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ABSTRACT

INEXACT AND NONLINEAR EXTENSIONS OF THE
FEAST EIGENVALUE ALGORITHM

SEPTEMBER 2018

BRENDAN GAVIN

B.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Eric Polizzi

Eigenvalue problems are a basic element of linear algebra that have a wide variety

of applications. Common examples include determining the stability of dynamical

systems, performing dimensionality reduction on large data sets, and predicting the

physical properties of nanoscopic objects. Many applications require solving large

dimensional eigenvalue problems, which can be very challenging when the required

number of eigenvalues and eigenvectors is also large. The FEAST algorithm is a

method of solving eigenvalue problems that allows one to calculate large numbers

of eigenvalue/eigenvector pairs by using contour integration in the complex plane to

divide the large number of desired pairs into many small groups; these small groups

of eigenvalue/eigenvector pairs may then be simultaneously calculated independently

of each other. This makes it possible to quickly solve eigenvalue problems that might

otherwise be very difficult to solve efficiently.

v



The standard FEAST algorithm can only be used to solve eigenvalue problems

that are linear, and whose matrices are small enough to be factorized efficiently (thus

allowing linear systems of equations to be solved exactly). This limits the size and

the scope of the problems to which the FEAST algorithm may be applied. This

dissertation describes extensions of the standard FEAST algorithm that allow it to

efficiently solve nonlinear eigenvalue problems, and eigenvalue problems whose ma-

trices are large enough that linear systems of equations can only be solved inexactly.
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CHAPTER 1

INTRODUCTION

This dissertation is a description of two algorithms for solving eigenvalue prob-

lems. One algorithm, referred to here as IFEAST, is for solving linear eigenvalue

problems when one is required, often by limitations in computing hardware, to use

only matrix-vector multiplication as the primary computational tool. The other al-

gorithm, referred to here as NLFEAST, is for solving nonlinear eigenvalue problems.

As their names would seem to imply, both of these algorithms are modifications of a

third algorithm, called FEAST, which solves linear eigenvalue problems using matrix

factorization as the primary computational tool.

The difference between IFEAST and NLFEAST is somewhat artificial, and has

more to do with their intended use cases than with the underlying mechanisms by

which they work. One can, for example, implement NLFEAST in such a way that

it uses only matrix-vector multiplication, with the end result being that it can solve

many of the same kinds of problems that IFEAST can. Nonlinear eigenvalue problems

tend to be a subject of narrower and more specialized interest, however, and the

assumption of linearity makes the analysis of algorithms like IFEAST much easier.

This dissertation will thus generally treat the two separately, even though linear

eigenvalue problems are actually a subset of nonlinear eigenvalue problems.

The rest of this introduction will discuss the context for eigenvalue problems and

why, specifically, they are of interest to a scientist or engineer. Chapter 2 will discuss

some of the mathematical background behind how eigenvalue problems are usually

solved, as well as some of the background behind how linear systems of equations
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are usually solved (because, as we will see, the two are often intimately related). It

will also discuss the motivation for this work in more detail. The standard FEAST

algorithm, the IFEAST algorithm, and the NLFEAST algorithm will be covered in

Chapters 3, 4, and 5 respectively.

1.1 Why eigenvalue problems?

An “eigenvalue problem” consists of finding the eigenvalues and eigenvectors of

a matrix1. The eigenvalues and eigenvectors of a matrix A are scalar values λ and

vectors x such that

Ax = λx. (1.1)

The terms “eigenvector” and “eigenvalue” are originally German, and perhaps the

best English translations are “characteristic vectors” and “characteristic values”.

They are what define a matrix, in the sense that every diagonalizable matrix can

be written in terms of its eigenvalues and eigenvectors as

A = XΛX−1 (1.2)

where X is a matrix whose column vectors are the eigenvectors x, and Λ is a diagonal

matrix whose diagonal entries are the corresponding eigenvalues. This is known as

an eigenvalue decomposition.

1.1.1 Linear Time Dependent Systems of Equations

Being able to solve Equation (1.1), or calculate matrix decompositions like in

Equation (1.2), is especially useful when dealing with systems of linear, time depen-

dent equations, e.g.

1Or, more accurately, a matrix pencil; more on that in Chapter 2.
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d

dt
v1(t) = A11v1(t) + A12v2(t) + A13v3(t)

d

dt
v2(t) = A21v1(t) + A22v2(t) + A23v3(t) (1.3)

d

dt
v3(t) = A31v1(t) + A32v2(t) + A33v3(t)

Systems of differential equations like this can be concisely written in terms of vectors

and matrices, where the functions v1(t), v2(t), and v3(t) can be collected into a vector,

and the coefficients A11...A33 can be collected into a matrix:

v(t) =


v1(t)

v2(t)

v3(t)

 A =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 (1.4)

Equation (1.3) then becomes

d

dt
v(t) = Av(t), (1.5)

and the solution, given some initial condition v(t0), is

v(t) = XeΛtX−1v(t0), (1.6)

where eΛt is the diagonal matrix

eΛt =


eλ1t

eλ2t

eλ3t

 (1.7)

Equations like (1.5) occur often in engineering. This is especially true of electri-

cal engineering; the behavior of any electrical circuit that consists entirely of linear

circuit elements, such as resistors, capacitors, inductors, and linear amplifiers, can be

described by a system of differential equations that takes the form of Equation (1.5).
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An eigenvalue decomposition might be used for solving Equation (1.5) if the number

of equations is small enough that the eigenvalue decomposition can be calculated

easily, or if very high precision is required for the solution.

Even if the number of equations is too large for the full eigenvalue decomposition

to be practically calculated2, a partial eigenvalue decomposition - calculating only

some of the eigenvalues and eigenvectors - can still yield useful information. The

behavior of solutions to Equation (1.5) are governed in part by the eigenvalues λi;

eigenvalues with positive real parts indicate that there are solutions whose magnitudes

grow exponentially with time, and eigenvalues with nonzero imaginary parts indicate

solutions that will oscillate. This kind of information can be obtained by calculating

small numbers of eigenvalues in specific regions of the complex plane, rather than by

finding all of the eigenvalues and eigenvectors at once.

1.1.2 Quantum Mechanics

Eigenvalues and eigenvectors play a central role in quantum mechanics. The be-

havior of quantum mechanical systems is governed by the time dependent Schrödinger

equation,

d

dt
ψ(x, t) = − i

~
Ĥψ(x, t), (1.8)

where ψ(x, t) is called the wavefunction, and Ĥ is the Hamiltonian operator, which

is determined by the physical system under consideration. For example, the Hamil-

tonian operator for a quantum harmonic oscillator is Ĥ = −~2
2m

d2

dx2
+ 1

2
kx2, where m is

the mass of the oscillator, and k is the force constant.

Measurable quantities are represented in quantum mechanics by Hermitian opera-

tors [75]; the Hamiltonian operator in Equation (1.8), for example, represents energy.

If M̂ is an operator corresponding to some measurable quantity, then the possible

2E.g. the number of equations is in the many tens of thousands, or more, and the computer being
used for the calculations is a desktop computer.
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outcomes of the measurement corresponding to M̂ are its eigenvalues λi, and the

probability of measuring a particular value λi at time t is equal to (mi(x), ψ(x, t))2,

which is square of the inner product of the corresponding eigenvector mi and the

wavefunction ψ at time t. Determining the physical properties of objects whose be-

havior is governed by quantum mechanics, and predicting the outcomes of physical

measurements of such objects, thus amounts to solving the eigenvalue problems. The

most prominent of these eigenvalue problems is

− i
~
Ĥψi(x) = Eiψi(x). (1.9)

This is called the time-independent Schrödinger equation, because the probability

distributions that are associated with its solution vectors ψi(x) do not change change

with time.

Eigenvalue calculations for predicting the properties of quantum systems have

become increasingly important in modern scientific and engineering practice. Micro-

electronic devices are now constructed at sufficiently small length scales that accurate

models of device behavior require the use of full quantum-mechanical calculations in

order to estimate quantities of interest such as frequency response and band struc-

ture. Examples of such devices include transistors based on quantum dots, carbon

nanotubes, or 2D nanomaterials. Eigenvalue problems from quantum mechanics also

play a large role in the chemical and biological sciences, where they can be used to

predict chemical properties and reaction rates.

The lowest energy quantum states are the ones that are most likely to be occupied

at standard temperatures and pressures, and so most of the important properties of

physical matter in every-day life are dominated by the properties of the lowest-energy

physical states [61]. For this reason particular emphasis is often placed on examining

the lowest eigenvalues and corresponding eigenvectors of the Hamiltonian operator

Ĥ. In practice it is usually impossible to calculate the eigenvalues and eigenvectors of
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arbitrary differential operators, and so the original Schrödinger equation from (1.8)

is replaced with a discretized version in which the Hamiltonian operator Ĥ becomes

a matrix approximation, and the wavefunction ψ(x, t) becomes by a vector approxi-

mation in which the space-dependence is discretized:

d

dt
ψ(x, t) = − i

~
Ĥψ(x, t) −→ d

dt
v(t) = − i

~
Av(t) (1.10)

The end result is essentially the same equation from the previous section, Equation

(1.5). The method of discretization is often chosen so that most of the entries in the

matrix A are zero (and therefore do not need to be stored), or so that none of the

coordinates of A need to be stored at all, with the matrix instead being represented

by an efficient computer routine for calculating matrix-vector products. Representing

A using such efficient storage schemes makes it possible to generate large, highly-

accurate discretizations of complicated physical systems.

Much of the computational work in quantum mechanics applications consists of

solving the discretized, time-independent Schrödinger equation − i
~Ax = λx in order

to identify the stationary states and corresponding energies of a quantum system.

A popular method of approximation, Density Functional Theory (DFT) [38, 44, 69],

involves solving a large number such eigenvalue problems in order to efficiently calcu-

late the properties of many-particle systems. Rather than calculating the solution of

a single linear eigenvalue problem, as one does in single-particle quantum mechanics,

DFT solves a sequence of many linear eigenvalue problems in order to converge to the

solution for a single nonlinear eigenvector problem, with the solution of that nonlinear

eigenvalue problem giving the ground state charge density for a system of multiple

interacting particles. The challenge of solving eigenvalue problems like these is what

motivates much the research that is described in this dissertation.
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1.1.3 Dimensionality Reduction for Data

Data points from measurements consisting of n scalar values can be represented

vectors in an n-dimensional vector space. Images, for example, can be represented

as vectors in which each coordinate is the value of a pixel, or text documents can

be represented as vectors in which each coordinate is the number of times that a

particular word appears in a given document. Although the original data is embedded

in a linear vector space of dimension n, in many cases the data points themselves may

exist primarily on some manifold of dimension k that is substantially smaller [14] than

the original dimension n 3. If a representation for the data on this k-dimensional

manifold can be calculated, then its salient features can be systematically identified

more easily. The process of calculating an accurate representation of a collection of

data using some a lower-dimensional space is called “dimensionality reduction”.

Several common dimensionality reduction methods can be implemented by solving

eigenvalue problems. One of the most common is the Singular Value Decomposition

(or SVD). If a data set is collected into a matrix A such that the coordinates of each

data point ai forms a column vector of A, i.e.

A = [a1 a2 a3 ... am] , (1.11)

then the data matrix A can be decomposed using the SVD:

A = UΣV H . (1.12)

U is an n×min(n,m) orthogonal matrix, V is an m×min(n,m) orthogonal matrix,

and Σ is a min(n,m)×min(n,m) diagonal matrix whose diagonal entries are positive

numbers. The diagonal entries of Σ are called the “singular values” of A. The matrix

3The assumption that this is true is usually referred to as the “manifold hypothesis”.
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A can be approximated by replacing Σ with a different diagonal matrix of dimension

k × k, Σ̃, whose diagonal entries are the k largest-magnitude singular values:

A ≈ Ã = UΣ̃V H . (1.13)

If the k largest-magnitude singular values of A are substantially larger than the re-

maining singular values are, then Ã will be a good approximation for A, and so

the column vectors of Ã will be good representation of the original data points in a

k-dimensional hyperplane. Perhaps the most common application in which SVD is

used for dimensionality reduction is Principle Components Analysis (PCA), wherein

a collection of data points is centered so that their sample mean is the zero vector

before their SVD is calculated [14].

One way to calculate Singular Value Decompositions is by solving eigenvalue prob-

lems. One method finds V and Σ by calculating the eigenvalue decomposition of AHA,

and then calculates U using V and Σ:

AHA = V Σ2V H , U = AV Σ−1. (1.14)

Another calculates U , V , and Σ by calculating the eigenvalue decomposition of an

augmented matrix:

 0 A

AH 0

 =

−U −U

−V V


−1

2
Σ 0

0 1
2
Σ


UH V H

UH −V H

 = XΛX−1 (1.15)

Which of these methods is most advantageous depends on the problem at hand and

on the algorithm that is being used to solved eigenvalue problems.

Eigenvalue problems can also be used for finding representations of data in non-

linear manifolds, rather than linear hyperplanes. Kernel PCA [80] is a version of
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Principle Components Analysis that applies a nonlinear transformation (called a

kernel function) to a collection of data points before doing PCA. Algorithms like

Laplacian Eigenmap [5], Locally Linear Embedding [65], and Isomap [95] use the

distances between data points in a data collection in order to form a graph that ap-

proximates the manifold in which the data is assumed to be embedded, and then find

optimized graph embeddings by solving eigenvalue problems. Implementing any of

these methods for large data sets will usually require the use of eigenvalue algorithms

that need only matrix-vector multiplication for performing computations.

1.2 Why FEAST?

The challenge with regards to eigenvalue problems in the context of modern com-

puting is to be able to use computational resources efficiently in order to solve eigen-

value problems that are exceptionally large. Several algorithms already exist for

solving solving large eigenvalue problems, and there are a variety of widely-available

software packages that implement these algorithms efficiently [4, 11, 37, 43, 49, 89].

Section 2.3 in Chapter 2 discusses several of these algorithms in some detail.

These algorithms do not, however, scale to larger problem sizes in a way that

that is synergistic with modern computing architecture design. The modern design

paradigm for building large, powerful computers is to connect a large number of

smaller, less powerful computers together in a network, and then use all of these

networked computers together to to solve problems. Sometimes this takes the form of

large data centers that are filled with discrete computers that are connected together

in an actual network. Other times it takes the form of specialized coprocessors that

consist of a large number of computing cores that are all implemented on a single

integrated circuit. In many cases both of these design paradigms will be used at the

same time, in addition to others.
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Although increasing computing power through increased parallelism can be achie-

ved in a number of different ways, every design paradigm that relies on parallel

computation in order to achieve high computing power shares the same central con-

straint: in order to use parallelism efficiently, it must be possible to break up a large

problem into a collection of smaller tasks that can all be performed independently of

each other. Most algorithms for solving eigenvalue problems violate this constraint at

a mathematical level; even if they can be implemented in a way that allows them to

be run on computers that use distributed memory and processing, they still require a

sequential series of operations that can not be performed independently of each other.

Much of the contemporary research into solving eigenvalue problems consists of

developing algorithms that can take advantage of parallel computing at a mathemat-

ical level. These algorithms can solve eigenvalue problems in such a way that the

original problem to be solved is divided into separate tasks that can all be performed

independently of each other, with the intention that the computational resources

that are available on parallel computing platforms can be used in a maximally effi-

cient manner. The FEAST algorithm is one example of such an algorithm, and the

work described in this dissertation consists of extending the FEAST algorithm to be

applicable to new or more difficult problem domains in order to better take advantage

of the parallelism that is available in modern computing architectures.

1.3 Novel Contributions

This dissertation makes the following novel contributions to the study of numerical

algorithms:

Basic and Generalized IFEAST algorithms: I show that the FEAST algorithm

can be efficiently implemented for matrices that can not be factorized, and

provide theory and analysis that explain the properties of the resulting IFEAST

algorithms. In the context of the existing literature, this is equivalent to showing
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how to extend Inexact Shift and Invert Iteration to use multiple shifts in the

complex plane. This is the subject of Chapter 4.

Equivalence of Basic IFEAST and Krylov methods: I show that there is an

intimate relationship between the Basic IFEAST algorithm and Krylov methods

for solving eigenvalue problems. When Basic IFEAST is implemented with

Krylov linear system solvers, it becomes a Krylov eigenvalue solver itself. For

certain linear system algorithms it is possible to show an exact equivalence

between Basic IFEAST and block versions of well-known Krylov eigenvalue

algorithms. This is discussed in Section 4.5.

Interpretation of IFEAST as a Polynomial Filter: Section 4.4 shows

explicitly that IFEAST (and therefore, by extension, Inexact Shift and Invert

Iteration) is a polynomial eigenvalue filter algorithm, and that it has properties

that distinguish it from conventional methods for building polynomial filters.

Of particular interest is the fact that it fits a polynomial filter only at the

eigenvalues of the matrix that is being filtered.

Nonlinear FEAST algorithm: Chapter 5 shows that the same modification that

allows IFEAST to efficiently solve generalized, linear eigenvalue problems can

be extended further to allow the FEAST algorithm to solve general, nonlinear

eigenvalue problems. This amounts to developing an extension of Residual

Inverse Iteration that uses multiple shifts to enhance convergence.
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CHAPTER 2

MATHEMATICAL BACKGROUND

The FEAST eigenvalue algorithm, and the variations of it that are described in this

dissertation, is closely related to several other well-known algorithms for solving both

eigenvalue problems and linear systems of equations. The following sections describe

the mathematical background for these other algorithms in order to contextualize and

clarify the original results that are reported in later chapters.

These sections will describe algorithms that all operate under a particular con-

straint: the only operation that they use for performing calculations with large ma-

trices is matrix-vector multiplication. It is assumed that it is difficult, inefficient, or

even impossible to calculate factorizations or decompositions of large matrices, and

indeed this is taken to be the operational definition of a “large” matrix. Matrices that

are large in this sense are not stored as full, two-dimensional arrays of coordinates.

Instead they are stored either as “sparse” matrices, in which only the nonzero coor-

dinates of the matrix are stored, or they are stored implicitly by defining an efficient

computer routine for performing matrix-vector multiplications.

It is assumed that any matrix operation is both possible and efficient for a “small”

matrix, where small matrices are defined to be those whose coordinates can be stored

in full. Small matrices in this sense do not necessarily have a small dimension, they

are just small enough that it is possible to perform operations such as QR or Sin-

gular Value Decompositions on them. An example of such matrices that will occur

frequently in this chapter are tall rectangular matrices that have a relatively small
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number of columns, but which may have a number of rows that is equal to the di-

mension of another, “large” matrix on which calculations are being performed.

The algorithms that will be discussed in the following sections are basic versions of

selected algorithms that have some important and explicable relation to FEAST and

its variants. The full range of possible and known algorithms for solving eigenvalue

problems and linear systems of equations is immense, and the literature on it is

voluminous. Entire books can be, and have been, written on these subjects without

necessarily being comprehensive. Where appropriate the reader will be directed to

references in the literature for a more detailed and comprehensive coverage of the

subjects under consideration. For general references on these topics, I recommend

the following books: [60,71,73,91,99,102].

2.1 Krylov Subspaces

The problems that we will consider in this chapter are eigenvalue problems and

linear systems of equations, i.e.

Ax = λx and Ax = b, (2.1)

where A is some n× n matrix, x and b are n-dimensional vectors, λ is a scalar, and

we want to calculate the x (and λ) that makes these equations true.

I assume that A is large enough that we can only access it through the operation

of matrix-vector multiplication, and I also assume that the number of matrix-vector

multiplications that can be performed in a reasonable amount of time is k, which is

lower (often substantially lower) than the dimension of A. In this case the Equations

(2.1) can only be solved approximately, and so what we actually seek to calculate is

some vector x̃ that is sufficiently close to x in some sense.
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Because the only operation that we can use with A is matrix-vector multiplication,

the approximate solutions x̃ to (2.1) always take the same form,

x̃ = p(A)x0 =
k∑
i=0

aiA
ix0. (2.2)

The vector x0 is some suitable starting vector; for linear systems of equations it is

usually chosen to be x0 = b, and for eigenvalue problems x0 is typically random. The

matrix p(A) is the k-degree matrix polynomial

p(A) =
k∑
i=0

aiA
i. (2.3)

It is not always the case that using an approximation like Equation (2.2) is highly

effective, or even a particularly good idea; it is simply the only possible method of

solution when we constrain ourselves to using only matrix-vector multiplications with

A.

Another way of writing Equation (2.2) is to say that x̃ belongs to a Krylov subspace

of order k, i.e.

x̃ ∈ Kk(A, x0), Kk(A, x0) = span{x0, Ax0, A
2x0, ..., A

kx0}. (2.4)

A Krylov subspace of order k for a matrix A and starting vector x0, denoted Kk(A, x0),

is simply the subspace that spans the application of all possible degree-k matrix

polynomials of A to the vector x0. A Krylov subspace of order k has dimension k+1,

provided1 that rank(A) ≥ (k+1) and that x0 is spanned by at least k+1 eigenvectors

of A.

Krylov subspace methods operate by forming (either implicitly or explicitly) an n×

(k+1) matrix of basis vectors V for Kk(A, x0), which they use to try to efficiently find

1I assume, for the purposes of this dissertation, that this will always be true.
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approximate solutions x̃ = V x̃v to the problems in Equations (2.1). The differences

between different Krylov subspace algorithms lie in how, specifically, they form the

basis V and use it to approximate a solution. The fundamental mathematics of how

the solutions to the problems in (2.1) are best approximated with matrix polynomials

do not vary, but there are a variety of different approximations and computational

tricks that can be used to achieve good computational performance, depending on

the properties of the matrix A.

There are also block Krylov subspaces, which span the application of matrix poly-

nomials to block matrices of column vectors, e.g.

Kk(A,X0) = span{X0, AX0, A
2X0, ..., A

kX0}, (2.5)

where X0 is an n × m matrix, usually with m � n for the applications considered

in this dissertation. A basis for such a block Krylov subspace has dimension m(k +

1). Block Krylov subspaces can be useful for solving linear systems of equations

that have multiple right hand sides, i.e. AX = B where B is an n × m matrix

of m right hand sides; with block Krylov subspaces all of the right hand sides can

be solved simultaneously. They are also useful - indeed, necessary - when solving

eigenvalue problems for matrices whose eigenvalues have multiplicity greater than

one. The opportunity to use block Krylov methods arises often in the context of the

FEAST algorithm, which naturally operates on blocks of multiple vectors, but it is

not always advisable to use block algorithms even when it may seem to be natural

or advantageous. This is because (depending on the particular algorithm being used)

the memory required for storing a block Krylov basis may be substantial, which can

obviate the benefits of using block Krylov subspaces.

The following two subsections describe two common methods for efficiently gen-

erating sets of basis vectors for Krylov subspaces.
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2.1.1 Arnoldi

Arnoldi iterations are a procedure for building a basis V for the (k+1) dimensional

subspace Kk(A, b) such that V HV = I(k+1)×(k+1) [71]. With Arnoldi iterations the first

basis vector is assigned to be v1 = b/||b||. Each new basis vector vi is initially assigned

as vi = Avi−1, and then orthogonalized against all of the previous basis vectors before

being normalized.

The coefficients that are used to orthonormalize the Arnoldi basis as it is gen-

erated can be saved in an upper-Hessenberg matrix that has particular properties.

Specifically, if Vk is the Arnoldi basis for Kk(A, b) and Hk is the upper-Hessenberg

produced by the Arnoldi process, then

AVk = Vk+1H̃k = Vk+1(Hk + hk+1,kek+1e
T
k ), (2.6)

where ek is the kth canonical basis vector. The matrix H̃k = (Hk + hk+1,kek+1e
T
k )

is the same as the upper-Hessenberg matrix Hk, but with an additional row whose

(k + 1)th column element is the hk+1,k coefficient from the Arnoldi process. A result

of this relation is that

V H
k AVk = Hk, (2.7)

which will also be important when considering the solution of eigenvalue problems.

The benefit of Arnoldi iterations is that they allow one to calculate an orthonormal

basis for Kk(A, b) in a numerically stable way, and they are the foundation - either

implicitly or explicitly - for many methods of solving linear systems of equations.

2.1.2 Lanczos Biorthogonalization

Another option for calculating Krylov subspace bases is Lanczos Biorthogonal-

ization [71] (sometimes called the two-sided Lanczos algorithm, or Non-Hermitian

Lanczos), which is often referred to simply as Lanczos. Lanczos operates similarly

to Arnoldi but, rather than calculating a single orthogonal set of basis vectors V for
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Kk(A, b), it calculates two biorthogonal sets of basis vectors V and W , with V being

a basis for Kk(A, b1) and W being a basis for Kk(AH , b2). The basis sets V and W

being biorthogonal means that basis vector wi is orthogonal to basis vector vj when

i 6= j, i.e.

WHV = D, D =



wH1 v1

wH2 v2

. . .

wHk+1vk+1


, (2.8)

where D is a diagonal matrix whose entries are the inner products between the basis

vectors in V and W .

Similarly to Arnoldi, the coefficients used to biorthogonalize V and W can be

saved in an upper-Hessenberg matrix T as the bases are built, with the following

relations being true [32]:

AVk = VkTk + vk+1tk+1,ke
T
k+1 (2.9)

AHWk = WkT
∗
k + wk+1t

∗
k+1,ke

T
k+1 (2.10)

where t∗ is the complex conjugate of t. As a consequence of (2.9) and (2.10), we have

WHAV = DT and V HAHW = DHT ∗ =⇒ DT = (T ∗)HD (2.11)

A consequence of this is that the upper-Hessenberg matrix T is equal to a lower-

Hessenberg matrix, meaning that it is actually tridiagonal. As a result the biorthog-

onalization of V and W can be implemented using a simple three term recurrence.

Practical implementations of Lanczos take advantage of this fact by using and

storing only the tridiagonal entries of T . The ease of storing and factorizing tridiag-

onal matrices is the reason that some algorithms use Lanczos as the basis for solving

linear systems of equations or eigenvalue problems, rather than Arnoldi.
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2.2 Solving Linear Systems of Equations

Linear systems of equations are linear algebra problems of the form

Ax = b, (2.12)

where A is an n × n matrix and x and b are n-dimensional vectors, and we seek to

calculate the vector x that makes (2.12) true.

The most typical way to solve Equation (2.12) is to calculate a matrix factorization

A = BC (2.13)

such that it is easy to solve linear systems of equations with both B and C as

the left hand side matrices. The solution x can then be easily calculated as x =

C−1B−1b, where the matrix inverse applications are performed implicitly through a

linear system-solving procedure. Common matrix factorizations include LU factor-

izations (for general matrices A), in which B = L is a lower triangular matrix and

C = U is an upper triangular matrix, or Cholesky factorizations (for symmetric posi-

tive definite A), in which B = L is a lower triangular matrix and C = LH . There are

a variety of effective algorithms [30, 99] and software packages [1, 13, 78] for quickly

and robustly calculating solutions this way, provided that matrix factorizations can

be performed efficiently.

For the purposes of this dissertation, however, we will generally be operating un-

der the constraints described in Section 2.1, in which A is too large to be factorized

efficiently. Thus we need to solve Equation (2.12) using only matrix-vector multipli-

cations with A, plus whatever dense matrix operations we care to use on matrices

that are small enough for those operations to be feasible and efficient. Rather than

finding the vector x that makes Equation (2.12) exactly true, we instead try to find

a vector x̃ that makes it approximately true, in the sense that
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x̃ = argmin
x̃
||b− Ax̃||2. (2.14)

The vector b − Ax̃ is called the linear system residual. We notably do not try to

minimize the norm ||A−1b − x̃||, which at first blush would appear to be the proper

quantity to minimize. This is purely due to practicality; because we do not know what

the quantity A−1b is (that’s what we are trying to calculate!), we can not compare

prospective approximations x̃ against it. This has implications, as we will see later,

for the behavior of linear system solving algorithms and for the behavior of eigenvalue

algorithms that are based on them.

Since we are using only matrix-vector multiplications to do work with the matrix

A, I assume that x̃ ∈ Kk(A, b), where k is the maximum number of matrix-vector

multiplications that we want to do2 with A. If V is an n×(k+1) matrix whose column

vectors are a basis for Kk(A, b), then x̃ = V x̃v for some (k + 1) dimensional vector

x̃v, and the minimization problem that we have to solve in order to approximate the

solution to Equation (2.12) becomes

x̃v = argmin
x̃v

||b− AV x̃v||2. (2.15)

Equation (2.15) is just a typical linear least squares problem, with the solution x̃v =

(V HAHAV )−1V HAHb. The approximate solution x̃ for Equation (2.12) is then

x̃ = V x̃v = V (V HAHAV )−1V HAHb ≈ x (2.16)

The original problem in Equation (2.12) is too difficult to solve directly by factor-

ization methods due to the large dimension of A; on the other hand, the matrix is

2We may want to restrict the number of multiplications by A due to either memory constraints,
time constraints, or both.
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(V HAHAV ) is only (k + 1) × (k + 1), and so we can easily use factorization-based

methods to calculate the application of its matrix inverse in Equation (2.16).

Equation (2.16) appears to be a neat and tidy solution for approximating the

solution to Equation (2.12), but the challenge lies in the details of how V is calculated

and, consequently, how the least squares problem in Equation (2.15) is solved. A naive

first approach to calculating V might be to simply form the matrix

V =
[
b Ab A2b ... Akb

]
, (2.17)

which can then be used in Equation (2.16) directly. This works very poorly in practice,

however. The expression for V in Equation (2.17) would work just fine if it were used

in a hypothetical computer with infinite numerical precision but, in real computers

with finite precision, the column vectors of the right hand side of Equation (2.17)

quickly become linearly dependent. The end result is that using Equation (2.16) to

calculate x̃ produces an estimated solution of very poor accuracy; the residual norm

||b − Ax̃|| is much larger than it should be, and it does not decrease much when

the dimension of the Krylov subspace is increased. Instead, practical algorithms use

procedures based on Arnoldi or Lanczos iterations in order to apply expressions like

Equation (2.16) in an efficient and numerically stable way.

The following subsections discuss several such practical algorithms for solving

Equation (2.15). I focus primarily on algorithms that have clear and important

connections to the FEAST algorithm, acknowledging that there are other algorithms

in common use in addition the ones covered here. I refer the reader to other resources

[73, 91, 102] for a look at other algorithms, as well as for the details of the efficient

implementation of the algorithms that are discussed in the following subsections.
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2.2.1 GMRES

GMRES [72] is a method for implementing Equation (2.16) in an efficient and

numerically stable way. GMRES uses Arnoldi iterations to generate a basis Vk for

Kk(A, b). The least squares problem that needs to be solved, Equation (2.15), then

becomes

x̃v = argmin
x̃v

||b− AV x̃v||2 = argmin
x̃v

||bv − H̃kx̃v||2, (2.18)

which can be derived by using the Arnoldi relation AVk = Vk+1H̃k. The vector

bv = V H
k+1b is the projection of the right hand side b on to the Arnoldi basis Vk+1.

Because the Arnoldi procedure uses b/||b|| as its its first basis vector, bv = ||b||e1 in

practice, regardless of the value of k.

GMRES solves the least squares problem in Equation (2.18) by using the QR

decomposition H̃k = QR, i.e.

x̃v = argmin
x̃v

||bv − H̃kx̃v||2 = argmin
x̃v

||bv −QRx̃v||2 (2.19)

= (RHQHQR)−1RHQHbv (2.20)

= R−1QHbv. (2.21)

The approximate linear system solution is then x̃ = Vkx̃v.

GMRES is typically implemented as an iterative procedure. Starting with a one-

dimensional Krylov subspace basis V1, each iteration of GMRES performs one iter-

ation of Arnoldi in order to increase the dimension of Vk by one. The QR decom-

position of H̃k is then updated, often using Householder transformations, and the

matrix-vector product QHbv from Equation (2.21) is updated as well. The linear

system residual norm is measured by using the (k + 1)th entry of QHbv, and if it is

lower than some user-defined tolerance then then linear system Rx̃v = QHbv is solved

(i.e. Equation (2.21) is evaluated) and Vkx̃v is returned as the approximate solution
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to Equation (2.12). If the linear system residual norm is still too large, then another

GMRES iteration is performed.

By iteratively building the Krylov subspace and checking the linear system resid-

ual norm, GMRES uses the minimum number of matrix-vector multiplications that is

necessary to achieve the desired level of accuracy for an approximate solution. Itera-

tively updating the QR decomposition of H̃k, and checking the linear system residual

norm without actually solving the linear system Rx̃v = QHbv and calculating the

norm ||b − AV x̃v||, are additional optimizations that improve the efficiency of the

algorithm and minimize the amount of computation that needs to be done in order

to arrive at an approximate solution.

GMRES is the fastest and most robust method for approximating the solutions to

linear systems of equations, in the sense that it requires the lowest number of matrix-

vector multiplications in order to arrive at an approximate solution x̃ with a linear

system residual norm that is below a user-defined tolerance. This is because it uses

the fewest shortcuts and approximations in calculating an approximate linear system

solution; it is simply an efficient implementation of the mathematical procedure that

minimizes the residual norm ||b− Ax̃|| for an approximate solution x̃ ∈ Kk(A, b).

This speed and robustness comes at the price of high memory requirements. While

GMRES can, in principle, use the lowest possible number of matrix-vector multiplica-

tions in order to approximate the solution to a linear system, it may be the case that

this number of matrix-vector multiplications is larger than the number of Krylov

subspace basis vectors that one can reasonably store on a computer. In that case

GMRES must use restarts (see Section 2.2.5 on page 27), which will increase the

required number of matrix-vector multiplications, and which may prevent GMRES

from converging altogether.

Other algorithms for efficiently solving linear systems of equations seek to achieve

better numerical performance in some sense by making approximations in the imple-
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mentation of Equation (2.16), or even by using procedures that do not necessarily

minimize the linear system residual norm for a given Krylov subspace. Algorithms

like this may converge less robustly than GMRES, but with the benefit that they

require substantially less memory, and can consequently use a Krylov subspace of

much larger dimension. The following subsections describe a few such algorithms.

2.2.2 MINRES

Additional optimizations can be made to the GMRES algorithm when the matrix

A is Hermitian, and the resulting algorithm is referred to as MINRES [59]3.

Hermitian matrices A are those for which A = AH . The following is then true for

a Krylov subspace basis Vk that is generated by Arnoldi:

Hk = V H
k AVk = V H

k A
HVk = HH

k , (2.22)

where Hk is the upper-Hessenberg matrix generated by the Arnoldi process. Because

Hk = HH
k , it must be a tridiagonal matrix. Similar to the Lanczos method, then, one

only needs to store the tridiagonal elements of Hk, and the process of orthogonalizing

Vk amounts to a simple, three-term recurrence.

