 21–23 July 2017; pp. 199–202.

21. Maji, U.; Pal, S. Empirical mode decomposition vs. variational mode decomposition on ECG signal
processing: A comparative study. In Proceedings of the International Conference on Advances in Computing,
Communications and Informatics, Jaipur, India, 21–24 September 2016; pp. 1129–1134.

22. Mert, A. ECG signal analysis based on variational mode decomposition and bandwidth property.
In Proceedings of the IEEE Signal Processing and Communication Application Conference, Zonguldak,
Turkey, 16–19 May 2016; pp. 1205–1208.

23. Viswanath, A.; Jose, K.J.; Krishnan, N. Spike Detection of Disturbed Power Signal Using VMD .
Procedia Comput. Sci. 2015, 46, 1087–1094. [CrossRef]

24. Kopsinis, Y.; Mclaughlin, S. Development of EMD-Based Denoising Methods Inspired by Wavelet
Thresholding. IEEE Trans. Signal Process. 2009, 57, 1351–1362. [CrossRef]

25. Daubechies, I.; Lu, J.; Wu, H.T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like
tool. Appl. Comput. Harmonic Anal. 2011, 30, 243–261. [CrossRef]

26. Gilles, J. Empirical Wavelet Transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [CrossRef]
27. Unser, M.; Sage, D.; Van, D.V.D. Multiresolution monogenic signal analysis using the Riesz-Laplace wavelet

transform. IEEE Trans. Image Process. 2009, 18, 2402–2418. [CrossRef] [PubMed]
28. Bertsekas, D.P. Multiplier methods: A survey. Automatica 1976, 12, 133–145. [CrossRef]
29. Hestenes, M.R. Multiplier and gradient methods. J. Optim. Theory Appl. 1969, 4, 303–320. [CrossRef]
30. Rockafellar, R.T. A dual approach to solving nonlinear programming problems by unconstrained

optimization. Math. Program. 1973, 5, 354–373. [CrossRef]
31. Boley, D. Local Linear Convergence of the Alternating Direction Method of Multipliers on Quadratic or

Linear Programs. Siam J. Optim. 2013, 23, 2183–2207. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

134



symmetryS S

Article

Magnetic and Structural Properties of Barium
Hexaferrite Nanoparticles Doped with Titanium

Abdul Raouf Al Dairy 1, Lina A. Al-Hmoud 2,* and Heba A. Khatatbeh 1

1 Department of Physics, Yarmouk University, Irbid 21163, Jordan; abedali@yu.edu.jo (A.R.A.D.)
heba.haboush92@yahoo.com (H.A.K.)

2 Department of Electrical Power Engineering, Yarmouk University, Irbid 21163, Jordan
* Correspondence: lina.hmoud@yu.edu.jo; Tel.: +962-7-9018-4875

Received: 6 May 2019; Accepted: 24 May 2019; Published: 28 May 2019

Abstract: Samples of Barium Hexaferrite doped with Titanium BaFe12−xTixO19 with (x = 0.0, 0.2, 0.4,
0.6, 0.8, 1.0) were synthesized by the sol–gel auto-combustion technique. The powdered samples
were divided into two parts, one sintered at 850 ◦C and another sintered 1000 ◦C for 1 h and samples
were characterized by different experimental techniques. The XRD patterns confirmed the presence
of M-type hexaferrite phase. The sizes of the crystallites were calculated by the Scherer equation, and
the sizes were in the range of 27–42 nm. Using the hysteresis loops, the saturation magnetization
Ms, remanence (Mr), the relative ratio (Mr/Ms), and the coercivity (Hc) were calculated. The study
showed that the saturation magnetization (Ms) and remanence (Mr) decreased with increasing
titanium concentration and were in the range from 44.65–17.17 emu/g and 23.1–7.7 emu/g, respectively.
The coercivity (Hc) ranged between 0.583 and 4.51 (kOe). The magnetic properties of these Barium
Hexaferrite doped with Titanium indicated that they could be used in the recording equipment and
permanent magnets.

Keywords: Barium hexaferrite; titanium; hysteresis; X-ray diffraction; permanent magnet applications

1. Introduction

There are vast numbers of applications based on magnetic materials and as a result of that; our
lives have improved. They are used in the fabrication of many types of equipment and have a major
role in the advancement of technological and industrial products. The types of magnetic materials,
according to their magnetic behavior, are one of five types; Diamagnetic, Paramagnetic, Ferromagnetic,
Antiferromagnetic, and Ferrimagnetic materials [1–3]. Magnetic ferrites, first discovered in the 1950s,
are ceramics made from iron oxides with one or more additional metals chemically added [4,5]. These
ferrites had been considered very highly valuable electronic materials for many decades. The ferrite
compounds have a cubic structure, but there is also a group of ferrites with a hexagonal crystal structure,
known as hexaferrites [6]. There was an increasing degree of interest in hexaferrites, and it is still
growing today. They have been massively produced and became important materials; commercially
and technologically used in many electrical systems, such as permanent magnets, magnetic recording
and data storage devices [6,7].

The hexaferrites are complex oxide systems with a general chemical formula AO–Fe2O3–MO,
where A is a large divalent cation, i.e., Ba, Sr, Ca, and M are a small divalent cation, i.e., Mn, Fe, Co, Ni,
Cu, and Zn. They can be classified on the basis of their chemical composition and the A–M combination
and the crystal structure into six fundamental, structural types: M, W, Y, X, U, and Z [8–13].

The ferromagnetic and ferromagnetic types show nonlinear relation between the magnetization
M of the compound and the applied H. The hysteresis loop depicts the behavior of the magnetization
M of the sample with the variation of the applied field H. As H increases, the magnetization increases
up to its highest value; this defines an important characteristic parameter of the material called the
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saturation magnetization Ms at high enough applied fields. The value of the field needed to reach the
saturation magnetization depends on the nature of the material, method of preparation, and other
intrinsic and extrinsic parameters. The magnetization retains a value even at zero applied fields called
the remnant magnetization or the remanence Mr. This parameter has particular importance in the case
of permanent magnets production because it defines the magnetization of a magnet in the absence
of an applied external field. The size of the opposite field needed to reduce M to zero is called the
coercivity Hc. The value of the coercive field, the coercivity, defines the so-called magnetic hardness of
the magnetic material [14].

Many research groups prepared these ferrites and investigated the effect of the dopants on the
magnetic properties of such M-type magnetic hexaferrites [15–33]. The hexaferrites are of great interest
for applications in the microwave technology and others. S.V. Trukhanov et al. studied the effect of
gallium doping on the properties of barium hexaferrite, BaFe12-xGaxO19 (x ≤ 1.2), prepared by the
ceramic technology method [34,35]. They showed that the unit cell monotonically decreases with
increasing x and these Ga doped hexaferrites can effectively absorb high-frequency electromagnetic
radiation. The maximum of the real part of permeability depends on the level of substitution by
titanium cations and it is located in the region of 5–6 GHz. For gallium-substituted hexaferrites, the
real part of permittivity decreases more slowly at low frequencies and almost monotonically with
concentration. In last case, the real and imaginary parts of the permeability have a peak in the region of
49–51 GHz, which is determined by the level of diamagnetic substitution. Researchers have prepared
(BaFe11.9Al0.1O19)1−x(BaTiO3)x with x = 0. 0.25, 0.5, 0.75, and 1 bicomponent compounds using the
ceramic technique [36]. The researchers reported that these hexaferrites exhibited ferroelectricity at room
temperature and the coercive field was lower due to the contribution of the microstructure-dependent
shape anisotropy to the magnetic anisotropy energy and the behavior of these samples was discussed
based on the grain size, density, and porosity. The magnetic and dipole moments in BaFe12-xInxO19

hexaferrites were studied by S. V. Trukhanov group [37]. These indium doped samples were prepared
by solid reaction method as published by coworkers of the same group before [38]. The samples were
studied by high resolution neutron powder diffraction and vibrating sample magnetometry in the
temperature range of 4–730 K. They showed that spontaneous polarization was established due to the
displacement of Fe3+(In3+) cations and the appearance of nonzero electric dipole moment, which causes
the formation of the z-component of the spontaneous polarization. The crystal structure and magnetic
properties of BaFe12-xMexO19 (Me = In3+ or Ga3+ and x = 0.1–1.2) solid solutions were studied using
the time–of–flight neutron diffraction method [39]. The workers reported that the electric field–induced
polarization was observed in these barium hexaferrite solid solutions at room temperature. Using the
Gorter’s model, the researchers found that the magnetic moments of iron ions were oriented along
the hexagonal axis which is the easy axis of magnetization. The previously mentioned works of S.V.
Trukhanov and co-workers proved that the magnetoelectric characteristics of M-type hexaferrites
fabricated by a modified ceramic technique can be more advanced than those for the well-known room
temperature BiFeO3 orthoferrite multiferroic.

The main goal of this project was to study the effect of Titanium substitution on the magnetic and
structural properties of the barium hexaferrites prepared according to the formula BaFe11.9TixO19 with
x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0.

