428 research outputs found

    A Data-Driven Approach For Monitoring And Predictive Diagnosis Of Sucker Rod Pump System

    Get PDF
    Given its long operational history, a sucker-rod pump (SRP) has been widely utilized as a lifting solution to bring reservoir fluids to the surface with low cost and high efficiency. However, debugging the rod pump issues requires on-site activities that could cost time and money for operators. With the vast dataset collected from years of operation, numerous companies are looking to turn these engineering processes into automated systems in the oilfield network, despite the complexity of data and lack of knowledge. The integral approach is to develop real-time diagnostics for downhole conditions. The emerging artificial intelligence and big-data analytics have provided relatively precise downhole condition forecasting based on available data, enabling better decision-making. This thesis focuses on collecting representative data and utilizing machine learning techniques to predict operational anomalies of sucker-rod pumps. An experimental design at the University of Oklahoma, referred to as Interactive Digital Sucker Rod Pumping Unit (IDSRP), was used to facilitate a data-driven solution and monitor SRP performance and diagnostics. The physical framework includes a 50-ft transparent casing and tubing with a downhole rod pump at the bottom. A linear actuator provides the rod string’s reciprocal movement and simulates different surface units and operating scenarios. This facility uses proper instrumentation and a data acquisition system for signal sensor readings. A workflow is developed to translate surface dynamometer cards to downhole ones and train predictive models in time-driven pressure and rate data. Though primarily focusing on the normal pump operation, the test matrix varies in stroke length, pump speed, and rod movement shape. The tests validate the model to classify and detect various operational conditions in sucker-rod pumps. The model dynamically categorizes the pumps into key states of ideal condition and over-pumping with a regression fit of accuracy higher than 0.7 and overall classification accuracy of 92%. Moreover, the real-time model anticipates an event in which the pump experiences a slight pumping-off that could potentially deteriorate the rod. The results also help understand key features that drive sucker rod pump performance prediction and help detect anomalous pump behavior. The machine learning algorithms, developed by the physics-based inputs, generate predictive models, thus classifying operational conditions or failures of the pump. The diagnosis for the pump’s anomalies is also predicted by a real time analysis. The visualization enables to recognize the patterns and abnormal phases early. The explainable machine learning (i.e. Shapley additive explanation) helps decoding the predictive models with feature importance, local and global sensitivities in categorizing SRP conditions. The developed unit has the capability of working with different well conditions, combining with real-time training and applying models, to initiate early warnings. The developed processes and workflows have the potential of becoming a generic optimizing and monitoring model for rod pumps. The novelty of this setup consists not only in its mechatronic design but also in through monitoring of the pump operations

    Real-time implementation of a sensor validation scheme for a heavy-duty diesel engine

    Get PDF
    With ultra-low exhaust emissions standards, heavy-duty diesel engines (HDDEs) are dependent upon a myriad of sensors to optimize power output and exhaust emissions. Apart from acquiring and processing sensor signals, engine control modules should also have capabilities to report and compensate for sensors that have failed. The global objective of this research was to develop strategies to enable HDDEs to maintain nominal in-use performance during periods of sensor failures. Specifically, the work explored the creation of a sensor validation scheme to detect, isolate, and accommodate sensor failures in HDDEs. The scheme not only offers onboard diagnostic (OBD) capabilities, but also control of engine performance in the event of sensor failures. The scheme, known as Sensor Failure Detection Isolation and Accommodation (SFDIA), depends on mathematical models for its functionality. Neural approximators served as the modeling tool featuring online adaptive capabilities. The significance of the SFDIA is that it can enhance an engine management system (EMS) capability to control performance under any operating conditions when sensors fail. The SFDIA scheme updates models during the lifetime of an engine under real world, in-use conditions. The central hypothesis for the work was that the SFDIA scheme would allow continuous normal operation of HDDEs under conditions of sensor failures. The SFDIA was tested using the boost pressure, coolant temperature, and fuel pressure sensors to evaluate its performance. The test engine was a 2004 MackRTM MP7-355E (11 L, 355 hp). Experimental work was conducted at the Engine and Emissions Research Laboratory (EERL) at West Virginia University (WVU). Failure modes modeled were abrupt, long-term drift and intermittent failures. During the accommodation phase, the SFDIA restored engine power up to 0.64% to nominal. In addition, oxides of nitrogen (NOx) emissions were maintained at up to 1.41% to nominal