MINRES takes advantage of the tridiagonality of Hk in order to avoid storing any

matrices (such as Hk and Vk) at all. It stores only as many vectors as are required

in order to, at each MINRES iteration, generate a new Krylov subspace basis vector

that is orthogonal to all of the previous Krylov subspace vectors, update the Cholesky

decomposition of the matrix V HAHAV from Equation (2.16) by using an orthogonal

decomposition (such as QR) of the matrix H̃k, and then update the approximate linear

system solution x̃. Because all of the matrices involved in this process - including the

factorizations of the matrix H̃k - have only a small number of off-diagonal elements,

3Historically, it is worth noting, the order of events was actually reversed; MINRES was developed
first, and GMRES was later developed as a generalized version of MINRES.
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the procedure for updating them when the Krylov subspace dimension is increased

by one can all be defined by short recurrence relations. The end result is that, at

least in principle4, MINRES can use a Krylov subspace of arbitrarily large dimension

in order to approximate the solution to a linear system of equations, while using only

a small, constant amount of computer memory. This can make it advantageous to

use in place of GMRES when the performance of GMRES is substantially limited by

the memory that is available for performing computations.

MINRES is not limited to being applied to only Hermitian matrices. It also

works for shifted Hermitian matrices [21], i.e. matrices of the form (zI − A), where

AH = A and z is a complex scalar, because in this case Hk = V H
k (zI − A)Vk is also

tridiagonal. This is useful when implementing the FEAST eigenvalue algorithm for

standard Hermitian eigenvalue problems, because the primary computational task for

FEAST in that case is to solve linear systems of the form (zI − A)x = b.

2.2.3 FOM

The Full Orthogonalization Method, or FOM, approximates the solution to Ax = b

as

x̃ = Vk(V
H
k AVk)

−1V H
k b, (2.23)

where Vk is the Krylov subspace basis that is generated by the Arnoldi process [73].

This is different, notably, from the approximation that is used by GMRES and MIN-

RES, i.e. Equation (2.16). In general, then, FOM would be expected to require a

larger Krylov subspace dimension, and therefore a larger number of matrix-vector

multiplications, in order to achieve a given tolerance on the linear system residual

norm ||b−Ax̃||, because it calculates an approximate solution x̃ by using an expression

that does not minimize the residual norm for a given Krylov subspace.

4In practice, things are often less ideal; finite numerical precision and less-than-ideal conditioning
of the matrix A can cause MINRES to perform less well than one might expect it to based on the
dimension of the Krylov subspace that it uses [59].
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An exception to this is when the matrix A is symmetric and positive-definite

(SPD). In that case the matrix A−1 defines an inner product, and

x̃v = (V H
k AVk)

−1V H
k b (2.24)

is the solution to the problem [59]

x̃v = argmin
x̃v

||b− AVkxv||2A−1 , (2.25)

where

||b− AVkxv||2A−1 = (b− AVkxv)HA−1(b− AVkxv) (2.26)

is the square of the norm of the linear system residual b − AVkxv, using the inner

product defined by A−1.

When A is symmetric and positive definite then Hk = V HAV is again tridiagonal

and, as with MINRES, one can implement FOM by using short recurrence relations,

thereby avoiding the storage of the matrices Vk, Hk, and the Cholesky decomposition

of Hk. FOM implemented with short recurrence relations is the Conjugate Gradients

algorithm (CG) [73].

Conjugate Gradients is a historically important algorithm, and it is highly effective

for the problem domains where it is primarily used (i.e. problems with SPD matrices).

It will not be discussed any further in this dissertation, however, since it has no

practical implications for the FEAST algorithm; the linear systems of equations that

must be solved in the FEAST algorithm are almost never symmetric positive definite,

and so Conjugate Gradients is not an appropriate algorithm to use for their solution.

FOM itself does not necessarily have much to recommend it as an algorithm. Its

primary benefit is its simplicity; apart from that, for any problem domain where

one might consider applying FOM, another algorithm (such as GMRES or Conjugate
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Gradients) would almost certainly be more effective. I mention it here, however,

because it will come up later in explaining the relationship between the FEAST

algorithm and certain other methods for solving eigenvalue problems.

2.2.4 BiCG

The Bicongjugate Gradients algorithm [16, 48], or BiCG, approximates the solu-

tion to two linear systems of equations Ax = b and AHy = c as [73]

x̃ = V (WH
k AVk)

−1WH
k b (2.27)

ỹ = W (V H
k A

HWk)
−1V H

k c, (2.28)

where Vk and Wk are matrices of basis vectors generated by Lanczos for the Krylov

subspaces Kk(A, b) and Kk(AH , c), respectively. For most applications one only needs

to solve the first linear system, Ax = b, and so the basis Wk is generated for the Krylov

subspace Kk(AH , b) instead, without being used to solve a second linear system of

equations with AH .

Unlike the Arnoldi process, which only generates a tridiagonal matrix Hk =

V HAV when A belongs to certain restricted classes of matrices (such as shifted Her-

mitian matrices), Lanczos Biorthogonalization produces a tridiagonal matrix Tk =

WH
k AVk for any matrix A. BiCG is thus implemented by using short recurrence re-

lations, with the matrices Vk, Wk, Tk, and factorizations of Tk never actually being

stored. Only a small number of storage vectors are used in order to iteratively update

the approximate solution x̃ and build (implicitly) the subspaces Vk and Wk.

BiCG has a few qualities that prevent it from being a first-choice algorithm for

solving linear systems of equations. One of these is that it does not minimize the

residual norm ||b−AVkx̃v||, and so it can be expected to take longer to converge than

would an algorithm like GMRES when the tolerance for convergence is based on the
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residual norm. In practice, moreover, its convergence tends to be erratic, rather than

always reducing the residual norm.

BiCG also requires matrix-vector products with the matrix AH . Most applications

require only the solution of the linear system Ax = b, not the system AHy = c; the

matrix-vector products with AH are thus “wasted”, in the sense that they are only

used to calculate coefficients for recurrences rather than being used to solve linear

systems. There are even some applications in which matrix-vector products with AH

can not actually be computed due to the way that the matrix A is stored, making

BiCG impossible to implement altogether.

BiCG can also suffer from “breakdowns”, in which the recurrence relations that

are used to build the matrix Tk or its LU decomposition fail [32]. There are methods

available that can prevent such breakdowns, at the price of increasing the complexity

of the algorithm’s implementation.

Similarly to FOM, I mention BiCG not because it is an algorithm of choice for

solving linear systems of equations, but because it will later serve as a connection

between the FEAST algorithm and other methods of solving eigenvalue problems.

There are better algorithms available that use a short recurrence relation with non-

symmetric matrices, such as BiCGSTAB [86, 101], which replaces the steps in BiCG

involving matrix-vector products with AH with a recurrence involving multiplication

by A instead. One of these steps involves minimizing the norm of the residual with

respect to multiplication by a one degree polynomial of A (i.e. a single iteration of

GMRES), which helps to stabilize the convergence of the residual norm.

2.2.5 Restarts

Sometimes one begins solving a linear system of equations

Ax = b (2.29)
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with a reasonable initial guess x̃ for its approximate solution. Other times, par-

ticularly when using an algorithm like GMRES whose performance is limited by the

available memory on a computer, the approximate solution to a linear system of equa-

tions may not be able converge to have a residual norm that is below a user-defined

tolerance. In situations like these the process of solving the linear system can be

“restarted”. The approximate solution x̃ and the linear system residual r = b − Ax̃

can be used to form a new linear system of equations, such that the approximate

solution to this new set of equations gives an update that will improve on the original

approximate solution x̃.

The way that this is usually done is to assume that the exact solution x for

Equation (2.29) takes the form x = x̃ + δx, where x̃ is some approximate solution

with residual rL = b − Ax̃, and δx is a correction to the approximate solution that

gives an exact solution. The equation

Ax̃ = b− rL (2.30)

is true by definition, and exactly solving the new linear system of equations

Aδx = rL (2.31)

will produce a δx that corrects x̃ to give the exact solution. This can be seen by

adding Equations (2.30) and (2.31) together:

Ax̃+ Aδx = b− rL + rL (2.32)

A(x̃+ δx) = b (2.33)

This process is also known as iterative refinement [106].
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In the context of restarting the solution of linear systems of equations, Equation

(2.31) is, itself, solved approximately by using the same algorithm that was used to

find an initial estimated solution x̃ to Equation (2.29). The approximate solution δx̃

for Equation (2.31) is then used to update x̃ as

x̃← x̃+ δx̃. (2.34)

If the residual for the initial approximate solution of Equation (2.31) is δrL = rL−Aδx̃,

then the residual for the new approximate solution x̃+ δ̃x is

rnew = b− A(x̃+ δx̃) (2.35)

= (b− Ax̃)− Aδx̃ (2.36)

= rL − rL + δrL = δrL. (2.37)

The total residual thus becomes the residual for the correction equation (2.31). As

long as the relative residual norm for the solution of Equation (2.31) is less than 1,

i.e.

||δrL||
||rL||

< 1, (2.38)

the new, corrected solution x̃+ x̃δ is guaranteed to be more accurate than the initial

solution x̃.

The process of re-forming and re-solving Equation (2.31) can thus be repeated

until the norm ||rL|| = ||b − Ax̃|| is sufficiently low. This is what is usually referred

to as restarting.

This restarting procedure is so commonly-used that many sources will actually

define the linear system solving algorithms that are discussed in this chapter in terms

of solving Equation (2.31) given some initial guess x̃ = x0 for the solution to Equation

(2.29), rather than in terms of solving Equation (2.29), which is considered to be the
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special case of Equation (2.31) when x0 = 0. For the purposes of this dissertation,

however, it is worth noting that Equation (2.31) is not a unique choice for calculating

an update to an approximate solution for a linear system of equations.

Equation (2.31) is the update equation that is produced by assuming that the

relationship between the exact solution, the approximate solution, and the update

vector is x = x̃ + δx, i.e. Equation (2.33). The relationship between these three

quantities can actually be anything that we want it to be, though; different choices

for how to relate x, x̃, and δx simply produce different equations that need to be

solved in order to calculate δx. We will see later on that the choice

x =
(x̃+ δx)

z − λ̃
, (2.39)

where z and λ̃ are some particular complex scalars, can be very useful in the context

of implementing the FEAST eigenvalue algorithm using approximate linear system

solving algorithms of the kind that are discussed in this chapter. Inserting Equation

(2.39) into Equation (2.29) produces a linear system correction equation of the form

Aδx = (z − λ̃)b− Ax̃, (2.40)

where the right hand side is no longer equal to the linear system residual rL =

b − Ax̃. This form for the correction equation turns out to be more useful than

Equation (2.31), because the FEAST algorithm naturally provides initial guesses for

the solution to the linear system in Equation (2.29) that are related to eigenvalue

estimates λ̃ and complex shifts z. Incorporating that information into the solution of

the FEAST linear systems of equations can have substantial performance benefits.
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2.3 Solving Eigenvalue Problems

Generalized eigenvalue problems consist of identifying vectors xR and xL, and

scalars λ, that satisfy

AxR = λBxR (2.41)

AHxL = λ∗BHxL, (2.42)

where A and B are n×n matrices. The pair (A,B) is referred to as a “matrix pencil”.

The vectors xR are called “right eigenvectors” (because they are eigenvectors when

multiplied on the right of A), the vectors xL are called “left eigenvectors” (because

they are eigenvectors when multiplied on the left of A, i.e. xHLA = xHLBλ), and

the scalars λ are the eigenvalues. Non-defective matrices5 have n eigentriples of xR,

xL, and λ such that Equations (2.41) and (2.41) are true, and solving an eigenvalue

problem consists of identifying some or all such eigentriples.

If the right and left eigenvectors xR and xL are collected as column vectors into

matrices XR and XL such that

XR = [xR1 xR2 ... xRn] , XL = [xL1 xL2 ... xLn] , (2.43)

and the eigenvalues λ are collected into a diagonal matrix Λ such that

Λ =



λ1

λ2

. . .

λn


, (2.44)

5I only consider non-defective matrices in this dissertation, and I will hereafter assume that all
matrices under consideration are non-defective.
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then

A = BXRΛXH
L B (2.45)

and

XH
L B = X−1

R . (2.46)

Equation (2.45) is the eigenvalue decomposition of A for the matrix pencil (A,B),

and Equation (2.46) implies the B-biorthogonality of XR and XL, i.e. XH
L BXR = I

and XH
RB

HXL = I.

When the matrix A is Hermitian, i.e. A = AH , and B is symmetric and positive

definite, then XR = XL and all of the eigenvalues are real numbers. When B = I

then Equations (2.41) and (2.42) become

AxR = λxR (2.47)

AHxL = λ∗xL, (2.48)

which is called the “standard eigenvalue problem”. In this case XH
L = X−1

R , i.e. the

column vectors of XL and XR are biorthogonal.

The most common goal in solving eigenvalue problems is to calculate the right

eigenvectors for a standard eigenvalue problem. Standard eigenvalue problems are

more common and easier to solve than are generalized eigenvalue problems, and the

left eigenvectors are less likely to be useful than the right eigenvectors in practical

applications. Any method for solving standard eigenvalue problems can, at least in

principle, also by applied to solving generalized eigenvalue problems by noting that,

for example, multiplying Equation (2.41) on the left by B−1 turns the generalized

eigenvalue problem into the standard one:

Ax = λBx −→ B−1Ax = λx (2.49)
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This is not always a good idea, though; it is not necessarily practical or efficient

to form the matrix B−1A. Even with algorithms that use only matrix-vector mul-

tiplication for solving eigenvalue problems, every multiplication by A must then be

followed by a linear system solution with B, which can make the eigenvalue problem

more expensive to solve. For these reasons it can be advantageous to solve generalized

eigenvalue problems without first converting them into standard eigenvalue problems.

Similarly, any algorithm that can be used to calculate the right eigenvectors of an

eigenvalue problem can also be used to calculate the left eigenvectors, provided that

the matrices AH and BH are available. It is sometimes advantageous to calculate

both sets of eigenvectors simultaneously, and this is true of the FEAST algorithm

when solving non-symmetric eigenvalue problems.

As with linear systems of equations, there are well-known factorization-based al-

gorithms for solving both generalized and standard eigenvalue problems, such as the

QZ and QR algorithms [30, 99]. These algorithms calculate all of the n eigenvalues

and eigenvectors for a given n×n matrix pencil. Also as with linear systems of equa-

tions, I will consider “small” eigenvalue problems to be those that can be efficiently

or easily solved with these factorization-based algorithms.

I will consider “large” eigenvalue problems to be those for which it is impossible to

calculate all n eigenvalues and eigenvectors. With large matrix pencils, the matrices

are stored in some way that makes matrix-vector multiplications efficient to calculate,

but which avoids storing all of the coordinates of the matrices. The matrices A and

B may be stored in a sparse format, wherein most of the coordinates are zero and

only the nonzero coordinates are actually stored explicitly. Or, they may be stored

implicitly in the form of computer routines that calculate the result of matrix-vector

multiplication when given an input vector; see references [27] and [28] for examples of

quantum simulation projects that use this storage method. In this second case, it is

worth noting, it is sometimes not possible to calculate matrix-vector multiplications
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with AH or BH , which necessarily constrains the algorithms that can be applied to

solving such an eigenvalue problem.

There are also “medium” sized eigenvalue problems. These are eigenvalue prob-

lems whose matrix pencils are small enough that there exist efficient factorization-

based methods for solving linear systems of equations with them, but which are large

enough that calculating all n eigenvalues and eigenvectors is very difficult or inef-

ficient. Eigenvalue problems like this can be solved particularly quickly by taking

advantage of efficient factorization-based linear system solving algorithms.

The goal with either medium-sized or large-sized eigenvalue problems is to cal-

culate only a small number m � n of eigenvalues and eigenvectors, usually specific

ones that are important for a given application. The following subsections describe

several algorithms for solving eigenvalue problems in this way, with an emphasis on

methods of solving eigenvalue problems that are related to the FEAST algorithm.

2.3.1 Rayleigh-Ritz

The feature that most of the eigenvalue algorithms in this chapter share is that

they solve large eigenvalue problems by projecting them on to a smaller subspace in

order to form a small eigenvalue problem. The resulting small eigenvalue problem

can then be solved easily by using standard algorithms and software packages for

efficiently calculating the eigenvalue decompositions of dense matrices and matrix

pencils.

If we want to approximate the right eigenvectors, x̃, of an n-dimensional matrix

pencil (A,B) using an m-dimensional subspace spanned by the matrix of basis vectors

V , with the condition that the residuals λ̃Bx̃−Ax̃ be orthogonal to the m-dimensional

subspace spanned by V , then the eigenvalue problem that we need to solve becomes

[71]

V HAV x̃v = λ̃V HBV xv (2.50)
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The eigenvalues λ̃ are then approximations of m eigenvalues of (A,B), and the vectors

x̃ = V xv are approximations of m eigenvectors of (A,B). Whereas the original

matrix pencil (A,B) was of dimension n, and was potentially quite expensive to solve,

the new matrix pencil (V HAV, V HBV ) is of dimension m � n, and is therefore

more easily solved by using standard methods. This is the Rayleigh-Ritz method,

with the approximate eigenvalues λ̃ often being referred to as “Ritz values”, and the

approximate eigenvectors V xv often being referred to as “Ritz vectors”.

When V is a basis for a Krylov subspace, the standard Rayleigh-Ritz method

is most effective for finding approximations of the eigenvectors whose eigenvalues

are located in the exterior of the spectrum [55, 56]. For Hermitian matrix pencils,

whose eigenvalues are all real numbers, this means that it tends to approximate the

most-positive and the most-negative eigenvalues. For nonsymmetric matrix pencils,

whose eigenvalues can be anywhere in the complex plane, this means that it tends to

approximate the eigenvalues that are close to the edge of the convex hull of the set

of eigenvalues of (A,B).

The interior eigenvalues can be more effectively approximated by using a different

projected eigenvalue problem:

V H(zB − A)H(zB − A)V xv = (z − λ)V H(zB − A)HV xv. (2.51)

Approximating the eigenvalues and eigenvectors of (A,B) using the solution to Equa-

tion (2.51) is called the Harmonic Ritz method [55,56,91]. It produces approximations

of the eigenvectors whose eigenvalues are closest to the complex scalar z in the com-

plex plane.

It is also possible to use oblique projection in order to produce a reduced-dimension

eigenvalue problem, rather than using the orthogonal projection in Equation (2.50).

If we constrain the right-eigenvector residuals λ̃Bx̃ − Ax̃ to be orthogonal to the
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subspace spanned by the basis vectors W (rather than the one spanned by V as in

Equation (2.50) ), then the resulting reduced-dimension eigenvalue problem is

WHAV xv = λ̃WHBV xv. (2.52)

One the benefits of oblique projection is that it allows the simultaneous estimation

of both the left and right eigenvectors for nonsymmetric matrix pencils. The right

eigenvectors of (A,B) are approximated by V xv as in standard Rayleigh-Ritz, and

the left eigenvectors are approximated by Wxw, where the vectors xw are the left

eigenvectors for the matrix pencil (WHAV,WHBV ). Oblique projection also makes

it possible to take advantage of algorithms that generate biorthogonal Krylov basis

sets, such as Lanczos biorthogonalization.

2.3.2 Arnoldi and Lanczos

As discussed in Section 2.1.1, Arnoldi iterations can be used to produce an or-

thonormal basis set Vk for the (k + 1)-dimensional Krylov subspace Kk(A, x0). The

output of Arnoldi iterations are two matrices Hk and Vk such that

V H
k AVk = Hk, V H

k Vk = Ik+1,k+1. (2.53)

Arnoldi thus naturally produces the projected eigenvalue problem that is used by

the Rayleigh-Ritz method for approximating the right eigenvectors of the standard

eigenvalue problem Ax = λx in the subspace spanned by Vk, i.e.

Hkxv = λ̃xv. (2.54)

The solutions to the (k + 1)-dimensional standard eigenvalue problem in Equation

(2.54) are approximations of the eigenvalues and eigenvectors of the matrix pencil

36



(A, I), with λ̃ being the Ritz values for the subspace basis Vk and the vectors Vkxv

being the Ritz vectors.

Using Arnoldi iterations in this way has a nice interpretation in terms of matrix

polynomials. Using Arnoldi iterations with Rayleigh-Ritz is equivalent to solving the

minimization problem [99]

pk+1 = min
pk+1

||pk+1(A)x0||, (2.55)

where pk+1 is a monic polynomial of degree k + 1. The solution to (2.55) is

pk+1(z) =
k+1∏
i=1

(z − λ̃i) (2.56)

Arnoldi thus approximates the characteristic polynomial of the matrix A with a

degree-(k + 1) polynomial, by finding the degree-(k + 1) polynomial that minimizes

the matrix polynomial product with an initial guess vector x0. The roots of this

degree-(k + 1) polynomial are the Ritz values of Hk.

Lanczos biorthogonalization, which produces biorthogonal sets of basis vectors Wk

and Vk for the subspaces Kk(AH , x0) and Kk(A, x0) (respectively), can be used for

solving eigenvalue problems in essentially the same way as Arnoldi. Lanczos outputs

the matrices Wk, Vk, and Tk such that

WH
k AVk = Tk, WH

k Vk = Ik+1,k+1. (2.57)

Similarly to Arnoldi, then, Lanczos naturally generates the reduced-dimension eigen-

value problem that is produced when using a Rayleigh-Ritz-like oblique projection to

estimate both the left and the right eigenvectors of the matrix pencil (A, I), i.e.

Tkxv = λ̃xv

THk xw = λ̃∗xw (2.58)
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The vectors Wxw and V xv are Ritz vectors that approximate the left and right

eigenvectors of (A, I), and the scalars λ̃ are the corresponding Ritz values.

Beyond estimating both the left and right eigenvectors simultaneously, Lanczos

has the benefit that the matrix Tk is tridiagonal, which requires less computer memory

storage and which makes the solution of the eigenvalue problem in Equation (2.58)

easier. Unlike with Arnoldi, Lanczos can even be used to calculate eigenvalue and

eigenvector estimates without storing the basis vectors Wk and Vk by using three

term recurrences, at the cost of having to repeat the Lanczos process twice in order

to reconstruct the desired eigenvectors.

Arnoldi and Lanczos both operate most naturally on standard eigenvalue problems

Ax = λx. They can be used to solve generalized eigenvalue problems Ax = λBx by6

multiplying each side by B−1, i.e. by solving the standard eigenvalue problem

B−1Ax = λx, (2.59)

but this strategy is limited by the dimension of the eigenvalue problem. This is be-

cause solving Equation (2.59) with Lanczos or Arnoldi requires forming basis sets for

Krylov subspaces like Kk(B−1A, x0); every matrix multiplication by A when forming

such a basis set must be accompanied by the solution of a linear system of equations

with the matrix B. For “medium” sized eigenvalue problems, in which the matrices

A and B are small enough that they can be efficiently factorized for solving linear

systems of equations, this can be a reasonably efficient process. For large eigenvalue

problems, where A and B are large enough that the exact solution of linear sys-

tems using matrix factorizations is infeasible, using Equation (2.59) with Arnoldi or

Lanczos will likely be prohibitively expensive.

6This is not the only method of converting generalized eigenvalue problems into standard ones,
but the challenges remain the same regardless of which method is used.
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2.3.3 Krylov Restarts

It is often the case that Arnoldi or Lanczos will fail to converge to a sufficiently

accurate approximation of the desired eigenvalues and eigenvectors before exceeding

some limit on the available computer memory7. When this happens, much as with

solving linear systems of equations, the Krylov iterations can be restarted.

Restarting the solution of an eigenvalue problem consists of simply redoing Arnoldi

or Lanczos iterations using a new initial guess. If the original Krylov subspace that

was used for approximating eigenvectors was Kk(A, x̃(0)), with corresponding matrix

of basis vectors Vk, then restarting means building a new set of basis vectors for the

subspace Kk(A, x̃(1)), with

x̃(1) = V c = pk+1(A)x̃(0). (2.60)

The (k + 1)-dimensional vector c is a vector of coefficients that is used to select an

element of the subspace Kk(A, x̃(0)) for use as a new initial guess. Because Kk(A, x̃(0))

is just the subspace that spans all vectors that can result from the application of a

degree k matrix polynomial of A to the first initial guess, x̃(0), the act of choosing a

particular vector x̃(1) = V c to restart with is equivalent to developing a new initial

guess by applying a polynomial filter of A to x̃(0).

There are a variety of different ways that one can choose a vector x̃(1) with which to

restart [54,70,88]. The simplest is to choose x̃(1) to be the Ritz vector whose Ritz value

is closest to an eigenvalue that one is interested in calculating. If, for example, we are

interested in using Arnoldi to calculate the eigenvector for the lowest eigenvalue of the

pencil (A, I), then we would select x̃(1) to be the Arnoldi Ritz vector corresponding

to the lowest Arnoldi Ritz value. This is not necessarily the best method for choosing

7Such a limit might be imposed by the actual amount of computer memory that is available,
or it might be imposed by the user in order to avoid increasingly expensive orthogonalizations and
eigenvalue problem solutions as the Krylov subspace dimension grows (in the case of Arnoldi).
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vectors with which to restart Krylov methods, but it will be important in explaining

the relationship between the FEAST algorithm and Arnoldi.

2.3.4 Subspace Iteration

Subspace Iteration is a method for calculating m eigenvalues and eigenvectors

using a subspace of constant dimension m (unlike Arnoldi or Lanczos, for example,

which increase their subspace dimension by 1 at each iteration, unless one chooses

to restart). The procedure for Subspace Iteration is described in Algorithm 1. With

Algorithm 1 Subspace Iterations

Inputs:

• n× n matrix A

• n × m matrix X̃(0) whose column vectors are (possibly random) initial
guesses for the dominant eigenvectors of the pencil (A, I).

• Stopping tolerance ε

For each iteration i:

1. Calculate V = AX̃(i)

2. Orthonormalize V

3. Solve m×m eigenvalue problem V HAVXv = XvΛ̃ for m×m matrix of
eigenvectors Xv and diagonal matrix of eigenvalues Λ̃

4. Set X̃(i+1) = V Xv

5. Calculate block of residual vectors R = BX̃(i+1)Λ̃−AX̃(i+1). If the norms
of all of the column vectors of R are less than ε, stop. Otherwise goto
Step 1.

Outputs: diagonal matrix Λ̃ of approximations for the m largest-magnitude
eigenvalues, and approximations for the corresponding eigenvectors X̃.

Subspace Iteration, a block X̃ of m estimated eigenvectors is refined by performing

matrix-vector multiplications with the matrix A. The refined, approximate eigenvec-

tors are then used as a subspace in which to perform the Rayleigh-Ritz procedure,

which returns new estimates for eigenvectors and eigenvalues. If the new estimates

are sufficiently accurate then the estimated eigenvalues and eigenvectors are returned;

otherwise the same procedure is repeated again.
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Subspace Iteration converges to the eigenvectors corresponding to the m largest-

magnitude eigenvalues of the matrix pencil (A, I). This is the sense in which matrix

multiplication by A acts as a “refinement” of the approximate eigenvector subspace:

if an approximate eigenvector x̃ is expressed as a linear combination of the exact

eigenvectors xi, then multiplication by A amounts to scaling each component of x̃ in

the xi basis by its corresponding eigenvalue λi, i.e.

Ax̃ =
n∑
i=1

ciAxi =
n∑
i=1

ciλixi. (2.61)

Intuitively, the magnitudes of the components of Ax̃ grow the most in the direc-

tion of the eigenvectors whose eigenvalues have the largest magnitude. Repeated

multiplication of a single vector by A, interspersed with normalization, eventually

produces a vector that is equal to the eigenvector with the largest magnitude eigen-

value. Repeated multiplication of a collection of m vectors X̃ by A, interspersed with

orthonormalization of that collection of vectors, produces a basis set that spans the

m eigenvectors corresponding to the m largest-magnitude eigenvalues of A.

This notion of convergence can be written quantitatively in a simple way. If qj

is an estimate for the eigenvector xj in the subspace spanned by X̃ at the start of a

single subspace iteration, and q̃j is an estimate for xj in the subspace spanned by X̃ at

the end of a single subspace iteration, then the following inequality holds true [71,74]:

||q̃j − xj|| ≤
(
|λm+1|
|λj|

)
||qj − xj||, (2.62)

where the eigenvalues of A are ordered such that |λj| > |λj+1|. A single Subspace

Iteration, using a subspace of dimension m, thus reduces the error for the estimation

of eigenvector j in proportion to the ratio between the (m+1)th largest eigenvalue and

the jth largest eigenvalue; Subspace Iteration is therefore said to converge linearly.

The details for the derivation of Equation (2.62) are provided in the appendix in

Section A.1.
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Equation (2.62) tells us that Subspace Iteration converges to an accurate estimate

for the jth eigenvector more quickly if the (m+1)th largest eigenvalue of A has a much

smaller magnitude than the jth eigenvalue of A. For this reason Subspace Iteration

is more efficient for some matrices than for others, depending on the eigenvalue spec-

trum, and one can increase the rate of convergence to the jth eigenvector by using a

larger subspace dimension m.

Similarly to Arnoldi and Lanczos, Subspace Iteration operates naturally on matrix

pencils of the form (A, I), and generalized eigenvalue problems for (A,B) can be

solved by using Subspace Iteration with (B−1A, I). This relies, again, on being able

to efficiently factorize B so that linear systems of equations can be solved with it.

For large, generalized eigenvalue problems, where any kind of matrix factorization is

assumed to be prohibitively difficult, Subspace Iteration is not an efficient method of

solution.

Subspace Iteration is also a naturally blocked algorithm; it operates on blocks of m

vectors at a time. It is closely related to block implementations of Arnoldi. Subspace

Iteration is the same as performing block Arnoldi iterations with a Krylov subspace

of order k = 0, using restarts such that the restart polynomial filter (see Equation

(2.60)) is always p(A) = A. Standard Subspace Iteration can therefore be seen as a

much less effective implementation of restarted block Arnoldi, in that it does not use

most of the information that can be gained by building and using a Krylov subspace.

It does, however, have the benefit over block Arnoldi of requiring a constant subspace

dimension of only m, whereas the dimension of a block Arnoldi subspace is (k+ 1)m

for k iterations of Arnoldi.

The properties of Subspace Iteration that were described in this section will be

revisited again when discussing the FEAST algorithm in Chapter 3, because the

FEAST algorithm is perhaps best-interpreted as a more sophisticated version of sub-

space iterations.
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2.3.5 Shift and Invert Iterations

Standard Subspace Iteration usually compares unfavorably with Krylov methods

like Arnoldi and Lanczos because of its limitations in terms of both convergence rate

and the eigenvectors that it can approximate. Subspace Iteration tends to converge

relatively slowly (depending on the spectrum of the eigenvalue problem), and it can

only find the largest-magnitude eigenvalues and corresponding eigenvectors.

Shift and Invert Iteration, which is summarized in Algorithm 2, is a modified

version of Subspace Iteration that uses the solution of linear systems of equations in

order to address both of these shortcomings. The solution of linear systems allows

Shift and Invert Iteration to calculate eigenvectors whose eigenvalues are located near

a particular, user-defined scalar z in the complex plane, and to do so almost arbitrarily

quickly (in a sense that will be made more concrete shortly).

Algorithm 2 Shift and Invert Iteration

Inputs:

• n× n matrix A

• n × m matrix X̃(0) whose column vectors are (possibly random) initial
guesses for the eigenvectors of the pencil (A, I) whose eigenvalues are
closest to some complex scalar z.

• Stopping tolerance ε

• Complex scalar shift z located near the eigenvalues that are to be calcu-
lated.

For each iteration i:

1. Calculate V = (zI −A)−1X̃(i)

2. Orthonormalize V

3. Solve m×m eigenvalue problem V HAVXv = XvΛ̃ for m×m matrix of
eigenvectors Xv and diagonal matrix of eigenvalues Λ̃

4. Set X̃(i+1) = V Xv

5. Calculate block of residual vectors R = X̃(i+1)Λ̃−AX̃(i+1). If the norms
of all of the column vectors of R are less than ε, stop. Otherwise goto
Step 1.

Outputs: diagonal matrix Λ̃ of approximations for the m eigenvalues closest to
z, and approximations for the corresponding eigenvectors X̃.
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Shift and Invert Iteration is exactly the same as Subspace Iteration, except for Step

1: in Step 1, multiplication by A in Subspace Iteration is replaced with multiplication

by (zI−A)−1 in Shift and Invert Iteration. The multiplication (zI−A)−1X̃(i) in Step

1 is performed by solving m linear systems of equations (one for each column vector

of X(i)) using whatever factorization-based method one prefers.

The theory for the convergence of Shift and Invert Iteration (i.e. Equation (2.62) is

the same as the theory for the convergence of Subspace Iteration, with the eigenvalues

of A being replaced by the eigenvalues of (zI −A)−1. The Shift and Invert version of

Equation (2.62) is then

||q̃j − xj|| ≤
(
|z − λj|
|z − λm+1|

)
||qj − xj||, (2.63)

where the eigenvalues λj of A are now numbered such that |z − λj| < |z − λj+1|.

Note that λj is now in the numerator in Equation (2.63), because the eigenvalues of

(zI − A)−1 are 1/(z − λj) and

|1/(z − λm+1)|
|1/(z − λj)|

=
|z − λj|
|z − λm+1|

(2.64)

Shift and Invert Iteration therefore converges to the m eigenvectors whose eigen-

values that are closest to the shift z. The rate at which they converge, moreover,

is determined by the location the shift z; the closer z is to a particular eigenvalue

λj, the faster Shift and Invert Iteration will converge to a good approximation of

the corresponding eigenvector xj. This is somewhat intuitive, in that the operation

f(A) = (zI − A)−1 maps the matrix A to a new matrix (zI − A)−1 that has the

same eigenvectors as A, with corresponding eigenvalues such that the eigenvalues λj

of A are mapped to eigenvalues 1/(z − λj) of (zI −A)−1. The eigenvalues 1/(z − λj)

will have a very large magnitude for values of λj that are close to z, and so Sub-
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space Iteration with the matrix (zI−A)−1 will converge quickly to the corresponding

eigenvectors.

A potential downside of Shift and Invert Iteration is that different eigenvalues will

converge at potentially very different rates. The eigenvalue closest to the shift z will

converge very quickly, but the eigenvalue that is second -closest to z will likely converge

much more slowly than that, and with the third-closest converging even more slowly,

and so on. Shift and Invert Iteration tends to be most efficient for calculating small

groups of eigenvalues that are all clustered close together.

Shift and Invert Iteration, as described so far, is only appropriate for the “medium”

sized eigenvalue problems where factorization-based algorithms for calculating eigen-

value decompositions are too expensive, but factorization-based algorithms for solving

linear systems of equations are not. As a result, Shift and Invert Iteration is often

used for generalized eigenvalue problems as well, which always require a linear sys-

tem solution of some kind. Generalized eigenvalue problems for matrix pencils (A,B)

can be efficiently solved by applying Shift and Invert Iteration to the matrix pencil

(B−1A, I) and noting that Step 1 in Algorithm 2 can be implemented as

V = (zI −B−1A)−1X̃(i) = (zB − A)−1BX̃(i), (2.65)

thereby requiring only a single linear system solution.

