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ABSTRACT 
Real-time Implementation of a Sensor Validation Scheme for a Heavy-duty Diesel Engine 

 

Manoharan Thiagarajan 

 

With ultra-low exhaust emissions standards, heavy-duty diesel engines (HDDEs) are 
dependent upon a myriad of sensors to optimize power output and exhaust emissions. Apart from 
acquiring and processing sensor signals, engine control modules should also have capabilities to 
report and compensate for sensors that have failed. The global objective of this research was to 
develop strategies to enable HDDEs to maintain nominal in-use performance during periods of 
sensor failures. Specifically, the work explored the creation of a sensor validation scheme to 
detect, isolate, and accommodate sensor failures in HDDEs. The scheme not only offers onboard 
diagnostic (OBD) capabilities, but also control of engine performance in the event of sensor 
failures. The scheme, known as Sensor Failure Detection Isolation and Accommodation 
(SFDIA), depends on mathematical models for its functionality. Neural approximators served as 
the modeling tool featuring online adaptive capabilities. The significance of the SFDIA is that it 
can enhance an engine management system (EMS) capability to control performance under any 
operating conditions when sensors fail. The SFDIA scheme updates models during the lifetime 
of an engine under real world, in-use conditions. The central hypothesis for the work was that the 
SFDIA scheme would allow continuous normal operation of HDDEs under conditions of sensor 
failures. The SFDIA was tested using the boost pressure, coolant temperature, and fuel pressure 
sensors to evaluate its performance. The test engine was a 2004 Mack® MP7-355E (11 L, 355 
hp). Experimental work was conducted at the Engine and Emissions Research Laboratory 
(EERL) at West Virginia University (WVU). Failure modes modeled were abrupt, long-term 
drift and intermittent failures. During the accommodation phase, the SFDIA restored engine 
power up to 0.64% to nominal. In addition, oxides of nitrogen (NOx) emissions were maintained 
at up to 1.41% to nominal. 
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CHAPTER 1 INTRODUCTION  

1.1 Overview 

Modern heavy-duty diesel engines (HDDEs) are highly dependent upon the available 

sensors for emissions control and operation at optimum power. Such dependency becomes 

especially important, as engines are required to maintain or show improvement in durability, 

reliability, performance, and fuel economy with ever more stringent emissions regulations. All 

the engine sensors work in conjunction with the engine management system (EMS), a computer 

module with the purpose of engine and emissions control. Within it are algorithms programmed 

to accept sensor data and in turn output control signals to the various actuators around an engine.  

To operate HDDEs according to the Environmental Protection Agency (EPA) emissions 

specifications, engine manufacturers developed technologies that include the variable geometry 

turbocharger (VGT), exhaust gas recirculation (EGR) system and the electronic unit injector 

(EUI). EUIs provide advanced control of fuel injection pressure and timing. Each of these 

devices contains multiple sensors that communicate with the EMS to maximize performance and 

keep emissions at the required levels. Owing to the new 2010 EPA standards for HDDEs, engine 

manufacturers have begun implementing advanced exhaust aftertreatment devices. These devices 

include the Selective Catalytic Reduction (SCR) system and Diesel Particulate Filter (DPF) 

along with their associated sensors [1]. Beginning in 2010, the EPA and California Air 

Resources Board (CARB) require engine manufacturers install a standardized onboard diagnostic 

(OBD) system on heavy-duty engines [2-3]. The EPA requires full compliance to the OBD 

regulations by 2013. It replaces the current Engine Manufacturers Diagnostic (EMD) that has no 

standardization requirements. Similarly, this new heavy-duty OBD (HD OBD) means heavy-

duty vehicle manufacturers have to equip their vehicles with new sensors in addition to the 

previous ones already in use. The HD OBD primary function is to inform the vehicle operator if 

the pollution control system is failing. This could lead to repairs or complete replacement of 

parts, if necessary. All these additional sensors give an EMS added degrees of freedom and at the 

same time add to the challenges of controlling the engine. With all the extra complexity of 

HDDEs, an EMS does not include features for compensating sensor failures. 
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1.2 Hypothesis and Objectives 

The central hypothesis for this research is that a sensor validation scheme can detect, 

isolate and correct (accommodate) sensor failures in HDDEs to operate normally in all 

conditions. The scheme called Sensor Failure Detection Isolation and Accommodation (SFDIA) 

[4] has been successfully applied to fault tolerant flight control systems. Malfunctioning sensors 

can lead to inconsistent engine operation that consequently disrupt engine control or simply shut 

it down. Such malfunctions could also trigger the “limp-home mode”, which is undesirable for 

trucks hauling heavy cargo on highways. Limp-home mode is a condition set by the EMS when 

it detects a serious problem within the vehicle and proceeds to limit engine power but just 

enough to run to the next available service station. Correcting the sensor data becomes important 

in such instances especially when the component associated with the faulty sensor still functions 

properly. 

The global objective of this research was to enhance the in-use performance of HDDEs 

during periods of sensor failures. The specific objective was to validate the SFDIA functionality 

in real-time inline with a test engine using the boost pressure, coolant temperature and fuel 

pressure sensors. Artificial neural networks are the modeling tool of choice. 

1.3 Significance 

Sensors are mechanical devices and are not immune to failures. Depending on the 

application, each sensor construction is different, thus, having varying levels of robustness. In 

HDDEs, sensors must remain reliable without the need to verify calibrations. Pulling into a 

garage frequently just to check sensor calibrations is cost prohibitive. The SFDIA provides a 

solution to this issue by permitting the EMS to control performance under several instances of 

sensor-based failures. As an example, engine manufacturers use crankshaft (engine) speed and 

position, and boost pressure sensors to provide primary control data to determine fuel injection 

timing. The second category of sensors is coolant temperature, boost temperature and throttle 

(pedal) position [5]. If any of these sensors were to fail and send erroneous information to the 

EMS, it can easily degrade its emission control capabilities while also affecting power. The 

proposed SFDIA will rectify the situation in real-time by detecting the failure, isolating the faults 

and accommodating the failed sensors with best approximate signals. 
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CHAPTER 2 LITERATURE REVIEW 

This chapter presents an overview of the differences between analytical and “black box” 

modeling methods. Due to the focus of this research, several sections are dedicated to the topic 

of system fault prevention, neural networks (NNs) and sensors. The type of NN used in this 

study is a hybrid network. It combines two well-known network algorithms, namely the 

Adaptive Linear Network (ADALINE) and the Radial Basis Function (RBF) network featuring 

the Extended Minimal Resource Allocating Network (EMRAN) algorithm, to provide the best 

possible approximation.   

2.1 Overview of Mathematical Models for Engines 

There are several approaches available to model an HDDE along with its various 

components. One approach involves the development of analytical models using physics-based 

principles such as thermodynamics, fluids mechanics, and combustion kinetics [6-10]. In theory, 

these methods can provide great accuracy while giving a clear analytical representation of the 

system under investigation. They are usually very specific to the processes occurring within the 

modeled system. However, there are disadvantages associated with such modeling techniques. A 

rather long and expensive effort has to be expended within the initial model development phase. 

Within the maintenance phase, the model requires adaptation to the progressive changes made to 

an engine over the model lifecycle. These changes include the addition of new aftertreatment 

technologies that will unavoidably incur additional costs associated with system modeling. In 

addition, it is not expected that a model developed for one engine design will work on another.   

A suitable approach for modeling engine systems involves linear and nonlinear “black 

box” tools such as neural networks, linear and nonlinear regression, system identification, and 

fuzzy logic [11-13]. The main advantage provided by these tools is that they have automatic 

model-building features. This is useful for systems too difficult to develop using analytical 

methods and accomplished through the application of training algorithms. Although such models 

are not transparent, these techniques can achieve good accuracies at a fraction of the 

developmental costs. In fact, these tools are normally easy to set up and are available within 

several standard mathematics and engineering software packages. Neural networks are 

particularly suitable for HDDE research as it can include automatic model updating features to 
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account for changes to the engine physical condition during its lifetime. Such updating can 

happen under real world, in-use conditions. The following sections provide more details 

regarding modeling techniques and fault tolerant solutions. 

2.2 Fault Tolerant Technologies 

2.2.1 Concept Overview 

Any system that operates using sensors and actuators will require features to protect its 

functionality, and thus improve reliability. Such features will involve constant monitoring of the 

system operation resembling an OBD system. In the event an error occurs, it must detect, 

identify and preferably correct the error without shutting a system down to restore normal 

operation. The concept of diagnosis here involves detecting and identifying faults in a given 

system. To accommodate implies substituting or correcting a failed sensor signal with an 

estimated one. A properly functioning fault diagnosis and correcting method can have various 

advantages. This consists of preventing severe damage from occurring, extending its system 

operation lifespan and providing an operator with an accurate location of the fault. Taking a 

system offline frequently for inspection is cost prohibitive and labor intensive, however it is one 

way of ensuring proper functionality. To resolve this issue, various methods researched in the 

topic of fault prevention involved model-based approaches. Model-based in this study refers to 

methods that use mathematical models created with software tools. Such an approach is capable 

of handling a failure when it happens or programmed to diagnose a problem ahead of time 

followed by alerting the operator before the problem worsens. A model-based approach would 

have built in thresholds that when exceeded will broadcast a warning and accommodate the error 

if it is correctable.   

One such model-based scheme that diagnoses and accommodates errors is a sensor 

validation scheme. The idea behind this scheme is to provide a system with sensor fault tolerant 

abilities. It does this by detecting any abnormalities in the signals and if it exists, corrects the 

signals by approximating it from the other sensors. This would ultimately mean terminating the 

signal originating from the failed sensor. Correcting a faulty sensor is critical to prevent the 

system from reacting to a process fault, which is the assumption that the component the sensor is 

monitoring has failed. It is noted that any sensor signal accommodated will feedback into the 

scheme. Therefore, sensor validation will have limitations as to the number of sensors it can 
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accommodate before rendering the built-in models ineffective. The figure below summarizes the 

logic behind a sensor validation scheme: 

 
Figure 1: Sensor validation scheme. 

A fault detection algorithm involves a process of monitoring the difference between a set of 

models and the sensor signals. This difference is called a residual. When this residual crosses a 

specified threshold, it is indicative of a warning or a failure has taken place. The models used to 

determine the residuals are separate from the accommodation models. Depending on the nature 

of the scheme setup, the accommodation algorithm will decide whether to initiate the 

accommodation mode.   

In general, sensor errors are due to the various effects mentioned below [14]: 

a) Faulty sensor (manufacturing flaw, wear, calibration error, loose wires) 

b) Communication channel error (signal interference, cross-talking, jitter, scattering) 

c) Data acquisition and data processing component faults (memory, power failure)  

d) Computer hardware/software-related programming errors (software errors or “bugs”, 

design error)  

e) Transient errors (nonlinearity imperfections) 

It is easy to detect a sensor that fails catastrophically, however detecting a malfunction that 

appears intermittent or as drifts can be challenging. A sensor validation scheme has the 

advantage of detecting both forms of sensor issues. The robustness of a sensor validation scheme 

will depend on its ability to avoid false alarms and when in the accommodation mode, provide an 

accurate representation of the faulty signal in real-time. To correct failures automatically is an 

indication of analytical redundancy [15]. Analytical redundancy essentially implies taking 

advantage of the functional relationship existing between the inputs, states, and outputs of the 

system. Adding more sensors to measure the same parameter as implied by physical redundancy, 

along with the voting scheme used by such systems, means extra cost while introducing 
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increased complexity to the system. The extra hardware can also be space consuming and impose 

a weight penalty.  

2.2.2 Types of Systems and Fault Prevention Studies 

The types of systems whose operations are dependent on sensors and actuators include, 

but not limited to, the following: 

a) Power plants 

b) Chemical plants 

c) Robotic systems 

d) Aircraft 

e) On-road vehicles 

All systems mentioned above stand to benefit from a sensor validation scheme. Even civil 

engineering structures such as bridges that employ smart technology can deploy a sensor 

validation scheme [16]. In the following paragraphs, various fault prevention techniques that are 

in use or studied are presented with an emphasis on sensor fault prevention. 

Both power and chemical plants have complex industrial processes running continuously 

while maintaining output quality and overall plant safety. Sensors located around a plant are 

monitoring various processes and have to be reliable at all times to avoid potential disasters. In 

coal power plants for instance, inaccurate sensor readings can cause combustion inefficiencies 

resulting in increased pollution. In a study that applied a sensor validation scheme to a boiling 

water nuclear reactor, it was necessary to monitor the sensors in specific groups instead of using 

a single, large scheme due to the number of sensors involved [17]. The method employed multi-

objective genetic algorithms (MOGA) to search for optimal sensor groupings with similar 

characteristics. Genetic algorithm operations exhibit similar biological and behavioral traits as 

inherent in living beings. In general, it performs probabilistic optimization to one or more 

functions, known as objective functions, which are both linear and nonlinear. Data from the 

sensor signals contribute to the development of the objective functions. Below is a summary of 

methods that can reconstruct sensor signals obtained from a sensor validation study on a coal-

fired power plant boiler [18]: 

Linear Models: Linear models are popular in the field of modeling for systems exhibiting linear 

operations, especially in power and chemical plants where its operation depends on parameters 

that do not have significant variations. Principle component analysis (PCA) is an example of a 
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method to develop linear models. It creates a model by reducing the dimensionality of a data set 

without sacrificing the signal variation [17, 19]. State space model is another form of a linear 

model derived from first-order differential equations: 

 x(t)= Ax(t)+ Bu(t)
y(t)= Cx(t)+ Du(t)


 (1) 

where A is the state matrix, B is the input matrix, C is the output matrix and D is the feed-

forward matrix which in most cases is zero in value. In addition, x(t) are the state variables, u(t) 

is the input vector and y(t) being the model output. State variables are the parameters that decide 

the state of the system and contain all the information to predict the future condition of the 

system. Most systems are nonlinear in nature making linear models unable to cope with high 

signal variations. For PCA methods, there are solutions researched to cope with nonlinear 

situations through the development of kernel PCA and nonlinear PCA (NLPCA) [20-23]. In the 

case of the kernel PCA, the linear model still performs the detection, but a kernel function that is 

similar to a weighting function, transforms the data into a high dimensional feature space for 

nonlinear mapping.  

Conservation laws and data reconciliation

24

: When using conservation laws to monitor the sensor 

signals, any malfunction would reveal itself as a violation. An example of a conservation law is 

the conservation of energy principle in thermodynamics. To prevent errors from affecting the 

conservation laws that lead to false alarms, especially in chemical processes, a method called 

data reconciliation showed better results than traditional techniques such as moving averages and 

wavelet filtering [ ]. Data reconciliation optimally adjusts the measured data to increase the 

robustness of a model to obey the conservation laws and other constraints. Data reconciliation is 

also applicable to other modeling techniques.  

Bayesian-Belief Network

25

: The concept of a Bayesian-Belief network is to represent 

dependencies in the dataset graphically for probabilistic reasoning of a given system. A 

probabilistic reasoning network can determine the system behavior simply by examining the 

input variables and reason how they interact. The network assigns a value to the input variables 

and propagates their effects through the network to determine an output. Various researchers 

have suggested utilizing the Bayesian-belief network for a sensor validation scheme [ -27]. By 

assigning probabilities to a dataset consisting of faulty and nominal signals, it is possible to 

calculate the likelihood of a specific fault to occur.  
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Data Mining

28

: Data mining is an approach that extracts information from a given dataset. One 

popular method for data mining is the Multiple Adaptive Regression Splines (MARS) [ -29]. 

MARS is a regression-modeling tool developed by Jerome Friedman in the early 1990s [30]. It 

automatically constructs the model from a set of coefficients and basis functions that are entirely 

"driven" from the regression data. Specifically, using a “divide and conquer” strategy, MARS 

partitions the input space into several regions, each with its own regression equation. This 

technique excels at finding optimal variable transformations and interactions within high-

dimensional data of complex structures. In fact, this approach often reveals important data 

patterns and relationships that other methods may struggle to uncover [31]. A study performed 

by Chew [32] showed that MARS is capable of sensor validation tasks.  

An aircraft system containing fault prevention technology has various benefits apart from 

safety reasons. With modern aircraft using digital fly-by-wire technology, the entire system very 

much relies on the sensors for control. Any type of failure to the flight control system will have 

catastrophic consequences. Aircraft sensors typically have up to four levels of physical 

redundancy [33]. A sensor validation scheme has the potential to increase sensor reliability and 

eliminate the need of having four independent sensors measuring the same parameter, hence the 

various studies conducted into this concept [11, 34-37]. The Controls and Dynamics Technology 

Branch at the NASA Glenn Research Center investigated an advanced adaptive flight control 

system that utilized model-based approaches similar to sensor validation [38-39]. It can allow the 

aircraft engine to operate beyond its normal operation domain. The work proposed methods for 

improving aircraft survivability during adverse conditions through better controlling of thrust. To 

accomplish this requires further enhancing the current Full Authority Digital Engine Control 

(FADEC) system for better power management, faster thrust response and producing more thrust 

for short periods when required. One of the solutions proposed is to validate pilot throttle 

command with a model that estimates thrust to compensate for any adverse conditions 

encountered by the engine control. The model receives inputs directly from the onboard sensors. 