2. Experimental Techniques

A number of ferrite samples BaFe12-xTixO19 with (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were prepared by
using the sol-gel auto combustion technique. The chemicals used for the preparation of the samples
were Fe(NO3)3, Ba(NO3)2, and TiCl3 and were dissolved in 100 ml of de-ionized water. Citric acid was
added to the solution, and the molar ratio for the metallic mixture to acid was kept at 3:1 [33]. Using a
hot plate and continuous stirring, the solution was heated up to a temperature of 80 ◦C. A solution of
ammonia was added to the mixture to reach a pH value of 8.0. The solution was then heated slowly to
450 ◦C for several hours until a viscous brown gel mixture is formed. The gel was heated further to a
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temperature of 550 ◦C and the gel ignited and was burned out completely and formed a fluffy brown
colored powder. This powder was divided into two samples, using a furnace one sample was sintered
at 850 ◦C and the second sample was sintered at 1000 ◦C each for a period of one hour.

The structure of the samples was studied using X-ray powder diffraction (with Cu-Kα radiation λ

= 1.5405 Å). Infrared spectroscopy was used to ensure the formation of M-type hexaferrite phase. The
scanning electron microscope was used to study the microstructure of samples. Finally, the magnetic
properties were studied at room temperature using a Vibrating Sample Magnetometer.

3. Results and Discussion

Figure 1 shows the XRD pattern for BaFe12O19 and the XRD patterns for doped BaFe12-xTixO19

samples sintered at 850 ◦C, while Figure 2 shows the XRD pattern for BaFe12O19 and those patterns for
doped BaFe12-xTixO19 samples sintered at 1000 ◦C. It is clear that the XRD pattern for the BaFe12O19 (i.
e., x = 0) as the prepared sample is consistent with the standard pattern (JPCDS #: 00-043-0002) for
BaM compound but with a higher percentage of that phase at the higher sintering temperature. This
leads to the conclusion that the samples must be sintered at temperatures even higher than 1000 ◦C. As
seen from Figure 2, the patterns indicated the presence of α-Fe2O3 in samples sintered at 1000 ◦C as
seen from the peak at 33.1 degree and other lower peaks at 24.2, 49.4, and 54 degree and the content
of α-Fe2O3 changes with x and was the highest for x = 0.6. It is also clear from peaks at 53.2 and
61.8 degree that there are traces of FeTiO3 oxide and the peak at 28.8 degree indicated a presence of a
small trace of BaTiO3.

The Scherrer formula was then used to calculate the average crystallite sizes for the samples:

D =
kλ
β cosθ

. (1)

Here, D is the average crystallite size, K is called the Scherrer's constant and is taken equal to 0.89 for
the hexaferrite, λis the x-ray wavelength and equals1.5405 Å, βis the width of the peak at half maximum
and is measured in radians, and θis the position of the peak. Using several peaks, the average crystallite
size for all samples was calculated; the results and calculations are summarized in Tables 1 and 2.

Figure 1. XRD patterns for BaFe12-xTixO19 samples with (x = 0.0–1.0) sintered at 850 ◦C for 1 h and
shown the standard pattern of BaFe12O19 (file no.: 043-0002).
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Figure 2. XRD patterns BaFe12-xTixO19 samples with (x = 0.0–1.0) sintered at 1000 ◦C for 1 h and shown
the standard XRD pattern of BaFe12O19 (file no.: 043-0002).

The average crystallite sizes were found to be in the range of (27–36) nm for samples sintered
at 850 ◦C, and the average crystallite sizes for samples sintered at 1000 ◦C were found to be in the
range of (35–41.5) nm. This may lead us to conclude that Ti substitution improved the BaM phase
crystallinity especially at the sintering temperature of 1000 ◦C.

Table 1. The calculated average crystallite sizes for the system BaFe12-xTixO19 with (x = 0.0–1.0) sintered
at T = 850 ◦C.

Sample
(2θ)-Position

(Degrees)
Size
(nm)

Average Size
(nm)

BaFe12O19

(x = 0.0)

32.19 24.8

27.2
34.14 29.3
37.1 29.6

40.33 27
55.1 25.3

BaFe11.8Ti0.2O19

(x = 0.2)

33.1 27.3

30.3
35.67 33
49.51 25.4
54.1 35.3

BaFe11.6Ti0.4O19

(x = 0.4)

33.3 34.1

34
35.8 35.9

49.65 33.3
54.26 32.7

BaFe11.4Ti0.6O19

(x = 0.6)

33.31 39

36.5
35.79 41
49.69 34.6
54.24 31.5

BaFe11.2Ti0.8O19

(x= 0.8)

33.39 34.2

34
35.86 35.9
49.7 33.3
54.3 32.7

BaFe11.0Ti1.0O19

(x = 1.0)

33.31 39

36.3
35.69 41.3
49.54 34.6
54.15 30.4
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Table 2. The calculated average crystallite sizes for the system BaFe12-xTixO19 with (x = 0.0–1.0) sintered
at T = 1000 ◦C.

Sample
(2θ)-Position

(Degrees)
Size
(nm)

Average Size
(nm)

BaFe12O19

(x = 0.0)

32.4 30.3

34.9
34.34 41
40.55 36.4
55.31 31.7

BaFe11.8Ti0.2O19

(x = 0.2)

32.29 38.9

38.7
34.23 41.1
40.44 41.9
55.1 32.8

BaFe11.6Ti0.4O19

(x = 0.4)

32.26 43.1

41.5
34.22 45.7
40.42 46.5
55.19 30.6

BaFe11.4Ti0.6O19

(x = 0.6)

32.29 43

41
34.27 45.7
40.48 39.9
54.23 35.3

BaFe11.2Ti0.8O19

(x = 0.8)

33.27 45.6

40.5
34.24 43.3
40.96 36.5
54.19 36.7

BaFe11.0Ti1.0O19

(x = 1.0)

33.23 43.1

38
35.7 41.3

40.93 32.2
54.19 35.3

To prove the presence of M-type hexaferrite phase, Infra-Red (IR) analysis was used because
the IR- spectra can point to its presence. The samples were mixed with 0.05% KBr in order to get an
acceptable resolution of the compound bands. IR spectra of the as-prepared samples were obtained
with a wave number varying between 300 cm−1 to 1000 cm−1 and the results are summarized in
Figures 3 and 4 for the two sintering temperatures, respectively.

Figure 3. Infra-Red (IR) spectra of BaFe12-xTixO19 sintered at T = 850 ◦C.
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Figure 4. IR spectra of BaFe12-xTixO19 sintered at T = 1000 ◦C.

As seen from Figures 3 and 4, the IR spectra of the sintered samples have absorption bands at
wave numbers in the range 430−590 cm−1, which are characteristic to the formation of ferrites. The
peaks were clearer for those samples sintered at 1000 ◦C. The peak at about 430 cm−1 is due to bending
of the absorption bands of the metal-oxygen and that at about 590 cm−1 is due stretching of these bands.

Figure 5 shows an SEM image for one of the samples, namely BaFe12-xTixO19 (with x = 0.2),
which was sintered at T = 1000 ◦C. It shows that grains are ultrafine and almost have homogeneous
distribution. The image also shows that the platelets have sizes in the range of 200 nm to 500 nm.

 
Figure 5. SEM image for BaFe12-xTixO19 (x = 0.2) sample sintered at T = 1000 ◦C.
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Based on X-ray results and IR data, we believe that samples are improved if heat-treated at
1000 ◦C.

We studied only magnetic properties for samples sintered at 1000 ◦C. Magnetic measurements
were carried out at room temperature by a VSM with applied field between 0 and 10 kOe. The group
of hysteresis loops (HL) for all samples is shown in Figure 6. The loops do indicate that all the samples
are indeed hard magnetic materials. The values of remanence magnetization and coercive field for each
sample were read directly from graphs of loops. Since it is expected that samples have high magnetic
anisotropy, we used the law of approach to saturation (LAS) to calculate the saturation magnetization.
This is simply found by plotting M versus 1/H2 for values taken from high field region and all samples
gave perfect straight linear graphs. The intercept of that line is equal to the saturation magnetization.

Figure 6. Hysteresis loops for the samples BaFe12-xTixO19 (x = 0.0 − 1.0) sintered at 1000 ◦C.

Table 3 shows summary of the calculated values for the saturation magnetization, the remanence
magnetization, the reduced magnetization, and the coercivity.

Table 3. The saturation magnetization, remanence magnetization, reduced remnant magnetization and
coercive field for the system BaFe12-xTixO19 (x = 0.0–1.0).

x Ms (emu/g) Mr (emu/g) Mrs (emu/g) Hc (kOe)

0.0 44.65 23.0606 0.5165 4.51
0.2 45.24 19.7474 0.4365 3.4557
0.4 44.83 19.5835 0.4368 1.6554
0.6 39.99 12.9342 0.3234 0.583
0.8 20.39 9.5829 0.47 1.385
1.0 17.17 7.7163 0.4494 1.11455

The saturation magnetization shows inverse relation titanium concentration. The partial
substitution of Fe by titanium ions in these hexaferrites has affected the values of MS, which depends
on the amount of Ti ions diffusing into the BaM crystal in which Ti+3 ions partially replace Fe+3.
However, the higher the Ti concentration results in lower Ms because other phases are then formed as
was concluded from XRD data.

