12 research outputs found

    Structural neuroimaging correlates of allelic variation of the BDNF val66met polymorphism.

    Get PDF
    BACKGROUND: The brain-derived neurotrophic factor (BDNF) val66met polymorphism is associated with altered activity dependent secretion of BDNF and a variable influence on brain morphology and cognition. Although a met-dose effect is generally assumed, to date the paucity of met-homozygotes have limited our understanding of the role of the met-allele on brain structure. METHODS: To investigate this phenomenon, we recruited sixty normal healthy subjects, twenty in each genotypic group (val/val, val/met and met/met). Global and local morphology were assessed using voxel based morphometry and surface reconstruction methods. White matter organisation was also investigated using tract-based spatial statistics and constrained spherical deconvolution tractography. RESULTS: Morphological analysis revealed an "inverted-U" shaped profile of cortical changes, with val/met heterozygotes most different relative to the two homozygous groups. These results were evident at a global and local level as well as in tractography analysis of white matter fibre bundles. CONCLUSION: In contrast to our expectations, we found no evidence of a linear met-dose effect on brain structure, rather our results support the view that the heterozygotic BDNF val66met genotype is associated with cortical morphology that is more distinct from the BDNF val66met homozygotes. These results may prove significant in furthering our understanding of the role of the BDNF met-allele in disorders such as Alzheimer's disease and depression

    Isotropic non-white matter partial volume effects in constrained spherical deconvolution

    Get PDF
    Diffusion-weighted (DW) magnetic resonance imaging (MRI) is a non-invasive imaging method, which can be used to investigate neural tracts in the white matter (WM) of the brain. Significant partial volume effects (PVEs) are present in the DVV signal due to relatively large voxel sizes. These PVEs can be caused by both non-WM tissue, such as gray matter (GM) and cerebrospinal fluid (CSF), and by multiple non-parallel WM fiber populations. High angular resolution diffusion imaging (HARDI) methods have been developed to correctly characterize complex WM fiber configurations, but to date, many of the HARDI methods do not account for non-WM PVEs. In this work, we investigated the isotropic PVEs caused by non-WM tissue in WM voxels on fiber orientations extracted with constrained spherical deconvolution (CSD). Experiments were performed on simulated and real DW-MRI data. In particular, simulations were performed to demonstrate the effects of varying the diffusion weightings, signal-to-noise ratios (SNRs), fiber configurations, and tissue fractions. Our results show that the presence of non-WM tissue signal causes a decrease in the precision of the detected fiber orientations and an increase in the detection of false peaks in CSD. We estimated 35-50% of WM voxels to be affected by non-WM PVEs. For HARDI sequences, which typically have a relatively high degree of diffusion weighting, these adverse effects are most pronounced in voxels with GM PVEs. The non-WM PVEs become severe with 50% GM volume for maximum spherical harmonics orders of 8 and below, and already with 25% GM volume for higher orders. In addition, a low diffusion weighting or SNR increases the effects. The non-WM PVEs may cause problems in connectomics, where reliable fiber tracking at the WM G M interface is especially important. We suggest acquiring data with high diffusion-weighting 2500-3000 s/mm(2), reasonable SNR (similar to 30) and using lower SH orders in GM contaminated regions to minimize the non-WM PVEs in CSD

    BDNF Val66Met Polymorphism and Gamma Band Disruption in Resting State Brain Functional Connectivity: A Magnetoencephalography Study in Cognitively Intact Older Females

    Get PDF
    The pathophysiological processes undermining brain functioning decades before the onset of the clinical symptoms associated with dementia are still not well understood. Several heritability studies have reported that the Brain Derived Neurotrophic Factor (BDNF) Val66Met genetic polymorphism could contribute to the acceleration of cognitive decline in aging. This mutation may affect brain functional connectivity (FC), especially in those who are carriers of the BDNF Met allele. The aim of this work was to explore the influence of the BDNF Val66Met polymorphism in whole brain eyes-closed, resting-state magnetoencephalography (MEG) FC in a sample of 36 cognitively intact (CI) older females. All of them were ε3ε3 homozygotes for the apolipoprotein E (APOE) gene and were divided into two subgroups according to the presence of the Met allele: Val/Met group (n = 16) and Val/Val group (n = 20). They did not differ in age, years of education, Mini-Mental State Examination scores, or normalized hippocampal volumes. Our results showed reduced antero-posterior gamma band FC within the Val/Met genetic risk group, which may be caused by a GABAergic network impairment. Despite the lack of cognitive decline, these results might suggest a selective brain network vulnerability due to the carriage of the BDNF Met allele, which is linked to a potential progression to dementia. This neurophysiological signature, as tracked with MEG FC, indicates that age-related brain functioning changes could be mediated by the influence of particular genetic risk factors