    Exploring the adoption of a conceptual data analytics framework for subsurface energy production systems: a study of predictive maintenance, multi-phase flow estimation, and production optimization

    Get PDF
    Als die Technologie weiter fortschreitet und immer stärker in der Öl- und Gasindustrie integriert wird, steht eine enorme Menge an Daten in verschiedenen Wissenschaftsdisziplinen zur Verfügung, die neue Möglichkeiten bieten, informationsreiche und handlungsorientierte Informationen zu gewinnen. Die Konvergenz der digitalen Transformation mit der Physik des Flüssigkeitsflusses durch poröse Medien und Pipeline hat die Entwicklung und Anwendung von maschinellem Lernen (ML) vorangetrieben, um weiteren Mehrwert aus diesen Daten zu gewinnen. Als Folge hat sich die digitale Transformation und ihre zugehörigen maschinellen Lernanwendungen zu einem neuen Forschungsgebiet entwickelt. Die Transformation von Brownfields in digitale Ölfelder kann bei der Energieproduktion helfen, indem verschiedene Ziele erreicht werden, einschließlich erhöhter betrieblicher Effizienz, Produktionsoptimierung, Zusammenarbeit, Datenintegration, Entscheidungsunterstützung und Workflow-Automatisierung. Diese Arbeit zielt darauf ab, ein Rahmenwerk für diese Anwendungen zu präsentieren, insbesondere durch die Implementierung virtueller Sensoren, Vorhersageanalytik mithilfe von Vorhersagewartung für die Produktionshydraulik-Systeme (mit dem Schwerpunkt auf elektrischen Unterwasserpumpen) und präskriptiven Analytik für die Produktionsoptimierung in Dampf- und Wasserflutprojekten. In Bezug auf virtuelle Messungen ist eine genaue Schätzung von Mehrphasenströmen für die Überwachung und Verbesserung von Produktionsprozessen entscheidend. Diese Studie präsentiert einen datengetriebenen Ansatz zur Berechnung von Mehrphasenströmen mithilfe von Sensormessungen in elektrischen untergetauchten Pumpbrunnen. Es wird eine ausführliche exploratorische Datenanalyse durchgeführt, einschließlich einer Ein Variablen Studie der Zielausgänge (Flüssigkeitsrate und Wasseranteil), einer Mehrvariablen-Studie der Beziehungen zwischen Eingaben und Ausgaben sowie einer Datengruppierung basierend auf Hauptkomponentenprojektionen und Clusteralgorithmen. Feature Priorisierungsexperimente werden durchgeführt, um die einflussreichsten Parameter in der Vorhersage von Fließraten zu identifizieren. Die Modellvergleich erfolgt anhand des mittleren absoluten Fehlers, des mittleren quadratischen Fehlers und des Bestimmtheitskoeffizienten. Die Ergebnisse zeigen, dass die CNN-LSTM-Netzwerkarchitektur besonders effektiv bei der Zeitreihenanalyse von ESP-Sensordaten ist, da die 1D-CNN-Schichten automatisch Merkmale extrahieren und informative Darstellungen von Zeitreihendaten erzeugen können. Anschließend wird in dieser Studie eine Methodik zur Umsetzung von Vorhersagewartungen für künstliche Hebesysteme, insbesondere bei der Wartung von Elektrischen Untergetauchten Pumpen (ESP), vorgestellt. Conventional maintenance practices for ESPs require extensive resources and manpower, and are often initiated through reactive monitoring of multivariate sensor data. Um dieses Problem zu lösen, wird die Verwendung von Hauptkomponentenanalyse (PCA) und Extreme Gradient Boosting Trees (XGBoost) zur Analyse von Echtzeitsensordaten und Vorhersage möglicher Ausfälle in ESPs eingesetzt. PCA wird als unsupervised technique eingesetzt und sein Ausgang wird weiter vom XGBoost-Modell für die Vorhersage des Systemstatus verarbeitet. Das resultierende Vorhersagemodell hat gezeigt, dass es Signale von möglichen Ausfällen bis zu sieben Tagen im Voraus bereitstellen kann, mit einer F1-Bewertung größer als 0,71 im Testset. Diese Studie integriert auch Model-Free Reinforcement Learning (RL) Algorithmen zur Unterstützung bei Entscheidungen im Rahmen der Produktionsoptimierung. Die Aufgabe, die optimalen Injektionsstrategien zu bestimmen, stellt Herausforderungen aufgrund der Komplexität der zugrundeliegenden Dynamik, einschließlich nichtlinearer Formulierung, zeitlicher Variationen und Reservoirstrukturheterogenität. Um diese Herausforderungen zu bewältigen, wurde das Problem als Markov-Entscheidungsprozess reformuliert und RL-Algorithmen wurden eingesetzt, um Handlungen zu bestimmen, die die Produktion optimieren. Die Ergebnisse zeigen, dass der RL-Agent in der Lage war, den Netto-Barwert (NPV) durch kontinuierliche Interaktion mit der Umgebung und iterative Verfeinerung des dynamischen Prozesses über mehrere Episoden signifikant zu verbessern. Dies zeigt das Potenzial von RL-Algorithmen, effektive und effiziente Lösungen für komplexe Optimierungsprobleme im Produktionsbereich zu bieten.As technology continues to advance and become more integrated in the oil and gas industry, a vast amount of data is now prevalent across various scientific disciplines, providing new opportunities to gain insightful and actionable information. The