The modeling tool used was a standard Kalman filter. The Kalman filter is state space model 

based and frequently applied to aircraft studies. Another area used for Kalman filter work is in 

robotic systems such as unmanned ground vehicles (UGV). An array of sensors is present on 

UGVs that measures robot orientation, angular rate, linear acceleration, velocity and position, 

thus making it ideal for applying sensor fault diagnosis technology [40].  
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The need of a sensor validation scheme for on-road vehicles stem from the task to better 

control emissions due to lower EPA and CARB regulations. Other concerns include maximizing 

fuel economy and the implementation of modern electronic safety features. The regulations led 

to the development of an electronic OBD system that monitors malfunctions, pinpoints a specific 

problem, and broadcasts a fault code computed by its unique software. The software performs 

this task using signals from various sensors. A device meant to scan the codes plug into a Society 

of Automotive Engineers (SAE) standardized interface located within the vehicle, as shown in 

Figures 2 and 3. Such scan tools can transmit the data to a laptop computer via a USB connection 

and allow a mechanic to determine what needs repaired or replacement. A typical location of the 

16-pin OBD connector is under the driver side dashboard. The OBD II, the current version for 

diagnosing faults associated primarily with the engine emissions system, applies to vehicles 

model year 1996 and onwards [41]. The types of vehicles involved are passenger cars, and light 

vans and trucks powered by an internal combustion engine. Modern OBD II systems also 

monitor conditions on the vehicle body and chassis. However, the OBD II lacks the ability to 

correct faults caused by malfunctioning sensors. The HD OBD will be similar to the OBD II 

specifications but with an emphasis on regulating oxides of nitrogen (NOx) and particulate 

matter (PM) that are major issues in HDDEs [42]. The primary areas monitored by HD OBD are 

the fuel system, cylinder misfires, exhaust aftertreatment system and boost pressure components 

that include the turbocharger and charge air cooler. Emissions monitoring in HD OBD will use 

specified thresholds to determine when emissions are higher that normal.  

 
Figure 2: SAE J1962 connector. 

 
Figure 3: OBD II scan tool by B&B Electronics. 

Studies have showed a variety of model-based fault diagnosis work with diesel engines. Some 

areas investigated were through modeling engine vibration characteristics or the intake manifold 
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parameters and comparing their outputs with sensor readings for the purpose of fault diagnosis 

[23, 43-47].   The combination of an OBD with a sensor validation scheme can provide the OBD 

with engine control capabilities when correcting sensor errors. Unlike systems such as an 

aircraft, on-road engines do not have physical sensor redundancies. Research into on-road engine 

sensor validation does exist, but are few to report on and none tested inline with an EMS for 

direct control [48-51]. However, all these other studies did demonstrate unique ideas to perform 

sensor validation. Most of the work referenced here on model-based diesel engine fault 

prevention chose neural networks as the modeling tool. Section 2.3 provides details about neural 

networks and introduces the aforementioned hybrid network. 

Applications such as environmental monitoring could deploy a technology called a 

wireless sensor network [52]. It consists of a number of sensors placed over a large area in the 

form of nodes on a grid measuring everything from temperature, light, sound and humidity. Each 

node on the network must have their own power supply to operate its sensing elements and 

transmit data in a wireless format. To maintain its power longevity means having very limited 

computational and storage capabilities. The military also relies on wireless sensor networks to 

transmit critical information on enemy location or weapons targeting. Nodes for military 

applications could also be mobile when placed on robotic vehicles [53]. In cases where node 

placements are dense within an area, it is possible to program the nodes to collaborate prior to 

releasing the data to a processing station. As such, densely placed nodes are ideal candidates for 

a model-based approximation in the event one of the nodes fails, as it is critical for a wireless 

sensor network to be fault-tolerant [54]. 

To improve the reliability of a sensor network, the Institute of Electrical and Electronics 

Engineers (IEEE) implemented the IEEE 1451 standard for defining the type of interface within 

a given wireless network. The main idea of the standard is to help sensor manufacturers develop 

smart technology and interface them to the networks, systems, and instruments already in current 

or emerging networks [55]. One of the features of these smart sensors is the Transducer 

Electronic Data Sheet (TEDS) that contains information such as sensor identification, 

measurement range, location, calibration, user information, and more that transmits across the 

interface [56].    
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2.3 Artificial Neural Networks 

Artificial NNs are mathematical models based on neural biology. They are capable of 

providing solutions to various problems associated with function approximation, pattern 

recognition, optimization, signal classification, adaptive control, and system identification. A 

study by Gaura and Kraft [57] showed that NNs are suitable for modeling and diagnosing sensor 

faults. NNs are data driven and thus require training. Training here means evaluating or 

estimating the model parameters to link the inputs and outputs of a physical system. When the 

operation characteristics of the system alter, then it will require retraining. The entire training 

procedure can be time consuming [58]. However, NNs with real-time adaptive capabilities can 

address the issues of training duration and process changes. 

Similar to biological neural networks, NNs process information at many simple 

interconnecting elements called neurons. Signal transmission between neurons occurs over 

connection links. Each connection link has an associated weight. In typical NNs the weights 

contain information used by the network to solve a given problem. The neurons apply an 

activation function to their input to determine their output signals [59].   

In general, NNs are defined by the following characteristics:  

• Type of connection links between the neurons, also known as its architecture 

• Type of activation function, Φ, within the neurons 

• Training algorithm used to determine the weights and other parameters 

In the NN, the weights are specific objective functions used to derive an optimal solution. 

With respect to the different architectures, a common way to classify NNs is single-layer 

or multi-layer. Single-layer architectures consist of a single output layer of neurons that 

processes the input data. Multi-layer architectures have more “hidden” layers of neurons between 

the input and the output layers. Furthermore, a NN has a “feed-forward” architecture if no signal 

from any layer is fed back as input into a previous layer [59]. In this study, all the NN 

architectures are of the feed-forward type. As mentioned earlier, there are sensor validation 

studies on diesel engines using NNs and some presented adaptive type NNs [49]. However, this 

research focuses on a new class of NNs, which is a major novelty of the SFDIA. It is discussed 

below along with its adaptive capabilities. It is the same hybrid NN used by Campa et al. [48] for 

a sensor validation scheme.   
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2.4 ADALINE + EMRAN RBF Networks 

The Radial Basis Function Neural Networks (RBF NNs) are extensively used for non-

linear system identification and online sequential learning (adaptive learning) due to their local 

and global generalization capabilities [60-62]. For this type of NNs, the estimation of a nonlinear 

engine parameter typically occurs through the weighted superposition of a number of m basis 

functions. In the case of Gaussian basis functions, a RBF NN is expressed as: 

 ˆ

2
i

2
i

x(t)-μ (t)
-m

2σ (t)
ran i

i=1

2 2
1 m 1 m 1 m

y (t)= f(t,θ)= w e

θ = w ,...,w ,μ ,...,μ ,σ ,...,σ

 
 
 
 ⋅

  

∑  (2) 

where x(t) is the vector of n regressing variables (input variables) at time instant t, and θ  

represents the set of parameters tuned by the training or adaptive algorithm. Specifically, wi are 

the basis function weights, while µi and σ i
2 are the center and variance of the i-th of m basis 

functions respectively. The center positions and variances are equally spaced in a uniform grid. 

The exponential term in (2) is the activation function. The NN has two layers, as Figure 4 

illustrates: 

 
Figure 4: RBF NN architecture. 

Various well-known results, based for example on the Stone-Weierstrass theorem, show 

that this kind of network can uniformly approximate any continuous function to an arbitrary 

degree of accuracy if there are sufficient neurons [63]. During the model development phase, the 

total number of neurons necessary to ensure a specified accuracy grows considerably with the 
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dimension of the inputs. This is especially true as the number of weights, m increases linearly 

with the measurement. This problem is known in the technical literature as the “curse of 

dimensionality” [64]. Several variations of RBF NNs have been developed to deal with this 

issue. One of these variations is a new class of RBF NNs known as Resource Allocating 

Network (RAN). The main advantage of RAN NNs is that the topology of the NN is not fixed, 

but grows according to the perceived complexity of the model. The addition of neurons occurs 

only in the region of the input domain where the mapping accuracy is low. The three criteria 

listed below govern the addition of new neurons as the input data (x(t),y(t)) are sequentially 

sampled at time instant t: 

Current estimation error criteria

 

: The estimation error must be bigger than a threshold E1: 

ˆ 1e(t)= y(t) - y(t)> E  (3) 

Novelty criteria

 

: The nearest center distance must be bigger than a threshold E2: 
m

i 2
i=1
inf x(t) -μ (t) E≥  (4) 

Windowed mean error criteria

 

: The windowed error must be bigger than a threshold E3: 

[ ]ˆN
3i=0

1 y(t - N +i)- y(t - N +i) E
N

≥∑  (5) 

where e(t) is the prediction error and N is the number of samples in the current sampling 

window. The initialization of each neuron is as follows: 

 ˆm+1w (t)= e(t)= y(t) - y(t)  (6) 

  m+1μ (t)= x(t)  (7) 

 
m

m+1 i
i=1

σ = λinf x(t) - μ (t)  (8) 

where λ is the overlapping factor. All three criteria in Equation (3) through Equation (5) must 

satisfy to facilitate the addition of a neuron. In the event one or more of the above criteria are not 

satisfied, the tuning parameter θ undergoes an updating process as described by the gradient-

based algorithm below: 

  
ˆ

(t)

y(t)θ(t+1)= θ(t) - η e(t)
θ(t)

∂
⋅

∂
 (9) 

where η is the learning rate. If necessary, a pruning strategy implemented within the network can 

avoid an excessive increase of the NN size. In this case, the resulting algorithm is called the 
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Minimal RAN (MRAN) [65]. The Extended MRAN (EMRAN) is a powerful variation of the 

MRAN with the capability for online adaptation using limited computing resources [66]. Only 

the most activated neurons undergo updating while the others remain unchanged. This implies a 

reduction in the number of parameters to be updated, thus making it suitable for online 

applications. It is important to point out that the bulk of the learning must occur during the 

offline training phase.  

A single-layer ADALINE NN can efficiently provide a mapping of the linear portion of 

the system dynamics. The following equation describes the linear network: 

 ˆ
n

lin j j
j=1

y (t)= p x (t)⋅∑  (10) 

where x(t) is the activation function and also the input variables. The architecture for the 

ADALINE NN is: 

 
Figure 5: ADALINE NN architecture. 

The weights of this network pj are evaluated offline by applying the Least Square (LS) method to 

the input data at nominal conditions.    

The hybrid structure comprising the ADALINE + EMRAN RBF NN may be represented 

as: 
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The weights, pj is sufficient to estimate the importance of each input variable for a given 

parameter that Equation (11) models. Although the ADALINE + EMRAN RBF NN structure 

seems over complicated, the simple and computationally efficient ADALINE NN provides 

substantial approximation capabilities at linear operating conditions. The RAN algorithm 
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allocates RBF neurons only where the system dynamics exhibit significant nonlinearities. This 

breakdown allowed for a considerable reduction in the number of basis functions. In addition, it 

has online adaptive capabilities to shorten the duration of the offline training phase with the idea 

that model refining can occur once implemented into a system. 

2.5 Vehicle Sensors 

In modern vehicles, sensors are the devices that provide information to various computer 

modules about a specific parameter for the purpose of onboard diagnostics and control. Actuators 

then receive the output signals from the computer to perform the required control. The sensing 

technology for each sensor differs based on the parameter it is monitoring. However, the sensor 

signals transmitted to the computers are usually in the form of analog electrical voltages. As 

vehicle technology continues to advance with the implementation of better safety features and 

pollution control, it is critical that sensors perform reliably under any operating conditions.  

A common computer-controlled mechanism is the antilock braking system (ABS). Wheel 

speed sensors work in conjunction with the ABS computer to control various hydraulic valves 

and a modulator pump to prevent wheel lockup in the event of emergencies. Traction and 

stability control also depend on the ABS system for their operation but with additional hardware 

primarily in the form of extra hydraulic valves. In the case of engine control, heavy-duty engines 

use a variety of sensors that transmit data to the EMS. Primary actuators on modern HDDEs 

include EUI control valves, VGT sliding nozzle ring, SCR urea doser and EGR valve. The 

following sections present information about the technology behind common sensors used by 

HDDEs, with various concepts provided by Bonnick [41].     

2.5.1  Speed and Position Sensor 

Crankshaft speed and position are critical parameters used for optimizing fuel timing. 

Typically, these sensors operate based on variable reluctance technology. The term reluctance 

implies a resistance to magnetism. The concept of air having greater resistance to magnetism 

than metal forms the basis of the sensor operation. The reluctor for the sensor is a rotor with 

notches on its perimeter, with a narrow air gap between the sensor and rotor for optimal signal 

strength. These sensors are also known as magnetic (mag) pickup sensors. For engines, the rotor 

is the flywheel and the sensor fixed to the flywheel housing. These sensors consist of a magnet 
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and a wire coiled around the magnet pole piece. This wire exiting the sensor housing is twisted in 

order to eliminate electrical interference. The figure below illustrates this: 

Twisted wire

Flywheel

Magnet

 
Figure 6: Speed sensor positioned above flywheel. 

The notches for the sensor are not the gear teeth used by the starter motor. A typical 

shape of a single speed sensor notch is short and flat, as opposed to the pointed gear teeth for the 

starter motor. As each notch passes under the sensor, it induces a sinusoidal voltage signal in the 

wire coil. The frequency of this signal determines the engine speed. Missing notches on the 

flywheel, thus producing no signal pulse, allow the EMS to know the location of top dead center 

(TDC) for all pistons. Therefore, this sensor also provides the EMS crankshaft position 

information. The number of missing notches varies based on manufacturer specifications.  

Another sensor operating with the same technology is the camshaft position sensor. For 

heavy-duty engines, the reluctor for this sensor can be the camshaft gear or the camshaft 

vibration dampener with notches machined onto it. Camshaft position is critical for engine 

ignition and fueling control. For a six-cylinder engine, one possible configuration is there would 

be seven notches. Six notches indicate TDC of the pistons and the seventh providing a reference 

point for cylinder No.1 position [67]. This sensor also measures indirectly crankshaft speed and 

position. The camshaft spins at half the crankshaft speed via idler gears. As a result, this sensor 

serves as a backup in the event the crankshaft speed sensor fails. In some cases, it serves as the 

primary speed sensor due to better accuracy as a function of time. The higher accuracy is due to 

its slower speed.  
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2.5.2 Pressure Transducer 

An EMS monitors pressure at multiple locations around an engine. The pressure 

parameters include boost, crankcase, fuel and oil. Boost pressure is an important parameter for 

fuel timing and EGR control. The sensor that measures boost pressure, called the manifold 

absolute pressure (MAP) sensor, sends information to the EMS to calculate the amount of engine 

intake air. The form of technology this sensor uses commonly is of the resistive type. The main 

component of this sensor is a small silicon diaphragm containing four resistors arranged as a 

bridge circuit. Silicon is the preferred material in the automotive industry due to their 

effectiveness is sensing pressure. In addition, current silicon micromachining technology can 

manufacture very thin silicon diaphragms at low cost while not compromising reliability. The 

bridge circuit requires a power supply from the EMS. Figure 7 shows this: 

5 V

R1

Vo

R4

R3R2

 
Figure 7: Bridge circuit in pressure transducer. 

When pressure bends the diaphragm, the resistance in R1 and R3 varies equally, with an 

opposite variation in R2 and R4. The change of voltage across the bridge flows to an amplifier, 

which produces a sensor output Vo that is proportional to the pressure. In general, Vo increases 

linearly as pressure rises.  

2.5.3 Temperature Sensor 

Similar to pressure, an EMS measures temperature at various locations in, on, or around 

an engine. An important parameter is coolant temperature to control fuel timing especially during 

cold starts and monitoring engine temperature in general. Boost temperature measured at the 

intake manifold helps in the overall determination of intake mass airflow rate. A popular type of 
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temperature sensor used in HDDEs is the thermistor. In comparison to thermocouples, 

thermistors have high sensitivity when operating at typical automotive type temperature ranges. 

These sensors work according to the concept of negative temperature coefficient. That means as 

temperature rises, the resistance of the thermistor sensing element decreases. This is due to the 

element made out of semiconductor materials. Since an EMS has a readily available voltage 

source, the thermistor is placed in a voltage divider configuration. The circuit diagram below 

indicates the positioning of a thermistor relative to the EMS voltage source: 

5 V

R Thermistor

O

 
Figure 8: Thermistor with voltage source. 

In Figure 8, resistor R has permanent resistance, with its value depending on the application.  

As an example, when the temperature increases, the resistance in the thermistor falls and 

the EMS reads the voltage at node O. A non-linear relationship exists between the resistance and 

temperature, thus producing a non-linear voltage output with respect to temperature. 