Hard ferrites typically have a high value of Mr, which is about 50% of the saturation magnetization
(Ms), therefore the reduced remnant magnetization (Mrs = Mr/Ms) must be nearly 0.5, and this is
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true for samples consisting of single-domains and random orientations of grains [32]. Table 3 shows
that the values of Mrs are very close to 50%. The coercive field, Hc, for the samples varied with Ti
concentration and it ranged between 0.6 and 4.5 kOe as can be seen in Table 3. A plot of Ms and Hc

versus the concentration of titanium is shown in Figure 7.

Figure 7. Saturation magnetization and coercive field versus Ti concentration.

We calculated the average paramagnetic behavior for each sample by approximating the loop by
a straight line as shown in Figure 8. Of course, this behavior is correct only for shallow applied fields,
but we found that there is a general trend in these samples that can be depicted by the slopes of these
lines. Slopes of these lines are listed in Table 4. The slopes are related to the magnetic susceptibility
and increased slowly by increasing the concentration up to x = 0.6 and then decreases to half its value
after that.

Figure 8. The hysteresis loop for the system BaFe12-xTixO19 (x = 0.2) approximated by a straight line.

142



Symmetry 2019, 11, 732

Table 4. The slope and hysteresis losses (in W) for the system BaFe12-xTixO19 (x = 0.0–1.0).

Concentration (x) Slope Hysteresis Losses (W)

0.0 0.004908 518,580
0.2 0.005326 402,700
0.4 0.00571 212,180
0.6 0.005252 71,914
0.8 0.002623 84,982
1.0 0.002229 58,080

We also calculated hysteresis losses for each sample and the calculated values are listed in Table 4.
It is clear from the values of losses that Ti concentration could be a scaling factor for magnetic energy
stored when these materials are used in components of electromagnetic devices. This behavior is
displaced in Figure 9. Losses are significant and almost linear for x < 0.6.

Figure 9. Hysteresis losses (in W) BaFe12-xTixO19 (x = 0.0–1.0) sintered at 1000 ◦C.

4. Conclusions

A group of BaFe12-xTixO19 samples with (x = 0.0–1.0) were prepared by sol-gel-auto combustion
method and were sintered at 850 ◦C and 1000 ◦C for 1 h in air. The XRD data and IR data analysis
confirmed the presence of M type phase of the hexaferrite in these samples, and the higher sintering
temperature showed an improvement of crystallinity. The average crystallite size for all samples was
in the range of 27–42 nm. We believe that these are suitable to obtain the reasonable signal to noise
ratio when used in a high-density recording medium. The values of saturation magnetization (Ms) and
retentivity (Mr) calculated values decreased with increasing the Ti concentration, and this may result
from particle size effects. The addition of titanium reduced the saturation magnetization from about 45
emu/g down to 17.2 emu/g. The rest of the magnetic properties that include coercivity, remanence
magnetization, reduced remnant magnetization, and hysteresis losses suggest that these materials
are beneficial in the components of electromagnetic devices that are used in recording technology
and permanent magnets. We suggest that further work is needed to study the effect of sintering
temperatures and very low controlled Ti concentrations. In addition, structural and magnetic studies at
temperatures above and below room temperature using other techniques could be of great importance.
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Abstract: The research of ground high speed systems has been popular, especially after the
announcement of Hyperloop concept, and the analysis of the suspension structure is critical
for the design of the system. This paper focuses on the design and analysis of a plate type
electrodynamic suspension (EDS) structure for the ground high speed system. The working principle
of proposed whole system with functions of levitation, guidance and propulsion is presented, and the
researched EDS structure is composed of permanent magnets (or superconducting magnets) and
non-ferromagnetic conductive plates. Levitation and guidance are achieved by forces generated
through the motion of the magnets along the plates. The plate type EDS structure is analyzed by
three-dimensional (3D) finite element method (FEM) in ANSYS Maxwell. Structure parameters that
affect the EDS performances are investigated, which include dimensions of magnets and plates,
plate material, the relative position between magnets and plates, and arrangement of magnets.
The properties of forces are discussed, especially for the levitation force, and the levitation working
point is decided based on the analysis. Levitation-drag ratio of the plate type structure is investigated,
and it improves with the increasing of vehicle velocity. The analysis results indicate that the plate
type EDS structure is feasible for applications in ground high speed systems. The following study
will focus on the dynamic research of the EDS system.

Keywords: magnetic levitation; electrodynamic structure; ground high speed system;
finite element analysis

1. Introduction

Nowadays, the research of ground high speed systems including high speed train and super
speed test sled has been popular with the increasing demand for higher speed. For example, Elon Musk
presented the concept of Hyperloop in 2013 and the Evacuated Tube Transportation (ETT) has received
much attention from research institutes and the transportation industry [1,2]. Compared with wheel-rail
structure, contactless design is expected to be adopted in ground high speed systems to minimize
frictions, vibrations and noises during the operation. Magnetic levitation (maglev) is the most widely
studied contactless technology and the maglev train is a well-known application. The maglev train
has a different working principle from conventional wheel-rail train driving forward by frictions,
as it achieves levitation through interaction between the magnets aboard and the rails and produces
propulsion force electromechanically without contact with the rails [3].

The Electrodynamic Suspension (EDS) repulsion system and the Electromagnetic Suspension
(EMS) attraction systems are two main kinds of maglev systems [4]. The EDS system achieves levitation

Symmetry 2019, 11, 1117; doi:10.3390/sym11091117 www.mdpi.com/journal/symmetry147



Symmetry 2019, 11, 1117

by the electromagnetic repulsive force between the magnet and the non-ferromagnetic conductive rail.
The relative motion of the magnet along the rail will induce eddy current in the ground conductor,
and according to Lenz law, the magnetic field induced by the eddy current will oppose the magnetic
field from the aboard magnet to generate repulsive force [5]. When the moving vehicle reaches a
certain speed, the repulsive force increases enough to levitate the train. Thus, the EDS structure does
not need active control and is an essential open-loop stable system [6]. Superconducting (SC) magnet
and permanent magnet (PM) are two excitation sources applied in EDS system, and there are two
kinds of EDS rails: continuous conductive plate and discrete metal coil. The Holloman High Speed
Test Track (after maglev update) is a typical continuous EDS structure with copper plates embedded in
the guideway, and the SC magnets aboard interact with the plates to provide levitation and guidance
forces through relative motion [7]. The sled is propelled by solid fuel rocket motors, and the test
speed reached 673 km/h in 2008. However, the rocket motor is expensive and cannot be reused,
and it is hard to adjust the running speed during operation. The publications about Holloman High
Speed Test Track are few and about the program update and some flight test results without critical
characteristics analysis mentioned. A representative of typical discrete EDS system is the SC maglev
train of JR Company in Japan, which adopts figure-eight null flux coils to achieve a high levitation-drag
ratio [8]. The levitation coil and the propulsion coil are at the same side of the SC magnet, and the
ground transportation speed record of 603 km/h was made by the SC maglev train on the Yamanashi
Line in 2015. Unlike the EDS system, electromagnet is adopted in EMS structure to interact with the
ferromagnetic rail to generate attractive electromagnetic force. EMS is an open-loop unstable system
and active control of currents in the electromagnet is needed to achieve levitation at the expected
gap [9,10]. Now, the top operation speed of EMS train is 430 km/h from the TR train on Shanghai
maglev line [11].

EMS and EDS both have advantages in the application. Through active control of currents in the
electromagnet, accurate levitation gap could be realized in EMS system and the dynamic performance
during operation is adjustable. However, the electromagnet is heavy and the ancillary equipment,
such as power supply, signal detection, and control systems, make the whole structure complex.
Additionally the operation of high speed will make the conduction of real-time control difficult.
Another problem is the obvious eddy current in the steel rail at high speeds [12,13], which will reduce
the levitation force and lead to increasing currents and heat in the electromagnet. Compared with EMS,
EDS has been attracting more attention in the research of ground high speed systems. The design and
analysis of a Hyperloop structure including levitation and propulsion control system was conducted
by Abdelrahman et al. [14], and null flux coil structure was adopted. An all-in-one system containing
functions of levitation, propulsion and guidance was presented by Ji et al., and conductive plate EDS
structure was adopted in the design [15]. A high-temperature superconducting EDS system used in
the high speed maglev train was studied by Hao et al.; a mirror method was proposed for calculating
and the accuracy was verified by the FEM model [16].

This paper focuses on the design and analysis of a plate type EDS structure for ground high
speed systems. Since fluctuation of electrodynamic forces in coil type EDS structure is obvious due
to discrete arrangement of coils [17] and the manufacture of coils is relatively complex, conductive
plate rails are adopted to interact with aboard moving magnets to provide levitation and guidance.
Meanwhile, magnetic fields from the other side of the magnets are used for propulsion, which could
simplify the whole system. The EDS structure is analyzed by finite element method, and parameters of
magnets and plates that affect the EDS performance are investigated. The forces properties at constant
speeds are analyzed and the analysis results have shown that the researched plate type EDS structure
is promising for application in the ground high speed systems.