2.3.6 Inexact Shift and Invert Iterations

Shift and Invert Iteration can be extended to apply to large eigenvalue problems,

where neither factorization-based eigenvalue algorithms nor factorization-based linear

system solving algorithms can be used efficiently. This is done by inexactly solving

the linear systems of equations necessary to implement Step 1 of Algorithm 2 using

algorithms for approximating the solutions of linear systems of equations like those
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that are described in Section 2.2. The Inexact Shift and Invert Iteration algorithm is

described in Algorithm 3.

Algorithm 3 Inexact Shift and Invert Iteration

Inputs:

• n× n matrix A

• n×m matrix X̃(0) whose column vectors are (possibly random) initial guesses for
the eigenvectors of the pencil (A, I) whose eigenvalues are closest to some complex
scalar z.

• Stopping tolerance ε

• Complex scalar shift z located near the eigenvalues that are to be calculated

• Relative tolerance α such that 0 ≤ α < 1, for determining the accuracy of linear
system solutions.

For each iteration i:

1. Set V = X̃(0)

2. Orthonormalize V

3. Solve m×m eigenvalue problem V HAVXv = XvΛ̃ for m×m matrix of eigenvectors
Xv and diagonal matrix of eigenvalues Λ̃.

4. Set X̃(i) = V Xv

5. Calculate block of residual vectors R = X̃(i)Λ̃ − AX̃(i). If the norms of all of the
column vectors of R are less than ε, stop. Otherwise goto Step 6.

6. Calculate subspace V by solving m linear systems of equations

(zI −A)V = X̃(i) (2.66)

such that the following tolerance on the linear system residuals is met:

||X̃(i)ej − (zI −A)V ej || ≤ α max
1≤t≤m

||Ret|| ∀ 1 ≤ j ≤ m (2.67)

where ej is the jth canonical unit vector.

7. Goto Step 2

Outputs: diagonal matrix Λ̃ of approximations for the m eigenvalues closest to z, and
approximations for the corresponding eigenvectors X̃.

One of the (perhaps surprising) qualities of Inexact Shift and Invert Iteration is

that the linear systems of equations do not necessarily need to be solved very accu-

rately [6, 31, 46,64] in order to ensure fast and robust convergence to the eigenvalues

that are near the shift z. Algorithm 3 differs from Algorithm 2 primarily in Step 6

where, in Algorithm 3, the m linear systems of equations are solved such that their
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residuals are smaller than the eigenvector residual that is calculated in Step 5. The

linear systems of equations need to be solved so that their solution is more accurate

than the current solution for the eigenvalue problem, but not necessarily much more

accurately than that. Because an estimate for the eigenvector residual is needed for

determining the accuracy of the linear system solutions, the Rayleigh-Ritz step is

performed first in Algorithm 3, rather than last as in Algorithm 2.

Despite the linear systems of equations being solved inaccurately, Inexact Shift and

Invert Iteration still converges linearly, with the rate of convergence being determined

by both the eigenvalue spectrum of the eigenvalue problem and by the accuracy of the

linear system solutions [64]. Exactly how accurately the linear systems of equations

in Step 6 of Algorithm 3 are solved is determined by a user-provided parameter α.

Inexact Shift and Invert Iteration will not necessarily converge for all values of α; the

largest value of α that will allow for robust convergence depends on the properties

of eigenvalue problem, namely the eigenvalue spectrum itself and (for nonsymmetric

problems) the eigenvectors [64].

Equation (2.67) in Algorithm 3 indicates that the linear systems of equations

in Equation (2.66) must be solved progressively more accurately as the solutions to

the eigenvalue problem converge. For most applications, solving a linear system of

equations more accurately by using an iterative algorithm means that more iterations

of that algorithm must be used in order to calculate the solution. This would seem

to imply that the number of iterations (of whatever linear system solving algorithm

is being used) that is required for solving Equation (2.66) will grow substantially

as Inexact Shift and Invert Iteration converges, which does not bode well for the

computational efficiency of Algorithm 3.

In actual practice, however, the number of linear system iterations for solving

Equation (2.67) does not increase as the solution to the eigenvalue problem converges,

and can actually be quite low (depending on the problem). The precise reason that
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this happens depends on the technical details of the linear system solving algorithm;

references [64] and [19] discuss this in some detail for the case of GMRES, and a

related (but simplified) explanation is provided in Appendix C. In general, though,

the reason is somewhat intuitive for algorithms that use Krylov subspaces. For a

linear system of equations

Ax = b, (2.68)

if b is an eigenvector of A such that Ab = λb, then the solution to Equation (2.68)

is x = 1
λ
b. Expressed using matrix polynomials, the solution is x = p(A)b such that

p(A) = 1
λ
I, i.e. p(A) is a zero-degree matrix polynomial. It thus takes a single

iteration of any Krylov linear system algorithm in order to converge to the solution

for Equation (2.68). If the right hand side b of Equation (2.68) is an approximate

eigenvector rather than an exact one, then the degree of the polynomial p(A) must

be greater than zero, but it still is likely not very large, depending on how close b is

to an exact eigenvector.

As the approximate eigenvectors in Inexact Shift and Invert Iteration become

more accurate, Equation (2.66) in Algorithm 3 needs to be solved more precisely, but

at the same time it also becomes easier to solve because the right hand sides become

better approximations of eigenvectors. The number of Krylov-type that is required to

solve it to a given tolerance is thus roughly constant at each inexact shift and invert

iteration.

Notably, this does not happen for generalized eigenvalue problems; for general-

ized eigenvalue problems the number of required linear system iterations increases

as the eigenvalue problem solutions converge. This is because Equation (2.66) from

Algorithm 3 becomes

(zB − A)V = BX̃(i) (2.69)

in the case of generalized eigenvalue problems. In this case, as the approximate

eigenvectors X̃ converge to exact eigenvectors X of the pencil (A,B), the right hand
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sides of Equation (2.69) converge to BX, which are not eigenvectors of the pencil

(zB − A, I). The convergence of the generalized eigenvalue problem thus does not

help the convergence of the linear system of equations, making the application of

Algorithm 3 to generalized eigenvalue problems very inefficient.

This problem can be solved by using by changing Step 6 of Algorithm 3 to be

V =
(
X̃(i) + δX̃

)
(zI − Λ̃)−1 (2.70)

such that δX̃ is the solution to the linear system of equations

(zB − A)δX̃ = −(BX̃(i)Λ̃− AX̃(i)). (2.71)

This procedure originally comes from reference [31], and the details of its derivation

in the context of the FEAST algorithm are provided in Appendix B. It is equivalent

to using the special form of linear system restarts that was discussed in Section 2.2.5

(on page 27).

When Equation (2.71) is solved exactly then this procedure is equivalent to solving

Equation (2.69) exactly. Using Equation (2.70) has the advantages over Equation

(2.69), however, that when Krylov algorithms are used for solving linear systems

inexactly. In that case we can recover the property that a roughly constant number of

linear system iterations is required at each Inexact Shift and Invert Iteration in order

to converge to the desired eigenvectors. Intuitively, this is because the right hand

sides of Equation (2.71), which are now the eigenvector residuals for the generalized

eigenvalue problem, converge to zero as the approximate eigenvectors and eigenvalues

converge to exact eigenvectors and eigenvalues, and the zero vector is an eigenvector

of any matrix, including (zB − A) from Equation (2.71).

Inexact Shift and Invert Iteration for generalized eigenvalue problems is described

in Algorithm 4.
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Algorithm 4 Generalized Inexact Shift and Invert Iteration

Inputs:

• n× n matrix pencil (A,B)

• n×m matrix X̃(0) whose column vectors are (possibly random) initial guesses for
the eigenvectors of the pencil (A,B) whose eigenvalues are closest to some complex
scalar z.

• Stopping tolerance ε

• Complex scalar shift z located near the eigenvalues that are to be calculated

• Relative tolerance α such that 0 ≤ α < 1, for determining the accuracy of linear
system solutions.

For each iteration i:

1. Set V = X̃(0)

2. Orthonormalize V

3. Solve m × m eigenvalue problem V HAVXv = V HBVXvΛ̃ for m × m matrix of
eigenvectors Xv and diagonal matrix of eigenvalues Λ̃.

4. Set X̃(i) = V Xv.

5. Calculate block of residual vectors R = X̃(i)Λ̃ − AX̃(i). If the norms of all of the
column vectors of R are less than ε, stop. Otherwise goto Step 6.

6. Solve m linear systems of equations

(zB −A)∆X̃ = −(BX̃(i)Λ̃−AX̃(i)) (2.72)

for ∆X̃ such that the following tolerance on the linear system residuals is met:

||(BX̃(i)Λ̃−AX̃(i))ej − (zB −A)∆X̃ej || ≤ α ∀ 1 ≤ j ≤ m, (2.73)

where ej is the jth canonical unit vector. Use the solution ∆X̃ to form the subspace

V =
(
X̃(i) + ∆X̃

)
(zI − Λ̃)−1 (2.74)

7. Goto Step 2.

Outputs: diagonal matrix Λ̃ of approximations for the m eigenvalues closest to z, and
approximations for the corresponding eigenvectors X̃.
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2.3.7 Rayleigh Quotient Iteration and Jacobi-Davidson

Rayleigh Quotient Iteration is Shift and Invert Iteration in which the shift is

allowed to change at each iteration. It is a naturally single-vector method in which,

rather than updating the approximate eigenvectors x̃ as Shift and Invert Iteration

does, i.e. solving

(zI − A)x̃(i+1) = x̃(i), (2.75)

a similar linear system solution is used in which the user-chosen shift z is replaced by

the approximate eigenvalue λ̃, i.e.

(λ̃I − A)x̃(i+1) = x̃(i). (2.76)

For exact solutions this improves the rate of convergence compared with Shift and

Invert Iteration. Rather than converging linearly, as Shift and Invert Iteration does,

Rayleigh Quotient Iteration converges at least quadratically [91].

Also like Shift and Invert Iteration, Rayleigh Quotient Iteration can be used ef-

fectively even when Equation (2.76) can only be solved approximately [18, 58, 84].

Rayleigh Quotient Iteration will converge readily by solving Equation (2.76) using a

constant number of Krylov subspace iterations at each Rayleigh Quotient Iteration,

even though this results in solving Equation (2.76) to the same level of accuracy at

every iteration8.

8This is where inexact Rayleigh Quotient Iteration and Inexact Shift and Invert Iteration would
seem to differ the most. Using a constant number of Krylov linear system iterations at each eigenvalue
solving iteration, the accuracy of the linear system solutions improves as the eigenvector solution
converges for Shift and Invert Iteration, whereas it stays the same for Rayleigh Quotient Iteration.
The key difference is that the conditioning of the linear system of equations in Equation (2.76)
becomes worse with each Rayleigh Quotient Iteration; the shift λ̃(i) moves closer to an eigenvalue of
A at each Rayleigh Quotient Iteration, making the linear system of equations (2.76) correspondingly
more difficult to solve. As noted in [84], this actually does not matter; the approximate solutions
for Equation (2.76) move the approximate eigenvector closer to a solution, even though the linear
systems of equations themselves never come closer to converging.
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Generalized eigenvalue problems Ax = λBx again pose a special challenge when

solving linear systems of equations approximately. For generalized eigenvalue prob-

lems Equation (2.76) becomes

(λ̃B − A)x̃(i+1) = Bx̃(i). (2.77)

The right hand side Bx̃(i) is no longer an approximate eigenvector, and so we can

expect that using a constant number of Krylov iterations for solving the linear system

will result in worse convergence than it would for the standard eigenvalue problem.

In the case of Rayleigh Quotient Iterations, however, it is no longer possible to

replace the solution of Equation (2.77) with update equations of the form

(zB − A)δx = −(λ̃B − A)x̃(i) (2.78)

x̃(i+1) = (x̃(i) + δx)(z − λ̃)−1, (2.79)

as we did for Inexact Shift and Invert Iterations when deriving Generalized Shift and

Invert Iterations. This is because z = λ̃ for Rayleigh Quotient Iteration, and so the

update equation (2.79) is no longer well-defined.

It is still possible to find an update equation, though, by using a slightly modified

approach [109]. Instead of Equation (2.79), we can use

x̃(i+1) = (x̃(i) + δx)η−1 (2.80)

with the scalar η being defined as

η = x̃(i)H(λ̃B − A)−1δx. (2.81)

We can derive a replacement for Equation (2.78) by using the fact that, for exact

Rayleigh Quotient Iteration, x̃(i+1) = (λ̃B − A)−1Bx̃(i) (from Equation (2.77)), and
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also the fact that x̃(i) = (λ̃B − A)−1(λ̃B − A)x̃(i). Then, starting from Equation

(2.80), we have

δx− x̃(i+1) = −x̃(i) (2.82)

δx− η(λ̃B − A)−1Bx̃(i) = −(λ̃B − A)−1(λ̃B − A)x̃(i) (2.83)

(λ̃B − A)δx− ηBx̃(i) = −(λ̃B − A)x̃(i) (2.84)

(λ̃B − A)δx−Bx̃(i)x̃(i)H(λ̃B − A)−1δx = −(λ̃B − A)x̃(i) (2.85)

(I −Bx̃(i)x̃(i)H)(λ̃B − A)δx = −(λ̃B − A)x̃(i) (2.86)

Thus, when using iterative linear system algorithms for solving generalized eigen-

value problems, we can replace Inexact Rayleigh Quotient Iterations with the update

equations

(I −Bx̃(i)x̃(i)H)(λ̃B − A)δx = −(λ̃B − A)x̃(i), (2.87)

x̃(i+1) = (x̃(i) + δx)η−1. (2.88)

The update equations in Equations (2.87) and (2.88) are the same ones that are

used in Jacobi-Davidson [85, 87]. Using these update equations without any kind of

augmented subspace procedure (as traditional Jacobi-Davidson uses) is sometimes

referred to as “Simplified Jacobi-Davidson” or “Newton-Grassman” [18,90] (because

of their relationship to Newton-type methods). The parameter η in Equation (2.88)

is set 1 in actual practice, because it is the direction of x̃(i+1) that matters when

solving an eigenvalue problem, and not the magnitude. Although we motivated the

derivation of the Jacobi-Davidson update equations by trying to solve generalized

eigenvalue problems, they are most often used for solving standard eigenvalue prob-

lems, where they can have some advantages over Rayleigh Quotient Iteration in terms

of robustness [105].
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This way of deriving the Jacobi-Davidson update equations may seem a bit con-

trived, and that is because it is. It is very unlikely that one would think to set

η = x̃(i)H(λ̃B − A)−1δx when starting from Equation (2.80). My purpose in doing

it this way is to emphasize that the relationship between Rayleigh Quotient Itera-

tion and Jacobi-Davidson is essentially the same as the relationship between Shift

and Invert Iteration and Generalized Shift and Invert Iteration; the only difference is

that a different version of iterative refinement is used in solving the linear systems of

equations. The projector (I − Bx̃xH) that is so characteristic of Jacobi-Davidson is

necessarily primarily because the shift in Rayleigh Quotient Iteration is the same as

the Ritz value for x̃(i).

2.3.8 Augmented Subspace Methods

With the exception of Arnoldi and Lanczos iterations, the algorithms discussed

in this chapter - and in forthcoming chapters - operate using subspaces of static

dimension. All of the methods described in this dissertation (both in the preceding

sections and in later chapters) can, however, also be combined with some method for

subspace expansion in order to enhance their convergence rates. For example, Shift

and Invert Iteration is the same as Subspace Iteration applied to the matrix (zI−A)−1.

We could, instead, use Lanczos or Arnoldi iterations with the matrix (zI − A)−1, in

which case the dimension of the subspace would grow with each iteration, and the

estimated eigenvalues and eigenvectors would converge more quickly as a result.

I will lump all such algorithms together as “augmented subspace” methods, and I

will consider them to be largely beyond the scope of this dissertation, which focuses on

methods that use statically-sized subspaces. Several notable algorithms fall into the

category of augmented subspace methods. The standard Jacobi-Davidson algorithm

[85, 87] is a modification of the Simplified Jacobi-Davidson algorithm (described in

the previous section), wherein the eigenvector approximation subspace is augmented
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with the updated approximation from Equation (2.88) at each iteration, rather than

being replaced by it. Rational Krylov [67] uses Shift and Invert Iteration to generate

an expanding subspace, changing the value of the shift at each iteration. The methods

of Sakurai and Seguira [39,76,77] apply contour integral-based filtration (see Section

3.1 on page 60) to Krylov subspaces, and were the first methods to effectively use

contour integral-based spectral slicing. The FEAST algorithm, which is the primary

subject of this dissertation, can also be used with augmented subspaces [24,25].

2.4 Challenges with large eigenvalue problems

2.4.1 Solving for too many eigenpairs produces bad scaling

The algorithms for solving eigenvalue problems that are discussed in Section 2.3 all

attempt to solve an eigenvalue problem by first identifying the subspace that contains

the eigenvectors of interest, and then projecting the original eigenvalue problem in

to that subspace, thereby reducing its dimension. From there, the resulting reduced

eigenvalue problem can be solved by using an algorithm that diagonalizes dense ma-

trices, such as QR iterations.

The algorithmic complexity of actually solving for the eigenpairs of interest is thus

reduced from being the cube of the original dimension [30], O(n3), which is much too

computationally challenging, to being the cube of the dimension of the subspace of

interest, O(m3). A computational complexity of O(m3) is tractable for many common

applications, particularly those that require finding a small number of the largest-

magnitude eigenvalues; in this case the subspace dimension m is small enough that

the reduced eigenvalue problem can be solved rapidly. The most computationally

intensive task instead becomes the calculation of a basis for the subspace of interest,

which is where eigenvalue algorithms spend most of their effort.

The situation changes when we want to find a large number of eigenpairs. Applica-

tions like this occur often in electronic structure theory, which requires the calculation
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of a number of eigenvalues that is equal to the number of electrons that is being simu-

lated. Simulating a single carbon atom thus requires the calculation of 6 eigenvalues;

simulating a large collection of organic molecules that are in a solution of water

molecules, on the other hand, requires the calculation of many thousands of eigenval-

ues. The dimension of the eigenvector subspace must always be at least as large as

the number of eigenvalues that we seek to calculate, and so the “reduced” eigenvalue

problems for such calculations can quickly become a bottleneck for effectively scaling

to larger problem sizes.

A similar situation occurs in applications that require the calculation of eigenval-

ues that are in the interior of the spectrum. Because traditional Subspace Iteration or

Krylov methods can only calculate exterior eigenvalues, then the only way to identify

interior eigenvalues is to calculate a sufficiently large number of eigenpairs that both

the (undesired) exterior eigenvalues and the (desired) interior ones are captured in the

same subspace. The result is that a very large subspace is required for the calculation

of even a small number of interior eigenpairs, leading to the aforementioned problem

of having a reduced eigenvalue problem that is, itself, still too large.

Shift and Invert Iteration can help with this problem; it allows one to calculate

the eigenvalues that are located near some shift z in the complex plane. It introduces

challenges of its own, however. In order to achieve a good rate of convergence when

using Shift and Invert Iteration, it is best to locate the shift z as close as possible to the

eigenvalue of interest; locating the shift close to an eigenvalue increases the difficulty

of performing the inverse multiplications (zI −A)−1x by making the conditioning of

(zI − A) worse, though. Moreover, it is still challenging to calculate large numbers

of eigenpairs, as only the ones that are very close to the shift will converge quickly.

What is needed for calculating large numbers of eigenpairs, or for calculating

eigenpairs with eigenvalues in the interior of the spectrum, is a method for selectively

calculating only the eigenpairs whose eigenvalues are in a specific region in the com-
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plex plane. Eigenvalue algorithms that can do this are said to be performing “spectral

slicing”.

2.4.2 A solution: spectral slicing

“Spectral slicing” is a process whereby the complex plane is divided into multiple,

user-determined disjoint regions, and the eigenpairs belonging to each region are

calculated independently of the eigenpairs in the other regions. The ability to do

this has immediate benefits for calculating large numbers of eigenpairs: rather than

calculating (for example) 10,000 eigenpairs by using a subspace of dimension m =

10, 000, one can instead calculate 10,000 eigenpairs by dividing the complex plane

into 100 disjoint regions with 100 eigenvalues inside of each one, and then using a

subspace dimension of m = 100 for calculating the eigenpairs in each region. Because

of the O(m3) scaling of the Rayleigh-Ritz process, this can potentially result in a

much faster calculation, even if the eigenvalue problems the disjoint regions in the

complex plane are solved one after another in a sequence.

That implies yet another immediate benefit of spectral slicing: by treating these

disjoint regions in the complex plane independently of each other, large numbers of

eigenpairs can be calculated simultaneously in parallel, rather than sequentially. Thus

10, 000 eigenpairs can potentially be calculated in the same amount of time that is

required to calculate 100 eigenpairs, provided that we have 100 separate computers

to run the calculations on.

Spectral slicing is performed by replacing the original matrix A with a new matrix

f(A), where f(z) : C → C is analytic9 for scalar z. One then uses either Subspace

Iteration or Krylov methods to calculate the largest-magnitude eigenvalues of the

9The analyticity of the function matters because, if f(z) is analytic, then the matrix f(A) has
the same eigenvectors as A, and each of its eigenvectors xi has the corresponding eigenvalue f(λi),
where λi is the original eigenvalue of A. We can thus change the eigenvalues of f(A) to be almost
anything we want by judiciously choosing f(z).
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matrix f(A) instead. A different function fi(λ) is chosen for each disjoint region in

the complex plane Ri such that each fi(z) is large for values of z that are inside the

region Ri, and is small everywhere else. Because fi(z) takes its largest values in the

region Ri, the eigenvector subspace for the largest magnitude eigenvalues of f(A) is

the same as the eigenvector subspace for the eigenvalues of A that are in the regionRi.

Thus we can calculate the eigenvectors of A for only the eigenvalues in the region Ri

by instead calculating the eigenvectors for the largest magnitude eigenvalues of fi(A),

a task that can be accomplished by using any of the previously-mentioned eigenvalue

algorithms. The generic spectral slicing process is summarized in Algorithm 5.

Algorithm 5 Spectral Slicing

1. Choose f(λ) that is large for the eigenvalues of interest, and
small everywhere else in C.

2. Calculate a subspace basis V that spans the m dominant eigen-
vectors X1 of f(A).

3. Solve the reduced eigenvalue problem V HAV = λV HV xv for
the eigenvalues of interest.

One particularly common and straight-forward choice for f(z), and the one that

I will be focusing on in this dissertation, is the indicator function,

f(z) =

 1, z ∈ R

0, otherwise.
(2.89)

If the eigendecomposition of A is divided into two parts,

A = XR1Λ1X
H
L1 +XR2Λ2X

H
L2, (2.90)

such that the diagonal elements of Λ1 are the eigenvalues that are inside the region R

(with the corresponding right and left eigenvectors being the column vectors of XR1

and XL1), and the diagonal elements of Λ2 are all of the other eigenvalues of A, then
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f(A) = XR1f(Λ1)XH
L1 +XR2f(Λ2)XH

L2 = XR1IX
H
L1 +XR20XH

L2 = XR1X
H
L1. (2.91)

Choosing f(z) to be the indicator function over the region R results in f(A) being a

spectral projector for the eigenvectors of A whose eigenvalues are inside that region.

If Subspace Iteration is used with this choice of f(A), then convergence to the de-

sired eigenvector subspace occurs in a single iteration: multiplying (almost) any sub-

space basis by f(A) = XR1X
H
L1 projects it on to exactly the subspace for the desired

eigenvectors, and the Rayleigh-Ritz method produces exactly the desired eigenvalues

as a result. This sounds too good to be true and, of course, it is. The only way to

evaluate f(A) exactly when f(z) is the indicator function is to find the eigenvalue

decomposition of A and then form the outer product XR1X
H
L1 explicitly, which ob-

viously does not help us if our goal is to use f(A) to help calculate the eigenvalue

decomposition in the first place.

Instead, practical spectral slicing algorithms form some sort of computationally

tractable approximation for the indicator function of a matrix. The focus of this

dissertation concerns one particular choice of approximation, which is to use line

integrals in the complex plane around the region of interest.
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CHAPTER 3

THE FEAST ALGORITHM: SPECTRAL SLICING WITH
CONTOUR INTEGRATION AND SUBSPACE

ITERATIONS

Solving eigenvalue problems by using spectral slicing requires choosing a matrix

function f(A) with which to perform the slicing, and choosing an underlying eigen-

value algorithm use with the matrix f(A). In this dissertation I consider the al-

gorithms that are produced when we choose f(A) to be a Cauchy integral-based

representation of the indicator function, and the underlying eigenvalue algorithm to

be Subspace Iteration. These choices of matrix function and eigenvalue algorithm are

what broadly define the FEAST algorithm.

The standard FEAST algorithm [63, 93, 94] is the result of replacing the Cauchy

integral with a quadrature rule approximation, while still evaluating the integrand

exactly. In the following sections I discuss the behavior of, and the theory behind,

the standard FEAST algorithm.

3.1 Spectral Slicing with Cauchy Integrals

Section 2.4.2 discusses the process of spectral slicing, wherein, rather than using

Subspace Iteration for directly solving an eigenvalue problem with the matrix A, one

instead uses Subspace Iteration for solving an eigenvalue problem with the matrix

f(A). The function f(z) is chosen such that the dominant eigenvector subspace1 of

f(A) corresponds exactly to the eigenvector subspace of A for the eigenvalues that lie

1I.e. the subspace spanned by the eigenvectors with the largest-magnitude eigenvalues.
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inside of a particular, user-defined contour C in the complex plane that encloses the

region R of interest. This way one can solve for eigenvector subspaces corresponding

to eigenvalues in different regions of the complex plane independently of each other,

making it possible to parallelize the solution of eigenvalue problems and reduce the

severity of the O(m3) scaling of the Rayleigh-Ritz process, where m is the number of

eigenvalues that are in the region R.

A common choice for f(z) is the indicator function,

f(z) =

 1, z ∈ C

0, otherwise,
(3.1)

which is equal to one in the region that contains the m eigenvalues of interest, and

zero everywhere else. Evaluating the indicator function of a matrix, f(A), exactly

requires knowing the eigenvalue decomposition of that matrix. This is what we seek to

calculate in the first place, and so practical eigenvalue algorithms use approximations

for f(A) instead. This dissertation focuses on a particular class of algorithms that

approximate f(A) by using contour integration in the complex plane.

The indicator function in Equation 3.1 can be written exactly by using Cauchy’s

integral formula,

f(λ) =
1

2πi

∮
C
(z − λ)−1dz =

 1 λ ∈ C

0 otherwise
(3.2)

where the integration is performed over the closed contour C. To apply this function

to a matrix, the input λ is replaced by the matrix A and the integration variable z is

replaced by the diagonal matrix zI,

f(A) =
1

2πi

∮
C
(zI − A)−1dz. (3.3)
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Eigenvalue solving algorithms can thus be developed that use the matrix vector prod-

ucts

f(A)X =
1

2πi

∮
C
(zI − A)−1Xdz (3.4)

in place of AX. Although this dissertation focuses on using Subspace Iteration with

this matrix vector product, it is possible to use Cauchy integrals with other kinds of

eigenvalue algorithms as well [9, 39, 76,77].

Because the eigenvalue decomposition of A is assumed to be unknown, the inte-

gration in Equation (3.4) must be approximated somehow. There are two operations

that can be approximated in order to make the evaluation of (3.4) tractable: the inte-

gration itself, and the application of the matrix inverse in the integrand. Depending

on which of these operations is approximated, and how the approximation is per-

formed, one arrives at one of several different contour integration-based algorithms

for solving eigenvalue problems.

The rest of the sections in this chapter discuss the algorithm that is produced by

approximating only the integration operation.

3.2 The Standard FEAST Algorithm

The standard FEAST algorithm is a spectral slicing algorithm that performs ap-

proximate subspace iterations with f(A) by approximating the matrix vector product

f(A)X =
1

2πi

∮
C
(zI − A)−1Xdz (3.5)

with a quadrature rule

ρ(A)X =
nc∑
k=1

ωk(zkI − A)−1X ≈ f(A)X. (3.6)
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The constants ωk are the quadrature weights (which I take to include the 1
2πi

term),

and the constants zk are the quadrature points. In the case of generalized eigenvalue

problems Ax = λBx, we can replace the matrix A in equation (3.6) with B−1A to

get the matrix vector product

ρ(B−1A)X =
nc∑
k=1

ωk(zkI −B−1A)−1X (3.7)

=
nc∑
k=1

ωk(zkB − A)−1BX ≡ ρ(A,B)X. (3.8)

I will often use the notation ρ(A,B) in place of ρ(B−1A), to emphasize that no

linear systems of equations are solved with the matrix B. The standard FEAST

algorithm, then, is itself a variation of Subspace Iteration that uses the matrix

ρ(A,B) =
∑

k ωk(zkB − A)−1B.

In practice the matrix vector products ρ(A,B)X are calculated by directly solving

a collection of nc linear systems of equations

(zkB − A)Yk = BX (3.9)

for the unknowns Yk and adding their solutions together in a weighted sum

Q = ρ(A,B)X =
nc∑
k=1

ωkYk. (3.10)

This is the reason that we use equation (3.8) rather than equation (3.7); calculating

ρ(A,B)X with the matrices (zkB − A)−1B requires the solution of only a single

linear system of equations per quadrature shift zk, whereas using the matrices (zkI −

B−1A)−1 also requires the calculation of the matrix B−1A, which can be prohibitively

expensive. It is worth noting that using equation (3.8) changes the right hand sides of

the linear systems from being approximate eigenvectors, X, to being a matrix product
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of approximate eigenvectors, BX. This will have important implications in Chapter

4, where we will consider whether and how FEAST should be implemented if we are

only able to solve the linear systems in equation (3.9) inexactly.

The key assumption in the FEAST algorithm is that one is able to efficiently calcu-

late exact solutions to the linear systems of equations (3.9). The open source FEAST

software package [62], for example, does this by using the PARDISO [78] solver, which

solves sparse linear systems of equations by efficiently performing factorizations of the

coefficient matrix. In general, if the FEAST coefficient matrix (zkB −A) can not be

factorized efficiently by some means, then the linear systems of equations (3.9) can

not be solved exactly in an efficient manner, and so the associated eigenvalue problem

can not be solved by using the standard FEAST algorithm.

Algorithm 6 describes a basic version of the standard FEAST algorithm. Most of

the computation in the algorithm occurs in Step 1, where nc shifted linear systems

are solved. One of the benefits of the FEAST algorithm is that linear systems with

different values of zk are independent of each other, and so all of these linear systems

can be solved simultaneously in parallel. With enough available parallel computing

power, then, each FEAST subspace iteration can be performed in the amount of time

that is required to solve a singe linear system right hand side. As a result, because

the rate of convergence improves with increased nc (see Section 3.3), the FEAST

algorithm can be used to solve eigenvalue problems very rapidly, especially when a

lot of parallel computing power is available.

Algorithm 6 is a simplified version FEAST; it will work well for many problems,

but it omits several implementational details that can improve the speed and robust-

ness of the algorithm. Some of these details include:

• orthogonalizing the subspace Q in a rank-revealing way by using the QR de-

composition or SVD before performing the Rayleigh-Ritz procedure in Step 3
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Algorithm 6 The FEAST algorithm for solving AX = BXΛ
Inputs:

• Matrices A,B ∈ Cn×n

• Closed contour C that encloses the search region for eigenvalues in the complex plane

• Overestimate m0 for the number of eigenvalues inside C a

• Initial guess X̃(0) ∈ Cn×m0 for the search subspace spanned by the solution to the eigenvalue
problem

• Set of nc quadrature weights and points (ωk, zk) for numerically integrating equation (3.5) b

For each subspace iteration i:

1. Directly solve nc shifted linear systems, each with m0 right hand sides, for Y
(i)
k ∈ Cn×m0 .

1

ωk
(zkI −A)Y

(i)
k = X̃(i), 1 ≤ k ≤ nc

2. Form the filtered subspace Q

Q = ρ̂(A)X̃(i) =

nc∑
k=1

Y
(i)
k

3. Perform Rayleigh-Ritz procedure to find a new estimate for eigenvalues and eigenvectors:

i. Solve the generalized reduced eigenvalue problem for XQ ∈ Cm0×m0 and Λ̃ ∈ Cm0×m0

AQXQ = BQXQΛ̃

with AQ = QHAQ and BQ = QHQ

ii. Get new estimate for subspace X̃(i+1): X̃(i+1) = QXQ

4. Calculate the FEAST eigenvector residual ||RF || = max ||λ̃jBx̃(i+1)
j − Ax̃

(i+1)
j ||, 1 ≤ j ≤

m0, λ̃j inside C. If ||RF || is above a given tolerance, GOTO 1.

Outputs: diagonal matrix Λ̃ of approximations for the m eigenvalues inside C, and approximations

for the corresponding eigenvectors X̃

aOverestimation is important; if m0 is smaller than the actual number of eigenvalues m that are
enclosed by C then the algorithm will fail to converge.

bAny quadrature rule can be used, e.g. Gaussian quadrature, trapezoidal or Zolotarev rule [34].
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can help to prevent the occurrence of “spurious” eigenvalues, wherein FEAST

calculates eigenvalues that do not exist for the original matrix A;

• performing rank-revealing orthogonalizations of Q can also allow one to dy-

namically reduce the dimension of that subspace; the solution of the reduced

eigenvalue problem in Step 3(i) can produce an error in eigenvalue solving

packages (such as LAPACK [1]) when Q is rank-deficient;

• simultaneously calculating both the left and the right eigenvectors for a non-

Hermitian eigenvalue problem, and biorthogonalizing them in between itera-

tions, can substantially improve the robustness of the algorithm [93];

• when solving Hermitian eigenvalue problems it is possible to use the reflection

symmetry of the eigenvalue spectrum across the real axis of the complex plane

in order to reduce by half the number of linear systems that need to be solved

in Step 1, as is done in the original FEAST paper [63].

These details, as well as other features, are implemented in the FEAST software

package [62]. A description of the two-sided Inexact FEAST algorithm (which incor-

porates ideas from Chapter 4) is also provided in Appendix D (on page 189), which

shows how biorthogonalization can be used for solving nonsymmetric problems.