2.6 Summary 

Initially, this chapter discussed the differences between analytical models and “black 

box” approximation methods. The discussion showed that for complex systems that are difficult 

to model using physics-based principles, it is better to use “black box” tools to create the models. 

They can achieve good accuracy without spending a lengthy amount of time in the model 

development phase. Although such “black box” methods can be as simple as linear regression, 

for most cases it is required to perform multidimensional type modeling to best approximate a 

system. This is especially true when attempting to model the operation of modern HDDEs 

mathematically. HDDEs tend to have very complex operations to maximize power output while 

maintaining low emissions and fuel consumption. One such multidimensional method is through 

NN modeling. The NN model used in this study is a combination of two popularly used networks 

but with the addition of online model adaptation. This adaptation capability meant reducing the 

amount of time it takes to train the networks offline as further training could occur during the 

implementation phase. The purpose of introducing this adaptive NN was the possibility of using 
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it in a sensor validation scheme. A sensor validation scheme is a fault tolerant technology 

designed to ensure a system always receive the best sensor values for the purpose of diagnostic 

and control. The scheme monitors the health of the sensors by continuously comparing its signals 

to estimated values. When a sensor failure occurs, the scheme terminates the particular sensor 

producing the erroneous output and replaces it with a best approximation of it. The embedded 

models provide all the required approximations. Any system operating with sensors and 

actuators can use a sensor validation scheme to protect itself from incorrectly reacting to a 

process fault when in actuality the sensor measuring the process failed. Sensors are mechanical 

devices that are not immune to failures. Common sensors used on HDDEs are of the resistive 

type that output signals in the form of analog voltages. Sensors measuring speed on the other 

hand are magnetic in design.  
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CHAPTER 3 SENSOR FAILURE DETECTION ISOLATION AND 

ACCOMMODATION (SFDIA) 

3.1 Background 

The origin of the SFDIA concept has to do with early work on unmanned aerial vehicles 

(UAV) at West Virginia University (WVU) [4]. The motivation was to curb UAV flight control 

degradation, lower mission abort rate and lower aircraft loss rate induced by sensor failures. This 

led to the study detailed by Campa et al. [48] introducing a novel scheme to apply the SFDIA to 

HDDEs. It focused on proving its functionality using real engine data with one failure mode. In 

this research, the development went further through an update for handling various failure modes 

and setting it up for evaluation inline with a test engine. The setup allowed the SFDIA to send 

and receive signals with the EMS. The test engine was different from the one in the 

aforementioned study. Performance data were collected to check the SFDIA ability to restore 

normal operation.    

The SFDIA scheme development was conducted within Simulink® [68]. The advantages 

offered by this high-level system-modeling tool are: 

• integration with Matlab®, useful in the signal analysis phase  

• availability of xPC Target™ and Real Time Workshop® for automatic synthesis of C 

code or custom executables from a Simulink diagram 

• reduction in computational overhead using features such as the Simulink 

Accelerator™ 

Being already in a Simulink environment means quick interfacing with data acquisition hardware 

for testing in real-time without having to rely on the Matlab interpreter. The availability of all 

these features to a Simulink model is also one of the novelties of this work. 

The upper level of the SFDIA scheme is shown in Figure 9. It consists of three main 

blocks. The first is the Failure block for introducing failures to the signals at user specified times. 

Next, the SFDIA Logic block performs the detection, isolation and accommodation tasks. The 

Approximation block contains the NN models used in the accommodation phase. 
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Figure 9: SFDIA Upper level. 

3.2 Failure Block 

In this proof of concept study, the SFDIA setup assumes failure of only three sensors out 

of the myriad number of sensors available. The SFDIA is applicable to failures for a larger 

number of sensors without losing any generality. Specifically, the same general SFDIA structure 

can handle failures on every sensor. However, a more complex residual generation block is 

necessary with slight differences to the failure identification logic. The SFDIA scheme studied 

here can cope with multiple failures. However, a certain amount of performance degradation is 

expected, depending on the models and type of failures.  

A sensor signal can consist of three general components. It is represented as follows: 

 n n n n fS (t)= Y (t)+ (t)+ F (t - t )ν  (12) 

where S is the signal from a particular sensor indicated by n and Y is the true value of the 

parameter being measured. The noise, ν is an additive component inevitably introduced by the 

measurement. The failure in this effort is a signal F added to the nominal signal and occurs at 

time tf.  

To test the ability of the SFDIA to accommodate failures, three different modes were 

selected. The selection is representative of situations such as abrupt and incipient faults (bias or 

drift). The sensor failure modes below are represented mathematically and as a Simulink model: 

a) Failure Mode 1 (FM1), Step Failure:  

 f
f

f

0 t < t
F(t - t )=

H t t

 ≥

 (13) 

where H is the amplitude or final value of the failure.  
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Figure 10: Step failure model. 

b) Failure Mode 2 (FM2), Ramp failure [69]: 

 
f

f f R f f R

f R

0 t < t
F(t - t )= H (t - t ) / T t t < t +T

H t t +T




⋅ ≤
 ≥

 (14) 

where TR is the duration of the ramp. 
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Figure 11: Ramp failure model. 

c) Failure Mode 3 (FM3), Square Wave failure: The square wave equation is: 

 i
f

i w

0 t < t
F(t - t )=

H t t t

 ≤ ≤

 (15) 

where ti is the initial time of one pulse and tw is the pulse end. The number of pulses 

selected was three for purposes of simplicity.  
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Figure 12: Square wave generator. 

Although this mode uses only square waves, it was meant to demonstrate a detection 

algorithm that is based on a specific condition. The condition is that permanent 

accommodation triggers after a certain number of pulses. The idea behind this is if the 

signal appears to fail a few times, it could just be a temporary situation. However, if it 

happens repeatedly after a specified number of occurrences, then a failure has taken place 
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and thus accommodated. These occurrences can be either close, fairly spaced in time or a 

combination of both.  

All Simulink models in Figure 10 through Figure 12 are located in the subsystems seen in 

Appendix A. Consistent with Equation (12), Figure 10 through Figure 12 and Figure 75 shows 

failures can be artificially added to the sensor measurements at user-specified times. 

3.3 SFDIA Logic Block 

The SFDIA Logic block as seen in Figure 13 has two inputs. The first input consists of 

signals directly from the sensors. The signals from the faulty sensors are also in this input. The 

second input originates from the Approximation block. For explaining the SFDIA Logic block, 

the designation for the signals are as follows: 

a) Sensors allocated for failure are S1, S2 and S3; all others are collectively called Sn 

b) Signals from the Approximation block are A1, A2 and A3 (approximations of S1, S2 and S3) 
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Figure 13: SFDIA Logic block. 

The SFDI block in Figure 13 contains the fault detection and isolation logic. It takes as 

input the signals coming from the sensors and outputs two variables. Each variable is a vector 

with three values. These variables are called Learning Enable (LE) and Accommodation Enable 

(AE). The transition of an LE component from one to zero means the scheme has detected a first 

level of alarm. This is equivalent to declaring a sensor “suspect” and the SFDI block switches off 

the learning of the NNs to prevent the learning of a possibly corrupt signal. The transition of an 
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AE component from one to zero is instead the equivalent of declaring the detection and isolation 

of a fault. The switch block SFA uses the AE vector to replace the signal coming from the faulty 

sensor with its respective estimate provided by the Approximation block. The first variable 

accommodated will permanently turn off the online learning of all models.  

The output of the SFDIA Logic block ensures that an EMS always receives the “values 

most likely to be correct” of the measured variables. Initially, when there are no faults present, 

the output vector of the SFDIA is: 

 1 2 3 n[S (t),S (t),S (t),S (t)]  (16) 

Only signals from sensors and nothing from the Approximation block gets past the SFDIA Logic 

block. Upon a successful fault detection and isolation, which means S1, S 2 and S3 are now the 

accommodated signals, the output vector of the SFDIA is: 

 1 2 3 n[A (t),A (t),A (t),S (t)]  (17) 

Therefore, the output of the SFDIA Logic block will contain the accommodated signals, while 

the other entries are signals coming from healthy sensors. 

3.3.1 Detection and Isolation (SFDI) Logic 

The key to the detection and isolation logic is through the generation of residual signals. 

Residuals are an implicit measure of the correlation between measurements and the model 

outputs for the system under observation. Within this effort, the residual signals generated follow 

the methods shown in the equations below, where for simplicity purposes the dependence from 

time has been dropped: 

 
1 1 1 n

2 2 2 n

3 3 3 n

R = S - g (S )
R = S - g (S )
R = S - g (S )

 (18) 

The functions g1, g2, and g3 produce NN-based estimates of the S1, S2 and S3 variables. Assuming 

that these estimates are accurate, then by substituting Equation (12) into Equation (18), each of 

the three residuals will take on limited values under nominal (no fault) conditions.  The 

magnitudes of R1, R2 and R3 are mainly determined by the maximum deviations of the estimated 

values from the actual values, and by the intensity of the signal noise. In other words, the better 

g1, g2, and g3 can estimate the measured values with low noise levels, then the closer the 

residuals will stay to zero. 
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Whenever a failure occurs in one of the sensors, only its respective residual will 

experience an increase of magnitude. The other two residuals will remain within a limited 

distance from zero. Each sensor failure will generate a clear signature through its residual in 

Equation (18). Appendix A contains the SFDI block for all the failure modes.  

In more detail, the residual vectors are input signals to a couple of low pass filters; a 

“fast” and a “slow” one. The difference between the two lies in the selection of the bandwidth, as 

discussed in Chapter 5, thus producing two unique filtered residual vectors. The two bandwidths 

should not be the same value. The fast filter always has a higher bandwidth value than the one 

for the slow filter. The output of the fast filter is called “fast residual”. Likewise, the output of 

the slow filter is called “slow residual”. Whenever the absolute value of a fast residual entry 

crosses a predefined threshold, its corresponding value in the LE vector is set to zero. This 

preventively stops the learning of all NNs. Similarly, whenever the absolute value of a slow 

residual entry crosses another predefined threshold, then the corresponding entry in the AE 

vector is set to zero. When this happens, the switching logic in the Failure Accommodation 

(SFA) block replaces the signal coming from the faulty sensor with the corresponding estimate in 

the Approximation block. Figure 14 shows the switching logic: 

acc_signals
1

acc

SFA

NOT

SFA estimates
3

AE
2

sensors
1

 
Figure 14: SFA block. 

3.3.2 Impact of the Simplifying Assumptions on the SFDI Logic 

The SFDI logic outlined above relies on the assumption that only sensors measuring S1, 

S2 and S3 can fail. In addition, the implicit assumption is that g1, g2, and g3 can adequately 

approximate the signals using the other sensors not subjected to failures. While those 

assumptions allow for a great simplification of the SFDI logic, there is no losing of generality 

because of this. In cases where any sensor could fail, there are ways of generating residual 
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vectors where each component is independent from a specific sensor [70-71]. If that were the 

case, only the structure of the SFDI block specific to the residual generation would be different.  

3.4 Approximation Block 

The purpose of the Approximation block is to provide NN approximations for the 

variables subjected to failure. Inputs to this block are the LE vector discussed earlier and the 

output vector of the SFDIA Logic block. The estimates for S1, S2 and S3 are outputted as a vector 

shown below: 

 
1 2 3 n

2 1 3 n

3 1 2 n

A = f(S ,S ,S )
A = f(S ,S ,S )
A = f(S ,S ,S )

 (19) 

It should be emphasized that the scheme performance is only marginally affected by the 

NNs online learning capabilities. This adapting feature is important in order to refine their 

approximations. The ability to refine a model during the online phase means spending a lesser 

amount of time for offline training. In all cases the training of the NNs largely occurs offline. If 

there is some confidence that the training data covered all regions of possible behaviors, then the 

NN learning capabilities could be safely turned off. The same thing applies to the online 

adaptation where it can be halted once there is nothing left to be learned. Figure 15 shows the 

contents of the Approximation block. 
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Figure 15: Approximation block. 
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The figure above is the same design for the NN bank in the Residual Generation block of Figure 

76 and Figure 77. 

Within the subsystems seen above are the blocks for the ADALINE + EMRAN RBF NN. 

Figure 16 shows how the blocks receive the inputs of SFDIA Logic block. The switches seen on 

the left hand side of Figure 16 can turn the NN learning both on and off. Although the 

ADALINE NN has its own switch to learn online, it remains in the ‘off’ position following the 

determination of the weights through the LS method. The nonlinear NN weights account for any 

variation that might occur. The GRBF block is the EMRAN RBF NN, renamed due to a recent 

update to the NN library [72].   
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Figure 16: ADALINE + EMRAN RBF NN model for the boost pressure sensor. 

The switch related to the GRBF block stays in the ‘on’ position with the learning controlled by 

the values of LE. The summation of the two NN blocks creates the prediction as seen in Equation 

(11). 

3.5 Approach Limitations 

Within the framework of this study, the assumption that the system “behaves correctly” is 

equivalent to saying that the data for training the NNs represents an accurate system behavior 

when no failure is present. If the system suddenly “misbehaves” in an abrupt manner, but too 

soon to be handled by the SFDI algorithm, the NNs cannot provide accurate estimates of the 

measured variables. This in turn, will result in increased sensitivity to false alarms leading to 

incorrect failure detection. For example, if a parameter measured by one of the sensors within Sn 

is not within its nominal value and the alteration is abrupt, it could eventually result in a failure 

attributed to sensors S1, S2 and S3. Performing failure detection and isolation on every signal 
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might present a solution. Such a scheme might attribute the failure to that specific Sn sensor even 

if it is correctly working and the offset caused by other unknown factors.  

It is important to understand that limitations such as the one discussed above are common 

to any SFDIA type schemes that somehow rely on an internal system model. For instance, a 

scheme relying on an analytical model represented by explicit equations will also suffer similar 

limitations. Alternatively, due to the specific NN and learning algorithm presented in this effort, 

the proposed scheme offers the very peculiar possibility of adapting itself to gradual changes in 

the system behavior. 

In the case of HDDEs, the EMS contains protection features such that when a fault 

occurs, it triggers a flag to send the engine into a limp-home mode or shuts it down. For 

example, in the case of oil temperature, the EMS monitors it to make sure it is within a specified 

range. When it begins to overheat, it triggers a protection flag, and the EMS reacts accordingly to 

protect the engine while broadcasting a fault code. As a result, the coolant can also overheat and 

will affect fuel timing along with the EMS start of combustion algorithm. The start of 

combustion algorithm is a strategy used to prevent misfires and white smoke during cold starts. 

This in turn affects the turbocharger to maintain proper boost for given load demand. A reduction 

in power is likely. These effects can happen very quickly prior to engine shutdown depending on 

how critical the fault is. In situations such as this, when no sensor failed, the SFDIA will not 

impede with the EMS’ ability for engine protection. This is due to the functionality captured by 

the NN models where the predicted variable depends on the values of the other parameters. 

Coolant temperature has a functional dependence on oil temperature. This dependence is higher 

for HDDEs with an oil cooler in the form of a flat-plate liquid-to-liquid heat exchanger placed 

within the coolant flow path [73]. This means oil temperature will carry a significant weight 

within a coolant temperature basis function. Therefore, the residual signal for coolant 

temperature will remain normal when it is physically overheating and not interfere with the 

engine protection. On the other hand, if the sensor were to fail, the SFDIA will activate to 

maintain proper engine operation and prevent the aforementioned effects from taking place.  

3.6 Summary 

This chapter focused on the concept of the SFDIA and its functionality. It was created 

entirely in Simulink, thus making it suitable for experimental testing. Various features in 

Simulink include easy interfacing with data acquisition hardware. Further discussion went into 
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describing its various components. The most important block in the scheme is the SFDIA Logic 

block that contained all the algorithms to carry out its operation. The current setup enabled the 

study of up to three sensor failures. However, the general structure of the scheme can handle any 

number of sensors. To create a scheme to handle any number of sensors would mean altering the 

method for calculating residuals only as opposed to the one used here. The residual generation 

served as inputs to the identification and isolation algorithms. When a single failure is identified, 

the NN learning is all collectively terminated. This prevents the models from acquiring any 

unwanted characteristics of the faulty signal. If the failure persists, then the isolation algorithm 

activates and sends a signal to the accommodation logic to provide the EMS with a best 

approximation of the isolated sensor. The approximations originate from a block containing the 

NN models. Since the NNs predict a parameter using the other available sensors, it will not affect 

the engine protection feature within the EMS to take action against a process fault such high 

coolant temperature or loss of oil pressure. This means the residual related to those parameters 

will remain within nominal values.   
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CHAPTER 4 EXPERIMENTAL EQUIPMENT AND PROCEDURES 

4.1 Test Engine 

A suitable, and readily available, platform to perform the experimental component of this 

study was the 2004 Mack® MP7-355E engine that complied with 2004 EPA emissions standards. 

The MP7-355E engine shown in Figure 17 was earmarked for refuse collection and hauling 

vehicles. It powered the Mack, Volvo®, and Renault® heavy-duty vehicles produced in late 2005. 

