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Chapter 1

Introduction

In this thesis, numerical techniques for the computation of flow transitions will
be introduced and studied. Before we say something about the relevance of such
transitions, we need to explain what we mean by it. A flow transition is a qualita-
tive change in the flow pattern when a physical parameter is changed only slightly.
One example is the whistling sound which car mirrors used to make at high driv-
ing speeds. At low speeds the flow around the mirror will be steady, while at
high speeds it will be oscillatory and produce sound waves. So qualitatively the
flow changes from steady to oscillatory. Nowadays the shape of such mirrors is
adapted such that at all common speeds the flow does not produce sound. An-
other example is the collapse of the Tacoma Narrows Bridge in 1940 caused by
an oscillating flow at high wind speeds. If such an oscillation is close to that of
an eigenmode of a structure, then the structure starts to oscillate as well and may
even break down as aforementioned bridge. A similar phenomenon appeared at
the Erasmus bridge in Rotterdam in 1996, where the suspension cables started to
oscillate virulently such that the bridge had to be closed temporarily. A qualitative
change in flow also occurs during the onset of turbulence. By making only small
changes to a geometry, the flow may change from laminar to turbulent. Depend-
ing on different cases, turbulence may increase or decrease the drag of an object in
flow. For instance, in a flow around a wing one can delay separation of the flow by
forcing the flow to become turbulent near the trailing edge. This results in a slight
decrease of the drag, which lowers the fuel consumption of a plane using these
wings. Another interesting case of qualitative change in flow pattern occurs when
multiple stable steady states exist at one set of physical parameters. This occurs
in the climate system and one of the key questions is what kind of perturbations
are needed to shift from one state into the other.

1



2 CHAPTER 1. INTRODUCTION

From the previous description, it is clear that industrial applications of numer-
ical simulation of these equations can be found in many fields, such as in complex
turbulent flows [1], aircraft design [2] and so on. Theoretical studies of transitions
in flows of liquids have been studied extensively for decades. Famous classical
examples are Poiseuille flow (transitions in a circular pipe) [3], Taylor-Couette
flow (flow between rotating cylinders) [4], Rayleigh-Bénard flow (convection in a
liquid layer heated from below, more details in Chapter 3) and so on. Transitions
occur through bifurcations when parameters are varied. To tackle flow transitions,
numerical models for the simulation of the flow are essential. In general, these
simulation models are based on fluid flow equations, i.e., the Navier-Stokes equa-
tions.

This chapter is organized as follows. First we shall introduce fluid equations
and the main techniques for analyzing these equations mathematically. Then we
shall also briefly discuss the relevance of linear system solving. Next we will
state our research questions and indicate on which problems we will try to answer
them. Finally, an overview of the thesis will be presented.

1.1 The Navier-Stokes equations
The Navier-Stokes equations 1.1, derived by Navier, Poisson, Saint-Venant, and
Stokes between 1827 and 1845 [5, 6], are the fundamental partial differential
equations that govern the motion of the fluid and can be seen as Newton’s sec-
ond law of motion for fluids. In the case of a compressible Newtonian fluid, they
are

ρ(
∂u
∂t

+ u · Ou) = −Op+ µ∇2u + f, (1.1)

where ρ is density, µ is the dynamic viscosity, and p is the pressure. f describes
the external force applied to the fluid. The Navier-Stokes equations represent
the conservation of momentum, and they are always solved with the continuity
equation 1.2, which represents the conservation of mass:

∂ρ

∂t
+ O · (ρu) = 0. (1.2)

Beside these equations, we need an equation of state which specifies the relation
between the density ρ and pressure p. The Navier-Stokes equations can model
both compressible and incompressible fluids. An example of the former is the
fluid air as used in the modeling of the earth atmosphere, while an example of the
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latter is the fluid water as used in the simulation of ocean flows. In general, an
analytical solution of the Navier-Stokes equations is not available. Therefore, the
efficient computation of numerical solutions for these equations is essential. There
exist many types of Navier-Stokes solvers, since a solver can be based on a va-
riety of discretization techniques, for instance, finite differences, finite elements,
finite volumes or discontinuous Galerkin methods. A comparative introduction to
these methods can be found in [7]. In this thesis, we will use the finite volume
method for the discretization, which is commonly used in practice, since it dis-
cretely preserves the conservation laws from fluid dynamics. We are aware that
the simple geometries we consider also admit more sophisticated methods like
the pseudo-spectral method. However, since we collaborate with oceanographers,
who deal with arbitrary geometries and bottom topologies, we stick to the same
discretization technique as they do. This makes it possible to test the quality of
finite volume discretization on challenging problems. Moreover, we will focus on
the problems related to incompressible flow.

1.2 Incompressible flow equations
The incompressible flow refers to a flow in which the material density is constant
and does not link to the pressure. In that case, the continuity equation turns into
an equation saying that the velocity field is divergence-free and can be seen as a
constraint on the velocity field:

O · u = 0. (1.3)

We are interested in the incompressible Navier-Stokes equations combined with a
number of transport equations:

ρ(
∂u
∂t

+ u · Ou) =− Op+ µ∇2u + f(φ),

O · u =0,

∂φ

∂t
+ u · Oφ =κ∇2φ+ g(u),

(1.4)

where φ is the entity transported by the flow, for instance, one could think of trans-
port of energy, material, etc. In many cases there is interaction between the flow
and the components that are transported; here it is represented by the functions
f and g. In the case of small temperature differences in the flow, one often uses
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the well-known Boussinesq equations, which approximate the equations of com-
pressible flow, shown in the previous section, by the above equations in which φ
will become the temperature (see Chapter 3 for examples).

There are two main difficulties when solving the incompressible Navier-Stokes
equations for a Newtonian fluid. The first one is the nonlinear system induced by
the convective term. The second one is the constraint of mass conservation and
the role of the pressure term which has no thermodynamical significance [8].

Often, one can get rid of the nonlinear system, by using an explicit time-
integration method, such as the Euler method, only solving a Poisson equation for
the pressure. However, the role of nonlinearity turns out more and more impor-
tant with the emergence of small structures in the flow dynamics. For instance,
when Reynolds number becomes high. This means that the convective effects are
getting dominant, and hence the mesh must be fine enough to adequately capture
all the solution scales in the flow. This means in practice finer and finer spatial
and temporal meshes must be used when the Reynolds number increases. As a
consequence, there will be massive computational costs.

If we want to use larger time steps, using an implicit method then the coupled
velocity-pressure problem, after linearization, has a saddle-node structure which
makes it difficult to solve. It is known that standard preconditioners, based on
incomplete factorizations, easily end up to be singular for saddle-point matrices.

Furthermore, we do not constrain ourselves to the calculation of a steady flow
at increasing parameter values, e.g. the Reynolds number. We are also interested
in the primary transition of a stable steady flow to another stable flow with a dif-
ferent pattern, which can even by transient. For the location of this transition point
and the switch to a solution branch with different flow pattern, accurate computa-
tion of the most unstable perturbation mode is required. This is represented by the
leading eigenvector of the momentum and continuity equations linearized around
the steady state. Therefore, eigenvalue analysis is the most natural approach to
solve this kind of problems. However, usually because of the large size of the
algebraic eigenvalue problem, this takes way too much time and in most of the
cases it is not affordable. Thus, many authors use time-dependent methods for
stability studies, rather than the eigenvalue analysis [9]. The leading eigenvalues
were computed to check the stability of the solution in some studies, for instance,
lid-driven cavity [10, 11], but no accurate eigenvalues were computed to locate
the critical Reynolds number.
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1.3 Two main approaches for bifurcation and stabil-
ity analysis

In general, for the bifurcation study of fluid flows, one can distinguish between
two methods: the time integration approach and the continuation approach. We
will discuss both briefly below.

1.3.1 Time integration approach for steady state and stability
analysis

The obvious way to study transitions of flows is by just performing time inte-
gration for various values of natural parameters, e.g., the Reynolds number. If
a steady state is reached, then it is a stable steady state. If a periodic solution
is reached, one has found a stable periodic solution. If the latter occurs after an
increase of the natural parameter, then one knows that a Hopf-bifurcation has oc-
curred during this increase. Using the time integration in this way, only stable
solutions can be found. To be a bit more precise, we find stable solutions of the
numerical time integrator, since numerical time integration schemes have their
own damping and amplification properties that differ slightly from those of exact
time integration.

It is possible to find also unstable steady states using a time integration code.
For that it must be incorporated in a fixed point iteration, e.g., take the fixed point
function as the flow φ(x, T ) denoting the integration of some initial solution x
over a specified time interval T . We know that mildly unstable fixed point iter-
ations can be made to converge with Aitken extrapolation. Such an idea is also
present in the Newton-Picard method, which is a generalization of the recursive
projection method (RPM) of Shroff and Keller [12]. This method was developed
by Lust and Roose [13] and has been implemented in the free software PDE-
CONT(see http://www.kurtlust.net/CODE/r PDEcont.html). Tiesinga et al. [14]
used this method to study the bifurcation behavior of the flow in a driven cavity
for Reynolds numbers between 7,500 and 10,000.

Based on time integration, Tuckerman has developed FORTRAN codes to
make it more efficient for incompressible flow [15]. In [16], it is shown that
the implicit linear step of a time-stepping code can serve as a highly effective pre-
conditioner for solving linear systems involving the full Jacobian via conjugate
gradient iteration. This preconditioning can be used in steady-state solving, con-
tinuation, direct calculation of bifurcation points by Newton’s method, and linear
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stability analysis by the inverse power method. In [17, 18], they have thus ob-
tained various coexisting steady, time-dependent flows and a bifurcation diagram
of cylindrical Rayleigh-Bénard convection.

A numerical study of several time integration methods for solving the three-
dimensional Boussinesq thermal convection equations in rotating spherical shells
is presented by Garcia et al. [19]. Both implicit and semi-implicit time integration
techniques are considered. It showed that the use of high-order methods, espe-
cially those with time step and order control can increase the efficiency of the
time integration as well as the accuracy of solutions. Citro et al. [20] propose a
new algorithm to compute unstable steady states of a high-dimensional dynami-
cal system efficiently. The method is based on the minimization of the residual
norm at each integration step and can be applied as a black-box procedure in any
iterative or time marching algorithm.

Note that, due to their simplicity, explicit time integration methods, like Eu-
ler’s method, are very well suited for computations on parallel computers. Design-
ing an implicit method such that it is efficient on a parallel computer is possible
as we will show later on, but requires in general a lot more effort.

1.3.2 Continuation of steady states and eigenvalue computa-
tion

Compared to time-marching approaches, the natural parameter continuation method
avoids potentially long time integrations to obtain generic and meaningful infor-
mation and hence can bring down the computation time considerably, especially
when calculating steady solutions [21]. Another advantage of natural parameter
continuation is that it could be developed as a black box, since only an initial solu-
tion is required for the target problem. However, if a turning point is encountered
with the increase of the parameter value during natural parameter continuation, the
branch cannot be followed. For problems with turning points, pseudo-arclength
continuation, a more sophisticated method, needs to be used. Riks and Wemp-
ner developed Pseudo-arclength continuation for finite element applications in the
late 1960s and it was published in journals in the early 1970s by H.B. Keller [22].
A detailed description of these early developments is provided in the textbook by
Crisfield [23].

In each continuation step, a nonlinear system has to be solved. For the solu-
tion of the nonlinear system, there is no algorithm to compute the exact solution
like Gaussian elimination does for linear systems. We have to resort to iterative
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methods to obtain an approximate solution in a finite number of iterations. The
most frequently used method is the Newton-Raphson method (Newton’s method
for short) and the Picard iteration leading to a linear system to be solved in each
iteration. Both of them need a sufficiently accurate initial guess to achieve con-
vergence [24].

There has been a lot of work in the area of large-scale continuation on trans-
forming more sophisticated algorithms into black box solvers, for instance, they
are available in the software package LOCA (Library Of Continuation Algo-
rithms), which is one of the packages provided in the Trilinos project1. LOCA
implements among others the pseudo-arclength continuation and this implemen-
tation is used in this thesis.

Apart from continuation of solutions, one often also wants to determine their
stability under variation of parameters. One has to calculate the most unstable
eigenmode along with the steady-state flow, which can be more difficult than the
computation of the flow itself. A general method based on linear algebra can be
used to study the stability of a fixed point with respect to small perturbations [25].
For large systems, there are mainly three practical options: subspace iterations,
Krylov subspace methods and (accelerated) Newton method. The orthogonal sub-
space iteration method and the Arnoldi method [26] are examples of the first two,
both of which are generalizations of the power method for the eigenvalue prob-
lem. An example of the third is the Jacobi-Davidson QR (JDQR) method [27]. An
excellent review of numerical methods for large-scale eigenvalue problems can be
found in [28], in which the author also explains filtering, restart, and precondition-
ing techniques. In this thesis two methods are used, one is a block Krylov-Schur
method with Shift-and-Invert or Cayley transform explained in section 3.4.1 and
the other is block JDQR.

Instead of performing continuation meanwhile monitoring stability, Meerber-
gen [29, 30] constructed an approach in which the parameter for which an Hopf
bifurcation occurs can be solved at once from a Lyapunov equation. We did not
use this technique but mention it here for completeness.

1.4 Relevance of linear system solving

The effectivity of continuation and stability study depends severely on the effi-
cient and robust solution of linear systems. There have been many solvers around

1see http://trilinos.sandia.gov/
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for large sparse linear systems, each of them has their advantages and disadvan-
tages. In [31], the authors gave a survey of methods currently used to solve linear
systems from fluid flow problems. A saddle-point system is obtained after dis-
cretization of incompressible Navier-Stokes equations. In principle, these linear
algebraic systems can be solved exactly within a finite number of operations, for
instance, Gaussian elimination. They are referred to as direct methods. However,
in practice, it is not possible since a typical computational fluid dynamics prob-
lem may involve millions of unknowns leading to a huge memory request for the
storage of the factorization and also an enormous amount of time to compute it.
Therefore, for large applications, iterative methods are preferred, i.e., one per-
forms a finite number of iterations to achieve an approximate solution. But it also
has its disadvantages. For instance, iterative methods are not always robust, espe-
cially for difficult problems, such as mixed parabolic and hyperbolic PDEs [24].
Convergence may not be achieved and the final approximation solution may not
be accurate at all. However, Krylov subspace iteration method can solve saddle
point problems efficiently [32] when combined with appropriate preconditioning
[31, 33–37].

Many preconditioning techniques have been developed to accelerate the itera-
tive solvers. In [38] and references therein, the authors presented a good overview
of the present state of fast solvers for the solution of the incompressible Navier-
Stokes equations discretized by the finite element method and linearized by New-
ton’s or Picard’s method. Block-oriented preconditioners perform well for the in-
compressible Navier-Stokes equations. This includes standard additive-Schwarz
domain-decomposition methods, aggressive coarsening multigrid, and three pre-
conditioners based on an approximate block LU factorization, specifically SIM-
PLEC, LSC, and PCD, of which SIMPLEC, LSC, and PCD are implemented in
Teko, another software package of Trilinos, see more in [39].

For the separate blocks, occurring in block-oriented preconditioners, often al-
gebraic multigrid methods are employed. Multigrid methods have been proved to
be robust and efficient. The first AMG (Algebraic MultiGrid) program was intro-
duced and described by Ruge and Stüben [40]. Since the early 1990s, there was a
strong increase of interest in algebraically oriented multilevel methods because of
the high demand for efficient “plug-in” solvers driven by increasing problem sizes.
An excellent review of AMG is [41]. Another Trilinos package is ML, which has
a variety of parallel multigrid schemes for solving the large sparse linear systems
following primarily from discretization of elliptic PDEs [42], for example, it has
the scheme smoothed aggregation [43], a variant of AMG.

The idea of combining direct and iterative methods has been used by Henon
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and Gaidamour [44–46] to solve general sparse linear systems arising from the
discretization of scalar PDEs. As in that paper, they reduce the problem to a
Schur-complement system on the separators of a domain decomposition. The
Schur-complement system is solved iteratively using an ILU factorization. As the
structural and numerical properties are not explicitly preserved, robustness and
grid-independence cannot be ascertained for indefinite problems.

Thies and Wubs [47] combined ideas from complete and incomplete factoriza-
tions to construct a preconditioner that is acting in the divergence free space. By
doing this, the preconditioner can deal with the saddle-point structure of the sys-
tem. For Stokes problems it is guaranteed robust and for Navier-Stokes problems
it hardly fails. Also this is a multilevel method and called HYbrid Multi-Level
Solver (HYMLS). Another advantage of this hybrid algorithm is that it allows
parallel computation on each level [47, 48]. HYMLS is expressed in data struc-
tures available in the Trilinos software package Epetra and thereby it is intended
for distributed memory computers.

1.5 Our research questions

The research questions in this thesis are threefold.

1. Is the continuation approach a viable alternative to time integration ap-
proaches?

2. Can we compute solutions by the continuation approach, which are hard to
get by the time-integration approach?

3. How does HYMLS compare to other solvers, like ”physics-based” precon-
ditioners in Trilinos package Teko, and ML with respect to robustness and
turnaround time.

As they say: ”The proof of the pudding is in eating it.”, we want to answer
our questions by solving a range of test problems with a variety of physics. We
also want to use several methods for some of these problems to get a comparison
between methods. In the next section, we give some particularities of our test
problems.
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1.6 Overview of test problems
In this thesis, we firstly test the matrix approach on three well-known widely
accepted benchmark problems: one is a flow in a 3D lid-driven cavity, the other
two are multi-physics problems: Rayleigh-Bénard convection and differentially
heated cavity with and without rotation. Until recently, numerical calculations
have predominantly been performed for two-dimensional flows. In our study, both
two and three-dimensional problems are considered.

Driven cavity flow serves as a benchmark problem for numerical methods re-
garding accuracy and numerical efficiency. Although the problem seems simple,
it reveals complex phenomena of vortex dynamics, hydrodynamics stability, flow
bifurcation, etc. In the literature, it is possible to find numerous studies with
different methods on the driven cavity flow, for example in [49] and references
therein. Albensoeder et al. [50] gave an excellent survey of studies on this prob-
lem. Tiesinga et al. [14] studied the transition from steady to periodic state thor-
oughly by the Newton-Picard method. Since the 2D lid-driven cavity have been
well studied and three-dimensional flow has more physical significance, we will
only consider the 3D case in this thesis. Recently, Kuhlmann and Albensoeder
found the first bifurcation to be of Hopf-type and slightly subcritical. Above
the critical point, the oscillatory flow is symmetric with respect to the symmet-
ric midplane of the cavity. And on a long time scale, the periodic oscillations are
interrupted by short bursts [51].

Rayleigh-Bénard convection, which has a great variety of industrial applica-
tions, is also an excellent system on which to test new ideas and approaches for
understanding nonlinear dynamics. It displays rich dynamics, ranging from sta-
tionary patterns to weakly chaotic evolution to highly turbulent states [52, 53].
Numerical parameter continuation and bifurcation methods are needed to study
the flow transitions that occur as the Rayleigh number is increased. There are
already many results showing the bifurcation diagrams of steady convective flow
patterns in a cubical cavity with conducting and insulated lateral walls [54, 55].
In [56], the onset of convection for intermediate aspect ratio is presented in cylin-
drical containers.

Natural convection flow within a differentially heated cavity (vertical rectan-
gular container with lateral heating in the presence of gravity) also has lots of
applications in the industry, such as solar energy storage, building thermal insu-
lation, nuclear reactor core insulation and so on. As a prototypical model, it has
been studied for many years [57, 58]. Recently, the instability onset and slightly
supercritical oscillatory regimes of air convection in a cubic laterally heated box
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are studied in [59] by straightforward time integration of the Boussinesq equa-
tions. In [60], the author used a Chebyshev pseudo-spectral discretization for the
8 : 1 differentially heated cavity and obtained accurate unsteady simulations at the
required Ravalue of 3.4 × 105 also the three first critical bifurcation points were
accurately determined.

Rotation can play an important role and has a significant effect on the heat
transfer. More studies can be found in [61] and references therein. Recently,
in [62], the effect of rotation through Coriolis force on natural convection in the
two-dimensional differentially heated rotating enclosure is shown. The numerical
investigation is carried out for fixed Prandtl number equal to 0.71, Rayleigh num-
ber equal to 1.1×105. Results of the effects of rotation on three-dimensional flow
in a cavity generated by a horizontal temperature gradient are presented in [63].
We will consider here a 3D differentially heated rotating cavity.

In addition, to test the efficiency and scalability of our solvers for non fluid
flow problems, we considered a widely studied model for spatial pattern forma-
tion, proposed by Turing in 1952 [64]. Turing showed that a system of two react-
ing and diffusing chemicals could produce spatial patterns in chemical concentra-
tions from the destabilization of a homogeneous state. Many experimental results
have illustrated the formation of striped and spotted patterns, as well as more
complicated patterns [65]. The term diffusion-driven instability has occurred in
chemical and ecological processes. Turing models can exhibit most of those pat-
terns, and these can be found in many theoretical and experimental papers. For a
review, see [66–68] and references therein.

It is known that 3D solutions can display much richer behavior than 2D so-
lutions. There are much more possibilities for spatial multi-stability in three di-
mensions than those in two dimensions. They are not only interesting from a
theoretical point of view but also possible in nature as is shown, e.g., by Bánsági
et al. [69]. A decade ago, not many 3D results existed, and the results that ex-
isted were on relatively coarse grids, e.g., [70]. Recently, however, quite a few
3D results that were generated on parallel computers were published using time
integrations methods, e.g., [71, 72].

The pattern formation behavior in Turing systems is very complex. In this
thesis, we have focused on a Turing model called the Barrio-Varea-Aragon-Maini
(BVAM) model, proposed by Barrio et al.[73] in 1999.

In general, Turing problems have been addressed using the time-dependent
method; numerical continuation is rarely used. McCullen and Wagenknecht in
2016 investigated patterns on complex networks computationally using numeri-
cal continuation methods for 2D networks [74]. We have not seen a numerical
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continuation with multigrid technique applied for 3D analyses in this field.

1.7 Overview of this thesis
In this chapter, we motivate our research, introduce the governing equations and
discuss a variety of methods to solve the equations. In Chapter 2, we explain the
used algorithms in detail. The parameter continuation schemes and the whole pro-
gram structure are presented. Next, a description follows of our finite volume dis-
cretization module FVM. After that, we describe several linear solvers as well as
two eigenvalue computation methods: Arnoldi method and Jacobi-Davidson QR.
In Chapter 3, we discuss the particularities of four canonical flow problems: (i)
the lid-driven cavity, (ii) the differentially heated cavity, (iii) the Rayleigh-Bénard
convection problem, and (iv) a rotating differentially heated thin cavity. Chapter 4
presents computational results of the lid-driven cavity problem, not only the crit-
ical Hopf bifurcation is located but also performance results of the linear solver
HYMLS. Partial bifurcation diagrams and performance studies are also given in
Chapter 5 for one multi-physics problem: Rayleigh-Bénard convection. In Chap-
ter 6, we present bifurcation analysis on a Turing-type Reaction-Diffusion model,
showing both two- and three-dimensional bifurcation diagrams. Furthermore, per-
formance studies including comparison with another preconditioner ML are also
given. The last chapter outlines conclusions and discusses future work.



Chapter 2

Description of the algorithms

Our continuation program is developed based on the object-oriented software
framework Trilinos. It mainly consists of two parts (i) FVM (stands for Finite
Volume Method) in which the users can define their problem, i.e., construct the
Jacobian matrix, mass matrix and right-hand side (RHS) of the equations to be
studied, and (ii) the continuation program, obtaining series of steady solutions as
well as performing stability analysis by eigenvalue computation. Currently, FVM
can only deal with rectangular domains and Cartesian grids have been used. In
FVM, we use an overlapping domain decomposition and create the local part of
the Jacobian and RHS in Fortran and then assemble the full matrix and vector us-
ing Epetra communication data structures, which are based on MPI. The program
uses the Trilinos package LOCA for the actual continuation and is written in C++
using data structures given in the Epetra package of Trilinos. For the eigenvalue
computation we used both the Anasazi package of Trilinos and the stand alone
package PHIST [75]. In this chapter, we describe briefly the continuation algo-
rithm of LOCA, the layout of our complete code, the way we implemented FVM,
the linear system solvers used and the eigenvalue problem solvers employed, re-
spectively.