3.3 Convergence

The standard FEAST algorithm is a variation of standard Subspace Iteration,

using the matrix products ρ(A,B)X from Equation (3.8) in place of B−1A, and so it

converges linearly just as standard Subspace Iteration does. The FEAST equivalent

of Inequality (2.62) (on page 41) is

||q̃j − xj|| ≤
(
γm0+1

γj

)
||qj − xj||, (3.11)
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where ||qj − xj|| is an upper bound on the eigenvector error for eigenvector j at the

current FEAST iteration, ||q̃j − xj|| is an upper bound on the error for the same

eigenvector at the next FEAST iteration, and γk denotes the kth eigenvalue of the

operator ρ(B−1A) from equation (3.8). The rate of convergence for FEAST, which is

(
γm0+1

γj

)
, (3.12)

takes the same form as it does for standard subspace iterations, except now λk, the

eigenvalues of B−1A, are replaced by γk, the eigenvalues of ρ(B−1A). Note that the

relationship between γk and λk is just γk = ρ(λk), where the λk are ordered such that

γk > γk+1. FEAST thus acts as a filter for the original eigenvalues λk of the pencil

(A,B), mapping the values of λk that are inside of C to be the dominant eigenvalues

of the matrix ρ(A,B). The function ρ(z) is itself a rational filter function that selects

for the values of z that are inside of the contour C.

The rate of convergence of the FEAST algorithm is at its largest when the ratio

γm0+1/γj = ρ(λm0+1)/ρ(λj) is very large, meaning that the eigenvalues we don’t want

(including the eigenvalue λm0+1) are mapped by ρ(z) to approximately zero, and the

eigenvalues that we do want (i.e. the λj) are mapped by ρ(z) to approximately one.

The two FEAST parameters with the strongest impact on the rate of convergence

are the dimension of the FEAST subspace, m0, and the number of quadrature points

used in approximating the contour integration, nc.

Increasing m0 changes λm0+1 to be an eigenvalue of B−1A that is farther away from

the eigenvalues that we are interested in calculating. Because ρ(z) is an approximation

of the indicator function for the region of the complex plane enclosed by the contour C,

it becomes progressively smaller as z is moved farther away from the region enclosed

by C; as a result, if λj is inside C, then the ratio ρ(λm0+1)/ρ(λj) decreases as m0 is

increased. The following section, Section 3.4, offers a simple illustration of this.
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Increasing the number of quadrature points, nc, has the effect of improving the

accuracy of the approximation of the integral in equation (3.4). This brings ρ(z)

closer to being ρ(z) = 1 for values of z inside of C, and closer to being ρ(z) = 0 for

values of z outside of C. Improving the quadrature approximation of equation (3.4)

can have substantial benefits even with only modest increases in the value of nc; the

trapezoidal quadrature rule, for example, converges geometrically to the value of the

exact integral for a circular contour [100]. Other choices for the quadrature rule can

produce even better performance, depending on the spectrum of the matrix that is be-

ing diagonalized. Gauss quadrature, for example, can improve the performance of the

FEAST algorithm when the reflection symmetry across the real number line is being

used in calculating the eigenvalues of Hermitian matrices, and a Zolotarev quadra-

ture rule can allow for reliable convergence even when the spectrum of a Hermitian

eigenvalue problem might otherwise cause convergence to be extremely difficult [34].

Importantly for modern computing applications, both of these methods of im-

proving the convergence rate of the standard FEAST algorithm are embarrassingly

parallel. All of the m0 right hand sides of each of the linear systems of equations

(3.9) can be solved independently of each other, and all of the nc linear systems of

equations can be solved independently of each other as well. The convergence rate

of the FEAST algorithm can thus be systematically improved just by using more

parallel processing for solving a larger number of linear systems of equations.

3.4 A Simple Example

The convergence behavior of FEAST is most easily understood by examining the

action of the filter ρ(z) on complex scalars z, and especially on the eigenvalues of a

particular matrix pencil that one wants to diagonalize. I illustrate this with a simple

example by using FEAST to calculate some of the eigenvalues and eigenvectors of a

12× 12 Hermitian matrix A.
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Figure 3.1 illustrates the FEAST search contour for A, and Figure 3.2 shows two

examples of filter functions ρ(z) that are produced by discretizing and evaluating

the FEAST contour integral. The search contour selects the middle 4 eigenvalues of

A. The resulting filter functions are approximately equal to 1 inside of the contour,

particularly when they are evaluated at the desired 4 eigenvalues of A, and their

magnitudes quickly reduce outside of the search contour. Using larger numbers of

quadrature points nc causes the FEAST filter function to reduce more quickly outside

of the search contour, thereby increasing the rate of convergence to a solution.

Example FEAST Contour
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Figure 3.1. Illustration of the FEAST search contour for a 12 × 12 Hermitian
matrix. The eigenvalues are distributed uniformly on the real number line, and a
closed contour is used to select 4 of them in the center of the spectrum. Also depicted
are the locations of the quadrature points when nc = 8 and the trapezoidal rule is used
to discretize the contour integration.

The filter functions that are depicted in Figure 3.2 can be used to provide a

quantitative estimate of the FEAST rate of convergence from Equation (3.12), if

we plot them in a slightly different way. Figure 3.3 shows the filtered eigenvalues

from Figure 3.2 plotted in sorted order by magnitude. The value of the (m0 + 1)th

largest-magnitude filtered eigenvalue, divided by γ4 = ρ(λ4) ≈ 1, gives the rate of

convergence for that value of m0. Two such example values are indicated in the
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Example FEAST Rational Filters
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Figure 3.2. Plot of the value of the filter ρ(z) on the real number line for the
contour depicted in Figure 3.1. Plot shows the value of the filter function for nc = 8
and nc = 16; larger values of nc make the value of ρ(z) decrease more quickly outside
of search contour.

plot in Figure 3.3. Notably, Figure 3.3 indicates that when m0 < 4 the error in the

eigenvalue estimation is not reduced by performing FEAST iterations.

Figure 3.4 shows plots of the eigenvector residual versus the FEAST iteration

number when using FEAST calculate the eigenvalues and eigenvectors of A. The

FEAST rate of convergence is the slope of the lines in Figure 3.4; these slopes can

be predicted by taking the logarithms of the filtered values depicted in Figure 3.3.

For the standard FEAST algorithm (and indeed for all subspace iteration algorithms)

these values typically match very closely. Note, for example, that the logarithm of

the filter value for “m0 + 1 = 4” in Figure 3.3 is 0; the slope of the line in Figure

3.4 for m0 = 3 is also approximately 0. This illustrates the importance of over-

estimating the number of eigenvalues inside of the FEAST contour: if that number

is under-estimated instead, then FEAST will not converge to a solution.

70



FEAST Rational Filter and Convergence Rate
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Figure 3.3. The filtered eigenvalues from Figure 3.2, this time plotted in sorted
order, from largest magnitude to smallest magnitude. Boxes and text labels indicate
the (m0+1)th largest-magnitude filtered eigenvalues for m0 = 3 and m0 = 7. The value
of ρ(λm0+1)/ρ(λ4) at these eigenvalues determines the convergence rate (i.e. Equation
(3.12) ) of FEAST for subspace dimensions m0 = 3 and m0 = 7, respectively; lower
values indicate that the error in the eigenvector estimation is reduced more quickly.
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Figure 3.4. Plots showing the eigenvector residual versus FEAST iteration number
for several values of the parameters nc (i.e. number of quadrature points) and m0 (i.e.
FEAST subspace dimension). The plotted eigenvector residual is the largest residual
for all of the estimated eigenvectors whose eigenvalues are inside of the search contour.
The left plot uses two different values of nc with m0 = 7. The right plot uses two
different values of m0 with nc = 8.
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CHAPTER 4

THE IFEAST ALGORITHM: FEAST WITH
APPROXIMATE SOLVES

The standard FEAST algorithm, as described in Chapter 3, is a spectral slicing

algorithm that uses a Cauchy integral-based approximation for the indicator function

in conjunction with Subspace Iteration in order to calculate the eigenvectors whose

eigenvalues lie inside of a particular, user-defined contour C in the complex plane.

It has the benefit of being a naturally parallelizable algorithm, in the sense that

the speed with which it performs calculations can be systematically improved by

increasing the amount of computation that is done in parallel.

The FEAST algorithm works by performing Subspace Iteration with the matrix

ρ(A,B)X =
nc∑
k=1

ωk(zkB − A)−1BX, (4.1)

which is an approximation for the Cauchy integral

f(A,B)X =
1

2πi

∮
C
(zB − A)−1BXdz (4.2)

in which the integration operation is approximated by a quadrature rule. The matrix

vector products (zkB − A)−1BX are calculated directly by solving linear systems of

equations

(zkB − A)Yk = BX (4.3)

for Yk by using factorization-based methods.
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Because it relies on factorization-based methods for solving linear systems of equa-

tions, the standard FEAST algorithm can only be applied to eigenvalue problems

Ax = λBx whose matrices A and B can be factorized efficiently. As discussed in

Section 2.4, however, there are many eigenvalue problems where efficient matrix fac-

torization is not possible, either because the dimension of the matrices is too large

or because the matrices are not explicitly stored at all. In cases like these, the linear

systems of equations (4.3) can only be solved approximately, usually by using algo-

rithms that rely on matrix vector multiplication (prominent examples of which are

discussed in Section 2.2).

The Inexact FEAST algorithm (which I will often refer to as IFEAST) is a modi-

fication of the FEAST algorithm such that its linear systems of equations are solved

inexactly by using some sort of iterative algorithm. This allows the FEAST frame-

work to be applied to solving eigenvalue problems that are too large to be solved with

the standard FEAST algorithm.

The following sections describe the IFEAST algorithm in detail and explain the

theory behind its convergence behavior. Where the standard FEAST algorithm is

based on rational filter functions, IFEAST is based on polynomial filter functions.

We will find that the IFEAST algorithm retains some of the desirable qualities of the

standard FEAST algorithm, but its ability to be parallelized is limited by the accuracy

with which its linear systems of equations are solved, and that this is related to the

limitations of using polynomial filters for solving eigenvalue problems.

4.1 The Inexact FEAST Algorithm

Modifying the FEAST algorithm such that it converges successfully when itera-

tively solving the linear systems in Equation (4.3) can be trivially straight-forward if

done naively; if the linear systems are solved to high accuracy, e.g. such that their

relative residuals are on the order of 10−15, then of course one can reasonably expect
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that the solutions to the eigenvalue problem will converge as they do normally when

using the standard FEAST algorithm. The problem with this approach is that it

is usually very prohibitively expensive. Solving most linear systems of equations to

such a high precision by using an iterative algorithm will often require a number of

iterations that is on the order of the dimension of the eigenvalue problem, and the so-

lution of an eigenvalue problem with FEAST typically requires the solution of several

such linear systems of equations.

Instead, the IFEAST algorithm attempts to solve linear systems of equations no

more accurately than is strictly necessary to ensure convergence. This dissertation

will discuss two methods for doing this. One of these methods is a relatively simple

modification of the standard FEAST algorithm that allows for the efficient solution

of standard eigenvalue problems by using iterative linear system solving methods: at

each FEAST iteration, the linear systems of equations are solved such that their their

residuals are some user-determined fraction of the current eigenvector residual. This

approach has the benefit of being effective and relatively simple, both in terms of

its implementation and mathematical analysis. The price of this simplicity is that

this method can not be used efficiently with generalized eigenvalue problems, and it

precludes the efficient use of most preconditioners for solving the linear systems.

The other method is a somewhat more substantial modification of the FEAST

algorithm: the contour integral of standard FEAST is modified in such a way that

the solution of the linear systems of equations requires a roughly constant amount of

work at each FEAST iteration. This more substantial modification can be used to

solve both standard and generalized eigenvalue problems efficiently, and it allows for

the efficient use of any preconditioners in solving the linear systems of equations. It

will also be the key to using FEAST for the solution of nonlinear eigenvalue problems

(which will be the subject of Chapter 5).
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Much as the standard FEAST algorithm is a generalization of Shift and Invert

Iteration that uses multiple shifts, these modifications correspond to multishift gen-

eralizations of Inexact Shift and Invert Iterations, and Generalized Inexact Shift and

Invert Iterations (see Section 2.3.6 on page 45).

4.2 Basic IFEAST

The basic IFEAST algorithm is described in Algorithm 7. The only substantial

difference between the IFEAST algorithm as presented in Algorithm 7 and the stan-

dard FEAST algorithm as presented in Algorithm 6 (on page 65) is that the linear

systems of equations in IFEAST are deliberately solved inaccurately. Specifically,

they are solved such that the residual norm for each linear system right hand side is

below some fraction α of the maximum eigenvector residual, i.e.

||BX(i)ej −
1

ωk
(zkB − A)Y

(i)
k ej|| ≤ α max

1≤l≤m0

||λlBxl − Axl||, λl inside C (4.5)

Much as the standard FEAST algorithm is a generalization of Shift and Invert Itera-

tion that uses multiple shifts in the complex plane, IFEAST as described in Algorithm

7 is a generalization of Inexact Shift and Invert Iteration (see Section 2.3.6 on page

45) that uses multiple shifts in the complex plane.

The IFEAST algorithm still converges linearly to the eigenvectors of interest,

despite the fact that the linear systems of equations are solved only approximately.

Moreover, for standard eigenvalue problems (i.e. B = I), the number of iterations

that are needed for a Krylov subspace-based linear system algorithm to converge

to the residual tolerance required by IFEAST is roughly constant at each iteration,

despite the fact that this tolerance decreases at each iteration in proportion to the

eigenvector residual. The following subsection discusses these observations in more

detail, including their implications for the use of preconditioners and for the efficient

solution of generalized problems.
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Algorithm 7 The Basic IFEAST algorithm for solving AX = BXΛ

Inputs:

• Matricesa A,B ∈ Cn×n

• Closed contour C that encloses the search region for eigenvalues in the complex plane

• Overestimate m0 for the number of eigenvalues inside C

• Initial guess X̃(0) ∈ Cn×m0 for the search subspace spanned by the solution to the eigenvalue
problem

• Set of nc quadrature weights and points (ωk, zk) for numerically integrating equation (4.1)

• Initial value for FEAST eigenvector residual ||RF || b

• Relative tolerance α for linear system residuals, with 0 < α < 1

For each subspace iteration i:

1. Iteratively solve nc shifted linear systems, each with m0 right hand sides, for Y
(i)
k ∈ Cn×m0 .

1

ωk
(zkB −A)Y

(i)
k = BX̃(i), 1 ≤ k ≤ nc (4.4)

such that the iterations are stopped when the following tolerance on the linear system residuals
is met:

||BX̃(i)ej −
1

ωk
(zkB −A)Y

(i)
k ej || ≤ α||RF || ∀j, 1 ≤ j ≤ m0

where ej is the jth canonical unit vector (i.e. the above tolerance must be met for each of the
individual right hand sides).

2. Form the filtered subspace Q

Q = ρ(A,B)X̃(i) =

nc∑
k=1

Y
(i)
k

3. Perform Rayleigh-Ritz procedure to find a new estimate for eigenvalues and eigenvectors:

i. Solve reduced eigenvalue problem for XQ ∈ Cm0×m0

AQXQ = BQXQΛ̃

with AQ = QHAQ and BQ = QHBQ

ii. Get new estimate for subspace X̃(i+1): X̃(i+1) = QXQ

4. Calculate the FEAST eigenvector residual ||RF || = max ||λ̃jBx̃(i+1)
j − Ax̃

(i+1)
j ||, 1 ≤ j ≤

m0, λj inside C. If RF is above a given tolerance, GOTO 1.

Outputs: Diagonal matrix Λ̃ of approximations for the eigenvalues inside C and corresponding

approximate eigenvectors X̃.

aAlthough this algorithm can be used for eigenvalue problems where B 6= I, it will be very
inefficient; when B 6= I the solution of Equation (4.24) requires an increasing number of iterations
as the eigenvalue problem converges.

bThis can be calculated exactly, but I find a good initial value to simply be ||RF ||=1
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4.2.1 Convergence

The standard FEAST algorithm is a variation of Subspace Iteration, and so it can

be analyzed quantitatively in the same way. The inequality

||q̃j − xj|| ≤
(
γm0+1

γj

)
||qj − xj||, (4.6)

provides an upper bound on the error of approximation for the eigenvector xj in the

subspace spanned by Q after doing a single FEAST iteration. Because the upper

bound on the eigenvector error after doing a single FEAST iteration (i.e. ||q̃j − xj||)

is proportional to an upper bound on the eigenvector error before doing that FEAST

iteration (i.e. ||qj − xj||), FEAST is said to converge linearly. Section 3.3 (on page

66) discusses this inequality and its implications in more detail.

The Inexact FEAST algorithm is not a variation of Subspace Iteration; it is,

instead, an approximation of Subspace Iteration1. A corresponding inequality for

eigenvector errors with IFEAST is

||q̃j − xj|| ≤
(
γm0+1 + αj∆

γj

)
||qj − xj||. (4.7)

As in equation (4.6), ||qj − xj|| is the error in the estimation of eigenvector j at

the current IFEAST iteration, ||q̃j − xj|| is an upper bound on the eigenvector error

for eigenvector j at the next IFEAST iteration, and γk is the kth largest magnitude

eigenvalue of the operator ρ(A,B) in equation (4.1), where the linear systems of

FEAST are solved exactly.

Equation (4.7) contains two additional terms that account for the fact that the

FEAST linear systems are solved inexactly. One of these terms is α, which is a

1Because the linear systems of equations are solved approximately at each IFEAST iteration, it
is implicitly implementing Subspace Iteration such that the operator for performing matrix vector
products changes at each iteration.
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measure of how accurately the linear systems of FEAST are solved relative to the

current eigenvector error ||qj − xj||. If the FEAST linear system right hand sides

from equation (4.24) are solved such that

||BXej −
1

ωk
(zkB − A)Ỹ ej|| ≤ ε, 1 ≤ j ≤ m0 (4.8)

is the tolerance on the linear system residuals, then αj is defined as the ratio of

the magnitude of the maximum FEAST linear system residual ε to the value of the

eigenvector error for the jth eigenvector, i.e.

αj = ε/||qj − xj||. (4.9)

The other term, ∆, is defined as

∆ =
nc∑
k=1

||ωk(zkB − A)−1||. (4.10)

When B = I then ∆ is a measure of how close the FEAST quadrature points zk are

to the eigenvalues of A. In that case, the farther the zk are from the eigenvalues of A

in the complex plane, the smaller ∆ becomes. When B 6= I then the interpretation

of ∆ is less straight forward; in that case ∆ is bounded such that

∆ ≤ ||B||
nc∑
k=1

||ωk(zkI −B−1A)−1||, (4.11)

meaning that its value is related to both the distance of the eigenvalues of the matrix

pencil (A,B) from the shifts zk and to the spectrum of the matrix B.

The details of the derivation of equation (4.7) are given in Appendix A.
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Whether or not IFEAST converges to the eigenvectors of interest is determined

by the coefficient for the value of ||qj − xj|| on the right hand side of equation (4.7);

if this coefficient is less than one, i.e.

(
γm0+1 + αj∆

γj

)
< 1, (4.12)

then the eigenvector error at the next iteration is guaranteed to be smaller than the

eigenvector error at the current iteration.

The condition for IFEAST to converge is then

αj∆ < |γj| − |γm0+1|. (4.13)

If the linear systems of equations are solved sufficiently accurately then αj will be

very small, and inequality (4.13) will be satisfied. Exactly how accurately the lin-

ear systems of equations need to be solved in order to ensure convergence depends

on the discretization of the contour integral and on the spectrum of the matrices

whose eigenvalue problem is being solved. It is generally not possible to know the

most pertinent information about these things beforehand - the eigenvalue problem

is what we are trying to solve, after all - and so the decision about how accurately

to solve FEAST’s linear systems of equations requires problem-dependent heuristic

estimation.

Part of this heuristic estimation, for the version of IFEAST in Algorithm 7, is

to replace the eigenvector error ||qj − xj|| with the eigenvector residual ||λ̃Bx̃−Ax̃||

when determining the linear system residual tolerance. This heuristic, or something

like it, is necessary because the eigenvector error can not be known before the actual

eigenvector solution is calculated.

If the linear systems of equations (4.4) from Algorithm 7 are solved exactly, then

αj = 0 for all j and we recover the convergence rate of standard FEAST. If the linear
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systems of equations (4.24) are solved inexactly, then IFEAST will converge more

slowly2 than standard FEAST will for the same problem and set of parameters m0

and nc. The more inaccurately the linear systems are solved, the more slowly IFEAST

converges, and the degree to which the accuracy of the linear system solves affects the

rate of convergence depends on the spectrum of (A,B), through both the values of

γj and ∆. If the right hand sides of the linear systems of equations (4.24) are solved

to the same level of accuracy relative to the error in the estimation of the eigenvector

subspace at each iteration, then IFEAST converges linearly just as standard FEAST

does.

4.2.2 Computational Efficiency

Inequalities (4.8) and (4.9) tell us that, in order to have IFEAST converge linearly,

as standard FEAST does, the linear systems of IFEAST must be solved more accu-

rately than the current eigenvector error, and so the tolerance on the linear system

residuals decreases as the approximate eigenvectors converge to the actual eigenvector

solutions. This would seem to imply that the number of matrix-vector multiplications

must also increase as the IFEAST algorithm converges, which does not bode well for

performance.

In fact, much as with Inexact Shift and Invert iteration (of which IFEAST is

a generalization), this is not the case when B = I. In general, when using Krylov

subspace-based iterative solvers for solving the linear systems in IFEAST, the number

of matrix vector products that needs to be performed at each iteration of IFEAST

is approximately constant. This occurs with IFEAST for the same essential reason

that it occurs with Inexact Shift and Invert Iteration: the closer the right hand side

of a linear system is to being an invariant subspace of its coefficient matrix, the easier

2More slowly in terms of the reduction in the eigenvector error per FEAST iteration, anyway; the
total time to solution is proportional to the number of FEAST iterations multiplied by the number
of linear system iterations at each FEAST iteration.

80



that linear system of equations is to solve. The right hand sides of the IFEAST linear

systems (zkI −A)y = x converge to invariant subspaces of the matrices (zkI −A) at

the same time as the tolerance on the residual for their solution is decreased, with the

result that the difficulty of their solution remains roughly constant for each iteration

of IFEAST. Appendix C discusses this effect more quantitatively and rigorously, and

references [64] and [19] discuss this effect in more detail in the context of Inexact Shift

and Invert Iteration.

Because we can expect the number of linear system iterations to be constant at

each IFEAST iteration, we can also consider a different heuristic as an alternative

to trying to guess a value of α that satisfies the convergence condition in Equation

(4.13). Instead, we can guess the number of linear system iterations that will be

required for the convergence condition in Equation (4.13) to be satisfied, and simply

use that same number of linear system iterations at each IFEAST iteration. This is

the approach that I will use in all of the examples in this dissertation, in part because

of its simplicity, and in part because it will help to clearly illuminate the relationship

between IFEAST and polynomial filter functions (which we will discuss in Section

4.4 on page 85).

IFEAST is an efficient means of solving standard eigenvalue problems because its

linear systems of equations can be solved by using a roughly constant number of linear

system iterations at each IFEAST iteration. This effect disappears when the right

hand sides of the linear systems of equations do not converge to invariant subspaces

of the coefficient matrix, which is the case for generalized eigenvalue problems and

when using preconditioners to solve the linear systems of equations.

For generalized eigenvalue problems, the FEAST linear systems of equations are

(zkB − A)Yk = BX. (4.14)
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Even when X has converged to the exact eigenvectors of AX = BXΛ, BX is not an

invariant subspace of (zkB − A). For a left or right preconditioner P , the FEAST

linear systems of equations are

(zkI − A)P−1Y
(P )
k = X or P−1(zkI − A)Yk = P−1X, (4.15)

where Y
(P )
k = PYk. In either case the right hand sides are generally not invariant

subspaces of the coefficient matrix.

In both the case of generalized eigenvalue problems and the case of preconditioned

matrices, the number of required linear system iterations increases as the approximate

eigenvector solutions converge. This is especially ironic for the use of preconditioners,

which are supposed to make the solution of linear systems of equations easier rather

than more difficult. This problem can be solved with the use of “tuned” precondi-

tioners, which are a particular modification of standard preconditioners that preserves

the constant iteration-number properties of linear system solvers for Inexact Shift and

Invert Iteration [17, 20, 64]. Tuned preconditioners can also be used to help recover

efficiency for solving linear systems of equations with Inexact Shift and Invert Iter-

ation for the generalized eigenvalue problem [107]. I do not explore these options in

this dissertation, however, and instead use a different approach that is both highly

effective and which can be extended to a larger number of problem domains.

The following section describes this other approach, which is a version of IFEAST

that uses a different form of the contour integral. This alternative contour integral

allows the linear systems of equations to be solved with a constant number of iterations

even for preconditioned matrices and generalized eigenvalue problems.

4.3 IFEAST for Generalized Eigenvalue Problems

IFEAST for the generalized eigenvalue problem uses the contour integral
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Q =
1

2πi

∮
C

(
X̃ − (zB − A)−1(BX̃Λ̃− AX̃)

)
(zI − Λ̃)−1dz (4.16)

=
1

2πi

∮
C

(
X̃ − Y (z)

)
(zI − Λ̃)−1dz

where X̃ is a matrix of Ritz vectors and Λ̃ is a diagonal matrix of the corresponding

Ritz values, rather than the standard FEAST contour integral

Q =
1

2πi

∮
C
(zB − A)−1BX̃dz. (4.17)

The benefit of using the contour integral in Equation (4.16) is that its evaluation

requires the solution of linear systems of equations of the form

(zB − A)Y (z) = RE, (4.18)

where RE = BX̃Λ̃− AX̃ is a block matrix of eigenvector residuals.

When the linear systems of equations (4.18) are solved exactly, for example by

using factorization-based numerical methods, then the integrals in Equations (4.16)

and (4.17) are exactly equal to each other. The details of the derivation of Equation

(4.16) from Equation (4.17) are described in Appendix B, and another (simpler, but

less rigorous) derivation is provided in Chapter 5 in the context of nonlinear eigenvalue

problems.

If the linear systems of equations (4.18) are solved inexactly with tolerance ε on

their relative residuals, then

ε < α|z − λ̃i| (4.19)

is the condition on the value of ε that guarantees that

||Bx̃i − (zB − A)ỹi(z)|| < α||λ̃iBx̃i − Ax̃i||, (4.20)
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where x̃i and λ̃i are the ith Ritz vector and value, and ỹi(z) is the ith approximate

linear system solution. In other words, once the eigenvalue solutions have converged

enough that the difference z− λ̃i does not change much in between iterations3, solving

the linear systems of equations in Equation (4.18) to a constant tolerance is sufficient

to ensure that the original IFEAST heuristic is satisfied and that the norms of the

residuals for the original FEAST linear systems of equations are below some fraction

α of the eigenvector residual norm. This is true regardless of whether or not a

preconditioner is used, and regardless of whether the eigenvalue problem is standard

or generalized.

The reason that this works is because it takes advantage of the spectral information

that is contained in the approximate eigenvectors and eigenvalues that have been

calculated by IFEAST. Equation (4.18) is the correction equation that results from

applying a specific variation of iterative refinement (i.e. using a particular kind of

linear system restart) to solving the standard FEAST linear system

(zB − A)Y (z) = BX̃ (4.21)

with the initial guess

Ỹ (z) = X̃(zI − Λ̃)−1, (4.22)

which is the exact solution in the case that X̃ and Λ̃ are the exact eigenvectors and

eigenvalues. When they are not the exact eigenpairs, the linear system residual for

the initial guess Ỹ (z) is proportional to the eigenvector residual for the approximate

eigenpairs X̃ and Λ̃, and one can essentially reuse the work that was done for solving

previous linear systems of equations by solving the correction equation in Equation

3The approximate eigenvalues λ̃i do not have to be highly accurate for this to happen; being
accurate even to a single significant digit is often enough to ensure that the z − λ̃i is essentially
constant.
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(4.18). A detailed explanation and derivation of Equation (4.19) is provided in the

Appendix in Section B.3 on page 183.

The generalized IFEAST algorithm is the result of implementing the FEAST al-

gorithm with the integral in Equation (4.16) and solving the associated linear systems

of equations to a constant tolerance α on the norms of the linear system residuals.

Similarly to the previous variation of IFEAST, Generalized IFEAST is a generaliza-

tion of Generalized Inexact Shift and Invert iteration that uses multiple shifts in the

complex plane. Generalized IFEAST is described in Algorithm 8. This (with or with-

out solving the linear systems of equations inexactly) is the recommended variation

of the FEAST algorithm, and it will form the basis of the future 4.0 release of the

FEAST software package.

4.4 IFEAST as a Polynomial Filter Algorithm

The standard FEAST algorithm can be interpreted as a method for implementing

a rational function filter in order to selectively calculate the eigenvectors of a matrix

pencil whose eigenvalues lie in a particular, user-defined region of the complex plane.

All of the behavior of the FEAST algorithm can be explained in terms of the action

of this rational function filter on the coordinates of an approximate eigenvector.

For standardized eigenvalue problems the IFEAST algorithm has a similar in-

terpretation. Whereas the FEAST algorithm implements a rational function filter,

IFEAST implements a polynomial function filter. This is necessarily true; IFEAST

uses only matrix-vector multiplication in order to refine an approximate eigenvector

subspace, and so the approximate eigenvector subspace at one iteration is necessarily

the result of applying some matrix polynomial to the eigenvector subspace from the

previous iteration. The particular polynomial function that IFEAST applies to an

approximate subspace depends on the linear system solving algorithm that is used

and on the approximate subspace itself.
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Algorithm 8 The General IFEAST algorithm for solving AX = BXΛ

Inputs:

• Matrices A,B ∈ Cn×n

• Closed contour C that encloses the search region for eigenvalues in the complex plane

• Overestimate m0 for the number of eigenvalues inside C

• Initial guess X̃(0) ∈ Cn×m0 for the search subspace spanned by the solution to the eigenvalue
problem

• Set of nc quadrature weights and points (ωk, zk) for numerically integrating equation (4.1)

• Tolerance α for linear system relative residuals, with 0 < α < 1

For each subspace iteration i:

0. Set Q = X̃(0)

1. Perform Rayleigh-Ritz procedure to find a new estimate for eigenvalues and eigenvectors:

i. Solve reduced eigenvalue problem for XQ ∈ Cm0×m0

AQXQ = BQXQΛ̃

with AQ = QHAQ and BQ = QHBQ

ii. Get new estimate for subspace X̃(i): X̃(i) = QXQ

2. Calculate the FEAST eigenvector residuals RE = BX̃(i)Λ̃−AX̃(i). If

max
1≤j≤m0

||Ax̃(i)j − λ̃jBx̃
(i)
j ||, λ̃j inside C (4.23)

is below a given tolerance, EXIT.

3. Iteratively solve nc shifted linear systems, each with m0 right hand sides, for Y
(i)
k ∈ Cn×m0 .

1

ωk
(zkB −A)Y

(i)
k = RE , 1 ≤ k ≤ nc (4.24)

such that the iterations are stopped when the following tolerance on the linear system residuals
is met:

||REej −
1

ωk
(zkB −A)Y

(i)
k ej || ≤ α ∀j, 1 ≤ j ≤ m0

where ej is the jth canonical unit vector (i.e. the above tolerance must be met for each of the
individual right hand sides).

4. Form the filtered subspace Q

Q =

nc∑
k=1

ωk

(
X̃(i) − Y (i)

k

)
(zkI − Λ̃)−1

5. GOTO Step 1.

Outputs: diagonal matrix Λ̃ of approximations for the m eigenvalues inside C, and approximations

for the corresponding eigenvectors X̃.
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Consider a single approximate eigenvector x̃, which we filter using the usual

FEAST integral

q =
1

2πi

∮
(zI − A)−1x̃ dz (4.25)

If the integrand (zI −A)−1x̃ is calculated approximately by using k iterations of any

linear system solver (with no restarts), then the right hand side of Equation (4.25)

becomes

1

2πi

∮
p(zI − A)x̃ dz, (4.26)

where p(zI − A) is the degree k matrix polynomial

p(zI − A) =
k∑
i=0

ai(zI − A)i. (4.27)

The total polynomial filter that IFEAST applies to x̃ is thus

ρp(A) =
1

2πi

∮
p(zI − A) dz. (4.28)

The following subsections describe the properties of p(zI−A), and how these explain

the behavior of the total filter ρp(A).

4.4.1 IFEAST Polynomial Filters from GMRES

In the case of GMRES it is relatively straight-forward to explicitly describe the

properties of the matrix polynomial p(zI − A), and therefore to draw conclusions

about ρp(A). GMRES calculates the matrix-vector product p(zI−A)x̃ by (implicitly)

finding the polynomial that solves the minimization problem

min
p
||x̃− (zI − A)p(zI − A)x̃||2, (4.29)
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where ||x̃− (zI −A)p(zI −A)x̃||2 is the squared residual norm of the original linear

system of equations. This squared residual norm can also be written as

||(zI − A)
(
(zI − A)−1x̃− p(zI − A)x̃

)
||2. (4.30)

Thus, using k iterations of GMRES with x̃ as the right hand side is similar to (but

not exactly the same as)4 finding the degree k matrix polynomial p(zI−A) that best

approximates the action of the matrix inverse (zI−A)−1 on the vector x̃. If we write

the approximate eigenvector x̃ (which may, in fact, be totally random) in the basis of

components of the exact eigenvectors xi (which I hereafter call an “eigenbasis”), i.e.

x̃ =
n∑
j=1

cjxj, (4.31)

then Equation (4.29) becomes

min
p

∥∥∥∥∥
n∑
j=i

cj(z − λj)
(
(z − λj)−1 − p(z − λj)

)
xj

∥∥∥∥∥
2

. (4.32)

Writing out the norm in Equation (4.32) explicitly, we get

min
p

n∑
i,j=1

(
(z − λi)−1 − p(z − λi)

)∗
c∗i cj(z − λi)∗(z − λj)xHi xj

(
(z − λj)−1 − p(z − λj)

)
(4.33)

Solving Equation (4.33) with respect to the polynomial p, as GMRES does, is a

generalized least squares problem. Using Equation (4.27) for the definition of p 5, we

4This is not exactly the same as finding the best polynomial p(zI−A) to approximate the action
of the matrix inverse (zI − A)−1 because the norm is weighted by the matrix product with zI − A
on the left of Equation (4.30).

5The polynomial p can be written in any polynomial basis set, e.g. Legendre or Chebyshev
polynomials; I use Equation (4.27) for the sake of simplicity.

88



can see this by defining the following matrices and vectors by their elements:

bi = (z − λi)−1, 1 ≤ i ≤ n (4.34)

Mil = (z − λi)l, 1 ≤ i ≤ n, 0 ≤ l ≤ k (4.35)

Wij = c∗i cj(z − λi)∗(z − λj)xHi xj, 1 ≤ i ≤ n, 1 ≤ j ≤ n (4.36)

Equation (4.33) can then be written in terms of a quadratic form as

min
a

(b−Ma)HW (b−Ma), (4.37)

where a is the vector of coefficients ai that defines the polynomial p, as in Equation

(4.27). Equation (4.37) is a generalized least squares problem6, the solution to which

is

a = argmin
a

(b−Ma)HW (b−Ma) = (MHWM)−1MHWb (4.38)

The following subsection discusses the properties of p(zI−A) and ρp(A) in terms of the

solutions to the minimization problem in Equation (4.37) for eigenvalue problems with

normal matrices, which makes the analysis especially clear. Although this analysis

applies most directly to GMRES, which finds the actual solution of Equation (4.37),

we find that our conclusions also apply qualitatively to other Krylov-based linear

system solvers as well, since they still calculate approximate solutions to it. Figure

4.6 (on page 110) shows examples of an IFEAST polynomial filter that has been

calculated by using several different linear system solving algorithms.