The engine has a high-pressure loop EGR system for NOx reduction. A high-pressure loop 

meant the EGR gas extraction occurred before the VGT. The EGR system features a cooler that 

is an air-to-liquid heat exchanger and an oil-actuated EGR valve [67]. The VGT uses a water-

cooled sliding nozzle ring actuator to control both intake and exhaust manifold pressures. 

 
Figure 17: Mack MP7-355E, 2004 Emissions Standard. 

This engine has all the necessary features suitable to demonstrate the SFDIA. It is 

equipped with sensors that are processed by the EMS shown in Figure 18. This EMS is part of 

the Vehicle Management and Control System IV® (V-MAC IV) [67]. The V-MAC IV 

continuously monitors itself and the entire vehicle. In the event of a fault, its built-in OBD will 

activate fault codes that pinpoint the source of the problem. The list of engine sensors used by 

the V-MAC IV is [73]: 

a) Inlet-Air Temperature 

b) Inlet-Air Humidity 

c) Boost Pressure 

d) Boost Temperature 

EMS 
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e) Fuel Pressure 

f) Water-in-fuel 

g) Coolant Temperature 

h) Coolant Level 

i) Oil Pressure 

j) Oil Temperature 

k) Oil Level 

l) Engine (Crankshaft) Speed/Position 

m) VGT Speed  

n) VGT Smart Remote Actuator (SRA) Temperature 

o) Camshaft Speed/Position 

p) Crankcase Pressure 

q) EGR MASS Flow Sensor System (separate flow rate and temperature sensors) 

`  
Figure 18: EMS of the MP7-355E. 

Malfunctioning sensors that monitor critical parameters will affect engine performance 

due to inaccurate signals received by V-MAC IV, even if the components they are monitoring 

function adequately. For a few mission critical sensors, V-MAC IV has in-built features to 

handle them in the event they failed. The Engine Protection Warning and Shutdown activates 

during instances such as low oil pressure, high crankcase pressure, high oil temperature, low 

coolant level and high coolant temperature. It also has limp-home mode capability that allows 

continued operation of the engine in the event the vehicle speed, engine speed, camshaft 

position, pedal position or coolant temperature sensors fail. Depending on the type of failures, 

EMS Connectors 

EMS 
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the limp-home feature of V-MAC IV will cut the engine power significantly in order to protect 

the engine. For sensors selected for SFDIA failure analysis, V-MAC IV sets fault codes based on 

the following thresholds that the signal crosses during in-use conditions [74]:  

• Boost Pressure: Voltage less than 0.1 V or more than 4.55 V 

• Coolant Temperature: Voltage less than 0.17 V or more then 4.92 V 

• Fuel Pressure: Voltage less than 0.3 V or more then 4.75 V 

With the SFDIA in place, it is possible to restore the sensor signals to within the above 

thresholds during occurrences of sensor failures. Thus, maintaining nominal power and 

emissions by preventing a shutdown or limp-home mode activation. Additional specifications 

about this engine are available in Appendix B. 

4.2 Engine Test Cell 

The engine was connected to a General Electric® (GE) motoring/absorbing dynamometer 

capable of 800 hp for engine speed and load control. The test cell for this facility is located at the 

Engine and Emissions Research Laboratory (EERL) at WVU. A total-exhaust double-dilution 

constant volume sampler (CVS) system that can handle engines manufactured to EPA 2007 

emissions or later measured exhaust emissions [75]. Gaseous sampling for NOx and total 

hydrocarbons (HC) used the analyzer station designed for raw sampling, as seen in Figure 19. As 

for carbon monoxide (CO) and carbon dioxide (CO2), the Horiba® MEXA 7200D in Figure 20  

provided these data. Appendix C contains additional information regarding the EERL. 

 
Figure 19: Gaseous analyzers for NOx and HC. 

 
Figure 20: MEXA 7200D. 
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In Figure 19, the NOx analyzer is an Eco Physics chemiluminescent NOx analyzer, while a 

Horiba heated flame ionization detector (HFID) analyzer measured the HC. When necessary, the 

raw exhaust sampling system shown in Figure 19 can hold a separate Horiba non-dispersive 

infrared (NDIR) CO/CO2 analyzer. This was the case when acquiring CO/CO2 data for the 

analysis in Section 5.4.1 and Section 5.4.2.   

4.3 Tasks 

4.3.1 Task 1: Sensor Selection and NN Training 

The available parameters, and the corresponding engineering units used in this study 

were: 

a) Inlet-Air Temperature (AT), ºC 

b) Boost Pressure (BP), kPa 

c) Oil Pressure (OP), kPa 

d) Oil Temperature (OT), ºC 

e) Coolant Temperature (CT), ºC 

f) Fuel Pressure (FP), kPa 

g) Boost Temperature (BT), ºC 

h) Engine Speed, Revolutions per Minute (RPM) 

i) VGT speed (VTS), Revolutions per Second (RPS) 

Although the selection was based on critical parameters related to fueling and EGR control, the 

limitation in variables was also due to availability of signals for breakout directly from the EMS. 

It was not possible to acquire all signals since some are only available through the SAE J1939 

Controller Area Network (CAN) bus [76]. Communicating with the CAN bus using Simulink in 

real-time was possible but would require programming capabilities beyond the scope of this 

study. In addition, manufacturer participation would be necessary for providing the database to 

decrypt and translate the specific CAN messages into engineering units, especially the EGR and 

VGT parameters. The turbocharger speed signal goes directly to the EMS; thus, making the 

signal accessible without the CAN bus. A Type-T thermocouple provided inlet-air temperature 

data although it was possible to breakout the signal from the EMS. A magnetic pickup sensor 

placed at the bottom of the flywheel bell housing gave engine speed data since the buffered RPM 

signal is only available within the CAN bus. Figure 21 shows the engine speed sensor used for 
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the study. The fuel pressure sensor measures pressure from the supply pump. The crankshaft 

drives the pump via an idler gear that is part of the flywheel gear train.  

 
Figure 21: Engine speed sensor for study. 

All test engine data for training and validating the NNs were similar to that used by Chew 

[32], who also provided detailed descriptions of all the duty cycles. The duty cycles simulated 

both urban and highway-driving conditions that include the cycles developed during the WVU 

Consent Decree tasks [77]. The assumption was that the data is fault free and covered a wide 

range of operating conditions. This would provide the scheme with good response time to 

diagnose and correct failures. As mentioned earlier, variables selected for performing failures are 

the BP, CT and FP sensors. Appendix D shows the composite duty cycle setpoints and the data 

of the three variables. Using Equation (19), these sensors are functionally related as follows: 

 ( ) ( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))BPA t f AT t BT t FP t CT t OT t OP t RPM t VTS t=  (20) 

 ( ) ( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))CTA t f AT t BT t BP t FP t OT t OP t RPM t VTS t=  (21) 

 ( ) ( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))FPA t f AT t BT t BP t CT t OT t OP t RPM t VTS t=  (22) 

The above models are NN approximations trained for the Approximation block. The first two 

variables are important for injection timing determination. Proper fuel pressure values received 

by the EMS ensure normal operation of the engine.  

The SFDI block thus monitors the residuals according to Equation (18) as shown below:  

 BP BPR (t)= BP(t) - g (AT(t),BT(t),OT(t),OP(t),RPM(t),VTS(t))  (23) 

 CT CTR (t)= CT(t) - g (AT(t),BT(t),OT(t),OP(t),RPM(t),VTS(t))  (24) 
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Bracket 
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 FP FPR (t)= FP(t) - g (AT(t),BT(t),OT(t),OP(t),RPM(t),VTS(t))  (25) 

where g(t)  are the NN estimates of BP, CT and FP using the other six sensors. Regardless of 

how good the estimates are, the values of R will retain some initial deviation. When a failure is 

introduced, the residual of a failed signal will begin to change. When this variation crosses a 

specified threshold that activates the accommodation logic, the SFDIA will replace the failed 

sensor values with the ones calculated by Equation (20) through Equation (22). The next chapter 

shows the model performances and the thresholds selected based on offline simulation of the 

SFDIA.    

4.3.2 Task 2: Wiring Setup for Data Acquisition and Breakout Panel Verification 

To access the sensors on the EMS involved making breakout panels for use with the 

EMS. Each panel breaks out the signals on one connector on the EMS. Figure 22 and Figure 23 

show the breakout panels along with their placement with respect to the engine. The interface 

between the panels and the EMS used genuine Volvo EMS parts to ensure a robust connection. 

In addition, all wires were soldered to their respective terminals, both on panels and EMS parts.   

 
Figure 22: Breakout panels for the MP7-355E. 
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Figure 23: Interface between EMS and breakout panels. 

Before continuing work on the DAQ system, it was critical to ensure the panels do not 

interfere with normal engine operation. Engine test data compared with and without the panels 

could determine whether there were any differences in performance. The duty cycle chosen was 

the Federal Test Procedure (FTP) cycle for heavy-duty diesel engines, which is a transient cycle 

described in Title 40 of the Code of Federal Regulations (CFR) Part 86, Subpart N [75, 78]. All 

results from the verifications are in Chapter 5. 

With the panel verification completed, the DAQ system was assembled. The power 

supply unit in Figure 22 provided DC voltage power to the CT sensor via a variable resistor. The 

use of the breakout panel method involved cutting off the voltage to the thermistor. Reactivating 

the sensor meant using an external power supply and, as Figure 8 illustrates, determining the 

value of the permanent resistor R located inside the EMS. The variable resistor installed in the 

setup helped in determining this resistance through a tuning process. The reference points used to 

set the resistance value were determined when the EMS read the ambient room temperature prior 

to a cold start and it correctly indicated the thermostat opening at 82ºC [79].  

A 3B Signal Conditioner manufactured by Analog Devices® (ADI) then received all the 

sensor signals used by the SFDIA. It conditioned signals from the panels, the intake-air 

thermocouple, engine speed sensor and VGT speed sensor with the use of 3B modules featuring 

noise filtering and magnetic signal isolation [80]. The output of the conditioner then went to two 
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National Instruments™ (NI) breakout boards. The use of two data acquisition (DAQ) cards - PCI-

6024E and PCI-MIO-16E-1, both made by NI - required the two NI breakout boards. The cards 

were placed in the data acquisition computer manufactured by Dell™. The connection between 

the breakout boards and DAQ cards used NI 68-pin shielded cables.  

The signals leaving the conditioner are all single-ended, analog voltages. Only the BP, 

CT and FP sensors went through the DAQ system before reaching the EMS. The rest were wired 

for reading the sensor voltages only. The purpose for using two DAQ cards was to have three 

analog output channels. The output channels also underwent conditioning using 7B output 

modules by ADI. The isolation modules in essence compensated for any ground loop effects 

caused by the EMS and ensured robust output signals. Therefore, grounding for the 3B input and 

7B output signals was connected directly to the EMS ground channels. On the output side of the 

3B and inputs to the 7B modules, their respective grounding was to their power supply ground. 

Figure 24 shows a schematic of the entire test setup in relation to the breakout panels. Appendix 

E contains information about the various devices used as part of the DAQ system.  

 
Figure 24: Setup to receive and output the three sensor signals for failure analysis. 

4.3.3  Task 3: Configuring SFDIA for Data Acquisition 

The signals from the 3B conditioner were all analog voltages. The NN models required 

data in engineering units. For the six engine sensors (not including VTS), the steps taken to 

obtain the calibration equations were as follows: 

a) Disconnect the sensor output wires on the breakout panels, leaving the wires that go the 

EMS intact 

b) For any one of the sensors disconnected in the previous step, connect a DAQ analog 

output channel in its place 

c) Output a voltage signal from the DAQ card and record parameter values from VAT2000 

[81], the Volvo software that reads the EMS values via the CAN bus 
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d) Repeat the above steps for the other five sensors 

A DS345 Synthesized Function Generator made by Stanford Research Systems meant to 

replicate the output of a magnetic pickup sensor was used to calibrate both the speed sensor 3B 

modules. The device for calibrating the inlet-air temperature 3B module was the Fluke® 714 

Thermocouple Calibrator. With the calibrations done, it was possible to restore the wiring 

connections as discussed in Section 4.3.2 and the equations placed in the SFDIA block called 

Input Conversion. In the block, it shows the engine sensor inputs divided in half. That was due to 

the 3B module multiplying the sensor signals by two. With the same data, it was also possible to 

convert BP, CT and the FP values into voltages with the block called Output Conversion. 

With the DAQ system completed, the SFDIA needed configuring to communicate with 

the DAQ cards for receiving and outputting signals. The Data Acquisition Toolbox™ was a 

useful tool since it has analog input/output blocks that already recognize the DAQ cards in the 

computer. Considering that the operating system is Windows® XP, it was not possible for hard 

real-time testing, as it is a multitasking environment. To achieve soft real-time testing, first 

Windows needed to be configured to run at a bare minimum. This meant shutting down as many 

processes as possible leaving only the essential programs for this work. The next solution 

involved using a custom Simulink block created by Daga [82] called RTBlock. It prioritizes 

Simulink within Windows for real-time data acquisition. The concept behind this block is if 

Simulink is to run with real-time temporization, the cycle time should be lower than the desired 

simulation step. Cycle time means the time Simulink needs for calculating a simulation step, 

which is a function of the hardware and the operating system running Simulink. Performance 

comparisons of the block with respect to xPC Target and Real Time Workshop showed similar 

qualities in providing real-time data acquisition [82]. During testing, the VAT2000 software 

collected engine data on a Dell laptop computer to confirm the signals seen by the EMS. 

Appendix F shows the SFDIA scheme configured for data acquisition along with the correct 

method for using the RTBlock. In addition, Appendix F shows all calibration results along with 

the Input and Output Conversion blocks. By having the SFDIA as a subsystem shown in Figure 

25, it allows the RTBlock to control the execution of the SFDIA.  
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Figure 25: RTBlock with the SFDIA subsystem. 
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4.3.4 Task 4:Real-time SFDIA Testing 

At this point, the NN models for the accommodation and residual determination were 

ready for implementation. The duty cycle in this task focused on the FTP cycle. All data 

collected were from Simulink, the engine test cell and VAT2000. The task consisted of a few 

stages mentioned below: 

1. Check DAQ system and SFDIA tuning: The computer was checked to make sure it was 

communicating with the DAQ cards and functioning properly within Simulink. After that, it 

was necessary to inspect the breakout panels for any loose wiring. Figure 26 shows the 

completed test setup. During this time, the value of H in Equation (13) through Equation 

(15), including the thresholds for LE and AE, are now determined based on offline simulation 

observations. The basis for the selections was to show the SFDIA functionality and not 

specifically follow the thresholds mentioned in Section 4.1. 

 
Figure 26: Test engine with dynamometer and breakout panels.  

2. Testing SFDIA without accommodation mode: Engine map cycles were carried out to create 

the FTP setpoints. Then, to assess the effects of a failed sensor on the test engine, the BP 

sensor signal was subjected to FM1 without accommodation and performance data recorded. 

Next was to obtain baseline data, meaning test the SFDIA without inducing failures. 

3. Real-time SFDIA testing with accommodation mode: With the availability of a baseline data 

set, the SFDIA test with accommodation enable could commence. All failure modes were 

tested with the failures occurring at specified points in time. Data collected were those from 

Simulink, VAT2000 and the laboratory. 
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CHAPTER 5 RESULTS AND DISCUSSION 

Initially, this chapter focuses on models trained for the study, both for accommodations 

and residuals. Next, the SFDIA offline simulation is discussed, which helped in the selection of 

suitable thresholds and other constants mentioned in the previous chapter. Finally, results are 

presented from the real-time testing including the effects on the engine when the BP sensor fails.  

5.1 NN models 

5.1.1 Approximation NNs 

Two sets of non-overlapping data provided the training and validating datasets for model 

creation. The datasets originated from VAT2000 through previous testing discussed in Section 

4.3.1. The duration of the training data was 3.6 hours, while the validation data was 1.17 hours 

long, both sampled at 5 Hz. As a first step, weights for the ADALINE NN were obtained. The 

weights for the BP, CT and FP sensors calculated using the LS method is listed in Table 1.  
Table 1: ADALINE weights for Approximation block NNs. 

Parameter BP weights CT weights FP weights 

AT 0.003 -0.058 0.025 

BP  -0.073 -0.057 

OP 0.016 -0.119 0.427 

OT -0.130 0.411 0.221 

CT -0.019  -0.017 

FP -0.030 -0.033  

BT 0.247 0.339 -0.215 

ES -0.304 0.070 0.326 

VTS 1.165 0.242 0.136 

The table above also indicated the importance of a given variable to the overall prediction. The 

larger the magnitude, the more influence it has on the model. With the linear weights obtained, 

the focus moved to training the nonlinear NN portion. For this task, it was not necessary to train 

the EMRAN RBF NN within the SFDIA scheme itself, although it is possible to do so. 

Therefore, the training of the subsystem seen in Figure 16 took place within the following 

Simulink model to obtain all predictions: 
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Figure 27: Simulink model for training and validating the BP prediction.  