    The brain-derived neurotrophic factor Val66Met polymorphism increases segregation of structural correlation networks in healthy adult brains

    Get PDF
    Background Although structural correlation network (SCN) analysis is an approach to evaluate brain networks, the neurobiological interpretation of SCNs is still problematic. Brain-derived neurotrophic factor (BDNF) is well-established as a representative protein related to neuronal differentiation, maturation, and survival. Since a valine-to-methionine substitution at codon 66 of the BDNF gene (BDNF Val66Met single nucleotide polymorphism (SNP)) is well-known to have effects on brain structure and function, we hypothesized that SCNs are affected by the BDNF Val66Met SNP. To gain insight into SCN analysis, we investigated potential differences between BDNF valine (Val) homozygotes and methionine (Met) carriers in the organization of their SCNs derived from inter-regional cortical thickness correlations. / Methods Forty-nine healthy adult subjects (mean age = 41.1 years old) were divided into two groups according to their genotype (n: Val homozygotes = 16, Met carriers = 33). We obtained regional cortical thickness from their brain T1 weighted images. Based on the inter-regional cortical thickness correlations, we generated SCNs and used graph theoretical measures to assess differences between the two groups in terms of network integration, segregation, and modularity. / Results The average local efficiency, a measure of network segregation, of BDNF Met carriers’ network was significantly higher than that of the Val homozygotes’ (permutation p-value = 0.002). Average shortest path lengths (a measure of integration), average local clustering coefficient (another measure of network segregation), small-worldness (a balance between integration and segregation), and modularity (a representative measure for modular architecture) were not significantly different between group (permutation p-values ≧ 0.01). / Discussion and Conclusion Our results suggest that the BDNF Val66Met polymorphism may potentially influence the pattern of brain regional morphometric (cortical thickness) correlations. Comparing networks derived from inter-regional cortical thickness correlations, Met carrier SCNs have denser connections with neighbors and are more distant from random networks than Val homozygote networks. Thus, it may be necessary to consider potential effects of BDNF gene mutations in SCN analyses. This is the first study to demonstrate a difference between Val homozygotes and Met carriers in brain SCNs

    Structural neuroimaging correlates of allelic variation of the bdnf val66met polymorphism

    No full text
    AbstractBackgroundThe brain-derived neurotrophic factor (BDNF) val66met polymorphism is associated with altered activity dependent secretion of BDNF and a variable influence on brain morphology and cognition. Although a met-dose effect is generally assumed, to date the paucity of met-homozygotes have limited our understanding of the role of the met-allele on brain structure.MethodsTo investigate this phenomenon, we recruited sixty normal healthy subjects, twenty in each genotypic group (val/val, val/met and met/met). Global and local morphology were assessed using voxel based morphometry and surface reconstruction methods. White matter organisation was also investigated using tract-based spatial statistics and constrained spherical deconvolution tractography.ResultsMorphological analysis revealed an “inverted-U” shaped profile of cortical changes, with val/met heterozygotes most different relative to the two homozygous groups. These results were evident at a global and local level as well as in tractography analysis of white matter fibre bundles.ConclusionIn contrast to our expectations, we found no evidence of a linear met-dose effect on brain structure, rather our results support the view that the heterozygotic BDNF val66met genotype is associated with cortical morphology that is more distinct from the BDNF val66met homozygotes. These results may prove significant in furthering our understanding of the role of the BDNF met-allele in disorders such as Alzheimer's disease and depression

    Application of neuroimaging and genetics on Alzheimer's disease

    Get PDF
    corecore