2. Proposed Ground High Speed System

The designed ground high speed structure is composed of two subsystems, levitation system
and propulsion system, as shown in Figure 1. Axis X is the lateral direction, axis Y is the vehicle
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moving direction, and axis Z is the vertical direction where the vehicle is levitated. The vehicle body
is mounted upon the propulsion stator and magnets are placed on both lateral sides of the vehicle.
SC magnet and PM can be adopted as excitation source in the design, and PM is selected in this
paper. Non-ferromagnetic metal plates (copper plates or aluminum plates) are embedded in the lateral
symmetrical guideway beams, and the supporting structures including beams and buttress are made
of non-metallic material to avoid effect on propulsion and levitation. When the magnet aboard moves
along the rails, eddy current is induced in the plates and the interaction between the magnet and the
eddy current will generate levitation, guidance and drag forces. The double plate (upper and lower)
structure is adopted and the center-line of the magnets is lower than that of the double plates in axis Z.
The overlap area between the magnet and the lower plate is larger than the one with the upper plate,
and the resultant on the magnet in axis Z will be upward levitation force. The linear synchronous
motor contains the magnet mover and the long hollow stator coils. It can be seen that both sides
of magnets are used in the system to get high utilization of magnetic fields and simplify the whole
structure. Traveling wave magnetic fields are generated by flowing three-phase AC in the hollow stator
coils, and the magnetic fields interact with the magnet aboard to achieve electromagnetic thrust and
synchronous motion. The deceleration is conducted by reversing the direction of the stator currents to
produce braking forces, and the drag forces from metal plates could also make a part of contribution.

Figure 1. Proposed structure of ground high speed system.

3. Analysis of the Plate Type EDS Structure

The double plate structure could be divided to two single plates, and the magnetic forces acting
on the magnet are the resultant of component forces from single plates. It is reasonable to analyze
properties of the single plate structure for simplicity, and the side view of the single plate structure is
shown in Figure 2.

xy

z

Figure 2. Single plate electrodynamic suspension (EDS) structure.
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According to the Ampere circuital theorem, the relationship between the induced current density
J and the magnetic flux density B in the plate can be described as:
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Based on Lorentz law, the levitation, drag and guidance forces between the plate and the
magnet are:

Fl =
�

(JxBy − JyBx)dV
Fd =

�
(JxBz − JzBx)dV

Fg =
�

(JyBz − JzBy)dV
(3)

where V is the integral domain in the plate and μ is the permeability of the plate. The magnetic field and
force equations are complex to solve, and approximations are usually involved in the derivation [18–20].
The analytical approach has its limited applicability in the initial design of the plate type EDS structure,
and finite element simulation (FEM) using ANSYS Maxwell is adopted to study the characteristics of
the EDS magnetic forces. The parameters of proposed EDS structure for FEM simulation are listed
in Table 1, which are adopted in the construction of a prototype platform for test. The mesh plot of
the simulation model in ANSYS and the pole pith of the two magnets are shown in Figure 3, and the
following analysis is on the constant speed in axis Y without electrodynamic terms in axes X and Z.

Table 1. Parameters of the FEM model. PM: permanent magnet.

Variable Symbol Value Unit

Length of magnet (Y axis) lm 230 mm
Height of magnet (Z axis) Hm 200 mm

Thickness of magnet (X axis) Tm 20 mm
Pole pitch of magnets (Y axis) τ 270 mm

Remanence of PM Br 1.3 T
Coercivity of PM Hc 940 kA/m

Relative permeability of PM μr 1.09
Height of plate (Z axis) Hp 200 mm

Thickness of plate (X axis) Tp 8 mm
Gap between magnet and plate (X axis) G 10 mm
Height difference between mid-lines of

magnet and plate (Z axis) h 70 mm

τ

Figure 3. Mesh plot of the simulation model in ANSYS.
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3.1. Levitation Working Point

The height difference h is an important parameter in the EDS structure, and it can be regarded as
the working point of levitation. The simulation is conducted at the speed of 10 m/s, and the results of
three forces are shown in Figure 4. The guidance and the drag forces have the same trend. The values
decrease with the increasing of the height difference h, and this can be explained by the change of
overlap area between the magnet and the plate in qualitative analysis. However, the levitation force is
different from the other two. At small values of h, the levitation force increases with the growing of the
height difference h. It reaches the top value at around 60 mm, and then stays relatively constant for a
range of values. Then, with the further increase of h, the levitation force will decrease as the other two
forces. The trend of levitation force could also be explained qualitatively. When h = 0, the magnet
and the plate are mid-lines coincided, the levitation force is 0 due to symmetry. With the increasing of
h, the symmetry is destroyed and the levitation force appears and increases. Then, with the further
increasing of h at a large value, the interaction between the magnet and the plate will be very weak
and the forces will all be zero in the end.

Figure 4. EDS forces as a function of height difference h (speed 10 m/s).

The levitation-drag ratio is shown in Figure 5, and it grows with the increase of h. The height
difference h is set to 70 mm (about 1/3 of magnet height 200 mm) to provide adequate levitation force,
as listed in Table 1. However, the levitation force around the working point changes little, and the
system could not provide sufficient levitation stiffness at current setting. Because the PM is unable
to generate strong enough magnetic fields, the working point cannot be set in the domain with large
height differences (such as around 110 mm in Figure 4). Thus, the height difference h can be set around
point of 1/3 height of magnet to provide enough levitation force when PM is used, and the working
point can be moved to a larger h beyond 1/3 height of magnet to achieve stronger levitation stiffness if
SC magnet is adopted in the system.
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Figure 5. Levitation-drag ratio as a function of height difference h at a speed of 10 m/s.

3.2. Guidance Stiffness

Guidance stiffness is an important performance index in the maglev system, which is related with
lateral stability. The guidance stiffness of the system can be studied by changing the gap G between the
magnet and the plate at speeds of 10 m/s and 100 m/s, respectively. The guidance force results are
shown in Figure 6. The value of G is set to 10 mm in the system as shown in Table 1. When the gap
from one side of the vehicle body moves to 8 mm, then the gap value on the other side will be 12 mm.
The guidance force on the vehicle from both sides of plates will be ΔF = 683 N− 590 N = 93 N, and
the guidance stiffness 23 N/mm is calculated at the speed of 10 m/s. Similarly the guidance force and
the stiffness at the speed of 100 m/s are 249 N and 62 N/mm, respectively. The stiffness at low speeds is
relatively insufficient compared with that at a high speed, and guidance wheels could be designed in
the EDS structure.

Figure 6. Guidance force as a function of the gap between the magnet and the plate.

3.3. Effects of Speed

Since the EDS force is based on the relative motion between the magnet and the plate, it is essential
to research the effects of vehicle speed on magnetic forces. The forces in three axes at different velocities
with the structure parameters in Table 1 are shown in Figure 7. The performances of copper and
aluminum plates are compared in the simulation.
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Figure 7. EDS forces as a function of magnet velocity.

The results show that the levitation force and the guidance force increase with magnet velocity at
initial low speeds; then, they will stay relatively constant when reaching high speeds. This is beneficial
for the super speed system that the system can be steadily levitated on the set height at speeds beyond
the critical point, and the constant guidance force will not heighten the demand on structural strength
of the vehicle body. The performance of drag force is different from the other two forces. It increases
at the initial low speeds and after reaching the peak value, the force decreases with the increasing of
magnet speed. Thus, the ratio of the levitation force and the drag force becomes higher at relative
high velocities, as shown in Figure 8, which is beneficial for application in the ground high speed
system. Additionally, it can be seen that the EDS structure with copper plate could provide better
levitation-drag ratio than aluminum plate.

Figure 8. Levitation drag ratio over magnet velocity.

Magnetic forces are generated by reactions between the magnets and the eddy currents in the
plates. It is essential to study the eddy current property, and the eddy current distributions on the plate
surface at different vehicle speeds are shown in Figure 9. To make the analysis easier to understand,
only one permanent magnet is adopted here and the principles are same for NS poles arranged magnets.
In the simulation models, the magnets move from right to left and the rainbow color presents the
magnitude of induced eddy current densities. It can be seen that the maximum value of eddy current
on the plate becomes larger with the increasing of speed at first (for example from 2 m/s to 10 m/s)
and then will stay almost constant at high speeds (for example at 70 m/s and 100 m/s). The simplified
illustration of interaction between the magnet and the plate with single magnet in cross-section view is
shown in Figure 10.
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(a) (b) 

  
(c) (d) 

Figure 9. Distribution of eddy currents on plate surface at different speeds with single magnet, (a) 2 m/s,
(b) 10 m/s, (c) 70 m/s, and (d) 100 m/s.

 
(a) (b) 

Figure 10. Simplified illustration of interaction between the magnet and the plate at different speeds
with single magnet in cross-section view: (a) low speed and (b) high speed.