2.1 Pseudo-arclength continuation algorithm

Continuation is at the heart of our program, therefore we describe here the al-
gorithm used from LOCA. By continuation methods, families of steady states or
periodic orbits for a large range of parameter values can be obtained with mean-
ingful and generic information on the local dynamics of the PDEs. Moreover, con-

13
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tinuation methods are able to determine the first bifurcations from the branches of
steady states and periodic orbits in an efficient way [21].

Our research is focused on the steady state of the studied incompressible flows.
With continuation, a series of approximate solutions can be generated by solving a
system of parameterized nonlinear equations F (u, λ) = 0, where u is the solution
and λ is the model parameter varied during the continuation. We will first describe
natural continuation, i.e., having the solution at λ, we progress λ by a certain
amount and compute the solution at this new value. This solution is obtained by a
predictor-corrector approach. Suppose we have the solution uj at a certain value
of λj , then for the solution at the new value λj+1 = λj + ∆λj we first make
a prediction u′j+1. This serves as an initial guess for the corrector which solves
F (u, λj+1) = 0 by a Newton-type method and leads to uj+1. For the predictor
there are various options. If u′j+1 = uj + ∆u′j , then the prediction u′j+1 can be
based on

• constant extrapolation: ∆u′j = 0,

• secant approximation: ∆u′j = ∆uj−1∆λj/∆λj−1,

• tangent approximation: ∆u′j = −∆λjJ
−1
F Fλ, where JF and Fλ are the

Jacobian matrix of F (u, λ) and the derivative of F with respect to λ at
(uj, λj), respectively.

Note that in the first step, the secant predictor cannot be used and usually one
resorts to the constant predictor. The tangent predictor is the most accurate method
compared to the other two. However, it requires solving an extra linear system.

Concerning the corrector, to solve the nonlinear system of algebraic equations
F (u, λ) = 0, there are two ways in general. One is Newton’s method and the other
is Picard iteration. Though Newton’s method has quadratic convergence rate, it
is not used often in computational fluid dynamics because the linear system with
the complete Jacobian matrix may loose favourable properties like a positive def-
inite submatrix for the convection-diffusion part. Picard iteration does not suffer
from this problem, but only has linear convergence rate. Normally, the accuracy
of an approximate solution can be improved by several digits in one or two New-
ton steps, while with Picard iteration it may take tens of iterations. Therefore, the
increased number of nonlinear iteration counteracts the benefits of a good linear
solver [24, 76]. Our hybrid multilevel solver HYMLS, described later on, can
deal quite well with the linear system in Newton’s method. Hence, we use New-
ton’s method in our program, by which we achieve efficiency in both linear and
nonlinear convergence.
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Natural continuation usually works fine as long as there are no turning points
in the bifurcation diagram. In case of a turning point, the method will fail because
locally there is no solution for parameter values λ bigger than its value at the
turning point, e.g. in Fig. 2.1 there is no solution at λj+2, and hence the correction
step will fail.

A general approach to circumvent this break down is the pseudo-arclength
continuation method. In general we can introduce a new parameter and step in
that parameter. Since we are not actually interested in the arclength we like to
prescribe the step ∆sj only, see Fig. 2.1. Therefore, we write the new system in
terms of increments

F (uj + ∆uj, λj + ∆λj) = 0, c(∆uj,∆λj,∆sj) = 0,

∆sj approximates the arclength if we take c(∆uj,∆λj,∆sj) ≡ (∆uj,∆uj) +
(∆λj)

2 − (∆sj)
2 by Pythagoras’ theorem. This choice is nonlinear in the incre-

ments we want to compute. Since it is only needed to get through the turning point
we can approximate it by a linear one by defining c as

c(∆uj,∆λj,∆sj) ≡ (∆uj,∆uj−1) + ∆λj∆λj−1 −∆sj∆sj−1.

Sometimes weights are also added for the first and/or second term, but this defini-
tion of c is the essence of the pseudo-arclength method as first published in [22].
For the new system of nonlinear equations G(∆u,∆λj,∆sj) ≡ F (uj + ∆u, λj +
∆λ) = 0, c(∆u,∆λ,∆sj) = 0 we can apply Newton’s method. The Jacobian of
G is now

JG =

(
JF (u(k)

j+1, λ
(k)
j+1) Fλ(u(k)

j+1, λ
(k)
j+1)

(∆uj−1)T λj−1

)
.

We call this a bordered system since the Jacobian of F is extended by one column
on the right and one row at the bottom. Often one has a solver for a system with
JF . One can use that also here if one makes a block LU factorization of the above
matrix of the form(

JF 0
(∆uj−1)T 1

)(
I J−1

F Fλ
0 λj−1 − (∆uj−1)TJ−1

F Fλ

)
.

Using this factorization one has to solve twice a system with matrix JF . Though
this is elegant, a problem occurs near a turning point, where the matrix JF is sin-
gular. Therefore, we advocate to deal with the constraint in the solver as indicated
in [21], by integrating the border rows and columns into the system and using
multilevel preconditioners.
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(a) Natural continuation
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(b) Pseudo-arclength continuation

Figure 2.1: Sketch of (a) natural continuation and (b) pseudo-arclength continu-
ation method. Each step consists of a prediction in the direction of the tangent
followed a correction by Newton’s method. Natural continuation fails to find cor-
rection at parameter value λj+2.

Compared to time integration methods, a continuation scheme is more effi-
cient, especially when computing the whole bifurcation diagrams or when slowly
decaying modes lead to very slow approaches to equilibrium of the time-dependent
simulation. Moreover, by continuation, we can investigate the stability of various
solution branches and capture the unstable solutions by eigenpair computation of
the Jacobian matrix after obtaining the steady state. Our continuation program
is developed based on LOCA, which is a generic continuation and bifurcation
analysis package of Trilinos designed for large-scale applications. For different
problems, the user should generate corresponding right-hand side, Jacobian ma-
trix and mass matrix.

2.1.1 Generating right-hand side, its Jacobian and mass ma-
trix

In this section, we explain how the right-hand side, its Jacobian and the mass
matrix are generated. We will take the incompressible Navier-Stokes equations as
an example, the inclusion of transport equations is straightforward. We write the
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continuous equations in the following form

∂u

∂t
= −N (u,u) +

1

Re
Lu−∇p, (2.1)

0 = ∇ · u, (2.2)

where N (u, û) is the bilinear form defined by the convection terms and L the
Laplace operator. This bilinear form can be written in terms of linear operators
A, B and C as N (u, û) = C((Au)(Bû)). We can exploit this structure in the
discretization and in the implementation.

The discretization, which will be discussed in section 2.2.2, leads to a system
of ordinary differential equations (ODEs)

M
du

dt
= −N(u,u) +

1

Re
Lu−Gp, (2.3)

0 = Du, (2.4)

where here u and p have become vectors now representing the velocity and pres-
sure in each grid point, respectively. N(·, ·) is the discretized variant ofN (·, ·); G
is the discretization of the gradient operator; D is the discretization of the diver-
gence operator and M is the mass matrix, containing the volumes of the control
volumes on its diagonal. If we freeze one of the variables in a bilinear form then
it becomes linear, hence one can write

N(u, û) = N1(u)û = N2(û)u, (2.5)

where we can express N1(u) and N2(û) in the the discretized variants of the
operators A, B and C as A, B and C, respectively. More precisely, N1(u) =
Cdiag(Au)B and N2(û) = Cdiag(Bû)A, where diag(v) means a square diago-
nal matrix with the elements of vector v on the main diagonal. The system with
the Jacobian, which typically has to be solved in a Newton step is of the form(

−N1(u)−N2(u) + 1

ReL −G
D O

)(
∆u
∆p

)
= −

(
fu
fp

)
.

Matrix Double Purpose (MDP) property Observe that the matrix has a linear
part consisting of diffusion, gradient and divergence operators and 2 nonlinear
parts. Note that if we skip one of these parts from the Jacobian, then, due to (2.5),
when multiplying by (u, p)T , we get the right-hand side of (2.3). We can exploit
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Figure 2.2: Representation of 2D difference 9ui,j + 2(ui,j−1 + ui,j+1 + ui−1,j +
ui+1,j) + ui−1,j−1 + ui−1,j+1 + ui+1,j−1 + ui+1,j+1 in stencil form.

this in the implementation by first building the matrix for the right-hand side, next
creating the right-hand side, and finally adding the other term to the matrix to get
the full Jacobian. Of course, this holds only if the nonlinear part is bilinear.

The application scientist has to create a number of basic routines, e.g. for
the computation of the right-hand side, the Jacobian matrix and the mass matrix.
These routines can be written in FORTRAN90 or C++; the interface is prescribed.
In FVM, we implemented this using stencil arrays. A stencil is a common tool to
describe the discretization on a Cartesian grid. In Fig. 2.2, an example is given for
the 2D-case. This is a 9-point stencil. If we extend this to the 3D case we will get
the used 27-point stencil. This is for a scalar case, but if we have a coupled PDE
then the coupling to an other type of unknown can also be described by a 27-point
stencil. These stencils may vary from point to point so the associated array runs
over all grid points. In this way, we obtain the stencil arrays give in Table 2.4.
The parallelization of the discretization is performed by domain decomposition.
The computational domain is subdivided in rectangular subdomains. In order to
find the results for the right-hand side in a certain subdomain, we need also the
solution from neighbouring domain due to the fact that application of the stencil
near the boundary will ask for an unknown from the neighbouring domain. This
is resolved by having the solution available on overlapping subdomains.

We did implement the part, which must be provided by the user, as follows.

FVM.Initialization Based on (i) x-,y- and z-coordinates on a rectangular sub-
domain, (ii) the initial solution on the corresponding overlapping subdomain
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and (iii) a mask array determining the geometry and boundary conditions
on the overlapping subdomain, we build the stencil arrays corresponding to
second-order accurate finite volume discretization and the bilinear form on
the disjoint subdomain, i.e., Al and BiL in Table 2.4 (to be discussed in
section 2.2.2).

FVM.Compute right-hand side Using the stencils for the bilinear form, create
a stencil for N1(u), where u is the current solution, and store in AnlF
(see Table 2.4). Together with stencils for linear part, current solution and
forcing compute the right-hand side.

FVM.Compute Jacobian matrix Using the stencils for the bilinear form, cre-
ate a stencil for N2(u) and add this to AnlF to get AnlJ (see Table 2.4).
Construct the Jacobian matrix in CSR format, which is the format we use in
the solver.

FVM.Compute mass matrix Since in our case the mass matrix is diagonal, we
just compute the diagonal entries. However, in the Rayleigh-Bénard prob-
lem we will split up the Jacobian matrix to find bifurcation points from a
generalized eigenvalue problem, see section 5.1. For flexibity, we use CSR
format too for the mass matrix within the C++ part.

2.1.2 Parallel continuation progam

A short overview of the parallel continuation algorithm is given below.

Cont.initialization

• Partitioning of the domain into rectangular sub-domains. Based on this,
two maps are generated: one for overlapping domains and one for non-
overlapping domains.

• Initialize solution on the overlapping domains

• Call FVM.Initialization to compute stencils for linear and bilinear forms for
each overlapping domain
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Cont.LOCA

• Compute the solution on non-overlapping domains using the Newton method
(using the NOX package of Trilinos).

– Call FVM.Compute right-hand side and FVM.Compute Jacobian matrix
to compute the right-hand side and its Jacobian matrix on the non-
overlapping subdomains.

– Solve the linear system; a solution is found on the non-overlapping
subdomains (see section 2.3).

– Solutions are copied to overlapping domains.

• Eigenvalue computation (using Anasazi package of Trilinos or PHIST, see
section 2.4)

– Call FVM.Compute Jacobian matrix and FVM.Compute mass matrix
to get the needed Jacobian and the mass matrix

– Solve a linear system with a transformed matrix (see section 2.4).

The linear systems arising in the continuation process and eigenvalue compu-
tation can be solved with classical iterative methods, such as GMRES, BiCGStab
as well as their variations. In our program, we choose restarted GMRES, which is
available in the BELOS package of Trilinos. To accelerate convergence we use a
preconditioner (see section 2.3).

2.2 Design of finite volume package FVM
Aim of this section is to show in more detail the implementation of the finite vol-
ume discretization in the FVM package. In the first part, the basic description of
used parameters and notations is presented. Then, specific details of discretiza-
tion are described, especially the nonlinear terms. Finally, we will discuss how
boundary conditions are treated.

2.2.1 Positioning of the unknowns and intermediate variables
For the positioning of the unknowns we use staggered C-grids which is quite com-
mon for the discretization of incompressible fluids. Fig. 2.3 shows the positioning
of variables, differences (indicated by δ) and averages (indicated by a bar) of them
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: ūy, v̄x

: p, T, ūx, v̄y

: u, δxp, δxT, T̄
x

: v, δyp, δyT, T̄
y

Figure 2.3: Positioning of variables, differences and averages with same index
(i, j) in 2D case.

having the same index (i, j) for the 2D case. The 3D case is just an extension in
a similar way. The direction of the differencing is indicated by a subscript and
for the average it is found at the end of the bar indicating the averaging. The dif-
ferences and averages are always taken of the two nearest unknowns of the same
type, leading to central second-order discretizations on smoothly varying grids.

In Table 2.1, the naming conventions used throughout the program to specify
the type of a variable are given. It is shown for the u-unknown, but it holds
similarly for the other unknowns. Consider MxU. Here, M indicates an averaging
and the x that the averating is in x-direction. The U means that u is averaged.
Note that due to the positioning conventions made in Fig. 2.3, the averaging will
be forward if velocity and coordinate are in the same direction, otherwise it will
be backward. So for MxU it will be backward. We also introduce a type (hence a
t is added in front as in tMxU) for each variable we have in the program. We will
need this later to indicate in the stencil arrays (see Table 2.4) to which unknown
the equation is associated and which unknown is targeted in that equation. So MxU
specifies an array holding the backward averages at the + position of u; tMxU is
a unique identifier for the MxU array. In Table 2.2 we give an overview of more
variables with types, names and positions as indicated in Fig. 2.3. In this table,
one also define a few operators which can be viewed as the matrix needed to get
the result (say MxU) from the available variable, e.g., how MxU is obtained from U.
We will need these later on in this section to explain implementation of nonlinear
terms.

In Table 2.3 and 2.4, we define the constants and stencil arrays used in the
program. The l after A denotes linear, nl after A denotes nonlinear, moreover, F
denotes that it is for the right-hand side and J is for the Jacobian of the right-hand
side. The function indg(l,m,n) defines a unique map between the l,m,n,



22 CHAPTER 2. DESCRIPTION OF THE ALGORITHMS

notation description role

ūxijk average of u in x direction used in the positioning ex-
planation

MxU(i,j,k) backward average of u in x di-
rection

array element holding the
value of ūxijk

MyU(i,j,k) forward average of u in y direc-
tion at point o

array element holding the
value of ūyijk

tMxU average of u in point + parameter in AL and BiL
array referring to ūxijk

tMxVMyU vu at point o parameter of BiL array to
get the difference coeffi-
cients

Table 2.1: Notations used throughout the program to specify the meaning of a
variable, exemplified by the u-unknown.



2.2. DESIGN OF FINITE VOLUME PACKAGE FVM 23

term type variable/ location operator
product of
variables

u tU U –

v tV V |

ūx tMxU MxU + oMxU

v̄y tMyV MyV + oMyV

T̄ x tMxT MxT – oMxT

T̄ y tMyT MyT | oMyT

ūxūx tMxUMxU MxU*MxU +

v̄xūy tMxVMyU MxV*MyU o

uT̄ x tUMxT U*MxT –

Table 2.2: Correspondence between the type of unknown, the type as used in the
program, the name of the unknown in the program, the location of the unknown
and (in some cases) an operator.

all running over the set {−1, 0, 1}, and the numbers {1 : 27}, here np = 27. So
if (l,m,n)=(0,-1,1) then vi+l,j+m,k+n indicates vi,j−1,k+1. The coefficient
multiplying vi,j−1,k+1 to give a linear contribution to the right-hand side of the
u-equation at (i, j, k) is stored in Al(i,j,k,indg(0,-1,1),tU,tV).

2.2.2 Discretization and its implementation

In the following, more details are given on how the equations are discretized, and
how that is implemented using the introduced notations. We use a non-uniform
Cartesian grid. This allows us to refine the areas close to boundaries in order
to capture boundary layers. For the description we restrict to the xy-plane. The
extension in the z-direction is straightforward using similar reasoning. In Fig. 2.4
a picture is given of the non-uniform grid around the point (xi, yj), where ∆xi =

xi − xi−1, ∆yj = yj − yj−1, ∆̃xi = 1
2
(xi+1 − xi−1) and ∆̃yj = 1

2
(yj+1 − yj−1).

Moreover the control volumes for uij and Tij+1 are also indicated in it; below they
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constant description

ndim number of spatial dimensions
ndof number of degrees of freedom per grid cell
npar number of model parameters
nx,ny,nz number of grid cells in x-, y- and z- direction
np stencil size, here 27

Table 2.3: Constants used in the program.

array stencil

Al(1:nx,1:ny,1:nz,1:np,1:ndof,1:ndof) linear part
BiL(1:nx,1:ny,1:nz,1:np,1:2*(ndof-1),1:ndof-1) bilinear part opera-

tors
AnlF(1:nx,1:ny,1:nz,1:np,1:ndof-1,1:ndof-1) nonlinear part in

right-hand side
AnlJ(1:nx,1:ny,1:nz,1:np,1:ndof-1,1:ndof-1) additional nonlinear

part in Jacobian ma-
trix

Table 2.4: Arrays used to store the stencils in the program.
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Figure 2.4: Grid and control volumes of uij and Tij+1 in gray, 2D case.

will be referred to as Ωu
ij and ΩT

ij+1, respectively. The starting point for the finite
volume discretization is the integral form of the equations written in conservation
form. A PDE in conservation form has the shape

∂u
∂t

+ div F(u, λ) = q, (2.6)

where F denotes the so-called flux functions and q describes sources and sinks.
The integral of this equation over a control volume Ωh with boundary Γh and,
using Gauss’ theorem, can be rewritten to∫

Ωh

∂u
∂t
dΩh +

∫
Γh

F(u, λ) · ndΓh =

∫
Ωh

qdΩh. (2.7)

Linear part The discretization of the linear terms in the equations, i.e. diffu-
sion terms and gradient and divergence are all using central second-order accurate
finite volume discretizations. This approach is straightforward and the results are
stored in the Al array.

Nonlinear part It can be shown [77] that on closed domains it holds in (2.1) that∫
Ω
uN (u, û)dΩ = 0 for any divergence free û. Hence dissipation of kinetic en-

ergy in a domain enclosed by walls can only occur by diffusion. We would like to
preserve this property in the discretization in order to preclude artificial diffusion.
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On the control volumes defined in Fig. 2.4 we have the following discretizations
of the nonlinear terms:∫

Ωu
ij

(uu)x dV ≈ ∆yj((ū
x
i+1,j)

2 − (ūxi,j)
2),∫

Ωu
ij

(vu)y dV ≈ ∆̃xi(v̄
x
i,jū

y
i,j − v̄xi,j−1ū

y
i,j−1),∫

Ωv
ij

(uv)x dV ≈ ∆̃yj(ū
y
i,j v̄

x
i,j − ū

y
i−1,j v̄

x
i−1,j),∫

ΩT
ij

(uT )x dV ≈ ∆yj(ui,jT̄
x
i,j − ui−1,jT̄

x
i−1,j).

(2.8)

In the 3D-case, the volume at cell (i, j, k) is just the volume of the 2D-case at
(i, j) times ∆zk. It can be shown that this discretization has the desired property.
Next we explain how we deal with these nonlinear terms in the program by taking
the term (vu)y as an example. For easy understanding, we introduce operators
oMxV, oMyU and oCyMxVMyU denoting the matrices of forward averaging in
x- and y-direction to be applied to V and U, and backward difference matrix in
y-direction to be applied to MxV*MyU, respectively.

Using MATLAB notation we can now easily write (uv)y in three different
ways as: (i) oCyMxVMyU*(MxV.*MyU), (ii) (oCyMxVMyUC*diag(MxV)*
oMyU)*U, and (iii) (oCyMxVMyU*diag(MyU)*oMxV)*V. The coefficients
for oMxV to get MxV from V and for oMyU to get MyU from U are stored in the BiL
array as BiL(:,:,:,:,tMxV,tV) and BiL(:,:,:,:,tMyU,tU), respec-
tively; Bil stands for bilinear.

The coefficients of oCyMxVMyU are in BiL(:,:,:,:,tU,tMxVMyU).
With the matrix (oCyMxVMyUC*diag(MxV)*oMyU) one can create the non-
linear right-hand side using the MDP property described in section 2.1.1 and store
its stencil in AnlF. In the Jacobian there is one extra nonlinear contribution next
to the one already in AnlF (see the MDP property); it is precisely the stencil
of the second matrix, i.e., oCyMxVMyU*diag(MyU)*oMxV, which is stored in
AnlJ(:,:,:,:,tU,tV).

Once we have defined this, the storage of other nonlinear terms follows by
making appropriate replacements for the unknowns. This is also exploited in
the implementation, by defining a generic template that generates all the con-
tributions for the u equation. Using “define”s we let the compiler’s preprocessor
replace the unknowns and generate the appropriate code. So the template can
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also be used for the v and w equations exploiting the rotational invariance of the
Navier-Stokes equations. For instance, in three dimension, the derivative of u in x
direction ux is defined as (ui,j,k − ui−1,j,k)/∆xi. Multiplied by the cell volume, it
is ∆yj∆zk(ui,j,k − ui−1,j,k). We have a source file GenSpf.src, which defines the
coefficients of the stencil:

ind(i,j,k)=1+ _INDEXPR_
! u_x for divergence
do i=1,nx

do j=1,ny
do k=1,nz

atom(i,j,k,ind(-1,0,0)) =_DELYJ_*_DELZK_
atom(i,j,k,ind(0,0,0)) =-atom(i,j,k,ind(-1,0,0))

enddo
enddo

enddo
#undef _DELYJ_
#undef _DELZK_

The function ind maps a position in the stencil to a number between 1 and 27.
In general, the arguments of the function ind(i1,j1,k1) can have values -1,
0 and 1, indicating that the coefficient is meant to multiply ui+i1,j+j1,k+k1. In the
Fortran code, the coefficient atom() is given the value as below and used in the
subroutine about all the computations of variable u:

!Compute u_x
#define _INDEXPR_ (i+1)+(j+1)*3+(k+1)*9
#define _DELYJ_ (Y(J)-Y(J-1))
#define _DELZK_ (Z(K)-Z(K-1))
#include "GenSpf.src"

For vy we use the same template and just redefine directions and also redefining
the ind function by interchanging the role of i and j in it:

!Compute v_y
#define _INDEXPR_ (j+1)+(i+1)*3+(k+1)*9
#define _DELYJ_ (X(I)-X(I-1))
#define _DELZK_ (Z(K)-Z(K-1))
#include "GenSpf.src"

Similary, we compute the stencil for wz.
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Figure 2.5: Three locations (i, j) where the field stencil needs adjustment due to
a nearby no-fluid celll.

2.2.3 Boundary conditions

The geometry is defined by a mask array called landm. Currently, an entry of this
mask array can have four values: FLUID, SOLID, MLID, TBC. If the value
of an entry is not FLUID, this means that there is no flow in the corresponding
mass conservation cell/volume, see Fig. 2.5. If the value of this cell is SOLID, all
velocities around this cell are zero. A sliding wall or moving lid is indicated by
MLID, which means that the tangential velocity at the FLUID-SOLID interface
is prescribed. The standard boundary condition for the temperature at a wall is the
no-conduction condition, but if the value is TBC the temperature is prescribed at
the wall.

In the algorithm, we first enter the field discretization in the stencil arrays Al
and BiL, see Tables 2.5 and 2.6. Next, we can use the entries of the stencil array
to implement the boundary conditions. Since we have closed walls, the speed of
the moving lid and the temperature at the wall only affect the linear terms. So it
modifies the array Al. However, if the speed of the moving lid or a temperature
prescribed at the wall is not constant during the continuation process, we have
to adapt the forcing. Computationally, it is advantageous that the discretization
of the boundaries only needs to be done once. From these stencil arrays we can
easily compute the right-hand side and the Jacobian matrix.