convergence of digital transformation with the physics of fluid flow through porous media and pipelines has driven the advancement and application of machine learning (ML) techniques to extract further value from this data. As a result, digital transformation and its associated machine-learning applications have become a new area of scientific investigation. The transformation of brownfields into digital oilfields can aid in energy production by accomplishing various objectives, including increased operational efficiency, production optimization, collaboration, data integration, decision support, and workflow automation. This work aims to present a framework of these applications, specifically through the implementation of virtual sensing, predictive analytics using predictive maintenance on production hydraulic systems (with a focus on electrical submersible pumps), and prescriptive analytics for production optimization in steam and waterflooding projects. In terms of virtual sensing, the accurate estimation of multi-phase flow rates is crucial for monitoring and improving production processes. This study presents a data-driven approach for calculating multi-phase flow rates using sensor measurements located in electrical submersible pumped wells. An exhaustive exploratory data analysis is conducted, including a univariate study of the target outputs (liquid rate and water cut), a multivariate study of the relationships between inputs and outputs, and data grouping based on principal component projections and clustering algorithms. Feature prioritization experiments are performed to identify the most influential parameters in the prediction of flow rates. Model comparison is done using the mean absolute error, mean squared error and coefficient of determination. The results indicate that the CNN-LSTM network architecture is particularly effective in time series analysis for ESP sensor data, as the 1D-CNN layers are capable of extracting features and generating informative representations of time series data automatically. Subsequently, the study presented herein a methodology for implementing predictive maintenance on artificial lift systems, specifically regarding the maintenance of Electrical Submersible Pumps (ESPs). Conventional maintenance practices for ESPs require extensive resources and manpower and are often initiated through reactive monitoring of multivariate sensor data. To address this issue, the study employs the use of principal component analysis (PCA) and extreme gradient boosting trees (XGBoost) to analyze real-time sensor data and predict potential failures in ESPs. PCA is utilized as an unsupervised technique and its output is further processed by the XGBoost model for prediction of system status. The resulting predictive model has been shown to provide signals of potential failures up to seven days in advance, with an F1 score greater than 0.71 on the test set. In addition to the data-driven modeling approach, The present study also in- corporates model-free reinforcement learning (RL) algorithms to aid in decision-making in production optimization. The task of determining the optimal injection strategy poses challenges due to the complexity of the underlying dynamics, including nonlinear formulation, temporal variations, and reservoir heterogeneity. To tackle these challenges, the problem was reformulated as a Markov decision process and RL algorithms were employed to determine actions that maximize production yield. The results of the study demonstrate that the RL agent was able to significantly enhance the net present value (NPV) by continuously interacting with the environment and iteratively refining the dynamic process through multiple episodes. This showcases the potential for RL algorithms to provide effective and efficient solutions for complex optimization problems in the production domain. In conclusion, this study represents an original contribution to the field of data-driven applications in subsurface energy systems. It proposes a data-driven method for determining multi-phase flow rates in electrical submersible pumped (ESP) wells utilizing sensor measurements. The methodology includes conducting exploratory data analysis, conducting experiments to prioritize features, and evaluating models based on mean absolute error, mean squared error, and coefficient of determination. The findings indicate that a convolutional neural network-long short-term memory (CNN-LSTM) network is an effective approach for time series analysis in ESPs. In addition, the study implements principal component analysis (PCA) and extreme gradient boosting trees (XGBoost) to perform predictive maintenance on ESPs and anticipate potential failures up to a seven-day horizon. Furthermore, the study applies model-free reinforcement learning (RL) algorithms to aid decision-making in production optimization and enhance net present value (NPV)