At low speeds, there exist two symmetric vortices of eddy current distributions. From the Lenz
law, the current flow directions are opposite in the two vortices as illustrated in Figure 10a and the
interactions between both vortices and the magnet perform as drag force in the moving direction.
With the increasing of magnet speed, the back vortex will be pushed and reduced. Thus, there will be
only one vortex with perfect same shape as the magnet as shown in Figure 9c,d at high speeds. It can
be seen from Figure 10b that the drag force will be greatly reduced and the levitation-drag ratio will
improve obviously.

3.4. Magnet Design

3.4.1. Distribution of Magnetic Field

PM and SC magnet are two main magnets adopted in the EDS system. Although permanent
magnet is adopted in this analysis, it is important to study the magnetic field distributions of both
magnets. The parameters of both magnets for comparison are listed in Table 2, and they have the same
shape and size.

The rainbows of magnetic field vector from both magnets are shown in Figure 11, and the
amplitudes of magnetic flux density at the mid-lines in Y and Z directions 10 mm away from the
surface of magnets are plotted in Figure 12. It can be seen that the distribution tendencies of magnetic
fields from PM and SC magnet are basically same. The magnetic fields near the borders of magnets
are strongest and will decrease apart from the borders. The same distributions could indicate that
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the analysis results of PM are also appropriate for SC magnet, and the difference is that the SC could
provide much stronger magnetic fields through adjusting the flowing currents in the SC coils.

Table 2. Parameters of both magnets. SC: superconducting.

Variable Value Unit

Length 230 mm
Height 200 mm

Thickness 20 mm
Remanence of PM 1.3 T
Coercivity of PM 940 kA/m

Relative permeability of PM 1.09
Current in SC magnet 18.8 kA

  
(a) (b) 

Figure 11. Rainbows of magnetic field vector, (a) PM, (b) SC magnet.

(c) (d) 

Figure 12. Distributions of magnetic flux density: (a) Y direction of PM, (b) Z direction of PM,
(c) Y direction of SC magnet, and (d) Z direction of SC magnet.

155



Symmetry 2019, 11, 1117

3.4.2. Magnet Thickness

The height and the pole length of the permanent magnets are decided by the design of the
propulsion, which is not involved here. The magnet pole face is 23 cm × 20 cm, the remanence of the
NdFeB magnet is 1.3 T and the coercivity is 940 kA/m. Magnetic flux densities of the center point on
the magnet surface are illustrated in Figure 13. As can be seen, although the magnetic flux density
strengthens with increasing magnet thickness, the increment becomes gentle with the increasing of the
thickness. Considering the manufacture and the magnet weight, it is not a good idea to get strong
magnetic field through increasing the magnet thickness and 20 mm is selected as listed in Table 1.

Figure 13. Magnetic flux density over magnet thickness.

3.4.3. Magnet Length

The effects of different magnet lengths on levitation force are researched. The pole length of
the permanent magnets is 270 mm, which is decided from the propulsion calculation. The results
are shown in Table 3, and the speed is 10 m/s. Although levitation force becomes larger with the
increase of magnet length, the increment is narrow when the magnet length approaches the pole length.
Furthermore, the long and large permanent magnet is fragile and difficult to manufacture, thus a
230 mm long magnet was selected in the design.

Table 3. Levitation forces with different magnet lengths.

Magnet Length (mm) Levitation Force (N)

190 230
200 236
210 240
220 256
230 268
240 280
250 288
260 295
270 297

3.4.4. Magnet Arrangement

Although the magnets are alternately arranged in magnetic N and S poles for propulsion in the
proposed system as shown in Figure 3, it is still helpful to research the influence of magnet arrangement
on magnetic forces, especially the levitation force. Three kinds of magnet arrangements are studied:
single magnet, same pole arranged magnets (such as NN), and NS poles arranged magnets (shown in
Figure 3); the results are shown in Figure 14. Double value of single magnet arrangement is included
to be as a reference.
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Figure 14. Levitation forces with different magnet arrangements (NN and NS) over magnet velocity.

It can be seen that the levitation force value of NS arranged magnets is larger than the double
value of single magnet, and the value of NN arranged magnets is smaller than the double one. This can
be explained in qualitative analysis. For the NN arranged magnets, the change rate of magnetic field
generated by the back N pole magnet in conductive plate is gentler than the one by the front magnet.
According to Lenz law, the back magnet will generate weaker induced voltage and eddy current,
which will make the levitation force of NN arranged magnets smaller than the double value of single
magnet. However, the change rate of magnetic field generated by the back magnet in conductive plate
is more dramatic than the one by the front magnet. Then, the back magnet will generate stronger
induced voltage and eddy current, which will make the levitation force of NS arranged magnets larger
than the double value of single magnet. The eddy current distributions of NN and NS arranged
magnets at speeds of 10 m/s and 100 m/s are shown in Figure 15. It is obvious that the NS arranged
magnets could induce stronger eddy currents than NN arranged magnets, which has verified the
explanation. From the above analysis, we can also get that there exist difference between the two forces
from the front and the back magnets, and this will be studied in the following.

  
(a) (b) 

  
(c) (d) 

Figure 15. Distribution of eddy currents on plate surface at different speeds with NN and NS arranged
magnets: (a) NN magnets at 10 m/s, (b) NS magnets at 10 m/s, (c) NN magnets at 100 m/s, and (d) NS
magnets at 100 m/s.
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3.5. Plate Design

3.5.1. Plate Materials

In the proposed EDS structure, the plate should be non-ferromagnetic conductive. Two common
materials copper and aluminum are separately studied, whose conductivities are 58 MS/m and 38 MS/m,
respectively. The comparisons of forces and levitation-drag ratios are shown in Figures 7 and 8,
respectively. The levitation force and the guidance force from the copper plate increase faster than that
from the aluminum plate at low speeds, but the difference becomes minor when the magnet speed
is high and the forces tend to be the same. The drag force from the copper plate is larger than the
aluminum one at the initial low speeds, and after the peak value it decreases faster than the aluminum
one. Levitation-drag ratio is an important index, and from Figure 8, the EDS structure with copper
plate could provide a higher levitation-drag ratio than aluminum plate.

3.5.2. Plate Height

Plate height is an important factor that will influence the interaction area between the magnet and
the plate. The simulation results of different plate heights with constant height difference h 70 mm at
speed of 10 m/s are shown in Figure 16. The forces in three directions including levitation drag and
guidance grow with the increasing of plate height, and the guidance force increases fastest. Considering
high plate will bring large drag force and high construction cost, 200 mm (the same height with PM) is
adopted in the system design.

Figure 16. Levitation force as a function of plate height.

3.5.3. Plate Thickness

Plate thickness is another important parameter to be designed in the plate type EDS structure.
Because of the skin effect at high speeds, the analysis is selected at speed of 100 m/s. The three forces
and levitation-drag ratio are shown in Figure 17. It can be seen that the levitation and the guidance
forces become larger with the increasing of thickness at first and will stay constant, and the drag force
decreases with the increasing of thickness and the change becomes mild at relatively large thickness.
Thus, the levitation-drag ration improves with the increasing of plate thickness. Considering the
construction cost, 8 mm is selected in the system design.
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(a) (b) 

Figure 17. Simulation results of different thicknesses of plate at speed of 100 m/s. (a) Levitation, drag,
and guidance forces, (b) levitation drag ratio.

3.6. Distribution of Levitation Forces on NS Magnets

In the above analysis in Section 3.4.4, it is explained that there is difference between the levitation
forces of the front magnet and the back magnet in the NS arranged magnets. This is important to
research, since the uneven distribution of levitation forces will lead to imbalance of vehicle during
operation. The comparison of levitation forces of the front and the back magnets at different speeds
are shown in Figure 18. The levitation force from the back magnet increases faster than that from the
front magnet at the low speeds, and then it decreases slightly until the two forces are same value.
The non-uniform distribution of levitation forces on NS magnets during the vehicle operation is obvious
when the vehicle is at a low or middle speed, which indicates a higher standard for the vehicle design.

Figure 18. Simulation results of levitation forces of the front and the back magnets.

4. Conclusions

A plate type EDS structure proposed for ground high speed systems is analyzed in this paper.
The ground high speed system is integrated with functions of levitation, propulsion and guidance,
and the EDS structure is composed of non-ferromagnetic conductive plate and PM (or SC magnet).
The designed plate type EDS structure is researched by FEM simulations, and characteristics of the
EDS structure are analyzed based on the results.

• The levitation working point is better to be set around 1/3 height of PM to get enough levitation
force, and it can be moved to a larger h when SC magnet is applied in the design.

• The lateral stiffness at low speeds is relatively insufficient compared with that at high speeds,
and guidance wheels can be adopted.
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• The effects of different speeds on magnetic forces are studied and the levitation-drag ratio improves
with the increasing of magnets speed.

• PM and SC magnet have the same distribution of magnetic field, and the proper thickness
and length of magnet are set. NS arranged magnets show better performance than NN
arranged magnets.

• Copper plate could provide larger levitation force and higher levitation-drag ratio than aluminum
plate. Proper height and thickness of plate are decided based on the performance and the
construction cost.