6Generalized least squares is best-known in the context of linear regression, where it is used to fit
linear statistical models in which the noise components are correlated rather than independent [42].
When W is diagonal then it is also known as “weighted least squares”.
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4.4.2 Normal Matrices

If the matrix A is normal, then Equation (4.33) becomes

n∑
i=1

|ci|2|z − λi|2
∣∣(z − λi)−1 − p(z − λi)

∣∣2 , (4.39)

and W (from Equation (4.37)) is a diagonal matrix with diagonal entries |ci|2|z −

λi|2. If W = I then GMRES calculates the k-degree polynomial that best fits (in a

conventional least squares sense) the function (z − λ)−1 when it is sampled only at

the eigenvalues λi of A.

The fact that the polynomial p(z − λ) is only fitted at values of λ that are eigen-

values of A is a key feature of the IFEAST polynomial filters. It ensures that com-

putation is spent only on fitting the IFEAST polynomial filter in the places where

it will actually be evaluated. When the polynomial degree is k = n − 1, where n

is the dimension of the eigenvalue problem, then the polynomial fit is perfect and

IFEAST polynomial filter is exactly equal to the standard FEAST rational filter at

the eigenvalues of A. For lower-degree polynomials the fit of the IFEAST filter is less

accurate. This is illustrated in Figure 4.1 (on page 102).

The case W = I will never occur in practice; it only happens when the A eigenbasis

components of the approximate eigenvector x̃ are such that

|ci| =
1

|z − λi|
, (4.40)

and that can only be true for one of the nc different quadrature points z. A more

realistic scenario is that ci is some constant value c for all values of i; we would

expect this to be approximately true when x̃ is a randomly-chosen initial guess for

the IFEAST algorithm, in which case all of the components of x̃ in the eigenbasis of

A are roughly equally likely to be given weight. In this case the values of the diagonal

elements of W are determined solely by the squared distances of the shift z from the
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locations of the eigenvalues λi in the complex plane. W here serves as a weighting

matrix for the least squares problem: we are again calculating a k-degree polynomial

to fit the function (z−λ)−1 when it is sampled at the eigenvalues of A, but this time

the larger-magnitude values of z − λi are given greater weight in the minimization

problem.

This at first may seem to run contrary to our goal, which is to calculate the

eigenvalues that are inside the contour on which z lies; instead, GMRES explicitly

tries to make a good fit to (z−λi)−1 for values of λi that are far away from the contour.

This is actually a desirable feature when considering the final IFEAST polynomial

filter, however. If one were to build a polynomial filter explicitly by, for example,

fitting a k-degree polynomial to the indicator function for the region of interest in the

complex plane (rather than building a filter implicitly by using contour integration

and linear system solves as we do here), then it would be necessary to have estimates

for the boundaries of the spectrum of A in order to ensure that the polynomial filter

takes smaller values on all of the unwanted eigenvalues in the spectrum [50, 79, 110],

especially the extremal ones. Implicitly calculating a polynomial by solving linear

systems of equations with GMRES, on the other hand, automatically ensures that the

need to fit the polynomial for the eigenvalues of A that are far away from the contour

C is taken into account without first having to estimate the extremal eigenvalues.

The components ci are usually not uniform. As the approximate eigenvector x̃

converges to some exact eigenvector xj, the coefficients ci of x̃ in the A eigenbasis

converge towards a delta function ci = δij. If x̃ has converged enough that it has

a low eigenvector residual, but is still relatively far from being an exact eigenvector

(e.g. if the eigenvector residual is 10−4), then the eigenbasis coefficients ci will be

relatively small for most values of i, and will be large when ci = cj.

The least squares problem is weighted to be more accurate for eigenvalues λi

that correspond to larger-magnitude values of ci; as the approximate eigenvector x̃
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converges, then, the function (z−λ)−1 is fitted more accurately for the eigenvalue λj

of the eigenvector xj that x̃ is converging to, and less accurately for all of the other

eigenvalues. This suggests another perspective on why the number of linear system

iterations that is required at each IFEAST iteration is roughly constant, even for Basic

IFEAST: the polynomial filter that IFEAST implicitly uses becomes more accurate

for the eigenvalues of interest (and less accurate for all other eigenvalues) as the

eigenvector solution converges, even though the degree of the polynomial filter stays

the same. This comes entirely from the fact that the polynomial filter is the result of

solving a weighted least squares problem in which the weights are determined, in part,

by the accuracy of the eigenvector solution. Figure 4.3 (on page 105) illustrates the

difference between a polynomial filter that is fitted for an approximate eigenvector

that is near convergence, and a polynomial filter that is fitted for an approximate

eigenvector that is not.

The polynomial filter that is ultimately applied by IFEAST to the approximate

eigenvector x̃ is the quadrature sum of the individual polynomial filters that are

calculated by solving linear systems of equations with GMRES, i.e.

ρp(A) =
nc∑
i=1

ωip(ziI − A) (4.41)

=
nc∑
i=1

k∑
j=0

ωiaj(zi, x̃)(ziI − A)j, (4.42)

where I have noted explicitly that the polynomial coefficients aj are functions of both

the quadrature point zi and the approximate eigenvector x̃. The fact that aj is a

function of zi is especially worth noting because one would normally expect a contour

integration of a polynomial (i.e. Equation (4.26)) to be zero, because polynomials

have no poles in the complex plane. In fact, these particular polynomials do have

poles in the complex plane, because the coefficients aj(z, x) have poles for certain

values of z.
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The polynomial filter function ρp(A) acts directly on the eigenvalues of A in such

a way that the matrix vector product ρp(A)x̃ brings x̃ closer to the subspace spanned

by the eigenvectors of interest. The convergence behavior of the IFEAST algorithm

can be analyzed by examining the action of of the polynomial ρp(λ) on scalar numbers

λ; Section 4.4.6 provides several illustrations of this.

4.4.3 Implications for IFEAST Convergence

The convergence rate of standard FEAST for eigenvector j is given by

ρ(λm0+1)

ρ(λj)
, (4.43)

where the eigenvalues λi are numbered such that ρ(λi) < ρ(λi+1). Section 4.2.1 de-

scribes an upper bound for IFEAST that contains a similar coefficient which accounts

for the errors in the solutions of the linear systems of equations.

We can also analyze the convergence of the IFEAST algorithm by considering it in

terms of the application of the polynomial filter in Equation (4.42). The convergence

rate of IFEAST might then be

ρp(λm0+1)

ρp(λj)
, (4.44)

where ρp is the polynomial filter from Equation (4.42), and the eigenvalues λi are

numbered such that ρp(λi) < ρp(λi+1).

The convergence rate in Equation (4.44) can generally only offer a qualitative

description of the convergence behavior of IFEAST. The reason for this is that the

filter function ρp depends on the vector to which it is being applied. The IFEAST

algorithm applies filters to a set of m0 basis vectors at every iteration, and the filter

that it applies is different for each of those m0 basis vectors. The examination of any

one of those filters by itself is not guaranteed to provide a precise estimate for the

convergence rate of IFEAST, and we will see an example in Section 4.6.1 where our
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expectations from examining a single filter function are not always matched by the

actual behavior of IFEAST.

The fact that value of ρp depends on the vector to which it is being applied also

means that the filter changes at every iteration, as the approximate eigenvectors

of IFEAST converge to exact eigenvectors. As an approximate eigenvector nears

convergence, the convergence rate in Equation (4.44) no longer describes the behavior

of IFEAST at all. It is based on the standard convergence analysis of Subspace

Iteration, which explicitly does not account for the the specific coordinates of the

vector to which those iterations are being applied. The filter that is used implicitly

by IFEAST depends intimately on the coordinates of the vector to which it is applied;

for a vector that accurately approximates an eigenvector, the filter value is fitted very

accurately for the eigenvalues of interest, and very poorly everywhere else. Equation

(4.44) incorrectly predicts a failure to converge in this case.

Even so, the convergence rate that is predicted by Equation (4.44) for a random

or uniformly-distributed initial guess vector does usually explain the convergence

behavior of IFEAST, even if it is only a qualitative explanation. This appears to

be most true when a large enough number of linear system iterations are used that

IFEAST enters and maintains linear convergence.

The most important parameters when analyzing the convergence behavior of stan-

dard FEAST are the number of contour integration points nc and the subspace di-

mension m0. Increasing either of these numbers causes standard FEAST to converge

more quickly by iteration, and this can be accomplished easily by using additional

parallel computation. The same is true of IFEAST, but to a more limited extent.

Increasing m0 always improves the rate of convergence, but the degree to which con-

vergence is improved depends on the quality of the polynomial filter. The quality of

the polynomial filter can vary considerably depending on the spectrum of the matrix

and on the location of the integration contour in that spectrum.
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Increasing nc does not always increase the convergence rate of IFEAST. From the

perspective of polynomial filters, increasing the value of nc improves the quality of

the underlying rational filter to which the polynomial filter is being fitted. If the filter

ρp is already close to being the best approximation of the desired indicator function

that one can fit by using a degree k polynomial, then improving the underlying

approximation of the indicator function to which it is being fitted will not improve the

quality of the polynomial filter unless the degree k is also increased. In practice, what

this means is that the convergence rate of IFEAST will typically improve less with

each increase in nc, until it eventually stops improving at all. The only way to further

increase the convergence rate of IFEAST is to use a larger-degree polynomial, which

means using more matrix-vector products when solving linear systems of equations,

thereby solving them more accurately.

It is worth noting that, although the convergence rate of the IFEAST algorithm

can be improved to only a limited degree by increasing parallel processing power,

this is not necessarily a measure of the actual speed with which IFEAST can solve

an eigenvalue problem. We could imagine, for example, that the linear systems of

IFEAST might be solved to a very high precision, in which case all of the parallelism of

standard FEAST is recovered; IFEAST might none the less take a very large amount

of wall-clock time to converge, however, because the number of linear system iterations

that would be required for solving the IFEAST linear systems to high precision could

be extremely high. We could instead imagine that the linear systems of IFEAST

might be solved to a very low precision. In this case the parallelism of IFEAST

becomes more limited, but it may still solve an eigenvalue problem very quickly by

virtue of the fact that the approximate linear system solves can be performed with

only a few linear system iterations. Whether or not IFEAST can be used to solve

a particular eigenvalue problem quickly depends fundamentally on how easily the
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desired eigenvalues can be filtered by polynomials, which is a limitation that can be

mitigated to only a limited degree by using parallel computing of any kind.

4.4.4 Generalized IFEAST

The contour integral for the Generalized IFEAST algorithm differs from that of

the Basic IFEAST algorithm, and its interpretation in terms of polynomial eigenvalue

filters is somewhat less straight-forward as a result. For Generalized IFEAST the

contour integral is

q =
1

2πi

∮
1

z − λ̃

(
I − (zB − A)−1(λ̃B − A)

)
x̃ dz, (4.45)

where λ̃ is the Ritz value for the approximate eigenvector x̃. As with Basic IFEAST,

the matrix inverse product (zB − A)−1(λ̃B − A)x̃ in the integrand is approximated

using an iterative solver like GMRES, and Equation (4.45) becomes

q =
1

2πi

∮
1

z − λ̃

(
I − p(zB − A)(λ̃B − A)

)
x̃ dz, (4.46)

with p(zB − A) again being a matrix polynomial. Now the polynomial p is the one

that solves

min
p
||(λ̃B − A)x̃− (zB − A)p(zB − A)(λ̃B − A)x̃||2, (4.47)

and the matrix function ρp(A,B) that Generalized IFEAST applies to x̃ is

ρp(A,B) =
nc∑
i=1

ωi

x− λ̃

(
I − p(ziB − A)(λ̃B − A)

)
. (4.48)

For the standard eigenvalue problem (i.e. B = I), this matrix function becomes

ρp(A, I) =
nc∑
i=1

ωi

x− λ̃

(
I − p(ziI − A)(λ̃I − A)

)
. (4.49)
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The matrix function ρp in Equation (4.49) is a polynomial filter that acts directly on

the eigenvalues of the matrix A. This filter is qualitatively the same as the one that

is generated by Basic IFEAST, but the two filters are not exactly equal to each other.

Because both filters are produced by solving linear systems of equations using the

same kind of minimization problem, they have the same properties with regards to

the convergence behavior of IFEAST. Figure 4.6 (on page 110) provides several plots

that illustrate the relationship between the polynomial filters for Basic IFEAST and

Generalized IFEAST.

In the case of generalized eigenvalue problems (i.e. B 6= I) we can no longer

interpret ρp in Equation 4.48 as a polynomial filter that acts directly on the eigenvalues

of the matrix pencil (A,B). The eigenvalue filter interpretation is viable for B = I

because

p(zI − A) = p(X(zI − Λ)X−1) (4.50)

= Xp(zI − Λ)X−1, (4.51)

where X is the block matrix of the eigenvectors of A, Λ is the diagonal matrix of the

corresponding eigenvalues, and p is any polynomial. When B 6= I then

p(zB − A) = p(BX(zI − Λ)X−1) (4.52)

6= BXp(zI − Λ)X−1, (4.53)

where X and Λ are now the eigenvectors and eigenvalues of the matrix pencil (A,B).

I have not yet found an intuitive interpretation of the Generalized IFEAST algo-

rithm for generalized problems in terms of polynomial filters. Instead, the generalized

eigenvalue problem case appears to have more in common with the nonlinear eigen-

value problem case (see Chapter 5), and they likely have closely-related explanations

for their convergence behavior.
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4.4.5 Discussions on Polynomial Filters and Jacobi-Davidson

The idea of using polynomial filters to solve eigenvalue problems is already well-

established [50, 79, 110]. The typical method for generating a polynomial eigenvalue

filter is to choose a filter function that selects the desired eigenvalues, and then cal-

culate a k degree polynomial function that approximates this filter function over the

entire convex hull of the eigenvalues of the matrix A.

The IFEAST framework for applying polynomial filters offers some potential ben-

efits over the usual approach. IFEAST does not need to estimate the convex hull of

a matrix’s spectrum in order to calculate a polynomial filter; it naturally considers

the limits of the spectrum by solving the generalized least squares problem. More

importantly, IFEAST does not need to fit the filter polynomial over the entire convex

hull of the spectrum: it fits the polynomial only at the eigenvalues of the matrix.

IFEAST can therefore potentially fit a more accurate filter polynomial, because it

does not need to minimize the error in the fit for locations in the complex plane

where the filter function will never be evaluated. This especially means that solving

nonsymmetric problems, or any eigenvalue problem with complex eigenvalues, will be

more tractable with IFEAST because the dimensionality of the set over which it fits

the filter polynomial is always the same7: zero. The traditional method of fitting a

polynomial filter, on the other hand, has to fit the polynomial over a 1D region on

the real number line for Hermitian matrices, or a 2D region in the complex plane

for nonsymmetric problems. Accurately fitting 2D polynomials, in particular, can

require polynomials of much greater degree than accurately fitting polynomials over

a 1D region.

7Even when the eigenvalues are scattered throughout the complex plane, rather than arrayed on
the real number line, they still constitute a zero-dimensional set; fitting a polynomial to n points in
the complex plane is no more difficult than fitting a polynomial to n points on the real number line.
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The polynomial filter perspective also offers a means of relating IFEAST and

inexact Simplified Jacobi-Davidson (see Section 2.3.7 on page 51).

With IFEAST the convergence is linear, and the rate of convergence can be in-

creased by improving the contour integration accuracy up until the point that the

refinement of the polynomial filter is limited by its (user-determined) maximum de-

gree.

Inexact Simplified Jacobi-Davidson, which is Simplified Jacobi-Davidson with in-

exact linear system solves, necessarily uses polynomial filters as well. Moreover,

much like IFEAST, it implicitly generates a polynomial filter by fitting a polynomial

to a rational filter function. The difference between Simplified Jacobi-Davidson and

IFEAST is that Simplified Jacobi-Davidson uses only a single shift, whereas IFEAST

uses many, and Simplified Jacobi-Davidson moves the shift to be equal to the new Ritz

value at each iteration, whereas the IFEAST shifts are constant. We would thus ex-

pect that inexact Simplified Jacobi-Davidson would initially converge super-linearly,

until the quality of its filter becomes limited by the user-determined maximum degree

of the filter polynomial, after which it would be linear. The behavior of inexact Sim-

plified Jacobi-Davidson is then similar to what we would expect to get by increasing

the contour integration accuracy of the IFEAST algorithm at each iteration until the

rate of convergence no longer improves.

4.4.6 Illustrations

This subsection provides several illustrations of the polynomial filter properties

that were discussed in prior subsections by explicitly generating and plotting the poly-

nomial filters for simple example matrices and for simple approximate eigenvectors.

For the example matrices I use Hermitian matrices with uniformly-distributed eigen-

values on the real number line; one of these is dimension 12, the other is dimension

1000. For the approximate eigenvectors I use particular, simple linear combinations
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of exact eigenvectors. One approximate eigenvector example consists of a sum over

all of the exact eigenvectors, i.e.

x̃ =
n∑
i=1

xi. (4.54)

I will refer to this as the “uniformly distributed” approximate eigenvector, because

its coefficients in the exact eigenbasis are completely uniformly distributed. It serves

as a simple approximation of a random initial guess for an eigenvector8. The other

approximate eigenvector example is

x̃ =
n∑
i=1

e
(λi−λ̃)

2

4σ2 xi, (4.55)

where λ̃ is a value in the middle of the search contour and σ = 10−2. I will refer to this

as the “near convergence ” or the “normally distributed” approximate eigenvector,

because the square of its coefficients in the exact eigenbasis approximates a normal

distribution. This approximate eigenvector simulates an approximate eigenvector that

is closer to convergence, with Ritz value λ̃.

4.4.6.1 The Polynomial Filter

Figure 4.1 shows two example polynomial filters that are generated by using a

contour integral with GMRES for a 12×12 Hermitian matrix; this is the same matrix

and contour integral that was used in the examples in Section 3.4 (on page 68). A

degree n−1 (n = 12 in this case) polynomial exactly fits the values of the polynomial

filter to the values of the rational filter at the eigenvalues of the matrix, just as we

would expect from a linear least squares fitting of a polynomial to function at a set

of n evaluation points.

8I could, of course, have just as easily used an actual random vector, but this would only serve
to produce plots that are less clear, with no added benefit in terms of illustrating the polynomial
filter properties that we seek to examine.
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Although the exact fitting scenario is implausible in practice - the whole point

of using GMRES with FEAST is that sometimes we cannot solve linear systems of

equations exactly - it serves to highlight the benefit of using linear system solvers to

fit the polynomial, rather than fitting the polynomial to an indicator function over the

entire region of interest. Using linear system solvers to fit the polynomial filter allows

us to fit it only at the evaluation points of interest (i.e. the eigenvalues of the matrix),

which improves the accuracy of the fit at those evaluation points by sacrificing the

accuracy of the fit in between them. For the exact fit, the filter polynomial appears to

be of relatively poor quality over region of the real number line that we are interested

in, but it takes exactly the values that we want it to take at the points where we plan

on evaluating it.

Figure 4.1 also shows a degree n/2 polynomial filter. In this case the polynomial

filter function - even evaluated only at the eigenvalues of the matrix - is of much

poorer quality than the original rational filter function that it is being fitted to. This

is typical of polynomial filters for matrices of any size, and it provides an illustration

of the reason that IFEAST converges more slowly than standard FEAST for inexact

linear system solves: the implicit filter function simply reduces the eigenvector error

less for IFEAST than it does for standard FEAST.

4.4.6.2 Dependence on the approximate eigenvector

The polynomial filter function depends on the approximate eigenvector to which

the IFEAST contour integral is being applied. the examples in Figure 4.1 are poly-

nomial filters for the uniform approximate eigenvector, i.e. Equation (4.54); this

approximate eigenvector is similar to what one would get when choosing a random

initial guess. Figure 4.2 illustrates this coefficient distribution, as well as the near

convergence approximate eigenvector from Equation (4.55), for a different Hermitian
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Figure 4.1. Plots of polynomial filters generated by GMRES for a 12×12 Hermitian
matrix, along with the rational filter that they are being fitted to. The contour integral
for the rational filter selects for the middle 4 eigenvalues and is discretized with 8
quadrature points. These are the same eigenvalues and contour integral that were
used in the examples in Section 3.4. The top plot shows a degree 11 polynomial filter
(i.e. an exactly-fitted polynomial), and the bottom plot shows a degree 6 polynomial
filter.
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matrix of dimension n = 1000 with uniformly-distributed eigenvalues over the interval

[1000, 1001].

The corresponding polynomial filters for these approximate eigenvectors are plot-

ted in Figure 4.3, along with the original rational filter to which they are being fitted.

The filter for the approximate eigenvector with uniformly distributed eigenbasis co-

efficients is a poor approximation of the original rational filter, but it still is clearly

capable of selecting the same eigenvalues as the original rational filter. The filter

for the approximate eigenvector that is near convergence is a different story: it is a

highly accurate approximation of the original rational filter over a small domain, and

it diverges outside of that domain. Figure 4.4 provides a zoomed-in view of all of

these filters plotted together, showing that the filter for the approximate eigenvector

that is near convergence is fitted extremely well to the original rational filter for the

eigenvalues corresponding to high-magnitude eigenbasis coefficients. This is what we

would expect based on the original weighted least squares problem, which places more

weight on the polynomial fit for eigenbasis coefficients with large magnitudes.

Although the polynomial filter for the near-convergence approximate eigenvec-

tor appears to be incapable of successfully selecting for the desired eigenvalues, this

is not actually the case: it is only incapable of successfully filtering most approx-

imate eigenvectors. When it is applied to the specific approximate eigenvector for

which it was fitted, however, the polynomial filter actually will select for the desired

eigenvalues. This is illustrated in Figure 4.5, which shows the distributions of eigen-

basis coefficients before and after polynomial filtering. For the uniformly-distributed

approximate eigenvector, the after-filtering distribution features a peak at the eigen-

basis coefficients that correspond to the eigenvalues of interest, indicating successful

filtering.

The near-convergence approximate eigenvector, on the other hand, shows two par-

ticular effects. The first effect is that the eigenbasis distribution becomes a narrower
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‘Uniform’ Approximate Eigenvector Coefficients
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Figure 4.2. Illustration of two example approximate eigenvectors for a Hermitian
matrix of dimension n = 1000. Top plot shows an approximate eigenvector whose
eigenbasis coefficients are uniformly distributed, making it similar to a random initial
guess. Bottom plot shows an approximate eigenvector whose eigenbasis coefficients are
normally-distributed, with the mean centered at a particular coefficient whose corre-
sponding eigenvalue is in the middle of the matrix spectrum. Eigen-basis coefficients
can be labelled by their corresponding eigenvalue, and so the coefficients in both of
these plots are plotted with respect to their corresponding eigenvalue on the x-axis.
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‘Uniform’ Polynomial Filter
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Figure 4.3. Degree 100 polynomial filters corresponding to the approximate eigen-
vectors shown in Figure 4.2. Top and middle plots show the polynomial filters for the
uniform and near convergence approximate eigenvectors, respectively. Bottom plot
shows the original rational filter to which these polynomials are being fitted; this filter
selects 10 eigenvalues in the middle of the spectrum.
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Polynomial and Rational Filter Comparison Near Convergence
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Figure 4.4. The same filters from Figure 4.3 plotted together. Filter values are
plotted for a zoomed-in region of the eigenvalue spectrum. The original rational filter
is plotted as a solid line, and the polynomial filters for the two different approximate
eigenvectors are shown with plot markers; the polynomial filters are evaluated only at
the eigenvalues of the original matrix.
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peak around the eigenbasis coefficients corresponding to the eigenvalues of interest.

The other effect is that some of the eigenbasis coefficients that were previously ap-

proximately zero are now much larger than zero, becoming approximately equal to

10−5. We can tell, however, that the near-convergence approximate eigenvector is

brought closer to convergence through the filtering process by considering its eigen-

basis distribution as a probability distribution and calculating its variance; a smaller

variance corresponds to a smaller eigenvector residual9, and indeed the variance for

the near-convergence approximate eigenvector in Figure 4.5 goes from being approx-

imately 5× 10−5 to being approximately 7× 10−6 after filtering, indicating that it is

closer to convergence.

4.4.6.3 Different Linear Solvers

The exact filter that is produced by the IFEAST contour integral depends on

the algorithm that is used for solving the linear systems of equations, and on the

variation of IFEAST that is used (i.e. Basic or Generalized) . All of the prior results

show the filters that are produced by Basic IFEAST using GMRES. In practice,

one is much more likely to use algorithms such as MINRES or BiCGSTAB, which

can calculate linear system solutions by using short recurrences. Figure 4.6 shows a

comparison of the filters that are produced by GMRES, MINRES, and BiCGSTAB

when the approximate eigenvector has uniformly-distributed eigenbasis coefficients.

Results are shown for both Basic and Generalized IFEAST.

Notably, the filter that is produced by Basic IFEAST with MINRES is slightly

different from the filter that is produced by Basic IFEAST with GMRES; they should

be the same in exact arithmetic, but numerical error causes them to differ slightly.

9This perspective may be familiar from quantum mechanics, in which vectors in a Hilbert space
correspond to probability densities for measurement outcomes, which themselves correspond to the
eigenvalues of Hermitian operators; the square of the eigenvector residual norm of an approximate
eigenvector for a Hermitian matrix is exactly equal to the corresponding variance of the probability
density for that matrix’s eigenvalues.
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‘Uniform’ Approximate Eigenvector Coefficients After Filtering
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Figure 4.5. Plots showing the eigenbasis coefficient distributions before and after
polynomial filtering. Top plot shows the results for the approximate eigenvector with
uniformly distributed coefficients, and the bottom plot shows the results for the approx-
imate eigenvector with normally distributed eigenbasis coefficients (indicating that it
is near to convergence).
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Generalized IFEAST with MINRES appears to correct for some of that numerical

error.

4.5 Basic IFEAST and Krylov Methods

It is possible, in principle, to implement IFEAST using any kind of linear system

solving algorithm whatsoever, provided that the linear systems are solved sufficiently

accurately that the IFEAST convergence condition

αj∆ < |γj| − |γm0+1|. (4.56)

is met. Although other choices are possible (e.g. the Kaczmarz algorithm [22]), the

most likely choice for most practitioners will be to use some sort of Krylov subspace-

based algorithm for solving linear systems, since these are known to be powerful and

robust.

In light of the fact that there are also Krylov algorithms for solving eigenvalue

problems directly, the use of Krylov algorithms for solving the linear systems of

equations in IFEAST raises a natural question: if all of the important computation in

IFEAST consists of solving linear systems of equations, and all of these linear systems

of equations are solved using Krylov subspaces, then is there a relationship between

IFEAST and the direct Krylov subspace methods for solving eigenvalue problems?

The answer to this question, in the case of Basic IFEAST, is yes. When any sort

of Krylov subspace algorithm is used for solving the linear systems of equations for

Basic IFEAST, then Basic IFEAST itself becomes a Krylov subspace method for solv-

ing eigenvalue problems [26]. Unlike other Krylov subspace methods for eigenvalue

problems, though, it does not have to store the entire Krylov subspace basis in order

to select the subspace that spans the eigenvectors of interest. Instead, it uses contour

integration in order to form a basis for a subspace of the original Krylov subspace

that spans only the eigenvectors whose eigenvalues are inside of the search contour.
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Polynomial Filters for Different Solvers

Basic IFEAST: GMRES Generalized IFEAST: GMRES

Basic IFEAST: MINRES Generalized IFEAST: MINRES

Basic IFEAST: BiCGSTAB Generalized IFEAST: BICGSTAB

Figure 4.6. A comparison of the polynomial filters that are produced by IFEAST
when using several different linear system solving algorithms. All results use 100
iterations of their respective algorithms.
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In some cases it is possible to show that IFEAST is exactly equivalent to other

well-known Krylov subspace methods for solving eigenvalue problems. Basic IFEAST

implemented with block FOM is equivalent to block Arnoldi, Basic IFEAST imple-

mented with block BiCG is equivalent to block Lanczos Biorthogonalization, and

Basic IFEAST implemented with block GMRES is equivalent to block Arnoldi with

Harmonic Ritz. The following subsections discuss these results in detail, and explain

how they can inform a comparison between Basic IFEAST and other Krylov sub-

space eigenvalue algorithms. For the remainder of these sections I will refer only to

“IFEAST”, with the understanding that all of the following results regarding Krylov

subspaces pertain only Basic IFEAST and not to Generalized IFEAST.

4.5.1 Contour Integration Selects Krylov Subspace

Standard Krylov eigenvalue solving methods (such as Lanczos and Arnoldi) work

by building a basis V for the block Krylov subspace Kk(A, X̃(0)) of order k, using

some (possibly random) initial guess X̃(0) for the eigenvectors. The column vectors

of the matrix V ∈ Cn×m0k span the subspace

Kk(A,X(0)) = span{X̃(0), AX̃(0), A2X̃(0), ..., Ak−1X̃(0)}. (4.57)

I will consider a block Krylov subspace of block size m0 (i.e. the dimension of the

FEAST subspace) for the sake of easy comparison with the IFEAST algorithm.

Traditional Krylov methods then use the Rayleigh-Ritz procedure to form and

solve a reduced-dimension eigenvalue problem in order to find approximate eigenpairs

in the subspace Kk(A,X(0))

(V HAV )XV = (V HV )XV Λ. (4.58)

111



For the sake of generality I do not assume that V HV = I; the results that follow

are true for any block Krylov algorithm, not just for algorithms such as Lanczos or

Arnoldi that produce orthonormal V .

Let us assume that the order k of the Krylov subspace (4.57) is made as large as is

practically possible. If the residuals of the approximate eigenpairs from the reduced

problem (4.58) do not converge, then the method can be “restarted” by using a block

of linear combinations of Ritz vectors X̃(1) from the solution of (4.58) as the starting

vectors for building a new Krylov subspace Kk(A,X(1)) of order k. In Sections 4.5.2

and 4.5.4 I will discuss some ways that these restarting blocks may be chosen.

FEAST, when calculating the contour integration exactly, forms a subspace by

applying a spectral projector to X̃(0); this subspace is then used to solve a reduced-

dimension eigenvalue problem i.e.

Q = ρ(A)X̃(0) =
1

2πi

∮
C
(zI − A)−1X̃(0)dz, (4.59)

(QHAQ)XQ = (QHQ)XQΛ. (4.60)

We can understand the relationship between IFEAST and traditional Krylov

methods by considering what happens when the integrand (zI − A)−1X̃(0) in (4.59)

is evaluated approximately by using a Krylov subspace. We can rewrite the integral

(4.59) as:

Q = ρ(A)X̃(0) =
1

2πi

∮
C
Y (z)dz, (4.61)

where Y (z) is the solution to the linear system

(zI − A)Y (z) = X̃(0). (4.62)

112



If we use a Krylov subspace method to find an approximate solution to (4.62), then

Y (z) ≈ Ỹ (z) = V ỸV (z), ỸV (z) ∈ Cm0k×m0 , (4.63)

where V is the same Krylov subspace basis from equation (4.57), and ỸV is an ap-

proximate solution to the least squares problem (zI−A)V YV (z) = X̃(0). Importantly,

the Krylov basis V is not a function of z, because the Krylov subspace that is gen-

erated by (zI − A) depends only on the matrix A and not on the shift z. Because

V is independent of z, we can rewrite the expression (4.61) for Q in such a way

that the FEAST reduced-dimension eigenvalue problem (4.60) takes a familiar form.

Rewriting the expression for Q, we get

Q =
1

2πi

∮
C
Ỹ (z)dz = V Gv, (4.64)

with

Gv =
1

2πi

∮
C
ỸV (z)dz ∈ Cm0k×m0 . (4.65)

Then, the FEAST reduced eigenvalue problem (4.60) becomes

(GH
v V

HAV Gv)XQ = (GH
v V

HV Gv)XQΛ. (4.66)

Comparing (4.66) with (4.58) makes it clear that IFEAST itself is, in fact, a Krylov

subspace method. The difference between IFEAST and more traditional Krylov meth-

ods is that IFEAST uses contour integration to select an ideally-suited linear combi-

nation of vectors from the Krylov basis V for finding the desired eigenvalues, without

first having to solve a reduced eigenvalue problem in that basis.

Being able to select the desired eigenvalues in this way can have substantial bene-

fits. One of the challenges in using Krylov subspaces is that finding certain eigenval-

ues, particularly interior eigenvalues or eigenvalues that are clustered closely together,

can require a subspace basis V of very large dimension. Using a large-dimension sub-
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space basis V entails large storage requirements for that basis, and a large compu-

tational cost for solving the corresponding reduced eigenvalue problem (4.58). When

using IFEAST, on the other hand, the dimension of the reduced eigenvalue problem

(4.66) is always m0, which is substantially smaller than the dimension km0 of the

traditional reduced eigenvalue problem (4.58).

Moreover, when IFEAST is implemented with a linear system solver that uses a

short recurrence relation (e.g. MINRES), then it can solve eigenvalue problems by

using a Krylov subspace of arbitrarily large dimension without having to form and

store a basis for that subspace; by using short recurrences, IFEAST can form the

n × m0 matrix product Q = V Gv without forming or storing either the n × km0

matrix V or the km0 ×m0 matrix Gv. Thus, eigenpairs that would previously have

been difficult or impossible to obtain due to constraints on the dimension of V become

much more tractable to calculate, and the spectrum slicing capability of FEAST is

maintained by making it possible to selectively find specific eigenpairs anywhere in

the spectrum.

The issues of large memory requirements and bad scaling10 for the Rayleigh-

Ritz procedure in traditional Krylov methods are often mitigated through the use of

restarting strategies, which allow one to limit the dimension of the Krylov subspace

that is used. These strategies carry with them the price of a reduced convergence

rate, however; the smallest number of matrix-vector multiplications that is required

for solving an eigenvalue problem with a traditional Krylov method is the number

that is required when no restarts are used. For some eigenvalue problems the number

of matrix multiplies that is needed when doing no restarts is still quite large; in cases

like these, Basic IFEAST implemented with a short recurrence linear system solver

10The algorithmic complexity of solving the reduced eigenvalue problem is O((km0)3) for a Krylov
subspace of order k and block size m0 for Arnoldi iterations, and many algorithms require costly
basis reorthogonalization as well.
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can use a large Krylov subspace without storing that subspace. This, combined with

the use of natural parallelism in IFEAST, makes it possible to solve certain eigenvalue

problems with a number of sequential matrix vector multiplications that is smaller

than the number that would be required when using (for example) Arnoldi with no

restarts. I provide an example of this in Section 4.6.6 (on page 141).