    Deep Learning Aided Data-Driven Fault Diagnosis of Rotatory Machine: A Comprehensive Review

    Get PDF
    This paper presents a comprehensive review of the developments made in rotating bearing fault diagnosis, a crucial component of a rotatory machine, during the past decade. A data-driven fault diagnosis framework consists of data acquisition, feature extraction/feature learning, and decision making based on shallow/deep learning algorithms. In this review paper, various signal processing techniques, classical machine learning approaches, and deep learning algorithms used for bearing fault diagnosis have been discussed. Moreover, highlights of the available public datasets that have been widely used in bearing fault diagnosis experiments, such as Case Western Reserve University (CWRU), Paderborn University Bearing, PRONOSTIA, and Intelligent Maintenance Systems (IMS), are discussed in this paper. A comparison of machine learning techniques, such as support vector machines, k-nearest neighbors, artificial neural networks, etc., deep learning algorithms such as a deep convolutional network (CNN), auto-encoder-based deep neural network (AE-DNN), deep belief network (DBN), deep recurrent neural network (RNN), and other deep learning methods that have been utilized for the diagnosis of rotary machines bearing fault, is presented

    Prognostic Approaches Using Transient Monitoring Methods

    Get PDF
    The utilization of steady state monitoring techniques has become an established means of providing diagnostic and prognostic information regarding both systems and equipment. However, steady state data is not the only, or in some cases, even the best source of information regarding the health and state of a system. Transient data has largely been overlooked as a source of system information due to the additional complexity in analyzing these types of signals. The development for algorithms and techniques to quickly, and intuitively develop generic quantification of deviations a transient signal towards the goal of prognostic predictions has until now, largely been overlooked. By quantifying and trending these shifts, an accurate measure of system heath can be established and utilized by prognostic algorithms. In fact, for some systems the elevated stress levels during transients can provide better, more clear indications of system health than those derived from steady state monitoring. This research is based on the hypothesis that equipment health signals for some failure modes are stronger during transient conditions than during steady-state because transient conditions (e.g. start-up) place greater stress on the equipment for these failure modes. From this it follows that these signals related to the system or equipment health would display more prominent indications of abnormality if one were to know the proper means to identify them. This project seeks to develop methods and conceptual models to monitor transient signals for equipment health. The purpose of this research is to assess if monitoring of transient signals could provide alternate or better indicators of incipient equipment failure prior to steady state signals. The project is focused on identifying methods, both traditional and novel, suitable to implement and test transient model monitoring in both an useful and intuitive way. By means of these techniques, it is shown that the addition information gathered during transient portions of life can be used to either to augment existing steady-state information, or in cases where such information is unavailable, be used as a primary means of developing prognostic models

    Digital Image Processing

    Get PDF
    This book presents several recent advances that are related or fall under the umbrella of 'digital image processing', with the purpose of providing an insight into the possibilities offered by digital image processing algorithms in various fields. The presented mathematical algorithms are accompanied by graphical representations and illustrative examples for an enhanced readability. The chapters are written in a manner that allows even a reader with basic experience and knowledge in the digital image processing field to properly understand the presented algorithms. Concurrently, the structure of the information in this book is such that fellow scientists will be able to use it to push the development of the presented subjects even further

