46 research outputs found

    Integration methods for the time dependent neutron diffusion equation and other approximations of the neutron transport equation

    Full text link
    [ES] Uno de los objetivos m谩s importantes en el an谩lisis de la seguridad en el campo de la ingenier铆a nuclear es el c谩lculo, r谩pido y preciso, de la evoluci贸n de la potencia dentro del n煤cleo del reactor. La distribuci贸n de los neutrones se puede describir a trav茅s de la ecuaci贸n de transporte de Boltzmann. La soluci贸n de esta ecuaci贸n no puede obtenerse de manera sencilla para reactores realistas, y es por ello que se tienen que considerar aproximaciones num茅ricas. En primer lugar, esta tesis se centra en obtener la soluci贸n para varios problemas est谩ticos asociados con la ecuaci贸n de difusi贸n neutr贸nica: los modos lambda, los modos gamma y los modos alpha. Para la discretizaci贸n espacial se ha utilizado un m茅todo de elementos finitos de alto orden. Diversas caracter铆sticas de cada problema espectral se analizan y se comparan en diferentes reactores. Despu茅s, se investigan varios m茅todos de c谩lculo para problemas de autovalores y estrategias para calcular los problemas algebraicos obtenidos a partir de la discretizaci贸n espacial. La mayor铆a de los trabajos destinados a la resoluci贸n de la ecuaci贸n de difusi贸n neutr贸nica est谩n dise帽ados para la aproximaci贸n de dos grupos de energ铆a, sin considerar dispersi贸n de neutrones del grupo t茅rmico al grupo r谩pido. La principal ventaja de la metodolog铆a que se propone es que no depende de la geometr铆a del reactor, del tipo de problema de autovalores ni del n煤mero de grupos de energ铆a del problema. Tras esto, se obtiene la soluci贸n de las ecuaciones estacionarias de arm贸nicos esf茅ricos. La implementaci贸n de estas ecuaciones tiene dos principales diferencias respecto a la ecuaci贸n de difusi贸n neutr贸nica. Primero, la discretizaci贸n espacial se realiza a nivel de pin. Por tanto, se estudian diferentes tipos de mallas. Segundo, el n煤mero de grupos de energ铆a es, generalmente, mayor que dos. De este modo, se desarrollan estrategias a bloques para optimizar el c谩lculo de los problemas algebraicos asociados. Finalmente, se implementa un m茅todo modal actualizado para integrar la ecuaci贸n de difusi贸n neutr贸nica dependiente del tiempo. Se presentan y comparan los m茅todos modales basados en desarrollos en funci贸n de los diferentes modos espaciales para varios tipos de transitorios. Adem谩s, tambi茅n se desarrolla un control de paso de tiempo adaptativo, que evita la actualizaci贸n de los modos de una manera fija y adapta el paso de tiempo en funci贸n de varias estimaciones del error.[CA] Un dels objectius m茅s importants per a l'an脿lisi de la seguretat en el camp de l'enginyeria nuclear 茅s el c脿lcul, r脿pid i prec铆s, de l'evoluci贸 de la pot猫ncia dins del nucli d'un reactor. La distribuci贸 dels neutrons pot modelar-se mitjan莽ant l'equaci贸 del transport de Boltzmann. La soluci贸 d'aquesta equaci贸 per a un reactor real铆stic no pot obtenir's de manera senzilla. 脡s per aix貌 que han de considerar-se aproximacions num猫riques. En primer lloc, la tesi se centra en l'obtenci贸 de la soluci贸 per a diversos problemes est脿tics associats amb l'equaci贸 de difusi贸 neutr貌nica: els modes lambda, els modes gamma i els modes alpha. Per a la discretitzaci贸 espacial s'ha utilitzat un m猫tode d'elements finits d'alt ordre. Algunes de les caracter铆stiques dels problemes espectrals s'analitzaran i es compararan per a diferents reactors. Tanmateix, diversos solucionadors de problemes d'autovalors i estrat猫gies es desenvolupen per a calcular els problemes obtinguts de la discretitzaci贸 espacial. La majoria dels treballs per a resoldre l'equaci贸 de difusi贸 neutr貌nica estan dissenyats per a l'aproximaci贸 de dos grups d'energia i sense considerar dispersi贸 de neutrons del grup t猫rmic al grup r脿pid. El principal avantatge de la metodologia exposada 茅s que no dep猫n de la geometria del reactor, del tipus de problema d'autovalors ni del nombre de grups d'energia del problema. Seguidament, s'obt茅 la soluci贸 de les equacions estacion脿ries d'harm貌nics esf猫rics. La implementaci贸 d'aquestes equacions t茅 dues principals difer猫ncies respecte a l'equaci贸 de difusi贸. Primer, la discretitzaci贸 espacial es realitza a nivell de pin a partir de l'estudi de diferents malles. Segon, el nombre de grups d'energia 茅s, generalment, major que dos. D'aquesta forma, es desenvolupen estrat猫gies a blocs per a optimitzar el c脿lcul dels problemes algebraics associats. Finalment, s'implementa un m猫tode modal amb actualitzacions dels modes per a integrar l'equaci贸 de difusi贸 neutr貌nica dependent del temps. Es presenten i es comparen els m猫todes modals basats en l'expansi贸 dels diferents modes espacials per a diversos tipus de transitoris. A m茅s a m茅s, un control de pas de temps adaptatiu es desenvolupa, evitant l'actualitzaci贸 dels modes d'una manera fixa i adaptant el pas de temps en funci贸 de v脿ries estimacions de l'error.[EN] One of the most important targets in nuclear safety analyses is the fast and accurate computation of the power evolution inside of the reactor core. The distribution of neutrons can be described by the neutron transport Boltzmann equation. The solution of this equation for realistic nuclear reactors is not straightforward, and therefore, numerical approximations must be considered. First, the thesis is focused on the attainment of the solution for several steady-state problems associated with neutron diffusion problem: the \lambda-modes, the \gamma-modes and the \alpha-modes problems. A high order finite element method is used for the spatial discretization. Several characteristics of each type of spectral problem are compared and analyzed on different reactors. Thereafter, several eigenvalue solvers and strategies are investigated to compute efficiently the algebraic eigenvalue problems obtained from the discretization. Most works devoted to solve the neutron diffusion equation are made for the approximation of two energy groups and without considering up-scattering. The main property of the proposed methodologies is that they depend on neither the reactor geometry, the type of eigenvalue problem nor the number of energy groups. After that, the solution of the steady-state simplified spherical harmonics equations is obtained. The implementation of these equations has two main differences with respect to the neutron diffusion. First, the spatial discretization is made at level of pin. Thus, different meshes are studied. Second, the number of energy groups is commonly bigger than two. Therefore, block strategies are developed to optimize the computation of the algebraic eigenvalue problems associated. Finally, an updated modal method is implemented to integrate the time-dependent neutron diffusion equation. Modal methods based on the expansion of the different spatial modes are presented and compared in several types of transients. Moreover, an adaptive time-step control is developed that avoids setting the time-step with a fixed value and it is adapted according to several error estimations.Carre帽o S谩nchez, AM. (2020). Integration methods for the time dependent neutron diffusion equation and other approximations of the neutron transport equation [Tesis doctoral no publicada]. Universitat Polit猫cnica de Val猫ncia. https://doi.org/10.4995/Thesis/10251/144771TESI