In the Tables 2.5 and 2.6, we just describe the 2D case; the 3D case is a
straightforward generalization. Since in our experiments all our walls are closed,
non-trivial boundary conditions only occur in the linear part of the equations. In
Table 2.5, it is shown how boundary conditions change the stencil array and the
forcing, after the field equations are set. In Table 2.6, we give the stencils for the
two linear parts making up for the discretization of the bilinear form.
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t1 t2 cond. loc. (l,m) implementation

tU tU u = 0 - (1,0) Ali(:,:)=0, Ali(0,0)=1
(0,0) Ali(:,:)=0, Ali(0,0)=1
(2,0) Ali(1,0)=0
(-1,0) Ali(-1,0)=0

tV tV v̄x = a | (1,0) Ali(0,0)=Ali(0,0)-Ali(1,0)
Ali(1,0)=0
F(0,0)=F(0,0)+Ali(1,0)*(2*a)

(0,0) Ali(:,:)=0, Ali(0,0)=1
(-1,0) Ali(0,0)=Ali(0,0)-Ali(-1,0)

Ali(-1,0)=0
F(0,0)=F(0,0)+Ali(-1,0)*(2*a)

tT tT T̄ x = b + (1,0) Ali(0,0)=Ali(0,0)-Ali(1,0)
Ali(1,0)=0
F(0,0)=F(0,0)+Ali(1,0)*(2*b)

(0,0) Ali(:,:,:)=0, Ali(0,0)=1
(-1,0) Ali(0,0)=Ali(0,0)-Ali(-1,0)

Ali(-1,0)=0
F(0,0)=F(0,0)+Ali(-1,0)*(2*b)

tT tT δxT = 0 + (1,0) Ali(0,0)=Ali(0,0)+Ali(1,0)
Ali(1,0)=0

(0,0) Ali(:,:,:)=0, Ali(0,0)=1
(-1,0) Ali(0,0)=Ali(0,0)+Ali(-1,0)

Ali(-1,0)=0

Table 2.5: Boundary implementation in the linear part of the equations. The lo-
cation of the no-FLUID cell is at (i + l, j + m). Here Ali(l,m) is a short for
Al(i,j,indg(l,m),t1,t2) where t1 and t2 are the types indicated in the
first two columns.
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t1 t2 location (l,m) stencil

tMxU tU + [1 1]/2
(1,0) [0 1]/2
(0,0) 0
(-1,0) [1 0]/2

tMxV tV o [1 1]/2
(1,0) 0
(1,0) 0
(0,-1) 0
(0,0) 0

tCxMxUMxU tMxUMxU – [−1 1]∆yj
(0,0) 0
(1,0) 0

tCxMxVMyU tMxVMyU | [−1 1]∆̃yj
(0,0) 0
(1,0) 0

Table 2.6: Boundary implementation in the bilinear form determined by two linear
parts. The underlining in the stencil notation indicates the central coefficient.The
location of the no-FLUID cell is at (i+ l, j +m).
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2.3 Linear system solvers
In this section, we consider the problem of solving the equation

Kx = b, (2.9)

where K ∈ R(n+m)×(n+m) (n ≥ m) is a saddle point matrix that has the form

K =

(
A G
GT 0

)
, (2.10)

with A ∈ Rn×n, G ∈ Rn×m. For the Stokes problem discretized on a C-grid
(Fig. 2.3), K is a so-called F-matrix (A is symmetric positive definite, and G has
row sum zero and at most two entries per row [78]).

In our experiments, we mainly use three linear solvers: smoothed AMG from
Trilinos package ML, the Trilinos package Teko designed for multiphysics appli-
cations, and our home-made multilevel solver HYMLS. These linear solvers are
not exclusively meant for saddle point problems but could also be used for linear
systems arising from many other applications, for instance, diffusion-convection
systems discussed later in this thesis.

2.3.1 Algebraic multigrid solver
The ML library, the algebraic multilevel preconditioning package of Trilinos con-
tains a variety of parallel multigrid schemes, which includes smoothed aggre-
gation, FAS nonlinear multigrid and a special algebraic multigrid for the eddy
current approximations to Maxwell’s equations. Smoothed aggregation is used in
some of our experiments.

A multigrid solver tries to obtain an approximate solution of the original prob-
lem on a hierarchy of grids and uses the approximate solutions from coarser grids
to accelerate the convergence on finer grids. A simple multilevel iteration is illus-
trated in Algorithm 1, which shows a high-level multigrid V-cycle consisting of
”Nlevel” grids to solve the equation (2.9), with K0 = K. In the algorithm, S1

i and
S2
i are the approximate solvers corresponding to i steps of pre and post smooth-

ing, respectively. The idea of the smoother is to make the underlying error smooth
so that it can be approximated accurately on a coarser grid on which the error can
be reduced more efficiently than on the original grid. Smoothers are important for
the overall performance of a multigrid method, and they must be supplied on each
level. There is a variety of smoothers in ML. For instance, Jacobi, Gauss-Seidel
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Algorithm 1 x =multilevel(Ki, bi, i): solve Kix = bi, i is the current level.
To solve Ax = b call x =multilevel(A, b, 0).

1: if i 6= Nlevel then
2: x = S1

i (Ki, bi, x);
3: Pi =determine-interpolant(Ki); (only once)
4: r = P T

i (bi −Kix);
5: Ki+1 = P T

i KiPi; (only once)
6: v =multilevel(Ki+1, r, i+ 1);
7: x = x+ Piv;
8: x = S2

i (Ki, bi, x);
9: else

10: Solve KNlevelx = bNlevel by a direct method;
11: end if

(GS), symmetric GS and block GS [42]. Pi are the essential operators for trans-
fering solutions from coarse grids to finer grids and its transpose P T

i can serve
as a restriction operator. In ML, it is determined automatically by the algebraic
multigrid method [79]. The AMG method is typically superior to other precondi-
tioners for Poisson-like problems. Therefore, we use ML in both the continuation
and eigenvalue computations for the Turing problem in chapter 6. In that chapter,
we compare also the performance of HYMLS and ML in the continuation.

2.3.2 Block preconditioners in Teko

It is well established that block preconditioners present an appealing alternative.
The idea of such a preconditioner is to use a block factorization to segregate the
linear operator into smaller groups based on its physical components. The result-
ing sub-blocks can be solved effectively with available efficient software pack-
ages, e.g. ML, which have shown having good parallel scalability.

For the incompressible Navier–Stokes equations (2.9) a block LDU factoriza-
tion is made:

K =

(
I 0
GTA−1 I

)(
A 0
0 S

)(
I A−1G
0 I

)
, (2.11)

where S = −GTA−1G is the Schur-complement. All couplings between the
physical variables is localized to the Schur-complement operator. As a result, the
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challenge of a block preconditioning lies in effectively approximating the inverse
Schur-complement.

Teko is a package of Trilinos for development and implementation of block
preconditioners. Some generic preconditioners have been implemented in Teko,
such as block Jacobi, and block Gauss-Seidel. For the Navier-Stokes equations,
Teko has implementations of the Semi-Implicit Method for Pressure-Linked Equa-
tions (SIMPLE), the Pressure Convection-Diffusion preconditioners (PCD) and
the Least Squares Commutators (LSC) [39].

PCD and LSC preconditioners In our experiments, we will use the LSC pre-
conditioner. This is a variant of the PCD preconditioner. The idea of the PCD is
the observation that the operators ∂/∂x and ∂/∂y commute approximately with
the a(x, y) in a(x, y)u, i.e.,

∂

∂x
(a(x, y)u) = a(x, y)

∂

∂x
u+ (

∂

∂x
a(x, y))u

So if a(x, y) is rather smooth we can neglect its derivative and then the first term
in the right-hand side approximates the left-hand term. Now consider the approxi-
mation divC ≈ Cdiv where C is the convection-diffusion operator. Then, in matrix
form, we have the approximation

GTM−1
A A ≈ BM−1

B GT , (2.12)

where MA is the part of the mass matrix related to A, so M−1
A A indeed approx-

imates the convection-diffusion operator acting on all the velocity components,
and BM−1

B is the convection-diffusion operator acting on the pressure. From
(2.12), it follows that GTM−1

A ≈ BM−1
B GTA−1 and therefore S = −GTA−1G ≈

(BM−1
B )−1GTM−1

A G). So

S−1 ≈ −(GTM−1
A G)−1(BM−1

B ).

Hence, solving a system with the matrix S means that we need to compute (BM−1
B ).

In PCD this is explicitly computed, but in LSC one takes the least-squares solution
of (2.12):

(BM−1
B ) ≈ argminX(||GXT − (GTM−1

A A)T ||M−1
A

)

So (BM−1
B ) ≈ (GTM−1

A (GTM−1
A A)T )T (GTM−1

A G)−1 and hence

S−1 ≈ −(GTM−1
A G)−1(GTM−1

A AM−T
A G)(GTM−1

A G)−1.

This means we have to solve twice an elliptic equation with the symmetric matrix
GTM−1

A G, which is a discrete Laplacian.
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2.3.3 HYMLS

In [80] a direct method for the solution of F-matrices was proposed. It re-
duces fill and computation time while preserving the structure of the equations
during the elimination. A hybrid direct/iterative method based on this approach
was presented in [81, 82]. It has the advantage that the ordering it defines for
the matrix exposes parallelism on each level. It achieves so by partitioning the
computational domain into a set of non-overlapping subdomains (the interiors)
plus an interface (the separators). After solving the interface problem through the
Schur-complement, the problem is reduced to solving the independent systems
associated with the subdomains. All the subdomain matrices can be factored in-
dependently using sequential sparse direct solvers, and the Schur-complement can
be constructed with a minimal amount of communication in an assembly process.
The general idea of partitioning can be illustrated as follows.

For a general large (sparse) problem K~x = ~b, after partitioning it into n sub-
domains and reordering the unknowns the problem can be written in the form

K11 K1S

. . . ...
Knn KnS

KT
1S . . . KT

nS KSS



~x1
...
~xn
~xS

 =


~b1
...
~bn
~bS

 .

The diagonal blocks Kii (for i = 1, . . . , n) represent the interiors of the n subdo-
mains (i.e. variables ~xi) and the blocks KiS correspond to the couplings between
these interior variables and the separator variables xS . For ease of writing, we
combine the block diagonal matrix containing all the interior blocks into a single
block KII and their couplings to the separators into KIS , then, elimination of the
interior variables formally yields the block LU decomposition(

KII KIS

KT
IS KSS

)
=

(
I O

KT
ISK

−1
II I

)(
KII KIS

O S

)
,

where

S = KSS −KT
ISK

−1
II KIS = KSS −

n∑
i=1

KT
iSK

−1
ii KiS

is the Schur-complement of KII . It should be noted that wherever an inverse of
a matrix is written, a solver should be employed rather than explicitly computing
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the matrix inverse. From this LU decomposition it follows that the partitioned
system can now be solved by first solving

SxS = bS −
n∑
i=1

KT
iSK

−1
ii bi

followed by solving n independent systems

Kiixi = bi −KiSxS, ∀i = 1, . . . , n,

which can be done in parallel.
The essential part of HYMLS is the construction of a preconditioner for solv-

ing the unknowns on the separators occurring in the Schur-complement system.
First, the Schur-complement is reduced to keep only one pressure unknown in
each subdomain. The preconditioner is constructed by applying an orthogonal
transformation (Householder transformation) from the left and right to a block row
and block column corresponding to a separator group in the Schur-complement.
This also transforms the unknowns of each separator group and we call the first
one a VΣ unknown and the remaining ones non-VΣ unknowns, since it can be
shown that the first one is an average of the original unknowns. Next, dropping
all connections between non-VΣ unknowns and VΣ unknowns, and between non-
VΣ unknowns in different separator groups yields a block-diagonal preconditioner
with dense blocks. Herewith, the fill of the Schur-complement matrix has been
reduced significantly.

The difficult task of parallel preconditioning is aided by the above algorithm.
The ingredients of the associated incomplete LU factorization are the following:

1. Perform a non-overlapping domain decomposition. These domains are typ-
ically small, e.g. edge length 4, and are chosen independently of the parti-
tioning of the computational domain for parallelization.

2. Detect the velocity separators associated to this domain decomposition.

3. Pick for every subdomain one pressure unknown to be kept in the Schur-
complement.

4. Eliminate all interior variables of the subdomains and construct the Schur-
complement for the velocity separators and the selected pressure unknowns
in 3.
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5. Perform a Householder transformation on each separator. This decouples
most of the velocity unknowns from the remaining pressure unknowns.

6. Identify VΣ unknowns (separator velocities that still connect to two pres-
sures).

7. Drop all connections between non-VΣ unknowns and VΣ unknowns, and be-
tween non-VΣ unknowns in different separator groups. The resulting matrix
is block-diagonal with the ’reduced Schur-complement’ in the last block
defined by the VΣ and pressure unknowns.

8. Repeat the process on the ’reduced Schur-complement’ till the number of
levels specified.

9. Make a sparse direct factorization on the last Schur-complement.

To construct a non-overlapping decomposition of the physical domain, we
partition the grid geometrically by subdividing the grid manually into equally
sized subdomains. The straightforward way to partition the grid is to use standard
Cartesian partitioning. However, the intersection of horizontal and vertical sepa-
rators leads to isolated pressure nodes, as indicated by the one in the red dashed
circle in Fig. 2.6 (a), all of whose surrounding velocities are separator velocities.
This cell is called a full conservation cell. To avoid a singular matrix for the inte-
rior of the corresponding subdomain, this pressure node cannot be eliminated but
instead should be retained in the Schur-complement [24]. Furthermore, the four
surrounding velocity nodes in the full conservation cell should also be placed in
separate groups as well, which implies that these nodes are retained throughout
the multilevel approach. In three dimensions, separators become planes and en-
tire “tubes” of isolated pressure nodes occur at positions where four subdomains
meet. It is even more complicated in the corners where eight subdomains meet.

The implementation is intricate and prone to bugs and errors in the code. It
also affects the convergence properties of the method. To prevent any occurrences
of isolated pressure nodes, skew Cartesian separators are the better choice, which
are obtained by rotating the separators in standard Cartesian partitioning by 45 de-
grees. For the 2D case, this is shown in Fig. 2.6 (b). The detailed implementation
of skew-Cartesian partition can be found in Van der Klok’s bachelor thesis [83].

Fig. 2.7 depicts the process from grid point-of-view, which shows the princi-
ple for a coarsening factor of 2, which means that on each subsequent level the
separator length is twice that of the previous one. The coarsening factor is an in-
teger bigger than one, and can be chosen by the user. The choice of the separator
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(a) Separator length 4 (b) Separator length 4
√
2

Figure 2.6: Example of partitioning of an 8 × 8 grid. Separators are highlighted
in red and blue. The intersection of separators leads to the isolation of pressure
nodes, as highlighted in (a) Cartesian partitioning. (b) Skew partitioning, by plac-
ing the separators diagonally on the grid, no longer isolates pressure nodes, but
domains along the grid boundary are asymmetric. Image courtesy of Van der Klok.

length, the coarsening factor, and the number of levels determine the size of the
linear systems on each level.

Note that the matrices on each level inherit the structure and numerical prop-
erties of the original problem, so the method can be applied recursively. In [81],
it is shown that for two levels the amount of iterations is independent of the mesh
size. Since we are just repeating the process on the Schur-complement it will
be straightforward to show that also for a fixed number of levels the amount of
iterations is independent of the mesh size. However with increasing number of
levels the number of iterations increases; it does so only very mildly and in a
monotonous way. The latter is due to the robustness of the method. The compu-
tational complexity depends on the number of iterations and the size of the last
Schur-complement. This size increases with the problem size if the number of
levels is fixed. By increasing the number of levels it drops significantly.

2.3.4 HYMLS on a Poisson equation
In a later chapter, we will show the behavior of HYMLS on fluid-flow problems.
For comparison we give a few results of the method on a Poisson equation de-
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(a) Initial groups (b) After elimination of interiors only the
separators remain

(c) The Householder transformations leaves
one VΣ-node per separator group

(d) Domains on next level

Figure 2.7: Construction of the preconditioner from the grid point-of-view. This
example uses a coarsening factor of 2, i.e. the separators on the next level have
twice the length of those on the previous level.
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np nx L its tc ts lss
Cartesian

1 16 2 22 0.07 0.03 1296
4 32 2 23 0.34 0.07 8379

16 64 2 23 1.02 0.26 76951
128 128 2 24 4.61 1.03 654255

1024 256 2 24 50.89 21.66 5386591
Skew

1 16 2 19 0.11 0.03 721
4 32 2 28 0.25 0.09 10368

16 64 2 31 0.94 0.43 82944
128 128 2 32 4.30 2.41 663552

1024 256 2 33 181.24 55.50 5308416

Table 2.7: (3D Poisson equation) Typical HYMLS results for constant number of
levels L, here L = 2, coarsening factor is 2 and separator length is 8; stopping
criterion: residual less than 1e-8. Results courtesy of Baars.

fined on a cube, using the standard central discretization and Dirichlet boundary
conditions. In Tables 2.7 and 2.8, we show results for a constant number of levels
and constant last Schur-complement size, respectively. The columns respectively
show: the number of cores used (np), the number of grid points in one direction
(nx), the number of levels (L), the number of iterations (its), the time needed to
compute the factorization (tc), the time needed to solve the system to 8 digits accu-
racy (ts), and the size of the last Schur complement (lss). These experiments have
predominantly been performed on the Dutch national computing facility Carte-
sius, from which we used the so-called thin nodes. Each of them has 2 x 12-core
2.6 GHz Intel Xeon E5-2690 v3 (Haswell) CPUs and 64 GB memory per node.
In Table 2.7, we show results for both Cartesian and Skew partition. Both of them
work because the problem of isolated pressures does not apply here. We see that
the number of iterations (its) is getting constant after a few refinements. This
comes at the expense of a growing last Schur-complement (lss). Since for the last
Schur-complement we use an exact solver, the factorization of that part dominates
the factorization time (tc) with increasing grid size, and it does also in the solu-
tion phase (ts). Next, we also show some typical results of experiments where we
keep the size of the last Schur-complement (lss) fixed. Since our coarsening fac-
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np nx L its tc ts lss
Cartesian

4 32 3 26 0.36 0.08 127
16 64 4 34 0.96 0.34 127

128 128 5 42 4.34 0.62 127
1024 256 6 49 23.40 1.26 127

16 64 3 30 0.99 0.29 1647
128 128 4 38 3.00 0.60 1647

1024 256 5 45 9.85 1.78 1647
Skew

4 32 3 32 0.25 0.27 624
16 64 4 41 1.09 0.37 624

128 128 5 53 4.23 0.84 624
1024 256 6 65 23.25 3.09 624

16 64 3 38 0.81 0.36 4864
128 128 4 50 2.61 0.82 4864

1024 256 5 61 15.08 2.58 4864

Table 2.8: (3D Poisson equation) Typical HYMLS results for constant last Schur-
complement size (lss) by increasing number of levels L, coarsening factor is 2 and
separator length is 8; stopping criterion: residual less than 1e-8. Results courtesy
of Baars.
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tor (cx) is 2, we have to increase the level by 1 on each refinement to achieve the
same last Schur-complement size. We see that the number of iterations increases
in the Cartesian case by 7 or 8 on refinement where it does by 8 to 12 in the Skew
case. So these experiments show that the number of iterations increases with the
logarithm of nx, which is a quite acceptable behavior with increasing problem
size.

Table 2.8 also learns us that the weak scalability is not as it should be. For
perfect scaling the run time should be constant for problems with nx greater than
or equal to 64. We see it increase in the factorization. We found that this is due to
communication and improvements will be left to the future.

2.4 Eigenvalue computation
After computing the steady solution, we can analyze its stability by computing
the right-most eigenvalues of the Jacobian matrix at this state. Based on the
discretization of the incompressible Navier-Stokes equations, we need to solve
a generalized eigenvalue problem of the form Jx = λMx where J is the Jacobian
matrix, and M is the mass matrix; the latter matrix is singular. Since we are af-
ter eigenvalues close to the imaginary axis we use Shift-and-Invert or the Cayley
transform [84] when using Arnoldi’s method. These transforms give us back a
standard eigenvalue problem. For the Jacobi-Davidson method we exploit that the
eigenspace should be in the divergence-free space and use M orthogonality on
that space to find a standard eigenvalue problem. We discuss this at the end of the
section.

2.4.1 Arnoldi method
The Arnoldi method, based on the Krylov subspace, was first introduced as a di-
rect algorithm for reducing a general matrix into upper Hessenberg form [85].
Then, it was proved that it could be a good iterative technique for approximating
eigenvalues of large sparse matrices, especially, when one wants a small number
of eigenvalues. The implicitly restarted Arnoldi (IRA) method has been proved
successful and implemented in the widely used library ARPACK [26]. To com-
pute the eigenvalues, our program can easily benefit from another Trilinos pack-
age Anasazi, which implements several algorithms for the numerical solution of
large-scale eigenvalue problems, such as the Block-Krylov-Schur (BKS) method,
the Block-Davidson, the TraceMin family and so on[86].
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Stewart proposed the Krylov-Schur method in 2001, see details in [87], which
is mathematically equivalent to implicitly restarted Arnoldi. However, instead of
using the strict upper-Hessenberg form in the Arnoldi decomposition, a Rayleigh
quotient matrix is used, which leads to the Krylov decomposition. Compared to
IRA, this method has two advantages. The first one is that the converged Ritz
vectors are easier to deflate; another advantage is that it can avoid the potential
forward instability of the QR algorithm [88], which causes the unwanted Ritz
vector remaining in the computation. In our experiments, we use the block variant
of the Krylov-Schur method implemented in the Anasazi package with the Shift-
and-Invert and Cayley transform strategies to compute the target eigenvalues.

With Shift-and-Invert, one chooses a shift σ such that operator J − σM is
not singular. Then the original problem can be transformed into the standard
eigenvalue problem

Cx = µx, (2.13)

where C = (J − σM)−1M and µ = 1
λ−σ . It can be seen that the eigenvalues λ

of the original problem close to the shift σ are mapped to become exterior eigen-
values of the transformed problem. In Krylov subspace methods, the exterior
eigenvalues are the first to be well approximated, which means that they con-
verge firstly. Since we are interested in the eigenvalues close to zero with smallest
magnitude, we choose σ = 0 to transform them into exterior eigenvalues. This
approach is especially meaningful if the eigenvalues are real.

With Shift-and-Invert, one can accelerate the convergence towards eigenvalues
close to the shift; the Cayley transform can go a step further. One chooses shifts σ
and τ such that the matrix J − σM is not singular, then the original problem can
be transformed to

Cx = µx, (2.14)

where C = (J − σM)−1(J − τM) and µ = λ−τ
λ−σ .

With the Cayley transform we can emphasize the convergence towards eigenval-
ues close to the shift σ while suppressing the influence of eigenvalues close to τ ,
which means we can accelerate the convergence towards interesting parts of the
spectrum instead of towards one point in Shift-and-Invert. Cayley transform can
be seen as a special form of a general rational transform. For more details see
[28].
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2.4.2 Jacobi-Davidson QR method

In addition to the Arnoldi method, a great many methods exist for solving eigen-
value problems. Two characteristics of our algorithm guide our choice in particu-
lar: the availability of a preconditioner (from continuation process) for the matrix
in question and the fact that a sequence of eigenvalue problems for a varying pa-
rameter is being solved. In that sense, a better choice is the Jacobi-Davidson QR
(JDQR) method or its variant block JDQR.

The Jacobi-Davidson(JD) method, first introduced by Sleijpen and van der
Vorst around twenty years ago [27], is the state-of-art method in computing eigen-
values. Since then, many researchers are working on it from a theoretical or an
implementation side of view, for a review see [89]. However, for efficient com-
putation and memory usage, a restart strategy has to be applied. This lead to
JDQR and JDQZ in 1997 [90] for the standard eigenvalue problem and general-
ized eigenvalue problem, respectively. JDQR [27, 90], having a quadratic con-
vergence rate, can be started with an approximate subspace (not just one vector)
and requires the approximate solution of a linear system, for which the existing
solver/preconditioner combination can be used.

Two main phases of JDQR are subspace expansion and subspace extraction.
In subspace expansion, the correction equation is solved with Krylov subspace
methods, such as GMRES-methods [91], BiCG [92] and so on, as well as their
variants, with or without preconditioner. For a review see [93]. The solution of the
correction equation will be orthogonalized with respect to the current subspace,
and next added to that. In the subspace extraction, the approximate eigenvector
is computed, the orthogonal complement of which defines the solution space of
the correction to be obtained from the correction equation. This approach can be
motivated by the Rayleigh-quotient iteration (RQI) [94].