• The non-uniform distribution of levitation forces on NS magnets will disappear at high speeds.

The results show that the proposed EDS structure is a promising option for application in ground
high speed systems. Future research will focus on the study of dynamics properties of the plate type
EDS structure, especially the under-damped characteristics of EDS structure during operation.
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Abstract: The paper discusses the results of research into a vibration-powered milli- or micro generator
(MG). The generator harvests mechanical energy at an optimum level, utilizing the vibration of its
mechanical system. The central purpose of our report is to outline the parameters that are significant
for implementing the actual design to harvest the maximum (optimum) energy possible within
periodic symmetrical systems, while respecting the typical behavior of the output voltage. The
relevant theoretical outcomes influence the measurability and evaluation of the physical quantities
that characterize the designed structures. The given parameters, which are currently defined in
millimeters, are also applicable within the micrometer range, or MEMS. The article compares some of
the published microgenerator concepts and design versions by using effective power density, among
other parameters, and it also brings complementary comments on the applied harvesting techniques.
The authors demonstrate minor variations in the magnetic rotationally symmetric circuit geometry
that affect the pattern of the device’s instantaneous output voltage; in this context, the suitability of
the individual design approaches that are to be used with MEMS as a vibration harvesting system is
analyzed in terms of properties that are applicable in Industry 4.0.

Keywords: Harvesting; low-power applications; vibration; micro-generator; optimal solution;
magnetic circuit; periodical structure; effective power density; symmetry

1. Introduction

In recent years, alternative sources of energy have become the main subject of numerous research
projects [1–22], with the optimum energy conversion being one of the central points of focus. Such a
transformation is often ensured through a vibration microgenerator [23–26]. Effective energy harvesters
exploiting the mechanical vibrations and related non-stationary magnetic fields have already been
investigated and reported [2].

The comparative approach applied to harvesters for milli- or micro generators (MGs) within
study [18] allows for an effective evaluation of different conversion concepts, namely, interpretations
of Faraday’s law of induction. An optimal harvester design to yield the maximum power is obtainable
via minor structural modifications that may substantially change the resulting performance while
the parameters (including the weight, volume, and vibrations) remain virtually identical to those of
standard harvesters. Different papers, including [2], detail functional magnetic circuits for vibration
harvesters, where the model experiments and a comparison of various versions illustrate the effect of
magnetic circuit modifications on the output voltage and power of a harvester. Advantageously, the
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devices can be grouped into periodic structures and also used in closed systems, such as automobiles,
aircraft, and other units that are suitable for the inclusion of harvesters as additional and reliable energy
sources. The possibilities of residual energy harvesting are examined in article [3]; the discussion
comprises, among other aspects, specific harvester installation conditions, and requirements.

As regards the microgenerator design (Figure 1), Figure 2a introduces the most widely preferred
principle (I, [2,3]); in the given context, it is necessary to respect the general conclusions of Faraday’s
law of induction as formulated in, for example, Equation (1) and Figure 2b below. Figure 2 shows
multiple processes and elements, including the magnetization of the permanent magnet M; magnetic
flux Φ; magnetic lines of force; oriented area S enclosed by the coil thread; electric coil; and, character
of the generator’s core motion with respect to the coil. The related Figure 2c then introduces a design
version that minimizes the impact of external electromagnetic fields (non-stationary) on the principal
function of the generator.

(a) 

(b) 

Figure 1. The principal configuration of the core of the milli- or micro generator (MG): (a) a beam
version, principle I; (b) a beam version, principle II [2].
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(a) 

(b) 

(c) 

Figure 2. The basic arrangement of the investigated rotationally symmetric geometry device exploiting
Faraday´s induction law: (a) the classic solution; (b) the novel arrangement; and, (c) the option with a
closed magnetic circuit to minimize (optimize) the impact of external magnetic fields [2].

The generator was modeled to facilitate optimal design of the dimensions (minimum size and
weight m) [2]. The vibrations measured with critical positioning of the device reached the maximum of
G = 0.2 g (g = 9.81 ms−2). In the discussed concept, the resonance might vary, according to the origin of
the vibrations, from the tuned resonance frequency f r by up to tens of percent.

As regards the optimum design variant, the critical parameter consisted in the boundary sensitivity
of the generator to the minimum vibration amplitude; the relevant value corresponded to 0.01 g–0.05 g.
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In the following portions of the presentation, the proposed structural problems and methods for their
solution will be discussed.

Microgenerator systems and relevant manufacturing methods were discussed on a comprehensive
basis previously [2–5]; the structural details and consequences are indicated herein, as in Figures 2–4.

(a) (b) 

Figure 3. The basic arrangement of the investigated device exploiting Faraday´s induction law: (a) the
MG core; and (b) the magnetic flux density distribution along the z axis, line A-A.

(a) (b) (c) ( ) 

 
(e) (f) (g) 

Figure 4. The electric voltage induction in the applied coil, (a–g), according to Faraday´s law of
induction [2].
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2. Designing the MG

The microgenerator utilizes an external environment that is characterized by the occurrence of
mechanical vibrations, exploiting a suitable mechanical coupling to dampen these vibrations and
generate an electric power Pout. The required output power Pout of the optimal design depends on the
type of the output load Z. The optimal arrangement of the MG is based on the concepts in Figure 1,
Figure 2c, and Figure 3, with the magnetization orientation indicated. In terms of the mechanical
properties, the device was discussed in dedicated papers and patents, such as [10,25]. Figure 4 presents
details of the transformation process and electricity generation; the actual engineering approach
adopted in solving these procedures then embodies the necessary precondition for the subsequent
identification of the optimal design. The mathematical model outlined in [2] is, in a basic form,
incorporated in the corresponding Formula (5), below.

Figure 3, as above, presents one of the progressive options available for seating the moving
part of the generator, a solution that eliminates the classic spring or girded beam (Figure 1). The
designed system (Figure 3), is tuned to the mechanical oscillation resonance frequency f res and
it constitutes the basis of the optimal approach. Such an arrangement allows for us to reach the
maximum possible harvest rate and transform the field into an electric voltage; Figure 4 shows the
corresponding preconditions.

3. Modeling the MG

To support our approaches, the paper includes fundamental parts of the relevant mathematical
model, which is defined, for example, within referenced publications [1–3]. In the given context, the
model can be formulated, as

∮
	

E(t) · d	 = −
∫
S

∂B(t)
∂t

dS +

∮
	

(v(t) ×B(t)) · d	 (1)

where E(t) denotes the electric field intensity vector, B(t) is the magnetic flux density vector, v(t)
represents the generator core position drift in time (the instantaneous velocity) vector, S stands for
the cross section of the area with magnetic flux Φ, and l denotes the curve along the boundary of the
S. Figure 4 illustrates the change of the magnetic flux of the field (ti1, . . . , ti4) and also the resulting
induction of the voltage u. The behavior of the voltage u(t) can be evaluated by following the steps
that are indicated in Figure 4; this behavior assumes the validity of Equation (1), magnetic flux Φ
configuration, and electric coil shape with an active surface Sc.

We need to know the values of energy and transformation rate to be able to evaluate the efficiency
of the proposed design (Figure 2c). The state equation can be defined with respect to the energy
conservation law regarding the considered problem [1–3]. Subsequently, the kinetic and potential
energies, Wk and Wp, respectively, which are related to the movement of the generator’s core, can be
defined as

Wk =
1
2

m v2, Wp = m g z. (2)

where m is the mass of the MG system, v denotes the mean velocity, and g represents the gravity
constant.

The equation of state used by the authors of [1] and [2] captures the electromechanical coupling in
the device, being expressed as

m g z− ∫
	

∫
VJ

(J×B)dV · nd	 − ∫
VJc

1
2

J2

γ dV = 1
2 m
(

d z
dt

)2

η
∫

VM

1
2 BMHMdV = 1

2 m
(

d z
dt

)2 (3)
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where dz/dt is the moving part drift in time, further measurable as the velocity v; η represents the
magnetic field transformation efficiency; n denotes the normal vector; γ is the specific conductivity of
the wire; 	 is the length of the shift caused by the specific strength; B denotes the magnetic flux density
vector; J represents the current density vector; VJc stands for the coil wire volume; and, VJ is the volume
of the electrically conductive components. The MG system then also includes the braking forces

m
d2z
dt2 + lc

dz
dt

+ k z = Fz, (4)

where d2z/d t2 is the acceleration of the moving part, dz/d t denotes the velocity v of the moving parts,
m represents the mass, k stands for the stiffness coefficient, lc is the damping coefficient, and Fz is the
forces affecting the moving parts. The simplified model is described as

m
d2z
dt2 + lc

dz
dt

sign(
dz
dt

)
dz
dt

+ k z =
(
mm + mp

)
g(t) −

∫
VJ

((
dz
dt
×Bbr

)
×B
)
· n dV −

∫
	Jc

(in×B) · n d	, (5)

where Bbr is the braking magnetic flux density, Jv denotes the current density of the electrically conductive
components, Jcirc represents the current density in the coil winding, and i stands for the instantaneous
value of the current through the coil. The geometrical model that is applied in ANSYS (Version 12,
ANSYS inc., Houston, USA) is presented in sources [23], ref. [2] as well as Figures 3a and 5a. Figure 6, as
below, shows the typical analysis of the ANSYS numerical model. The novel (optimal) generator design
was tested on both a pneumatic and an electrodynamic shaker to verify the magnetic independence of
the proposed solution. The magnetic circuit is designed such that its structure is enclosed within the
body of the generator, ensuring reduced sensitivity to the external magnetic field and its changes. This
parameter is of interest for application in the periodic structure of the outlined design usable in MEMS.
The assumptions embodied in the variant from Figure 2c were experimentally verified.