Using the above model, the Switch block for the GRBF block now resembles the one in Figure 

28 . It was set to one during training and to zero during validation. 

  

[LEN]
0

1
on

off  
Figure 28: Simulink Switch block used during EMRAN RBF NN training.  

Training the RAN network involved varying the parameters E1, E2 and λ, while running 

the scheme several times for a given combination. For each run, the scheme creates a set of 

values for θ from Equation (2). The values for E3 and η were set to 0.01 and 1x10-6, respectively. 

A small learning rate is critical to ensure the model learns as much as possible about the system, 

but enough to avoid learning measurements from slow drifting fault. The RMS percentage error, 

seen below normalized for the given data set, was calculated at each run until it stopped varying 

noticeably.  
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t t
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⋅
⋅

∑
 (26) 

where y(t) are nominal values. When the training for a set of E1, E2 and λ concluded, then the 

RMS error of the model was calculated with the validation (nominal) data set. This error value 

provided an indication of the model performance. The training process continued until the RMS 

error from the validation was at a minimum and did not significantly vary. The error analysis 

also served as a Quality Control-Quality Assurance (QC-QA) check for the SFDIA scheme. In 

general, variables that varied were within the following ranges: 
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Table 2: Range of possible values for the EMRAN RBF NN constants. 

Parameter Range 

E1 0.1 - 0.3 

E2 0.2 - 0.8 

λ 0.1 - 1 

Models selected for this study performed as seen in Figure 29 to Figure 31.  
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Figure 29: Performance of NN in estimating BP. 
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Figure 30: Performance of NN in estimating CT. 
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Figure 31: Performance of NN in estimating FP. 

Appendix G indicates the values of the nonlinear NN constants E1, E2 and λ for each model 

along with the number of neurons. Visually, both pressure models that produced Figure 29 and 

Figure 31 had the best fits. However, the CT model performance seen in Figure 30 showed that 

more input variables were necessary to provide a better estimate. As an example, if EGR gas 

temperature (ET) available only through the inaccessible CAN bus was included, then the linear 

NN weight distribution is: 
 Table 3: ADALINE weights for CT model with EGR temperature included. 

Parameter CT weights 

AT 0.003 

BP -0.171 

OP -0.229 

OT 0.250 

FP -0.145 

BT 0.132 

ES 0.211 

ET 0.487 

VTS 0.206 
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The variable ET would carry a high weight since the EGR cooler on the MP7-355E requires a 

high volume of coolant flow to maintain the gas temperature. Weights in Table 3 also show that 

the addition of ET changes the weight distribution as some variables carry a higher weight and 

could improve the overall model accuracy by adding more neurons. The oscillations in the 

nominal CT data meant there might be other unknown factors such as signal noise that 

influenced the NN performance. The RMS errors for all the models after validation were: 
Table 4: Summary of model performances. 

Parameter RMS Error (%) 

BP 1.46 

CT 8.13 

FP 1.84 

5.1.2 Residuals NNs 

The training and validating procedures to obtain the residual NNs were as discussed in 

the previous section, except the models used fewer input variables. The input variables selected 

are as described in Equation (23) to Equation (25). Initially, the ADALINE weights were 

determined and listed in Table 5. 
Table 5: ADALINE weights for the residual estimation. 

Parameter BP weights CT weights FP weights 

AT 0.003 -0.059 0.025 

OP 0.006 -0.134 0.429 

OT -0.145 0.414 0.222 

BT 0.248 0.329 -0.235 

ES -0.316 0.082 0.342 

VTS 1.160 0.154 0.067 

With the linear NN weights known, the EMRAN RBF NN training then took place with the 

resulting model performances shown in Figure 32 to Figure 34: 
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Figure 32: Performance of NN in estimating BP for the residuals 
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Figure 33: Performance of NN in estimating CT for the residuals 
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Figure 34: Performance of NN in estimating FP for the residuals. 

The EMRAN RBF NN parameters that created Figure 32 to Figure 34 are in Appendix G. The 

model performances in Figure 32 and Figure 34 showed a reduction in accuracy from a visual 

observation in comparison to their Approximation block counterparts. In addition, both pressure 

models showed better predictions than the one obtained for estimating CT. The RMS errors 

calculated for the residual NNs were: 
Table 6: Summary of model performances used for residual determination. 

Parameter RMS Error (%) 

BP 2.11 

CT 7.93 

FP 2.46 

The aforementioned reduction in accuracy of the BP and FP models may be due to the use of 

fewer input variables. However, a reduction in input variables gave the CT model a 2.65% 

improvement over the Approximation block CT model. It is noted that the residual CT model has 

65 additional neurons that likely contributed to the result in Table 6. Although this is a minor 

difference in RMS errors, it is possible that reducing the number of variables can improve the 

overall accuracy. Another important consideration is that increasing the number of neurons can 

also amplify an estimation error [48]. The BP and FP models, in addition to the reduction in 

input variables, did have a higher number of neurons than the ones for the Approximation block. 
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It is understood that ADALINE weights provide just an estimate of how well each 

variable contributes to the overall models. The variables omitted from all three residual NN 

models had small weight values in Table 1. This would imply removing them would not 

significantly affect the model performances. A comparison of the residual NN weights in Table 5 

with their equivalent Approximation block NN weights listed in Table 1 did show the following 

differences in Table 7.  
Table 7: Residual NN weights in comparison to the Approximation block weights.   

Parameter 
Difference (%) 

BP weights CT weights FP weights 

AT 0.00 1.69 0.00 

OP -166.67 11.19 0.47 

OT 10.34 0.72 0.45 

BT 0.40 -3.04 8.51 

ES 3.80 14.63 4.68 

VTS -0.43 -57.14 -102.99 

In addition, the EMRAN RBF NN structure had a unique effect on all the models. Being a “black 

box” method, that overall structure is not quite apparent. This sometimes leads to difficulties in 

making conclusions on overall model performance, as seen in the pervious paragraph. Therefore, 

the differences in the ADALINE NN weights, and the EMRAN RBF NN configuration 

collectively had a unique effect on the RMS errors indicated in Table 4 and Table 6. 

5.2 Tuning the SFDIA for the MP7-355E Test Engine 

With models acquired, the final assembly of the SFDIA took place. All the NN weights 

were in files that the SFDIA accessed each time the scheme initialized. The SFDIA scheme was 

now run a few times using engine data to ascertain the appropriate bandwidths for the low pass 

filters that computed the fast and slow residuals. At the same time, thresholds that control values 

of LE and AE were determined. For this tuning, the learning switch for the GRBF block (see 

Figure 16) was set to ‘off’.  

The starting values for determining the low pass filter bandwidths were the ones used in 

the previous study [48]. To trigger the accommodation mode, the chosen value of H used by the 

failure models was 50% of the data range shown in Figure 84 to Figure 86 (see Appendix D), 
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respectively. The choice of this selection was due to simplicity. The selection of H could take on 

any values but with appropriate consideration of the engine manufacturer thresholds assigned to 

the sensors. For instance, failure artificially induced on the CT sensor should not exceed 219oF. 

Anything at this temperature or higher triggered the engine protection mode, resulting in a 

shutdown. This happens, as the SFDIA is not part of the current EMS programming. Having the 

engine shutdown for such a situation during experimental testing was undesirable. All failure 

amplitudes were positive, meaning the failures caused the signals to increase in value. The 

presence of Absolute Value blocks in the path of the residual signals seen in Figure 76 and 

Figure 77 (see Appendix A) meant that it does not matter whether failures are positive or 

negative in value.   

As mentioned earlier, the tuning involved simulating the SFDIA repeatedly and the 

engine data used was the NN validation dataset. The reason for tuning the SFDIA scheme was to 

allow it to function with the test engine sufficiently. The failure mode used for this tuning 

process was FM1. The process that was followed for the tuning is listed below: 

a) Set values for the low pass filter bandwidths; the fast filter bandwidth variation was 

between 0.5 and 1 rad/s, while the slow filter bandwidth was between 0.1 and 0.5 rad/s 

b) Run the SFDIA without failures and record the fast and slow residuals 

c) Obtain the maximum values of the fast residual vectors 

d) Multiply the above values by a factor between one and two to obtain thresholds for both 

the LE and AE vectors; initial values being the ones used by Campa et al. [48] 

e) Run SFDIA with FM1 applied to BP, CT and FP signals at specified times and visually 

observe results; for this study, selected failure times were 200s, 300s and 400s 

respectively 

f) Repeat steps a) through d) until SFDIA responds adequately 

Table 8 summarizes the results from the tuning process. It was possible to use one factor value 

mentioned in step (d) on all three fast residual vectors. The fast filter bandwidth from the 

previous study remained unchanged. Selection of the slow filter bandwidth was critical since its 

value affected the time it took for the accommodation mode to respond to a failure. The smaller 

the value, the quicker it accommodates but it could be susceptible to false alarms. A bigger 

number means the accommodation might take longer to happen. Appendix G shows additional 

data such as the factors determined in step (d) that led to calculating H and the thresholds. 
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Table 8: SFDIA settings. 

Parameter 
Filter Bandwidth (rad/s) 

H 
Thresholds 

Fast Slow Fast Slow 

BP 

1 0.3 

107.085 kPa 34.851 kPa 38.020 kPa 

CT 5.630ºC 3.432ºC 3.588ºC 

FP 87.534 kPa 53.370 kPa 55.796 kPa 

All parameters associated with the NN models and SFDIA scheme up to this point are 

unique to MP7-355E engine under study. Another engine or system might produce a completely 

different set of values, while still applying the same ranges in Table 2 and the tuning process 

mentioned in the previous paragraph. With the configuration for the test engine completed, it was 

now ready for an offline assessment of the SFDIA. 

5.3 SFDIA Simulation Results 

This section presents the SFDIA scheme results acquired through offline simulation using 

all failures modes of this study. Performing a simulation study of the SFDIA is an important step 

prior to the real-time test as it gave an overview of the scheme functionality. In summary, 

performance of the NN estimators in the accommodation and residual generation blocks are 

summarized in Tables 4 and 6. All thresholds and failure amplitudes are as described in Table 8 

and updated within the SFDIA. Although the LE vectors change values, the Switch block 

associated with the GRBF block was set to the ‘off’ position (see Figure 16) to preserve the 

number of neuron and prevent the θ variables from changing values. All the induced failures 

occurred at user specified times. For each of the failure modes, the failure points were: 
Table 9: SFDIA failure points.  

Parameter 
Failure Time (s) 

FM1 FM2 FM3 

BP 200 200 200 

CT 300 400 300 

FP 400 600 400 

The intention was to have failures occur early on due to the length of the FTP cycle. Being a 

1200-second cycle, it was the desire to have the SFDIA operation in the accommodation mode as 

much as possible to acquire sufficient data to determine the scheme performance. For all the 
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failure modes, BP was always the first sensor to induce a failure. The CT sensor was next, 

followed by FP.  

5.3.1 SFDIA with FM1 

This section discusses the SFDIA performance when subjected to a step failure mode 

from an offline standpoint. The failures occurred at the time instants indicated in Table 9. Figure 

35 to Figure 37 shows the SFDIA performance subjected to FM1 mode:  
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Figure 35: BP signal subjected to FM1 at 200s.  
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Figure 36: CT signal subjected to FM1 at 300s. 
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Figure 37: FP signal subjected to FM1 at 400s. 

Prior to the failure, the SFDIA output is the ‘sensor’ signal. The ‘sensor’ signal originated from 

the block called ‘fail’ seen in Figure 13. The signal recorded by this block would reflect the 

addition of the failure as described in Equation (12). ‘Nominal’ is the signal saved before the 

Failure block. The ‘SFA estimate’ is the NN estimate from the Approximation block that the 

SFA block uses when a sensor fails. This description of the signals applied to all figures showing 

the SFDIA signal output.  

When the BP sensor failed, the fast residual first reacted to stop the online learning by 

crossing the threshold in 0.2s, as seen in Figure 38. This changed the LE vector of all parameters 

from one to zero, effectively halting the online learning of all NNs. This prevented the NNs from 

adapting to faulty sensor characteristics that can affect model accuracy. When the residual for the 

BP sensor increases, the other residuals remained below their respective thresholds. Figure 110 

and Figure 111 (see Appendix G) shows the residuals for CT and FP sensors. As the failure 

progressed, the AE vector for the BP signal changed from one to zero thus isolating and 

accommodating the sensor. This happened as the slow residual crossed its corresponding 

threshold.  
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Figure 38: BP residuals using FM1. 

The same processes occurred when the CT signal failed at the specified time, followed by FP.  

The SFDIA signals shown in Figure 35 to Figure 37 confirm the residual activities for each 

sensor. Table 10 lists the length of time it took for the accommodation modes to trigger:  
Table 10: Duration of accommodation to occur with FM1 from offline simulation.  

Parameter Length of time (s) 

BP 1.6 

CT 1.4 

FP 3.8 

5.3.2  SFDIA with FM2 

The focus of this section was to perform an offline demonstration of the SFDIA to 

respond to failures resembling a long-term drift. This means the SFDIA would not correct the 

failures immediately following its occurrence as it did with the FM1 mode. Each sensor selected 

for failure had the signal ramp begin at the time instants indicated in Table 9. Figure 39 to Figure 

41 shows the SFDIA performance subjected to the FM2 mode: 
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Figure 39: BP signal subjected to FM2 at 200s. 
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Figure 40: CT signal subjected to FM2 at 400s. 
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Figure 41: FP signal subjected to FM2 at 600s. 

The specified slope of the Ramp block (see Figure 11) was 0.01. The slope chosen slowly creates 

the drift but without taking too long just to prove the SFDIA functionality. This takes into 

consideration the fact that it was not possible to run the engine in the test cell for a significant 

amount of time.  

Each failure point was spaced further apart in comparison to FM1 due to the uncertainty 

of when the accommodation would trigger. In comparison, the step failure used in the previous 

study showed that the incidence of FM1 on a signal would cause a failure accommodation within 

a few seconds. Thus, spacing the FM1 failures 100s apart for each parameter was feasible. 

However, based on the results of Figure 39 to Figure 41, the 200s spacing of the FM2 failures 

were sufficient. The selected thresholds triggered all accommodations at under 100s.  

According to Figure 42, all online learning capabilities ceased at 36.8s after the BP 

sensor failed. The residuals behaved in the same manner as discussed in the previous section. 

The difference was the type of failure under study in this section. Figure 112 and Figure 113 (see 

Appendix G) shows the residuals for CT and FP sensors.  
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Figure 42: BP residuals using FM2. 

Both the CT and FP sensors failed at the specified time and later both accommodated. The 

SFDIA signals shown in Figure 39 to Figure 41 correlate with all residual activities recorded 

during FM2 mode simulation. 

Table 11 summarizes the time it took for each parameter to reach the accommodation 

mode when the slow residuals crossed their respective thresholds.    
Table 11: Duration of accommodation to occur with FM2 from offline simulation.  

Parameter Length of time (s) 

BP 40.4 

CT 78.4 

FP 53.8 

Lower failure amplitudes for FM2 would take a longer time to accommodate for the given 

thresholds. Therefore, reducing thresholds in such instances would be necessary to best detect 

these failures. However, this could lead to false alarms associated with failures resembling the 

other modes [48]. 

5.3.3  SFDIA with FM3 

It was important to see how the SFDIA works during instances of intermittent failures 

and to validate the logic developed, seen in Figure 77 (see Appendix A), to accommodate such 

failures. This failure mode consisted of multiple step failures that oscillated through the 

Learning 
stopped 
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thresholds. As mentioned in Section 3.2, the number of pulses was three and the accommodation 

expected to hold after the third pulse. The setting of the Pulse Generator block (see Figure 12) 

specified a pulse width, tw of 20s with the same duration between each pulse. It is noted that 

when Simulink started, so did the Pulse Generator blocks and their outputs added to the sensor 

signals at the failure times indicated in Table 9. Figure 43 to Figure 45 shows the SFDIA 

performance subjected to the FM3 mode: 
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Figure 43: BP signal subjected to FM3 at 200s. 
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Figure 44: CT signal subjected to FM3 at 300s (pulse started at 320s). 
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Figure 45: FP signal subjected to FM3 at 400s. 

When the first pulse occurred on the BP sensor, shown in Figure 43 and Figure 46, all NN 

learning switched off and failure accommodation kicked in moments later. At the end of the first 

pulse, the failure amplitude returned to zero. This caused the residuals to drop below their 

thresholds and thus releasing the accommodation mode while re-enabling NN learning. When 

the second pulse occurred, the aforementioned effects took place again. After the third pulse, the 

accommodation permanently held as the SFDI logic ensured the scheme output was the NN 

estimate of the BP sensor.  
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Figure 46: BP residuals using FM3. 
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The same processes took place to correct the CT and FP failures. Figure 114 and Figure 115 (see 

Appendix G) shows the residuals of the CT and FP sensors as they reacted to the square wave 

pulses that simulated the failures. All NN leaning ceased after the BP sensor underwent 

permanent accommodation. Table 12 indicates the time it took for all NN learning to disable 

during the BP failure events. 
Table 12: Duration of LE vector to switch values with FM3 from offline simulation.  