We will give a concise derivation of the JDQR method in order to explain
variants later on. Note that the JDQR method is meant for the standard eigenvalue
problem. Later on we will see how we can use that to solve a generalized eigen-
value problem. The starting point for the derivation of the JDQR method is the
partial Schur form

AQ−QR =0, (2.15)

where Q is an invariant subspace of A and R is an upper-triangular matrix with
the eigenvalues associated to the invariant subspace on the diagonal. Following
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[28], we can extend Q by solving

A
(
Q q

)
=
(
Q q

)(R s
0 λ

)
,

with orthogonality constraint (
Q q

)∗ (
Q q

)
= I.

We can write this as a set of equations into

−(A− λI)q +Qs = 0, (2.16)
Q∗q = 0, (2.17)

(q∗q)/2− 1/2 = 0. (2.18)

Now define u = (q, s, λ) and assume we have an initial guess u0 = (q0, s0, λ0),
then we can use Newton’s method to solve these equations. First, in Newton’s
method, we have to solve ∆u = (∆qi,∆si,∆λi) in the system−(A− λiI) Q qi

Q∗ 0 0
q∗i 0 0

∆qi
∆si
∆λi

 =

(A− λiI)qi −Qsi
−Q∗qi

−q∗i qi/2 + 1/2

 , (2.19)

and next one updates ui to compute ui+1 = ui + ∆ui. This system of equations
(2.19) is also referred to as the correction equation. On convergence of the Newton
method, qi and λi will become a new eigenpair of A. Also using the found s we
can update partial Schur factorization and repeat the process for another eigenpair,
etc.

If we make sure qi has length one and is perpendicular to Q in every step,
then the last two entries of the right-hand side become zero. By computing si+1

immediately instead of ∆si, the system can be rewritten as follows−(A− λiI) Q qi
Q∗ 0 0
q∗i 0 0

∆qi
si+1

∆λi

 =

(A− λiI)qi
0
0

 . (2.20)

We can accelerate this by using a subspace spanned by all corrections to compute
q. So suppose we have Vi = (∆q1, . . . ,∆qi), we can project the eigenvalue prob-
lem Ax = λx to the space spanned by Vi in the following way; we seek a qi ∈ Vi
and a value λi such that

V ∗i Aqi = λiV
∗
i qi,
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or since qi = Viyi

V ∗i AViyi = λiV
∗Viyi = λiyi.

This means that qi is just an approximation of the actual eigenvector on the space
Vi, we call it Ritz vector and λi Ritz value. Now, we can just keep expanding the
space V until the residual ri ≡ Aqi − λiqi is small enough. The advantage of this
is that we do not have to compute the vectors ∆qi with whom we expand Vi−1

very accurately. Another advantage is that we can keep V when computing the
next eigenvector, because we know from Arnoldi that the next eigenvector is also
already present in V to some extent.

Also, this method allows for a restart where we only keep an appropriate part
of V and discard the rest. Herewith, memory usage can be kept at bay.

As we are only interested in computing ∆qi, it is also convenient to write the
system (2.20) without the unknowns si+1 and ∆λi. Since δqi should be in the
space orthogonal to Q and qi we find a space of this dimension by premultiplying
the first row by (I −QQ∗ − qiq∗i ) which leads to the new correction equation

(I −QQ∗ − qiq∗i )(A− λiI)∆qi = −(I −QQ∗ − qiq∗i )ri. (2.21)

As said, this equation does not need to be solved exactly so we can replace (A −
λiI) by an approximating matrix P (for simplicity we assume it is not depending
on i). Also from (2.20) we can find the solution of this new correction equation

(I −QQ∗ − qiq∗i )P∆qi = −(I −QQ∗ − qiq∗i )ri, (2.22)

Define Q̃ = [Q, qi] and note that Q̃Q̃∗ = QQ∗+qiq
∗
i and also define Q̃P = P−1Q̃.

Then we can write

P−1

Q̃
= (I − Q̃P (Q̃∗Q̃P )−1Q̃∗)P−1 ≡ P−1(I − Q̃(Q̃∗Q̃P )−1Q̃∗P−1) (2.23)

where the equivalence means that we have two equivalent forms. So we find ∆qi
from

∆qi = −P−1

Q̃
ri. (2.24)

It is easy to see that this solution satisfies (2.22) and is orthogonal to Q̃. We call
this the uncoupled.

We remark that, though we have pulled apart the application of a precondi-
tioner and the projections, the application of the preconditioner may magnify un-
wanted components if P is nearly singular. These may be cut out again by the
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Algorithm 2 Sketch of JDQR.
1: Setup initial subspace
2: while not converged do . Outer iteration
3: Project the problem to a small subspace
4: Solve the small eigenvalue problem
5: Calculate an approximation and its residual
6: Approximately solve the correction equation . Inner iteration
7: Orthogonalize the new direction
8: Enlarge the subspace
9: end while

projections, but if the remaining correction may be quite inaccurate hampering
the convergence. This maybe even the case when (2.20) is well-conditioned, see
[95] for more details.

Formulation (2.24) provides suitable corrections ∆qi for a subspace iteration.
If the correction equation (2.21) is solved exactly, then JDQR has asymptotically
quadratical convergence rate for the selected Ritz values [27, 96]. The algorithm
is shown in Alg. 2. Since the Jacobian matrix from Equ. 1.4 and Equ. 6.1 are not
symmetric, and also, some of the eigenvalues have very high multiplicity, it is dif-
ficult to obtain target eigenvalues. In [97] and [98], the authors have experimented
with block JD, which proved that block JD generally performs well if there is a
cluster of eigenvalues.

In our experiments, we choose block variants of the JDQR method, see Alg. 3,
which indeed can improve the robustness when it computes multiple or clustered
eigenvalues. See results in chapter 6. Instead of calculating one approximated
eigenvector in JDQR, it will compute nb (number of block size) approximated
eigenvectors once and solve corresponding nb correction equations. However,
the total number of matrix-vector operations will increase in practice. In [99],
the authors have stated that by performance gains through better cache usage on
modern CPUs, block-JDQR could be both more efficient and robust than its single
vector counterpart.

In solving the nb correction equations, it is quite similar to a single correction
∆qi from the set of equations (2.21). The difference lies in the fact that we use
a deflation of eigenvector approximations that have not converged yet. We use
the publicly available PHIST implementation [75] of the block Jacobi-Davidson
QR method, which can straightforwardly be used in Trilinos applications. The
basic implementation described in [99] was extended to allow using a (left) pre-
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Algorithm 3 Sketch of Block-JDQR.
1: Setup initial subspace
2: while not converged do . Outer iteration
3: Project the problem to a small subspace
4: Solve the small eigenvalue problem
5: Calculate nb approximations and their residuals
6: Lock converged eigenvalues
7: Shrink subspace if required (thick restart)
8: Approximately solve the nb correction equations . Inner iteration
9: Block-orthogonalize the new directions

10: Enlarge the subspace
11: end while

conditioner as follows: the search space is extended in each outer iteration by nb
corrections obtained as the solutions of the independent left-preconditioned linear
systems

P−1

Q̃
(A− λ̃jI)∆qj = −P−1

Q̃
(Aqj − λ̃jqj), (2.25)

where λ̃j, qj, j = 1 . . . nb are the current approximations to the next few eigen-
values and eigenvectors to converge, respectively, and Q̃ = [Q, q1 . . . qnb

] also
contains the already converged eigenspace. The right-hand side represents the
preconditioned eigenvalue residual. The preconditioner P−1

Q̃
is chosen such that

it produces vectors in the orthogonal complement of Q̃, i.e., if P−1 approximates
the action of A−1,

PQ̃ = (I − Q̃P (Q̃∗Q̃P )−1Q̃∗)P−1, (2.26)

Q̃P = P−1Q̃. (2.27)

Using a proper linear solver can yield good convergence behavior of the over-
all method.

Since the Jacobian matrix from Equ. 1.4 and Equ. 6.1 are not symmetric, and
also, some of the eigenvalues have very high multiplicity, it is difficult to obtain
target eigenvalues. In [97] and [98], the authors have experimented with block
JD, which proved that block JD generally performs well if there is a cluster of
eigenvalues.

From generalized eigenproblem to a standard one In standard JDQR, we can-
not solve a generalized eigenvalue problem. We can however formulate a standard
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eigenvalue problem on the divergence free space. Based on the discretization of
incompressible Navier-Stokes equations, we consider a system of the form(

A− λMA G
GT 0

)(
u
p

)
=

(
0
0

)
.

where MA is the nonsingular mass matrix; i.e. a positive definite matrix. We
observe that p is just a Lagrange multiplier for solving the system for u with the
divergence-free constraint GTu = 0. Now let the columns of W span the kernel
of GT , hence GTW = 0 and if GTu = 0 for some u then there exist a û such that
u = Wû. With this, the above eigenvalue problem is equivalent to finding a u in
the column space of W such that W ∗(A−λMA)u = 0, which is a smaller system
with non-singular MA.

Now, say we have some eigenvectors as columns of V ,

W ∗AV = W ∗MAV D, (2.28)

with D a diagonal matrix with the eigenvalues on the diagonal. Note that in the
case we don’t have to restrict to a certain space, we can use W = I bringing it
back to the standard case. We can write the partial Schur-form as

W ∗AQ = W ∗MAQR,

where V = QR̂ is the QR-factorization of V and R = R̂DR̂−1 is an upper-
triangular matrix with the eigenvalues on the diagonal.

Since the column space of V is a subspace of the column space of W we have
from (2.28) that

V ∗AV = V ∗MAV D.

Moreover, D is also unique in this equation if V ∗MAV is nonsingular, because it
inherits the positive definiteness of MA.

In the JDQR method for the standard eigenvalue problem, eigenvalues of
Q∗AQx = λx are computed. We also want the standard eigenvalue problem,
therefore, instead of being orthogonal,Q should beMA-orthogonal, i.e.,Q∗MAQ =
I . Then we have

Q∗AQ = Q∗MAQR = R,

which reduces to solving the (smaller) standard eigenvalue problem.
A downside of this approach that when solving the correction equation one

should always take care the update is in the divergence free space, in order to
keep the search space in that space.



Chapter 3

Canonical flow problems

In this chapter, we present literature and recently obtained results, including some
of ours, for several problems: 3D lid-driven cavity, differentially heated cavity,
Rayleigh-Bénard convection as well as convection in a differentially heated rotat-
ing cavity. Apart from the first, all problems use the Boussinesq approximation.
Our aim is to show how well matrix-based methods perform on such 3D prob-
lems. Therefore, we have performed numerical experiments on those problems
with our home-made algorithms and techniques, which has been explained thor-
oughly in chapter 2. Some of our results will be presented in this chapter to show
the agreement with those obtained by other researchers.

3.1 3D lid-driven cavity

Due to its simple geometry, the incompressible flow in lid-driven cavities plays an
important role in fundamental fluid mechanics and as a numerical benchmark. We
consider the flow of an incompressible Newtonian fluid in a 3D cavity with edges
of length L (see Fig. 3.1). At the top, the fluid is driven by a lid moving with
constant speed U . At all walls no-slip boundary conditions are applied, hence
all boundary conditions are of Dirichlet type. The flow region is defined in the
dimensionless Cartesian coordinates x, y and z, each of which varies from −0.5
to 0.5.

The governing equations for this problem are the incompressible Navier-Stokes
equations, i.e. the first two equations of Equ. 1.4. If we define the kinematic
viscosity by ν = µ

ρ
, then the Navier-Stokes equations, with the velocity vector

49
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x

z

y

U

Figure 3.1: (3D lid-driven cavity) Geometry of cavity with moving lid (speed U
in x-direction) on the top

u = (u, v, w), turn into

∂u
∂t

+ u · Ou =
−Op
ρ

+ ν∇2u. (3.1)

Using the fact that O · u = 0 for incompressible flow, the non-conservative form
can be changed into the conservative form, u ·Ou = u ·Ou + u(O · u) = (O · (u ·
uT ))T . The dimensionless conservative form is

∂u
∂t

+ (O · (u · uT ))T = −Op+
1

Re
∇2u, (3.2)

where Re is the Reynolds number defined as Re = Finertia

Fviscous
= LρU

η
. Here, U and L

are a characteristic velocity and a characteristic length, respectively.
An important step has been made by Feldman and Gelfgat [100] who com-

puted the critical Reynolds number of Rec = 1914 for the onset of an oscillat-
ing perturbation on top of the steady flow. They found that the associated Hopf
bifurcation is slightly sub-critical, i.e., for values lower than the critical value
there exist two (stable) solutions. Here, a steady one and a transient one. When
Re = 1970 > Rec, it is observed that the oscillatory flow breaks the mirror sym-
metry with respect to the cavity midplane y = 0. The numerical prediction of
Feldman and Gelfgat is consistent with experimental investigations of Liberzon et
al. [101] in 2011, who found a critical onset in the range between Re = 1700 and
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Figure 3.2: (3D lid-driven cavity) Steady state flow profiles obtained for grid 1283

for Re = 1000 (blue), Re = 1500 (red) and Re = 1900 (green). u/2 and w/2
velocity components along centerlines (0,0,z) and (x,0,0), respectively (left); v
component profiles for Re = 1500 along three lines going through the center
of downstream secondary vortex(blue), primary vortex(green) and upstream sec-
ondary vortex(red), for grid 323 and 1283 (right).

1970. And it was shown that at Re = 1970, the flow exhibits oscillations char-
acterized by a dimensionless angular frequency ω = 0.575. Kuhlmann and Al-
bensoeder [51] did very accurate computations using a spectral method and found
it is 1919.5. They computed this simply by time integration of the equations and
varying the Reynolds numbers. They also studied the sub-critical behavior of this
bifurcation in more detail and found that already at Re = 1921 complicated dy-
namics occurs by interfering non-symmetric modes, i.e. modes that do not adopt
the mirror symmetry around the plane y = 0. After transition to unsteadiness,
with further increase of the Reynolds number, the flow becomes turbulent.

For Re ≤ 1900, the computations showed that the steady flow is the only so-
lution. These solutions have a reflection symmetry with respect to the cavity mid-
plane y = 0, which for v can be observed in Fig. 3.2-left. Note that y-direction
is orthogonal to the main circulation plane xz, see Fig. 3.1. It can be seen from
Fig. 3.2 that the velocities do not change so much for Re ranging from 1000 to
1900, but the gradients of them become steeper and steeper close to the boundary
with the increase of Reynolds number. Hence, fine grids are needed in the vicinity
of the walls. Isosurfaces of oscillation amplitudes of the three velocity compo-
nents are presented in Fig. 3.3 for developed unstable steady flow at Re = 2000.
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As expected, the spatial pattern of the amplitude values has a reflection symmetry
with respect to the cavity midplane y = 0, where amplitudes have the biggest
value. The maximum amplitude is defined as max(

√
u2 + v2 + w2).

Figure 3.3: (3D lid-driven cavity) Isosurfaces, at 20% of the maximum velocity
amplitude level, of the amplitude of the three velocity components (top u, left v
and right w) of the most unstable eigenmode at Re = 2000, grid=1283.

3.2 Boussinesq Equations
The Boussinesq approximation is appropriate for almost any compressible fluid
with only small variations of the density, so that in the intertial terms, and in the
continuity equation, we may approximate the density by a constant. However,
even weak density variations are important for buoyancy. Therefore, variations in
the buoyancy term are retained in the equation for the vertical component of the



3.2. BOUSSINESQ EQUATIONS 53

momentum. With this approximation, in 1872, Boussinesq derived the equations
known nowadays as the Boussinesq equations, which have been used to model
many geophysical phenomena. For instance, it can model large scale atmospheric
and oceanic flows that are responsible for cold fronts and the jet stream, see [102,
103]. In addition, the Boussinesq equations also play an important role in the
study of the differentially heated cavity problem and Rayleigh-Bénard convection
[104, 105].

The standard 3D Boussinesq equations are given by

∂u
∂t

+ u · Ou =
−Op
ρ

+ ν∇2u + gαT ez,

∂T

∂t
+ u · OT =κ∇2T,

(3.3)

where the divergence-free constraint equation 1.2 is added to make the equations
complete. Here ν is the kinematic viscous coefficient, κ is the thermal diffusivity
coefficient and α is the heat expansion coefficient.

3.2.1 Differentially heated cavity
The above Boussinesq equations can be used in differentially heated cavity prob-
lems, whose typical configuration is a rectangular domain with two opposite isother-
mal walls kept at temperatures TH and TC (TH > TC), respectively. The rest of
the walls are assumed to be adiabatic. Here, we consider the case that the fluid is
confined to a box of size Lx×Ly×Lz, where Lx, Ly and Lz are the length in x-, y-
and z-direction, respectively. Suppose d is the distance between the differentially
heated walls, which is either Lx, Ly or Lz.

Choose d as the length scale, d2/ν as the time scale (and thus ν
d

for the velocity
scale), and ν∆T

κ
(∆T = TH−TC , the difference between the high and low temper-

ature) as a scale for the temperature, then the momentum conservation equations
can be put into dimensionless form in Cartesian coordinates with the components
of the velocity vector given by u = (u, v, w) as follows:

∂u
∂t

+ u · Ou =− Op+∇2u + RaT ez,

∂T

∂t
+ u · OT =

1

Pr
∇2T,

(3.4)

where Ra = αg∆Td3

νκ
is the Rayleigh number and Pr = ν

κ
is the Prandtl number.
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There are two important cases of the differentially heated cavity problem: (i)
the case that the imposed temperature gradient is perpendicular to the gravity force
and (ii) the case that the temperature gradient is parallel to the gravity force. The
latter is often called the Rayleig-Bénard problem, and the former is commonly
understood as the differentially heated cavity problem, though it in fact is a later-
ally differentially heated cavity problem. In the next section, we will discuss the
Rayleig-Bénard problem in more detail.

In a differentially heated cavity, just the buoyancy force, which depends on
the temperature difference between vertical walls, does supply enough force to
get the fluid into motion. The speed is kept at bay by the no-slip walls. Here, we
will consider the 2D and 3D flow in a square/cubic cavity, heated from the west
side x = −1

2
and cooled at the east side, with boundary conditions as follows

u = 0 at |x| = 1

2
, T =

1

2
at x = −1

2
, T = −1

2
at x =

1

2
,

u =
∂T

∂z
= 0 at |z| = 1

2
,u =

∂T

∂y
= 0 at |y| = 1

2
.

(3.5)

Due to the heating (cooling) at the west (east) side, the density of the fluid near
the west (east) wall decreases (increases) compared to an initial solution T = 0,
resulting in a clockwise rotation of the fluid inside the cavity. For a large range
of Rayleigh numbers, the 2D velocity field in a square cavity is indistinguishable
from that in the symmetry plane (y = 0) of the 3D case, due to the negligible
effect of the no-slip conditions on the walls at |y| = 1

2
. Fig. 3.4 shows streamlines

of the symmetry plane y = 0 in a cubical cavity. For low values of the Rayleigh
number, the convective effect is very small and the solution is stable; It is found by
our methodology that the first critical Rayleigh number occurs around 1.712×104,
at which the flow gets unstable. When the Rayleigh number increases to 105 and
106, the buoyancy force increases. As a result, strong circulation of fluid inside
the cavity and convective heat transport occur, as shown in the figure. Note that
the shown solutions at the bottom are unstable, but steady.

Note that the equations (3.4) have a point symmetry around the origin. At the
origin the flow is zero and all variables are odd functions on any line trough the
origin. This symmetry is reflected in the solutions in Fig. 3.4. We mention it here
because we will later see the case where the cavity is rotated, which causes that
this property will be lost.

Note that for low Rayleigh numbers, the velocities will be small and hence
viscosity will dominate over inertia. This leads to a symmetry with respect to the
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(a) Ra = 103 (b) Ra = 104

(c) Ra = 105 (d) Ra = 106

Figure 3.4: (Differentially heated cavity) Streamlines for increasing values of the
Rayleigh number.

plane z = 0, which is clearly present in plot (a) of Fig. 3.4. It is lost when inertia
gets more important.

3.2.2 Rayleigh-Bénard convection

The Rayleigh-Bénard convection problem has been widely investigated because
of its fundamental interest in relation to the evolution of flow patterns and the
onset of unsteadiness. Many engineering problems related to thermal transport
in crystal growth, solar collectors, buildings and nuclear reactor core insulation
depend on this type of natural convection. The first quantitative experiment was
performed by Henri Bénard in the year around 1900 [106]. In his experiment, he
studied the stability of a thin fluid layer, which is open to the air and undergoes
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a vertical temperature gradient. Fig. 3.5 shows one of Bénard’s famous original
photographs. For a more detailed review of this problem, readers are kindly in-

Figure 3.5: (Rayleigh-Bénard convection) One of Bénard’s original photographs,
low resolution, seen from the top [107].

vited to consult the first chapter of Chandrasekhar’s book [108] and more recent
reviews in [109, 110].

This prototypical problem not only serves as a benchmark in evaluating com-
putational methods in the laminar regime, but also offers the opportunity to fully
understand the transition mechanism and obtain substantial insight into natural
convection. The first transition from conduction, i.e. the no-flow case, to con-
vection starts when the Rayleigh number is increased beyond a critical value Rac.
It is well documented in the literature both for 2D rectangular cavities and 3D
enclosures with a variety of width/height aspect ratios [111–113]. The critical
Rayleigh number differs with different boundary conditions and aspect ratio’s,
while independent of the Prandtl number (see later in this section). In Table 3.1
some critical values are shown for infinite domains; these can be derived analyt-
ically, using a Fourier component as Ansatz. The resulting critical component
will have a certain wavelength or period which also is given in the table. This
means that the same critical value will occur if we add free-slip vertical walls one
or multiple wavelength apart. The counter side of this is that if we add free-slip
walls not equal to a multiple of the wavelength, then the critical Rayleigh number
will go up. It is interesting to observe in the first result that a potential unstable
situation, i.e. a light fluid below a heavy fluid, is kept in place by viscous forces,
not allowing the fluid to get into motion. The second interesting point is that Rac
is increasing with the length of the no-slip wall, in Table 3.1 from bottom to top
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boundary condition Rac wave notes
at top and bottom wall length

free-slip isothermal 657 2.8285
Viscous force wins from
buoyancy force for low
values of Ra.

free slip at the top, no-slip
at the bottom 1101 2.3427

Less no-slip walls decreases
Rac.

no-slip isothermal 1707 2.0158
No-slip walls delay the onset
of convection.

Table 3.1: (Rayleigh-Bénard convection) Rac and corresponding wave length for
various combinations of top and bottom boundary conditions for the 2D case on
an infinite domain [114, 115].

the length is 0 (all free-slip boundaries), 2.3427 (no-slip at the bottom, hence one
wave length), 4.0316 (no-slip at bottom and top, hence 2 wave lengths). At the
same time the wavelength is decreasing. Puigjaner et al. have been doing a se-
ries of studies on determining the bifurcation diagram and stability of the flow
at moderate Rayleigh numbers(Ra ≤ 105) both for insulated and conductive side
walls, by means of the Galerkin method with divergence-free basis functions to
obtain the solutions and using a parameter continuation algorithm to follow the
branch [54, 55]. With insulating side walls, they reported the occurrence of a flow
pattern with a single roll around Ra = 3389, four rolls around Ra = 5900 and
two x-rolls plus two y-rolls(toroidal type) around Ra = 7400. In [116], they also
reported a complex bifurcation diagram of periodic flow patterns within the range
2× 104 ≤ Ra ≤ 1.5× 105.

For the solution one can use again (3.4), but in this case the conductive state is
a solution for all Rayleigh numbers. This makes it easy to derive the equations for
the perturbation of the conductive state. Numerically this is advantageous, since
the small perturbations does not suffer from the round-off in the total state. Note
that the laterally differentially heated cavity of the previous section does not have
a conductive state solution for any Rayleigh number.

Let d be the vertical height of the container. Express the temperature of the
dynamical system as a sum of the linear profile of the conduction state and the
temperature fluctuation θ(x, t), i.e., T (x, t) = TH − ∆T

d
z + θ(x, t). Then the
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Boussinesq equations turn into

∂u
∂t

+ u · Ou =
−Op
ρ

+ ν∇2u + gαθez,

∂θ

∂t
+ u · Oθ =κ∇2θ +

∆T

d
u · ez.