The relationship between IFEAST and traditional Krylov methods also offers a

different perspective on achieving convergence when using restarts. In the context of

IFEAST, a Krylov restart amounts to an approximate subspace iteration with ρ(A)

for a particular choice of contour C. Using contour integration to choose the subspace

with which to restart ensures that restarting will reliably result in convergence, with

inequality (4.56) giving quantitative answers regarding whether or not restarting will

result in convergence. IFEAST reverses the process that is used in other restarting

strategies [70,88], in which the subspace that is used for restarting is determined after

solving a reduced eigenvalue problem in the full Krylov subspace, rather than before.

I elaborate further on the relationship between IFEAST and traditional Krylov

techniques in the following subsections, where I show how the implementation of

IFEAST with particular linear system solvers is related to other Krylov subspace

methods for solving eigenvalue problems. I show that, in the limit of exact integration,

implementing IFEAST using the Full Orthogonalization Method (FOM) is equivalent

to traditional explicitly restarted block Arnoldi, and that implementing IFEAST using

GMRES is closely related to using Harmonic Rayleigh-Ritz for interior eigenvalue

problems.

4.5.2 Restarted Block Arnoldi: IFEAST with FOM

The block Arnoldi method constructs an orthonormal basis V ∈ Cn×m0k of block

size m0 and Krylov order k (for a total dimension of m0k), and then solves a reduced
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eigenvalue problem from the Rayleigh-Ritz method in order to find estimates for the

desired eigenvalues and eigenvectors, i.e.

HXV = XV Λ (4.67)

H = V HAV, V HV = I (4.68)

where the column vectors of V span Kk(A, X̃(0)), H ∈ Cm0k×m0k is block upper

Hessenberg and X̃(0) ∈ Cn×m0 is the initial guess for the eigenvectors. If the residuals

on the estimated eigenpairs (V XV ,Λ) are not good enough, then the method can

be explicitly restarted by building a new Krylov subspace Kk(A, X̃(1)) using a new

starting block X̃(1). The new starting block consists of linear combinations of the

estimated eigenvectors, i.e.

X̃(1) = V XVM (4.69)

where M ∈ Cm0k×m0 gives the linear combinations that are used to determine each

vector in the new starting block. A variety of different choices for M are possible

[71]. A single iteration of IFEAST, when implemented with FOM, produces a new

estimate for the eigenvectors of interest X̃(1) that is equivalent to expression (4.69)

for a particular, natural choice of M .

Implementing IFEAST requires forming a subspace basisQ ∈ Cn×m0 by evaluating

the contour integral (4.61), which in turn requires solving (approximately, in this case)

linear systems of the form (4.62). I restate these tasks (respectively) here, i.e.

Q = ρ(A)X̃(0) =
1

2πi

∮
C
Ỹ (z)dz, (4.70)

(zI − A)Y (z) = X̃(0), (4.71)
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Ỹ (z) ≈ Y (z). (4.72)

FOM is used to approximate the solution to the linear system (4.71) by forming V

using Arnoldi iterations, and then solving a projected linear system [73], i.e.

Ỹ (z) = V
(
V H(zI − A)V

)−1
V HX̃(0). (4.73)

Because the linear system matrix (zI − A) is just a shifted version of the original

matrix A, the approximate solution Ỹ (z) can be written in terms of the block upper

Hessenberg matrix that is generated by the block Arnoldi method, i.e.

Ỹ (z) = V (zI −H)−1V HX̃(0). (4.74)

Inserting this into the expression for the IFEAST subspace basis Q (4.70), it becomes

clear that using FOM is equivalent to applying the FEAST filter function ρ(λ) to the

block upper Hessenberg matrix H from Arnoldi

Q = V
1

2πi

∮
C
(zI −H)−1dzV HX̃(0) = V ρ(H)V HX̃(0). (4.75)

This is equivalent to filtering out the components of the unwanted Arnoldi Ritz

vectors from X̃(0), leaving only the Ritz vectors whose Ritz values are inside the con-

tour C in the complex plane. We can see this by writing the eigenvalue decomposition

of H and reordering its eigenvalues and eigenvectors so that the wanted eigenpairs

(i.e. the ones whose eigenvalues are inside C) are grouped together, i.e.

H = XV ΛXH
V , (4.76)

XV = [Xw Xu] , Λ =

Λw 0

0 Λu

 , (4.77)
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and by writing the initial guess X(0) in terms of its Ritz vector components in the

subspace spanned by V ,

X̃(0) = V XwW + V XuU, (4.78)

where (Xw,Λw) are the m0 wanted Ritz eigenpairs (i.e. the ones whose eigenvalues are

inside C in the complex plane), (Xu,Λu) are the (k− 1)m0 unwanted Ritz eigenpairs,

and W and U are the components of X̃(0) in terms of the wanted and unwanted Ritz

eigenvectors (respectively). Rewriting (4.75) in these terms, we get

Q = V [Xw Xu]

ρ(Λw) 0

0 ρ(Λu)

 [Xw Xu]
H V H(V XwW + V XuU) (4.79)

= V (Xwρ(Λw)W +Xuρ(Λu)U). (4.80)

IFEAST with FOM thus forms a subspace basis by filtering the Ritz values and

vectors from the Arnoldi Rayleigh-Ritz matrix H; the components of X̃(0) in the

direction of the wanted Ritz vectors are kept roughly the same, and the components

of X̃(0) in the direction of the unwanted Ritz vectors are substantially reduced. When

the contour integral in (4.75) is evaluated exactly, then ρ(Λw) = Im0×m0 and ρ(Λu) =

0(k−1)m0×(k−1)m0 , and IFEAST forms and solves a reduced eigenvalue problem using

only the Arnoldi Ritz vectors corresponding to the wanted Ritz values. The vectors

that are used as the initial guess for the next IFEAST iteration, then, are just the

normalized Arnoldi Ritz vectors corresponding to the Ritz values that are inside the

contour C in the complex plane, i.e.

X̃(1) = V Xw = V XV

 Im0×m0

0(k−1)m0×m0

 . (4.81)
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IFEAST with FOM is equivalent, then, to performing block Arnoldi with a restart

strategy that consists of selecting the desired Ritz vectors and discarding the rest.

In practice this restart strategy can be unreliable for obtaining eigenvalues in the

interior of the spectrum. One perspective on why this happens is that the Rayleigh-

Ritz procedure works well for resolving exterior eigenvalues, but not for resolving

interior ones; restarting with Ritz vectors is thus unreliable for obtaining interior

eigenvalues [56]. A remedy for this is to use the Harmonic Rayleigh-Ritz proce-

dure [55, 56], wherein one solves a different reduced eigenvalue problem that more

accurately obtains the eigenvalues that are located near some shift.

The fact that the restart strategy (4.81) is equivalent to using FOM with IFEAST

suggests another perspective on why it is ineffective. Getting IFEAST to converge

requires solving its associated linear systems such that their residuals are sufficiently

small, and FOM does not minimize the linear system residual for a given subspace.

Reliably achieving convergence for interior eigenpairs requires the use of a linear

system solver that minimizes the linear system residual, such as GMRES or MINRES.

4.5.3 Restarted Lanczos Biorthogonalization: IFEAST with BiCG

A similar analysis to the one Section 4.5.2 can be performed for block Lanczos

Biorthogonalization and two-sided11 Basic IFEAST with block Biconjugate Gradients.

Two-sided (generalized) IFEAST is summarized in Appendix D.

Block Lanczos (I will drop the “biorthogonalization” qualifier) generates two sub-

space bases V,W ∈ Cn×m0k of block size m0 and Krylov order k and then solves a

reduced eigenvalue problem, i.e.

11Although this is often referred to as the “nonsymmetric FEAST algorithm”, either one-sided or
two sided FEAST can be applied to solving nonsymmetric eigenvalue problems. Two-sided FEAST
is simply much more robust for nonsymmetric problems.
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TXV = XV Λ (4.82)

THXW = XWΛH (4.83)

T = WHAV, WHV = I, (4.84)

where the columns of V span K(A, X̃
(0)
R ) and the columns of W span K(A, X̃

(0)
L ),

with X̃
(0)
R and X̃

(0)
L being initial guesses for the right and left eigenvectors of interest,

respectively. T , here, is a block tridiagonal matrix.

Lanczos, unlike Arnoldi, calculates estimates V XV and WXW for both the right

and the left eigenvectors, and can be restarted just as Arnoldi can be if the cor-

responding eigenvector residuals are not sufficiently low by calculating new initial

guesses

X̃
(1)
R = V XVM and X̃

(1)
L = WXWN, (4.85)

with M,N ∈ Cm0k×m0 determining the linear combinations of vectors that are used to

form the columns of the initial guesses for restarting. A single iteration of two-sided

IFEAST implemented with Biconjugate Gradients produces estimated right and left

eigenvectors X̃
(1)
R and X̃

(1)
L that are equivalent to the restarting initial guesses in

Equation (4.85).

Two-sided IFEAST refines two subspaces, one each for spanning the right and left

eigenvectors of A:

QR = ρ(A)X̃
(0)
R =

1

2πi

∮
Q̃R(z)dz QL = ρ(A)HX̃

(0)
L =

1

2πi

∮
Q̃L(z)dz (4.86)

(zI − A)QR(z) = X̃
(0)
R (zI − A)HQL(z) = X̃

(0)
L (4.87)

Q̃R(z) ≈ QR(z) Q̃L(z) ≈ QL(z) (4.88)

Biconjugate Gradients naturally solves two linear systems of equations at the same

time (see Section 2.2.4), with the solution of one system of equations being approx-
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imated in the subspace spanned by V and the other being approximated in the in

the subspace spanned by W . The pairs of two-sided FEAST linear systems of equa-

tions (4.87) that share the same value of z can thus be approximated using block

Biconjugate Gradients as

Q̃R(z) = V (WH(zI − A)V )−1WHX̃
(0)
R (4.89)

= V (zI − T )−1WHX̃
(0)
R (4.90)

Q̃L(z) = W (V H(zI − A)HW )−1V HX̃
(0)
L (4.91)

= W (z∗I − TH)−1V HX̃
(0)
L (4.92)

Substituting these into the integrals from Equation (4.86), we get

QR =
1

2πi

∮
V (zI − T )−1WHX̃

(0)
R dz (4.93)

= V ρ(T )WHX̃
(0)
R (4.94)

QL =
1

2πi

∮
W (z∗I − TH)−1V HX̃

(0)
L dz (4.95)

= Wρ(T )HV HX̃
(0)
L (4.96)

IFEAST with Biconjugate Gradients thus implicitly applies a spectral projector to

the block tridiagonal Lanczos matrix T , which serves to select the Ritz values of T

that are inside of the search contour. The selection of the corresponding Ritz vectors

as initial guesses for restarting can be shown by applying the same steps that were

used in Section (4.5.2) to each of the subspaces QR and QL.
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4.5.4 Arnoldi with Harmonic Ritz: IFEAST with GMRES

Using GMRES with IFEAST is closely related to using the Harmonic Rayleigh-

Ritz procedure with Arnoldi.

When using GMRES to approximately solve (4.71) for Y (z), the approximate

solution Ỹ (z) takes the form [73]

Ỹ (z) = V
(
V H(zI − A)H(zI − A)V

)−1
V H(zI − A)HX̃(0), (4.97)

where V , again, is the block Arnoldi basis. The IFEAST subspace basis Q then

becomes

Q = V

(
1

2πi

∮
C

[
V H(zI − A)H(zI − A)V

]−1
V H(zI − A)HV dz

)
X̃

(0)
V , (4.98)

where V X̃
(0)
V = X̃(0) is the initial guess X̃(0) expressed in the Arnoldi basis V .

The integrand in (4.98) is equivalent to the matrix that one arrives at when

using Harmonic Rayleigh-Ritz with Arnoldi. With Harmonic Rayleigh-Ritz, one seeks

to find approximations for the eigenvalues that are near some shift z ∈ C, using

the subspace basis V . This is done by solving the reduced, generalized eigenvalue

problem [55,56]

AV (z)XV (z) = BV (z)XV (z)(zI − Λ(z)), (4.99)

AV (z) = V H(zI − A)H(zI − A)V, BV (z) = V H(zI − A)HV, (4.100)

where V XV (z) are now the Harmonic Ritz vectors, and Λ(z) are the Harmonic Ritz

values. In most applications the shift z is taken to be a fixed parameter, but here we
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are considering a case where it will vary, making the projected matrices AV (z) and

BV (z), and the Harmonic Ritz vectors and values XV (z) and Λ(z), into matrix-valued

functions of the shift. Like any generalized eigenvalue problem, (4.99) can be written

as a standard, non-symmetric eigenvalue problem with a corresponding eigenvalue

decomposition, i.e.

B−1
V (z)AV (z) = XV (z)(zI − Λ(z))X−1

V (z). (4.101)

If we note that

[
B−1
V (z)AV (z)

]−1
=
[
V H(zI − A)H(zI − A)V

]−1
V H(zI − A)HV, (4.102)

then we can use this combined with Equation (4.101) in order to write the expression

for Q (4.98) in terms of the Harmonic Rayleigh-Ritz eigenvalue decomposition:

Q = V

(
1

2πi

∮
C

[
B−1
V (z)AV (z)

]−1
dz

)
X̃

(0)
V , (4.103)

= V

(
1

2πi

∮
C

[
zI −XV (z)Λ(z)X−1

V (z)
]−1

dz

)
X̃

(0)
V . (4.104)

Generating the IFEAST subspace basis by using GMRES is thus equivalent to

using contour integration to filter the initial guess by using Arnoldi Harmonic Ritz

values and vectors. Unlike with FOM, however, the resulting contour integral is not

equivalent to applying the usual FEAST spectral filter ρ(λ) to a projected matrix.

Instead, the integration in (4.104) is the contour integral of the resolvent of a nonlin-

ear eigenvalue problem, where the eigenvalues and eigenvectors are functions of the

complex variable z that are derived from the Harmonic Rayleigh-Ritz procedure.
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4.6 Examples

This section will describe several example problems in order to illustrate the prop-

erties of the IFEAST algorithm. Of particular interest are situations in which the

behavior of IFEAST deviates from that of the standard FEAST algorithm, usually

due to limitations that are inherent to using polynomial filters for solving eigenvalue

problems. The problems that we will consider are:

Standard uniform problem: a standard, Hermitian eigenvalue problem with 1000

eigenvalues uniformly distributed over the interval [1000, 1001]. The uniform

distribution of the eigenvalues allows us to probe the properties of IFEAST

that are independent of any effects that may arise due to the relative locations

of the eigenvalues in a matrix’s spectrum.

Generalized uniform problem: a generalized, Hermitian eigenvalue problem with

the same eigenvalues as the standard uniform problem. This problem allows

us to compare the Basic IFEAST algorithm and the Generalized IFEAST al-

gorithm, which is the more efficient algorithm to use for solving generalized

eigenvalue problems.

Standard nonuniform problems: a collection of standard, Hermitian eigenvalue

problems with 1000 eigenvalues in the interval [10−5, 1]. All of the matrices in

this collection have the same largest-magnitude and smallest-magnitude eigen-

values (i.e. 1 and 10−5), and therefore have the same condition number. Their

eigenvalues are distributed nonuniformly over the interval [10−5, 1] such that

there is a higher density of eigenvalues near 10−5 than there is near 1. For

some of these matrices the eigenvalue density varies much more than it does for

others. These examples allow us to examine the effects that the distribution of

a matrix’s spectrum has on the convergence of IFEAST.
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Grcar problem: a nonsymmetric Toeplitz matrix of dimension 100. The eigenvalues

of the Grcar matrix are known to be particularly sensitive to perturbations [98],

which allow us to demonstrate how IFEAST behaves when applied to problems

that are both nonsymmetric and particularly challenging.

Ga41As41H72: a standard Hermitian eigenvalue problem of dimension 268,096 gen-

erated by the electronic structure code PARSEC [45], and provided by the Uni-

versity of Florida Sparse Matrix Collection [15]. The relatively large dimension

of this problem allows us to draw a stark contrast between the performance of

standard FEAST and IFEAST.

The first four of these problems are simple, artificial matrix pencils that are de-

signed to highlight specific qualities of the algorithms under consideration. The last

problem is a natural example problem that is derived from practical application.

Unless otherwise noted, all of the results in this section for the IFEAST algorithm

are produced by using the Generalized variation of the IFEAST algorithm. The

reported eigenvector residuals for IFEAST are the largest residuals for the estimated

eigenpairs whose eigenvalues are inside of the search contour.

4.6.1 Convergence: nc and m0

We can examine the behavior of IFEAST with respect to the dimension of the

FEAST subspace, m0, and the number of integration quadrature points, nc, by cal-

culating the lowest 10 eigenvalues of the standard uniform problem.

Figure 4.7 shows the eigenvector residual versus IFEAST iteration number for sev-

eral values of nc, with m0 held fixed. Results are shown using both standard FEAST

and IFEAST. For standard FEAST, increasing the value of nc always produces an ap-

preciable improvement in the rate of convergence. The same is not true for IFEAST;

increasing nc from 2 to 6 improves the rate convergence substantially, but increasing

nc from 6 to 12 does not produce any change in the rate of convergence.
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Figure 4.8 shows the eigenvector residual versus IFEAST iteration number for

several values of m0, with nc held fixed. Results are again shown using both standard

FEAST and IFEAST. The rate of convergence for standard FEAST improves a lot

when changing m0 from 15 to 30, but it appears to improve much less when changing

m0 from 30 to 60. This is mostly just because standard FEAST already converges

very quickly for m0 = 30; the change from m0 = 30 to m0 = 60 reduces the required

number of iterations for convergence by 33%. The rate of convergence for IFEAST

also appears to change little when m0 goes from 30 to 60, but in this case the reason

is not because IFEAST is already converging quickly.

These results can be explained by examining the respective polynomial or ra-

tional filters of the IFEAST or standard FEAST algorithms. Figure 4.9 shows the

polynomial and rational filter values plotted in sorted order (from largest-magnitude

to smallest-magnitude) for IFEAST and standard FEAST, for the same values of nc

that were used to generate the results in Figures 4.7 and 4.8. Plot markers indicate

the locations of the (m0 + 1)th largest value of each filter, the value of which indi-

cates the amount by which we would expect the eigenvector error to be reduced at

each FEAST or IFEAST iteration. Examining the filter functions shows clearly why

changing nc from 2 to 6 improves the convergence rate of IFEAST, but changing nc

from 6 to 12 does not. The value of the IFEAST polynomial filter generally drops

more quickly for nc = 6 than it does for nc = 2, but the value of the polynomial filter

for nc = 6 is exactly the same as for nc = 12, thus producing no improvement in

convergence. This stands in stark contrast to standard FEAST, for which the value

of the rational filter function always drops more quickly with increasing nc.

Figure 4.9 appears to indicate that, for m0 = 15, increasing the value of nc from

2 to 6 (or 12) should not change the rate of convergence. Figure 4.10 shows the same

experiment as Figure 4.9, this time repeated with m0 = 15. With m0 = 15 the rate of

convergence actually becomes worse when increasing nc from 2 to 6, and it is roughly
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the same for nc = 2 and nc = 12. The nc = 12 case appears to converge more quickly,

but that is just because it enters the regime of linear convergence more quickly; the

slope of the convergence trajectory in Figure 4.9 is roughly the same for nc = 2 and

nc = 12. This is a convenient illustration of the fact that, as discussed in Section

4.4.3, examining the values of the IFEAST polynomial function for a uniform initial

guess vector can only offer qualitative insights into the behavior of IFEAST.

Convergence for Different Values of nc
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Figure 4.7. Eigenvector residual versus FEAST iteration for calculating the 10
lowest eigenvalues of the standard uniform problem, for several values of nc. For
IFEAST m0 = 30 and for standard FEAST m0 = 15. These values of m0 were
chosen to provide clear illustrations of the effect of changing nc. IFEAST used 50
iterations of MINRES at each outer IFEAST iteration for solving each of the nc
linear systems of equations.

4.6.2 Convergence: middle of the spectrum

The behavior of the IFEAST algorithm changes depending on where the search

contour is located relative to the rest of the spectrum of a matrix. Eigenvalues that

are in the middle of the spectrum are generally more difficult to calculate than are

eigenvalues that are at the edges of the spectrum. This is also true of the standard

FEAST algorithm, but the severity of the change in performance is much greater for
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Convergence for Different Values of m0
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Figure 4.8. Eigenvector residual versus FEAST iteration for calculating the lowest
10 eigenvalues of the standard uniform problem, for several values of m0 and with
nc = 6. IFEAST used 50 iterations of MINRES at each outer IFEAST iteration for
solving each of the nc linear systems of equations.

IFEAST than it is for standard FEAST. The IFEAST polynomial filter is much less

responsive to changes in the value of nc for search contours that are the middle of

a spectrum, owing largely to the fact that it is more difficult to refine a polynomial

approximation for the indicator function when all of the samples points that are to

be set to 1 are in the middle of the collection of sample points, rather than at the

edge. This is illustrated in Figure 4.11, which repeats the experiment from Figure 4.7

with the search contour in the middle of the spectrum rather than at the edge.

The result is that convergence becomes worse for increasingm0, rather than better.

This is due to the fact that the linear system shifts zk are brought closer to the

eigenvalues of the matrix as nc is increased, but the number of linear system iterations

is kept the same, and is not quite large enough for IFEAST to converge easily.

4.6.3 Eigenvalue Density and Linear System Conditioning

Given that the IFEAST algorithm solves eigenvalue problems by iteratively solving

linear systems of equations, it is natural to assume that the condition number of the
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Sorted Polynomial and Rational Filter Values: Various nc
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Figure 4.9. Polynomial and rational filter values plotted in sorted order from largest
magnitude to smallest magnitude, evaluated only at the eigenvalues of the standard
uniform problem. Plotted filters are for selecting the lowest 10 eigenvalues. The
polynomial filters are degree 50. Both plots show filter values for nc =2, 6, and 12;
the curves for nc = 6 and nc = 12 are identical for the polynomial plot, and therefore
are overlaid on top of one another. Plot markers indicate the (m0 + 1)th largest value
of filters, for the same values of m0 that are used in Figure 4.8.
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Convergence for Different Values of nc with m0 = 15
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Figure 4.10. Eigenvector residual versus IFEAST iteration for calculating the 10
lowest eigenvalues of the standard uniform problem, for several values of nc and with
m0 = 15. IFEAST used 50 iterations of MINRES at each outer FEAST iteration for
solving each of the nc linear systems of equations.

matrices involved should have an impact on the performance of IFEAST. This is true,

but the relationship between the condition number of the matrices involved and the

performance of IFEAST is somewhat indirect. For a given matrix A it is not the

condition number of A that is important; rather, it is the condition numbers of the

shifted linear systems (zkI − A) that matter. This has an effect that may at first

seem somewhat counter-intuitive: using IFEAST to solve an eigenvalue problem for

a matrix A that is very poorly-conditioned can be easy, provided that the eigenvalues

of A are close to being uniformly-distributed. On the other hand, using IFEAST

to solve an eigenvalue problem for a matrix A that is well-conditioned can be very

difficult if the eigenvalues of A are distributed very unevenly.

We can illustrate this effect by considering the standard nonuniform problems:

three dimension 1000 Hermitian matrices (which I will refer to here as Matrix 1, Ma-

trix 2, and Matrix 3) whose eigenvalues all lie in the interval [10−5, 1]. Importantly,

all three matrices have the same largest-magnitude and smallest-magnitude eigenval-
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Convergence in the Middle of a Spectrum
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Figure 4.11. Plots showing the convergence of FEAST and IFEAST for calculat-
ing 10 eigenvalues in the middle of the spectrum of the standard uniform problem.
IFEAST used 50 MINRES iterations at each outer IFEAST iteration. Top plots
show the convergence of the eigenvector residual versus iteration number, and bottom
plots show the corresponding rational or polynomial filter functions. The bottom left
plot shows three filters, but they can not be distinguished from one another because
they have approximately the same values.
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ues: 1 and 10−5, respectively. As a result, all three matrices have the same condition

number.

These matrices are all generated in such a way that their eigenvalues are dis-

tributed nonuniformly; their eigenvalues are clustered more closely to 10−5 than they

are to 1. The rate of increase in the eigenvalue density near 10−5 is greater for Matrix

2 than it is for Matrix 1, and it is greater for Matrix 3 than it is for Matrix 2. The

densities of the eigenvalues on the real number line for each of these matrices are

plotted in Figure 4.12.
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Figure 4.12. Density of eigenvalues on the real number line for three different matrix
eigenvalue spectra. Each spectrum has 1000 eigenvalues distributed according to the
densities shown. All spectra have their smallest-magnitude eigenvalue at 10−5 and
their largest-magnitude eigenvalue at 1.0.

When using IFEAST to calculate the 10 smallest-magnitude eigenvalues for each

of these matrices, the solution for Matrix 1 (which has the least density variation

in its spectrum) converges the most quickly, and the solution for Matrix 3 (which

has the most density variation in its spectrum) converges the most slowly. The

rate of convergence for Matrix 2 falls in between. The same is not true when we

use standard FEAST; with standard FEAST the calculations for all three matrices

converge at similar rates, and the matrices with greater density variation actually
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converge slightly faster than the matrices with lesser density variation. These results

are illustrated in Figure 4.13.

Convergence of Eigenvalue Problems with Varying Eigenvalue Densities
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Figure 4.13. Eigenvector residual versus IFEAST iteration for calculating the 10
smallest-magnitude eigenvalues of several 1000× 1000 Hermitian matrices with vary-
ing eigenvalue densities (densities shown in Figure 4.12). Each of these results is
produced by using IFEAST with nc = 4, m0 = 15, and 100 MINRES iterations at
each IFEAST iteration.

The results in Figure 4.13 can be explained in terms of conditioning of the shifted

linear systems (zkI −A). For Matrix 1, which has the smallest amount of eigenvalue

density variation, the shifts zk are relatively far away from the eigenvalues of A, and so

the shifted linear systems (zkI−A) are well-conditioned. For Matrix 3, which has the

largest amount of density variation, the shifts zk are much closer to the eigenvalues of

A, and the condition number of (zkI − A) is correspondingly much worse. Table 4.1

summarizes the original and shifted condition numbers for each of the three matrices.

The eigenvalue search contours and quadrature shifts zk are illustrated in Figure

4.15 (on page 136). Each contour in that figure encloses the same number of eigen-

values at the lower edge of the spectrum. The more the density of the corresponding

matrix spectrum increases near 10−5, the smaller the corresponding search contour
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Matrix Condition Numbers

κ(A) maxk κ(zkI −A)

Matrix 1 105 7.8× 103

Matrix 2 105 7.9× 104

Matrix 3 105 3.2× 105

Table 4.1. Comparison of the condition numbers for Matrices 1, 2, and 3. The first
column shows the condition number of the original matrix, and the second column
shows the worst condition number for all of the IFEAST shifted matrices (zkI − A).
The condition numbers of the shifted matrices vary considerably because the size of
the corresponding IFEAST search contours changes due to differences in density of
the eigenvalue spectrum.

needs to be in order to select only the 10 smallest-magnitude eigenvalues, and the

closer the shifts zk get to the real axis (where all of the eigenvalues are located).

The variation in the condition number of the shifted matrices has a strong ef-

fect on the convergence rate of IFEAST, which solves linear systems of equations

iteratively. This is shown in Figure 4.14 (on page 135), which plots the average lin-

ear system residual at each IFEAST iteration. The matrices with larger variations

in their eigenvalue density, and therefore worse condition numbers for the shifted

matrices, have their linear systems of equations solved less accurately when using

using the same, constant number of MINRES iterations. This effect does not appear

for standard FEAST, which solves the linear systems of equations directly by using

factorization-based methods.

The effect of varying density (and therefore contour size) can also be explained in

terms of the polynomial and rational filters that are implicitly generated by IFEAST

and standard FEAST. The polynomial filter, in particular, becomes substantially

worse as the variation in density increases, in the sense that its value drops less

quickly outside of the search region. The rational filter actually becomes better as

the variation in density increases, although the rational filters for all three matrices

in this case are very similar. This is illustrated in Figure 4.16 (on page 137), which
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Linear System Residuals for Different Spectrum Densities
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Figure 4.14. Mean linear system residual (i.e. averaged over all shifted linear sys-
tems and all right hand sides) versus IFEAST iteration. Residuals are measured
relative to the norm of the right hand side.

shows the polynomial and rational filters evaluated at the eigenvalues of each of the

three matrices, plotted in sorted order from largest to smallest.

4.6.4 Generalized IFEAST vs. Basic IFEAST

The purpose of the Generalized IFEAST algorithm is to be able to solve gener-

alized eigenvalue problems using by using IFEAST with a constant number of linear

system iterations at each outer IFEAST iteration. We can demonstrate the effec-

tiveness of this approach by solving the generalized uniform problem for the middle

10 eigenvalues in the spectrum, using both Basic IFEAST and Generalized IFEAST

with 100 MINRES iterations at each outer IFEAST iteration. Figure 4.17 (on page

137) shows the resulting plot of the eigenvector residual versus iteration number. As

anticipated, the Basic IFEAST algorithm fails to converge, whereas the Generalized

IFEAST algorithm converges linearly to the solution.
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Contours for Different Spectrum Densities
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Figure 4.15. Integration contours for the results shown in Figure 4.13; Contour 1
corresponds to Matrix 1, Contour 2 corresponds to Matrix 2, and Contour 3 corre-
sponds to Matrix 3. Each contour is perfectly circular (they appear ellipsoid due to
the plot bounds) and encloses the 10 smallest-magnitude eigenvalues of its respective
spectrum. The contours differ in size due to the varying densities of the spectra that
they are enclosing.
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Sorted filter values: various spectrum densities
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Figure 4.16. Polynomial and rational filter values plotted in sorted order from largest
magnitude to smallest magnitude, evaluated only at the eigenvalues of several 1000×
1000 Hermitian matrices with varying eigenvalue densities (shown in Figure 4.12).
The polynomial filters are degree 100.
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Convergence for Generalized Eigenvalue Problems

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  5  10  15  20  25  30

E
ig

e
n
v
e
ct

o
r 

R
e
si

d
u
a
l

Iteration

Generalized IFEAST
Basic IFEAST

Figure 4.17. Eigenvector residual versus iteration number for calculating the middle
10 eigenvalues of the generalized uniform problem with Simple IFEAST and Gener-
alized IFEAST. Both algorithms use 100 MINRES iterations for solving each linear
system at each outer IFEAST iteration. These results were obtained using m0 = 15
and nc = 4.

4.6.5 A nonsymmetric problem

We can use the Grcar problem as a demonstration of Generalized IFEAST for

nonsymmetric problems, and particularly for problems that are difficult to diagonal-

ize.

First, let us consider using the two-sided Generalized IFEAST with BiCGSTAB

to calculate eigenvalues that are at the edge of the spectrum. Two-sided Generalized

IFEAST is described in Algorithm 11 on page 190 in the appendix. Figure 4.18

(on page 140) shows the results of these experiments in 3 plots; each plot shows the

locations of the eigenvalues calculated with ZGGEV from LAPACK and the locations

of the estimated eigenvalues from IFEAST, for different values of nc and different

numbers of BiCGSTAB iterations at each IFEAST iteration.

Setting nc = 2 and using 30 BiCGSTAB iterations successfully identifies all of the

eigenvalues inside of the contour, and several of the eigenvalues outside of the contour.
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Setting nc = 4 and using 30 BiCGSTAB iterations fails to accurately identify most of

the eigenvalues inside the contour, and it identifies none of the eigenvalues outside of

the contour. The difference between these two cases is the locations of the quadrature

points: for nc = 2 the quadrature points are relatively far from the eigenvalues of the

matrix, whereas for nc = 4 one of the contour points is almost in the same location

as one of the eigenvalues. This is reflected in the largest condition number of the

IFEAST linear systems of equations, which is 2.8 × 109 for nc = 2 and 1.2 × 1015

for nc = 4. Successful convergence to the eigenvalues of interest can be recovered by

increasing the number of BiCGSTAB iterations to 50 in order to solve the IFEAST

linear systems more accurately.

Notably for this problem, the eigenvector residuals from the solutions given by

ZGGEV (which uses the QZ algorithm) are not particularly good12; the lowest one

is 1.2 × 10−5, whereas IFEAST is able to produce solutions that have a maximum

eigenvector residual of 5.8×10−6 (for eigenvalues inside the contour). The inaccuracy

of the ZGGEV solutions is visible in the lower-middle portion of the Grcar spectrum,

which should mirror the top-middle portion, but is instead somewhat jumbled. These

are challenging eigenvalues to calculate, and Generalized IFEAST struggles with them

as well. Figure 4.19 (on page 141) shows the results of using Generalized IFEAST to

calculate some of the eigenvalues in this region. IFEAST fails to converge even with

70 iterations of BiCGSTAB. In order for IFEAST to converge it is necessary to use

the more robust GMRES instead. The challenge here is partly the condition number

of the linear systems, which is 3.9 × 1012 at its largest, and partly the fact that we

are calculating interior eigenvalues, which are inherently more challenging. Although

IFEAST struggles with this problem, when it does converge its eigenvalue solutions

12ZGEEV, which uses QR iterations instead, would provide lower residuals; I provide comparison
with ZGGEV, however, because this is the routine that I use for solving Rayleigh-Ritz problems
inside of the IFEAST implementation that was used for these results.
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Figure 4.18. Plots showing the locations in the complex plane of the estimated eigen-
values for the Grcar matrix, along with the IFEAST search contour and quadrature
points, for different values of nc and numbers of BiCGSTAB iterations. Black dots
labeled ”Eigenvalues” indicate the eigenvalue estimates returned by ZGGEV. Sub-
space dimension m0 is 25. Plot markers labeled “Eigenvalues” are the locations of the
eigenvalues as calculated by ZGGEV with LAPACK. “Estimated Eigenvalues” are the
estimated eigenvalues from Generalized IFEAST that are inside the search contour,
and eigenvalues labeled as “spurious” failed to converge below a certain tolerance, in
this case 10−2. The eigenvector residual tolerance for all three calculations was set at
10−5; top left required 37 iterations to converge, bottom middle required 17 iterations
to converge, and top right did not converge in 60 iterations.
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are visibly more correct than the corresponding ZGGEV solutions. Even so, these

results suggest that larger problems of equal difficulty may be prohibitively difficult to

solve without preconditioners, because using large numbers of GMRES iterations for

large eigenvalue problems will usually be too time-consuming and memory-intensive.