BP Pulse Number Length of time (s) 

1 0.2 

2 0.2 

3 0.4 

For all sensors, Table 13 summarizes the length of time for the accommodation modes to enable. 
Table 13: Duration of accommodation to occur with FM3 from offline simulation.   

Parameter 
Length of time (s) 

Pulse 1 Pulse 2 Pulse 3 

BP 1.6 1.6 1.6 

CT 0.8 2 0.8 

FP 3.8 2.8 3 

It was noticeable that after the first two pulses ended in Figure 44 there were delays in 

restoring the signal to nominal. In fact, it also occurred in Figure 43 and Figure 45 for the 

pressure sensors. The delays there were shorter and not easily detectable in the figures. When the 

pulses ended, the CT slow residual did not fall as vertically as the ones for BP and FP. The 

solution for reducing this delay was to improve the accuracy of the NN models. Another 

possibility was to tune the SFDIA with FM3 type failures and adjust the slow filter bandwidth to 

reduce the delay. However, the SFDIA signals generated for this failure mode showed that the 

SFDI logic performed as intended. 

5.4 Breakout Panel Verification and Effects of Sensor Failure 

Offline simulation showed the functionality of the SFDIA, which led to testing the 

concept in real-time. First set of results in this section indicated whether the breakout panels 

interfered with EMS operation. This was followed by a test to observe the effects on the engine 

when a sensor critical to fuel timing failed with no accommodation. The failure was artificially 

added through the Failure block of the SFDIA scheme.  
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5.4.1 Engine Test Setup and Breakout Panel Verification 

As a first step, laboratory calibrations and verifications for all thermocouples, pressure 

transducers, dynamometer and gaseous analyzers associated with the test setup were conducted. 

Next, engine map cycles were run for creating FTP setpoints without using the breakout panels.  

An engine map cycle involved running the engine at 100% load while varying engine speed 

between curb idle and high idle. The blower flow rate of the exhaust sampling tunnel was set to 

2100 scfm. Test cell data acquisition for all sensors and gaseous analyzers was set to 10 Hz. Fuel 

for the test engine was Ultra-Low Sulfur Diesel (less than 15ppm sulfur) supplied by the 

Guttman Oil Company. Prior to running the map cycles, the engine inlet depression and exhaust 

backpressure were set to manufacturer specifications. Figure 78 (see Appendix B) shows the lug 

curve from the chosen map cycle. The EERL laboratory software is designed to create the FTP 

cycle using engine map data with normalized setpoints defined in 40 CFR. The data extracted 

from the map is shown in Table 28 (see Appendix B). A view of the generated FTP duty cycle is 

provided in Figure 116 (see Appendix G). 

All FTP tests conformed to 40 CFR procedures, where each FTP test observed a 20-

minute soak period between each run. The soak period entails shutting down the engine and 

allowing it to cool. This ensured each test starts at a common reference condition. The data of 

interest and the ones reported in this study are only from the ‘Hot Start’ FTPs. In other words, 

the engine first went through a warm-up phase prior to acquiring performance data. This 

consisted of initially running the engine manually until the engine thermostat opened. 

Immediately after this was a warm-up FTP test, followed by a 20-minute soak period. Thus, all 

FTP tests from this point onwards were Hot Start FTPs. If a test did not immediately start after 

the soak period and the engine had not completely cooled down, then the next FTP was 

considered a warm-up cycle. A repeat of the manual warm-up was sometimes necessary 

depending on the length of time the engine was shutdown.   

All continuous emissions data measured by the analyzers were from the exhaust stream, 

which was diluted with conditioned ambient air. A Teflon® bag collected background (ambient) 

air during each test for sampling through the analyzers at the conclusion of a test. All dilute 

exhaust emissions measurements were corrected for background emissions levels. The ambient 

air and fuel conditioning all conformed to 40 CFR standards.   
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The verification of the breakout panels consisted of two parts. First part was to run 

baseline tests, meaning running the engine without the panels. After that, the breakout panels 

were connected as shown in Figure 22 but without the DAQ equipment attached. All engine 

signals had a direct connection to the EMS via breakout panels. The data of interest are the 

integrated results from each test. Each parameter had its repeatability checked by calculating the 

Coefficient of Variation (COV) percentage as follows: 

 100standard deviationCOV percentage =
average

⋅  (27) 

The COV gave an indication to the degree of dispersion within the dataset. In addition, it was 

also necessary to determine the occurrence of outliers using the ASTM E178 standard [83] based 

on a 1% significance level. Significance levels of 1% or 5% were typical in the usage of this 

standard. The method outlines a standardized procedure for determining data outlier limits. Any 

values outside these limits for a given significance level are deviations in the dataset. For a 1% 

significance level, values within the limits meant there is a 99% chance to believe they occurred 

as measured. Results from the verification tests are shown in Table 14 and Table 15: 
Table 14: Emissions data without breakout panels from verification test. 

Run 
Total work 

(bhp-hr) 

HC 

(g/bhp-hr) 

NOx 

(g/bhp-hr) 

CO 

(g/bhp-hr) 

CO2 

(g/bhp-hr) 

1 24.35 0.118 2.50 1.12 559.65 

2 24.33 0.118 2.51 1.09 560.21 

3 24.32 0.119 2.56 1.08 560.63 

Average 24.33 0.118 2.53 1.10 560.16 

Standard Deviation 0.015 0.001 0.033 0.017 0.495 

COV 0.06% 0.62% 1.32% 1.54% 0.09% 

Outlier 

Limits 

Maximum 24.35 0.119 2.56 1.12 560.73 

Minimum 24.31 0.118 2.49 1.08 559.59 
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Table 15: Emissions data without breakout panels from verification test. 

Run 
Total work 

(bhp-hr) 

HC 

(g/bhp-hr) 

NOx 

(g/bhp-hr) 

CO 

(g/bhp-hr) 

CO2 

(g/bhp-hr) 

1 24.33 0.120 2.52 1.08 559.87 

2 24.32 0.118 2.55 1.07 560.50 

3 24.33 0.117 2.49 1.08 559.45 

Average 24.32 0.118 2.52 1.08 559.94 

Standard Deviation 5.92x10-3 1.15x10-3 0.030 0.010 0.53 

COV 0.02% 0.98% 1.19% 0.97% 0.09% 

Outlier 

Limits 

Maximum 24.33 0.120 2.56 1.09 560.55 

Minimum 24.32 0.117 2.49 1.07 559.33 

In Run 1 without panels, a corrected HC value is presented. It used an adjusted background HC 

value averaged from the other test runs mentioned in Table 14 and Table 15. The original 

background HC level was an erroneous value recorded at the time of testing. All COV 

percentages indicated there was low dispersion of values within the dataset. In addition, all data 

acquired were within the outlier limits. Therefore, the results in the above tables verified that the 

breakout panels did not interfere with the operation of the engine. The DAQ system connection 

then took place as described in Section 4.3.2. 

5.4.2 Simulink Settings and Failure without Accommodation Study 

Engine testing for this portion of the study occurred 50 days from the one carried out for 

Section 5.4.1. The reason for the duration was laboratory scheduling. This required new 

laboratory checks and rerunning an engine map, with the map data in Table 36 (see Appendix 

G). The new FTP setpoints are shown in Figure 117 (see Appendix G). At a glance, there are no 

noticeable differences between this and the previous cycle setpoints. Between the two different 

tests, it was natural to expect variations in laboratory and ambient conditions. 

Recalling that the offline simulation results in Section 5.3 had the NN learning 

capabilities turned off. The LE vectors were still varying to demonstrate the SFDIA 

functionality. In performing the real-time test, it was necessary to turn on all GRBF block-

learning capabilities (see Figure 16). Therefore, the LE vectors now controlled all the EMRAN 

RBF NN learning. The learning rate selected was 1x10-4. The purpose for using a small learning 

rate was that data for training the NNs originated from VAT2000 using its own DAQ hardware. 
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Now, the SFDIA signals received were from the DAQ system assembled for this study. This also 

means from this point onwards, the BP, CT and FP sensor signals passed through the DAQ 

system prior to the EMS. It was not expected that the manual calibrations shown in Appendix F 

would accurately replicate the calibrations used by VAT2000. In addition, there might be other 

unknown factors affecting the estimations from using this DAQ hardware. Therefore, there must 

be adaptation capabilities applied to the models to compensate for any differences present in the 

DAQ signals with respect to the ones from VAT2000. The sampling rate of the Data Acquisition 

Toolbox blocks in Figure 95 (see Appendix F) was 200 Hz. However, all data recording occurred 

at 10 Hz. 

With the DAQ system connected to the breakout panels, it was necessary to observe the 

effects of a sensor failure on the engine. As mentioned earlier, only six sensors originated from 

the panels. The other three sensors were placed separately around the engine. The sensor selected 

to perform this observation was the BP sensor. This was because the sensor is critical for 

determining fuel timing, intake air mass flow rate and EGR control. To prevent accommodation, 

all thresholds had its values increased substantially such that the residuals could never cross 

them. The failure mode tested here was FM1 occurring at 200s.  

In Simulink, the BP sensor variation occurred as shown in Figure 47. The SFDIA sent the 

erroneous signal to the EMS and continued until the end of the test. There appeared to be 

minimal noise levels in the signals. The SFA estimate trace indicated that its accuracy reduced 

from the point of failure. The primary reason for this was the NN model was learning from the 

error. The LE variable did not switch off the learning, as the fast residual threshold was too high. 
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Figure 47: BP sensor failure at 200s with no accommodation. 

Similar effects occurred in Figure 48 and Figure 49 for the CT and FP signals. This time 

the step increase in the BP signal affected the CT and FP models, as BP is an input parameter for 

those models. Since no accommodations took place, the model activities remained isolated from 

the EMS. The residuals from this test with the modified threshold are shown in Figure 118 to 

Figure 120 (see Appendix G). It was noticeable that there were slight noise oscillations in the 

SFDIA output signals associated with the CT and FP sensors. The CT model also had noise 

effects in its output, which was expected since the training CT data had noise levels in them. 

However, all the NN outputs tracked closely to their respective nominal signals prior to the 

failure. This was due to the learning rates now active within the NNs. 
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Figure 48: CT signal when BP sensor failed at 200s with no accommodation. 
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Figure 49: FP signal when BP sensor failed at 200s with no accommodation. 

New FTP setpoints meant this portion of the study required new baseline data. The 

purpose was to compare the results above with data without any sensor failures. Baseline testing 

occurred with the breakout panels attached for accurate representation. Data acquired from the 

baseline tests are shown in Table 16. The most noticeable differences were in the HC averages 

reported in Table 14 and Table 16. The main cause was the usage of a different fuel batch; hence, 
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different fuel properties, such as Cetane numbers and aromatic hydrocarbon content. Other 

contributions can include variations in background emissions levels. 
Table 16: Baseline results for comparison purposes (failure without accommodation). 

Run 
Total work 

(bhp-hr) 

HC 

(g/bhp-hr) 

NOx 

(g/bhp-hr) 

CO 

(g/bhp-hr) 

CO2 

(g/bhp-hr) 

1 24.23 0.140 2.54 1.09 560.37 

2 24.24 0.140 2.54 1.09 560.35 

3 24.24 0.140 2.54 1.07 560.78 

Average 24.23 0.140 2.54 1.09 560.50 

Standard Deviation 2.59x10-3 3.61x10-4 2.70x10-3 0.011 0.24 

COV 0.01% 0.26% 0.11% 1.01% 0.04% 

Outlier 

Limits 

Maximum 24.24 0.141 2.54 1.10 560.78 

Minimum 24.23 0.140 2.54 1.07 560.22 

Therefore, Table 17 presents the differences between the emissions from a failed BP signal to the 

baseline. Baseline results are Run 1 in Table 16. 
Table 17: Comparison of selected test results when BP failed at 200s.  

Parameters Baseline With FM1 Difference (%) 

Total Work (bhp-hr) 24.23 24.26 0.13% 

HC (g/bhp-hr) 0.14 0.26 85.63% 

NOx (g/bhp-hr) 2.54 1.89 -25.63% 

CO (g/bhp-hr) 1.09 3.65 233.54% 

CO2 (g/bhp-hr) 560.37 557.81 -0.46% 

Fuel Consumption (g/bhp-hr) 176.72 178.87 1.22% 

The percentage differences calculated in Table 17 were in comparison to baseline. The 

results showed that failing of the BP sensor effected the HC, NOx and CO emissions 

significantly. The erroneous signal effectively compromised the emission control strategy of the 

engine. The figures below show how fuel injection timing measured in degrees from TDC along 

with EGR mass flow rate differed from baseline, viewed from a portion of the FTP cycle: 
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Figure 50: EGR control from FTP cycle when BP failed at 200s.  

0 50 100 150 200 250 300 350 400
-2

0

2

4

6

8

10

12

Time (s)

Fu
el

 T
im

in
g 

(d
eg

)

 

 

baseline
with FM1

 
Figure 51: Fuel timing from FTP cycle when BP failed at 200s. 

When the failure occurred, the EGR mass flow rate was first to show signs of disruption. Engine 

timing on the other hand did not show any deviations until the engine throttle ramped up. That is 
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because at 200s, the FTP setpoints was in an engine idling region. However, there was EGR 

activity at idle.  

Table 17 showed that there was only a small variation in total power with respect to 

baseline, implying that power was not affected. Using the same conclusion meant CO2 variation 

would also be negligible, as evident in Table 17. In addition, the FTP cycle ran using the 

erroneous sensor signal conformed to all 40 CFR cycle regression limits, as shown in Table 37 

(see Appendix G). However, the continuous trace of engine torque pointed to noticeable 

variations, especially in high load regions of the FTP cycle as illustrated in Figure 52. 
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Figure 52: A segment of engine torque data from the FTP (BP failure at 200s).  

Although Figure 51 shows a segment from the FTP cycle, fuel-timing angles were generally 

higher in comparison to baseline. Artificially sending the EMS higher BP values made the 

engine control strategy retard the injection timing. In other words, the erroneous BP signal 

delayed fuel injection more often with respect to baseline, as indicated by the higher injection 

timing angle values at high load points. This led to a decrease in combustion efficiency. Due to 

the load demand from the cycle, more fuel was injected to compensate for the resulting 

combustion inefficiency. Table 17 data does indicate higher fuel consumption. Higher fuel 

consumption entails an increase in CO2 emissions, but that was not the case as there was a small 
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reduction in brake-specific CO2 emissions. Decreasing combustion efficiency produced higher 

HC and CO emissions, possibly resulting in lesser carbon available for CO2 formation. 

5.5 Real-time SFDIA Validation 

As observed in the previous section, a sensor failure left uncorrected can disrupt the 

emission control capabilities of an engine. Therefore, this section discusses the real-time results 

of the SFDIA scheme. Similar to the previous section, the SFDIA testing occurred inline with the 

engine EMS. All residual thresholds were as defined in Table 8 to obtain the real-time data. 

Before beginning a test, the original NN weights were uploaded to maintain a common starting 

point for comparison purposes. Due to laboratory time constraints on the day of testing, it was 

possible to run one test for each failure mode and baseline. The data of interest here are the 

continuous data collected during each FTP cycle. The FTP setpoints is the same as the one used 

for acquiring data in the previous section.  

5.5.1 SFDIA with FM1 

This section discusses the real-time SFDIA performance subjected to step failures. The 

failures occurred at the time instants indicated in Table 9. Figure 53 to Figure 55 shows the 

SFDIA performance subjected to FM1 mode: 
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Figure 53: BP signal subjected to FM1 in real-time at 200s. 
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Figure 54: CT signal subjected to FM1 in real-time at 300s. 
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Figure 55: FP signal subjected to FM1 in real-time at 400s. 

The fast residual associated with the BP sensor crossed its threshold in 0.3s, as seen in Figure 56. 

This halted the online learning of all NNs. As expected, the other fast residuals remained below 

their respective thresholds during this time. Figure 121 and Figure 122 in Appendix G shows the 

residuals for CT and FP sensors. The AE vector for the BP signal eventually switched values as 

the slow residual crossed its threshold. This process isolated the failed signal and corrected it 

with values from the NNs. At the point of the BP accommodation shown in Figure 53, the slow 
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residual of the healthy sensors remained below their thresholds. Later when the CT and FP 

sensors both failed at their specified times, their signals were isolated and accommodated. The 

SFDIA signals shown in Figure 58 and Figure 59 confirm the residual activities associated with 

the CT and FP sensors. Both BP and CT failures occurred during engine idle periods. 
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Figure 56: BP residuals with FM1 from real-time SFDIA tests. 

Table 18 indicates the length of time it took for the accommodation modes to trigger: 
Table 18: Duration of accommodation to occur in real-time with FM1.   

Parameters Length of time (s) 

BP 1.4 

CT 4.7 

FP 3.2 

Table 19 shows the performance of the models during the accommodation phase. Any changes to 

the original models occurred in the θ parameters of Equation (2), as the number of neurons 

remained the same. 
Table 19: Model performance during accommodation phase (FM1failure). 