(3.6)

Rename θ as T again, then the corresponding dimensionless momentum equations
governing the Rayleigh-Bénard convection are the same as Equ. 3.4, except that
there is one more term in the temperature equation:

∂T

∂t
= −((uT )x + (vT )y + (wT )z) +

1

Pr
∇2T +

1

Pr
w. (3.7)

Since we solve for the perturbation, the boundary conditions are a homogeneous
variant of those for differentially heated cavity, except that the Dirichlet boundary
conditions for the temperature occur at bottom and top of the cavity:

u = T = 0 at |z| = 1

2
,u =

∂T

∂x
= 0 at |x| = 1

2
, u =

∂T

∂y
= 0 at |y| = 1

2
. (3.8)

Note that the critical Rayleigh number at which the trivial solution becomes unsta-
ble is independent of the Prandtl number. This can be proved by considering the
eigenvalue problem associated to the stability study, i.e., det(λM−J (Ra,Pr)) =
0, whereM is the opearator in front of the time derivatives and J is the continu-
ous variant of the Jacobian of the right-hand side. At the critical Rayleigh number
the eigenvalue λ = 0, which leads to det(J (Ra,Pr) = 0. Considering (3.7), we
see that the convective terms cancel out since we consider stability of the trivial
solution and then the Prandtl number can simply be divided out, so the critical
values follow from det(Ĵ (Ra)) = 0, where the hat denotes the modification.

In this thesis, we discuss the primary bifurcations, i.e., branches switching off
from the motionless conductive state to the convective state. The algebraic mul-
tiplicity of the first eigenvalue, which is also the first critical Rayleigh number, is
two. So is the geometric multiplicity, which means it has two linear independent
eigenvectors. In fact, one eigenmode corresponds to an x-roll pattern and the other
one to a y-roll pattern. These are the straightforward generalization of the first crit-
ical eigenmode of the 2D case. We will see in Table 5.3 that for 2D Rac ≈ 2584
which is higher than the smallest value found in free space (see Table 3.1) due to
the no-slip vertical walls. The 2D case is the same as a 3D flow in the case of
a free-slip front and back wall. Since these are in fact no-slip walls the critical



3.2. BOUSSINESQ EQUATIONS 59

3000 4000 5000 6000 7000 8000 9000 10000 11000
0

50

100

150

200

250

300

350

Rayleigh number

||
u

||
2

 

 

S11

S12

S2

S3

S2−stable

Figure 3.6: (Rayleigh-Bénard convection) Bifurcation diagram of flow in a cube
at Pr = 1.0. L2 norm of velocity in x-direction as a function of Rayleigh number.
S11, S12, S2, S3 represent x/y roll, diagonal roll, four rolls and toroidal shape
solutions, respectively. Stable and unstable flow patterns are depicted with solid
lines and dashed lines, respectively.
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(a) x/y-roll (b) diagonal roll

(c) four rolls (d) toroidal roll

Figure 3.7: (Rayleigh-Bénard convection) Flow patterns near the first three pri-
mary bifurcations.
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Rayleigh number increases to approximately 3387 (see Table 5.3), which is also
shown in Fig. 3.6). Using the x-roll eigenvector to get on the non-trivial branch,
we find an x-roll (depicted as S11 in Fig. 3.6) flow pattern by continuation. So
does the y-roll flow pattern. Using the linear combination of these two eigenvec-
tors in the perturbation, we get the single diagonal roll solution (S12). The x-roll
and y-roll solutions are stable within the studied Rayleigh number range from 0 till
105, while the diagonal roll solution is unstable. From the second critical Rayleigh
number, the solution takes the shape of four rolls (S2), which is unstable in the
rang of 5900 5 Ra 5 8300 and becomes stable when Ra > 8300. At the third
primary bifurcation, an unstable flow pattern develops and has a toroidal shape
(S3). A visualization of these flow patterns in streamlines is given in Fig. 3.7.

The flow patterns described above, which are very similar to the eigenvec-
tors associated to the zero eigenvalues of the linearized problem, only hold for
Rayleigh numbers slightly above the critical bifurcation point. They just possess
the symmetry properties of the linearized problem around the conductive state.
It is of interest to analyze how the flow patterns evolve as the Rayleigh number
increases. Fig. 3.8 shows contours of the velocity u perpendicular to the plane
x = 0.25 as well as the velocity vector field in the plane at Ra = 3730 and
Ra = 20000. When Ra increases to 20000, the solution still remains basically
x-roll configuration, but elongates in the y = −z direction. There is a π

2
rotation

about the x axis. It is noticed that the secondary circulations near the edges of the
cavity becomes stronger as the Rayleigh number increases, as what is presented
in [54].

3.2.3 Convection in a differentially heated rotating cavity
Rotation can have profound effects on the convection in a rotated enclosure. For
instance, in the course of crystal growth, at some point, rotation is needed to stabi-
lize the buoyancy induced flow to get a crystal of higher quality. In the literature,
considerable attention has been paid to the rotating Rayleigh-Bénard convection,
the convection in an infinite bounded horizontal layer of fluid rotating at a con-
stant angular speed about a vertical axis. Another geometry of great interest is the
flow in a vertical closed circular cylinder, which is heated from below and rotates
about its axis. Good reviews are written by Ker [117] and by Lee [118], in which
they also investigated how the Coriolis force and the centrifugal force act affect a
flow in a cavity dominated by thermal buoyancy.

We studied convection of air in a differentially heated rotating cubic cavity
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Figure 3.8: (Rayleigh-Bénard convection) Contours of the velocity component
normal to the vertical plane x = 0.25, and velocity vector distributions for the
x-roll flow pattern at Ra = 3730 (left) and Ra = 20000 (right), respectively.

in which the rotating axis coincides with the z-axis and is parallel to the grav-
itational force. The configuration is depicted in Fig. 3.9. Boundary conditions
are as for the case without rotation, i.e., Equ. 3.5. Relative to the Equ. 3.4,
there are two extra non-dimensional parameters: the rotational Rayleigh number
Raω = Ω2α∆Td4/(νκ) (κ is the thermal diffusivity coefficient) and the Taylor
number Ta = Ω2d4/ν2. Herewith, the governing momentum equations and the
heat equation are as follows:

∂u

∂t
=− ((uu)x + (vu)y + (wu)z)− px +∇2u+ 2

√
Ta v − RaωxT,

∂v

∂t
=− ((uv)x + (vv)y + (wv)z)− py +∇2v − 2

√
Ta u− RaωyT,

∂w

∂t
=− ((uw)x + (vw)y + (ww)z)− pz +∇2w + RaT,

∂T

∂t
=− ((uT )x + (vT )y + (wT )z) +

1

Pr
∇2T,

(3.9)

where x and y represent spatial coordinate values. Note that apart from the Prandtl
number, which has a fixed value for air, there are three dimensionless parameters:
the Rayleigh number, the Taylor number and the rotational Rayleigh number.

With Pr = 0.7 for air, Ra = 100 and Ta = 100 fixed, we do continuation on
the rotational Rayleigh number, which means that we effectively change the aspect
ratio of the cavity. As we increase Raω to 106, though the flow is still dominated
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Figure 3.9: (Differentially heated rotating cavity) Geometry of rotating cubic cav-
ity.

by thermal buoyancy, the effects of rotational buoyancy is getting stronger and
stronger, which breaks the centro-symmetry of the flow present in the case without
rotation (cfg. Fig. 3.4). In the top of the velocity fields, shown in Fig. 3.10,
one sees that the magnitude of the dimensionless velocity goes up to about 138.
Viewing the flow from the top, a pair of elongated rolls can be observed clearly,
whose axes are parallel with the rotating axis of the cavity. These result from the
fact that the heavier cold fluid is expelled to the boundaries of the cavity due to
the centrifugal force causing that the lighter warm fluid is pressed to the center
line. So at the cold wall the fluid moves away from the middle whereas at the
hot wall the fluid moves towards the middle and creates the mushroom shape in
the isotherms in bottom panel of Fig. 3.10. The plots for z > 0 did show a
symmetry with respect to the plane z = 0 hence we omitted them. This symmetry
is analytically there only if the Ra = 0, but since Raω = 106 the centrifugal effect
dominates the picture here.

Instead, if we reverse the magnitudes of Raω and Ta, i.e., Raω = 100 and
Ta = 106, then the Coriolis force dictates the flow. It is rather weak with v < 0.07.

These results are similar to those in the paper [118]. The only difference is
that we use a uniform grid, while they refined the grid near the boundaries.
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Figure 3.10: (Differentially heated rotating cavity) Velocity vector field and
isotherms for planes (from left to right) z = −0.469, z = −0.281, z = 0.0.



Chapter 4

Numerical results for the lid-driven
cavity problem

In this chapter, three dimensional numerical experiment results, including the be-
havior of simulated solutions on different Reynolds number as well as the eigen-
values for the benchmark problem lid-driven cavity are presented. The parallel
performance of our algorithm for various grid sizes using HYMLS and Teko, the
latter with the Least Squares Commutator (LSC) preconditioner, is also investi-
gated. Moreover, to compare the performance of a time dependent method and
continuation, we present results from a time integration method using the back-
ward Euler method as integrator.

4.1 Numerical solutions

In our continuation program, the Reynolds number is the continuation parameter.
Starting from a small number, e.g., Re = 1, the Reynolds number is increased
with step size 500 till Re = 1900. Meanwhile, the eigenvalues are computed in
order to check the stability of the solution. The results are validated by comparing
them with those of Feldman and Gelfgat [100], in which a time-dependent method
is used for both 2D and 3D computations. Good agreement of the center line
velocity and pressure values is observed for the relevant range of Re, which shows
the correctness of the present calculations.

Velocities and pressures on different grids are given in Fig. 4.1. The differ-
ence between the results of two close grids is getting smaller and smaller as the
grid size is refined. In fact, we see the differences decrease by a factor 4 when

65
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Figure 4.1: (3D lid-driven cavity) Velocity u/2 and w/2 components (left) and
pressure p (right) along centerlines (0,0,z) and (x,0,0) on Re = 1900 of grid 323

blue, 643 red, 1283 green and 2563 black.

refining the mesh by a factor 2, which shows the second-order accuracy of the dis-
cretization. There is one primary clockwise eddy in the middle and two secondary
anti-clockwise eddies in the bottom of the cavity left and right, respectively. These
are the same as found in 2D [119], except that there is one more secondary eddy
at the top left of the cavity in 2D [120].

In our study, we want to use continuation of equilibria to find the critical point
where the solution becomes unstable. To find the critical point, one has to compute
the critical modes by solving an algebraic eigenvalue problem. Doing so, one
observes that a conjugate pair of eigenvalues is crossing the imaginary axis near
Re = 2000, see Fig. 4.2. Hence, the flow loses its stability there. Table 4.1 shows
the eigenvalues with smallest real part on a sequence of grids. By extrapolation,
based on the second-order behavior of the error, the critical Reynolds number is
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Figure 4.2: (3D lid-driven cavity) Eigenvalues at Re=1900 of grid 323 red, 643

green and 1283 blue (left); eigenvalues closest to zero of grid 1283 at Re = 1900
and Re = 2000 (right). Results courtesy of Thies.

Re λ32 λ64 λ128

1900 −53.05 + 0.468i −22.28 + 0.550i −6.762 + 0.588i
2000 −42.35 + 0.463i −10.73 + 0.545i 3.901 + 0.571i
Rec 2395 2093 1963 extrapolated value 1917

Table 4.1: (3D lid-driven cavity) Eigenvalues obtained on different grids at Re =
1900 and Re = 2000.

expected around 1917. At that point, the eigenvalue is between 0.571i and 0.588i,
which is in great agreement with the angular frequency obtained by Liberzon et
al.. Eigenvalues have been computed by the Anasazi block Krylov-Schur method
using Shift-and-Invert as well as the Cayley transform to target the eigenvalues
near 0. One eigenvalue’s real part becomes positive between Re = 1900 and
Re = 2000, which means there is a Hopf bifurcation occurring in this interval. In
Fig. 4.2 the two eigenvalues closest to the imaginary axis are very close to each
other.

With the current continuation technique, the stable periodic orbit cannot be
followed after the Hopf bifurcation point. In order to do that, a time-dependent
computation is needed. This should be built in for instance PDECONT, so that
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Re Newton Picard
nx=8 nx=16 nx=8 nx=16

Nwt HGMR Nwt HGMR Picrd HGMR Picrd HGMR
its. its. its. its. its. its. its. its.

0 1 72 1 112 1 72 1 112
200 4 92 4 160 58 86 74 147
400 4 104 3 202 1e-3 97 1e-3 172
600 4 122 3 226
800 3 135 3 252

1000 3 148 3 277

Table 4.2: (3D lid-driven cavity) Comparison of Newton (Nwt) and Picard (Pi-
crd) iteration; stopping criterion nonlinear iteration and HYMLS-preconditioned
GMRES (HGMR): 1.0e-8.

Floquet multipliers can be computed. The name of bifurcation occurred here
should be cyclic Hopf bifurcation. Hopf bifurcations are described in more de-
tail in [121] and in [122] by Golubitsky and Schaefer.

4.2 Newton versus Picard iteration
In this section, we show in Table 4.2 a comparison of performance of Newton
versus Picard iteration. In our code, Picard iteration is simply obtained by giving
the Newton process just the matrix needed to compute the right-hand side (see
the MDP property in section 2.1.1). We just increased the Reynolds number by
step size 200. One observes that the number of Newton iterations (Newton its.) is
low in this range, indicating that the behavior is not far from linear. The number
of HYMLS iterations is slowly increasing with the Reynolds number. Next to
it we see that the number of Picard iterations is already high for Re=200. At
Re=400 the convergence is stagnated around 1e-3. This occurs also at Re=300.
We know that the matrix in the Picard iteration has negative eigenvalues for all
Reynolds numbers, (see [77]); the real part of the eigenvalues is determined by
the eigenvalues of the diffusion part. This makes the linear solve somewhat easier
as we can see from the number of iterations of HYMLS. It is disappointing that
Picard iteration already fails at these low Reynolds numbers, since we know that
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the first bifurcation is occurring much later at Re ∼ 2000. At that value the
complete Jacobian gets its first positive eigenvalue.

4.3 Parallel performance
To test the scalability of HYMLS, we did experiments in 3D for different numbers
of grid points nx = ny = nz with skew partitioning. The grid is exponentially
stretched, with cells near the walls 4 times smaller than those at the centerlines.
Tables 4.3 and 4.4 show results of Re = 0 and Re = 500, respectively, includ-
ing the running time of the main phases with different value of coarse factor cf
(explained in chapter 2 section 2.3.3), number of level L, number of separator
length sx and different number of processors np. tc represents the time it takes to
compute the preconditioner and ts means the time the linear solver takes, stopping
criterion is 1e-8. ittot represents the number of GMRES(50) iterations performed
by HYMLS in the last iteration of the Arnoldi process. To have a better idea of
how the factors cf , np, L and sx interact, the tables also show the size of the
Schur-complement on the last level. The simulations are performed on the cluster
of University of Groningen called Peregrine, which has 162 nodes and each node
has 24 Intel Xeon 2.5 GHz cores and 128 GB internal memory. The nodes are
coupled through an 56 Gb/s Infiniband network.

Observe that the last Schur-complements for nx = 32 and nx = 128 are of
similar size (row of color light cyan). The number of iterations doubles. So this
means that the number of iterations behaves like

√
nx.

Note that the Stokes problem is merely a Poisson problem restricted to the
divergence-free space. For a Poisson problem, we know that without scaling or
with diagonal scaling, or with ILU(0) preconditioning, we just get the nx be-
havior. A symmetric Gauss-Seidel or MILU(0) preconditioning should bring it
to
√
nx. The present method shows this behavior if we keep the last Schur-

complement of equal size when refining(see rows of color light cyan). On the
other hand, if we keep the number of levels fixed as 3 we see that the number of
iterations goes to an upper bound 403(red in Table 4.3). This is according to the
theory in [47]. Note that the number of processors does not influence the number
of iterations as it should, because the algorithm does not depend on that.

Starting with the zero-solution until a steady solution is reached at Re = 500,
it takes 5 or 6 Newton steps to converge, while for Re = 0 one only needs 2 steps
due to linearity. That explains why more time and iterations are spent on the linear
solver for Re = 500. Observe that the number of iterations goes up by a factor
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nx cf np L sx lss tc ts (ittot)

16 4 8 2 4 6360 3.2 0.7(75)

32 4 1 3 4 9520 15 17.5(150)
32 4 8 3 4 9520 3.6 2.7(150)
32 4 16 3 4 9520 3.0 2.7(150)

64 4 8 3 8 9648 13.4 32.5(213)
64 2 8 3 8 17176 15 53(270)
64 4 16 3 4 76216 18.3 23.8(211)
64 4 16 4 4 1221 18.1 24.9(216)
64 4 32 4 4 1221 20 42.7(216)

128 4 64 3 8 76728 18.7 81.2(289)
128 4 32 4 4 9648 90 187(305)

256 4 64 3 8 612048 855 234.5(403)

Table 4.3: (3D lid-driven cavity) Scalability test results of HYMLS at Re = 0.

3 when going from nx = 32 to nx = 128. If we bound that factor by 4, though
based on the Stokes case we expect a factor 2, we get a complexity of order nx4

or, expressed in N = nx3, N4/3.
The performance compared with Teko at Re = 500 is showed in Table 4.5. We

chose Teko for comparison because it is available in Trilinos and can therefore
easily be coupled to our code. The stopping criterion of the linear solver is the
same as before 1e-8. And the experiments are performed on the same cluster.
Compared to HYMLS, at grid 323, it has better performance, taking less time to
solve the linear system and less iterations. However, as grid refinement at grid 643,
it takes around one hundred times more time to compute the preconditioner and
solve. Meanwhile, more iterations are needed for Teko to converge. For higher
resolutions, Teko does not converge.

4.4 Behavior of a time integration method

To study the behavior of time integration, we ran the program Heat97 using the
backward Euler method as integrator. The pressure Poisson equation and the mo-
mentum (transport) equations are solved separately, using MICCG and BiCGStab,
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nx cf np L sx lss tc ts (ittot)

16 4 8 2 4 6360 3.2 0.7(75)

32 4 1 3 4 9520 15 332(282)
32 4 16 3 4 9520 3.0 42.7(282)

64 4 8 3 8 9648 13 561(460)
64 4 32 3 4 76216 23 760(420)

128 4 64 3 8 76728 18.5 1098(659)
128 4 64 4 4 9648 41 1383(743)

256 4 256 3 8 612048 833.6 3724(900)

Table 4.4: (3D lid-driven cavity) Scalability test results of HYMLS at Re = 500.

nx np L tc ts (ittot)

32 1 3 11.8 189.3(198)

64 8 3 1540 5498(551)

128 64 3 4544 -

Table 4.5: (3D lid-driven cavity) Performance of Teko with LSC preconditioner
at Re = 500.
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nx ∆t Poisson CPU time
(sec) iters./time step (sec)

64 0.05 29 660
128 0.025 35 9420
256 0.01 43 167340

Table 4.6: (3D lid-driven cavity) Performance of time integration at Re = 500 on
different grid size. Results courtesy of Veldman.

respectively. So for the pressure Poisson equation we use a modified Incomplete
Cholesky factorization as preconditioner in the Conjugate Gradients method. For
the momentum equation we do not employ a preconditioner as for limited time
step size used here, the CFL number is between 4 and 5, the matrix is rather close
to identity. Unfortunately, the Heat97 code is just sequential and hence it does not
run in parallel.

Table 4.6 shows the performance of this method on a 3D lid-driven cavity
problem on one node of Peregrine (see beginning of previous section) for different
grid sizes, starting with the zero-solution until a steady solution is reached. For
Re = 500, 50 physical seconds are required to obtain the steady solution in about
8 digits. The grid is exponentially stretched, with cells near the walls 4 times
smaller than at the centerlines as we did in the experiments with FVM/HYMLS.
The experiments are performed on University of Groningen’s cluster Peregrine,
too.

The convergence of MICCG method behaves as expected. We see that the
number of iterations is proportional to

√
nx, even slower than that. Probably this

is due to the averaging over a large number of time steps in which the solution
approaches a steady limit, hence the initial guesses are getting better and better.
The solution time of the momentum systems is negligible because on average be-
tween 1 and 2 iterations per time step suffice. Note that the memory consumption
is increasing almost linear with the amount of unknowns as expected. The CPU
time increases by roughly nx9/2 or N3/2. The extra 3/2 on top of N is due to
the square root increase of the number of iterations of the Poisson solver and the
linear increase of number of time steps to reach the end time (note that the time
step ∆t is about halved when nx is doubled). The decrease of the time step helps
to keep the number of iterations for the momentum equation low.
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4.5 Comparison of results
Comparing the time integration to the continuation, we observe that the contin-
uation complexity is about N4/3 at Re = 500 while that of the time stepper is
about N3/2. Since, the continuation has quite some overhead. Let us assume for
a moment that the time integration method is perfectly parallel scalable. Then
for nx = 256 we need about 650 seconds to get the result, where HYMLS needs
about 4500 seconds. Then this shows that solving with HYMLS is slower by a fac-
tor 6. However, in the time integration approach the preconditioner is an ILU(0)
factorization and the solution of the linear equations dominates the turnaround
time. Since, ILU(0) contains recurrence and it is not straightforward to paral-
lelize. To overcome these reorderings have to be done which may easily give rise
to overhead. So in reality the factor 6 will be less. Of course, both programs
allow for efficiency improvements. We believe that with a substantial effort one
could speedup the continuation more than what is possible in the time integration
approach. We know for instance that quite some data is moved in the continua-
tion code and that redundant computations are done. Moreover, a better tuning of
inner- and outer iterations is possible. So our conclusion is that the approaches
are competitive for the 3D lid-driven cavity problem.



74 CHAPTER 4. RESULTS LID-DRIVEN CAVITY PROBLEM



Chapter 5

Numerical results for
Rayleigh-Bénard convection

In this chapter1, besides results in chapter 3, more numerical experiment results
are presented for Rayleigh-Bénard convection. Critical Rayleigh numbers are
computed both for two and three dimensions on different grid size. It shows
weak scalability of our algorithm in two-dimension. Primary bifurcations from
the conductive states are also studied.

5.1 Numerical procedure and performance

In the experiments, we set the Rayleigh number as the continuation parameter and
run on different grids, with the same number of grid points in each direction. For
the 2D case, Table 5.1 shows horizontally how the iteration numbers and eigen-
values vary with the Rayleigh number, and vertically the influence of the grid on
these numbers. Observe that Rac is between 2400 and 2600, and that more itera-
tions of the Arnoldi process are needed in that interval. The reason for that is that
the Jacobian matrix is getting almost singular as the Rayleigh number gets closer
to its critical value. Note also that the critical eigenvalue varies smoothly with
the continuation parameter Ra, which means that no jumping between solution
branches occurs.

In Fig. 3.7 we have already shown the first three primary bifurcation flow

1A large part of this chapter has been published in the Proceedings of the 11th world congress
on computational mechanics [48]
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nx 2000 2200 2400 2600 2800 3000
32 eig. -12.01 -7.7 -3.5 0.686 4.89 9.13

ite. 47 48 49 53 49 49
64 eig. -12.06 -7.92 -3.77 0.407 4.60 8.8

ite. 65 67 70 76 70 69
128 eig. -12.12 -7.98 -3.83 0.363 4.52 8.72

ite. 72 74 77 85 77 76
256 eig. -12.14 -8.00 -3.85 0.319

ite. 76 77 79 89
512 eig. -12.14 -8.01

ite. 77 78
1024 eig. -12.14

ite. 80

Table 5.1: (2D Rayleigh-Bénard convection) Eigenvalues (with the number of
iterations in last step of Arnoldi process) for different grids and Rayleigh numbers.

Flow pattern nx=16 nx=32 nx=64 nx=128 ∆128−64

x/y/single diagonal roll 3283 3360 3381 3387 0.0018
four rolls 5758 5840 5882 5898 0.0027
toroidal roll 7185 7260 7388 7400 0.0016

Table 5.2: (3D Rayleigh-Bénard convection) Convergence of the critical Rayleigh
number as a function of used grid nx = ny = nz. The last column includes the
relative differences between nx = 128 and nx = 64.
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patterns in 3D; in Table 5.2, we show the Rayleigh numbers at which these bifur-
cations of the conductive state occur at various mesh sizes.

As written in section 3.2.2 we can find the critical Rayleigh numbers from
det(J (Ra)) = 0. After discretization this leads to det(J(Ra)) = 0. We would
like to know when this will have a solution. To show this existence, note that the
Rayleigh number appears as a coefficient in the equations. So, we can transform
the determination of the critical Rayleigh number to an eigenvalue problem; in-
stead of det(J(Ra)) = 0, we can write det(Ra J1−J2) = 0. By a similarity trans-
formation, in fact replacing T by

√
RaT we can transform this into a generalized

eigenvalue problem for
√

Ra in which both matrices are symmetric
√

RaĴ1 − Ĵ2.
Moreover, this is an eigenvalue problem on the space of divergence free velocities
and on this space Ĵ2 is definite. Hence, all the eigenvalues

√
Ra will be real. For

the implementation of this eigenvalue problem, we adapted the computation of the
Jacobian to give us two matrices instead of one. The eigenvalue problem in itself
is similar to what we had for the computations of the stability of the solutions
where the Jacobian and the mass matrix are needed.