Grcar matrix with BiCGSTAB and GMRES
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Figure 4.19. Plots of the estimated eigenvalues for the Grcar matrix from Gen-
eralized IFEAST and ZGGEV again, this time for a different search contour loca-
tion. Black dots labeled ”Eigenvalues” indicate the eigenvalue estimates returned by
ZGGEV, other eigenvalues are the estimates returned by IFEAST. Results are shown
using both BiCGSTAB and GMRES as linear system solvers, with m0 = 25 in both
cases. IFEAST with GMRES required 21 iterations to converge below 10−5 for the
eigenvector residual, and IFEAST with BiCGSTAB did not converge in 60 iterations.

4.6.6 A Practical Example

To give a sense of how IFEAST behaves in a real-world context, we can apply it

to the Ga41As41H72 problem. This is an eigenvalue problem that is derived from

electronic structure calculations, which use the eigenvalue and eigenvector solutions

to predict the optical, chemical, and electrical properties of molecules and atoms. The

usual task in a problem like this is to calculate some number of the lowest eigenvalues

and their corresponding eigenvectors, as these are the quantities that predict the

ground state properties of a physical system. In this case I calculate the 50 lowest

eigenvalues and corresponding eigenvectors of Ga41As41H72 such that the eigenvector

residual norms are below 10−10.
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Table 4.2 compares the number of iterations and amount of time required by the

FEAST algorithm for calculating the lowest 50 eigenvalues of Ga41As41H72, using

both IFEAST with BiCGSTAB and standard FEAST with the PARDISO direct

linear system solver [78]. Although IFEAST requires 5 more iterations than standard

FEAST does, it takes substantially less time to converge. The essential issue is that

the factorization of the shifted FEAST matrices requires a lot of time and a lot of

memory. It requires so much memory, in fact, that it was not possible to save and

reuse the shifted matrix factorizations for this problem.

These results were calculated on a computer with an 8 core Intel Xeon X5550

CPU, with 64 GB of RAM. Performance would likely be improved substantially by

using a computer with more RAM, or by running FEAST in parallel across multiple

compute nodes; this would make it possible, at the very least, to save and reuse matrix

factorizations. Even so, the problem with direct solvers that Table 4.2 highlights will

eventually arise regardless of the size and power of the computing system that is

being used, provided that one attempts to solve an eigenvalue problem that is large

enough.

Ga41As41H72 IFEAST-BiCGSTAB and FEAST-PARDISO Comparison

Iterations Time(s)

IFEAST-BiCGSTAB 15 4,982
FEAST-PARDISO 10 152,597

Table 4.2. Iteration counts and total calculation time for using FEAST to calculate
the lowest 50 eigenvalues of the Ga41As41H72 eigenvalue problem. Results are shown
for IFEAST implemented with BiCGSTAB, using 100 BiCGSTAB iterations at each
IFEAST iteration, and for standard FEAST implemented with the PARDISO direct
linear system solver. The value of m0 is 75 and nc = 4 (8 total quadrature points,
but I use Hermitian FEAST here, and so i only need to calculate half of the linear
systems).
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IFEAST is not the only alternative to standard FEAST. Another natural point of

comparison is a Krylov subspace method like Arnoldi13. We can also try to solve the

Ga41As41H72 problem with the ARPACK software package [49], which implements

Arnoldi with implicit restarts. If the maximum subspace dimension for ARPACK is

set to be 75 (thus requiring the same amount of memory for basis vector storage,

and the same size Rayleigh-Ritz problem, as IFEAST), the total number of required

matrix-vector products for IFEAST and ARPACK are

IFEAST matvec = 270,000, ARPACK matvec = 7,142.

From this perspective, IFEAST appears to require substantially more computational

work than does ARPACK. IFEAST, however, is a naturally parallelizable algorithm,

whereas ARPACK is inherently sequential. Table 4.3 shows the required number of

sequential matrix vector multiplications when IFEAST is run in parallel, using several

parallelization schemes. If we solve all of the right hand sides of the IFEAST linear

All Sequential Parallel in nc Parallel in m0 All Parallel
IFEAST matvec 270,000 67,500 3,600 900

Table 4.3. The number of required sequential matrix-vector multiplications for
IFEAST to converge on the 50 lowest eigenvalues of Ga41As41H72, for different
parallelization schemes. “Parallel in nc” refers to solving all of the shift linear sys-
tems of equations in parallel, and “Parallel in m0” refers to solving all of the right
hand sides for each linear system of equation in parallel.

systems of equations in parallel, then IFEAST requires fewer sequential matrix-vector

products than ARPACK does. If maximum parallelization is used - i.e. all of linear

systems of equations are solved in parallel, and all of the right hand sides for each

13In practice the Hermitian Lanczos algorithm would usually be more appropriate for a Hermitian
problem like Ga41As41H72, because it allows for the use of short recurrences. I use Arnoldi here
simply because the highly optimized ARPACK software allows for an easy comparison to a best-in-
class implementation of a Krylov algorithm, and I only care about examining the number of required
matrix-vector multiplications.
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linear system of equation are solved in parallel - then IFEAST requires substantially

fewer sequential matrix-vector products than ARPACK does.

The number of required matrix-vector products for Arnoldi can be reduced by

using a larger subspace dimension, and consequently fewer restarts. Table 4.4 (on page

144) shows the required number of matrix-vector products for ARPACK for different

values of the maximum subspace dimension. Although the number of matrix-vector

products can be reduced substantially, it can never be made as low as 900, which is

the number of sequential matrix-vector products that IFEAST requires when using

maximum parallelism.

Subspace Dimension 75 300 2100
ARPACK matvec 7142 3100 2100

Table 4.4. Total number of required matrix-vector products for ARPACK for different
maximum subspace dimensions.

IFEAST and Arnoldi both calculate approximate eigenvectors by implicitly using

polynomial filters; the difference between them lies in how they calculate their respec-

tive filters. Arnoldi minimizes the total number of matrix-vector multiplications that

are needed to calculate a suitably accurate filter, at the price of having to perform

all of its calculations sequentially. IFEAST uses substantially more matrix-vector

products in order to calculate a filter, but it does so in such a way that almost all of

those matrix-vector products can be done in parallel.
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CHAPTER 5

SPECTRAL SLICING WITH CONTOUR INTEGRATION
FOR NONLINEAR EIGENVALUE PROBLEMS

The previous chapters in this dissertation discussed variations of the FEAST al-

gorithm for solving linear eigenvalue problems. Solving linear eigenvalue problems

by using only matrix-vector multiplication led to a modification of the FEAST con-

tour integral that made it efficient for solving generalized eigenvalue problems, and

which allowed for the use of preconditioners. The same modification of the contour

integral that allows IFEAST to be used efficiently with generalized eigenvalue prob-

lems also allows the FEAST algorithm to be extended to solving nonlinear eigenvalue

problems [23].

5.1 Nonlinear Eigenvalue Problems

Nonlinear eigenvalue problems consist of finding vectors x and complex scalars λ

that satisfy [33,53,104]

T (λ)x = 0, (5.1)

where T (λ) is an n× n matrix-valued function called the “residual function”. Linear

eigenvalue problems Ax = λBx are the special case of nonlinear eigenvalue problems

for which T (λ) = λB − A. The vector x in Equation (5.1) is a right eigenvector; as

with linear eigenvalue problems, there are also left eigenvectors xL such that

xHL T (λ) = 0. (5.2)
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Any matrix-valued function T (λ) defines an eigenvalue problem, but some classes

of functions are more commonly studied than others. Quadratic eigenvalue problems

[97] are those where

T (λ) = λ2A2 + λA1 + A0, (5.3)

so-called because they are quadratic matrix polynomials in λ. This can be generalized

to k-degree polynomial eigenvalue problems [51], where

T (λ) =
k∑
i=0

λiAi. (5.4)

There are also analytic eigenvalue problems, wherein T (λ) is not a polynomial, but

it does have an infinite series expansion [104].

Nonlinear eigenvalue problems have applications that, in many cases, mirror those

of their linear counterparts. Where a linear eigenvalue problem can be used to analyze

the properties of a first-order time dependent system of equations, a polynomial

eigenvalue problem of degree k can be used to analyze the properties of a kth-order

time dependent system of equations [97]. Linear eigenvalue problems can be used for

dimensionality reduction by calculating the SVD of a data set, which is equivalent to

solving a total least squares problem; quadratic eigenvalue problems can be used for

dimensionality reduction by solving regularized total least squares problems [83]. The

resonant states of open quantum systems, in which the particle number can change

as particles enter or leave the system, can also be analyzed in terms of nonlinear

eigenvalue problems [81,82].

Nonlinear eigenvalue problems are somewhat more challenging to solve than linear

eigenvalue problems are, in part because they violate the expectations and intuitions

that are developed from considering linear eigenvalue problems. Whereas linear eigen-

value problems of dimension n can have, at most, n eigenvalues and eigenvectors,

nonlinear eigenvalue problems can have many more, potentially an infinite number.
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The eigenvectors of a nonlinear eigenvalue problem therefore generally do not form a

basis set, orthogonal or otherwise.

There is a biorthogonality relationship between the left and right eigenvectors, as

there is with linear eigenvalue problems, but it takes a different form. The left and

right eigenvectors are biorthogonal with respect to the scalar product [104]

(xL, xR)nl =

x
H
L
T (p(xR))−T (p(xL))

p(xR)−p(xL)
xR p(xR) 6= p(xL)

xHL T
′(p(xR))xR p(xL) = p(xL)

(5.5)

where T ′(λ) is the derivative of T (λ) and p(x) is called the Rayleigh functional. In

analogy to the linear eigenvalue problem case, the Rayleigh functional maps vectors

to scalars such that eigenvectors are mapped to their corresponding eigenvalues. The

Rayleigh functional p(x) is the solution to the equation

xHT (p(x))x = 0. (5.6)

For example, for a quadratic eigenvalue problem, the Rayleigh functional is a solution

to a quadratic equation.

There are a variety of methods for solving nonlinear eigenvalue problems, many of

which are based either on Newton-type iterations or on well-known methods of solving

linear eigenvalue problems [2,3,8,35,41,66,68,92,103,108]. Of particular interest for

this dissertation are Residual Inverse Iteration [40, 57] and Beyn’s method [9], both

of which are related to the nonlinear variation of the FEAST algorithm.

5.1.1 Residual Inverse Iteration

For the nonlinear eigenvalue problem, Shift and Invert Iteration takes the form

[57,66]

x̃(i+1) = T (z)−1T ′(λ(i))x̃(i), (5.7)
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where x̃(i) and λ̃(i) are an estimated eigenvector and eigenvalue pair at iteration i.

Equation (5.7) is derived by using Newton’s method to solve the original nonlinear

eigenvalue problem in Equation (5.1). For linear eigenvalue problems Equation (5.7)

is exactly equivalent to linear Shift and Invert Iteration.

In order for nonlinear Shift and Invert Iteration to work, the shift z must be set

to z = λ̃(i) at every iteration (making it equivalent to Rayleigh Quotient Iteration

in the linear case). If the shift z is constant by iteration, as it is with linear Shift

and Invert Iteration, then nonlinear Shift and Invert Iteration will fail to converge to

a correct solution of the nonlinear eigenvalue problem [57]. Changing the shift z at

each iteration is a potential downside to nonlinear Shift and Invert Iteration, because

it requires that the matrix T (z) be refactorized each time z changes in order to solve

linear systems of equations. The required number of factorizations may ultimately

be very high, and they must necessarily be performed sequentially.

Residual Inverse Iteration is an alternative to nonlinear Shift and Invert Iteration

that addresses this problem by approximating the derivative T ′(λ̃(i)) as

T ′(λ̃(i)) ≈ T (z)− T (λ̃(i))

z − λ̃(i)
, (5.8)

Substituting Equation (5.8) into Equation (5.7) produces

x̃(i+1) =
I − T (z)−1T (λ̃(i))

z − λ̃(i)
x̃(i), (5.9)

which is the procedure that defines Residual Inverse Iterations [57]. The denominator

z − λ̃(i) is always omitted in practice, since the updated vector x̃(i+1) is normalized

after calculating it.

Unlike nonlinear Shift and Invert Iteration, Residual Inverse Iteration will still

converge to the correct solutions of the nonlinear eigenvalue problem in Equation

(5.1) when z is set to a constant value near where one expects to find eigenvalues.
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When z is constant then iterations of this form converge only linearly, as opposed

to quadratically for Equation (5.9) [33], but they have the benefit that only a single

matrix factorization needs to be calculated for T (z).

The transition from nonlinear Shift and Invert Iteration to Residual Inverse Iter-

ation with a constant shift is, notably, essentially the same mathematical trick that

leads from Rayleigh Quotient Iteration to Simplified Jacobi-Davidson Iteration (see

Section 2.3.7 on page 51), from Inexact Shift and Invert Iteration to Generalized Inex-

act Shift and Invert Iteration (see Section 2.3.6 on page 45), and from Basic IFEAST

to Generalized IFEAST (Section 4.3 on page 82). And so, naturally, we will also use

it as the basis for Nonlinear FEAST.

5.1.2 Beyn’s Method

The solution of nonlinear eigenvalue problems stands to benefit from spectral slic-

ing (see Section 2.4.2 on page 57) in much the same way as the solution of linear

eigenvalue problems does. By selectively calculating the eigenvectors whose eigenval-

ues lie in a specific region in the complex plane, one can efficiently calculate large

numbers of eigenpairs in parallel. Spectral slicing also offers the possibility of alleviat-

ing additional problems that are unique to nonlinear eigenvalue problems, specifically

the difficulty of choosing a good initial guess for the eigenvectors of interest, and

the challenge of calculating groups of multiple eigenpairs whose eigenvalues are in

close proximity to each other, but without repeatedly converging to the same eigen-

pair [104].

As with linear eigenvalue problems, the Cauchy integral formula is an attractive

choice for a spectral slicing tool. Applying the Cauchy integral formula to the residual

function T (λ) for a contour C that encloses m distinct eigenvalues1 produces [9, 10]

1Relations like this also exist for eigenvalues with multiplicity greater than one, but they are
more complicated and less easy to compare with the linear case; I consider only eigenvalue problems
of multiplicity one for the sake of simplicity.
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1

2πi

∮
C
zkT−1(z) dz = XRΛkXH

L , (5.10)

where XR and XL are n×m matrices whose column vectors are the m right and left

eigenvectors with eigenvalues inside C, and Λ is a diagonal matrix whose diagonal

entries are the corresponding eigenvalues.

When the integral in Equation (5.10) is evaluated exactly then the result,

XRΛkXH
L , projects any vector on to a subspace spanned by only the right eigenvectors

XR that correspond to eigenvalues that are inside C. It is thus tempting to say that

the right hand side of Equation (5.10) is a spectral projector for the eigenvectors of

interest when k = 0, which would allow us to use the standard FEAST algorithm

for nonlinear eigenvalue problems directly, but this is incorrect. The right and left

eigenvectors XR and XL are not biorthogonal, meaning that XH
L XR 6= I, and so

the diagonal values of Λk do not act as a filter for a vector that is expressed as a

linear combination of the column vectors of XR. In fact, the right eigenvectors as a

whole do not form a basis set, and the approximation of the integral in (5.10) with

a quadrature sum does not form an approximate spectral projector, as it does in the

linear case. For these reasons the filtering approach of the linear FEAST algorithm

does not work for nonlinear eigenvalue problems.

It is possible, none the less, to use the contour integration in Equation (5.10) to

find accurate approximations of the eigenvalues in C and corresponding eigenvectors

[2, 9, 92, 108]. A simple and effective approach is to use Beyn’s method [9]. Rather

than taking an iterative filtering approach, as the linear FEAST algorithm does,

Beyn’s method uses a single, high-precision numerical integration to approximate

Equation (5.10) for both k = 0 and k = 1. The results of these integrations are

used to form a reduced-dimension linear eigenvalue problem whose solutions are the

nonlinear eigenvalues and eigenvectors of interest. Beyn’s method is summarized in

Algorithm 9 (on page 151).
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Algorithm 9 Beyn’s Method for Nonlinear Eigenvalue Problems

Inputs:

• n× n matrix-valued function T (λ),

• Contour C in the complex plane that encloses the search region for eigenvalues,

• Collection of nc quadrature weights and shifts (ωk, zk) for performing integrations over C,

• Overestimate m0 for the number of eigenvalues that are inside C,

• n×m0 matrix X̃(0) whose column vectors are (possibly random) initial guesses for the eigen-
vectors of T (λ) whose, eigenvalues are inside C.

Do:

1. Calculate the numerical integrations

Q0 =

nc∑
k=1

ωkT (zk)−1X̃(0) (5.11)

Q1 =

nc∑
k=1

ωkzkT (zk)−1X̃(0) (5.12)

by solving nc linear systems of equations.

2. Calculate the Singular Value Decomposition Q0 = USV H

3. Form the m0 ×m0 matrix A = UHQ1V S
−1

4. Calculate the eigenvalue decompsition A = XaΛaX
−1
a

5. Form the approximate eigenvalues and eigenvectors of T (λ)

X̃ = UXa (5.13)

Λ̃ = Λa (5.14)

Outputs: diagonal matrix Λ̃ of approximations for the eigenvalues inside C, and approximations
for the corresponding eigenvectors X̃.

The summary of Beyn’s method that is presented in Algorithm 9 is a simplified

version of the original in [9]. In his original paper, Beyn suggests an implementation

of the algorithm that does not require m0 to be an overestimate for the number of

eigenvalues inside C. Instead, the number of column vectors in X̃(0) is successively

increased from some initial value until the rank of the matrix Q0 begins to drop below

its number of column vectors, based on some user-set tolerance for its singular values.

Beyn’s method has the advantages that we would hope to find in a spectral slicing

algorithm: it can simultaneously calculate multiple eigenvectors whose eigenvalues
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are in specific regions of the complex plane, using a random initial guess. Its most

expensive computational task is the solution of nc linear systems of equations in Step

1 of Algorithm 9, and these linear systems of equations can all be calculated in parallel

if a sufficient amount of parallel computing power is available.

Beyn’s method has the potential disadvantage, however, that the accuracy of its

solutions depends entirely on the accuracy with which it approximates the Cauchy

integral in Equation (5.10). The number of quadrature points nc that is necessary for

achieving sufficiently low eigenvector residual norms can potentially be very large. A

truly efficient implementation must use an adaptive integration quadrature method,

so that if one uses a value of nc that is not large enough then the integration can

be updated without having wasted all of the previous computational work. Perhaps

most importantly, the linear systems of equations that need to be solved in order to

implement Step 1 of Algorithm 9 must be solved to high accuracy in order to ensure

that the contour integration is sufficiently accurate. This limits Beyn’s method to

solving small or medium-sized nonlinear eigenvalue problems, where the linear systems

of equations can be solved exactly by using matrix factorization methods.

5.2 FEAST for Nonlinear Eigenvalue Problems

The framework of the FEAST algorithm offers an attractive alternative for using

spectral slicing with nonlinear eigenvalue problems. The FEAST algorithm, too, takes

advantage of the properties of Cauchy integrals, which allows it to simultaneously

calculate multiple eigenvectors whose eigenvalues lie in a specific region in the complex

plane using a random initial guess. FEAST is also a naturally iterative algorithm; if

the eigenvectors that are produced by performing a single numerical integration are

not sufficiently accurate, then they can be systematically refined by performing yet

another numerical integration using exactly the same quadrature weights and shifts as

the first integration. FEAST can thus save and reuse matrix factorizations. Because
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it is naturally iterative, it can also be used when the linear systems of equations can

only be solved approximately, making it an appropriate algorithm for solving large

eigenvalue problems.

As mentioned in Section 5.1.2, the Cauchy integral for nonlinear problems is

1

2πi

∮
C
T−1(z) dz = XRX

H
L , (5.15)

where XR and XL are n × m matrices whose column vectors are the eigenvectors

corresponding to the m distinct eigenvalues inside the closed contour C in the complex

plane. An approximation of this integral can not be used as a spectral projector, unlike

the linear case, and so we can not simply replace the linear resolvent (zI−A)−1 from

the linear FEAST algorithm with T (z)−1 to produce a nonlinear FEAST algorithm.

Instead, we can arrive at a nonlinear version of the FEAST algorithm by noting

that the linear FEAST algorithm can be interpreted as a generalization of Shift and

Invert Iteration that uses multiple shifts. The nonlinear version of Shift and Invert

Iteration uses the eigenvector update rule

x̃(i+1) = T (z)−1T ′(λ(i))x̃(i), (5.16)

We would then expect a nonlinear FEAST contour integral (for a single vector) to be

something like

q =
1

2πi

∮
C
T (z)−1T ′(λ(i))x̃(i)dz, (5.17)

where the integration contour C encloses an eigenvalue of interest.

In practice, however, Equation (5.17) does not work. Shift and Invert Iteration

fails to converge to a correct solution when the shift z is a constant, and the integral in

Equation (5.17) simply amounts to Shift and Invert Iteration with an infinite number

of constant shifts.
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We can derive a viable contour integral for a nonlinear version of FEAST by

altering Equation (5.17) using the same approximation that is used to derive Residual

Inverse Iteration from nonlinear Shift and Invert Iteration, i.e.

T ′(λ̃(i)) ≈ T (z)− T (λ̃(i))

z − λ̃(i)
. (5.18)

Inserting this into Equation (5.17) produces

q =
1

2πi

∮
C

(
I − T (z)−1T (λ̃(i))

)
x̃(i) 1

z − λ̃(i)
dz (5.19)

The block version of this integral is

Q =
1

2πi

∮
C

(
I − T (z)−1T (Λ̃(i), X̃(i))

)
(zI − Λ̃(i))−1 dz (5.20)

where I use the notation T (Λ̃(i), X̃(i)) is to indicate the residual function T (̃λ) applied

to each column of X̃(i) individually at the corresponding approximate eigenvalue λ̃(i).

For linear eigenvalue problems Equation (5.20) is exactly equivalent to the integral

that is used in the standard FEAST algorithm, and indeed Equation (5.20) is the

form of the Cauchy integral that is used for implementing Generalized IFEAST (see

Section 4.3 on page 82). As we will see in the following sections, it produces exactly

the behavior that we would expect of the FEAST algorithm when applied to nonlinear

eigenvalue problems as well.

The Nonlinear FEAST algorithm is summarized in Algorithm 10. It is largely

the same as the linear Generalized Inexact FEAST algorithm, with the contour in-

tegration having been generalized to accommodate nonlinear eigenvalue problems of

any form. There is one important difference between the two, however, which is the

Rayleigh-Ritz step.
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Algorithm 10 NLFEAST for T (λ)x = 0

Inputs:

• Matrix function T (λ) ∈ Cn×n, λ ∈ C

• Initial (possibly random) guess X̃(0) ∈ Cn×m0 for the search subspace (initial set of estimated
eigenvectors)

• Closed contour C, inside of which fewer than m0 eigenvalues are expected to be found

• Set of nc quadrature nodes and weights (zj , ωj) for performing numerical integration over the
contour C

• Stopping tolerance ε for eigenvector residuals

Step 0. Set the search subspace Q = X̃(0), orthonormalize column vectors of Q

For each iteration:

Step 1. (Rayleigh-Ritz step) Solve the projected nonlinear eigenvalue problem

QHT (λ)Qy = 0, (5.21)

for the approximate eigenpairs (λ,Qy).

Step 2. Select the m0 approximate eigenpairs (λi, Qyi) whose eigenvalues λ are closest to the
interior of the contour C, and store these as Λ, and X, where the columns of X are Qyi and
the diagonal entries of Λ are λi, i.e.

Λ = diag(λ1, λ2, ..., λm0
), X = [Qy1, Qy2, ..., Qym0

]. (5.22)

Step 3. If ||T (λi)Qyi|| ≤ ε for all λi inside C STOP and return X and Λ; otherwise continue.

Step 4. Update the search subspace by performing the numerical integration

Q =
1

2πi

∮
C

(
X − T−1(z)T (X,Λ)

)
(zI − Λ)−1dz (5.23)

by using a quadrature rule and solving linear systems:

Q =

nc∑
j=1

ωj

(
X − T−1(zj)T (X,Λ)

)
(zjI − Λ)−1. (5.24)

Step 5. Orthonormalize the column vectors of the new search subspace Q (using e.g. the QR
decomposition), and go to Step 1.

155



In the linear FEAST algorithm - either standard FEAST or IFEAST - eigenvec-

tors and eigenvalues are approximated by solving a smaller eigenvalue problem of

dimension m0, which provides m0 new estimates for eigenvalues and eigenvectors. If

the residuals of these approximate eigenpairs are too large then they are used as the

initial guess for another FEAST iteration.

The NLFEAST algorithm, in turn, approximates eigenvalues and eigenvectors by

solving a nonlinear eigenvalue problem of dimension m0. A nonlinear eigenvalue prob-

lem of dimension m0, however, will generally have more than m0 solutions. One must

then select only m0 of the resulting solutions to be used as initial guesses for the next

NLFEAST iteration. Selecting these solutions incorrectly will prevent NLFEAST

from converging to the desired eigenpairs.

The following subsections describe two effective and straight-forward methods for

solving the projected nonlinear eigenvalue problem of NLFEAST and selecting the

correct m0 solutions to return for the next iteration.

5.2.1 Polynomial Linearization

The first method is particular to polynomial eigenvalue problems, and it consists of

using linearization in order to calculate all of the solutions of the projected polynomial

eigenvalue problem. The linearization of an n dimensional polynomial eigenvalue

problem of degree k is a linear (n× k)−dimensional eigenvalue problem that has the

same eigenvalues as the original matrix polynomial, and whose eigenvectors are related

to the eigenvectors of the matrix polynomial [29]. For example, the linearization of

the quadratic eigenvalue problem

(λ2A2 + λA1 + A0)x = 0 (5.25)

is the linear, generalized eigenvalue problem
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λ
A2 0

0 I

+

A1 A0

−I 0


 y = 0. (5.26)

The eigenvalues λ that are solutions to Equation (5.25) are the same as the eigenvalues

λ that are solutions to Equation (5.26). The eigenvector solutions y of Equation (5.26)

are related to the eigenvector solutions x of Equation (5.25) (for same eigenvalue λ)

by

y =

λx
x

 . (5.27)

Thus, when using NLFEAST to solve polynomial eigenvalue problems, we can directly

solve the projected polynomial eigenvalue problem of the Rayleigh-Ritz step by using

a linearization like Equation (5.26).

Solving a dimension m0, degree k polynomial eigenvalue problem by using lin-

earization produces m0 × k solutions, of which we need to select m0 to return for

the next iteration. An effective heuristic for selecting the desired solutions from the

linearization is to select the m0 eigenpairs whose eigenvalues are closest to being in-

side of the search contour. For a circular contour this simply means selecting the

m0 eigenpairs whose eigenvalues are closest to the center of the contour. It is worth

emphasizing that this procedure does not involve considering the eigenvector residu-

als of the solutions that are produced by solving the projected polynomial eigenvalue

problem. If one selects the solutions with the lowest eigenvector residuals, then the

approximate solutions to the polynomial eigenvalue problem may converge to eigen-

pairs whose eigenvalues are outside of the search contour, or they may not converge

at all.

5.2.2 Beyn’s Method

Using linearization for solving the projected nonlinear eigenvalue problem in the

Rayleigh-Ritz step of NLFEAST will only work for polynomial eigenvalue problems
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and, moreover, it will only work when the subspace dimension m0 and the polynomial

degree k are such that an m0×k dimension linear eigenvalue problem is not too large

to solve. A different approach is needed for general nonlinear eigenvalue problems.

In principle, any method for solving general nonlinear eigenvalue problems can

be used for solving the projected nonlinear eigenvalue problems in the NLFEAST

Rayleigh-Ritz step. Most methods of solving nonlinear eigenvalue problems appear

to be inappropriate or difficult to use for our purposes, though, because many of them

operate on only a single vector at a time, are specialized for certain classes of problems,

and/or can not be used to identify eigenvalues in specific regions in the complex plane.

Instead, a simple and obvious choice for solving the projected nonlinear eigenvalue

problems of NLFEAST is to simply to use Beyn’s method, which can naturally be

used to calculate exactly m0 eigenpairs whose eigenvalues are near or inside of a given

search contour in the complex plane.

Beyn’s method synergizes naturally with the NLFEAST algorithm. The potential

drawback of Beyn’s method is that a potentially large number of matrix factorizations

may be required for it to work well. This is not an obstacle when the dimension of

the nonlinear eigenvalue problem under consideration is very small, as it ought to be

for the projected nonlinear eigenvalue problems of NLFEAST. By using NLFEAST

as the outer iteration, and Beyn’s method as the inner iteration, we can combine the

simplicity and effectiveness of Beyn’s method with the efficiency of NLFEAST.

5.3 Examples

This section describes the solution of several example problems from the Non-

linear Eigenvalue Problem Collection [7] in order to demonstrate the properties of

NLFEAST, and specifically to demonstrate that its behavior largely matches that of

the linear FEAST algorithm. Three kinds of examples are considered that represent a
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range of prospective nonlinear eigenvalue problems: a quadratic polynomial problem,

and quartic polynomial problem, and a general nonlinear problem.

5.3.1 Rail Track Oscillations

The oscillations of long lengths of railroad track can be modeled by quadratic

eigenvalue problem of the form [7,47]

T (λ) = λ2I + λ(I + A2) + A2 + A+ I, (5.28)

where A is an n× n circulant matrix with first row

[−2, 1, 0, . . . , 0, 1]. (5.29)

For any dimension n, the eigenvalues of the quadratic eigenvalue problem (5.28) are

given by the solutions to the quadratic equation

λ2 + λ(1 + µ2
k) + (1 + µk + µ2

k) = 0, (5.30)

where µk = −4 sin2((k− 1)π/n), 1 ≤ k ≤ n are the eigenvalues of the matrix A. The

eigenvalues occur in complex conjugate pairs, and as a result the real eigenvalues (of

which there are many) have multiplicity 2.

This example provides a convenient demonstration of convergence for larger prob-

lem sizes. Let us consider the case when the dimension of A is n = 50, 000, and

calculate the 250 eigenvectors corresponding to eigenvalues in the interval

[−7.1192,−6.9650] by using NLFEAST with a circular contour centered at -7.0421

with radius 0.0771. The locations of the eigenvalues and the integration contour are

illustrated in Figure 5.1.

Figure 5.2 shows NLFEAST convergence trajectories for various values of nc and

m0. These results are calculated by implementing NLFEAST using linearization for
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Rail Track Oscillation Spectrum
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Figure 5.1. Eigenvalue locations and search contour for the Rail Track Oscillation
problem.

the Rayleigh-Ritz step. These results show that, as with linear FEAST, increasing

either the number of integration quadrature points or the dimension of the subspace

improves the rate of convergence. The reported NLFEAST residual is the largest

residual for the approximate eigenvectors associated with eigenvalues located inside

of the integration contour, excluding spurious eigenvalues. A few spurious eigenvalues

are excluded by only considering eigenvector residuals that are below 10−2 to be inside

of the integration contour. In all cases this results in the correct number of eigenvalues

being identified inside of the contour.

As a point of comparison we can also use Beyn’s method to calculate the same 250

eigenvalues using the same integration contour. Table 5.1 shows the final eigenvector

residuals for the eigenvectors corresponding to eigenvalues inside of the integration

contour, for various subspace dimensions and various numbers of integration quadra-

ture points. As with the NLFEAST example, spurious eigenvalues are excluded by

considering only eigenvectors with residuals below 10−2 as being correct eigenvec-

tors, rather than spurious ones. This means that, when nc = 32 and m0 = 500 and
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Rail Track Oscillation Convergence
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Figure 5.2. Eigenvector residual versus FEAST iteration for the Rail Track Oscilla-
tion problem, for several values of nc and m0. The left plot shows results for various
values of m0 with nc = 8, and the right plot shows results for various values of nc
with m0 = 300.

the eigenvector residual is reported as 9.4×10−1, none of the 500 eigenvectors have

a residual below 10−2, and thus all of the approximate eigenvectors are considered

to be incorrect. All of the results in Table 5.1 with residuals below 10−2, however,

identified the correct number of eigenvalues inside of the contour.

Beyn’s Method Residuals for Rail Oscillations

nc = 8 nc = 32 nc = 64 nc = 128

m0 = 300 2.4e-1 1.0e-2 3.8e-3 4.2e-9
m0 = 500 9.4e-1 3.8e-8 2.5e-12 6.9e-12

Table 5.1. Final eigenvector residuals when using Beyn’s method to calculate the 250
eigenvalues in the interval (−7.1192,−6.9650) for Equation (5.28), with n = 50, 000,
subspace dimension m0 and number of quadrature points nc.

The results in Table 5.1 show that Beyn’s method and NLFEAST appear to

require similar amounts of computational work in order to calculate a solution. For

m0 = 500 and nc = 8, for example, NLFEAST requires 6 iterations to converge to

approximately 10−11, which amounts to a total of 500× 8× 6 = 24, 000 linear system

solutions with a single right hand side. Beyn’s method, for m0 = 500, requires
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nc = 64 quadrature points in order to converge to an eigenvector residual of 10−12,

which corresponds to a total of 500 × 8 × 8 = 28, 500 linear system solutions with a

single right hand side.

The difference between the two lies in how the computational work is done. Beyn’s

method can, in principle, solve all of its associated linear systems of equations in par-

allel, where as NLFEAST can solve at most m0×nc linear systems of equations (each

with one right hand side) in parallel. The increased parallelism of Beyn’s method

comes at the price of having to calculate a larger number of matrix factorizations;

in the aforementioned example, Beyn’s method required 64 matrix factorizations,

whereas NLFEAST required 8. The implicit assumption in this comparison is that

an adequate number of quadrature points has been selected for using Beyn’s method;

in practice Beyn’s method should use an adaptive integration scheme in order to be

able to increase the number of quadrature points when the integration accuracy is

inadequate, whereas NLFEAST can simply perform additional iterations to refine an

unconverged solution.

5.3.2 Butterfly Problem

As an example of a polynomial eigenvalue problem with degree larger than two,

we can consider the following quartic problem

P (λ)x = (λ4A4 + λ3A3 + λ2A2 + λA1 + A0)x = 0.

Eigenvalue problems of this form can come from, for example, discretizations of the

Orr-Sommerfeld equation [12, 96]. The Orr-Sommerfeld equation arises from a lin-

earization of the incompressible Navier-Stokes equation in which the perturbations of

the pressure and velocity are assumed to be periodic in time.