Parameters RMS Error (%) 

BP 2.35 

CT 14.89 

FP 3.27 

Learning 
stopped 
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The error values in Table 19 implied that the CT model required a higher learning rate to 

compensate for the noise levels. Maintaining the learning rate mentioned in this study meant 

spending a longer amount of time for NN adaptation.  

Figure 57 to Figure 59 shows the data recorded by VAT2000 as it received them from the 

EMS CAN bus during the failure events. It was not possible to record fault-free signals in 

VAT2000 simultaneously due to the usage of the breakout panels. Therefore, baseline data 

functioned as the fault-free dataset for comparison purposes. Although the BP and CT failures 

appear to follow the same trend of the Simulink results, the FP signal recorded in VAT2000 

showed a different profile. In fact, it was expected that the VAT2000 plots would show 

similarities to the ones seen in Figure 53 to Figure 55 as the signals originated from Simulink. 

However, that was not the case. The FP sensor had noticeable noise levels in the signal but 

Figure 59 showed the noise removed. It is not known how VAT2000 or the EMS performs signal 

processing. The differences in the plots indicate that for each signal, there are varying levels of 

signal filtering or shaping involved. The solution is to involve manufacturer participation to 

implement the same signal processing into the scheme for more accurate representation.  
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Figure 57: VAT2000 BP signal subjected to FM1 failure at 200s. 
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Figure 58: VAT2000 CT signal subjected to FM1 failure at 300s. 
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Figure 59: VAT2000 FP signal subjected to FM1 failure at 400s. 

5.5.2 SFDIA with FM2 

This section focuses on presenting the real-time SFDIA performance as it responded to 

long-term drift type failures. This implied the SFDIA did not correct the failures immediately 

following its occurrence. Each sensor selected for failure had the signal ramp begin at the time 

instants indicated in Table 9. Figure 39 to Figure 41 shows the SFDIA performance subjected to 

the FM2 mode: 
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Figure 60: BP signal subjected to FM2 in real-time at 200s. 

380 400 420 440 460 480
80

81

82

83

84

85

86

87

88

Time (s)

C
T

 S
FD

IA
 si

gn
al

s (
o C

)

 

 

nominal
sensor
SFA estimate
SFDIA output

 
Figure 61: CT signal subjected to FM2 in real-time at 400s. 
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Figure 62: FP signal subjected to FM2 in real-time at 600s. 

Figure 60 to Figure 62 indicated that the spacing between the failures was sufficient to prevent 

them from overlapping. The value of the Ramp block (see Figure 11) slope remained at 0.01 

from the offline simulation. The Ramp block functioned to increase the sensor value gradually to 

create the effect of long-term drift. The selected thresholds triggered all failure isolation and 

accommodation at under 100s. A different slope value would certainly influence the SFDIA to 

correct the failure for the given thresholds. 

According to Figure 63, all online learning capabilities ceased at 51.8s. The LE vector did 

switch values twice before permanently stopping the adaptation. The algorithm in the SFDI 

block is such that prior to an accommodation phase, the fast residual can move above and below 

the thresholds. Once an accommodation happens and holds, the adaptation cannot reactivate. 

Overall, the residuals reacted similarly as discussed in the previous section for the step failure. 

Figure 123 and Figure 124 (see Appendix G) shows the residuals as they occurred for the CT and 

FP sensors. The CT and FP sensors failed at the specified time and later both accommodated. 

The SFDIA signals shown in Figure 60 to Figure 62 agreed with all residual activities recorded 

for the FM2 mode. 
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Figure 63: BP residuals with FM2 from real-time SFDIA tests. 

Table 11 summarizes the duration it took for each parameter to reach the accommodation mode.    
Table 20: Duration of accommodation to occur in real-time with FM2. 

Parameters Length of time (s) 

BP 53.7 

CT 61.7 

FP 71.1 

Table 21 lists the performance of the NN models from the Approximation block as they provided 

the EMS with replacement signals during the accommodation phase. Similar to the step failure 

study, any changes to the original models during periods of adaptation occurred only in the θ 

parameters of Equation (2). The number of EMRAN RBF neurons remained the same. 
Table 21: Model performance during accommodation phase (FM2 failure). 

Parameters RMS Error (%) 

BP 4.39 

CT 13.79 

FP 2.98 

In comparison to Table 19, the BP NN performance showed a reduction in accuracy. The fast 

residual of Figure 63 indicated that all NNs learned from the failed BP signal for 45.6s. The BP 

model may have been more sensitive to this duration and thus affected its performance.  

Learning  permanently 
stopped 
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The VAT2000 data in Figure 64 to Figure 66 shows that the engine did receive the 

SFDIA signals as it recorded the ramp increase in values of the failed sensors. Visually, the FP 

signal during the ramp increase did not show much variation in comparison to its Simulink 

signal. This implies that the effects of the EMS signal processing on this signal are more 

prominent if they are abrupt.  
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Figure 64: VAT2000 BP signal subjected to FM2 failure at 200s. 
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Figure 65: VAT2000 CT signal subjected to FM2 failure at 400s. 
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Figure 66: VAT2000 FP signal subjected to FM2 failure at 600s. 

5.5.3 SFDIA with FM3 

It was now necessary to show the SFDIA functionality during instances of intermittent 

failures. As discussed in Section 5.3.3, this failure mode consisted of pulses resembling a step 

function that moved back and forth through the thresholds. In addition, the number of pulses was 

three with the accommodation expected to hold following the third pulse. The setting of the 

Pulse Generator block (see Figure 12) specified a pulse width, tw of 20s with the same duration 

between each pulse. The Pulse Generator blocks added its signals to the sensors at the failure 

times indicated in Table 9. Figure 67 to Figure 69 below shows the SFDIA performance 

subjected to the FM3 mode in real-time. All the SFDIA settings were maintained from the offline 

simulation. 



 

78 

180 200 220 240 260 280 300 320 340 360
50

100

150

200

250

300

350

400

Time (s)

B
P 

SF
D

IA
 si

gn
al

s (
kP

a)

 

 

nominal
sensor
SFA estimate
SFDIA output

 
Figure 67: BP signal subjected to FM3 in real-time at 200s. 
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Figure 68: CT signal subjected to FM3 in real-time triggered at 300s (started at 320s). 
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Figure 69: FP signal subjected to FM3 in real-time at 400s. 

As the first pulse on the BP sensor shown in Figure 67 and Figure 70 made the fast residual cross 

its threshold, all NN learning simultaneously turned off. Moments later, the isolation and 

accommodation modes kicked in to correct the failures. The second failure pulse also produced 

similar residual characteristics. When the BP sensor accommodation took place at the third 

pulse, all NN learning permanently ceased. Each of the BP failure pulses caused the online 

learning of the NNs to stop in 0.3 seconds. 
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Figure 70: BP residuals with FM3 from real-time SFDIA tests. 
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The same processes took place for the CT and FP sensors as they failed and their SFDIA signals 

illustrated in Figure 68 and Figure 69. The residuals for the CT and FP sensors are shown Figure 

125 and Figure 126 (see Appendix G). The residuals indicated that there were delays in restoring 

the signals to the nominal when the first two pulses ended for all models. This was also an effect 

observed in the offline simulation, thus expected to happen here. Adjusting the slow residual 

filter bandwidth and improving the quality of the model predictions can solve this problem. 

Table 22 summarizes the length of time the AE vectors took to enable the accommodations. 
Table 22: Duration of accommodation to occur in real-time with FM3.   

Parameter 
Length of time (s) 

Pulse 1 Pulse 2 Pulse 3 

BP 1.4 1.8 1.4 

CT 4.3 3.1 4.2 

FP 3.2 3.1 3.7 

Table 23 shows the performance of the models during the final accommodation phase. Similar to 

the previous failures, there was no change in the EMRAN RBF neurons. The CT model 

performed better in the FM3 accommodation phase compared to the other CT models from the 

other failure modes. The fact that the CT model spent more time in the learning phase during this 

failure mode test helped improve the model. 
Table 23: Model performance during final accommodation phase (FM3 failure). 

Parameters RMS Error (%) 

BP 2.68 

CT 12.90 

FP 3.70 

Likewise, Figure 71 to Figure 73 created using VAT2000 data confirmed that it received 

the SFDIA output with the FM3 failure pulses present in the sensor signals. As in the step failure 

case, the EMS processed the FP signals to smoothen it and produce triangular shaped pulses at 

the failure points as opposed to the step variations seen in Figure 69.   
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Figure 71: VAT2000 BP signal subjected to FM3 failure at 200s. 
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Figure 72: VAT2000 CT signal subjected to FM3 failure at 320s. 
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Figure 73: VAT2000 FP signal subjected to FM3 failure at 400s. 

5.5.4 Effect on Engine Performance 

It was the goal that the SFDIA would maintain engine power and emissions during 

periods of sensor failures. A summary of selected integrated data from the real-time SFDIA tests 

are provided in Table 24. 
Table 24: Integrated data from real-time SFDIA tests. 

Run 
Total work 

(bhp-hr) 

HC 

(g/bhp-hr) 

NOx 

(g/bhp-hr) 

CO 

(g/bhp-hr) 

CO2 

(g/bhp-hr) 

Baseline 24.24 0.139 2.55 0.98 557.41 

With FM1 24.29 0.143 2.47 1.22 556.90 

With FM2 24.30 0.134 2.31 1.37 557.62 

With FM3 24.28 0.137 2.45 1.09 556.73 

In comparison to the previous baseline tests, the baseline CO data in Table 24 showed a 

noticeable deviation. Although background variation was a factor, it is not possible to know if 

this occurrence was an isolated event due only to running a single baseline test. In fact, NOx and 

CO showed the most sensitivity to the SFDIA functionality, especially during the ramp failure 

mode. The duration that each of the three sensors spent learning from the ramp failure signal 

before the adaptation terminated was enough to influence the integrated data. Therefore, engine 

performance comparisons were done using the continuous recorded data, in particular during the 
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accommodation phase. For FM3, the comparisons were performed against data collected during 

the final accommodation phase for simplicity. Baseline data served as the fault-free dataset. 

To analyze the continuous emissions data first required estimating the de-skew time for 

each emissions component. The de-skew time is the length of time the gaseous analyzers take to 

detect the initial effects in the emissions from the point of inducing a failure. Exhaust gas exiting 

the turbocharger reached the analyzers via the exhaust-sampling tunnel, heated sampling lines 

for conditioning purposes and other various lengths of tubing. Estimating this time was possible 

using data collected from the real-time FM1 test. In particular, this involved locating the initial 

change in slope within the emissions data caused by the BP step failure at 200s. Figure 127 to 

Figure 130 (see Appendix G) provided a means to perform this estimation and the analyzer de-

skew times summarized in Table 25: 
 Table 25: Gaseous analyzer de-skew time. 

Parameters Time 

NOx 6 

HC 8.6 

CO 6.6 

CO2 6 

Calculating the RMS error on the continuous emissions data now involved starting where 

the FP accommodation phase began plus the de-skew time to account for gaseous analyzer 

delays. In addition, determining the RMS error on continuous engine power indicated how well 

the engine maintained its performance. Engine power did not require correction for signal delays 

as the location of the load cell measuring engine torque was on the dynamometer housing. Table 

26 shows the results from the error analysis: 
Table 26: Emissions comparison from real-time test.  

Parameters 
RMS Error (%) 

FM1 FM2 FM3 

NOx 1.41 1.36 1.38 

HC 4.13 2.13 1.23 

CO 1.75 3.37 1.72 

CO2 0.56 0.52 0.56 

Engine Power 0.64 0.61 0.64 
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The RMS errors calculated above used the data seen in Figures 131 to 145 (see Appendix G). 

The NOx, CO2 and engine power remained consistent for each accommodation phase. HC 

emissions got better for each consecutive failure mode. From the continuous trace, NOx 

emissions consistently peaked below the baseline at high load events. Proportionally, CO 

emissions at the same high load points were higher than baseline values. The direct reason for all 

the variation between baseline and the other tests relate to the performance of the NN models. 

Another possible cause was that the signals here originated from the DAQ hardware. Two of 

these sensors are critical to fuel and aftertreatment strategies. Sensor signals sent directly to the 

EMS will have different characteristics in comparison to the ones output by the DAQ hardware. 

Therefore, the EMS accordingly processed the signals and this affected the overall fueling and 

EGR strategies.  

5.6 Summary 

The first part of this chapter discussed the training and validating strategy for the 

ADALINE+EMRAN RBF NN. Six NN models created assisted in SFDIA residual generation 

and for completing the Approximation block. With the models obtained, an offline SFDIA 

simulation showed that it could perform as designed and could move to the real-time 

experimental phase. Prior to the real-time test, the breakout panels designed to acquire the sensor 

signals was verified to ensure it did not interfere with normal engine operation. In addition, data 

from the engine was acquired to observe the effects of a failed sensor critical to fuel and exhaust 

aftertreatment strategies. Finally, real-time SFDIA tests were performed with all the selected 

failure modes. The results showed that it did perform as expected by replacing the failed sensors 

with signals from the NNs in real-time. Therefore, engine performance was maintained during 

events of sensor failures by the SFDIA. If a sensor failed but it was still within the current 

thresholds specified in the SFDI logic, then it will not be detected. Therefore, the thresholds 

require a more detailed calibration to determine their optimal values to detect as many failure 

levels as possible.   
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

To improve the reliability of sensor signals in HDDEs, this study demonstrated the 

SFDIA concept and showed its capability to function in real-time. The study showed that the 

SFDIA could manage the engine control to maintain nominal performance during instances of 

sensor failures. It was understood that all critical sensors related to emissions control and engine 

protection must always be reliable. If the sensors are compromised and not the engine parameter 

being monitored, there must be a technology available to correct them under all operating 

conditions. 

The sensors chosen to fail in order to prove the SFDIA functionality included boost 

pressure, coolant temperature and fuel pressure. The failures focused on three different modes 

and all added into the signals using Simulink. The following list summarizes the failures modes 

and their description: 

a) Step failure - instantaneous bias in the signal such as an open or short in the electrical 

circuit 

b) Ramp failure - representing long-term signal drifts 

c) Square wave failure - to model intermittent failures  

The SFDIA contained built-in NN models that mathematically represented the three sensors. 

Model training and validating was possible using data from the test engine collected prior to this 

study. The NN used had online adaptation capabilities. The choice of the test engine was due to 

the myriad of sensors available on it. In addition, it had an EMS that was suitable for signal 

breakout.  

Initially, an offline simulation confirmed the SFDIA functionality for testing it in real-

time. The offline results showed the NN models closely following the nominal values. For the 

experimental part, a DAQ system was assembled for signal breakout and ensuring robust signals 

from the test engine. Prior to the real-time SFDIA test, a study was done to show the 

consequences of a sensor failure on the test engine control strategy.  

The final portion of the work involved obtaining real-time performance data of the 

SFDIA scheme. When a failure occurred, the SFDIA detected it and proceeded to terminate any 

adaptation activities. As the failure continued, the scheme logic isolated the fault and replaced 
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the failed signals with the NN outputs. The replacement of the failed signal with those from the 

NN is called accommodation. In the case of intermittent failures, the logic designed to detect it 

functioned as expected and permanently accommodated the failure after a specified number of 

pulses. For the entire experimental portion, test data were collected from Simulink, the 

laboratory system and software that read the EMS signals. There was indication of degradation 

in model accuracy when transferring it to the experimental part. This happened since the data for 

training the NNs originated from VAT2000, while the models used signals from the DAQ 

system put together for this study. It was the goal to show the functionality of the SFDIA as 

opposed to trying to generate the best models. The NN adaptation capabilities prevented the 

degradation from rendering the models ineffective.  

The main novelty of this proof-of-concept study was the development and setup of the 

SFDIA, a concept originating from an aerospace application, for testing in real-time, inline with 

an HDDE. Based on the real-time results, it showed that the SFDIA could function as designed 

on HDDEs. It can enhance an OBD system of a vehicle to correct sensor failures when they 

happen to maintain normal performance.  

6.2 Recommendations 

With this proof-of-concept study completed, it is possible to further this study to address 

various issues revealed during the course of this research. They are, but not limited to, the 

following: 

a) Improvement in model accuracy and determine the optimal input parameters for a given 

model. Performing this optimization can reduce any computational overhead that 

occurred in this research for a more efficient scheme. Having models that best replicate 

the physical sensors is desirable to provide similar engine control.   

b) Relative to the previous item, it will be necessary to find out the appropriate learning rate 

and how long a duration should the adaptation be active for a given engine model. The 

specified learning rates should allow the model to learn as much as possible before safely 

deactivating within the shortest amount of time. It is noted that the adaptation process 

does take up additional computational resources. Thus, terminating the learning after the 

models have sufficiently adapted to all current operation conditions is recommended. 