(a) 

(b) 

Figure 5. A geometrical model of the tested MG [2]: (a) the core of MG; and, (b) the functional sample
subjected to a shaker-based test of the double-action winding.
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(a)

(b) 

(c) 

Figure 6. A geometrical rotationally SYMMETRIC model of the MG0 based on principle II [2]: (a)
the ANSYS geometrical model; (b) the core; and, (c) the optimal design, detailed distribution of the
magnetic flux density module B [T].

4. Selecting the MG Core Design

Within the design of the generator, the ANSYS system [4] was used for the numerical analysis
and to optimize the key parts. A mathematical model exploiting partial differential equations further
described the electromagnetic field distribution [1,2]. This model becomes evident from Formulas (3),
(5); the non-linear equations, which define the behavior of the external electric circuit [1–3]; and, the
mechanical model of the main parts of the generator. There is mutual action between the mechanical
and the electromagnetic effects. The partial differential equations of a coupled electro-mechanical
circuit [4,5] were used to build the physical model.

A simplified model was employed to design the generator components. The model utilized
lumped parameters, as shown in Figure 7, and it also assumed various versions of the magnetic field
changes described with respect to the phase perspective, as indicated in Figure 4a–g. The individual
parts, comprising the permanent magnet, air gap, electrical winding, magnetic circuit, electric coil, one
turn of the winding, pole extension, beam, body, and core of the magnetic part of the generator, are
denoted by using the reference symbols in Figure 7a.
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(a) (b) 

Figure 7. The MG core with a ferromagnetic circuit according to principle II [2]: (a) a structurally
simple variant, acceleration g within the interval of 0.01 g–0.3 g; (b) a scheme of the configuration.

A lumped parameters model can describe these components in order to perform quick assessment
of the properties of the proposed concept. The above structures are classifiable into two groups: One
of these exploits the approach where a magnetic field moves with respect to a fixed coil, as shown in
Figure 7b; the other then utilizes an electric coil moving with respect to a stationary magnetic field
and fixed to the body of a generator. Regarding the above analysis, we also examine the concept
of a magnetic field moving with respect to an electric coil fixed to the body of a generator based on
principle II (Figure 3a), in which the ferromagnetic circuit is fully closed and its components do not
move against each other.

The generator design versions were used to build a series of models in ANSYS and then employed
to examine the vibration energy harvesting rate. As a result, we can demonstrate the distribution of
the magnetic flux density module B and the magnetic field intensity module H in Figure 6c of the
functional sample according to the configurations that are presented in Figure 6a,b.

5. Critical Parameters of the MG Design

The critical parameters are outlined in sources [1,2,26] and can be categorized into the following
areas:

• mechanical dynamics;
• electromagnetic field; and,
• electronic systems (power management blocks).

In terms of the mechanical dynamics, the optimal state depends on finding an interval of the
mechanical approach to a vibration system for the known resonant frequency f res. Regarding this task,
an aspect of major importance consists in the nonlinear stiffness coefficient k in the entire generator
system (Figure 8). If the factor is adequately considered, then the device is capable of providing an
operational efficiency of approximately 90%; in such conditions, the MG will operate at its maximum
efficiency with minimal vibrations. The nonlinearity of the stiffness coefficient k depends on the choice
of principal approach (Figure 1a,b and also Figures 6–8).
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Figure 8. The applied stiffness characteristics [2], coefficient k; the behavior is nonlinear in both of the
MG magnetic circuit principles.

Such an approach to the mechanical configuration of the MG is suitable for multiple purposes in
microtechnology, including the formation of fields of resonant MGs (Figures 9–12). Two approaches
were tested as regards the electromagnetic field: one utilizing air to substitute for the ferromagnetic
material in the magnetic field (principle II, Figure 1b), and the other applying a ferromagnetic material
according to Figure 3a. Figure 9 demonstrates a solution to facilitate the further development of the
progressive concept (principle II) through changes of the dimensional parameters of the design, t1, t2,
φD1 − φD3.

Figure 9. A component diagram of the MG0 design with the linearized coefficient of stiffness k (based
on principle II).

171



Symmetry 2020, 12, 110

(a) (b) 

Figure 10. A component diagram of the MG0 design with the linearized coefficient of stiffness k (based
on principle II); (a) configuration A, and (b) its output voltage Uout.

(a) (b) 

Figure 11. A component diagram of the MG0 design with the linearized coefficient of stiffness k (based
on principle II); (a) configuration B, and (b) its output voltage.

(a) (b) 

Figure 12. A component diagram of the MG0 design with the linearized coefficient of stiffness k (based
on principle II); (a) configuration C, and (b) its output voltage.

Figures 10–12 demonstrate the difference in the shapes of the electric voltage induced in the coil
of the generator at some characteristic settings of the design parameters t1, t2, φD1 − φD3.
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6. Microstructures

In order to apply the above-defined principles and conclusions, we have to consider the relevant
figures (MG principle II, Figures 1b, 3a and 9, Figures 10–12, where Sc is the effective area of the coil,
Figure 2c; Sp denotes the area of the pole extension; t1 represents the thickness of the pole extension of
the MG core; Nseg is the number of the electrical winding segments; Npol is the number of the pole
extensions of the core and shell; and, f (dg/dt), g (dg/dt) denote the time variation of the gravitational
acceleration of the moving part of the microgenerator. The correct setting of the MG0 structure,
Figures 9–11, can be verified through measuring or evaluating the behavior of the output voltage on
the terminals of the MG segment. The obtained instantaneous values of the patterns of the voltage u(t)
are then applicable in expressing, via the indirect method and based on the above formula (5), the
observed physical quantities of the model.

As regards vibration energy harvesting within the microdimension, it is necessary to utilize
in the MG fields the discussed principle II (Figure 7), together with certain variants of the relevant
configurations of the magnetic circuit and winding (Figures 9–12). Thus, the preset requirements for
the generator sensitivity and effective use of the space will enable us to harvest a high amount of
residual energy. Figure 13, below, illustrates an exemplary periodic MG structure. The actual design
(Figures 10–12) or other parameters can be altered to ensure the desired shape of the output voltage
(Figures 10b, 11b and 12b) and also the conversion effectivity rate in transforming the mechanical
vibrations to electrical energy.

Figure 13. A field of periodically configured MGs an exemplary structure.

The optimal design of a symmetrically structured sensitive vibration harvester (principle II,
Figure 1b to operate in the resonant band can be applied in segmentation into microgenerator
structures, as in Figure 13). Segmented microgenerators clustered as units (a MEMS harvester) can be
arranged into fields. In this type of configuration, the designer has to consider the condition in which
the length of the excitation vibration wave is

λv � L, L = N(ls + lh) (6)

where L denotes the length of a side of the periodic structure, ls represents the length of the MG element,
and lh is the space between the elements of the periodically structured field of microgenerators. During
the propagation of vibrations, the structure behaves such that the electric voltage is almost in phase at
the output of the windings.

The actual engineering of the procedure to facilitate, especially in terms of the size, the transition
from a minigenerator to a microdevice (MEMS) is accompanied by not only technological questions and
problems, but also the fundamental requirement of respecting the principles that are characterized in
this paper. Generally, it is possible to suggest that the set of usable magnetic materials comprises items
such as nano Ni and convenient permalloys deposited via sputter coating or lamination. The weight of
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the flat structure, ms, then determines the achievable resonant frequency, harvesting efficiency, and
adjustment of the harvester’s lower sensitivity limit. Importantly, each concrete application of the
principle requires designing a suitable MEMS structure by using the above-shown models.

7. Comparing MG Concepts, Designs, and Structures

Current experiments with vibration microgenerators converting energy via magnetic induction
(vibration/electric energy) employ various harvesting approaches (principle I, principle II) and magnetic
circuit structures [2]; thus, the devices exhibit diverse output power and conversion efficiency rates
with respect to the given size and vibration frequency spectrum [12–22]. When engineering a periodic
microstructure, a designer has to consider the degree of efficiency at which the transformed energy
(mechanical vibrations) is to be harvested, and they then select the microstructure element accordingly,
while utilizing available technologies. Several specific methods and the obtained results by different
research groups are compared below, Figures 14–18; in this context, the relevant concepts and structures
of vibration generator transformation elements applied internationally are also discussed in view of
the samples MG I–MG IV presented herein (Figures 19–21).

 
(a) (b) 

Figure 14. The silicon-based concepts developed by (a) Kulkarni et al. [11] and (b) Zhu et al. [13].