    On Multiscale Algorithms for Selected Applications in Molecular Mechanics

    Get PDF

    High Resolution Numerical Methods for Coupled Non-linear Multi-physics Simulations with Applications in Reactor Analysis

    Get PDF
    The modeling of nuclear reactors involves the solution of a multi-physics problem with widely varying time and length scales. This translates mathematically to solving a system of coupled, non-linear, and stiff partial differential equations (PDEs). Multi-physics applications possess the added complexity that most of the solution fields participate in various physics components, potentially yielding spatial and/or temporal coupling errors. This dissertation deals with the verification aspects associated with such a multi-physics code, i.e., the substantiation that the mathematical description of the multi-physics equations are solved correctly (both in time and space). Conventional paradigms used in reactor analysis problems employed to couple various physics components are often non-iterative and can be inconsistent in their treatment of the non-linear terms. This leads to the usage of smaller time steps to maintain stability and accuracy requirements, thereby increasing the overall computational time for simulation. The inconsistencies of these weakly coupled solution methods can be overcome using tighter coupling strategies and yield a better approximation to the coupled non-linear operator, by resolving the dominant spatial and temporal scales involved in the multi-physics simulation. A multi-physics framework, KARMA (K(c)ode for Analysis of Reactor and other Multi-physics Applications), is presented. KARMA uses tight coupling strategies for various physical models based on a Matrix-free Nonlinear-Krylov (MFNK) framework in order to attain high-order spatio-temporal accuracy for all solution fields in amenable wall clock times, for various test problems. The framework also utilizes traditional loosely coupled methods as lower-order solvers, which serve as efficient preconditioners for the tightly coupled solution. Since the software platform employs both lower and higher-order coupling strategies, it can easily be used to test and evaluate different coupling strategies and numerical methods and to compare their efficiency for problems of interest. Multi-physics code verification efforts pertaining to reactor applications are described and associated numerical results obtained using the developed multi-physics framework are provided. The versatility of numerical methods used here for coupled problems and feasibility of general non-linear solvers with appropriate physics-based preconditioners in the KARMA framework offer significantly efficient techniques to solve multi-physics problems in reactor analysis

    Matrix-based techniques for (flow-)transition studies

    Get PDF
    In this thesis, numerical techniques for the computation of flow transitions was introduced and studied. The numerical experiments on a variety of two- and three- dimensional multi-physics problems show that continuation approach is a practical and efficient way to solve series of steady states as a function of parameters and to do bifurcation analysis. Starting with a proper initial guess, Newton鈥檚 method converges in a few steps. Since solving the linear systems arising from the discretization takes most of the computational work, efficiency is determined by how fast the linear systems can be solved. Our home-made preconditioner Hybrid Multilevel Linear Solver(HYMLS) can compute three-dimensional solutions at higher Reynolds numbers and shows its robustness both in the computation of solutions as well as eigenpairs, due to the iteration in the divergence-free space. To test the efficiency of linear solvers for non-flow problems, we studied a well-known reaction-diffusion system, i.e., the BVAM model of the Turing problem. The application to the Turing system not only proved our program鈥檚 ability in doing nonlinear bifurcation analysis efficiently but also provided insightful information on two- and three- dimensional pattern formation

    Matrix-based techniques for (flow-)transition studies

    Get PDF
    corecore