However, at some point it should reactivate to adapt to any alterations due to engine 

aging.  
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c) For any failure modes, determine the best thresholds to control the model adaptations and 

trigger the accommodations without the risk of false alarms. In the case of intermittent 

failures, improve the time it takes for the scheme to restore the nominal signals if the 

failure ends. In addition, a unified SFDI logic should preferably detect any failure mode, 

as opposed to the separate logics presented here.    

d) Involve manufacturer participation to provide the SFDIA with CAN bus signals. An 

advantage in using the CAN protocol is the use of a single DAQ device, known as a CAN 

adapter. Such devices, as seen in Figure 74, would interface to a computer via a standard 

USB port. This eliminates any unwanted influence from DAQ hardware such as the ones 

used in this work.  

 
Figure 74: USB/CAN adapter by Grid Connect™ Inc. 

In addition, the signals within the protocol are already time synchronized relative to the 

engine. The Data Acquisition Toolbox does have time synchronization capabilities. 

However, it is relative to the signals as the DAQ cards received them. Manufacturer 

participation also means the possibility of embedding the scheme directly into the EMS 

for testing. 

e) Perform durability study to observe the robustness of the SFDIA to function on a long-

term basis. 
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APPENDIX A FAILURE AND SFDI BLOCKS 

A.1 Failure Block 
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Figure 75: Failure model. 
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A.2 SFDI Blocks 

 
Figure 76: SFDI Logic for the FM1 and FM2. 
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Figure 77: SFDI Logic for FM3. 
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APPENDIX B 2004 MACK® MP7-355E 

Table 27: Manufacturer specifications. 

Engine Type Direct-Injection Diesel 

Configuration In-Line 6 Cylinder 

Engine Output 355 hp @ 1800 RPM / 1360 ft-lbf @ 1200 RPM 

Displacement 659 in3 (11 L) 

Bore x Stroke 4.84 in x 5.98 in 

Fuel Injection Dual Solenoid EUI 

Inlet Depression 9.6 inH2O @ Rated Power 

Exhaust Backpressure 27.5 inH2O @ Rated Power 
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Figure 78: Performance curve of test engine obtained without breakout panels. 

 
Table 28: Results from engine map cycle. 

Curb Idle Speed 652 RPM 

High Idle Speed 2100 RPM 

Rated Speed 1806 RPM 

Power at Rated Speed 360 hp 

Peak Torque 1379 ft-lb 



 

100 

APPENDIX C ENGINE AND EMISSIONS RESEARCH LABORATORY 

(EERL) 

The Engine and Emissions Research Laboratory (EERL) is located at West Virginia 

University in the town of Morgantown, WV. It is part of the Center for Alternative Fuels, 

Engines and Emissions (CAFEE). The testing capabilities at the EERL include light, medium 

and heavy-duty engines using both steady state and transient duty cycles. The laboratory has 

various types of dynamometers that can test a broad range of internal combustion engines 

regardless of manufacturer and size. Full-scale exhaust dilution tunnels allow the EERL to 

perform emissions certification testing that conforms to the 40 CFR Parts 86, 89, 92, and 1065. 

Gaseous samples from the tunnels flow through microprocessor-controlled heated probes and 

sampling lines to various gas analyzers in order to measure the emissions. PM sample collection 

is possible using Teflo® or fluorocarbon coated glass fiber filters. The EERL has a class 1000 

clean room for proper conditioning and performing gravimetric analysis on PM filters with a 

high precision microbalance based on Part 1065. Data sampling rate for transient testing on the 

Part 1065 based tunnel is 10 Hz. The laboratory also has high-speed data acquisition equipment 

for in-cylinder pressure measurement to perform combustion analysis. Apart from certification 

testing, the laboratory can serve as a facility for developing and validating new engine and 

aftertreatment technology. Recent work in new aftertreatment technology used both an SCR and 

DPF with built-in diesel oxidation catalysts (DOC) to determine an emissions reduction strategy 

to meet EPA 2010 emissions. Below is a partial list of equipment available at the EERL: 

1. General Electric 800 hp motoring/absorbing direct current (DC) dynamometer 

2. General Electric 550 hp motoring/absorbing direct current (DC) dynamometer 

3. Eaton® 300 hp motoring/absorbing alternating current (AC) dynamometer (rebuilt by 

Medsker Electric Inc.®) 

4. Mustang® 400 hp, 300 hp, 100 hp eddy-current dynamometers 

5. Go-Power® 800 hp, 2000 ft-lb torque capacity water-brake dynamometers  

6. Two tunnel systems: 

• Exhaust dilution tunnel with variable speed blower and subsonic CVS venturi (based 

on 40 CFR  Part 1065) 
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• Total exhaust double-dilution tunnel based on critical flow venture - CVS (CFV-

CVS) concept (40 CFR  Part 86) 

7. MEXA-7200D 

8. Horiba and Rosemount® 402 HFID HC analyzers, Eco Physics and Rosemount 955 

chemiluminescent NOx/ammonia (NH3) analyzers, Horiba NDIR CO/CO2 analyzers, and 

ABB Limas 11 HW non-dispersive ultraviolet (NDUV) NOx/NH3 analyzer 

9. Proportional sampling systems for diesel, gasoline and alternative fuel exhaust gas speciation 

(methane (CH4), non-methane hydrocarbons (NMHC), 1,3-Butadiene, benzene, toluene, 

ethylbenzene and xylene, volatile organic hydrocarbons, PAH, nitro-PAH, carbonyls, 

polychlorodibenzo-p-dioxins, polychlorodibenzo-p-furans, inorganic ions) 

10. Scanning Mobility Particle Sizer (SMPS™) 

11. Micro-Orifice Uniform Deposit Impactor (MOUDI™) particle sizer 

12. Engine Exhaust Particle Sizer (EEPS™) 

13. Mini- and micro-dilution tunnels for particulate sampling and sizing 

14. PM10, PM2.5, PM1.0 cyclone samplers 

15. Tapered Element Oscillating Microbalance (TEOM™) 

16. Cambustion™ DMS-500 Fast Particulate Spectrometer 

17. Cambustion CLD-500 Fast Time Response NOx analyzer 

18. Chemical characterization - gas chromatographs (GC), gas-chromatograph/mass 

spectrometers (GC-MS), thermogravimetric analyzers (TGA), TGA mass spectrometer 

(TGA-MS), ion chromatography 

19. In-line fuel flow metering (MAX Fuel Flow Meter, AVL 735S Fuel Mass Flow Meter, AVL 

753C Fuel Temperature Control) 

20. Exhaust particulate matter bioassay sampling capability (Ames test, sister chromatid 

exchange, unscheduled DNA synthesis, micronucleus induction, HGPRT mutation)  

21. High-speed data acquisition, control and archival systems 
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Figure 79: A view of the EERL test cell. 

  
Figure 80: PM filter holder box and the clean room for gravimetric analysis. 

  
Figure 81: Part 1065 tunnel subsonic venturi used in this study along with the variable speed blower. 
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APPENDIX D SELECTED TRAINING AND VALIDATING DATA 

D.1 Setpoints of the Duty Cycles 
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Figure 82: Training data setpoints. 
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Figure 83: Validation data setpoints.  
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D.2 Data from the Sensors Selected for Failure in Training Dataset 
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Figure 84: Boost pressure data used for NN training. 
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Figure 85: Coolant temperature data used for NN training. 



 

105 

0 2000 4000 6000 8000 10000 12000 14000
300

350

400

450

500

550

Time (s)

FP
 (k

Pa
)

 
Figure 86: Fuel pressure data used for NN training. 

D.3 Data from the Sensors Selected for Failure in Validation Dataset 
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Figure 87: Boost pressure data for NN validation. 
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Figure 88: Coolant temperature data for NN validation. 
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Figure 89: Fuel pressure data for NN validation. 
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APPENDIX E DAQ SYSTEM EQUIPMENT 

E.1 3B01 Signal Conditioning Subsystem 

 
Figure 90: 3B01 Signal Conditioner. 

 
Table 29: Specifications of the 3B01 Conditioner. 

Channels 16 

Backplane 19” universal mounting relay rack 

AC Power Supply 115/240 V 

Modules 

Single Channel 

Magnetic Isolation up to 1500V Common-Mode Voltage 

±10 V DC or 4-20 mA Current Outputs 

Wide Zero Suppression 

Size 17.4 in x 5.2 in x 4.37 in 
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E.2 NI Breakout Boards 

 
Figure 91: NI CB-68LP breakout board used with NI 

PCI-6024E. 

 
Figure 92: NI TBX-68 breakout board used with NI 

PCI-MIO-16E-1. 

E.3 DAQ Cards 

 
Figure 93: NI PCI-MIO-16E-1, one of two DAQ cards utilized. 

 
Table 30: Specifications of the DAQ Cards. 

 Cards PCI-6024E PCI-MIO-16E-1 

Analog 

Channels 

Input 16 

Output 2 

Resolution 12 bits 

Maximum Sampling Rate 200 kHz 1.25 MHz 
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E.4 7B Output Modules 

 
Figure 94: 7B39 Current Output Module used for the BP and FP sensors. 

 
Table 31: Specifications of the 7B39. 

DC Power Supply 24V 

Signal Isolation Up to 1500V Common-Mode Voltage 

Input 0-10 V DC 

Output 0-20 mA 

Size 17.4 in x 5.2 in x 4.37 in 
Table 32: 7B22 Voltage Output module specifications used for the CT sensor. 

DC Power Supply 24V 

Signal Isolation Up to 1500V Common-Mode Voltage 

Input ±10 V DC 

Output ±10 V DC 

Size 17.4 in x 5.2 in x 4.37 in 

The BP and FP sensor channels on the EMS require voltage signals. A resistor placed across the 

7B39 output pins converted the current output into the appropriate voltages. Knowing the 

maximum voltage, Vmax for the channels are 5V and module Imax is 20mA, the resistor value was:  

max max 7B39

max
7B39

max

V = I R
V 5VR = = = 250Ω
I 20mA
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APPENDIX F SFDIA CONFIGURATION FOR DATA ACQUISITION 

F.1 SFDIA with Data Acquisition Configuration 

 
Figure 95: SFDIA subsystem configured for data acquisition. 
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F.2 Sensor Input Calibration Results 

a) Inlet-air temperature 
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Figure 96: AT calibration plot. 

b) Boost pressure 
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Figure 97: BP calibration plot. 
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c) Oil pressure: 
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Figure 98: OP calibration plot. 

d) Oil temperature: 
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Figure 99: OT calibration plot. 



 

113 

e) Coolant temperature: 

y = 2.4884x4 - 23.558x3 + 82.551x2 - 150.46x + 171.42
R2 = 0.9998

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5 3 3.5
Volts (V)

C
oo

la
nt

 T
em

pe
ra

tu
re

 (o C
)

sensor
Poly. (sensor)

 
Figure 100: CT calibration plot. 

f) Fuel pressure: 
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Figure 101: FP calibration plot. 
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g) Boost temperature: 
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Figure 102: BT calibration plot. 

h) Engine speed: 
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Figure 103: ES calibration plot. 
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i) VGT speed: 
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Figure 104: VGTS calibration plot. 

F.3 Sensor Output Profile 

a) Boost pressure: 
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Figure 105: BP output calibration. 
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b) Coolant temperature: 
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Figure 106: CT output calibration. 

c) Fuel pressure: 
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Figure 107: FP output calibration. 
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F.4 Input Conversion Block 
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Figure 108: Input Conversion model. 

F.5 Output Conversion Block 
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Figure 109: Output Conversion model. 
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APPENDIX G SFDIA SETTINGS AND TEST RESULTS SUMMARY 

G.1 EMRAN RBF NN Parameters 

Table 33: Nonlinear NN parameters for the Approximation block. 

Parameters BP model CT model FP model 

Neurons, m 145 38 187 

E1 0.3 0.25 0.2 

E2 0.3 0.9 0.35 

λ 0.3 0.5 0.3 

Table 34: Nonlinear NN parameters for the Residuals Generation block. 

Parameters BP model CT model FP model 

Neurons, m 208 103 190 

E1 0.2 0.25 0.2 

E2 0.25 0.5 0.35 

λ 0.3 0.5 0.3 

G.2 SFDIA Tuning Results 

Table 35: Summary of SFDIA tuning to obtain H and the thresholds. 

 

Validation 

Data Range H 

Maximum 

Fast Residual 

Values 

Factor Thresholds 

max min fast Slow fast slow 

BP 310.68 kPa 96.51 kPa 107.09 kPa 31.68 kPa 

1.1 

1.2 34.85 kPa 38.02 kPa 

CT 90.73ºC 79.47ºC 5.63ºC 3.12ºC 1.15 3.43ºC 3.59ºC 

FP 529.52 kPa 354.46 kPa 87.53 kPa 48.52 kPa 1.15 53.37 kPa 55.8 kPa 

G.3 Offline SFDIA Residuals 

a) FM1 residuals: 
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Figure 110: CT residuals using FM1. 
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Figure 111: FP residuals using FM1. 

b) FM2 residuals: 
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Figure 112: CT residuals using FM2. 
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Figure 113: FP residuals using FM2. 

c) FM3 residuals: 
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Figure 114: CT residuals using FM3. 
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Figure 115: FP residuals using FM3. 
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G.4 FTP Cycle for Breakout Panel Verification 
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Figure 116: FTP duty cycle from breakout panel verification. 

G.5 Data for Sensor Failure without Accommodation Study 

a) Engine map data 
Table 36: Engine map data (failure without accommodation study). 

Curb Idle Speed 652 RPM 

High Idle Speed 2099 RPM 

Rated Speed 1806 RPM 

Power at Rated Speed 358 hp 

Peak Torque 1370 ft-lb 

b) FTP setpoints: 
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Figure 117: FTP duty cycle after breakout panel verification. 

c) Residuals 
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Figure 118: BP residuals with modified thresholds preventing accommodation (failure at 200s). 
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Figure 119: CT residuals with modified thresholds (BP failure at 200s). 
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Figure 120: FP residuals with modified thresholds (BP failure at 200s). 

d) FTP regression analyses: 



 

125 

Table 37: 40 CFR regression analyses of the FTP cycle (BP failure at 200s). 

Parameters Minimum Cycle Value Maximum 

Engine Speed 

Intercept (RPM) -65.200 13.301 65.200 

Slope 0.950 0.992 1.030 

R2 0.970 0.999 1.000 

Standard Estimate of Error (SEE) 0.000 9.251 105.000 

Torque 

Intercept (ft-lb) -28.338 13.051 28.338 

Slope 0.830 0.935 1.030 

R2 0.850 0.914 1.000 

SEE 0.000 116.818 141.690 

Power 

Intercept (bhp) -7.532 4.144 7.532 

Slope 0.830 0.955 1.030 

R2 0.850 0.917 1.000 

SEE 0.000 33.554 37.660 

Work 
Actual (bhp-hr) 23.679 24.267 26.171 

Reference (bhp-hr) 24.925 

G.6 Real-time SFDIA Data 

a) FM1 residuals: 
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Figure 121: CT residuals with FM1 from real-time SFDIA tests. 
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Figure 122: FP residuals with FM1 from real-time SFDIA tests. 

b) FM2 residuals: 
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Figure 123: CT residuals with FM2 from real-time SFDIA tests. 
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Figure 124: FP residuals with FM2 from real-time SFDIA tests. 

c) FM3 residuals: 
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Figure 125: CT residuals with FM3 from real-time SFDIA tests. 
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Figure 126:  FP residuals with FM3 from real-time SFDIA tests. 

G.7 Engine Performance Data from Real-time SFDIA Test 

a) To estimate gaseous analyzer de-skew time using real-time SFDIA with FM1 data: 
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Figure 127: NOx analyzer de-skew time estimation. 
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Figure 128: HC analyzer de-skew time estimation. 
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Figure 129: CO analyzer de-skew time estimation. 
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Figure 130: CO2 analyzer de-skew time estimation. 

b) Selected continuous data from FM1 failure mode test: 
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Figure 131: NOx data during accommodation phase (FM1).  

Failure effects  
detected at 206s 



 

131 

400 500 600 700 800 900 1000 1100 1200
4

6

8

10

12

14

16

Time (s)

H
C

 (p
pm

)

 

 

baseline
with FM1

 
Figure 132: HC data during accommodation phase (FM1). 
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Figure 133: CO data during accommodation phase (FM1). 
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Figure 134: CO2 data during accommodation phase (FM1). 
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Figure 135: Engine power during accommodation phase (FM1). 

c) Selected continuous data from FM2 failure mode test: 
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Figure 136: NOx data during accommodation phase (FM2).  
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Figure 137: HC data during accommodation phase (FM2). 
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Figure 138: CO data during accommodation phase (FM2). 
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Figure 139: CO2 data during accommodation phase (FM2). 
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Figure 140: Engine power during accommodation phase (FM2). 

d) Selected continuous data from FM3 failure mode test: 
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Figure 141: NOx data during final accommodation phase (FM3). 
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Figure 142: HC data during final accommodation phase (FM3). 
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Figure 143: CO data during final accommodation phase (FM3). 
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Figure 144: CO2 data during accommodation phase (FM3). 
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Figure 145: Engine power during accommodation phase (FM3). 
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