To solve this eigenvalue problem we used the Anazasi solver. We choose
”Shift-and-invert” with shift zero to find the eigenvalues. HYMLS is used as
preconditioner to solve the according linear system. Table 5.3 presents the results.
By this approach, we can directly locate Rac = 2584 for the 2D case, which is the
same as that found by Gelfgat in[123], and Rac = 3387 for the 3D case, which is in
agreement with the Rac = 3446 predicted by Catton (1970) using linear stability
analysis and the Rac = 3800 determined experimentally by Heitz and Westwater
(1971) in a cubical cavity with nearly adiabatic lateral walls [124]. Besides, the
critical value corresponds to the eigenvalue, which has geometric multiplicity two.
This is consistent with Puigjaner’s prediction (2004), in which she also showed
that the two associated linear independent eigenvectors take the form of an x-roll
and an y-roll. One observes that the Rayleigh numbers are converging nicely with
the grid refinement. Moreover, the number of iterations increases monotonously
and only very mildly with grid refinement for both 2D and 3D case. This shows
the robustness of the preconditioner.

To study the weak scalability of the method on a parallel computer, we per-
form computations for a 2D case. The computer used is an opteron cluster with
inifiniband connection between the nodes; every node contains 12 cores. The
results are shown in Table 5.4. Again we have a square cavity, with equal num-
ber of grid points in each direction. L and np denote the number of levels in
the preconditioner and the number of cores used, respectively. The number of
GMRES(50) iterations performed by HYMLS in the last iteration of the Arnoldi
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nx iterations Rac
16 2D 27 2517

3D 54 3283
32 2D 39 2567

3D 60 3360
64 2D 55 2581

3D 89 3381
128 2D 59 2584

3D 129 3387

Table 5.3: (2D and 3D Rayleigh-Bénard convection) Eigenvalues, number of iter-
ations in last step of Arnoldi process and Rac for different grids sizes.

nx L np ittot tc ts
64 3 16 65 0.32 0.20

128 3 32 72 0.72 0.48
256 3 32 76 2.85 2.58
512 3 32 77 38.40 12.30

1024 3 128 80 728.00 54.40
1024 4 128 122 40.00 33.00
2048 4 128 124 56.00 104.00

Table 5.4: (2D Rayleigh-Bénard convection) Scalability test.

process is indicated by ittot. tc means the time the HYMLS takes to computes LU
factorization and ts means the time the linear solver takes. Stopping criterion for
the linear solver is 1e-8. It appears that the eigenvalues come in pairs, i.e., if λ
is an eigenvalue, then −λ is also an eigenvalue. This can be proved similarly as
above. If (λJ1 − J2)v = 0, then (λPJ1P

−1 − PJ2P
−1)Pv = 0, where P is iden-

tity matrix except those elements in the temperature rows are -1 but 1. Looking
into the matrix of J1 and J2, we can see PJ1P

−1 = −J1 and PJ2P
−1 = J2. So

(−λJ1 − J2)Pv = 0, that means −λ is also an eigenvalue, and the corresponding
eigenvector is Pv.

Observe that the number of iterations is reaching a limit if the number of levels
(L) is kept constant. We have proven this behavior in [81]. However, at the same
time the size of the last Schur-complement increases on refinement by a factor 4,



5.1. NUMERICAL PROCEDURE AND PERFORMANCE 79

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

Grid

T
im

e
 p

e
r 

u
n
k
n
o
w

n

 

 

LU  NL=3

Solve  NL=3

LU  NL=4

Solve  NL=4

Figure 5.1: (2D Rayleigh-Bénard convection) Time per unknown for computation
of LU factorization and Solve.

and the time of its factorization will dominate the computations. Therefore, we
use an additional level and since the separator size in this case is 4, the size of the
last Schur-complement will be 16 times smaller. This explains the large drop in
computation time when we go from 3 to 4 levels keeping the same grid (10242).
For the solve time, we see a similar but less pronounced behavior, since solving
with a rather full L and U-factor is much cheaper than creating them.

In Fig. 5.1, we depicted the time which is needed per unknown to make an
LU factorization and the time to solve the equations. These are obtained from the
table by computing (np × tc)/(4nx2), so the total CPU time consumed divided
by the total number of unknowns. Hence, in case of an optimal speedup and grid
independent convergence, one would see a horizontal line. In this case, we see
for number of levels 4, NL=4, clearly the effect of keeping the number of levels
constant; for small problems the effort needed for the Schur complement is little,
but it increases rapidly once it dominates the computation time. This will eventu-
ally also occur for NL=4, but here it is still negligible and apparently parallelism
is better exploited on the finer grid nx = 2048. The interesting point is that apart
from the mentioned effect the time per unknown for the factorization does not in-
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crease strongly if we increase the number of levels, a factor 2 for the last problem
(nx = 2048) which is about 1000 times bigger than the first (nx = 64) and a fac-
tor 4 for the solve. These computations were carried out during normal operation
of the cluster, and we did not have exclusive access to the computer resources for
these runs and the timing results may be affected due to the distribution of the
program over the various nodes, time sharing, etc. From this point of view, we
consider the results obtained as very reasonable.

5.2 Away from the conductive state

Until now, computations for the trivial solution branch were presented. One
way to get away from the trivial branch towards a non-trivial stable branch is
to add a perturbation to the system just before it is meeting a bifurcation point.
After switching to the non-trivial solution, the perturbation can be turned off
again. We will show that a good choice for the perturbation is a small multi-
ple of the critical eigenvector near the bifurcation point. Assume F (u,Ra) is
the right-hand side and it holds that F (0,Ra) = 0. Now, we want to find the
solution of F (u,Ra) = p, where p is the perturbation. A Taylor expansion
of F (u,Ra) is given by F (u,Ra) ≈ F (0,Ra) + ∂F

∂u
(0,Ra)u, which reduces to

F (u) ≈ ∂F
∂u

(0,Ra)u,

∂F

∂u
(0,Ra)u ≈ p (5.1)

Now we choose p = εMv, where M is the mass matrix, and v is the eigenvector
obtained at Ra = Rac, which satisfies ∂F

∂u
(0,Rac)v = 0. For this eigenvector,

∂F
∂u

(0,Ra)v ≈ λ(Ra)Mv with λ(Rac) = 0 and λ is a continuous function of Ra.
Solving (5.1), we get u ≈ εv/λ(Ra). Though this equation is derived under the
assumption that u is small, it shows that u grows rapidly if Ra gets near Rac. In
Fig. 5.2 we see how this works out in practice. Here, the norm of the velocity and
the opposite of the real part of the largest real eigenvalue −λ are depicted with
respect to the Rayleigh number. The red dot on the x-axis is the actual critical
point, but the perturbation causes that the curve goes around it. From the real part
of eigenvalues, shown in the left panel, we can see that the non-trivial branch is
stable for all shown Rayleigh numbers. Similar behavior is found in the 3D case.
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Figure 5.2: (2D Rayleigh-Bénard convection) Norm of velocity in x direction
(left, two red points on x-axis indicate the first two critical Rayleigh numbers),
and −λ (right) w.r.t Rayleigh number.

5.3 Summary

We have discussed an implementation of a package for analyzing the dynamics
of fluid flows coupled to transport equations. In this implementation we solve the
coupled equations at once. This is quite natural when considering non-overlapping
domain decomposition using separators (in fact leading to a kind of Nested Dis-
section approach). The problem that leads to fuller and fuller Schur-complement
matrices is solved by the transform-and-drop approach used in HYMLS. This al-
lows for a significant reduction of the number of unknowns on the separators,
which is similar to an aggressive coarsening in multigrid context. At the same
time we can keep the nice properties like symmetry and positiveness of matrices.
This robust approach also admits a parallel implementation, which we performed
using Trilinos packages. Experiments in this thesis show an acceptable weak scal-
ing. These results were obtained on a time sharing computer. Improvements of
the implementation are under way.

We have also shown that the results for the two benchmark problems obtained
by the hybrid solver FVM/HYMLS are consistent with those in related literature.
From this we conclude that the FVM/HYMLS solver makes it possible to per-
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form bifurcation analysis and steady state computations on large CFD problems.
Another advantage of it is that it is easy to extend it with more physics, for in-
stance, temperature, salt etc.. It is known that the Arnoldi method needs accurate
solutions of inner systems, which implies that much numerical effort is needed
in an iterative solver. From the experiments, it is noticed that it takes a lot of
iterations and time to converge an eigenvalue computation compared to solving
steady states. To improve it, we resort to the state-of-art method Jacobi-Davidson
QR (JDQR). The performance of JDQR will be described specifically in the next
chapter.



Chapter 6

Numerical bifurcation analysis of a
Turing-type reaction-diffusion
model

In this chapter1, we consider a widely studied model for spatial pattern formation,
proposed by Turing in 1952 [64]. Turing showed that a system of two reacting
and diffusing chemicals could produce spatial patterns in chemical concentrations
from the destabilization of a homogeneous state. Many experimental results have
illustrated the formation of striped and spotted patterns, as well as more compli-
cated patterns [65]. The term diffusion-driven instability has occurred in chemical
and ecological processes. Turing models can exhibit most of those patterns and
they can be found in many theoretical and experimental papers. For an overview,
see [66–68]. Bifurcation and stability studies of the steady solutions are also of
great interest: Callahan gave the bifurcation diagram of the Brusselator model and
the Lengyel–Epstein model [126, 127]. However, most of the results are more the-
oretical and computed on very coarse grids.

The general form of a Turing system for modeling the evolution of the con-
centrations of two chemicals is as follows

∂U

∂t
=DU∇2U + f(U, V )

∂V

∂t
=DV∇2V + g(U, V )

(6.1)

1A large part of this chapter has been published in Communications in Nonlinear Science and
Numerical Simulation [125]
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where U = U(x, t) and V = V (x, t) are the two concentrations, and DU and DV

are the diffusion coefficients, respectively. The scalar functions f and g represent
the reactions between the components, which are usually nonlinear.

There are various Turing models with different reaction kinetics based on dif-
ferent applications, e.g., the Brusselator model [128], Gray-Scott model [129] and
Lengyel- Epstein model [130]. In this thesis, we study the model brought up by
Barrio et al. [73] in 1999, the Barrio-Varea-Aragon-Maini (BVAM) model. Our
results can also be found in the paper [125]. As a general Turing model, it has
applications in imitating the pattern formation on various fish species’ skin [131].
The equations are obtained by expressing (6.1) in terms of a perturbation with
respect to the stationary uniform solution (Uc, Vc), and then solving f(Uc, Vc) =
g(Uc, Vc) = 0. Neglecting terms of order higher than 3, the equations are given by

∂u

∂t
=Dδ∇2u+ αu(1− r1v

2) + v(1− r2u),

∂v

∂t
=δ∇2v + v(β + αr1uv) + u(γ + r2v),

(6.2)

where u = U − Uc and v = V − Vc, so the point (u, v) = (0, 0) is the stationary
solution. The constant δ is a scaling factor and D is the ratio between the diffu-
sion coefficients of the two chemicals. We note that D must not be equal to one
in order to make the diffusion-driven instability occur [73]. There are two param-
eters r1 and r2 in the nonlinear interactions, affecting a cubic and quadratic term,
respectively. In [73], it is observed that the cubic term favors stripe patterns and
the quadratic ones spot patterns. In our experiments, we use periodic boundary
conditions, and to make the investigation as simple as possible, we set α = −γ,
so that (0, 0) is the only spatially uniform steady solution. In this work, we study
only one set of parameters as indicated in Table 6.1. This set is one of the choices
made in [73]. In the following we will determine branches of steady solutions of
the equations above as a function of r2 on, respectively, an interval, a square and
a cube with edge length L = 30.

In Section 6.1, we analyze the model theoretically in terms of the linear stabil-
ity of the trivial solution and determine unstable modes. These modes will later
be used to get onto non-trivial solution branches. Furthermore, we discuss some
properties of the non-trivial solutions, such as degrees of freedom, symmetry and
similarity of the solutions. The main numerical methods we use are introduced in
Section 6.2: the continuation methodology and the Jacobi-Davidson method for
computing eigenpairs for the linear stability analysis. Both techniques require the
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D α β δ r1 L

0.516 0.899 -0.91 2 3.5 30

Table 6.1: Parameter values.

solution of large and sparse linear systems. To solve these systems iteratively, a
multigrid preconditioned Krylov solver is used.

In Section 6.3 we present numerical results in 1D, 2D and 3D, including bi-
furcation diagrams, stability of various solution patterns and an overview of the
performance of the algorithms and the parallel implementation.

6.1 Model Analysis
In the following part, a mathematical analysis will be carried out in order to get a
better idea of the characteristics of the solutions of Eq. 6.2.

6.1.1 Linear stability analysis of the trivial solution
We follow the exposition in [73]. We start with noting that the nonlinear part of
the right-hand side of (6.2) will not contribute to its Jacobian. Now, in the absence
of diffusion, standard linear analysis predicts exponentially growing solutions of
the form (u, v) = (u0 exp(λt), v0 exp(λt)) where λ is an eigenvalue, with

λ =
1

2
[(α + β)±

√
(α + β)2 − 4αβ − γ]. (6.3)

In the presence of diffusion, the spatial variation of the functions u and v is of the
form exp(ik · x), and the dispersion relation of the linearized equations is given
by

λ2 +Bλ+ C = 0, (6.4)

with B = −k2δ(1 +D) + α+ β and C = (α− δDk2)(β − δk2) + α, k2 = k · k.
Figure 6.1 shows the real and imaginary parts of the two eigenvalues of equa-

tion (6.4) as a function of the wave number k with the parameter values given in
Table 6.1. For k ≤ 0.34, there is a complex pair of conjugate eigenvalues, the
real part of which is less than zero, hence the trivial solution is stable there. For
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Figure 6.1: Two eigenvalues of the linearized equations (6.4) with respect to the
wave number k.

k ≈ 0.34 these two eigenvalues turn into two real eigenvalues, one of which is
positive in the range

[0.39, 0.52]. (6.5)

So if the size of the d-dimensional domain allows wave numbers k in this interval
then the trivial solution will be unstable, otherwise it will be stable. Next we will
study whether they can occur on generalized squares of size L = 30 in 1, 2 and 3
dimensions, respectively.

Unstable modes in 1D, 2D and 3D. For the parameters in Table 6.1, and a spe-
cific size of the domain, sayL = 30, we can now specify in the various dimensions
which modes become unstable. First we define the constant κ = 2π/L ≈ 0.2094,
which will be used throughout this chapter. In 1D the wave numbers are given
by k = κm, with m = 1, 2, · · · . For m = 2 we find the sole wave num-
ber in the interval (6.5): k = 0.4189. In 2D, the wave numbers are given by
k = κ

√
m2 + n2, with m,n = 0, 1, 2, · · · (and m and n not both zero) and in 3D

similarly k = κ
√
m2 + n2 + l2. Note that this relates to wave vectors k = κ[m;n]

and k = κ[m;n; l] in 2 and 3 dimensions, respectively. In Table 6.2, we list the
wave numbers of the modes making the zero solution unstable together with those
of surrounding stable modes.

Due to the fact that we are working on squares and cubes, the values may
be randomly permuted over m, n and l. We also gave names to the unstable
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1D, 2D, 3D

type l,m, n k name

stable 1,0,0 0.2094
unstable 2,0,0 0.4189 S2
stable 3,0,0 0.6283

2D,3D

type l,m, n k name

stable 1,1,0 0.2962
unstable 2,1,0 0.4683 S3,S4
stable 2,2,0 0.5924 S1

3D

type l,m, n k name

stable 1,1,1 0.3628 S6
unstable 2,1,1 0.5130 S7,S8,S9
stable 2,2,0 0.5924
stable 2,2,1 0.6283

Table 6.2: Stable and unstable modes with respect to the trivial solution. Unstable
modes occur in the interval (6.5).

modes, because we will use these later to name the branches of solutions that they
generate. Observe that the (2,1,0) mode has two names. This is due to the fact
that for a square there is a rotated 1D mode and a genuine 2D mode, which have
the same wave number. On the one hand we have cos((2x + y)κ), which we will
call S3, and on the other hand cos(2xκ) cos(yκ), which we call S4. Note that due
to the periodic boundary conditions all cosines may have a different phase shift.
Note also that cos((2x + y)κ) = cos(2xκ) cos(yκ) − sin(2xκ) sin(yκ), which
relates the two modes. The product of sines here is just a phase shifted version of
the product of cosines. Moreover, in the right-hand side we could differentiate the
wave numbers for the x and y direction to adjust to a non square domain. Since
we cannot do this in the left-hand side, the rotated mode will not appear on a
non-square domain. However, due to the combination in the right-hand side we
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are able to see something almost of that shape if the lengths of the sides differ not
much from each other.

Similar phenomena occur in 3D. Observe that the mode (2,1,1) has three
names: S7, S8 and S9, which are a truly 3D droplet pattern started with initial so-
lution cos(2κx) cos(κy) cos(κz), a tilted lamellae pattern started with cos(2κx +
κy + κz) and a tilted cylinder started with cos(2κx) cos(κy + κz), respectively.
These are also related to goniometric identities, e.g., cos(2κx + κy + κz) =
cos(2κx) cos(κy + κz)− sin(2κx) sin(κy + κz).

We remark that the choice of L also determines how many unstable modes will
occur. For instance, if L is doubled (as is done in [70, 73]), the modes in the table
reoccur but with wave number twice as big in all directions. So l,m, n in Table 6.2
become even numbers, which opens up the possibility that a combination with an
odd number will drop into the interval (6.5). A simple computation reveals that
this is indeed the case.

6.1.2 Magnitude estimate of non-trivial solution
A mode that makes the trivial solution unstable may turn into a stable solution
of the nonlinear equations. By performing a Galerkin projection of the problem,
an estimate of the magnitude of such a solution can be obtained. We show this
process for the 1D case, but equally well it can be done in the 2D and 3D case.

We write the steady state system related to (6.2) as the vector equation F (u) =
Ju + N(u) = 0, where J is the Jacobian matrix of F and N is the remaining
nonlinear part. Here, the Jacobian is the same matrix for which the eigenvalues
have been determined. Let v denote the eigenvector associated with the positive
eigenvalue; note that eigenvalue and eigenvector are both real. Next we express u
in this unstable mode and call this specific choice uk, so

uk ≡ εv sin(kx)

with ||v|| = 1. By the Galerkin approach, it is required that∫ Lx

x=0

sin(kx)vTF (uk)dx = 0,

which results in ∫ Lx

x=0

sin(kx)vT [λv sin(kx) +N(uk)/ε)]dx = 0.
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Suppose N(u) = Q(u) + C(u), where Q and C are quadratic and cubic in u,
respectively. Then we can write

N(uk)/ε = ε sin2(kx)Q(v) + ε2 sin3(kx)C(v).

Suppose integrals over the domain of sin2, sin3, sin4 are respectively a, 0, b then
we end up with an equation of the form

λa+ ε2bvTC(v) = 0,

with
ε =

√
−λa/(bvTC(v)).

In our case C(u) = αr1u1u
2
2[−1; 1] and vTC(v) = αr1v1v

2
2(v2 − v1), where

u = [u1;u2] and similar for v. To get a real solution, ε should be real. This is
indeed the case for k = 0.4189 with the parameters specified in Table 6.1. For
these values v = [0.8167,−0.5771] and ε = 0.1122.

The knowledge gained in this section helps us to start the continuation and we
will come back to this later.

6.1.3 Some properties of the solutions
Nonuniqueness of the solutions. Due to the periodic boundary conditions one
can shift the solutions around in the plane. In principle, one has to apply a (phase-
) condition to prohibit this. This also results in zero eigenvalues of the Jacobian
at the solutions. The number of zero eigenvalues depends on the solution. A 1D
solution can only be shifted in one direction so it has a single eigenvalue zero.
This also holds for generalizations of 1D solutions to 2D and 3D. A genuine 2D
solution, i.e. one which cannot be found from a generalization of a 1D solution,
can be shifted in two directions, each shift giving another solution, so here we
have two zero eigenvalues. Similarly, in three dimensions there are three zero
eigenvalues for a genuine 3D solution.

Symmetries and coinciding eigenvalues. Apart from multiple zero eigenval-
ues one also finds equal non-zero eigenvalues. For instance, if in 2D the solu-
tion corresponding to the (2,0) mode is studied, we will find an unstable mode
of genuine two dimensional shape. This mode may be shifted arbitrarily in the
y-direction and gives rise to an independent eigenvector. Hence, this builds a
two-dimensional subspace of unstable modes and consequently leads to a double
positive eigenvalue.
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Similarly, the 3D mode (2,1,1) has in itself already three representations, as
we have seen above. Moreover, the 2 can be at three positions, leading to at least
9 equal eigenvalues. In a numerical computation we found even up to 24 equal
eigenvalues. We will get back to that in Section 6.3.3 where we study some of the
3D modes.

Symmetry in solutions is a much studied subject, see for instance [132–134].
It is possible to solve the problem on a small portion of the domain with various
boundary conditions, whereupon various combinations of these solutions gives
the whole range of solutions. We did not exploit this in the thesis.

Similarity solutions. In Table 6.1 we fixed r1 = 3.5. We will show now that if
we compute the solutions for all r2, then we do so for any pair (r1, r2).

Suppose at certain parameter values (r̂1, r̂2) we have a steady state (û, v̂).
Now we wonder for which values (r1, r2), (µû, µv̂) is a solution. If we substitute
this into Equation (6.2) we have that

0 =µDδ∇2û+ αµû(1− r1µ
2v̂2) + µv̂(1− r2µû),

0 =µδ∇2v̂ + µv̂(β + αr1µ
2ûv̂) + µû(γ + r2µv̂).

(6.6)

After dividing by µ we find

0 =Dδ∇2û+ αû(1− r1µ
2v̂2) + v̂(1− r2µû),

0 =δ∇2v̂ + v̂(β + αr1µ
2ûv̂) + û(γ + r2µv̂).

(6.7)

So (µû, µv̂) is a solution if both µ2r1 = r̂1 and µr2 = r̂2. The family of solutions
defined by r̂1, r̂2 and µ has the same stability behavior, with exactly the same
eigenvalues.

6.2 Numerical Methods
We use a standard second order central finite difference scheme (3-point for 1D,
5-point for 2D and 7-point for 3D) to discretize (6.2) in space. An equidistant grid
is used in all of our experiments. Rather than discretizing the time dimension as
well, we focus on the direct computation of steady states using pseudo-arclength
continuation [22]. An implementation of the algorithm is available in the Trili-
nos [135] library LOCA (”Library of Continuation Algorithms”). The arising
linear systems are solved using the well-known GMRES method (Trilinos pack-
age Belos) with preconditioner HYMLS or an algebraic multigrid preconditioner
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(ML package). Eigenvalues and -vectors are computed using PHIST, a recent im-
plementation of the Jacobi-Davidson method [75] that allows for non-symmetric
matrices and easy integration with Trilinos applications. Below, the methods are
briefly outlined in order to make the text more accessible.

6.2.1 Continuation approach
Our research is focused on the steady state of system 6.2. We use the same con-
tinuation algorithm described above in Chapter 2 section 2.1. By continuation in
a specific parameter r1 or r2, a series of approximate solutions can be generated
by solving a system of parameterized nonlinear equations.

6.2.2 Solution of linear systems
The linearized systems that arise in the continuation process take the form of two
independent Laplace operators on the diagonal with off-diagonals for the coupling
of the unknowns u and v. The coupling makes the matrix non-symmetric, so the
solver of choice is the GMRES Krylov subspace method. We observe that the
coupling terms are constant, independent of the grid size ∆x = xi+1 − xi. There-
fore, at sufficiently high resolution, the Laplace terms dominate the convergence
of the iterative solver. Multigrid preconditioning is an obvious choice to keep the
number of linear solver iterations at bay. Being readily available in Trilinos, we
choose the smoothed aggregation AMG solver ML, see [42] for documentation.
Although the systems solved are all singular as discussed in Section 6.1.3, the
multigrid method will converge to a particular solution in the solution space. This
often occurs with iterative procedures, as long as matrices inverted in those pro-
cedures are non-singular. We have experienced that a direct method does indeed
fail.