    Case studies in causal inference and anomaly detection

    Get PDF
    The study of parent-child well interactions in unconventional shales has generated high interest both in the industry and academia over the last decade. This is largely because of the growing number of child wells and their immediate impact on the parent well production owing to several dynamic factors, one of them, including well spacing. Evaluating the impact of well spacing on parent and child well production performance is challenging. Several studies have resorted to geomechanical stress and fracture modeling combined with dynamic simulation techniques while a few operators have chosen field trials to evaluate optimal well spacing. Several data-driven approaches to address the well-spacing problem have also become popular. One such commonly used data-driven approach simply calculates the difference in cumulative production over a specified period of time for parent and child wells grouped by spacing. This approach has been the method of choice for several different recent analyses of well spacing; however, given that the method of simple averages does not account for formation properties or completion design, the results may be compromised and can lead to counterintuitive results. In this thesis, I introduce a new data-driven approach leveraging the power of causal inference as seen in clinical trials for multivariate observational studies. The causal approach addresses the problem behind the routinely used simple averages approach by providing a formalism to control for reservoir and completion variables when evaluating the impact of well spacing on production performance. I apply the causal inference workflow to a dataset from a prolific oil basin in Texas with over 700 wells in the analyses. It includes the formation properties, fluid volume, proppant weight, landing zones and the downhole locations of the wells. Using the causal inference workflow, I evaluate the effect of well spacing on well performance at different parent-child spacing ranges. The optimal well spacing is then estimated for this shale play based on the magnitude of the causal effects. These estimates are then compared with the simple averages approach to demonstrate the power and utility of causality. In the second part of the thesis, I transition into a discussion on anomaly detection approaches applied in the oil and gas industry. I discuss current anomaly detection methods for a widely used artificial lift method – the Sucker Rod Pump (SRP). Today, there is a growing need for fast and accurate anomaly detection systems given the emergence of Internet of Things (IoT) and access to Big Data. Anomaly detection using human operators can be expensive, is often subject to bias and experience-levels and does not scale very well with the need to monitor more than a few tens of wells. With SRPs, the problem of anomaly detection becomes a problem of image classification where dynamometer cards are evaluated for signatures of failure. While this has been the mainstay of anomaly detection for pumpjacks, in this thesis, I automate this task of monitoring and detecting the anomalies from the SRP pump cards. Several thousand synthetic pump cards specific to pump failures modes are generated from the literature and fed to a deep learning model. This deep learning model is a Convolutional Neural Network (CNN) which is commonly used in image classification tasks, speech recognition tasks as well as many other modern-day technology applications including smart phones, self-driving cars, aerospace etc. The CNN used in this work offers a very high accuracy for detecting a variety of pump failures modes thereby offering the potential to save costs, time and unnecessary workovers for the operator