Figure 15. The vibration microgenerator designed by Beeby et al. [12].

 
Figure 16. The electromagnetic design by Wang et al. [15].
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Figure 17. The electromagnetic vibration energy harvester using cylindrical geometry, developed by
Yang et al. [16].

    
(a) (b) 

Figure 18. The permanent magnet (a) having a spring in the cylindrical structure of the energy
harvester [18], (b) tested sample designed by Lee et al. [17].

 
Figure 19. The basic symmetric magnetic circuit, structural design [2] according to Principles I and II,
invariably with magnetic damping in the limit position of the rocking arm [3].
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(a) (b) (c) 

Figure 20. The tested microgenerator [2] based on Principle I: (a) MG I—the dimensions of 90 × 40 ×
30 mm, Uout max = 300 V; (b) MG II—the dimensions of 50 × 27 × 25 mm, Uout max = 20 V; and (c) the
instantaneous behavior of the output electrical voltage in MG I and MG II (the effect of the stiffness
coefficient k—Figure 8).

(a) (b) (c) 

Figure 21. The devices based on Principle II [2]: (a) MG III—the dimensions of 50× 25× 25 mm, Uout max

= 10 V; (b) MG IV—the dimesnions of 50 × 35 × 25 mm, Uout max = 20 V; and, (c) the instantaneous
behavior of the output electrical voltage in MG III and MG IV (the effect of the stiffness coefficient
k—Figure 8).

The microgenerators that are characterized in Figures 14–18 correspond to the concepts and design
versions of the vibration generator magnetic circuit and housing outlined by the authors of this paper.
The solution from Figure 2a corresponds to the embodiments that are discussed within articles [14,15],
comprising a clearly open magnetic circuit and an induction coil unfavorably positioned with respect
to the movement of the permanent magnet. The concepts and tests that are presented in [11,13]
relate to the configuration from Figure 2b, where the induction coil is positioned and oriented such
that the harvester provides a higher efficiency; however, the magnetic circuit is not markedly closed.
The technique adopted by Yang et al. [16] approaches the effective configuration from Figure 2c; the
researchers employed the non-linear, non-monotonous function of the stiffness coefficient k, namely,
the function specified as the solution respecting Principle I, Figure 1a). By contrast, Beeby et al. [12]
proposed an interpretation that, when compared to our investigation, resembles the system stiffness
coefficient within Principle II–Figure 1b.

At the DTEEE FEEC, BUT, comparative tests were performed of a vibration generator (Figure 19)
with magnetic damping [2] of the mobile arm’s movement; these testing cycles comprised design
variants MG I–MG II according to Principle I and also versions MG III–MG IV exploiting Principle
II. The parameters obtained in selected generators are summarized in Table 1; a wider comparison is
available in study [18] (as in table 4).
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Table 1. The parameters of selected vibration generators.

Reference
Permanent
Magnet

Type

Generator
Body

Size x, y,
z [m]

Resonant
Frequency

f r [Hz]

Amplitude
Mech.
Part A

[m]

Output
Power

Pout [W]

Output
Voltage
Uout [V]

Load
Resistance

R [Ω]

Acceleration
G, g = 9.81

[m/s]

Effective
Power

Density
[W/m3]

Beeby
et al. [12],

2007
− 375 mm3 52 − 2 × 10−6 0.428

RMS 4000 0.06 g ≈6

Zhu et al.
[13], 2010 FeNdB 2000 mm3 67.6–98 0.6 × 10−3 61.6–156.6

× 10−6 − − 0.06 g ≈30–80

Kulkarni
et al. [11],

2008
FeNdB 3375 mm3 60–9840 1.5 × 10−3 0.6 × 10−6 0.025 52,700 0.398–4 g ≈0.2

Wang
et al. [15],

2007
FeNdB 256 mm3 121.25 0.738 ×

10−3 - 0.06 - 1.5 g -

Lee et al.
[17], 2012 FeNdB 1.4 × 10−4

m3 16 − 1.52 ×
10−3 4.8 5460 0.2 g ≈10

Yang
et al., [16],

2014.
− 50,000

mm3 22–25 13.4 ×
10−3 0.7–2.0 110 0.6 g ≈270

Elvin
et al., [14],

2011
− 15,000

mm3 112 − 4 × 10−6 0.007 986 - ≈0.26

MG I [2],
2006 FeNdB 90, 40, 30

mm 20–35
50 ×

10−6–400
× 10−6

70 × 10−3 4–60 (300)
p-p 7500 0.15–0.4 g ≈650

MG II [2],
2006 FeNdB 50, 27, 25

mm 17–25
50 ×

10−6–400
× 10−6

19.5 ×
10−3 6−15 5000 0.1–0.7 g ≈60

MG III FeNdB 50, 25, 25
mm 21–31.5

50 ×
10−6–400
× 10-6

5.0 × 10−3 1.0–2.5 600 0.05–0.4 g ≈15

MG IV FeNdB 50, 35, 25
mm 21–31.5

50 ×
10−6–400
× 10−6

8.0 × 10−3 1.0–2.5 1200 0.05–0.4 g ≈18

*Lith.
battery

[19], 2018
≈40 × 106

*supercap
[20], 2010 ≈3–5

*fuel ≈4 × 109

*U235 ≈9 × 1016

If application in microelectronics and periodic systems is assumed, then the solution displayed in
Figure 2c appears to be advantageous; however, at major vibrations, namely, ones between 0.3 g and
1.0 g, it is beneficial to configure the magnetic circuit and coil as set out within Principle I, Figure 1a).
Where the external vibrations drop below 0.3 g (0.01 g–0.2 g), Principle II, Figure 1b, has to be applied.
A generator configuration design requires an analysis of the magnetic field expected for the active
section of the device and overall presetting of the maximum values of the specific magnetic flux density
B into the air gap that is to contain the generator winding, Figure 6; such an analysis and presetting
have to facilitate the maximum magnetic flux change in time and space, as formulated within Faraday’s
law of induction (1) and to enable geometrical configuration of the winding shown in Figure 4. In
the given context, it is advantageous to employ the double action system to facilitate a magnetic flux
change, as indicated in Figures 5a and 7.

Figure 20 presents the tested generators MG I–MG II that exploit Principle I and the energy
harvesting efficiency rates yielded from Figure 2c, exhibiting various size versions together with
different parameters and measured patterns of the output electrical voltage Uout.
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Figure 21 presents the embodiments of MG III and MG IV respecting the magnetic circuit
configuration according to Principle II and the energy harvesting effectivity scheme that characterizes
the variant from Figure 2c.

The last column of Table 1 comprises data that are related to effective power density [W/m3];
this quantity enables us to express the effectivity of individual generator concepts and structures as
regards harvesting quality. The last four lines indicate a comparable quantity for fossil and nuclear
fuels, batteries, and supercaps.

For comparison purposes, Table 1 contains a quantity denoted as “effective power density“; in
this context, it would probably be interesting to also indicate the harvesting rate of the microgenerator,
but such a task appears to be rather problematic. Although the efficiency of a resonant harvester can
be preset to a desired level, as demonstrated via Formulas (1)–(5), the associated model (5), and the test
cycles visualized in Figures 19–21 the achievable efficiency rate markedly depends on the quality of the
mechanical coupling between the vibration source, the power management unit, and other relevant
parameters; our tests yielded final rates between 50 and 95%. The problem was analyzed by different
authors already previously [2–5,24].

8. Conclusions

The paper discussed the outcomes of a theoretical investigation into the design and principles
of mini/micro generators to facilitate mechanical vibration energy harvesting [2]. The main product
of the continuous research consists in simulation-based determination of the optimum rotationally
symmetric geometry design versions and parameters of a relevant magnetic circuit.

The advantageous solutions and options are embodied in the generator design versions according
to the proposed principles I and II, which ensure the necessary resistive loads and associated
impedances. Exploiting the measured output voltages of the selected variants, the derived theoretical
models can evaluate the harvester quality and fabrication procedure. Using the hybrid measurement
approach combined with a numerical model, it is possible to classify other physical quantities of the
electromagnetic field inside the generator.

The harvesters fabricated according to principle II, utilized in the range of f r = 10–50 Hz (frequent
in the automotive and aeronautics sectors), are integrable into miniaturized microgenerator structures
working within the range of G = 0.05 g–0.08 g. This concept could advantageously employ in practice
the higher level of vibrations available compared to the design based on principle I [3]. The generators
that employ principle I operate at vibration levels higher than G ≥ 0.15 g. Generally, the winding
configuration variants convenient for the frequency ranges of f v = 1–10 Hz, f v = 50–150 Hz are
demonstrated in Figure 2b,c.

We discussed selected samples of microgenerators to evaluate multiple quantities, including
the effective power density (Table 1). This quantity is utilized as the parameter enabling us to
choose the source of energy applicable in the given task or unit and determine whether the actual
selection of the correct approach is a parameter for facilitating effective designing of MEMS structures.
The knowledge that was obtained through the experiments is beneficial for the use of autonomous
electro-mechanico-electronic systems in Industry 4.0 projects.
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