To illustrate the behavior of the nonlinear FEAST algorithm, we can solve a

simple example of a quartic eigenvalue problem provided by the NLEVP collection [7]:
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the butterfly problem (so-called because the distribution of its eigenvalues in the

complex plane resembles the shape of a butterfly). The butterfly problem is a 64×64

structured quartic matrix pencil with 256 eigenvalues, the construction of which is

described in [52]. To solve this problem I use the NLFEAST algorithm to calculate

the eigenvalues that are located inside of some arbitrarily chosen region C in the

complex plane, with Beyn’s method used for the Rayleigh-Ritz step. This problem is

illustrated in Figure 5.3. I calculate 13 eigenvalues inside of the indicated region by
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Figure 5.3. Eigenvalue locations and search contour for the butterfly problem.

using a subspace of dimension m0 = 15, using several different numbers of quadrature

nodes nc. The largest (at each iteration) eigenvector residual associated with the

eigenvectors whose eigenvalues are inside the search region C is plotted in Figure

5.4. Using nc = 8 quadrature nodes, NLFEAST does not converge at all. Steady

convergence can be achieved by using nc = 32 quadrature nodes, and the rate of

convergence increases with increasing values of nc. For nc = 128, convergence to the

desired tolerance of 10−10 occurs in only five (5) NLFEAST iterations. Because the

linear system for each individual quadrature node is independent of the linear systems
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associated with all the other quadrature nodes, the rate of convergence of NLFEAST

can be systematically improved by using additional parallel processing power to solve

a larger number of linear systems simultaneously in parallel.

Butterfly Problem Convergence
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Figure 5.4. Eigenvector residual versus iteration number for several values of nc
when applying NLFEAST to the butterfly problem.

Figure 5.5 shows the NLFEAST-estimated eigenvalues for the experiments from

Figure 5.4 that use nc = 8 and nc = 32 quadrature points in the numerical integration.

The nc = 8 case is not able to converge because the integration is not sufficiently

accurate to achieve convergence of the two eigenvalues that are well-separated from

the main cluster of eigenvalues; using nc = 32 allows NLFEAST to converge for all

of eigenvalues inside the search region C.

5.3.3 Hadeler Problem

As an example of a general nonlinear eigenvalue problem, we can consider the

“Hadeler” problem [7,36,66]:

T (λ) = (eλ − 1)B1 + λ2B2 −B0, (5.31)
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Butterfly Problem Results
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Figure 5.5. Locations of calculated approximate eigenvalues for the butterfly problem,
for two different values of nc. Correct eigenvalues are distinguished from spurious
ones by different plot markers. Spurious eigenvalues indicate eigenvalues that have
not converged below a “bare minimum” threshold, which in this case is 10−2.
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with the matrix elements of B0, B1, and B2 being

B0 = b0I, B1 = (b
(1)
jk ), B2 = (b

(2)
jk ) (5.32)

b
(1)
jk = (n+ 1−max(j, k))jk, b

(2)
jk = nδjk + 1/(j + k), (5.33)

where n is the dimension of the eigenvalue problem and b0 is a parameter that we set

as b0 = 100 (following reference [66]). For this example I will set n = 200.

The eigenvalues of (5.31) are plotted in Figure 5.6. All of the eigenvalues are real;

there are n eigenvalues less than zero, and n eigenvalues greater than zero. I calculate

5 eigenvalues in an arbitrarily-chosen region on the right half of the spectrum, using

NLFEAST with Beyn’s algorithm for performing the Rayleigh-Ritz step. Figure 5.7

shows plots of the eigenvector residual versus the NLFEAST iteration number, for

various values of the parameters nc and m0. Figure 5.8 shows the search contour and

resulting estimated eigenvalues for m0 = 10 and nc = 8.

Hadeler Problem Spectrum

-0.1
-0.05

 0
 0.05

 0.1

-50 -40 -30 -20 -10  0

Im
a
g

in
a
ry

Real

Eigenvalues

Figure 5.6. Eigenvalue spectrum for the Hadeler problem.

As with the previous polynomial eigenvalue problem examples, and as with the

linear variation of FEAST, improving the contour integration accuracy by increasing

nc improves the rate of convergence of the NLFEAST algorithm for the Hadeler
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Hadeler Problem Convergence
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Figure 5.7. Eigenvector residual versus iteration number for solving the Hadeler
problem with NLFEAST. Five eigenvalues in the middle of the left half of the spectrum
are calculated. The left plot shows results for several values of nc, with m0 = 10. The
right plot shows results for several values of m0, with nc = 8.

problem. It is much less sensitive to changing the dimension of the subspace m0

however; increase in m0 provide only modest improvements in the rate of convergence

of the NLFEAST algorithm.
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Hadeler Search Contour and Results
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Figure 5.8. Search contour and calculated eigenvalues for the Hadeler problem.
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CHAPTER 6

CONCLUSION

This dissertation describes modifications of the standard FEAST eigenvalue algo-

rithm that allow it to be applied to new and more challenging problem domains. The

IFEAST algorithm is a variation of FEAST that can be used for solving linear eigen-

value problems when it is inefficient or impossible to directly solve linear systems of

equations. The NLFEAST algorithm is a variation of FEAST that can be applied to

general, nonlinear eigenvalue problems. These two variations of FEAST are, perhaps

surprisingly, fundamentally the same algorithm, specialized for particular use cases.

The theory behind IFEAST has been reasonably well-developed. We can show

that IFEAST can be expected to converge linearly, and there are mathematical jus-

tifications for believing that it is an efficient method for solving both standard and

generalized linear eigenvalue problems. For the standard eigenvalue problem we can

further interpret the behavior of IFEAST in terms of the action of polynomial filters,

which clarifies much of its behavior. IFEAST is less easily parallelized than the stan-

dard FEAST algorithm is, and this fact is largely due to the natural limitations of

using polynomial filters for solving eigenvalue problems. Even so, IFEAST is much

more naturally parallelizable than conventional Krylov subspace-based eigenvalue al-

gorithms are; if enough parallel computing power is available then this fact can be

used to solve eigenvalue problems more quickly than would otherwise be possible with

many standard algorithms.

It seems likely that there is not a substantial amount of additional room for fur-

ther improvement in the performance of eigenvalue solving algorithms that operate in
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the mode of IFEAST. The restriction that only matrix-vector multiplication should

be used as the primary computational tool is a severe one, and it places obvious

and inescapable limitations on the effectiveness of any algorithm: one is necessarily

limited to what can be accomplished with polynomial filters. Any highly effective

algorithm for solving eigenvalue problems under these constraints will necessarily

resemble Jacobi-Davidson, IFEAST, or direct polynomial filtering, combined (per-

haps) with some kind of additional augmented subspace method. This serves to

reinforce a truism that is frequently mentioned in textbooks, which is that one’s ef-

fort is better-spent on developing effective preconditioners, rather than exhaustively

testing algorithms to find the one that is most effective for a specific problem at

hand. Effective preconditioners are the only way to escape the limitations imposed

by polynomial-based algorithms1.

The theory behind NLFEAST is much less well-developed. This is also true, to a

certain extent, for Generalized IFEAST; the Generalized IFEAST algorithm can not

be easily interpreted in terms of polynomial filters when it is applied to generalized

eigenvalue problems, and in that situation it would seem to have more in common

with the nonlinear eigenvalue problem case. Although we have sound justifications for

the particular form that the NLFEAST algorithm takes, as well as numerical results

to back it up, a thorough understanding of how the algorithm works is still lacking.

Of particular interest is the issue of why the NLFEAST contour integral appears to

be so effective. Residual Inverse Iteration, which is a very similar algorithm, has a

satisfying interpretation in terms of Newton methods, but that logic does not seem

to extend to using multiple shifts or contour integration in an obvious way. A good

explanation for why contour integration helps NLFEAST to converge quickly would

1One might imagine using some sort of more exotic method of computation, like neural networks,
for solving eigenvalue problems, but the take-away lesson is still the same: a neural network that
is trained to solve a particular kind of eigenvalue problem ultimately amounts to a sophisticated
preconditioner.
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presumably offer a new perspective regarding why the original FEAST algorithm

works, and would also help to clarify why the Generalized IFEAST algorithm is so

effective for generalized eigenvalue problems. These unresolved theoretical matters

are left for future work.
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APPENDIX A

SUBSPACE ITERATIONS CONVERGENCE

This appendix shows how to derive the upper bound on the eigenvector error for

Inexact FEAST

||xj − q̃j|| ≤
(
|γm0+1|+ αj∆

|γj|

)
||xj − qj||, (A.1)

which shows that we can expect the FEAST algorithm to converge linearly even

when its associated linear systems of equations are solved inexactly.

The first section reviews the analysis of standard Subspace Iteration and its ap-

plication to the FEAST algorithm. Section A.2 then shows how this analysis can

be adjusted to accommodate for errors in matrix multiplication, which allows us to

account for the inexact solution of the FEAST linear systems of equations. Section

A.2 discusses the analysis of IFEAST for standard eigenvalue problems, and Section

A.3 adjusts this analysis for generalized eigenvalue problems.

A.1 Standard Subspace Iterations

I will first recount the treatment of the convergence of standard subspace iterations

in Section 2 of [74], before showing how this treatment can be modified to describe

the convergence behavior of FEAST and IFEAST.

With standard subspace iterations, we want to find the eigenvectors corresponding

to the m0 largest-magnitude eigenvalues of a matrix A ∈ Cn×n. This is done by

repeatedly multiplying an approximate eigenvector subspace basis Q ∈ Cn×m0 by
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A, and reorthogonalizing the column vectors of Q in between multiplications (using

Rayleigh-Ritz, for example). The usual method for proving convergence is to show

that, for every desired eigenvector xj, 1 ≤ j ≤ m0, an upper bound on the error of

its estimation in the subspace R(Q) goes down after each subspace iteration, where I

denote the range of the column vectors of Q byR(Q). This can be done by judiciously

choosing a vector qj ∈ R(Q) that is close to xj and showing that there is always a

different vector q̃j ∈ R(AQ) that is closer to xj than qj is.

Let X1 ∈ Cn×m0 be the matrix whose column vectors are the eigenvectors that

we want to find, and X2 ∈ Cn×(n−m0) be the matrix composed of the other n −m0

eigenvectors. Then the vector qj is usually chosen to be the vector in R(Q)

qj = wj + xj, (A.2)

where wj ∈ R(X2). Such a vector qj ∈ R(Q) is guaranteed to exist and be unique [74]

provided that rank(PQ) = rank(X1), where P is any projector on to R(X1). The

vector q̃j is then chosen to be

q̃j =
1

λj
Aqj, (A.3)

where λj 6= 0 is the eigenvalue corresponding to the eigenvector xj. The difference

vector w̃j = q̃j − xj is then also an element of the subspace spanned by X2, a fact

that we can use to relate ||wj|| to ||w̃j|| i.e.

q̃j =
1

λj
Aqj =

1

λj
(Axj + Awj) = xj +

1

λj
Awj, (A.4)

w̃j = q̃j − xj =
1

λj
Awj, (A.5)

||w̃j|| =
1

|λj|
||Awj|| ≤

|λm0+1|
|λj|

||wj||, (A.6)
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where we know that ||Awj|| ≤ |λm0+1|||wj|| because wj is in the subspace spanned by

X2, the (n−m0) eigenvectors corresponding to the eigenvalues with magnitudes less

than or equal to |λm0+1|. Equation (A.6) shows that an upper bound on the error

for the estimation of xj in the subspace spanned by Q always decreases when Q is

multiplied by A, and that it does so at a rate that is linear and proportional to the

ratio between |λm0+1| and |λj|. Thus, subspace iterations are guaranteed to converge

faster when the subspace basis Q has a larger dimension and when the eigenvalues of

A are more separated.

A.2 Inexact FEAST

We can find a similar upper bound with which to analyze the convergence of

IFEAST by following a similar line of reasoning. Standard FEAST can be interpreted

as a subspace iteration that uses the matrix ρ(A) instead of the original matrix A,

A −→ ρ(A) =
nc∑
k=1

ωk(zkI − A)−1. (A.7)

Then the upper bound (A.6) becomes

||w̃j|| ≤
|γm0+1|
|γj|

||wj||, (A.8)

where γj is the jth largest eigenvalue of ρ(A), with corresponding eigenvector xj. The

γj with the largest magnitudes correspond to the ‘wanted’ eigenvalues of A that lie

inside of the FEAST integration contour. Making the FEAST quadrature rule more

accurate by increasing the number of quadrature points nc has the effect of making

the ratio |γm0+1|/|γj| smaller, which is how standard FEAST can improve its rate of

convergence by solving more linear systems.
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Equation (A.8) requires modification when the linear systems of FEAST are solved

inexactly. In particular, if we apply ρ(A) by solving the linear systems

1

ωk
(zkI − A)yk,j = qj, ∀k = 1, . . . , nc, ∀j = 1, . . . ,m0 (A.9)

such that there is some error sk,j in the solution of the linear system, i.e.

sk,j = ωk(zkI − A)−1qj − yk,j, (A.10)

then, for IFEAST, equation (A.3) becomes

q̃j =
1

γj

(
ρ(A)qj −

nc∑
k=1

sk,j

)
. (A.11)

This is not necessarily very useful in practice, however, because the values of sk,j are

not known. Instead, (A.11) can be rewritten in terms of the linear system residuals,

the norms of which are used as the stopping criteria for iterative linear system solvers:

q̃j =
1

γj

(
ρ(A)qj −

nc∑
k=1

ωk(zkI − A)−1rk,j

)
, (A.12)

with

rk,j = qj −
1

ωk
(zkI − A)yk,j. (A.13)

Since qj = wj + xj, we can derive the expression for w̃j from (A.12):

w̃j = q̃j − xj =
1

γj

(
ρ(A)wj −

nc∑
k=1

ωk(zkI − A)−1rk,j

)
. (A.14)

We can then find an upper bound similar to (A.8):

||w̃j|| ≤
|γm0+1|
|γj|

||wj||+
1

|γj|

nc∑
k=1

||ωk(zkI − A)−1|| ||rk,j||. (A.15)
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Assuming that all the linear systems (A.9) are solved using iterative solvers with the

same tolerance ε on the residual norm, then ||rk,j|| ≤ ε, ∀k, j, we get:

||w̃j|| ≤
(
|γm0+1|+ αj∆

|γj|

)
||wj||, (A.16)

with

αj = ε/||wj||, (A.17)

and

∆ =
nc∑
k=1

||ωk(zkI − A)−1||. (A.18)

If the linear systems are solved such that αj is the same at every FEAST subspace it-

eration, then linear convergence is guaranteed, with the rate of convergence depending

on accuracy of the linear system solutions.

A.3 Inexact FEAST and Generalized Eigenvalue Problems

The eigenvector error bound in Equation (A.15) can be extended to the case of

Inexact FEAST for generalized eigenvalue problems Ax = λBx as well. The entire

analysis of the preceding section applies directly to the standardization B−1Ax = λx;

the only difference is that the value of ∆ changes due to the way that the linear

systems of equations are solved. IFEAST for the generalized eigenvalue problem

approximately solves the linear systems of equations

1

ωk
(zkB − A)yk,j = Bqj, (A.19)

rather than using the standardization 1
ωk

(zk − B−1A)yk,j = qj (i.e. using Equation

(A.9) directly). The residuals for the approximate solution to Equation (A.19) are

r
(G)
k,j = Bqj −

1

ωk
(zkB − A)yk,j, (A.20)
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which are notably different from the residuals rk,l in Equation (A.13). For the same

approximate solution yk,l, rk,j = B−1r
(G)
k,l . The linear system errors sk,j are then

sk,j = ωk(zkI −B−1A)−1rk,j (A.21)

= ωk(zkB − A)−1r
(G)
k,j , (A.22)

and Equation (A.14) becomes

w̃j = q̃j − xj =
1

γj

(
ρ(A)wj −

nc∑
k=1

ωk(zkB − A)−1r
(G)
k,j

)
. (A.23)

The rest of the analysis proceeds in exactly the same way, with the result

||w̃j|| ≤
(
|γm0+1|+ αj∆

|γj|

)
||wj||, (A.24)

αj = ε/||wj||, (A.25)

∆ =
nc∑
k=1

||ωk(zkB − A)−1||, (A.26)

where now ε is the tolerance on the norm ||r(G)
k,l ||. In the rest of this dissertation I

generally refer to the linear system residuals without the qualifying (G) superscript,

since it is understood that the IFEAST linear systems of equations always take the

form of Equation (A.19) rather than 1
ωk

(zk −B−1A)yk,j = qj.
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APPENDIX B

THE CONTOUR INTEGRAL FOR GENERALIZED
IFEAST

The contour integral for the standard FEAST algorithm turns out to be inefficient

for solving generalized eigenvalue problems or preconditioned eigenvalue problems

with the IFEAST algorithm, in which the FEAST linear systems of equations are

deliberately solved inexactly. The number of linear system iterations that is required

to solve the IFEAST linear systems increases with each IFEAST iteration as the

eigenvector solutions converge, resulting in a substantial total computational cost for

solving the eigenvalue problem.

An alternative variation of the FEAST algorithm, which I refer to as Generalized

IFEAST, uses a modified contour integral so that the number of required linear system

iterations at each IFEAST iteration is constant, even as the eigenvector solutions

converge. This appendix describes how the Generalized IFEAST contour integration

is derived, and shows that it allows the Basic IFEAST convergence heuristic to be

satisfied when solving linear systems of equations to a constant level of accuracy, even

for generalized eigenvalue problems or preconditioned linear systems.

Section B.1 derives the Generalized IFEAST contour integral from the standard

FEAST contour integral, showing that the two are equal when their linear systems of

equations are solved exactly. Section B.2 shows how this contour integral is related to

restarting the solution of linear systems of equations. Section B.3 uses the relationship

between the Generalized IFEAST contour integral and linear system restarts to show

that solving the Generalized IFEAST linear systems of equations to a constant level
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of accuracy is equivalent to solving the Basic IFEAST linear systems of equations to

an increasing level of accuracy. This ensures that the convergence heuristic for Basic

IFEAST can always be satisfied efficiently, even when solving generalized eigenvalue

problems or using preconditioners.

B.1 Deriving the Generalized IFEAST Integral

For a linear, generalized eigenvalue problem

Ax = λBx, (B.1)

the standard FEAST algorithm calculates the eigenvectors whose eigenvalues lie inside

a closed contour C in the complex plane by using contour integration to form a

subspace that approximately spans those eigenvectors, i.e.

Q =
1

2πi

∮
C
(zB − A)−1BX̃(0)dz, (B.2)

where X̃(0) ∈ Cn×m0 is a (possibly random) initial guess for the eigenvectors of inter-

est.

The Generalized IFEAST algorithm, on the other hand, uses the integral

1

2πi

∮
C
(X(0) − (zB − A)−1RE)(zI − Λ)−1dz, (B.3)

where RE = BX̃(0)Λ̃ − AX̃(0) is the block eigenvector residual for the initial guess

X̃(0), and Λ̃ is the diagonal matrix of Ritz values for X̃(0).

We can show that Equations (B.2) and (B.3) are equal by using a simple trick,

first introduced in [31] for use in the case of single vector Shift and Invert Itera-
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tion. The integral (B.2) is an integration of shifted linear system solutions that are

parameterized by their location in the complex plane, i.e.

Q =
1

2πi

∮
C
Q(z)dz (B.4)

such that

(zB − A)Q(z) = BX̃(0). (B.5)

The trick is to assert that the parameterized solution Q(z) must take the form

Q(z) = (X̃(0) + δQ(z))(zI − Λ̃)−1, (B.6)

where X̃(0) are Ritz vectors for the eigenvalue problem (B.1) (generated from, for

example, a set of m0 random initial guess vectors), Λ̃ is the diagonal matrix of the

corresponding Ritz values, and δ(z) ∈ Cn×m0 is unknown. Thus, rather than finding

Q(z) by solving the linear systems (B.5), we can instead find δQ(z) by solving the

linear system

(zB − A)(X̃(0) + δQ(z))(zI − Λ̃)−1 = BX̃(0), (B.7)

which is just equation (B.6) inserted into equation (B.5). We can then use δQ(z) to

calculate Q(z) using equation (B.6).

Equation (B.7) can be simplified algebraically as follows:

(zB − A)(X(0) + δQ(z))(zI − Λ)−1 = BX(0) (B.8)

(zB − A)(X(0) + δQ(z)) = BX(0)(zI − Λ) (B.9)

(zB − A)δQ(z) = zBX(0) −BX(0)Λ− zBX(0) + AX(0) (B.10)

(zB − A)δQ(z) = −(BX(0)Λ− AX(0)) = −RE (B.11)
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Thus δQ(z) = −(zB − A)−1RE, the right hand side of which converges to zero as X̃

converges to a block of eigenvectors. Q(z) then evaluates to

Q(z) = (X̃(0) − (zB − A)−1RE)(zI − Λ)−1 (B.12)

Inserting this expression into equation (B.4) gives equation (B.3).

B.2 Connection with Linear System Restarts

Linear system restarts (see Section 2.2.5) are a method for refining an approximate

solution to a linear system of equations. The integral in Equation (B.3) can be seen

as the result of restarting the solution of the FEAST linear systems of equations by

using the estimates that FEAST provides for eigenvalues and eigenvectors.

Equation (B.6) is equivalent to using iterative refinement for the solution of Equa-

tion (B.5) with the initial guess

Q̃old(z) = X̃(0)(zI − Λ̃)−1. (B.13)

Because we are solving an eigenvalue problem, this is the most sensible initial guess

that we could come up with based on the available information; in the case that X̃(0)

and Λ̃ are the exact eigenvalues and eigenvectors, Q̃(z) in Equation (B.13) is the

exact solution to the linear system in Equation (B.5).

Traditional restarts would calculate a new approximate solution as Q̃new(z) =

Q̃(z) + δQ. Equation (B.6), instead, is a modified restarting procedure in which the

update δQ is asserted to have the same form as the original estimated solution, i.e.

Q̃new(z) = Q̃old(z) + δQ(zI − Λ)−1. (B.14)
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The linear system residuals of Q̃(z) as an approximate solution for Equation (B.5)

are equal to the eigenvector residuals of X̃(0) and Λ̃ as an approximate solution to

AX = BXΛ, up to multiplication by a constant:

RL = BX̃(0) − (zB − A)Q̃old(z) (B.15)

= BX̃(0) − (zB − A)X̃(0)(zI − Λ̃)−1 (B.16)

=
(
BX̃(0)(zI − Λ̃)− (zB − A)X̃(0)

)
(zI − Λ̃)−1 (B.17)

=
(
AX̃(0) −BX̃(0)Λ̃

)
(zI − Λ̃)−1 (B.18)

= −RE(zI − Λ̃)−1, (B.19)

where I use RL and RE to distinguish between the linear system residuals and the

eigenvector residuals, respectively.

The linear system residuals for the iteratively-refined solution, Q̃new(z) in Equa-

tion (B.14), are the residuals for the solution of the correction equation

(zB − A)δQ(zI − Λ)−1 = BX(0) − (zB − A)Q̃old(z). (B.20)

If Equation (B.20) is solved approximately for an approximate solution δQ̃ such that

its linear system residual is

BX̃(0) − (zB − A)Q̃old(z)− (zB − A)δQ̃(zI − Λ)−1 = δR (B.21)

then the final residual for the original FEAST linear system in Equation (B.5), using

the approximate solution in Equation (B.14), is δR, just as with typical linear system

restarts.
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B.3 Generalized IFEAST Linear System Accuracy

The motivation for using the integral

1

2πi

∮
C
(X̃(0) − (zB − A)−1RE)(zI − Λ̃)−1dz (B.22)

is to be able to get away with using a relatively small, constant number matrix mul-

tiplications when approximating the FEAST linear system solutions at each FEAST

iteration. We can see why this works by using the fact that the linear system residuals

of FEAST are closely related to the eigenvector residual when using the integral in

Equation (B.22).

As discussed in the previous section, Equation (B.22) is equivalent to solving the

FEAST linear systems of equations

(zB − A)Q(z) = BX̃(0) (B.23)

by using an initial guess

Q̃old(z) = X̃(0)(zI − Λ̃)−1 (B.24)

in conjunction with a specific form of update equation for restarting, i.e.

Q̃new(z) = Q̃old(z) + δQ(z)(zI − Λ̃)−1. (B.25)

Rather than solving Equation (B.23) directly for Q(z), one instead solves the correc-

tion equation

(zB − A)δQ(z)(zI − Λ̃)−1 = BX̃(0) − (zB − A)Q̃old(z). (B.26)

for the correction δQ(z), and finds a new approximation for Q(z) using Equation

(B.25).
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In practice Equation (B.26) is solved approximately such that

(zB − A)δQ̃(z)(zI − Λ̃)−1 = BX(0) − (zB − A)Q̃old(z)− δR, (B.27)

where δQ̃(z) is an approximate solution and δR is the corresponding linear system

residual. Because this is just a particular form of restart, the final residual for the

original linear system of equations (B.23) with approximate solution Q̃new(z) from

Equation (B.25) is also δR.

If δri is the ith column vector of δR and r
(L)
i is the ith column vector of BX̃(0) −

(zB − A)Q̃old(z), i.e. it is a linear system residual for the initial guess Q̃old(z), then

||δri||
||r(L)

i ||
< εi (B.28)

is the convergence condition for the approximate solution of the correction equation

(B.26), with ε being the user-determined tolerance on the relative residual. The

quantity ||δri||/||r(L)
i || is called the “relative residual”, and it is the quantity that

iterative linear system solvers naturally use to determine whether or not a prospective

solution is sufficiently accurate; dividing by the norm of the right hand side ||r(L)
i ||

removes the right hand side magnitude from the consideration about whether or not

the linear system solution has converged, which is important because the norm of the

right hand side plays no role in the solution of linear systems of equations for most

iterative solving methods.

As noted in the previous section, the linear system residuals are the same as the

eigenvector residuals (up to a scalar multiple) for the initial guess Q̃old(z) in Equation

(B.24). The linear system stopping condition in Equation (B.28) is thus equivalent

to

||δri|| <
ε

|z − λ̃i|
||r(E)

i ||, (B.29)

where r
(E)
i = λ̃iBx̃

(0)
i − Ax̃

(0)
i is the ith eigenvector residual.
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Using Equation (B.29) allows us to draw a connection between the requirements

of the IFEAST algorithm and the amount of work that is necessary to solve the

correction equation (B.26), and therefore to evaluate the integral (B.22). We expect

that IFEAST will converge linearly provided that the linear systems of equations

(B.23) are solved such that their residual norms are some fraction α of the current

eigenvector residual norms, i.e.

||δri|| < α||r(E)
i ||, (B.30)

where we have used the fact that we know the linear system residuals will be the

residuals δri from solving the correction equation (B.26) approximately. Setting the

right hand side of Equation (B.29) to be less than the right hand side of Equation

(B.30) gets us the condition on the correction equation tolerance εi that will ensure

that the inequality in Equation (B.30) is always satisfied:

εi < α|z − λ̃i|. (B.31)

The implication of Equation (B.31) is that, once IFEAST iterations have con-

verged enough that the distances between the approximate eigenvalues λ̃i and the

linear system shifts z do not change much, the maximum values of the linear sys-

tem tolerances εi that will guarantee convergence of the eigenvalue problem become

constant. Thus, when using the contour integral in Equation (B.22), rather than

the traditional FEAST contour, the linear systems of equations can be solved to a

constant level of accuracy in order to ensure the convergence of an eigenvalue solu-

tion. In many cases the viable values of εi can be quite high. It is not uncommon for

εi = 10−2, for example, meaning that only a relatively small amount of work needs to

be done to solve the linear systems of equations at each IFEAST iteration.
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APPENDIX C

GMRES ITERATIONS AND EIGENVECTOR
RESIDUALS

One of the appealing features of both Inexact Shift and Invert Iteration and Ba-

sic IFEAST is that, for the standard eigenvalue problem Ax = λx, each of these

algorithms is able to converge linearly to a solution by using a constant number of

linear system iterations at each outer eigenvalue iteration. This appendix describes

one approach for understanding why this happens. I focus primarily on the GMRES

algorithm, simply because it allows for easy analysis. That GMRES with IFEAST

requires a constant number of iterations is a consequence of there being an upper

bound on the number of GMRES iterations that is required to adequately refine

approximate eigenvector solutions, and this upper bound being independent of how

close to convergence those approximate eigenvectors are.

C.1 Upper Bound on Linear System Iterations

For the standard eigenvalue problem Ax = λx, both Inexact Shift and Invert

Iteration and Basic IFEAST require the solution of linear systems of equations that

take the form

(zI − A)y = x̃s, (C.1)

where A is an n×n matrix, z is a shift in the complex plane, and x̃s is an estimation for

the exact eigenvector xs with corresponding eigenvalue λs. The convergence theory

for both Inexact Shift and Invert Iteration and Basic IFEAST (see Appendix A)

guarantees linear convergence of the eigenvalue problem provided that the linear
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systems of equations in either algorithm are solved such that their residual tolerances

are a constant fraction of the eigenvector error at a given iteration, i.e.

||x̃s − (zI − A)ỹ|| ≤ α||x̃s − xs||, (C.2)

where ỹ is an approximate solution to Equation (C.1), and α is a real number between

0 and 1.

If k iterations of any Krylov subspace algorithm are used to approximate Equation

(C.1), then ỹ takes the form

ỹ = pk(zI − A)x̃s (C.3)

with pk(λ) being a k-degree polynomial, and the linear system residual rL is

rL = x̃s − (zI − A)pk(zI − A)x̃s = qk(zI − A)xs, (C.4)

where qk(λ) = 1 − λpk(λ) is a k-degree polynomial that is constrained such that

qk(0) = 1. The polynomial qk(λ) can be written in terms of its zeros wi as

qk(λ) =
k∏
i=1

1

wi
(λ− wi), (C.5)

and the approximate eigenvector x̃s can be written in terms of the exact eigenvectors

xi as

x̃s =
n∑
i=1

cixi. (C.6)

We can assume that x̃s is normalized such that cs = 1. Combining Equations (C.4),

(C.5), and (C.6) we get

rL = qk(zI − A)xs =
∑
j

k∏
i=1

1

wi
([z − λj]− wi)cjxj (C.7)

We can get an upper bound on ||rL||2 by choosing a particular form for qk(λ). If

x̃s is already converging towards xs, then |cs| > |ci| for all i 6= s, and we can choose
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the kth zero of qk(λ) to be wk = z−λs in order to eliminate the component of rL that

is in the direction of xs. The linear system residual becomes

rL =
∑
j 6=s

λs − λj
z − λs

k−1∏
i=1

1

wi
([z − λj]− wi)cjxj (C.8)

=
∑
j 6=s

λs − λj
z − λs

qk−1(z − λj)cjxj, (C.9)

where qk−1(λ) is a (k − 1)-degree polynomial with qk−1(0) = 1.

With both Inexact Shift and Invert Iteration and Basic IFEAST, the solution x̃s

will converge linearly to xs provided that

||rL||2 < α2||x̃s − xs||2 (C.10)

is true for a sufficiently low value of α (see Section A.2 on page 174 for more details

about the relationship between α and IFEAST convergence). Using Equations (C.9)

and (C.6), this condition becomes

∑
i,j 6=s

(λs − λi)∗(λs − λj)
|z − λs|2

qk−1(z−λi)∗qk−1(z−λj)c∗i cjxHi xj <
∑
i,j 6=s

α2c∗i cjx
H
i xj. (C.11)

A sufficient condition for Equation (C.11) to be true is

∣∣∣∣(λs − λi)∗(λs − λj)|z − λs|2
qk−1(z − λi)∗qk−1(z − λj)

∣∣∣∣ < α2 ∀ i, j. (C.12)

This condition is notably independent of the eigenvector error ||x̃s − xs||; it depends

only on the eigenvalues of A (and indirectly on the eigenvectors through α, for non-

symmetric problems). The largest value of k that makes it true is therefore a constant

over all eigenvector iterations, which implies the observed behavior wherein the num-

ber of required linear system iterations is roughly constant when using Inexact Shift

and Invert Iteration or Basic IFEAST.
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APPENDIX D

TWO-SIDED FEAST

This Appendix provides an outline of the two-sided Generalized IFEAST Algo-

rithm, which is used for solving the Grcar problem in Section 4.6.5 on page 138.

The two-sided FEAST algorithm follows essentially the same steps as the one-sided

FEAST algorithm, but it solves two eigenvalue problems simultaneously: one for

the right eigenvectors, and one for the left eigenvectors. The most significant dif-

ference between one-sided FEAST and two-sided FEAST is that two-sided FEAST

B-biorthogonalizes the approximate left and right eigenvector subspaces at each iter-

ation, which substantially improves the robustness of the algorithm for nonsymmetric

problems. The two-sided Generalized IFEAST algorithm is given in Algorithm 11.
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Algorithm 11 The Two-sided Generalized IFEAST algorithm for solving AX =
BXΛ

Inputs:

• Matrices A,B ∈ Cn×n

• Closed contour C that encloses the search region for eigenvalues in the complex plane

• Overestimate m0 for the number of eigenvalues inside C

• Initial guesses X̃
(0)
R and X̃

(0)
L ∈ Cn×m0 for the right and left eigenvector subspaces

• Set of nc quadrature weights and points (ωk, zk) for numerically integrating equation (4.1)

• Tolerance α for linear system relative residuals, with 0 < α < 1

0. Set QR = X̃
(0)
R , QL = X̃

(0)
L

For each subspace iteration i:

1. B-Biorthogonalize QR and QL using e.g. the SVD:

UΣV H = QH
LBQR −→ QR = QRV Σ−

1
2 , QL = QLUΣ−

1
2 (D.1)

2. Perform Rayleigh-Ritz procedure to find a new estimate for eigenvalues and eigenvectors:

i. Solve reduced eigenvalue problem for XQ ∈ Cm0×m0

AQXQR = BQXQRΛ̃, AH
QXQL = BH

QXQLΛ̃∗

with AQ = QH
LAQR and BQ = QH

LBQR

ii. Get new estimates for subspaces: X̃
(i)
R = QRXQR, X̃

(i)
L = QLXQL

3. Calculate the FEAST eigenvector residuals RR = BX̃
(i)
R Λ̃−AX̃(i)

R , RL = BHX̃
(i)
L Λ̃∗ −AHX̃

(i)
L .

If
max

1≤j≤m0

||Ax̃(i)Rj − λ̃jBx̃
(i)
Rj ||, λ̃j inside C (D.2)

is below a given tolerance, EXIT.

4. Iteratively solve nc shifted linear systems for two contour integrals, each with m0 right hand
sides, for YRk and YLk .

1

ωk
(zkB −A)Y

(i)
Rk = RR,

1

ωk
(zkB −A)HY

(i)
Lk = RL, 1 ≤ k ≤ nc (D.3)

such that the iterations are stopped when the following tolerance on the linear system residuals
is met:

||RRej −
1

ωk
(zkB −A)Y

(i)
Rk ej || ≤ α ∀j, 1 ≤ j ≤ m0,

with the corresponding tolerance being used for the left eigenspace solutions Y
(i)
Rk .

5. Form the filtered subspaces QR and QL

QR =

nc∑
k=1

ωk

(
X̃

(i)
R − Y

(i)
Rk

)
(zkI − Λ̃)−1, QL =

nc∑
k=1

ω∗k

(
X̃

(i)
L − Y

(i)
Lk

)
(z∗kI − Λ̃∗)−1,

6. GOTO Step 1.

Outputs: diagonal matrix Λ̃ of approximations for the m eigenvalues inside C, and approximations

for the corresponding right and left eigenvectors X̃R and X̃L.
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