    An intelligent engine condition monitoring system

    Get PDF
    The main focus of the work reported here is in the design of an intelligent condition monitoring system for diesel engines. Mechanical systems in general and diesel engines in particular can develop faults if operated for any length of time. Condition monitoring is a method by which the performance of a diesel engine can be maintained at a high level, ensuring both continuous availability and design-level efficiency. A key element in a condition monitoring program is to acquire sensor information from the engine, and use this information to assess the condition of the engine, with an emphasis on monitoring causes of engine failure or reduced efficiency. A Ford 70PS 4-stroke diesel engine has been instrumented with a range of sensors and interfaced to a PC in order to facilitate computer controlled data acquisition and data storage. Data was analyzed to evaluate the optimum use of sensors to identify faults and to develop an intelligent algorithm for the engine condition monitoring and fault detection, and in particular faults affecting the combustion process in the engine. In order to investigate the fault-symptom relationships, two synthetic faults were introduced to the engine. Fuel and inlet air shortage were selected as the faults for their direct relationship to the combustion process quality. As a subtask the manually operated hydraulic brake was adapted to allow automatic control to improve its performance. Two modes of controlling were designed for the developed automatic control of the hydraulic brake system. A robust mathematical diesel engine model has been developed which can be used to predict the engine parameters related to the combustion process in the diesel engine, was constructed from the basic relationships of the diesel engine using the minimum number of empirical equations. The system equations of a single cylinder engine were initially developed, from which the multi-cylinder diesel engine model was validated against experimental test data. The model was then tuned to improve the predicted engine parameters for better matching with the available engine type. The final four-cylinder diesel engine model was verified and the results show an accurate match with the experimental results. Neural networks and fuzzification were used to develop and validate the intelligent condition monitoring and fault diagnosis algorithm, in order to satisfy the requirements of on-line operation, i. e. reliability, easily trained, minimum hardware and software requirements. The development process used a number of different neural network architecture and training techniques. To increase the number of the parameters used for the engine condition evaluation, the Multi-Net technique was used to satisfy accurate and fast decision making. Two neural networks are designed to operate in parallel to accommodate the different sampling rate of the key parameters without interference and with reduced data processing time. The two neural networks were trained and validated using part of the measured data set that represents the engine operating range. Another set of data, not utilized within the training stage, has been applied for validation. The results of validation process indicate the successful prediction of the faults using the key measured parameters, as well as a fast data processing algorithm. One of the main outcomes of this study is the development of a new technique to measure cylinder pressure and fuel pressure through the measurement of the strain in the injector body. The main advantage of this technique is that, it does not require any intrusive modification to the engine which might affect the engine actual performance. The developed sensor was tested and used to measure the cylinder and fuel pressure to verify the fuel fault effect on the combustion process quality. Due to high sampling rate required, the developed condition monitoring and fault diagnosis algorithm does not utilize this signal to reduce the required computational resources for practical applications.EThOS - Electronic Theses Online ServiceEgyptian GovernmentGBUnited Kingdo

    A STUDY OF MODEL-BASED CONTROL STRATEGY FOR A GASOLINE TURBOCHARGED DIRECT INJECTION SPARK IGNITED ENGINE

    Get PDF
    To meet increasingly stringent fuel economy and emissions legislation, more advanced technologies have been added to spark-ignition (SI) engines, thus exponentially increase the complexity and calibration work of traditional map-based engine control. To achieve better engine performance without introducing significant calibration efforts and make the developed control system easily adapt to future engines upgrades and designs, this research proposes a model-based optimal control system for cycle-by-cycle Gasoline Turbocharged Direct Injection (GTDI) SI engine control, which aims to deliver the requested torque output and operate the engine to achieve the best achievable fuel economy and minimum emission under wide range of engine operating conditions. This research develops a model-based ignition timing prediction strategy for combustion phasing (crank angle of fifty percent of the fuel burned, CA50) control. A control-oriented combustion model is developed to predict burn duration from ignition timing to CA50. Using the predicted burn duration, the ignition timing needed for the upcoming cycle to track optimal target CA50 is calculated by a dynamic ignition timing prediction algorithm. A Recursive-Least-Square (RLS) with Variable Forgetting Factor (VFF) based adaptation algorithm is proposed to handle operating-point-dependent model errors caused by inherent errors resulting from modeling assumptions and limited calibration points, which helps to ensure the proper performance of model-based ignition timing prediction strategy throughout the entire engine lifetime. Using the adaptive combustion model, an Adaptive Extended Kalman Filter (AEKF) based CA50 observer is developed to provide filtered CA50 estimation from cyclic variations for the closed-loop combustion phasing control. An economic nonlinear model predictive controller (E-NMPC) based GTDI SI engine control system is developed to simultaneously achieve three objectives: tracking the requested net indicated mean effective pressure (IMEPn), minimizing the SFC, and reducing NOx emissions. The developed E-NMPC engine control system can achieve the above objectives by controlling throttle position, IVC timing, CA50, exhaust valve opening (EVO) timing, and wastegate position at the same time without violating engine operating constraints. A control-oriented engine model is developed and integrated into the E-NMPC to predict future engine behaviors. A high-fidelity 1-D GT-POWER engine model is developed and used as the plant model to tune and validate the developed control system. The performance of the entire model-based engine control system is examined through the software-in-the-loop (SIL) simulation using on-road vehicle test data
    corecore