6.2.3 Linear stability analysis by eigenvalue computation
We use the block variant of JDQR implemented in PHIST to compute the eigen-
values to determine the stability of steady state and most unstable eigenmode to
locate the bifurcations. It is found that using an AMG cycle on the linear part of
Eqn. 6.2 for the action of P−1 in Equ. 2.25 achieves good convergence behavior
of the overall method. This choice is motivated by the fact that the sought eigen-
values are close to 0, so that neglecting the shifts λ̃j in the preconditioner is a
reasonable approximation.
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6.2.4 Branch switching
Leaving the trivial branch. The general way to get on the branch of non-trivial
solutions is to solve the eigenvalue problem for the Jacobian matrix of the dis-
cretized problem and select those modes that have a positive eigenvalue. With
each of these one can create a Galerkin projection as indicated in Section 6.1.2
and find its approximate magnitude. At the end of that section a specific solution
is given. Based on this our starting solution will have the form

0.1 · φ(x, y, z)[1;−1], (6.8)

where φ is a combination of goniometric functions related to the unstable modes
in Table 6.2. This guess appeared to be good enough to get convergence to the
associated mode of the nonlinear system.

Switching between non-trivial branches. Once we are on a non-trivial branch
we might also need to get onto another branch. The direction where to go is given
by the eigenvector v associated with the unstable eigenvalue. If u is the steady
state solution on the current branch near the bifurcation point, we use as an initial
guess u + εv for some small values of ε for the next Newton iteration, which will
then typically converge to a nearby solution on the new branch.

6.2.5 Differences with time integration approach
In the continuation approach, the time derivative disappears, but is implicitly still
there, as we will explain here. In order to study the stability we want to find
solutions of the form u(x, t) = ū(x) + ε(t)v(x), where ū(x) is a steady state
solution. Inserting this in the equation du/dt = F (u), we obtain for small ε(t) the
equation

dε

dt
v = εJ(ū)v.

This linear equation allows for separation of variables, leading to

dε

dt
= λε, λv = J(ū)v.

The former has the solution ε(t) = ε(0) exp(λt), and the latter has eigenvalues and
eigenvectors as its solution. Once the eigenproblem is solved we find solutions of
the specified form u(x, t) = ū(x) + ε(0) exp(λt)v(x).
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For a time integrator one can perform the analogous process. For instance, for
the forward Euler method one finds a different equation for ε(t)

ε(t+ ∆t) = ε(t) + λ∆tε(t) = (1 + λ∆t)ε(t).

In this case, the solution is u(x, n∆t) = ū(x) + ε(0)(1 + λ∆t)nv(x). Note that
(1 + λ∆t) is a crude approximation of the exponential exp(λ∆t); it is called the
amplification factor below.

So in reality, the perturbation damps out (amplifies) if R(λ) < 0 (R(λ) > 0),
but for the Euler integrated version this occurs if |1 + λ∆t| < 1 (|1 + λ∆t| > 1),
which is quite different if ∆t is big.

Now, let us return to the original problem, where one gives an initial guess and
performs a stable integration with the forward Euler method. Then by varying the
initial conditions one may find various steady states. However, the consequence
of the above is that only steady states can be found for which |1+λ∆t| < 1, for all
eigenvalues λ that occur. From this, it is immediately clear that an unstable steady
state (at least one positive eigenvalue) cannot be found. Moreover, solutions which
are stable but with an eigenvalue containing a relative large imaginary component,
i.e. near a Hopf bifurcation, cannot be found if for that eigenvalue |1 + λ∆t| > 1.
So even if we would start with such a steady solution we would be repulsed from
it. This is a peculiarity one should be aware of when using the forward Euler
method.

Another popular scheme is the backward Euler method. In that method, the
amplification is 1/|1 − λ∆t|, and one can take arbitrarily large time steps. How-
ever, one may find some stationary solutions even if they are unstable, wrongly
concluding that they are stable since the numerical method converged.

As will be clear by now every time integration method has its own peculiar-
ities, which can influence our conclusions with respect to stability. This cannot
happen with the continuation approach, which makes it mathematically superior
here.
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Figure 6.2: Non-trivial 1D solution components u (solid) and v (dashed), left for
r2 = 0 and right for r2 = 1.

6.3 Numerical Experiments
In this section, we will show results for the 1D, 2D and 3D case respectively. In
all cases we use a grid with 128 nodes in each direction. A justification for this is
given in the paragraph ”Refinement tests” at the end of Section 6.3.2.

6.3.1 Non-trivial solution in 1D
Table 6.2 shows that we have one stable nontrivial solution S2. If we choose
φ(x) = sin(2κx) in (6.8) we indeed find it as a solution. In Fig. 6.2 this solution
is shown for r2 = 0 and r2 = 1. Observe that u gets narrower tops and wider
valleys where for v this is vice versa. Below we will only consider the interval
[0,1], but here we remark that this solution is stable until about 1.58. At that
point we find a Hopf-bifurcation leading to a stable periodic solution, with period
2π/0.1772. This solution is stable for all values of r2 between 0 and 1. It will be
clear that this will also be a solution of the 2D and 3D case. However, we may
not conclude that it is stable in the 2D and 3D case. But if it is unstable in the 2D
case, then it must be due to a field that is genuinely 2D.

6.3.2 Bifurcation diagram of the 2D case
In our experiment, except for the uniform zero solution, five non-zero branches
S1–S5 are found with appropriate initial vectors based on the model analysis.



6.3. NUMERICAL EXPERIMENTS 95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
15

20

25

30

35

40

r2

M

unstable spot-S1
unstable stripe-S2

first stable then unstable stripe-S3

first unstable then stable spot-S4

first stable then unstable spot-S5

Figure 6.3: Bifurcation diagram in 2D with parameter r2 varying from 0.0 to 1.0.
Stable and unstable branches are depicted by solid and dashed lines, respectively.

There are both stable and unstable stripe and spot patterns, see the bifurcation
diagram in Fig. 6.3. The monitor we use here and in the following is defined by

M = max
x,y

∆u, (6.9)

where ∆ is the Laplacian. Being sensitive to curvature, M gives an insightful
bifurcation diagram, but other choices are also possible.

The S2/S4 solution range. Below we start with a mode of the form S2 and will
discover that also a mode of the form S4 is playing an important role. We show
that the nonlinear behavior is occurring in a space built up by deformations of
these two modes.

S2 Taking φ(x, y) = sin(2κx) gives the generalization of the 1D case, see Fig. A.1.
In 2D it is unstable, as expected, due to a mode with a genuinely 2D pattern
resembling the S4 mode, see Fig. A.2. Since this mode makes S2 unstable
we guess that a combination of the two becomes the stable one.
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S5 By starting with the sum of the solution of r2 = 0.0 on S2 and its eigenvector
(an S4 mode), corresponding to the positive eigenvalue which makes the
stripe pattern S2 unstable (see Fig. A.2), the system converges to a solution
on a stable branch which we will call S5, see Fig. A.3. At r2 = 0.0 it
is a wavy striped pattern. Increasing r2 to 0.21227, the spot (S4 mode) is
getting more pronounced. At this value of r2 there is a turning point which
shows up by a new zero eigenvalue. See the bifurcation diagram for the
2D case (Fig. 6.3). When r2 is decreasing after the turning point, the spot
pattern (the S4 mode) is becoming even more pronounced in the solution;
see Fig. A.4. The continuation parameter r2 goes back until 0.129, where
the branch connects to the S4 branch, which we will study next.

S4 When choosing φ(x, y) = cos(2κx) cos(κy) in (6.8), the S4 mode with hexag-
onal spots is excited and Newton converges to a non trivial solution with the
same pattern. It is unstable up to the bifurcation point r2 = 0.129, where S5
splits off, and after that it is stable; see Fig. A.5. Observe that the second
plot, i.e. the one for r2 = 0.1 is similar to the last of Fig. A.4, the solution
of S5 near the bifurcation point. Also note the symmetry that is growing
in the y direction when r2 is decreasing (Fig. A.4). It is clear that a sister
of S5 would be the one where the yellow band is just going along the other
sides of the spots. This will be the other solution emanating at the bifur-
cation point. Hence we have a pitchfork bifurcation here, and because the
symmetry breaks, it is also a symmetry breaking bifurcation.

Summarizing, we see that the modes S2 and S4 and their combination give a
partial solution to the problem. At r2 = 0, a combination (S5) is stable until
0.212. When in a time-dependent simulation we increase r2 from there, one will
always converge to the stable S4 branch. The interesting thing is that S4 is also
stable before 0.212, starting at 0.129, so there are two stable solutions (S4 and
S5) on the interval [0.129, 0.212]. Before 0.129, S4 is unstable and hence S5 is
the only stable solution there. We also understood why S4 changes stability at
0.129 and why S5 ceases to be stable at 0.212: S5 has a turning point at 0.212 and
returns to S4 at 0.129, being unstable along that branch. For large r2 only S4 is
stable which also agrees with the observation in [73] that the quadratic term favors
spots.

The S3 solution area The S3 solution is a tilted version of the S2 solution. One
might expect a similar behaviour but that is actual not the case as we will see
below
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S3 When taking φ = cos(κ(2x+ y)) we find again a stripe solution which is ori-
ented in the diagonal direction (Fig. A.6). Note that the stripe can be tilted
in any direction, depending on the initial solution. It is observed that at
the beginning all the eigenvalues are negative. With increase of r2, around
r2 = 0.25, there is a pair of positive eigenvalue occurs, having the same
value. In Fig. 6.4, distribution of the first 10 eigenvalues with largest real
part is shown. All of them are real and some of them have algebraic mul-
tiplicity more than two. The corresponding eigenvectors are spot pattern,
which make the stripe unstable, see Fig. A.7.
Besides, there is a pair of complex conjugate eigenvalues. With the in-
crease of r2, its real part is getting closer and closer to zero. In the range
1.625 < r2 < 1.65, it crosses the imaginary axis, the eigenvalue becomes
pure imaginary 0.2, which means there is Hopf bifurcation and periodic so-
lution will emerge with frequency f = 0.2. However, the periodic solution
can not be computed by solving the steady state. The bifurcation occurring
at the double zero eigenvalue (a so-called Bogdanov-Takens bifurcation) is
difficult to deal with in the approach we use. Hence, we do not present
results for that. One could imagine though what is going to happen. One
expects a stable and unstable branch in the two dimensional space splitting
off. On the stable branch we will have to deal with a Jacobian that is nearly
singular, which may hamper the convergence of Newton’s method. Indeed,
we tried to get on the branch but it jumps always to solution S4.
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Figure 6.4: Evolution of eigenvalues with largest real part as a function of the r2

on branch S3 (left) and one of the conjugate complex eigenvalues (right).
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Summarizing, the S3 solution is stable only for values of r2 up to 0.25. This means
that together with the previous solutions, there are three stable solutions on the
interval [0.129, 0.212]. The eigenvectors appearing at 0.25 resemble a tilted S4,
but we were not able to find a solution when starting with a tilted field resembling
the eigenvector pattern: cos(κ(x/2 + y)) cos(κ(y − 3x/2)) = cos(κ(x − 2y)) −
cos(2κx). This field has the right periodicity conditions but is not an eigenmode
of the linear part of the equation, since the two cosines in the last expression have
different eigenvalues (5κ2 and 4κ2 for the Laplace operator, respectively).
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Figure 6.5: Bifurcation diagram obtained on a 322 (black), 642 (green), 1282 (red)
and grid 2562 (blue) grid on branch S4.

Refinement test Fig. 6.5, following branch, shows the expected second-order
accuracy of the discretization with grid refinement. Observe that the solution on
grid 2562 is almost the same as that on grid 1282. Hence, it is enough to use
the 128 grid points for our experiments. To get an impression of the accuracy
of the position of the bifurcation points, we perform a sensitivity analysis for
the eigenvalues of S4 for the number of grid points. So we want to locate the
bifurcation parameter r2, when the solution becomes stable, in other words, when
the positive eigenvalue crosses the imaginary axis, the eigenvalues at different
grids are computed. In Table 6.3, it shows the eigenvalue, with largest real part
except zero, changing with the increase of r2, which also implies the property
of second-order convergence of our algorithm. By extrapolation based on the
second-order behaviour of the error, the estimated critical r2 can be computed,
presented in the last column.
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grid r2 = 0.14 r2 = 0.145 r2 = 0.15 critical r2

322 1.308e-03 1.010e-03 7.146e-04 0.1621
642 2.476e-04 -4.953e-05 -3.409e-04 0.1442
1282 -1.040e-04 -3.955e-04 -6.479e-04 0.1384
2562 -2.010e-04 -4.900e-04 -7.30e-04 0.1369

Table 6.3: The positive eigenvalue as a function of used grid.

Comparison to results from literature [73] and [136] also report 2D numerical
results of Eq. 6.2. They started with random initial solutions and, after hundreds
of thousands time steps using the Euler method, spot, stripe and hexagonal spot
patterns are found for different parameter values r1 and r2. They observed that
the cubic term favors stripe patterns while the quadratic term favors spot patterns.
However, the cubic term scaled by r1 does not completely suppress the occurrence
of spot patterns. We also found the unstable spot patterns when r1 = 3.5 and
r2 = 0.0, which is impossible by a time integration approach. Our results also
show that when r2 increases, the spot pattern is the only stable solution occurring
and therefore it will be very robust in a time integration approach. Here, we have
seen that there are regions in which 2 or even 3 stable solutions exist for the same
parameter value.

6.3.3 Results for 3D
There are more morphologies in three dimensions, since besides the generaliza-
tions of the 2D solutions there will be new solutions. The 3D bifurcation diagram
of branches S1–S5, including their stability properties, appeared to be exactly the
same with those of 2D case. Therefore, in the bifurcation diagram for the 3D case
we only plot the branches of genuine 3D solutions, i.e., in Fig. 6.6 we only plot the
branches S6–S9, which are all unstable in the computed range. Next we discuss
the classes of solutions separately.

Generalized 1D mode. We start off with the mode occurring already in the 1D
case: S2. As in 2D, taking φ(x, y) = sin(2κx) again, we obtain the generalization
of the 2D stripe pattern, which is also unstable, as expected. Since all constants
have remained the same, the eigenvalues are also the same as those in 2D. But
there are two additional independent eigenvectors appearing, i.e. four in total
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Figure 6.6: Bifurcation diagram in 3D with parameter r2 varying from 0.0 to 1.0,
obtained on a 1283 grid. For branches S1-S5 we refer to Figure 6.3
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Figure 6.7: 2D eigenvalues (◦) and 3D eigenvalues (+) as a function of r2 on the
S4 branch.

corresponding to the positive eigenvalue. In fact we find two pairs of eigenspaces,
where each pair is an exact generalization of the 2D case: the S4 mode extended
cylindrically. The pairs are just rotated 90 degrees with respect to each other.
Since these modes make S2 unstable, a combination of the two becomes the stable
one, which is S5 explained below.

Generalized 2D modes. Next we considered the modes which were really of
2D shape. It appears that all modes S3, S4 and S5, have a similar behavior as in
the 2D case. It seems that for all these cases the 3D-generalized 2D eigenvalues
dominate over new eigenvalues corresponding to modes with truly 3D patterns.
An example of that is shown in Fig. 6.7 for S4. The eigenvalues from the 2D case
are indicated by a ’◦’ while the new ones entering in the 3D case are indicated by
a ’+’.

The observation that for increasing parameter r2 the spot pattern prevails does
not seem to generalize to the 3D droplet solution. Instead the generalized S4
mode, which has a cylindrical pattern, prevails over a genuine 3D droplet pattern,
most likely because the latter is not an unstable mode of the zero solution.
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name function φ for initial guess (u, v) pattern

S6 sin(κx) sin(κy) sin(κz)[1,−1] droplet (Fig. A.8)
S7 cos(2κx) cos(κy) cos(κz)[1,−1] droplet (Fig. A.9)
S8 cos(2κx+ κy + κz)[1,−1] tilted lamellae (Fig. A.10)
S9 cos(2κx+ κy) cos(κz)[1,−1] tilted cylinder (Fig. A.11)

Table 6.4: List of genuinely 3D solutions and initial conditions used to find them.
All of these modes are unstable in the the range 0 ≤ r2 ≤ 1.

Genuine 3D modes. Finally we consider the genuine 3D modes from Table 6.2.
We found four different solutions S6–S9, but all of them are unstable in the pa-
rameter range studied. Table 6.4 lists the initial guesses used and points to the
corresponding figures in the appendix. According to Table 6.2 we know that the
zero solution is unstable with respect to modes S7-S9. The eigenvalue has a high
geometric multiplicity: we computed it numerically and found 24 equal positive
eigenvalues. To single out the stable branch originating from the bifurcation is
therefore not trivial. To do so one should exploit the symmetry of the problem as
indicated in the paragraph on symmetries in Section 6.1.

The results presented above agree with the observation by De Wit et al. [137],
who studied the well known Brusselator reaction-diffusion model in 3D and demon-
strated possible symmetry structures with high dimension, i.e. body centered cu-
bic (BCC), hexagonally packed cylinders (HPC), and also lamellae structures. Our
results provide richer information on the pattern formation and change depending
on different parameters. In [70] and [136] model equation 6.2 introduced by Bar-
rio et al. is investigated. Their results agree with ours as well. The HPC and
lamellae patterns are generalizations of 2D solutions and have the same bifurca-
tion diagram as in 2D.

6.3.4 Performance studies
In this section we want to give an impression on the effectiveness of the continua-
tion process, and in particular the linear and eigenvalue solvers, which constitute
most of the runtime in 3D. We use the number of sparse matrix-vector products
(matvecs) as a rough indicator of the cost of our solvers. Equally roughly one
could say that one time step with Euler’s method, used by many other authors,
would cost about one matvec per time step. We note that the number of time steps
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Figure 6.8: Number of matvecs with preconditioner ML for computing a se-
quence of steady states (left) and their associated 10 right-most eigenpairs (right)
on branch S3 with parameter r2 varying from 0.0 to 1.0 on a 1283 grid.

reported in papers such as [70, 73] is on the order of hundred thousands or even
millions for reaching a single steady state for this kind of problem.

In Fig. 6.8, the number of matvecs is shown for the solution of the nonlinear
system (left) and the eigenvalue computation (right) at the different parameters.
The number of Newton steps per parameter value is typically 3 or 4, and an adap-
tive tolerance of the inner GMRES solver is used to save some iterations. The
GMRES method is restarted after 50 iterations to save memory and orthogonal-
ization time. In the Jacobi-Davidson eigensolver we use a block size of 4 and
allow at most 25 inner GMRES iterations to achieve an adaptively computed tol-
erance for the correction equation. Default settings are used for the smoothed
aggregation (SA) AMG preconditioner ML from Trilinos version 11.12.1.

On the left one sees that the number of matvecs increases until the bifurcation
point r2 = 0.25 where the branch becomes unstable. After that the number of
iterations decreases slightly, possibly indicating that we are getting away from the
singularity. In the right panel, note that the first eigenvalue computation is par-
ticularly expensive. This is because no approximate eigenspace is available for
starting the block JDQR method. Hence it also shows that reusing the space from
the previous step is advantageous, because in the end it reduces the amount of
work by a factor 3. Comparing the left and right panel in Fig. 6.8 one observes
that eventually the cost for the linear stability analysis (i.e. the eigenvalue compu-
tation) is about twenty times that of the actual solution of the non-linear problem.
Of course this can be reduced by requiring fewer eigenvalues. Moreover, one
could make the amount dependent on the situation, e.g. all the eigenvalues that
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Figure 6.9: The runtime percentage of the three main operations for computing a
sequence of steady states on branch S3 with parameter r2 varying from 0.0 to 1.0
on a 1283 grid.

are within a certain distance from the imaginary axis.
In order to give an impression of the performance of the linear solver, we fol-

lowed a branch of steady states on a 1283 grid, running on the 64 cores of an Intel
Xeon Phi 7210 (“Knight’s Landing”) many-core processor (core frequency 1.3
GHz and configured in cluster/cache mode). In Fig. 6.9, we give a breakdown of
the actual runtime. A thorough performance analysis is not the goal here as all of
the building blocks are freely available software and their performance has been
studied elsewhere. The average time required for solving one linear system is 36
seconds. We display the runtime percentage of the three most expensive opera-
tions: orthogonalization of the subspace in GMRES(50) (orthog), preconditioner
applications (precon) and matrix-vector products (matvecs). Most of the time is
spent in orthogonalization. This can be reduced by decreasing the restart param-
eter m in GMRES(m) at the cost of more iterations and hence more matvecs and
preconditioner applications. The matrix-vector product can be executed very effi-
ciently in parallel here because of the simple matrix structure and therefore only
has a minor contribution to the overall runtime.

Figure 6.10 shows the effect of using the ML preconditioning in the Jacobi-
Davidson eigensolver. We see a significant decrease of matvecs for large grid
sizes. Note that the Jacobi-Davidson method performs some preconditioning of
the equations solved by projecting out approximate and converged eigenmodes
even if only GMRES is used as a correction solver. Therefore we expect the gap
between the unpreconditioned and preconditioned solver to be even larger when
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Figure 6.10: Number of matvecs in an eigenvalue computation with and without
preconditioning for different grid sizes.

computing the steady states on the branch. The actual time spent solving both
linear and eigenvalue problems depends on the balance between orthogonalization
and preconditioner applications and can be optimized by tuning solver settings in
production runs.

Instead of ML we also employed HYMLS to compare the two precondition-
ers. The behaviour of the linear solver with HYMLS as preconditioner during
continuation process is quite robust and and shows grid independent convergence.
Following the branch S3 with parameter r2 from 0.0 to 1.0, Fig. 6.11 shows that
the average number of iterations in the Newton process is becoming smaller and
smaller with grid refinement. The reason is that with grid refinement the problem
gets closer and closer to Laplace’s equation, which is easier to solve. In addi-
tion, HYMLS shows its benefit over ML saving about 30% of the operations with
respective to total matrix-vector products.
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Figure 6.11: Average number of iterations in continuation process following
branch S3 with parameter r2 varying from 0.0 to 1.0 with HYMLS using a fixed
number of levels (3); results are obtained on different grids, from top to bottom:
323, 643 and 1283, respectively (left); comparison between HYMLS (blue) and
ML (red) w.r.t. total matrix-vector products (right).
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6.4 Summary and discussion
We have shown that numerical continuation techniques, combined with efficient
multigrid and Jacobi-Davidson solvers, are a very effective way to analyze nonlin-
ear PDEs describing reaction-diffusion processes. Compared to previous results
on this type of problem, we presented richer bifurcation diagrams in 2D and 3D
with higher spatial resolution. In conclusion, the continuation approach is not only
efficient in solving the steady solution of large dynamical systems but also can
give more insight about what is happening at the critical points where bifurcations
may occur. With this method, fruitful and insightful numerical results such as pat-
tern selections as well as bifurcation diagrams can be computed, which definitely
will pave the way to a deeper understanding of the experimental phenomenon.

The numerical performance of the overall approach was demonstrated by re-
porting the number of operations required and giving an indication of the run
time. We note that much optimization can be done to solve such problems more
efficiently: geometric multigrid and matrix-free methods for structured grids, hy-
brid parallelization and SIMD usage (see [99]), exploiting the many symmetries in
3D, etc. In 3D we did not investigate the complete bifurcation structure as system-
atically as in 2D. Instead we demonstrated the feasibility of such an investigation
and leave it to domain scientists with a concrete application in e.g. computational
biology or chemistry.
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Chapter 7

Conclusions and outlook

In this chapter, we will look back to the work done in this thesis in order to draw
conclusions and to distill subjects for further research.

7.1 Conclusions

In Section 1.5, we set out the research questions for this thesis. Here we want to
assess how well these have been answered by the results in this thesis.

The first question was: Is the continuation approach a viable alternative to
time integration approaches?

The numerical experiments on a variety of multi-physics problems show that
continuation approach is a practical and efficient way to solve series of steady
states as a function of parameters and to do bifurcation analysis. Starting with
a proper initial guess, Newton’s method converges in a few steps. Since solving
the linear systems arising from the discretization takes most of the computational
work, efficiency is determined by how fast the linear systems can be solved. For
the lid-driven cavity we have seen in section 4.5 that comparable turnaround times
were obtained by a time integration method using the pressure correction approach
solving a Poisson equation for the pressure and a convection-diffusion equation
for the velocities at Re=500.

The second question was: Can we compute solutions by the continuation ap-
proach, which are hard to get by the time-integration approach? In Fig. 3.6, we
showed to be able to perform continuation of unstable steady solutions, which are
impossible to get by only using a time integration approach. Stable and unstable
modes give interesting insight in the dynamics of solution.
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The third question was: How does HYMLS compare to other solvers, like
”physics-based” preconditioners in Trilinos package Teko, and ML in terms of
robustness and turnaround time? Compared with other preconditioners, such as
Teko and ML, HYMLS can compute solutions at higher Reynolds numbers. We
saw in table 4.5 that, for Re=500 in the lid-driven cavity problem, Teko with
LSC preconditioner did not converge. Here, ML is used for the subblocks in the
LSC preconditioner. We have also shown in table 4.2 that Picard iteration does
not converge at Re=500. In that case an Oseen equation needs to be solved, the
matrix of which is only a part of the Jacobian. It is clear that one needs more of
the Jacobian to get convergence. HYMLS can deal with the full Jacobian. Despite
the fact that for the Poisson equation HYMLS shows a number of iterations that
increases with the logarithm of the total of unknowns in section 2.3.4 , this is
not reflected in the Stokes and Navier-Stokes solution results in tables 4.3 and
4.4. Though the number of iterations is still acceptable, one needs to look into
it further to get the desired property of near grid independent convergence for
flow problems. In fact, there is a lot of room for improvement of the method.
The main thing shown here is its robustness, which is due to the iteration in the
divergence-free space.

To test the efficiency of linear solvers for non-flow problems, we studied a
well-known reaction-diffusion system, i.e., the BVAM model of the Turing prob-
lem. HYMLS still performs well with respect to ML in the continuation process
in the Newton process as showed in fig. 6.11. Compared to ML, it needs fewer
iterations in GMRES. However, it did not perform very well in the eigenvalue
computation for solving the correction equation in JDQR. When solving the cor-
rection equation, the linear iteration process may stall or diverge. The reason for
this is unclear at this moment and will be left for future research. A difficulty in
the eigenvalue problems appears to be the high multiplicity of some of the eigen-
values, sometimes up to 20.

There is a limitation on HYMLS that should be mentioned. It has been con-
structed for (Navier-)Stokes equations which have a discretization with only two
nonzeros in each row of that part of the matrix representing the gradient. Moreover
the discretization of the divergence should be the exact transpose of the gradient.

Since HYMLS is based on data structures from the Epetra package, it will
immediately take advantage of any improvements in this package. One could also
easily switch to the Tepetra package, which contains complex arithmetic. This
arithmetic will come in handy for eigenvalue computations.

In general we find that thanks to the highly parallel computation, our program
can deal with very fine grids giving insightful knowledge about the flow struc-
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ture topology, transition to unsteadiness as well as flow characteristics beyond the
transition. Especially three-dimensional results, which are difficult to capture at
high Reynolds and Rayleigh numbers can be obtained. In addition, the applica-
tion to the Turing system not only proved our program’s ability in doing nonlinear
bifurcation analysis efficiently but also provided insightful information on pattern
formation, which plays an essential role in chemistry and biology.

7.2 Ideas for future research
In future we like to add more classical problems to the ones mentioned in chapter
3. One important and promising application of our program is to simulate the
ocean circulation on the surface of the earth. A model of this Atlantic ocean
would be a stretched box, which is very thin compared to the length of earth pole
to the equator. The model should be driven by gradients in surface temperature
and salinity, and by wind. Another interesting one would be a Taylor-Couette
flow.

Also our techniques can be improved. For instance, use the eigenspace coming
about from the eigenvalue computation in a deflation process to speed up the linear
solves. The other way around, one could also use part of the Krylov subspace of
the linear solver to start the eigenvalue solver process. In the Jacobi-Davidson
method, we can already already import a guess for the basis and it appears to
be fruitful to use the eigenspace computed at the previous continuation step. It
is tempting to try to combine the eigenvalue computation and the solution of the
linear system and have only one subspace to solve both problems. These can be
viewed as subspace accelerated inexact Newton methods, see [138].

The number of iterations in HYMLS can be brought down by making the fac-
torization more accurate. Currently, a lot of entries have been dropped. Here, a
trade-off between iteration costs and accuracy costs should be pursued. Experi-
ence with MRILU [139] showed that the choice is not very critical and that it is
possible to increase the accuracy till only one iteration is needed to get the de-
sired reduction in the error. Also solving slightly indefinite equations occurring in
eigenvalue problems needs some study to improve HYMLS’ behavior on.

The restriction to a C-grid discretization of the Navier-Stokes equations can
also be alleviated. In principle it can also work for so-called A- and B-grids; in the
former we have a collocated grid and in the latter the velocities are collocated).
So far the grids have been structured, but it would be interesting to extend it to
finite volume discretizations on unstructured meshes.
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In this thesis, we did not consider the stability of periodic solutions that may
occur after an Hopf-bifurcation. One could extend the technology by adding con-
tinuation of periodic solutions. At the Hopf-bifurcation point the frequency of
such a solution is known, hence, it is tempting to build a special purpose time
integrator which is accurate near this frequency instead of being that at frequency
zero, the latter is the standard case.

Another addition to the techniques will be solvers for flow problems with
noise. Especially, in the neighborhood of bifurcation points this can be tricky.
In the end, we would like to be able to compute transition times and probabilities
for switching from one stable state into another. For instance, these are relevant
in estimating the chance on getting a rapid climate change.
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Appendix A

Solutions of BVAM model

In the appendices we present some of the solution patterns found in 2D and 3D.
In all of the plots, the left column depicts the u-variable and the right column the
v-variable. All results were obtained using a spatial resolution of 128 grid points
per direction.

A.1 Patterns of 2D Solutions

Figure A.1: S2 unstable stripe solution at r2=0.0.
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Figure A.2: Two independent eigenvectors corresponding to the positive eigen-
value of branch S2 with a pattern of an S4 mode, with r2 = 0.0.
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Figure A.3: S5 stable mixed stripe and spot solution at r2=0.0, 0.1, 0.2, 0.21227
from top to bottom.
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Figure A.4: S5 after turning point: unstable mixed stripe and spot solution at
r2=0.21, 0.19, 0.15, 0.129 from top to bottom.
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Figure A.5: S4 spot solution becoming stable (shown at r2=0.0, 0.2, 0.5 from top
to bottom).
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Figure A.7: Two independent eigenvectors corresponding to the positive eigen-
value of branch S3, r2 = 0.25.
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Figure A.8: Isosurface of 3D solution of pattern S6, with r2=0.0, 0.5, 1.0 from top
to bottom.
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Figure A.9: Isosurface of 3D solution of pattern S7, with r2=0.0, 0.5, 1.0 from top
to bottom.
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Figure A.10: Isosurface of 3D solution of pattern S8, with r2=0.0.

Figure A.11: Isosurface of 3D solution of pattern S9, with r2=0.0.
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[46] J. Gaidamour and P. Hénon. A parallel direct/iterative solver based on a
Schur complement approach. In 2008 11th IEEE International Conference
on Computational Science and Engineering, pages 98–105, July 2008.

[47] J. Thies and F. W. Wubs. Design of a parallel hybrid direct/iterative solver
for CFD problems. In Proceedings of the 2011 IEEE Seventh Interna-
tional Conference on eScience, ESCIENCE ’11, pages 387–394, Washing-
ton, DC, USA, 2011. IEEE Computer Society.

[48] W. Song, F. W. Wubs, and J. Thies. A highly parallel code for strongly cou-
pled fluid-transport equations. In Proceedings of the 11th world congress
on computational mechanics, WCCM XI, pages 199–210. Barcelona,
Spain, 2014.

[49] U. Ghia, K. N. Ghia, and C. T. Shin. High-resolutions for incompressible
flow using the Navier-Stokes equations and a multigrid method. Journal of
Computational Physics, 48(3):387 – 411, 1982.

[50] S. Albensoeder and H. C. Kuhlmann. Accurate three-dimensional lid-
driven cavity flow. Journal of Computational Physics, 206(2):536 – 558,
2005.

[51] H. C. Kuhlmann and S. Albensoeder. Stability of the steady three-
dimensional lid-driven flow in a cube and the supercritical flow dynamics.
Physics of Fluids, 26, 2014.



130 BIBLIOGRAPHY

[52] N. C. Markatos and K. A. Pericleous. Laminar and turbulent natural con-
vection in an enclosed cavity. International Journal of Heat and Mass
Transfer, 27(5):755 – 772, 1984.

[53] A. C. Perkins. Mechanisms of instability in Rayleigh-Bénard convection.
Phd thesis no. 20599, Georgia Institute of Technology, 2011.

[54] D. Puigjaner, J. Herrero, F. Giralt, and C. Simó. Stability analysis of the
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2017.

[64] A. M. Turing. The chemical basis of morphogenesis. Philosophi-
cal Transactions of the Royal Society of London B: Biological Sciences,
237(641):37–72, 1952.

[65] A. M. Zhabotinsky L. Yang, M. Dolnik and I. R. Epstein. Turing patterns
beyond hexagons and stripes. Chaos, 16(3), 2006.

[66] J. Boissonade, E. Dulos, and P. De Kepper. Turing Patterns: From Myth to
Reality, pages 221–268. Springer Netherlands, Dordrecht, 1995.

[67] E. Dulos, J. Boissonade, J. J. Perraud, B. Rudovics, and P. De Kepper.
Chemical morphogenesis: Turing patterns in an experimental chemical sys-
tem. Acta Biotheor., 44(3-4):249–61, 1996.

[68] P. K. Maini, K. J. Painter, and H. Nguyen Phong Chau. Spatial pattern for-
mation in chemical and biological systems. J. Chem. Soc., Faraday Trans,
93:3601–3610, 1997.
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[113] R. W. M. Henkes and P. L. Quéré. Three-dimensional transition of natural-
convection flows. J. Fluid Mech., 319(218), 1996.

[114] M. Lappa. Thermogravitational Convection: The Rayleigh–Bénard Prob-
lem, pages 119–130. John Wiley & Sons, Ltd, 2009.

[115] Rayleigh-Bénard instability. http://hmf.enseeiht.fr/
travaux/CD0001/travaux/optmfn/hi/01pa/hyb72. Ac-
cessed 3-April-2018.
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Summary

Numerical flow simulations are playing a more and more important role not only
in the scientific field but also in the industrial area, where an experimental prac-
tice is either difficult or expensive to realize. Numerical simulation methods have
been studied intensively in the past decades to achieve good accuracy as well as
low turnaround times. There is no numerical technique which is generally suit-
able for every problem. Usually, there are specific techniques for a given type of
problem. For instance, a preconditioner is created depending on the structure and
properties of the matrix arising from the system. The motion of a fluid is governed
by the Navier-Stokes equations, which can model different types of fluid flows.
For example, the fluid air in the modeling of the earth atmosphere is considered
as compressible, while in the simulation of ocean tides, the fluid water is regarded
as incompressible. Analytical solutions of the Navier-Stokes equations only ex-
ist for a limited number of cases, hence, for general cases, computing efficiently
numerical solutions for these equations is essential. We focused on steady-state
problems related to incompressible flows.

There are basically two approaches to find steady states. The first is a time-
integration method which just finds it by integrating to the steady state. The sec-
ond is to solve the nonlinear system directly by Newton’s method. The goal of the
thesis is to get an insight into what kind of problems can be solved readily with
a continuation method and which of the approaches, time integration or direct
solution, is favorable. For the latter we developed our own parallel continuation
program, which is also presented in this thesis.
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Methods

There are two main difficulties when solving the incompressible Navier-Stokes
equations for a Newtonian fluid. The first one is the nonlinear system induced by
the convective terms. The second is the constraint of mass conservation combined
with the role of the pressure term which has no thermodynamical significance.
Concerning the nonlinear system, it is attractive to use explicit time-integration
methods to find steady-state solutions of the equations, e.g., by the forward Euler
method, which avoids the need of solving a full set of nonlinear equations. The
role of nonlinearity turns out to be more and more critical with the emergence of
small structures in the flow dynamics. For instance, when the Reynolds number
becomes high, which means that the convective effects are dominant relative to
the viscous terms, the grid must be fine enough to capture all the scales in the flow
accurately. This means in practice that finer and finer spatial and temporal grids
must be used when the Reynolds number increases. As a consequence, there will
be large computational costs.

The enforcement of the mass conservation leads to an algebraic constraint
on the velocity field, and the pressure can be considered as the Lagrange multi-
plier associated to this constraint. The coupled velocity-pressure problem, after
linearization, has a saddle-node structure which makes it difficult to solve. The
matrix will be indefinite and when generating a standard preconditioner, say an
incomplete factorization with fill determined by a drop tolerance, there is a con-
siderable chance that it will be nearly singular, leading to slow convergence or
stagnation.

Apart from time integration, Newton-Krylov methods are the standard way
to compute the steady state of the fully-coupled incompressible Navier-Stokes
equations. The most challenging part is to solve the linear system, arising after
discretization, efficiently. Usually, the problem is of huge scale, involving millions
of unknowns and the amount of memory required for the factorization is not linear
in the number of unknowns and computing time increases quite sharply because
of the computation of all new elements during the factorization, especially for
3-dimensional problems. Therefore, robust solvers are essential.

A numerical continuation approach with a robust linear solver can gain accu-
rate steady solutions with high efficiency. We have developed a parallel continua-
tion program using data structures from the Epetra package available in the Trili-
nos library. The program uses the Trilinos package LOCA for the continuation in
which the Newton-Krylov method is employed to solve the nonlinear equations.
We used the Arnoldi method from the Anasazi package and the Jacobi-Davidson



method from the PHIST software to do the eigenvalue computation for the sta-
bility analysis. In solving the linear system in each Newton step and eigenvalue
computation, proper preconditioners are needed to achieve fast convergence, for
instance, LSC in Teko, ML, and HYMLS, among which HYMLS is our home-
made code. HYMLS is a hybrid direct/iterative approach, aiming to combine the
robustness of direct solvers with the memory and computational efficiency of it-
erative methods.

Focused Problems
Transitions in flows of liquids and gases are of great interest. We like to construct
bifurcation diagrams showing for which parameter values transitions are to be
expected. Such diagrams can be obtained by computing a series of steady states
as a function of parameter values and the eigenvalues at the corresponding states.
In the thesis, we analyzed four canonical flow problems: the lid-driven cavity, the
differentially heated cavity, Rayleigh-Bénard convection, and differentially heated
rotating cavity.

Another interesting problem studied in this thesis is a Turing-type reaction-
diffusion model. The pattern formation behavior in Turing systems is very com-
plex. It is known that 3D solutions can display much richer behavior than 2D
solutions because there are many more possibilities for spatial multi-stability in
3D than there are in 2D. In this thesis, we have focused on a Turing model called
the Barrio-Varea-Aragon-Maini (BVAM) model and gave a rich 3D bifurcation
diagram as well as a stability analysis.

Results in this thesis
Our continuation program was able to perform the analysis for the flow problems
and the Turing problem. Moreover, we could compute unstable steady states,
which is impossible by time-integration methodology. We also showed that Picard
iteration, in which an Oseen problem needs to be solved, does not converge for
already modest values of the Reynolds number in the lid-driven cavity problem.
Hence, the full Jacobian is necessary in Newton’s method. Unfortunately, the
linear system solver Teko, using the LSC preconditioner, did also not converge for



modest values of the Reynolds number. On the other hand, HYMLS performed
well for a vast range of Reynolds numbers.

For the lid-driven cavity problem, we also compared our approach to the time-
integration approach at Reynolds number 500. Unfortunately, that approach was
not parallelized, but, if it would, we expect that the turnaround time would be
similar to that of our approach. This leads to our main conclusion that the contin-
uation approach, using a robust preconditioner like HYMLS, is competitive with
the time-integration approach for the steady-state flow problems considered here.



Samenvatting

Numerieke stromingssimulaties spelen een steeds grotere rol in niet alleen de
wetenschap, maar ook in de industrie, waar experimenten vaak te moeilijk of te
duur zijn. Numerieke simulatiemethoden zijn de afgelopen decennia intensief
bestudeerd om zowel goede nauwkeurigheid als lage doorlooptijden te bereiken.
Er is geen numerieke techniek die over het algemeen geschikt is voor elk prob-
leem. Meestal zijn er specifieke technieken voor een bepaald type probleem. Er
wordt bijvoorbeeld een preconditioner gemaakt,afhankelijk van de structuur en
eigenschappen van de matrix die uit het systeem voortkomt. De beweging van een
vloeistof wordt bepaald door de Navier-Stokes-vergelijkingen, die verschillende
soorten vloeistofstromen kunnen modelleren. De vloeibare lucht in de modeller-
ing van de aardatmosfeer wordt bijvoorbeeld als comprimeerbaar beschouwd, ter-
wijl bij de simulatie van oceaangetijden het vloeibare water als niet-samendrukbaar
wordt beschouwd. Analytische oplossingen van de Navier-Stokes vergelijkin-
gen bestaan slechts voor een beperkt aantal gevallen, vandaar dat voor algemene
gevallen het berekenen van efficiënte numerieke oplossingen voor deze vergeli-
jkingen essentieel is. We hebben ons gericht op evenwichtstoestandsproblemen
met niet samendrukbare stromen.

Er zijn in principe twee benaderingen om evenwichtstoestanden te vinden. De
eerste is een tijdsintegratiemethode die het gewoon vindt door te integreren in de
evenwichtstoestand. De tweede is om het niet-lineaire systeem rechtstreeks op te
lossen volgens de methode van Newton. Het doel van dit proefschrift is om inzicht
te krijgen in wat voor soort problemen gemakkelijk kunnen worden opgelost met
een continuatiemethode en welke van de benaderingen, tijdintegratie of directe
oplossing, gunstig is. Voor de laatste hebben we ons eigen parallelle continu-
atieprogramma ontwikkeld, wat ook in dit proefschrift wordt gepresenteerd.
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Methoden

Er zijn twee belangrijke problemen bij het oplossen van de onsamendrukbare
Navier-Stokes-vergelijkingen voor een Newtoniaanse vloeistof. De eerste is het
niet-lineaire systeem dat wordt geı̈nduceerd door de convectieve termen. De
tweede is de beperking van massaconservering in combinatie met de rol van de
drukterm die geen thermodynamische betekenis heeft. Met betrekking tot het
niet-lineaire systeem is het aantrekkelijk om expliciete tijdsintegratiemethoden te
gebruiken om evenwichtstoestandsoplossingen van de vergelijkingen te vinden,
bijvoorbeeld met behulp van de voorwaartse Euler-methode, die de noodzaak van
het oplossen van een volledige reeks van niet-lineaire vergelijkingen vermijdt. De
rol van niet-lineariteit blijkt steeds kritieker te zijn bij de opkomst van kleine struc-
turen in de stromingsdynamiek. Wanneer het Reynolds-getal bijvoorbeeld hoog
wordt, wat betekent dat de convectieve effecten dominant zijn ten opzichte van
de viskeuze termen, moet het raster fijn genoeg zijn om alle schalen in de stroom
nauwkeurig te vangen. Dit betekent in de praktijk dat steeds fijnere ruimtelijke en
tijdelijke rasters moeten worden gebruikt wanneer het Reynolds-getal toeneemt.
Dientengevolge zullen er grote rekenkosten zijn.

De handhaving van de massaconservering leidt tot een algebraı̈sche beperk-
ing van het snelheidsveld, en de druk kan worden beschouwd als de Lagrange-
multiplicator die aan deze beperking is gekoppeld. Het gekoppelde snelheids-
drukprobleem, na linearisatie, heeft een zadelknoopstructuur die het moeilijk op
te lossen maakt. De matrix zal indefiniet zijn en wanneer een standaard precon-
ditioner wordt gegenereerd, bijvoorbeeld een onvolledige ontbinding waarbij de
vulling bepaald wordt door een afkaptolerantie, is er een aanzienlijke kans dat
deze bijna singulier is, wat leidt tot langzame convergentie of stagnatie.

Afgezien van tijdintegratie zijn de Newton-Krylov-methoden de standaard-
manier om de evenwichtstoestand van de volledig gekoppelde niet-samendrukbare
Navier-Stokes-vergelijkingen te berekenen. Het meest uitdagende onderdeel is om
het lineaire systeem, dat ontstaat na discretisatie, efficiënt op te lossen. Meestal
is het probleem van grote schaal, met miljoenen onbekenden en de hoeveelheid
geheugen die nodig is voor de ontbinding is niet lineair in het aantal onbekenden
en de rekentijd neemt behoorlijk toe vanwege de berekening van alle nieuwe el-
ementen tijdens de ontbinding, vooral voor 3-dimensionale problemen. Daarom
zijn robuuste oplossingen essentieel.

Een numerieke continuatiebenadering met een robuuste lineaire oplosser kan
nauwkeurige, stabiele oplossingen met een hoog rendement opleveren. We hebben
een parallel continuatieprogramma ontwikkeld met behulp van datastructuren uit



het Epetra-pakket die beschikbaar zijn in de Trilinos-bibliotheek. Het programma
gebruikt het Trilinos-pakket LOCA voor de continuatie waarin de Newton-Krylov-
methode wordt gebruikt om de niet-lineaire vergelijkingen op te lossen. We
gebruikten de Arnoldi-methode uit het Anasazi-pakket en de Jacobi-Davidson-
methode van de PHIST-software om de eigenwaardenberekening voor de sta-
biliteitsanalyse uit te voeren. Bij het oplossen van het lineaire systeem in elke
Newton-stap en eigenwaardenberekening, zijn goede preconditioners nodig om
een snelle convergentie te bereiken, bijvoorbeeld LSC in Teko, ML en HYMLS,
waarbij HYMLS onze zelfgemaakte code is. HYMLS is een hybride directe /
iteratieve benadering, gericht op het combineren van de robuustheid van directe
oplossers met de reken- en geheugenefficiëntie van iteratieve methoden.

Gerichte problemen
Overgangen in stromen van vloeistoffen en gassen zijn van groot belang. We
bouwen graag bifurcatiediagrammen die laten zien voor welke parameterwaar-
den transities verwacht kunnen worden. Dergelijke diagrammen kunnen worden
verkregen door een reeks evenwichtstoestanden te berekenen als een functie van
parameterwaarden en de eigenwaarden in de overeenkomstige toestanden. In het
proefschrift hebben we vier canonieke stromingsproblemen geanalyseerd: de door
een deksel aangedreven holte, de differentieel verwarmde holte, Rayleigh-Bénard
convectie en differentieel verwarmde roterende holte.

Een ander interessant probleem dat in dit proefschrift wordt bestudeerd, is een
Turing-type reactiediffusiemodel. Het patroonvormingsgedrag in Turing-systemen
is erg complex. Het is bekend dat 3D-oplossingen veel rijker gedrag kunnen verto-
nen dan 2D-oplossingen, omdat er veel meer mogelijkheden zijn voor ruimtelijke
multistabiliteit in 3D dan in 2D. In dit proefschrift hebben we ons gericht op een
Turing-model genaamd het Barrio-Varea-Aragon-Maini (BVAM) model en gaven
een rijk 3D-bifurcatiediagram en een stabiliteitsanalyse.

Resultaten in dit proefschrift
Ons continuatieprogramma was in staat de analyse uit te voeren voor de stro-
mingsproblemen en het Turing-probleem. Bovendien hebben we onstabiele even-



wichtstoestanden kunnen berekenen, wat onmogelijk is door middel van de ti-
jdsintegratiemethodologie. We toonden ook aan dat Picard-iteratie, waarin een
Oseen-probleem moet worden opgelost, niet convergeert voor de al bescheiden
waarden van het Reynolds-getal in het door een deksel aangestuurde holteprob-
leem. Vandaar dat de volledige Jacobiaan nodig is in de methode van Newton.
Helaas is de lineaire systeemoplosser Teko, die de LSC-preconditioner gebruikt,
ook niet geconvergeerd voor bescheiden waarden van het Reynolds-getal. Aan de
andere kant presteerde HYMLS goed voor een breed scala aan Reynolds-getallen.

Voor het door een deksel aangestuurde holteprobleem hebben we ook onze
benadering vergeleken met de tijdsintegratiebenadering op Reynolds-getal 500.
Helaas was die benadering niet parallel, maar als dat wel zo was, verwachten we
dat de doorlooptijd vergelijkbaar zou zijn met die van onze aanpak. Dit leidt tot
onze hoofdconclusie dat de continuatiebenadering, met behulp van een robuuste
preconditioner zoals HYMLS, kan concureren met de tijdsintegratiebenaderingen
voor de evenwichtstoestands-stromingsproblemen die hier worden beschouwd.
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